
Graduate Theses, Dissertations, and Problem Reports 

2010 

Heat balance analysis of annealing and galvanneal furnace in Heat balance analysis of annealing and galvanneal furnace in 

continuous galvanizing lines continuous galvanizing lines 

Senthil Kumar Sundaramoorthy 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Sundaramoorthy, Senthil Kumar, "Heat balance analysis of annealing and galvanneal furnace in 
continuous galvanizing lines" (2010). Graduate Theses, Dissertations, and Problem Reports. 4661. 
https://researchrepository.wvu.edu/etd/4661 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4661?utm_source=researchrepository.wvu.edu%2Fetd%2F4661&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


HEAT BALANCE ANALYSIS OF ANNEALING AND GALVANNEAL 

FURNACE IN CONTINUOUS GALVANIZING LINES 

 

Senthil Kumar Sundaramoorthy 

 

Thesis submitted to the 

College of Engineering and Mineral Resources 

at West Virginia University 

in partial fulfillment of the requirements  

for the degree of  

 

Master of Science 

in  

Industrial Engineering 

 

Bhaskaran Gopalakrishnan, Ph.D., Chair 

Robert Creese, Ph.D. 

Xingbo Liu, Ph.D. 

Frank Goodwin, Ph.D. 

 

Department of Industrial and Management Systems Engineering 

Morgantown, West Virginia  

2010 

 

Keywords: Heat Balance, Continuous Galvanizing, Energy Consumption, Heat Losses, 

Galvanizing Parameters. 

Copyright 2010 Senthil K. Sundaramoorthy 



ABSTRACT 

 
Heat Balance Analysis of Annealing and Galvanneal Furnace in Continuous Galvanizing 

Lines 

 
Senthil Kumar Sundaramoorthy 

 

Galvanizing facilities are highly energy intensive operation with electrical and fuel energy 

representing a significant share of their total energy usage. Furnaces are extensively used in 

galvanizing process. Production process expertise along with the energy conservation practices 

can play a significant role in proper usage of energy at galvanizing facilities. Therefore, 

benchmarking galvanizing energy consumption and understanding the specific energy 

consumption by various elements are critical. E-GEPDSS (Enhanced Galvanizing Energy 

Profiler Decision Support System) was built to identify this specific energy consumption by 

using heat balance analysis. The use of E-GEPDSS does not hinder the production process and 

the user may run the model for different set of operating conditions and observe the results. The 

results obtained from the analysis will help the user to make energy enhancing decisions. 

This research involved the analysis of galvanizing operations focusing on the furnace side of 

energy consumption. The furnace heat balance was built and applied using the data collected 

from a host company during the plant visit. Sensitivity analysis were done to study the impact of 

changing process and product parameters on the total heat loss from the system.  

From the energy analysis conducted for the furnace equipment at the host facility, it was found 

that the useful heat absorbed by the product is only 50% of the heat supplied to the furnace and 

rest of heat dissipates as losses. Heat losses from surfaces, walls, water cooling and stack are 

significant. Heat loss due to opening and phase change heat loss seem not to be significant. 

Emissivity, dimensions of the furnace, temperature of the zones, thermal conductivity of 

insulation materials and the strip temperature at the entry and exit of each zone have significant 

impact on the total heat loss. In the future, the model will be applied extensively to more 

galvanizing lines in order to help the galvanizers to have a better understanding about the energy 

consumption while producing their product.
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

The steel industry accounts for around 3% of total US energy [1], [3]. The steel industry is 

among the largest energy consumers in the manufacturing sector. Steel is a very hard, durable 

metal and it must be heated to high temperatures to manufacture it which consumes significant 

amount of energy.  

There are about 40 galvanizing lines in the United States currently operating [2]. They produce 

galvanized steel by passing the sheet into the furnace operated at very high temperatures and 

then pulling it over a roller that is submerged in molten zinc, zinc alloy or aluminum alloy bath.  

Although highly competitive, galvanized steel is profitable for the steel industry [2]. The coat 

acts as an anticorrosive component thus increasing the service life of steel. Galvanizing is found 

in almost every major application and industry where iron or mild steel is used. The utilities, 

chemical process, pulp and paper, automotive, and transportation industries historically have 

made extensive use of galvanizing for corrosion control.  

Table 1.1 summarizes the net shipment of various steel products for the year 2000 and 2001 [16]. 

It can be observed that galvanized steel manufactured with the hot dip process in year 2000 and 

2001 accounts for 14,872,000 and 14,293,000 tons respectively. This ranks the production of 

galvanized sheet steel to be second highest in the steel industry and thus explains the huge 

demand for galvanized steel products in the US market. 

According to the data compiled by the International lead and zinc research organization, the total 

capacity of the total coated sheet steel has been steadily increasing from 1975 - 2000 [17]. Figure 

1.1 shows the total coated sheet steel in million metric tons [17]. The coated sheet offers a 

unique combination of properties unmatched by any other material. Some of the properties 

include high strength, formability, light weight. corrosion resistance, aesthetics, recyclability, 

and low cost. 
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Table 1.1: U.S. Net Shipment of Steel Mill Products [16] 

 

 

Figure 1.1: Total Coated Sheet Steel Capacity [17] 
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1.2 Need for Research 

The continuous galvanizing process is the coating of sheet steel with zinc. This coating involves 

significant amount of energy. Not all the energy  used in galvanizing is converted into useful 

heat (Useful heat is the amount of heat that is being transferred to the steel strip during its 

movement inside the furnace), rest of heat dissipates as losses. The energy used varies with 

product types as the process parameters also vary. Therefore, it is difficult for galvanizers to 

maintain a constant thermal cycle in their process. The product and process parameters that 

highly influence energy consumption in a galvanizing line is shown in Table 1.2. 

Table 1.2: Product and Process Parameters 

S.No Product Parameters* Process Parameters* 

1 Steel strip width 

 

Line speed 

2 Steel strip thickness (Gauge) Furnace zone temperatures 

*The parameters that will be referred further in the document 

For example, the amount of energy consumed and losses involved while galvanizing a steel strip 

with 0.0028 feet (0.00086 meters) thickness, 5 feet (1.524 meters) wide, with a line speed of 450 

feet/min (138 m/min) at 1700
o
F (927

o
C) furnace temperature differs from a steel strip with 

0.0042 feet (0.00128 meters) thickness, 4 feet (1.22 meters) wide,  line speed 400 feet/min (122 

m/min) at 2200
o
F (1204

o
C). Research efforts can quantify this energy consumed based on 

products and process parameters.  

The energy provided to the furnace is being absorbed by various elements of the furnace. It is 

difficult for galvanizers to identify this energy that is transferred, though they know the total 

amount of energy supplied to the furnace. By knowing the amount of energy transferred or the 

percentage of heat going into different elements of the furnace, the galvanizers can identify the 

areas that need improvement to operate their furnace as efficient as possible.  

This situation in galvanizing industry can be enhanced by a model which can i) render the 

difference in energy consumption for changing product and process parameters ii) calculate the 

amount of heat going into various elements of the furnace. A heat balance approach can fulfill 

these requirements.  
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1.3 Significance of Research 

Numerous studies [34] on energy consumption by various galvanizing lines have been studied in 

the past. But relatively very few studies have been performed to study the detailed energy 

consumption by the various zones in the furnaces and cooling sections of the galvanizing lines 

using heat balance analysis. These studies are needed as there is always a continuous demand 

from galvanizers to run their furnace efficiently.   

Heat balance analysis is capable of differentiating the heat supplied to the furnace as useful heat 

and the heat lost in the process. It  identifies the amount of heat going into various elements of 

the furnace. The losses concerned with the furnace are shown in Figure 1.2.  

 

Figure 1.2: Furnace Losses  

The losses considered are highly important as far as heat balance is concerned. It is assumed that 

the total heat input to the furnace is dissipated as useful heat and losses as shown in the formula 

below. Heat input and losses vary according to the product under production.    

sOpeningLossLossotectionGaerLossCoolingWatStackLossWallLossesSteelStripInput QQQQQQQ  Pr  

    = Gas combustion energy (amount of gas & combustion of gas) 
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For an example, the difference of heat or energy consumption for two products with different 

product and process parameters are shown below. 

