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ABSTRACT 
 

Utilization of FISH for Constitutional and Acquired Chromosomal 
Abnormalities for Diagnostic and Prognostic Purposes 

 
Amy L. Shackelford 

 
Fluorescence in-situ hybridization (FISH) is a useful molecular cytogenetics 

technique for counting chromosomes and identifying specific chromosomal sequences of 
interest. FISH probe targets include centromeres, single loci, subtelomeres, and 
telomeres, using DNA or peptide nucleic acid (PNA) probes. FISH probes were used to 
determine chromosome number, copy loss or gain, and signal size in four studies 
involving acquired chromosomal changes in malignancy, mosaicism, and aneuploidy in 
pre- and postnatal constitutional abnormalities.  
 In the first series of experiments, subtelomere probes for 5p and 5q were used to 
evaluate paraffin embedded patient samples for a 5q deletion and compare that to 
pathological and clinical characteristics of small cell lung carcinoma (SCLC). The 
correlation between del(5q) and spindle cell morphology was found to be significant 
(p<0.025), but of unknown relevance. In the second study, FISH was used in conjunction 
with microarray analysis to define the karyotype of a patient with a Pallister-Killian 
(PKS) phenotype, a tissue-limited mosaic condition. Her karyotype was determined to be 
46,XX,dup(12)(p11.2p13.2),trp(12) (p13.2pter)[5]/46,XX[15], with the abnormal cell 
line remaining at 25% from 6 to 19 months of age. PNA telomere length studies were 
performed on this same patient to determine if there was a difference between the normal 
and abnormal cells lines, shorter telomeres explaining loss of abnormal cells, however, 
no difference was found. In the third series of studies, samples from pregnancy losses that 
failed to grow in culture were investigated using FISH. Two of the five culture failure 
samples identified a mosaic trisomy 9 female and a mosaic tetraploid female using FISH 
probes in interphase cells. In the fourth and final study, PNA FISH probes were used to 
assess the difference between telomere lengths in newborns with trisomy 21 and normal 
chromosomes. Telomere lengths in cells with trisomy 21 were significantly shorter than 
those with normal chromosomes in both metaphase (p<0.05) and interphase (p<0.01) 
cells.  Cell senescence with shortened telomeres, would correlate with shorter lifespan of 
individuals with trisomy 21. 
 Overall, FISH is an important tool that can enhance the diagnostic capabilities of 
conventional cytogenetics testing, particularly when used in conjunction with traditional 
karyotyping. FISH offers a more rapid alternative when turn around times are critical and 
allows for more specific resulting, particularly in cases where an abnormality of interest 
is unable to be visualized within a karyotype, specimens are nonliving, or the study of 
interphase cells is necessary.  
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Literature Review 

 Karl Wilhelm von Nägeli first described “transitory cytoblasts” in plant nuclei 

and their behavior at cell division in Zeitschrift für wissenschaftliche Botanik in 1844.1 In 

1880, Walther Flemming published work investigating chromosome morphology and the 

movement of chromosomes during mitosis, including detailed sketches of the process.2,3 

Leading from Flemming’s work, Wilhelm von Waldeyer-Hartz coined the term 

“chromosome” in 1888, from chromos- Greek for color and soma- Greek for body, due to 

the ability of chromosomes to be stained for visualization.4  

Approximately 40 years later, the field of human cytogenetics found its 

beginnings with the declaration that normal human cells possess 48 chromosomes. In the 

early 1950s, the accidental addition of a hypotonic salt solution to a human mitotic cell 

suspension prior to fixation and slide preparation caused the cells to swell, allowing the 

chromosomes to spread and be visualized individually.5 In 1956, Tijo and Levan, 

utilizing the hypotonic technique, initially established the human chromosome count to 

be 46, which Ford and Hamerton confirmed independently within the same year.6,7 Cell 

culturing and harvesting techniques continued to be improved, notably with the addition 

of phytohemagglutinin to stimulate cell cultures and of colchicine to arrest cells in 

metaphase. Over time, chromosomes were paired and sorted into groups (A through G) 

by size and centromeric position, or karyotyped.  

Karyotyping rapidly changed the landscape of human genetics as relationships 

were demonstrated between chromosomal aneuploidies and abnormal phenotypes, 

specifically trisomy 21 and Down syndrome, X and Turner syndrome, XXY and 

Klinefelter syndrome, and an association was seen between miscarriages and 

aneuploidy.8 Chronic myelogenous leukemia (CML) was characterized by the 

Philadelphia chromosome, a G group chromosome with a deletion, in 1960.9 Though 

incorrect, this set the stage for recognition of chromosomal abnormalities as causal to 

disease. The development of banding and staining methods in the late 1960s helped to 

clarify what was seen in solid-stained karyotypes and allowed researchers to study 

structural chromosome abnormalities such as translocations, inversions, deletions, and 

duplications and their relationship to abnormal phenotypes.10,11  
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 Additionally, in the late 1960s, molecular hybridization was used to identify the 

positions of DNA sequences in situ, or in their natural loci within chromosomes. 

Researchers Joseph Gall and Mary Lou Pardue hybridized tritium-labeled copies of an 

RNA sequence to complementary DNA sequences in the nuclei of Xenopus toad oocytes 

and visualized the hybrids using autoradiography.12 Radiographic methods based on their 

research were utilized into the 1980s when fluorescent techniques were developed and 

fell into common usage. Radioactive substances are inherently unstable, are hazardous, 

and require special disposal methods. In addition, it took a relatively long time to 

measure radioactive signals emitted by the probes. The changeover to fluorescent 

techniques overcame most of these obstacles while adding the ability to simultaneously 

detect multiple targets and analyze probe signals quantitatively.13  

 The first fluorescent in situ detection took place in 1980, via the utilization of an 

RNA probe that was directly labeled at the 3’ end with a fluorophore.14 Fluorescence in 

situ hybridization (FISH) methodology was developed by Pinkel and associates in 1986 

using fluorescent-labeled probes to detect specific DNA sequences.4,15 Simultaneous two-

color and three-color FISH methodologies followed within the decade.13 Further 

advances in FISH would allow researchers and diagnosticians to increase the resolution 

of the traditional karyotype and to visualize specific loci on chromosomes within 

interphase cells, non-living/dividing cells, and tissue on paraffin-embedded slides.  

 Genome mapping allowed for the widespread identification of gene loci, resulting 

in the ability to characterize abnormal chromosomes by FISH to identify affected genes. 