Table 1.4: Product and Process Parameters for Two Products 

S.No Product A Product B 

1 Steel strip width - 4.3 ft 

 

Steel strip width - 4.8 ft 

 

2 Steel strip thickness (Gauge) - 0.0021 ft Steel strip thickness (Gauge) - 0.0024 ft 

3 Line speed - 423 ft/min Line speed - 405 ft/min 

4 Furnace zone temperatures - 1650 oF Furnace zone temperatures - 1750 oF 

 

Heat Input: Product A - NG input - 35,600 ft
3
/hr, Air - 372,353 ft

3
/hr 

  : Product B - NG input - 40,000 ft
3
/hr, Air - 432,500 ft

3
/hr 

Product A: 

Heat carried away by steel strip  - 17.57 MMBtu/hr  

Wall losses   - 8.2  MMBtu/hr 

Stack loss    - 6.8  MMBtu/hr 

Cooling water loss  - 1.7 MMBtu/hr 

Opening Loss   - 0.0027  MMBtu/hr 

Unaccounted  loss   - 0.82  MMBtu/hr 

Total Heat    - 35 MMBtu/hr 

Product B: 

Heat carried away by steel strip  - 19.25  MMBtu/hr  

Wall losses   - 9.2  MMBtu/hr 

Stack loss    - 7.2  MMBtu/hr 

Cooling water loss  - 2  MMBtu/hr 

Opening Loss   - 0.0055  MMBtu/hr 

Unaccounted  loss   - 1.5  MMBtu/hr 

Total Heat    - 40 MMBtu/hr 

The coating process is performed in the same furnace for varying process and product parameters 

that are tabulated above.  
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As shown above, heat balance identifies the amount of heat going into different elements of the 

furnace. It is also evident that comparing the products by cost incurred and on energy basis is 

possible by utilizing this approach. 

The approach also helps the galvanizers to do what if analysis and in decision making. It helps 

them to compare between current and modified conditions. From the example above, product A 

has significant amount of heat escaping through the stack which can be reduced by controlled 

combustion. Thus an area for improvement has been identified. Oxygen percentage in the stack 

is one of the criteria that influence the heat going through the stack. The galvanizers can work on 

the improvement by replacing the burners with oxy-fuel burners or by adjusting the air-fuel ratio. 

After making the necessary changes in their process, the galvanizers can input the new values in 

the model and get the results for modified conditions.  

A detailed description of galvanizing is discussed in section 1.4. 

1.4 Galvanizing Process 

The galvanizing process consists of four basic elements:  

 Surface Preparation  

 Galvanizing  

 Quenching 

 Inspection  

1.4.1 Surface Preparation 

Surface preparation is the critical step in the application of any coating. In most cases where a 

coating fails before the end of its expected service life, it is due to incorrect or inadequate surface 

preparation [28]. The surface preparation step in the galvanizing process has its own built-in 

means of quality control in that zinc will not react with a steel surface that is not perfectly clean. 

Any failures or inadequacies in surface preparation will be immediately apparent when the steel 

is withdrawn from the molten zinc because the unclean areas will remain uncoated [28].   

On-site painting or other field-applied systems of corrosion protection may involve the use of 

different subcontractors and/or work groups to prepare the surface and apply the coating. This 
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can result in problems in coordinating activities, leading to costly and time-consuming delays, 

errors, and disputes concerning responsibility and financial liability. Surface preparation for 

galvanizing typically consists of three steps: caustic cleaning, acid pickling, and fluxing [28].  

1.4.1.1 Caustic Cleaning  

A hot alkali solution often is used to remove organic contaminants such as dirt, paint markings, 

grease, and oil from the metal surface. Epoxies, vinyl, asphalt, or welding slag must be removed 

before galvanizing by grit blasting, sand blasting, or other mechanical means [28].  

1.4.1.2 Acid Pickling  

Scale and rust normally are removed from the steel surface by pickling in a dilute solution of hot 

sulfuric acid or ambient temperature hydrochloric acid [28].  

1.4.1.3 Fluxing 

Fluxing is the final surface preparation step in the galvanizing process. Fluxing removes oxides 

and prevents further oxides from forming on the surface of the metal prior to galvanizing and 

promotes bonding of the zinc to the steel or iron surface. The method for applying the flux 

depends upon whether the particular galvanizing plant uses the wet or dry galvanizing process 

[28].   

In the dry galvanizing process, the steel or iron materials are dipped or pre-fluxed in an aqueous 

solution of zinc ammonium chloride. The material is then thoroughly dried prior to immersion in 

molten zinc. In the wet galvanizing process, a blanket of liquid zinc ammonium chloride is 

floated on top of the molten zinc. The iron or steel being galvanized passes through the flux on 

its way into the molten zinc [28]. 

1.4.2 Galvanizing 

In this step, the material is completely immersed in a bath consisting of mostly pure molten zinc. 

The bath temperature is maintained at about 850
o
F (454

o
C) [28].   
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Products are immersed in the bath long enough to reach bath temperature. The products are 

withdrawn slowly from the galvanizing bath and the excess zinc is removed by blowing air at a 

certain pressure with the help of air knife [28].  

The chemical reactions that result in the formation and structure of the galvanized coating 

continue after the products are withdrawn from the bath as long as these products are near the 

bath temperature. The products are cooled in either water or ambient air immediately after 

withdrawal from the bath and the chemical reaction stops after cooling [28]. 

1.4.3 Quenching  

This process solidifies the zinc coating to ensure easy handling. It also arrests the alloying 

reaction in the case of reactive steels, which continues well below the melting temperature of 

zinc. The quench water normally contains a passivating chemical, which retards the formation of 

white rust (wet storage stain) until such time as when the freshly applied reactive zinc surface 

has developed a stable and protective basic zinc carbonate film [6]. 

There are two methods of galvanizing, hot dip galvanizing and continuous galvanizing. In hot 

dip galvanizing, ferrous components that are to be galvanized are held by an overhead crane and 

dipped sequentially in tanks containing various liquids for surface preparation before dipping 

them in to the final molten zinc bath. Hot dip galvanizing is done to steel products like rods, 

channels, small and medium size machine components, steel plates, bolts, nuts and many more, 

which can be hanged firmly with help of wires [6].   

Continuous galvanizing on the other hand consists of galvanizing sheet steel products of various 

gauges. The sheet steel strip is fed continuously from a payoff reel and passes through a number 

of sections, and gets coated with Zn/Zn alloy before getting coiled up again. This process runs 

uninterrupted for weeks; hence it is called continuous galvanizing. The modern continuous 

galvanizing process was invented by Sendzimir over a half century ago [5]. 

1.4.4 Inspection  

The two properties of the galvanized coating that are closely scrutinized after galvanizing are 

coating thickness and coating appearance. The coating thickness is controlled by adjusting the 
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pressure in the air knives. A variety of simple physical and laboratory tests may be performed to 

determine thickness, uniformity, adherence, and appearance [28]. 

Detailed description of different sections of continuous galvanizing line is discussed in the 

following sections.  

1.5 Continuous Galvanizing  

Figure 1.3 [24] shows a real picture of a continuous galvanizing line. 

 

Figure 1.3: Continuous Galvanizing Line for the Coating of Steel Sheet [24] 

01 Decoiling 06 Air Knives 

02 Welding 07 Galvanneal Furnace 

03 Entry Loop Car 08 Levelling 

04 Annealing Furnace 09 Cutter 

05 Zinc Bath 10 Coiling 

 

 

The equipment listed above consumes either electricity or natural gas. The main electricity 

consuming devices are large motors used in these equipment and resistance or induction coils 

used for pre-melt and main zinc pot. In case of natural gas the largest consumers are the 
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annealing and the galvanneal furnaces. A brief description of the process and the equipment it 

transfers through is explained in the following sections. 

1.5.1 Decoiling 

This is the initial phase of the galvanizing line where uncoated steel sheets are loaded. There are 

typically two decoilers [6]. When one roll is about to end, the trailing end of that roll is welded to 

the leading end of the second roll. Then, as the second roll is unwound a new roll is kept ready in 

place of the first roll for discharge. This helps to keep the process continuous. 

1.5.2 Welding 

The trailing end of the exhausting decoiler roll is welded to the leading end of the new roll with 

the help of the seam welder [6]. During this time, the line is fed through the accumulated steel 

sheet from the entry loop. 

1.5.3 Entry Loop 

The entry loop car is situated at the entry end and serves the purpose of maintaining the 

continuity of the process when there is a change in the decoiler rolls. It covers for the time lag 

caused by the seam welder. The loop car consists of series of rolls in a zigzag fashion through 

which the steel sheet travels. The steel sheet inventory is stored in the accumulator by increasing 

the distance between the consecutive rolls. Whenever the accumulator is unloading, the rolls start 

coming closer, thus releasing the steel sheet passing through them. The loop car is capable of 

storing steel sheets of length up to 1000 feet [6]. 

1.5.4 Annealing Furnace  

Annealing is a process of heating a material to high temperatures and then cooling it to induce 

softness in that material. The annealing furnace usually has 4 sections: 1) pre heat section, 2) 

non-oxidizing section, 3) heating section, and 4) jet cooling (controlled cooling) section [6]. The 

annealing furnace is the largest natural gas consuming equipment in the galvanizing facility. The 

different sections are discussed in detail; 

a) Pre-heat section: This section generally comprise of burners firing directly on the strip in 

order to remove impurities that may be present on the surface of the strip. 
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b) Non-Oxidizing section:  The non-oxidizing section of the annealing furnace heats the strip 

in a deoxidizing atmosphere. The set point temperature in this section is between 2000ºF to 2450 

ºF, and varies according to the type of steel. The furnace atmosphere mostly consists of a gas 

mixture of 15 % hydrogen and 85% nitrogen [29]. The nitrogen is used to maintain a positive 

pressure inside the furnace and hydrogen atmosphere to prevent oxidation on the strip surface.  

c) Heating section: The heating section usually has a set point of 1500ºF to 2200ºF. Again, 

it varies for different types of steels. The heating section of the furnace helps to maintain the strip 

temperature in the deoxidizing atmosphere [6].  

d) Controlled cooling (Jet cooling) section: The controlled cooling section of the furnace 

use water-cooled heat exchangers and fans to consistently lower the temperature of the steel. 

Steel sheet cools in the jet cooling section to approximately 860ºF [6]. The controlled cooling 

section is sometimes provided with electric heating elements in case, it is required to raise the 

temperature of the strip.  

1.5.5 Zinc Bath (Molten Metal Pot) 

The galvanizing line typically comprises of two pots, pre-melt pot and the main pot [6]. The zinc 

and other alloy metals are mixed in proper compositions in the pre-melt pot after which it is 

transferred to the main pot with the help of channels. The snout which is a mode of transfer for 

the steel strip from the furnace to the pot is immersed inside the main pot. The main pot also has 

the sink and stabilizing rolls submerged in it, and over which the steel sheet from the snout is 

passed. The pre-melt pot and the main pot contents are heated by heating elements like inductors 

and natural gas burners. The heating method varies for different companies.  

A typical galvanizing bath inside the main pot is maintained in a temperature around 842°F to 

878°F (450°C to 470°C) [6]. The temperature varies according to the product being produced. 

Continuous galvanizing baths usually contains a small amount of Al, frequently less than 0.3%, 

to extenuate the reaction between the molten Zn alloy and coated steel. 

The Al content in the bath can be as high as 55% if super corrosion coating is required but it is 

usually maintained less than 1% for optimum level. After more than a decade of intensive 

research and development, the optimum Al content of a coating bath can now be defined based 
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on the product and pot specifics: around 0.136% for galvanneal, 0.18% for galvanized for the 

construction market, and 0.25% for automotive exposed applications [7]. The bath inside the pot 

is maintained in a molten state even during downtime (when there is no production).  

1.5.6 Air Knives 

The steel strip is passed in between the air knives after the coating process in the zinc pot. Air 

knives are used to blow out excess coating from the steel strip [6]. The thickness of coating is 

performed according to the specifications by adjusting the pressure in the air knives. 

1.5.7 Galvanneal Furnace 

The galvannealing process is slightly different from the galvanizing process. The variation in the 

production process is that, to produce a galvanneal coating, the strip coming out of the coating 

bath is further heated by passing it through a furnace. By heating to approximately 1000 to 

1050°F(538 to 565°C) and holding the strip at this temperature for a specific amount of time, the 

zinc coating alloys with iron by diffusion between the molten zinc and iron from the steel strip. 

The result is that the final product has a coating that is an alloy of approximately 90% zinc and 

10% iron [9]. The final iron concentration depends on the heating cycle since diffusion is a 

function of the time/temperature cycle. 

Galvanneal furnace is not a necessity in all galvanizing facilities. It may not be present in the 

facilities where galvanneal products are not produced. Galvanneal is used in the automotive 

industry because of its improved manufacturing performance in models which use lighter and 

stronger grades of steel. The advantage of galvanneal coating is improved spot-weld ability and 

improved coating adhesion. 

1.5.8 Levelling 

Finally, the finished hot-dip coated sheet can be temper rolled continuously in the exit section of 

every plant and tension levelled. This way quality with high surface requirements and flatness 

can be produced. Before being wound into coils ready for shipping, the surface is chemically 

passivated or oiled to protect the steel strip against temporary corrosion and friction oxidation. 
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1.5.9 Coiling 

As a final process the steel strip is oiled, rewound and coiled to be shipped. The coiling system 

winds the out coming strip from the processes. This is the final set-up in a galvanizing line [6]. 

1.6 Furnace 

The galvanizing line comprises of various components out of which the furnace and pot are two 

major energy consumers. This project focuses on the opportunities for energy saving in the 

furnace section. The components of furnace are listed as follows.  

1.6.1 Furnace Components  

A hot dip coating line has two furnaces, one is the annealing furnace where the steel strip is 

heated to high temperatures and cooled before coating and second is galvanneal furnace where 

the steel strip enters after zinc bath coating. Both the furnaces are maintained within the 

temperature range of 1400
o
F to 2200

o
F (760

o
C to 1204

o
C) depending on the products produced. 

Annealing furnace is usually divided into four sections: 1) pre- heating section, 2) heating 

section, 3) holding section, and 4) cooling section. The steel sheet enters through pre-heating 

section at beginning of furnace and then passes through heating section where the temperature is 

maintained at a high level. The steel sheet, before it exits to cooling section, is passed through 

holding section where the temperature is comparatively lower than the heating sections. Finally 

the strip enters the cooling sections or the jet cooling sections where the strip is cooled to the pot 

bath temperature. The strip is introduced inside the bath with the help of a snout. A reducing 

atmosphere of hydrogen, nitrogen gas is maintained in the furnace up to the snout. The 

galvanneal furnace has the same features as the annealing furnace except that cooling section is 

not present in the galvanneal furnace.  

1.6.2 Furnace Variations  

Furnaces used in galvanizing facilities vary in characteristics based on products produced and 

technology utilized. The furnaces used may have radiant tube sections, direct fired sections or 

induction coils. In the radiant tube section the strip is heated by the heat radiated from the radiant 

tubes inside the furnace. The direct fired furnace is also called as direct combustion furnace 
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where the flame is directly introduced to the furnace zone. Induction heating is mostly used in 

the galvanneal furnace in which heating of the strip is achieved by passing it in between high 

alternating magnetic fields.  