One such example was the characterization of genes involved in the breakpoints common 

to the inv(16) seen in acute myelogenous leukemia (AML) patients. FISH was crucial to 

the identification of the MYH (smooth muscle myosin heavy chain 11) and CBFB (β-

subunit of core-binding factor) genes that result in transformation to the AML phenotype 

when fused.8,16 These types of studies paved the way for the ability to associate specific 

chromosomal abnormalities previously not visible in the karyotype with abnormal 

phenotypes. The clinical utilization of FISH studies to determine which genes are 

involved in chromosomal abnormalities assists in determining an explanation, via the 

identification of gene(s) involved combined with the knowledge of gene function, for the 

abnormal phenotype that results.   
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Introduction 
 

Fluorescence in-situ hybridization (FISH) is a molecular cytogenetics technique 

developed in the mid-1980s for counting chromosomes and identifying specific 

chromosomal sequences of interest.1 FISH involves the tagging of specific chromosome 

sequences via the hybridization of a fluorescent-tagged complementary DNA probe to the 

sequence of interest on a selected chromosome. This is accomplished by warming slides 

with tissues or cells affixed so that the DNA in the cells denatures, or opens up, allowing 

a complementary sequence (probe) containing a fluorescent tag to be hybridized to the 

sequence of interest.2 These fluorescent tags can then be visualized using a fluorescent 

microscope and the signals showing interpreted to determine the presence (signal present) 

or absence (no signal seen) of the sequence/gene being studied. There are two major 

types of FISH probes, repetitive or single copy, or chromosome enumeration and locus 

specific respectively. Chromosome enumeration probes typically hybridize to the 

centromere, which consists of repetitive sequences unique to a specific chromosome, and 

are used to determine the number of copies of a chromosome present. Locus specific 

probes hybridize to a gene, or genes, of interest and can be used to determine deletions, 

amplifications, or translocations. Subtelomere probes are used to evaluate the presence of 

the subtelomeric regions of specific chromosomes while peptide nucleic acid (PNA) 

probes hybridize to the telomeric regions, which are repetitive DNA sequences, on 

chromosomes to allow for the measurement of telomere lengths.  

 Some advantages to FISH are the ability to utilize FISH on nonliving cells 

(paraffin-embedded tissue), previously harvested cell cultures, non-dividing or interphase 

cells, its specificity to certain genes, faster turn around times, and the ability to visualize 

abnormalities that cannot be seen with traditional karyotyping. Disadvantages include 

hybridization artifacts, background fluorescence, and an inability to visualize 

hybridization results within the context of a metaphase cell. Overall, FISH is a successful 

technique when utilized for prognostic information in oncology and in constitutional 

cases, both pre- and post-natal, where specific translocations, rearrangements, deletions, 

or amplifications are a concern, and also to determine aneuploidy.  

 In the following projects, FISH was utilized to evaluate copy numbers of 

chromosomes and/or locus specific regions for acquired changes in oncology and 
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constitutional abnormalities in prenatal and postnatal cases. In Chapter 1, subtelomere 

probes for 5p and 5q were used to determine 5q deletions in tissue samples of patients 

with SCLC with specific pathological and clinical characteristics of the disease. In 

Chapter 2, enumeration and locus specific probes were used to determine the number of 

copies of these regions that were present on chromosome 12p in peripheral blood from a 

patient who was mosaic for a chromosome abnormality. PNA probes were used to 

compare telomere lengths in the abnormal and normal cells. In Chapter 3, a variety of 

centromere enumeration probes and locus specific probes were utilized in the 

determination of aneuploidy in products of conception samples that either failed to grow 

in culture or had a 46,XX karyotype. In Chapter 4, PNA probes were used to evaluate 

telomere lengths in newborns with trisomy 21 to compare with telomere lengths in 

newborns with normal chromosomes.  
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CHAPTER 1: Pathological and Clinical Characteristics of Small Cell 
Lung Carcinoma Associated with 5q Deletion 

Introduction 

Small cell lung carcinoma (SCLC) is an aggressive neuroendocrine carcinoma 

that exhibits rapid growth, early metastasis, and unique sensitivity to radiation and 

chemotherapy.  Annually, SCLC accounts for approximately 15% of new lung cancer 

diagnoses and as many as 25% of lung cancer deaths in the United States.1 SCLC is the 

most aggressive subtype of lung cancer, with an overall 5-year survival rate of about 5%.2 

Cigarette smoking has been implicated in approximately 95% of all SCLC cases.1  

Carcinogenesis is the result of altered oncogenes and tumor suppressor genes, via 

activation of the former and inactivation of the latter. The tumor cells achieve growth 

advantage, uncontrolled proliferation, and metastatic behavior through the disruption of 

key cell-cycle regulators and signal transduction cascades.3 Respiratory epithelial cells 

require multiple genetic alterations to become cancerous. Relevant chromosomal 

abnormalities involve deletions of 3p, 4p, 5q, 16q, 13q, and 17p.4 Del(5q) is found to 

occur in >60% of SCLC cases, making it one of the most common cytogenetic findings, 

and thus worthy of further investigation.5,6,7,8 Deleted regions on 5q have been correlated 

with SCLC, specifically 5q11-13 containing the hMSH3 mismatch repair gene, 5q21 

which includes the APC and MCC tumor-suppressor genes, the EGR1 locus at 5q31, and 

the CSF1R/PDGFRB region at 5q33-q35.7,8,9,10,11 The purpose of this study was to assess 

the relationship between del(5q) and the clinical and histological characteristics of SCLC. 

Materials and Methods 

 Institutional review board approval was obtained for this retrospective study. 

Thirty-six cases of SCLC from 1998 to 2005 were selected and assessed by two 

pathologists for histological parameters including mitotic count, cell morphology, spindle 

versus ovoid cells, degree of necrosis and fibrosis, neuroendocrine morphology, and 

mucin production. For each case, 3-mm thick tissue was placed on glass microscope 

slides by Histology. Pathologists marked the abnormal areas on one hematoxylin and 

eosin (H&E) stained slide per case. Unstained slides were then etched to reflect the H&E 
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markings. To prepare for fluorescence in situ hybridization (FISH) analysis, one slide per 

case was deparaffinized using SkipDewax (Insitus Biotechnologies) at 80°C for 20 min, 

followed by two 3-min distilled water washes. Slides were then placed in a pepsin 

solution (25 mg pepsin, 49.5 mL distilled water, 0.5 mL 1N HCl, pH 2.0) for 1 hour at 

37°C, followed by two 5-min washes in 2x sodium chloride/sodium citrate (SSC, pH 

7.0). The slides were dried on a 50°C slide warmer for 5 min. 