1.6.2.1 Direct Fired Furnace 

Direct fired furnaces are unique components in the production process of coated steels. These 

furnaces are designed to provide a uniform heating environment for the steel strip prior to the 

coating operation [10]. High velocity burners are mounted along both sides of the furnaces in a 

staggered pattern that produces excellent temperature uniformity as shown in Figure 1.4 [11].  

 

Figure 1.4: Schematic of Direct Fired Furnace [11] 

Natural gas enters the burner along the central axis while air is injected into the stream 

tangentially. In this way, a swirl is induced to improve the mixing of the fuel and air in 

preparation for combustion. The steel strip enters the direct fired furnace at room temperature 

from one end of the furnace and moves steadily to the other end’s exit while being heated. It is a 

continuous process with a new strip welded to the tail end of the previous strip. 

1.6.2.2 Radiant Tube Furnace  

Radiant tube furnaces are operated with a reducing atmosphere and are heated by natural gas - 

fired radiant tubes. The heating of strip is almost totally accomplished by radiation. The steel 

strip passes between a row of burner tubes above the strip and below the strips. These burner 

tubes are fired to specified temperatures depending upon the facility. Heat is radiated from these 

tubes and is absorbed by the strip. Some heating is also achieved by radiation from the furnace 

walls after the furnace has been operating for a period of time. The rate or the time to heat the 

strip in this furnace depends upon the tube temperature. The higher the tube temperature, faster 

rate of heating. A schematic of traditional radiant tube burner section is shown in Figure 1.5 [12].  
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Figure 1.5: Schematic of Traditional Radiant Tube Burner Section [12] 

As seen in Figure 1.5, combustion takes place at one end of the burner section and flue gas 

escapes through the other end. The combustion air is preheated by the flue gas with the help of 

plug in recuperator. The transfer of heat to the strip in radiant tube furnace is not uniform unlike 

direct fired furnace in which combustion takes place in a large chamber where heat can be 

transferred at the same time to the entire stock. Non uniform or steady composition of the 

combustion gases, alternating reducing and oxidizing atmosphere, is harmful to metal radiant 

Tubes  and very hot gas pockets provoke high NOx formation in case of radiant tube furnaces 

[13]. 

1.6.2.3 Induction Furnace  

Induction heating concept is widely used in galvanneal furnace than in annealing furnace [14]. 

The purpose of galvanneal furnace is to provide an iron-zinc alloy to the strip which is known as 

“galvanneal product”. The temperature at which proper alloying occurs lies between 1000°F to 

1050°F (538°C to 565°C). In order to get a high quality galvanneal product, it is important to 

control the temperature of the strip within this range and then to cool it.  

The reason for using an induction furnace upon conventional gas-fired and radiant tube heating is 

because induction heating is more efficient than the other two. In case of conventional gas-fired 

heating it is difficult to control the strip temperature and cooling it rapidly. Further, the exhaust 

gases inhibit the rapid cooling of the strip. Similarly in case of radiant heating, to penetrate the 

zinc coating (which is highly reflective), the strip must dwell a fairly long time in the furnace, 

which can lead to temperature control problems [14].  
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The basic principle of induction heating is quite simple. Alternating current is passed through a 

solenoid coil; a magnetic field is produced that varies with the amount of current. The field is 

concentrated inside the coil. The steel strip passes inside the coil, eddy currents will be induced 

inside the strip and flow in a direction opposite to the current flow in the coil. Heating is caused 

by electrical resistance to the eddy currents induced in the strip.  

In any type of heating section, the time it takes for the strip to reach a given temperature is very 

critical. The factors that influence these criteria are; 

1. The mass or volume being heated. This is a direct function of gauge and width. For the 

same gauge of strip it takes longer to heat wider strip than narrower strip, and in the same 

manner for the same widths it takes longer to heat heavier gauge than lighter gauge to the same 

temperature [15]. 

2. Emissivity of the strip: A smooth, highly reflective strip surface will reflect rather than 

absorb the heat, therefore taking longer to heat than a duller, less reflective strip. This strip 

characteristics is generally directly proportional to the surface roughness; a rough finish being 

less reflective [15].  

1.6.3 Cooling Section 

The strip enters into the cooling section where it loses heat. Cooling takes place either by 

radiation or convection heat transfer [15]. Radiation cooling is the reverse of the method used to 

bring the strip up to temperature. The strip passes between rows of cooling tubes through which 

room temperature air is constantly being drawn. The strip radiates its heat to these tubes. This 

method results in relatively slow cooling rates. In convection cooling cold atmosphere furnace 

gas is blown over the surface of the hot strip. The furnace atmosphere gas is drawn through a 

heat exchanger where the gas is cooled down considerably. This cold gas is then put back into 

the furnace so that it blows directly on the strip. Rapid cooling rates can be attained using this 

method.  
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1.7 Motivation for current work  

The continuous galvanizing process is an energy intensive process in the steel industry. Figure 

1.6 below shows the different forms of energy used by the steel industries and their dollar values 

[4]. It is evident that the dollar values for electricity and natural gas are nearly half the total 

expenditure. Mostly natural gas and electricity are the two sources of energy being used by 

galvanizers in the furnace. Hence the analysis will be done considering electricity and natural 

gas.  

 

Figure 1.6: Energy Expenditures in the Steel Industry [4] 

This study has investigated the performance of the furnace and cooling sections zone by zone 

with changing process and product parameters. It has also taken advantage of prior experimental 

and numerical work done on energy consumption by galvanizing lines (GEPDSS). Since the 

effect of energy consumption for changing product and process parameters have not been fully 

investigated experimentally or computationally, a generalized heat transfer approach has been 

used to investigate the sensitivity of galvanizing lines for changing product and process 

parameters. 

1.7.1 Galvanizing Energy Profiler Decision Support System (GEPDSS) 

GEPDSS is decision support system capable of investigating the effect of improved pot hardware 

and/or improved process equipment in continuous galvanizing lines. It performs an economic 

analysis on energy efficiency measures resulting from improved pot hardware or any other 

process related equipment in a continuous galvanizing line. It can also validate the energy 

savings in a continuous galvanizing line. 
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This decision support enables static simulation of production, rejection and energy consumption. 

It allows the user to do sensitivity analysis and evaluate economic benefits of adopting new 

hardware materials, to analyze the impact of energy saved if they implement any energy savings 

and efficiency improvement technique on their equipments. The GEPDSS caters to the 

production and energy consumption for up to three different processes. To summarize, GEPDSS 

can simulate a scenario to identify the magnitude of energy and cost benefits that can be obtained 

as a result of any energy savings measures implemented.  

1.7.2 Enhanced Galvanizing Profiler Decision Support System (E-GEPDSS) 

A need for an enhancement of the successful GEPDSS has been identified. The enhanced system 

provides heat balance calculations. This allows users to perform “what if” analysis to find the 

effect of varying product and process parameters on energy consumption along the galvanizing 

line. The enhanced system (or E-GEPDSS) focuses mainly on heat balance of the galvanizing 

furnace, galvanneal furnace, and the zinc pot as these are the three major components in 

galvanizing. The utilization of GEPDSS and E-GEPDSS provides the industrial user with 

flexible tools to determine energy related cost savings due to production of varying product 

grades. 

1.8 Aim and objectives of current study  

The objective of E-GEPDSS is to explore the potential of saving energy in galvanizing lines by 

utilizing heat balance analysis. A large amount of data is collected in industries for generating a 

database. This raw data must be converted into meaningful information and must be presented in 

a proper format to generate knowledge about the system. This information and knowledge will 

help the companies to analyze their system as well as carry out sensitivity analysis for the 

system. The objective of this research is to convert such raw data into knowledge. The aim of 

this research is to design and develop a computer based model for the galvanizing line in the 

steel industry with the help of collected data, validate the model and evaluate the usefulness of 

the model in making decisions to enhance the performance of the galvanizing line. 
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Figure 1.7 System Diagram 
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The specific objectives of this research are listed as follows: 

1. Develop an interactive model to estimate the energy consumed for changing product and       

         process parameters. 