 Subtelomere probes for 5p and 5q (Vysis TotelVysion cocktail #5; Abbott 

Molecular) were diluted (2:50 µL) in tDenHyb (Insitus Biotechnologies). The probe 

mixture was applied to the previously etched area of the tissue in an amount relative to 

the size of the sample and sealed under a cover glass using rubber cement, typically 5 µL 

of probe mixture under an 18-mm round glass. Slides were placed in a ThermoBrite slide 

warmer (Abbott Molecular) at 90°C for 3 min to denature the DNA. The slides were then 

transferred to sealed, humid slide boxes in a 37°C water bath to hybridize for 16 to 20 

hours. 

After hybridization, the rubber cement and cover glasses were removed and the 

slides were washed in 2xSSC/0.3% NP-40 (pH 7.0) at 72°C for 2.5 min and then allowed 

to dry in the dark for 10 min. Twenty mL of 4’,6-diamidino-2-phenylindole (DAPI) 

counterstain was then applied and each slide was sealed with a 20x50 mm cover glass. 

A Leica epi-fluorescent microscope equipped with DAPI single band-pass and 

red/green dual band-pass filters was used for signal enumeration of the red and green 

signals from the subtelomere probes. Up to 100 non-overlapping cells were scored by two 

individuals. Red signals indicated the 5q telomeric region and green signals indicated the 

5p telomere region. A red-to-green ratio less than 0.80 indicated a 5q terminal deletion.  

 

Results 

Of the 36 cases studied, 33 hybridized successfully for FISH analysis. Of these 33 

cases, 15 were identified as having the 5q terminal deletion (Figure 1). Of these 15, eight 

were male and seven female with an overall mean age of 71. Five of these patients were 

diagnosed incidentally, while four presented with shortness of breath, and four with 

cough. This group had a mean smoking history of 61 pack-years, defined as (packs 



 

 

smoked per day) x (years smoking). Eight were at

group was 20 months.  

Of the 18 patients without the 5q terminal deletion, nine were male and nine 

female, with a mean age of 59. Seven presented with shortness of breath, the only 

common symptom at diagnosis. This 

years. Twelve were at level 4 staging. Mean survival for this group was 21 months. Six of 

the cases that did not have the 5q terminal deletion were reevaluated for interstitial 

deletion using the EGR1 FISH probe 

Eleven patients with del(5q) had spindle cell morphology compared with six in 

the group without a 5q deletion. This difference in spindle cell morphology, as defined by 

the presence in a minimum of 50% of tum

other histological parameters studied showed differences between the del(5q) group and 

those without the deletion.   

Figure 1: FISH picture showing SCLC tumor cells with 2 green signals and only 1 red sign
The tumor cell on the lower left shows 2 green and 2 red signals, absent the del (5q).
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Discussion 

Del(5q) is found in >60% of SCLC cases and several regions on 5q have been 

correlated with SCLC, such as 5q11-13 which includes the hMSH3 mismatch repair 

gene, 5q21 which includes the APC and MCC tumor-suppressor genes, the EGR1 locus 

at 5q31, and the CSF1R/PDGFRB region at 5q33-q35.7,8,9,10,11 It is therefore relevant to 

explore the relationship between histological findings in SCLC neoplasia and the 5q 

deletion. Previous studies have associated advanced disease stage and poor survival rates 

with del(5q), which this study did not confirm.7,12,13 Current literature mentions the 

association between del(5q) and SCLC, but does not reflect attempts to assess the 

meaning of such an association.  

Of the 33 cases studied, there were no significant differences between the del(5q) 

cohort and those without the deletion with regard to sex, average post-diagnosis survival 

time (20 and 21 months, respectively), staging level at diagnosis (50-60% of both groups 

were at level IV), or mucin production.  The del(5q) group was older on average, had a 

higher number of pack-years smoked, and had more varied symptoms upon diagnosis. 

The larger number of pack-years in the older group is likely a factor explained by age. It 

follows that the increase in 5q deletions seen in the older group may be the result of the 

longer duration of smoking and increased exposure to the carcinogens present in cigarette 

smoke. In addition, it may be possible that the del(5q) occurs later in SCLC progression 

in some patients. The patients without the 5q deletion were younger and all were 

symptomatic at the time of diagnosis in contrast to the del(5q) group, a third of which 

were diagnosed incidentally. Despite having a similar survival time after diagnosis, this 

may reflect the aggressiveness of the cancer progression in the cohort without a deletion. 

It follows that the del(5q) may indicate less aggressive tumor progression characterized 

by later onset and fewer symptoms.  

Histologically, spindle cell morphology, as defined by its presence in >50% of 

tumor cells, occurred twice as frequently in the del(5q) cohort, which was statistically 

significant (p<0.025). There were no significant differences between the groups with 

regard to mitotic count, degrees of necrosis or fibrosis, mucin production, or 

neuroendocrine morphology. The significance of variation in spindle cell morphology 

with regard to the presence/absence of del(5q) is unknown at this time. The use of a 
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subtelomere probe to assess del(5q) leaves room for uncertainty in that it will not detect 

interstitial 5q deletions. In addition, given the small sample size and that all testing was 

performed on biopsies that are only representative of a portion of the tumor, further 

studies would be necessary to determine if there is any true relationship between the 

variables investigated and del(5q).  
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CHAPTER 2: Persistent Mosaicism for 12p Duplication/Triplication 
Chromosome Structural Abnormality in Peripheral Blood 
 
 
Introduction 

 Patients with trisomy 12p typically present with severe mental retardation, 

seizures, low-set ears, and characteristic facial dysmorphology including flatness of the 

face, small nose with broad bridge, anteverted nares, inner epicanthal folds, long 

philtrum, everted lower lip, and high forehead. The extra copy is due to an 

intrachromosomal duplication or an extra copy on a derivative chromosome. Patients 

with tetrasomy 12p, or Pallister-Killian syndrome (PKS), additionally present with sparse 

temporal hair, eyebrows, and eyelashes, prominent forehead, a cupid-bow shaped mouth, 

and large ears. A hallmark of PKS is tissue-limited mosaicism, with few, if any, abnormal 

cells found in peripheral blood lymphocyte metaphases in the newborn. Another 

characteristic of tetrasomy 12p is loss of the abnormal cell line in peripheral blood and 

skin fibroblasts as the patient ages or over time in serial-passaged cultured fibroblasts.1,2 

Approximately 26 individuals with nonmosaic structural 12p duplications or 

triplications have been reported in the literature with a minimum critical region of 

12p13.31.3 Only about 24 cases with mosaicism for a structural abnormality of an 

autosome have been reported in the literature.4 The patient presented in this chapter has 

mosaicism in peripheral blood for a derivative chromosome involving duplication and 

triplication of 12p. The purpose of this study was to determine which portions of the 12p 

the patient had in multiple copies, the parental origin of the extra 12p material, and 

possibilities for why the patient has the PKS phenotype, but is failing to lose the 

abnormal cell line in her peripheral blood over time. 

 

Clinical Report 

The patient was delivered at 38 weeks gestation to a 19-year-old mother. The 

pregnancy was complicated by gestational diabetes and polyhydramnios. At birth, the 

infant presented with an anal fistula, hypertension, mild hypotonia, ventricular septal 

defect (VSD), and intraventricular hemorrhage and was hospitalized for 3½ weeks due to 
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breathing difficulties. At 5 months of age, the patient was able to roll over and sit with 

support and had exotropia. She was seen by genetics at 6 months of age and was found to 

be dysmorphic and hypotonic with significant developmental delays. At ten months, she 

was unable to crawl or sit without support. Her height and weight were in the 50th 

percentile, with head circumference at the 90th percentile. At 19 months, the patient had 

a broad, high forehead, bitemporal balding, small posteriorly rotated ears, global 

developmental delays, and mild hypotonia. She could sit but not pull to a stand. She was 

asymptomatic for VSD, had eye surgery to remove chalazia, and was receiving physical, 

speech, and vision therapies as well as seeing a developmental specialist. 

 

Materials and Methods 

 Peripheral blood, obtained from the patient and her parents, was processed using 

routine cytogenetic procedures to obtain a karyotype. One mL of peripheral blood was 

incubated in 0.9 mL of PBMax PHA stimulated media (Life Technologies) for 72 hours. 

Eighty µL of Colcemid was added and the samples incubated for 20 min at 37°C. 

Samples were then spun at 1,500 RPM for 5 min and the supernatant aspirated. Ten mL 

of KCl were added and the samples incubated at 37°C for 10 min. Two mL of Carnoy’s 

fixative (3:1 methanol to glacial acetic acid) was added and the sample spun again at 

1,500 RPM for 5 min, followed by three additional washes with fix. Slides were dropped 

and G-banded following standard procedure. Twenty metaphase cells per parent and 100 

metaphase cells on the patient were analyzed for the presence of an abnormal 12p.  

FISH was performed on the patient’s peripheral blood metaphases using Vysis 

probes (Abbott Molecular) for centromere 12, TEL (12p13), and subtelomere 12p. Slides 

were dropped and placed in 2xSSC for 30 min, followed by 5 min in pepsin/HCl (25 mg 

pepsin, 0.5 mL 1N HCl, 49.5 mL distilled water), 1 min in 2xSSC wash, 5 min in 1% 

formaldehyde solution (1 mL 37% formaldehyde, 1.9 mL MgCl2, 39 mL 1xPBS), and an 

addition 1 min in 2xSSC wash. Slides were then dehydrated in a 70%, 85%, and 95% 

ethanol series at 2 min each and air dried. All probes were diluted (2:50 µL) in cDenHyb 

(InSitus Biotechnologies) and 20 µL applied to the slides under a 24x50 mm glass 

coverslip, which was then sealed with rubber cement. Slides were placed in a 

ThermoBrite slide warmer (Abbott Molecular) at 90°C for 3 min to denature the DNA. 
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The slides were then placed in sealed, humid slide boxes in a 37°C water bath to 

hybridize for 16 to 20 hours.  

After hybridization, the rubber cement and cover glasses were removed and the 

slides washed first in 0.4xSSC/0.3%NP-40 for 2 min at 73°C and then in 

2xSSC/0.1%NP-40 for 1 min at room temperature. Slides were allowed to dry in the dark 

and then 20µL of DAPI counterstain was applied and covered with a 24x50 mm 

coverslip. One hundred cells were scored on each probe to determine the percentages of 

normal and abnormal cells.  

 Metaphase cell telomere lengths were compared between the normal and 

abnormal cell lines using the Telomere Peptide Nucleic Acid (PNA) FISH FITC kit from 

Dako (DakoCytomation). PNA probes for all telomeres were utilized in conjunction with 

the Vysis 12 centromere probe and all probes were hybridized simultaneously according 

to Dako’s PNA instructions. Slides were dropped and placed in a tris-buffered saline 

(TBS, pH 7.5) pre-wash for 2 min, followed by 3.7% formaldehyde solution (5 mL 37% 

formaldehyde in 50 mL TBS) for 2 min, two TBS washes at 5 min each, a pre-treatment 

solution provided by Dako (2000 x concentrated proteinase K diluted 1:2000 in TBS) for 

10 min, and two additional TBS washes at 5 min each. Finally, slides were dehydrated in 

a 70%, 85%, and 95% ethanol series at 2 min each and tipped vertically to dry. Twenty 

µL of Dako PNA probe previously mixed with 3 µL of Vysis CEP 12 probe was applied 

to the slides under a 24x50 glass coverslip. The slides were then placed in a ThermoBrite 

slide warmer at 80°C for 5 min and afterward kept in the dark at room temperature for 30 

min.  

 After hybridization, the slides were immersed in Dako rinse solution (diluted 1:50 

in distilled water) for 1 min to remove the coverslips. The slides were then washed in the 

Dako wash solution (diluted 1:50 in distilled water) for 5 min at 65°C, followed by the 

70%, 85%, and 95% ethanol series at 2 min each, and allowed to dry flat for 5 min in the 

dark at room temperature. Twenty µL of DAPI counterstain was applied and covered 

with a 24x50 coverglass. Telomere lengths were measured in 30 cells from each cell line 

using the MetaSystems Isis program and the results analyzed using Microsoft Excel. A 

ratio of combined telomere length to total chromosome length was calculated to 

normalize the data for all cells. The abnormal and normal cell line measurements were 



   

 

16

then compared using a Student’s t test via Excel.  

Genome-wide SNP array analysis using Illumina Quad 610 array was performed 

in the Cytogenomics Laboratory at the Children’s Hospital of Philadelphia on DNA 

extracted from peripheral blood samples. The array contains 28,528 SNP probes on 

chromosome 12. Log R ratios were used to determine the dosage of patient DNA by 

intensity of signal and parental DNA was analyzed to determine the origin of the 

duplicated chromosomal segment in the child. B allele frequency was calculated using 

genotype clusters per SNP as determined from HapMap sample analysis. Methods for 

SNP array analysis were as previously described.  