2. Enable sensitivity analysis using the model to identify the key parameters sensitive to        

        energy. 

3. Validate the model using data collected during plant visits.  

1.9 Conclusion 

The galvanizing industry at present faces considerable loss of energy as a result of being 

inefficient in their production process. The impact of having a heat balance model used to 

differentiate the heat losses from useful heat is discussed in section 1.3. The proposed model is 

expected to analyze and provide results in terms of energy savings obtained as a result of any 

modification to the existing process. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Energy Usage and Conservation Measures in Steel Industries 

The United States Steel Industries has taken numerous measures over the past decades to reduce 

its energy consumption. A study conducted on energy use: historical perspective and future 

opportunities in the Steel Industry [18] explained the historical reduction in energy consumption 

and how it offered guidance for future. A comparison is made between current average energy 

consumption and with those of good practices. It had proposed new technologies available for 

various processes in steelmaking to further reduce energy consumption per ton. It had also 

proposed how overall average energy consumption could be reduced by further restructuring of 

industries. Overall, this study had given a thorough in sight of the energy usage, concept of good 

practices and how further savings will accrue through new technologies.  

Steel production is not only crucial in United States but all over the world. The productivity of 

steel in India had declined largely over the past due to the protective policy of the price and 

distribution of iron and steel  and inefficiency in the public sector that is  integrated with steel 

plants,  It is difficult to continue these trends in future where energy use is in concern. A study 

on India’s Iron and Steel industry [19] by Katja Schumacher and Jayant Sathaye explains the 

opportunities on productivity, energy efficiency and carbon emissions in iron and steel industry. 

They examined the current changes in structure and energy efficiency in the steel sector and 

concluded that, with the liberalization of the iron and steel sector, the industry is rapidly moving 

towards the world’s best technology, which will result in fewer carbon emissions, improved 

productivity and more efficient energy use in existing and future plants. This report presents 

energy saving potentials by comparing specific energy consumption in Indian iron and steel 

plants with that of energy consumption in plants using the world’s best technology. The report in 

addition focuses on categories for energy efficiency improvement including the improvement in 

input factors, from technology conversion and retrofitting as well as from recycling and waste 

heat recovery. It also states how the implementation initiatives towards energy efficiency is 

being hindered by barriers both of general and process nature occurring at the macro and micro 
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level of the economy. Finally, carbon dioxide emissions and mitigation potentials accepting 

energy efficiency measures had been calculated.  

Not only is energy critical for steel industries but for metal casting industries. The metal casting 

industry is one of the most energy intensive manufacturing sectors with the melting process 

accounting for over half of its energy consumption [20]. Although the consumption of energy in 

the melting process has been a substantial concern in foundry operations, the industry continues 

to use melting technologies with low energy efficiencies. A report has been generated by BCS 

Corporation [20] to explore the concepts of breakthrough technologies in melting metals that 

may drastically reduce the energy consumption. This study accomplishes its purpose by 

analyzing current and emerging melting technologies and discussing the barriers to scale up 

issues and research needed to advance these technologies. It provides the potential for improving 

melting efficiency, lowering metal transfer heat loss and reducing scrap and improving yield.  

Some of the recommendations include optimizing melting and heat treating operations; cover the 

furnace and maintain refractories; and install radiant panels in crucible furnaces. The report also 

provides information about the current condition of the furnaces used and how energy reduction 

can be implemented by centering on retrofit improvements for existing furnaces. Although, the 

report focuses on metal melting applications, the melting technologies and developments 

discussed in this report are applicable to all furnaces and molten material processes, including 

primary aluminum, secondary aluminum, glass, iron and steel, and other industries. 

2.2 Mathematical models and programming in integrated steel industries 

An algorithm was developed by Yoshitani, N and Hasegawa, A (Model-based control of strip 

temperature for the heating furnace in continuous annealing) [21] for cases where some 

knowledge on parameter variability can be obtained in advance. In this model a simplified 

mathematical model is derived from the first principles. The model parameters are recursively 

estimated with an algorithm called recursive parameter estimation with a vector-type variable 

forgetting factor (REVVF) where the control system of strip temperature presented is 

hierarchical. The upper level is called “optimal preview control”, which performs preset control. 

It previews the approaching setup change, such as the change in strip size or reference 

temperature, and optimizes the line speed and the strip temperature trajectory. The lower level is 

called “temperature tracking control”, which performs closed-loop control using the above 
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trajectory as the control target. At this level, the generalized pole-placement self-tuning control 

was first employed; and later, the generalized predictive self-tuning control was introduced. 

These control methods were applied with some practical modifications and with the REVVF 

mentioned above. The control has been working successfully in several real plants. 

Bin Zhang, Zhigang Chen, Liyun Xu, Jingcheng Wang, Jianmin Zhang, Huihe Shao worked on a 

model for controlling a reheating furnace [22]. The model consists of three sub-models, 

automatic combustion control model (ACC), dynamic model of combustion process, and control 

loops model. ACC model calculates the set points of furnace temperature such that the slabs in 

the furnace can be heated to discharging temperature. Dynamic model describes the behavior of 

fumace under the state of rolling line and fuel flux provided by control loop model. Control loop 

model, or distributed control system model (DCS) control the fuel flux of each zone according to 

set points of furnace temperature and state of furnace. This model can be used to develop new 

energy-saving techniques, or to realize quality optimization. 

S. G. Blakey and S. B. M. Beck [23] came up with a dimensionless equation-demonstrating 

method for improving furnace efficiency. In their analysis they showed that the current method 

of burner turndown to reduce energy consumption will affect the thermal efficiency of the 

furnace especially at low levels of capacity utilization. The research targeted on energy 

consumption of natural gas fired galvanizing bath furnace. Their approach was the first one, 

using specific energy consumption from the demand and supply point of view, to describe 

thermal efficiency. The equations developed are used to compare furnaces of different design 

and fuel types [23]. However, the equations do not take any other equipment present on a 

galvanizing line into account. 

A research team from West Virginia University and International Lead Zinc and Research 

Organization (ILZRO) had focused on developing decision support software called Galvanizing 

Energy Profiler Decision Support System (GEPDSS) that takes into account all the major energy 

consuming equipment in a typical hot dip continuous line. This DSS allows the user to model 

their galvanizing line in Excel™ based software. The DSS maintains track of the current 

production and energy consumption for up to three different processes. It can simulate a scenario 

to identify the magnitude of benefits that can be obtained as a result of any energy savings 

measures implemented [6]. 
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US-DOE Process Heating Assessment and Survey Tool (PHAST™) [9] from Industrial Heating 

Equipment Association provides data for energy lost as a result of improperly or un-insulated 

surfaces and calculate efficiency based on air fuel ratio and heat balances for process heating 

equipment, respectively. 

2.3 Conclusion 

This literature review gives an idea about the work carried out in the area of energy conservation 

in steel industry and the measures taken towards reducing the energy cost and optimizing the 

utility resources in steel industry. It can be seen that a lot of research had been carried out in the 

area of energy conservation in the steel manufacturing process. New technology and use of 

mathematical models for optimization had helped the iron and steel manufacturing process to be 

energy efficient.  

There is no source available at present to compute the amount of energy consumed by a 

continuous galvanizing line when switching between different product grades and process 

parameters. The model developed through this research could be used for sensitivity analysis and 

process enhancement decisions. Thus, research in this area will be of immense help to the steel 

industry for analyzing and improving their energy efficiency. 
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CHAPTER 3 

RESEARCH APPROACH 

3.1 Goals of the project 

The research objectives of the project are listed below. 

 Studying the Galvanizing line parameters by plant visits.  

 Heat balance of annealing and galvanneal furnace.  

 Development of software (E-GEPDSS) to enable sensitivity analysis from heat balance  

  model. 

 Validation of heat balance model with the data collected during plant visits.  

3.2 Studying the galvanizing process (Plant Visits and Data collection) 

A detailed study of the continuous galvanizing line was achieved by visiting lead galvanizing 

facilities. A detailed list of the furnace components and parameters were noted and studied. 

Discussion with the plant personnel helped in collecting accurate data on the furnace components 

and process parameters. A preliminary model consisting of different losses with the furnace was 

developed using all the data collected from the visits, and by reviewing heat transfer concepts. 

The presentation of this preliminary model in the Galvanizers Association Meeting held in 

Baltimore, St Louis and Louisville helped in refining the model. The feedback from the meeting 

was taken into account and the model is being developed further in the galvanizer’s point of 

view. Additional visits to the facilities were conducted to ensure the accuracy of the data used for 

the trial analysis.  Several literature reviews helped the model being developed successfully. An 

Excel® model with heat balance equations formulating heat losses and sensitivity analysis was 

developed.  

3.2.1 Plant Visits and Data Collection 

Plant visits play an important role in this project. The model needs a real life data on the 

galvanizing lines for accuracy and these plant visits helped in the improvement of this project. 

The plant visited was US Steel Fairless Works, Fairless Hills, PA.  Two trips were made to the 

plant to collect sufficient data for the model. Initial trip was made to gain knowledge on the 
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galvanizing lines and also to collect data for the preliminary model. The second visit was to 

ensure the accuracy of the data used for trial analysis. During this visits the data collected were 

further refined and several observations and measurements were performed on the furnace 

section. Measurements on the galvanizing line are impossible without suitable instruments 

therefore a set of instrument kit was also taken to the plant. Some of the instruments needed for 

the measurements are Thermal Camera (helps to see variations in temperature), Temperature 

Gun (used for measuring temperatures of an object without contact), Combustion Stack Gas 

Analyzer. In addition to this, data was also collected from computers controlling the galvanizing 

line. The computer controlled system provided data for different temperatures maintained in 

different zones, strip temperature at the entry and exit of the zones and the flow readings for 

hydrogen and nitrogen. The data and information collected from the facility and other sources 

were refined and simplified to obtain the most accurate information possible. These visits helped 

in populating the model with real time data.  

3.3 Heat Balance 

The objective of this research is to study the heat balance of the furnace. The input energy to the 

furnace is being absorbed by the steel strip that passes through the furnace which is otherwise 

called as useful heat. The rest of the available heat is dissipated as losses such as conduction 

through the walls, radiation and convection by the furnace surfaces, stack or flue gas loss, 

cooling water loss, protection gas loss and opening loss. The losses are discussed in detail in the 

section 3.5. 

3.4 Heat Transfer Parameters 

Several parameters were identified and selected for the study. The following subsections 

describe the importance of each parameter. 

3.4.1 Emissivity (ᶓ) 

The emissivity of an object is a ratio of the reflected and absorbed energy at the same 

temperature. A true blackbody has an emissivity of 1.00, so a ratio that is closer to 1.00 would 

indicate that the object is closer to being a blackbody and would retain the heat or energy that the 
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object contains. Since the study is associated with the heat losses, emissivity plays an important 

role in radiation loss. The radiation loss was determined using equation 1 [26].  

      (1) 

The emissivity depends upon the material considered for study which is steel in this case. Based 

on the literature review the emissivity for steel is found to be in the range of 0.5 - 0.9 [35]. 

3.4.2 Stephen Boltzmann Constant ( ) 

The relationship between radiant energy and temperature for a black body radiator is referred to 

as Stephen-Boltzmann constant. It relates the total radiant energy (Btu/hr-ft
2
) from the surface of 

the black body to its temperature T: 

   (2) 

Where,   is the Stephen-Boltzmann constant in equation 2 [26]. 

The radiating body to be investigated in this experiment is the walls of the furnace. The walls are 

not a perfect black body radiator instead it can be thought of as a grey body that emits some 

fraction of the black body radiation given by its emissivity, ᶓ. The radiant flux is simply the heat 

dissipated per unit area. Thus the total radiated energy by the walls can be represented as shown 

in equation 3 [26]. 

    (3)  

  

3.4.3 Heat Transfer Coefficient (h) 

Heat energy transferred between a surface and a moving fluid or atmosphere at different 

temperatures is referred as convection. In this case the furnace walls are the surface and the 

atmosphere acts as the moving fluid. The convective heat transfer considered here is natural or 

free convection. The heat transfer per unit surface through convection was first described by 

Newton and the relation is known as the Newton's Law of Cooling. The equation for convection 

can be expressed as formula 4 [27] shown below. 

)( 44

afw TTAQ  

4ATF 

4ATQ 
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                 (4)   

Where, h is the heat transfer coefficient (Btu/hr-ft
2
.
o
F). 

3.4.4 Specific heat capacity (cp) 

Specific heat is the amount of heat per unit mass required to raise the temperature by one degree 

Fahrenheit. The relationship between heat and temperature change is usually expressed in the 

form shown below in formula 5 [26] where, cp is specific heat. 

    (5)  

3.5 Furnace Heat Loss  

The Figure 3.1 shows the schematic representation of the heat supply and losses in a furnace.  

 

Figure 3.1 Furnace Heat Loss 

The following sections detail the methods and results for heat loss through various furnace 

components. 

 

ThAQ 

TmcQ p



29 
 

3.5.1. Heat Balance Fundamentals  

The principle of the conservation of matter provides a simple, straightforward approach to setting 

up a materials balance. Similarly, the principle of energy conservation (also known as the First 

Law of Thermodynamics) provides a sound basis for setting up an energy balance. All that is 

essential is a knowledge of what enters and leaves the system; there is little or no need to 

consider the complexities and mechanisms of the process within the system [31]. 

3.5.2. Heat Units 

The US unit for energy is the Btu (British thermal unit), but nearly all thermochemical and 

thermodynamic data are expressed in the units of calorie. The relationship among these units are: 

1 Btu = 252 cal  

1 kcal = 3.97 Btu 

1 kcal = 1,000 cal  

The calorie will be used for the heat input calculations in this model and then converted to Btu, 

since the calorie occurs most frequently in the thermodynamic tabulations. The calorie is defined 

as the amount of heat required to raise the temperature of one gram of water from 58 to 60
o
F 

(14.5 to 15.5
o
C) [33]. 

3.5.2. Heat Content 

The thermodynamic function of enthalpy is used to describe the heat content of a system. It is a 

state function, and since its absolute value is not known, it can be expressed only in terms of 

differences. The base temperature is taken as 77
o
F(298

o
K or 25

o
C) and the term HT - H77 

represents the heat content above the base temperature. This heat is commonly called as the 

"sensible heat." The enthalpy function involves a constant pressure process. Enthalpy can be 

changed by temperature, by changes in state such as liquid to solid, by the formation of 

compounds from elements, and by the formation or dilution of solutions [33].  

The units used to describe heat content are: calorie per gram-mole, kcal per gram-mole, Mcal per 

kilogram-mole, and Btu per pound mole. The conversions are given below: 
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1000 cal/gm-mole = 1 kcal/gm-mole 

1 Mcal/kg-mole = 1000 kcal/kg-mole 

1 Mcal/kg-mole = 1800 Btu/lb-mole 

3.5.3. The Components of the Heat Balance 

The major components of the heat balance are: the sensible heat of reactants and products; the 

heats of formation of products and decomposition of reactants; the additional external energy 

supplied; and other energy losses from the system. The total heat inputs and outputs must be 

equal in a steady-state process in which there is no accumulation of energy. The unaccounted 

loss represents the heat which has not properly been accounted. The components of the heat 

balance are shown in table 3.1 [33]. 