 

Results 

 FISH studies confirmed four copies of the TEL (12p13) and subtelomere (12p 

terminal) probes. The PNA probes used to assess telomere length showed the presence of 

additional telomere signals on the abnormal 12p. The average telomere ratio for 

chromosome 12 was 0.034±0.028 for the normal cell line and 0.033±0.044 for the 

abnormal cell line. A Student’s t-test revealed a lack of statistical significance between 

the telomere lengths of the two cell lines (p<0.47).  

SNP array analysis indicated that there were 3 copies of 12p11.21 to 12p13.2 with 

three haplotypes for 12p11.2 to 12p13.2 and mosaicism of 20 percent was computed 

based on the B allele frequencies.5,6. The additional material was identified as maternal in 

origin through the use of informative SNPs and comparison of parent and child 

genotypes. At least four copies of 12p13.2 to 12pter were identified with two haplotypes 

(Figure 1). Our patient’s karyotype was interpreted as 

46,XX,dup(12)(p11.2p13.2),trp(12) (p13.2pter)[5]/46,XX[15]; twenty-five percent of her 

cells had three to four copies of 12p (Figure 2); the other seventy-five percent were 

normal. 
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a) 

 
b) 

 
Figure 1: (a) SNP array results for chromosome 12 showing Log R ratios in the top panel and B allele frequency in the 
bottom panel. The long arm of chromosome 12 shows no copy number or genotyping abnormalities. The short arm 
shows two regions of copy number change, with more copies of the terminal region of 12p and the proximal 12p 
region. (b) SNP array results for 12p only with the Log R ratio in the upper panel and the B allele frequency in the 
bottom panel. Regions of mosaicism for four copies (terminal) and three copies (proximal) are indicated by brackets. 
The additional genotypes in the region of mosaicism for three copies are shown by the bracket in the lower panel. This 
genotyping pattern indicates that the extra copy of 12p in this region contains an additional maternal haplotype. The 
presence of three haplotypes suggests and origin of the abnormal 12p in meiosis.  
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Figure 2: Karyotype of 46,XX,dup(12)(p11.2p13.2),trp(12)(p13pter) seen in 25% of peripheral blood metaphase cells.  

 
 
Discussion 

 Approximately 26 individuals with varying 12p structural duplications or 

triplications have appeared in the literature, most shared phenotypic features found in 

PKS.4 The similarities in the clinical presentation of our patient to PKS suggested the 

likelihood of the abnormal cell line completely disappearing from peripheral blood as our 

patient ages, as tissue-limited mosaicism is a hallmark of PKS presentation. Previously 

reported cases with 12p duplications (three copies) had the abnormality present in all 

peripheral blood cells.4 Two cases with triplications for all of 12p showed tissue limited 

mosaicism, with the abnormal cell line being present in only skin fibroblasts.7,8 However, 

two cases with triplication of 12p regions that did not include 12p13.31 had abnormal 

cells present in all tissues, including peripheral blood.9,11 Our patient has four copies of 

the region proposed to be responsible for the PKS phenotype, 12p13.31, which contains 

three genes, ING4, CHD4, and MAGP2, responsible for negative growth regulation.4 

Overexpression of ING4 has been shown to result in cell cycle arrest.12 
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Telomere length was evaluated between our patient’s two cell lines since it has 

been reported in mosaic Down syndrome that the trisomic cell line has decreasing 

telomere length, which may be related to cellular aging.10 In addition, loss of the 

abnormal cell line in peripheral blood is a known characteristic of PKS. Shorter telomeres 

in the abnormal PKS cell line could explain a growth disadvantage that results in this 

loss; however, we did not see a difference in telomere length between the normal and 

structurally abnormal cell lines in our patient. This may explain why the abnormal cell 

line in this patient was not decreasing in the peripheral blood.  

Genome-wide SNP array analysis identified three copies of 12p13.2 to 12p11.21 

and confirmed the presence of four copies of 12pter to 12p13.2. The additional material 

was found to be maternal in origin through the use of informative SNPs in the parents 

(AA v BB). The presence of both a normal cell line and an abnormal cell line with a 

structural abnormality suggests a mitotic error. However, the SNP results indicated 

maternal meiotic crossing over, consistent with nondisjunction in meiosis after the 

crossing over occurred. There were new genotype patterns in the patient from 12p12.2 to 

12p13.2, and the remainder of the abnormal 12p arm had triplication of the maternal 

chromosomal material. This may have occurred during meiosis II, due to the lack of extra 

genotypes near the centromere. The report of two patients with mosaicism for de novo 

duplications identified a meiotic error and proposed two trisomy rescue events during 

mitotic divisions early during embryogenesis.13 

Izumi and colleagues reported that the critical region for PKS is 12p13.31 based 

upon a case with an interstitial duplication of 12p and a review of the literature.3 Our 

patient had four copies of this region and a PKS phenotype, as expected. However, our 

patient only has three copies of the 12p11.2 to 12p13.2 region, as opposed to the 

tetrasomy seen with the isochromosome 12p. While the isochromosome 12p marker is 

rarely seen in peripheral blood, the abnormal cell line in our patient was present in 

twenty-five percent of her peripheral blood cells at six and 19 months of age. The 

isochromosome 12p marker has been reported to be at a higher percentage in interphase 

than in metaphase cells in peripheral blood from patients with PKS.14 Our patient, 

however, has the same percentage of the abnormal cell line in both metaphase and 

interphase cells. The lack of change in mosaicism in our patient may suggest that the 
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gene(s) responsible for growth disadvantage in peripheral blood may be located outside 

the region present in four copies in our patient. Since our patient has at least four copies 

of the 12p13.31 critical region, this might suggest that the genes that affect cell survival 

in peripheral blood may be proximal to the 12p13.31 region, which could explain the 

stability of the abnormal cell line in our patient. This will need to be confirmed by the 

identification of other PKS patients with mosaicism in peripheral blood. 
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CHAPTER 3: Utilization of FISH to Assess Chromosomal 
Abnormalities in Pregnancy Loss 
 
 
Introduction 

 Pregnancy loss is relatively common, with 15-20% of recognized pregnancies 

resulting in spontaneous abortion (SA), most commonly in the first trimester.1,2 Recurrent 

miscarriage, defined as the loss of two or more consecutive pregnancies within the first 

20-24 weeks of gestation, occurs in 3-5% of couples attempting to bear children.3,4,5 

Determination of the cause of these SAs is useful for counseling patients on future 

pregnancy planning with regard to recurrence risk and for assisting them in dealing with 

feelings of guilt or inadequacy that may result from a SA. Fetal chromosomal 

abnormalities are responsible for 60-70% of all miscarriages.6,7,8,9 Of these, 

approximately 95% are numerical abnormalities, with monosomy X, triploidy, and 

autosomal trisomies chief among them. 1,10 

 Between January 2000 and June 2009, a total of 602 products of conception 

(POC) samples were received in the Cytogenetics Laboratory at Ruby Memorial 

Hospital. Approximately 26% of these samples failed to grow in culture and an additional 

5% were contaminated upon receipt. This is consistent with the literature which shows a 

20-25% culture failure rate with POCs.1,6,10 It is known that the utilization of FISH 

testing in cases of culture failure and contaminated or otherwise nonviable samples may 

increase the resulting rate for these POC specimens.10,11,12 Data on amniotic cell culture 

failure demonstrates an increased frequency of abnormalities, 10-19% in pregnancies 

where culture failure occurs versus 1-4% in successful cultures.13 This study was initiated 

to obtain results on culture failures to determine if POCs should be processed for FISH in 

addition to routine culturing upon receipt and then reflexed for FISH testing in the event 

of a culture failure.  