Table 3.1 Major Components of Heat balance 

  HEAT INPUT HEAT OUTPUT 

1 Sensible Heat of Reactants Sensible Heat of Products  

2 

Heat of Formation of 

Products  

Heat of Decomposition of 

Reactants  

3 External Heat Supplied  Heat Evolved  

3a Electrical  Heat Losses 

3b Unaccounted Unaccounted 

  

3.5.4. Sensible Heat  

The sensible heat is the enthalpy increment above or below the reference temperature for the 

element under consideration. It includes the heat in all transformations, such as melting and 

vaporization. The variation of heat content with temperature is expressed adequately for most 

substances by the empirical relation [33]: 

   HT - HTR = aT+bT
2
+CT

-1
+d   (6) 

T: Temperature point of interest (
o
K) 

TR: Reference temperature (298
o
K, 25

o
C, 77

o
F) 
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In this equation, HT - HTR is the increase in the heat content, as the substance is heated from the 

base temperature to the required temperature. Using equation (6) (32), the heat content above the 

base temperature is readily calculated from given values of a, b, c and d as long as no change in 

state of aggregation occurs between the reference temperature and desired temperature. The 

values for the constants for different metals and gases are given in the appendix. However, if the 

heat content is to be calculated for the same substance in a different state of aggregation, another 

equation with different values of a, b, c and d must be used.  

3.5.5 Heat of Formation and Decomposition   

When a chemical compound is formed from its elements, heat is either liberated or absorbed. If 

heat is liberated, the reaction is called as exothermic reaction, and the heat is produced in the 

system. If heat is absorbed, the reaction is called as endothermic reaction, and the heat is 

supplied to the system. 

The heat of formation with the chemical change depends upon the nature of the reacting 

elements and the compound formed. The reacting elements are in their standard states, the 

pressure is maintained at 1 atm, the reaction starts and ends at 25
o
C (77

o
F), and the compound 

formed is also in its standard state.  

The decomposition of a compound into its constituent elements in their standard states is the 

reverse of that compound's formation; therefore, a compound's heat of decomposition is the 

negative of its formation [33].  

3.5.6 Heat Losses, and Unaccounted Losses 

Heat losses through the furnace walls can be estimated via the thermodynamic relations 

concerning conduction, convection, and radiation. Heat losses in water-cooled furnace rolls can 

be estimated from the flow rate and the temperature gain of the cooling water. 

The heat balance determines the amount of energy and how the energy is used in the system. Due 

to inaccuracies in the measurement of the quantities charged, temperature of the gases, 

temperature of the walls, and area considered for losses, the totals for the input and output energy 

will not balance. The difference between the heat input and output is the unaccounted loss. 
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3.5.7. Heat Conducted Through the Walls - (Conduction)  

Conduction is heat transfer by means of molecular agitation within a material without any 

motion of the material as a whole. If one end of a metal is at a higher temperature, then energy 

will be transferred down the metal toward the colder end because the higher speed particles will 

collide with the slower particles with a net transfer of energy to the slower particles. In this case 

the higher temperature body is the inside walls of the furnace and the colder end is the outside 

walls of the furnace. The amount of heat transfer depends on the insulation of the furnace. The 

heat loss is less when there is more insulation. The heat conducted through the furnace wall can 

be calculated by using the formula [26] as follows: 

Calculation: 

   














2

2

1

1/)(
k

t

k

t

k

t
TTAQ

p

p

wp  

Q: Heat loss through the walls by heat conduction (Btu/hr) 

tp: Thickness of furnace wall material (ft) 

t1: Thickness of insulating material 1 (ft) 

t2: Thickness of insulating material 2 (ft) 

kp: Thermal conductivity of furnace material (Btu/hr.ft.
o
F) 

k1: Thermal conductivity of insulating material 1 (Btu/hr.ft.
 o
F) 

k2: Thermal conductivity of insulating material 2 (Btu/hr.ft.
 o
F) 

A: Area of furnace walls (ft
2
) 

Tp: Temperature inside the furnace (
o
F) 

Tw: Temperature at the outer surface of furnace walls (
o
F) 
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3.5.8 Heat Loss Through other Surfaces (Fins, Burner walls and other typical surfaces 

emitting heat) - (Radiation & Convection) 

a) Radiation  

In this study, surfaces like beams, burner walls and other typical surfaces capable of emitting 

heat are energy emitting body and the atmosphere is the absorbing body. The relationship 

governing radiation from hot objects is called the Stephen-Boltzman law. Significant amount of 

heat is lost through these surfaces. The heat conducted through the surfaces is radiated and 

convected to the outside atmosphere. 

Radiation heat energy loss is influenced by the temperatures maintained in the zone, insulation 

materials and the surface material. The emissivity of these surface materials is a critical factor in 

radiation. The radiation loss can be calculated using the formula [26] below.  

Calculation: 

  
)( 44

as TTBAQ    

Q: Radiation heat loss from surfaces (Btu/hr) 

 : Emissivity of the surfaces  

B: Stephen Boltzmann constant - 0.1714 (Btu/h-ft
2
- 

o
R

 4
) 

A: Area of other surfaces (ft
2
) 

Ts: Average surface temperature of other surfaces and burner walls (
o
R) 

Ta: Ambient temperature (
o
R)  

b) Convection 

Convection is heat transfer by mass motion of a fluid such as air or water when the heated fluid 

is caused to move away from the source of heat, carrying energy with it. Convection above a hot 

surface occurs because hot air expands, becomes less dense, and rises. The heat transfer 

coefficient is an important factor to be considered in convective heat transfer. The heat transfer 

coefficient depends upon the type of fluid - gas or liquid, the flow properties such as velocity, 
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flow and temperature dependent properties. The convection loss can be calculated using the 

formula [27] below.  

Calculation: 

  
)( az TThAQ   

Q: Convection heat loss from other surfaces (Btu/hr) 

h: Heat convection coefficient (Btu/hr.ft
2
.
 o
F) 

A: Total other surface area (ft
2
) 

Tz: Surface temperature (
o
F) 

3.5.9 Heat absorbed by the steel strip 

 

Most of the heat is carried away by the steel strip passing through the furnace. This heat is called 

as the useful heat. The heat transfer mechanism depends on the type of furnace. In case of direct 

fired furnace, heat provided by the burners is conducted by the steel sheet unlike the radiant tube 

furnace where the steel sheet gains heat by the radiation from radiant tubes inside the furnace. 

Induction heating is applied usually in galvanneal furnace where the steel sheet is passed in 

between alternating magnetic field.  

Calculation 

Q = Sensible heat x Amount of Fe, C (in kg.mol/hr)
 

Q: Heat carried away by the steel strip (Btu/hr) 

m: Amount of Fe, C (lbs/hr) 

where m=d*L*t*w*60  

d: Density of steel (lb/ft
3
) 

L: Line speed (ft/min) 

t: thickness of the steel strip (ft) 
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w: width of the steel strip (ft) 

                
   

  
     

        

              
 
    

       
 
      

  
     

 

Sensible heat of substance at T
0
K: HT - H298 =  

              

    
   [31]  

HT - H298 is in Mcal/kg.mol 

a, b, c, d: coefficients for Fe (α) & C (graphite) (given in the Appendix) 

Texit: Temperature of the strip at the entry (
0
K) 

Tentry: Temperature of the strip at the exit (
0
K) 

3.5.10 Stack Heat Loss 

 

During combustion, fuel remains unburnt and escapes through the stack carrying certain amount 

of heat.  The generated flue gas during combustion has to be disposed off through the stack. This 

gas carries away significant amount of heat with it which is called stack heat loss. The 

composition is usually carbon dioxide, carbon monoxide, nitrogen and water vapor and excess 

oxygen if any. Carbon monoxide is usually unstable at high temperatures, therefore it is not 

considered as a combustion product in this study. 

Calculation 

Q = Sensible heat x Amount of Combustion Products (in kg.mol/hr)
 

Q: Stack heat loss (Btu/hr) 

m: Amount of combustion products going through the stack (kg.mol/hr) 

where m= The amount observed by balancing the combustion equation  

                
   

  
     

        

              
 
    

       
 
      

  
     

Sensible heat of substance at T
0
K: HT - H298 =  
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HT - H298 is in Mcal/kg.mol 

a, b, c, d: coefficients for combustion products (given in the Appendix) 

HT: Enthalpy of  natural gas combustion products at stack temperature (Mcal/hr) 

H298: Enthalpy of  natural gas combustion products at reference temperature (Mcal/hr) 

3.5.11 Water Cooling Heat Loss 

The steel sheet is passed through the furnace with the help of transfer rolls. These transfer rolls 

are made of steel which conducts certain amount of heat that is supplied by the furnace. These 

rolls remain in the furnace and are cooled by passing water through them. The water while 

passing through the rolls absorbs heat by conduction and exits at a temperature higher than the 

inlet temperature.  