 

Materials and Methods 

 POC samples received from January 2007 through December 2008 were 

processed according to standard cytogenetics protocol. IRB approval was obtained. 

Tissue received included placenta, cord, and/or fetus. The blood vessels were stripped 
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from umbilical cords and cut into pieces to plate on plastic petri dishes. Appropriate 

selections of fetal tissues were handled in the same manner as the umbilical cord vessels. 

Villi were teased out of placental samples and separated from any maternal decidua.  

Once segregated, the villi were minced with a scalpel into pieces small enough to fit 

through an 18-gauge hypodermic needle.  The sample was then placed in 4 mL of 0.05% 

trypsin EDTA for 10 min at 37°C, spun at 1,500 RPM for 5 min, placed into 4 mL of 

collagenase for 10 min at 37°C, and then spun again to pellet. At this point, each sample 

was halved. The portion to be cultured was plated onto glass coverslips contained within 

plastic petri dishes using AmnioMax karyotyping medium. Ten mL of KCl was added to 

the remaining pellet and the sample incubated for 10 min at 37°C and then spun. Ten mL 

of fix (3:1 methanol to glacial acetic acid) was added and the sample refrigerated for 

future use in FISH studies. 

 For this study, POCs received in the Ruby Memorial Hospital Cytogenetics Lab 

from January 2000 through September 2006 and their results were surveyed to determine 

the most common abnormalities present. FISH was performed on pellets from 17 

placental villi samples collected between 2007 and 2008 for the sex chromosomes and 

also 8, 9, 13-18, and 20-22. Based on the availability of probes, it was decided that the 

Vysis (Abbott Molecular) AneuVysion kit would be used for the sex chromosomes and 

13, 18, and 21, IGH/MYC:CEP 8 for 8 and 14, ASS for 9, PML/RARA for 15 and 17, 

CBFB for 16, ToTelVysion telomere cocktail #15 for 20, and the TUPLE1 probe for 22.  

 Samples were processed for FISH as previously described in chapter 2. Four spots 

per slide were etched and two slides per culture dropped so that each of the 8 probes 

could be applied separately. Two scorers each read fifty cells per probe for a total of 100 

cells.  

 

Results 

Karyotypes were obtained on 68% of the POCs received between January 2000 

and June 2009. Of these, 34.5% were abnormal. Of the remainder, 26% were culture 

failures and an additional 6% were contaminated or rejected upon receipt. Of the 17 

samples available for this project, twelve were for pregnancy losses that grew in culture. 

FISH confirmed the karyotype results of 8 normal females, 3 normal males, and one 
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triploid male. Of the 5 remaining samples that could not be karyotyped, one was normal 

female, one normal male, one was a mosaic tetraploid female, one was a female mosaic 

for trisomy 9, and the fifth had insufficient cells for FISH analysis.  

 

Discussion 

 Karyotyping results were confirmed in the 12 samples that had been successfully 

karyotyped and then studied using FISH. This is important given that a majority of POC 

karyotypes are normal female. There is potential for maternal cell contamination (MCC) 

in POC specimens, particularly in tissue samples of unidentifiable origin. There can be a 

tendency to see, when analyzing karyotypes of POCs, a normal female cell line along 

with an abnormal cell line.11 In other existing studies, it has been determined that up to 

29% of first trimester POCs resulting in a 46,XX karyotype show evidence of Y 

chromosome presence in interphase cells analyzed by FISH.14,15 In this study, all 8 of the 

normal female karyotypes were confirmed by FISH, as were the 3 normal males and the 

one triploid male.  

 Of the five samples from tissue culture failure, one was determined to be normal 

male and one normal female. One mosaic tetraploid female and one trisomy 9 mosaic 

female were discovered. This may be consistent with more abnormal specimens being 

less likely to grow in culture. One sample had insufficient cells for FISH analysis. This 

sample consisted of umbilical cord cells and it has been determined through experience 

that our FISH processing methods are largely ineffective on cord specimens, as they are 

difficult to dissociate into single cells. Work is being done currently to improve upon this.  

In August 2012, the Cytogenetics Laboratory at Ruby Memorial Hospital, at the 

request of the Obstetrics and Gynecology Department, implemented a procedural change 

for the initial set-up of products of conception (POCs) to include processing a portion of 

each sample for FISH analysis in the event that the tissue fails to grow in culture. 

Cultures that fail are now automatically reflexed for AneuVysion FISH, which consists of 

two probe cocktails, one for 18, X, and Y and another for 13 and 21. This is the same 

probe kit routinely used for prenatal amniotic fluid testing. Additional FISH testing on 

these samples is done by physician request or to clarify an abnormality seen on the 

karyotype. 
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CHAPTER 4: Telomere Length and Decreased Lifespan in Newborns 
with Trisomy 21 
 
 
Introduction 

 Telomeres consist of 500-2000 tandem repeats of the TTAGGG sequence and cap 

the ends of linear chromosomes. Telomere length is maintained by the telomerase 

ribonucleoprotein complex, which slows telomere attrition via utilization of the 

telomerase reverse transcriptase (TERT) and an RNA template, telomerase RNA 

component (TERC). TERT copies a short region of TERC into telomeric DNA to extend 

the 3’ end of the telomere in cells with high replicative demands, such as lymphocytes. 

Initial telomere length is implicated in the determination of the lifespan of a cell, as 50-

100 telomeric base pairs are lost with each replicative cycle.1,2 When telomere shortening 

reaches the critical range of 12.5 units of TTAGGG repeats, on even one chromosome 

within a cell, that cell no longer proliferates and instead enters senescence or undergoes 

apoptosis.3 

 Individuals with trisomy 21, or Down syndrome (DS), are known to have a 

shorter lifespan than chromosomally normal individuals and an increased incidence of 

age-related health problems such as dementia, osteoporosis, and decreasing immune 

system function which may be related to an accelerated loss of telomere length with age.4 

Individuals with DS reach 60 years of age on average, compared with 78.5 years in 

unaffected individuals.5 It has been reported in mosaic Down syndrome (DS) that the 

trisomic cell line has decreased telomere length, which may be related to cellular aging 

and therefore a decreased lifespan in DS individuals.6 Decreased telomere lengths have 

been observed in trisomy 21 abortuses, amniocytes, and placentas, as well as in 

lymphocytes from adult DS patients, but little research exists on telomere lengths in 

newborn DS patients.7,8,9,10 The purpose of this study was to examine telomere lengths in 

peripheral blood samples from newborns with trisomy 21 and compare them with 

chromosomally normal newborn telomere lengths to ascertain whether the telomere 

length disparity exists at birth. 
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Materials and Methods 

 Deidentified, previously cultured peripheral blood samples from three newborns 

with trisomy 21 and seven newborns with normal karyotypes were obtained for this 

study. All samples were cultured according to routine cytogenetic procedures as outlined 

in Chapter 2. Cultured cells were dropped onto slides and assessed for metaphase spreads 

before being processed for PNA FISH as previously described. The MetaSystems Isis 

program was used to digitally capture images of each metaphase. The overall length of 

chromosome 1 and the telomere lengths of 1p and 1q PNA signals were measured 

manually using the linear measurement tool in Isis for each metaphase cell. A ratio of 

combined telomere length to total chromosome length was calculated to normalize the 

results for 20 cells per individual. For interphase cells, telomere lengths were assessed by 

measuring the intensity of the PNA FITC signals in comparison to the total DAPI 

fluorescence for 20 cells per individual. 

 

Results 

 The average ratio of telomere to chromosome length in metaphase cells for 

chromosomally normal individuals was 0.094±0.027 and for trisomy 21 individuals was 

0.070±0.017. A Student’s t test demonstrated that telomere length in newborns with 

trisomy 21 was significantly shorter than in chromosomally normal individuals (p<0.05). 

The average ratio of total telomere to total DNA fluorescence in interphase cells of 

chromosomally normal individuals was 0.1136±0.057 and for individuals with trisomy 21 

was 0.0857±0.071. The total telomere length for trisomy 21 interphase cells was 

significantly shorter than in chromosomally normal individuals (p<0.01). Table 1 shows 

data by group and case. 
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Discussion 

 Previous studies have shown that there are decreased telomere lengths in fetuses 

with DS prior to birth, with noted uncertainty as to whether these pregnancies would have 

continued to term.8 Loss of pregnancies with DS could correlate with accelerated 

telomere attrition in the fetus. In this study, the telomere lengths in newborns with DS 

were significantly shorter than in newborns with apparently normal chromosomes, 

regardless of whether the telomere lengths were measured in interphase or metaphase 

cells. Our results were, however, greatly limited by sample size, as there were only three 

newborns with DS and seven normal newborn fixed pellet samples available. However, 

our results suggest that the shortened telomeres seen in older individuals with DS were 

present at birth.  

It would be informative to compare telomere lengths between patients with DS 

and control individuals in a much larger study over a prolonged period of time to 

Table 1: Control Cases Data 

Case Number Average (P + Q)/L ST DEV (P + Q)/L 

178S 0.071 0.022 

179S 0.092 0.021 

231R 0.100 0.021 

348M 0.104 0.026 

812A 0.071 0.027 

824S 0.100 0.028 

844F 0.105 0.019 

Average 0.094 0.027 

Trisomy 21 Cases Data 

246W 0.078 0.023 

313B 0.065 0.011 

842S 0.067 0.014 

Average 0.069 0.017 

(P+Q) is equal to the length of the long arm plus the short arm telomeres for  
chromosome 1. L is total length of the chromosome. 
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determine whether the individuals with trisomy 21 suffer from an increased telomere 

attrition rate over the course of the lifespan of the individuals. Research has shown that 

there is an accelerated rate of telomere loss in adult DS individuals.4 Accelerated 

telomere attrition could explain the shorter lifespan and increased incidence of premature 

age-related illnesses and conditions observed in DS individuals, as accelerated telomere 

loss has been implicated in the premature immunosenescence and dementia commonly 

seen in DS patients.11  
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Conclusions 

 FISH has several advantages over conventional cytogenetics procedures in that it 

can be used on nonliving cells, on interphase cells, and is able to identify and assist in the 

characterization of abnormalities that cannot be visualized using non-molecular 

cytogenetics techniques such as karyotyping. There are a variety of instances when 

karyotyping may fail to provide diagnostic or prognostic information to the clinician, 

such as occurs with culture failure with products of conception samples, microdeletions 

in newborns with congenital abnormalities, gene deletions, amplifications, 

rearrangements, and cryptic translocations in oncology patients, as well as rapid 

preliminary assessment of aneuploidy in prenatal samples.  

 In Chapter 1, slides from 33 paraffin-embedded tissues on patients with SCLC 

were assessed using 5p and 5q subtelomere probes to identify 5q chromosomal deletions 

with relation to histological findings. Previous studies had associated del(5q) with 

advanced disease stage and poor survival rates,1,2,3 which our study did not confirm. 

There were no differences between the del(5q) cohort and those without the deletion with 

regard to sex, average post-diagnosis survival time, or staging level at diagnosis. The 

del(5q) group was older on average, had a higher number of pack-years smoked, had 

more varied symptoms upon diagnosis, and were more likely to be diagnosed 

incidentally. Of statistical significance was the correlation between del(5q) and spindle 

cell morphology (p<0.025). There were no significant differences seen between the 

groups with regard to mitotic cell count, degrees of necrosis or fibrosis, mucin 

production, or neuroendocrine morphology. The significance of variation in spindle cell 

morphology with regard to del(5q) is unclear at this time. The use of a subtelomere probe 

to assess del(5q) leaves room for uncertainty in that it can identify terminal deletions, but 

could fail to detect interstitial deletions. However, this project would not have been 

possible without the utilization of FISH techniques on paraffin embedded slides since 

tissue was not available for conventional cytogenetics.  

In Chapter 2, the 12p region of a patient with mosaicism for additional 12p 

material was studied using centromere 12, subtelomere 12p, and the TEL (12p13) probes 

in conjunction with SNP array analysis. The patient’s karyotype was defined as 

46,XX,dup(12)(p11.2p13.2),trp(12)(p13.2pter)[5]/46,XX[15] using this combination of 
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techniques. Our patient had four copies of the region proposed to be responsible for the 

Pallister-Killian (PKS) phenotype 12p13.31, containing three genes responsible for 

negative growth regulation, ING4, CHD4, and MAGP2.4 Izumi and colleagues reported 

that the critical region for PKS is 12p13.31 based upon a case with an interstitial 

duplication of 12p and a review of the literature.5 Our patient had four copies of this 

region and a PKS phenotype, as expected. However, our patient only had three copies of 

the 12p11.2 to 12p13.2 region, as opposed to the tetrasomy (four copies) seen with the 

isochromosome 12p. Telomere lengths were compared between the normal and abnormal 

cell lines, given that a hallmark of PKS is the disappearance of the abnormal cell line in 

peripheral blood over time. Shorter telomeres may account for this, however we did not 

see a difference between telomere lengths in the normal and structurally abnormal cell 

lines in our patient between six and 19 months of age. While the isochromosome 12p 

marker is rarely seen in peripheral blood, the abnormal cell line in our patient was present 

in twenty-five percent of her peripheral blood cells in both metaphase and interphase 

cells at six and 19 months of age. The isochromosome 12p marker has been reported to 

be at a higher percentage in interphase than in metaphase cells in peripheral blood from 

patients with PKS.6 The lack of change in mosaicism in our patient may suggest that the 

gene(s) responsible for growth disadvantage in peripheral blood may be located outside 

the region present in four copies in our patient. Since our patient has at least four copies 

of the 12p13.31 critical region, this might suggest that the genes that affect cell survival 

in peripheral blood may be proximal to the 12p13.31 region, which could explain the 

stability of the abnormal cell line in our patient. This will need to be confirmed by the 

identification of other PKS patients with mosaicism in peripheral blood. In this instance, 

a combination of traditional cytogenetics and molecular techniques- FISH and SNP array, 

were necessary in order to evaluate the patient fully, beyond the abilities of traditional 

karyotyping. FISH and microarray data defined the number of copies of 12p regions and 

narrowed the region that may be responsible for cell survival in the tissue-limited mosaic 

condition of Pallister-Killian syndrome. 

In Chapter 3, 17 products of conception (POC) samples were evaluated for 

numerous chromosomes, including X and Y, 8, 9, 13, 14, 15, 16, 17, 18, 20, 21 and 22, as 

these are common trisomies associated with pregnancy losses.7 FISH confirmed the 
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karyotype results of 8 normal females, 3 normal males, and one triploid male. Five of 

these samples failed to grow in culture and FISH probes determined that one was a 

normal female, one a normal male, one a mosaic tetraploid female, one was mosaic for 

trisomy 9, and the fifth had insufficient cells for FISH analysis. The mosaic trisomy 9 and 

mosaic tetraploid that failed to grow may be consistent with more abnormal cell lines 

being less likely to grow in culture or resulting in non-viability of fetus, resulting in 

pregnancy loss. Of note, there is potential for maternal cell contamination in POC 

specimens and therefore a tendency to see, when analyzing karyotypes of POCs, a normal 

female cell line along with an abnormal cell line.8 In existing studies, it has been 

determined that up to 29% of first trimester POCs resulting in a 46,XX karyotype show 

evidence of Y chromosome presence in interphase cells analyzed by FISH.9,10 In these 

cases, FISH can assist with assessment of potentially masked abnormalities when a 

46,XX karyotype is obtained, which may represent maternal cells. In addition, in 

incidences of culture failure or contamination, when it is not possible to successfully 

obtain a karyotype, FISH may be utilized in the determination of fetal abnormalities 

where answers would not otherwise be obtained. 

In Chapter 4, telomere lengths in metaphase and interphase cells were compared 

between newborns with trisomy 21, or Down syndrome (DS) and normal chromosomes 

using PNA FISH probes. Our study demonstrated that patients with DS had significantly 

(p<0.05) shorter telomeres in metaphase cells and interphase cells (p<0.01), than 

newborns with normal karyotypes. Other studies have shown such a difference in fetuses 

with DS and in adults with DS.11,12 Shorter telomeres in  patients with DS, along with 

increased telomere attrition rates, have been implicated in the shorter lifespan and 

premature presence of age-related illnesses commonly seen in DS individuals, such as 

dementia, osteoporosis, and immune system failure.13 In this case, PNA probes allowed 

us to see and measure what we otherwise could not with conventional cytogenetics. 

Overall, FISH enhances the evaluative and diagnostic possibilities within the 

scope of cytogenetics testing. It can be used to obtain results when conventional 

cytogenetics fails, as with nonliving cells, in cases of culture failure, when the 

abnormality in question is unable to be seen in a karyotype, or a rapid turn around time is 

desired. FISH can be used to look at specific loci on a sequential level without being as 



   

 

35

cumbersome or expensive as array or sequencing techniques. As our studies show, FISH 

can be useful to identify genes or regions that may be responsible for specific patient 

characteristics or cellular behavior. Disadvantages for interphase analysis include the 

inability to visualize FISH results in the context of a metaphase and limitation of the 

information relative to the specific probe. However, these downsides fail to detract from 

the overall usefulness of the technique.  

There were a few issues within each project that arose with regard to availability 

of samples and FISH probes for testing. For example, in Chapter 1 subtelomere probes 

were used to determine 5q deletions. Terminal probes would fail to detect interstitial 5q 

deletions that may have been present. This project was also limited by sample size. A 

more informative approach would be to reassess non-deleted cases for interstitial 

deletions using locus specific probes for 5q genes of interest. Results in Chapter 2 will 

require confirmation via the identification of additional patients with PKS who exhibit 

mosaicism for a structural abnormality in peripheral blood. Results from Chapter 3 were 

greatly limited by availability of cell pellets at the time of the study. It would be more 

informative to continue this study over the long term with a much larger sample size and 

track results on culture failures and 46,XX results for several years to determine the true 

effectiveness of the technique. To expand upon Chapter 4 results, a more informative 

study would have a larger sample size and would involve tracking telomere length 

changes over time for each individual. This would assist in confirming whether the 

individuals with trisomy 21 experience increased telomere attrition rates over the course 

of a lifespan.  

In summation, FISH techniques can provide additional information that cannot be 

determined by karyotypes, such as the visualization of a single gene locus and otherwise 

cryptic deletions, amplifications, translocations, or rearrangements. FISH can be used 

when a karyotype is unobtainable, such as with non-dividing or interphase cells or 

paraffin-embedded tissues. These techniques can be used to identify chromosomal 

abnormalities associated with abnormal phenotypes, confirm/clarify a diagnosis, assist 

with the determination of prognostic status, or help to delineate genes involved in 

abnormal phenotypes. 
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