Calculation 

  
)( entryexit TTmcQ 
 

Q: Water cooling heat loss (Btu/hr) 

m: flow of water (gallons/min) 

c: specific heat capacity of water (Btu/lb-
 o
F) 

Texit: Exit temperature of water (
o
F)  

Tentry: Entry temperature of water (
o
F) 

Conversion factor: Gallons to pounds of water: 1 gallon = 8.35 lbs  

3.5.12 Opening Loss (Radiation) - Opening to accommodate steel strip entry 

Furnaces and ovens operating at temperatures above 1,000
o
F have significant radiation losses. 

Hot surfaces radiate energy to nearby colder surfaces, and the rate of heat transfer increases with 

the fourth power of the surface's absolute temperature. Anywhere or anytime there is an opening 

in the furnace enclosure, heat is lost by radiation, often at a rapid rate. These openings include 

the furnace stack and doors left completely/partially open to accommodate charging or oversized 

work piece in the furnace.  
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Calculation 

  
)( 44

as TTBAQ    

Q: Radiation heat loss from surfaces - average temperature at the opening (Btu/hr) 

 : Emissivity of surfaces - furnace wall, steel strip   

B: Stephen Boltzmann constant - 0.1714 (Btu/h-ft
2
- 

o
R

 4
) 

A: Area of opening (ft
2
) 

Ts: Average surface temperature near the opening and the steel strip (
o
R) 

Ta: Ambient temperature (
o
R)  

3.5.13 Phase Change Heat Loss 

Phase change is the heat loss related to the change in the material structure of the steel strip when 

it is heated to high temperatures. Determination of heat losses due to phase change vary with 

product type. As the steel strip is annealed in the furnace, phase changes occur based upon 

product and process parameters. During such phase changes heat is either released (exothermic) 

or gained (endothermic).  

The Figure 3.2 [30] represents the Iron-Carbon phase diagram for steel with different 

composition of carbon at different temperatures. Low carbon steels are the most commonly used 

galvanizing product and usually contains 0.03% of carbon. The initial phase is Ferrite (α) as 

shown in the figure. Phase change occurs at around 738
o
C (1360

o
F). At this point the steel has 

two phases, Ferrite and Austenite (α & γ). There is not much of a phase change in this region. 

Complete phase change for a 0.03% carbon steel from ferrite to austenite occurs around 912
o
C 

(1674
o
F). Therefore heat due to phase change is realized only above 912

o
C (1674

o
F). Since there 

is not much of heat involved in between 738
o
C (1360

o
F) and 912

o
C (1674

o
F), this loss can be 

considered negligible. For steels at high temperatures, the heat content can be calculated by 

calculating the difference in enthalpy. 
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Figure 3.2 Iron-Carbon Phase Diagram 

3.6 Cooling Section 

In this section the steel strip loses certain amount of heat that it gained from the heating section. 

The steel strip is cooled either by radiation cooling or convection cooling which is done with the 

help of heat exchangers or with blowers. The amount of energy needed by the blowers to provide 

the cooling can be determined based on the extent of heat loss needed. 

Calculation:  

  
)( entryexit TTnmcQ 

 

Q: Heat loss due to cooling section (Btu/hr) 

n: number of cooling sections 

m: amount of steel strip going through the Zinc bath per hour (lbs/hr) 

where m=d*L*A 

d: density of steel (lb/ft
3
) 

L: line speed (ft/min) 
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A: cutting area of steel strip (ft
2
) 

where A=thickness*width  

Texit: Temperature of the strip at the entry (
o
F) 

Tentry: Temperature of the strip at the exit (
o
F) 

c: specific heat capacity of steel (Btu/lb-
 o
F) 

3.7 Jet Cooling Section 

In this section the steel strip will lose considerable amount of heat as compared to small amount 

lost in cooling section. Jet cooling section has higher cooling capacity than cooling sections to 

reduce temperature of steel strip approximately to pot temperature. Cooling takes place either by 

radiation or convection achieved by the means of heat exchangers or blowers. The amount of 

energy required by blowers to provide cooling can be determined based on the extent of heat loss 

needed. 

Calculation:  

  
)( entryexit TTnmcQ 

 

Q: Heat loss due to cooling section (Btu/hr) 

n: number of Jet cooling sections 

m: amount of steel strip going through the Zinc bath per hour (in lbs/hr) 

where m=d*L*A 

d: density of steel (lb/ft
3
) 

L: line speed (ft/min) 

A: cutting area of steel strip (ft
2
) 

where A=thickness*width  

Texit: Temperature of the strip at the entry (
o
F) 

Tentry: Temperature of the strip at the exit (
o
F) 

c: specific heat capacity of steel (Btu/lb-
 o
F) 
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3.8 Induction Heating 

Induction is a heating technique for electrical conductive materials (metals). It is frequently 

applied in several thermal processes such as melting and the heating of metals. Induction heating 

has the important characteristic that the heat is generated in the material to be heated itself. 

Because of this, induction has a number of advantages, such as a very good response and a good 

efficiency. The heating speeds are extremely high because of the high power density.  

Calculation:  

Power Transfer: 

The load of an induction system is heated because of induced eddy currents. A simple formula 

can be used to find the amount of heat transferred inside the system.  

Power Input : √           

Where,  

V  : line to line voltage 

I  :  line current 

      : power factor 

 

Heat Stored: 

The effective heat stored inside the furnace depends upon the efficiency of induction. The 

efficiency of induction depends upon the type of frequency converters used.   

The supplies can occur in different ways, depending on the frequency at which the system has to 

work. 

Heat Stored : √             

Where,  

V  : line to line voltage 
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I  :  line current 

      : power factor 

   : efficiency of induction 

 

Water Cooling: 

The inductor consists of copper tube which is internally water cooled. The inductor is cooled 

continuously to keep the inductor from overheating and to provide long life to the inductors. The 

amount of heat transferred to the cooling water is the difference between the power input and 

heat stored.  

Water Loss : √           - √             

 

Heat Carried away by Steel Strip 

Heat is stored inside the furnace. This heat that is stored will be transferred to the steel sheet 

passing through the furnace and to the walls of the furnace. Therefore, the effective heat carried 

away by the steel strip is the difference in between the heat stored and wall losses. 

Steel Strip : √             - Wall Losses 
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3.8 Load Factor and Efficiencies 

Load Factor 

Load factor for the burners are determined from this study. It helps the user to differentiate 

between the actual operating capacity and rated capacity. The ratio of these two capacities is 

denoted as load factor. 

Load Factor = Actual operating capacity / (No. of Burners x Rated capacity x efficiency) 

Actual Operating Capacity = Calculated Total heat in zone  

The study also determines efficiencies associated with process and components. Efficiencies like 

system efficiency and combustion efficiency are determined.  

System efficiency 

The main purpose of the furnace system is to heat the steel strip. Therefore the system efficiency 

is the ratio between the heat added to the steel strip to the total heat input. 

System Efficiency = Heat added to the steel strip/ Total calculated heat 

Combustion efficiency 

Large value for excess air for combustion of natural gas reduces the combustion efficiency. For 

most applications, exhaust gas oxygen levels are about 2% and corresponding excess air levels of 

about 10% are optimum. The combustion efficiency is displayed in the results section of the 

module. The screenshot of determination of combustion efficiency is shown in appendix. 

 

3.9 Conclusion  

1) A systematic study of the equipment in the galvanizing facilities is conducted. 2) Major 

energy consuming equipment (furnace) is identified and focus is drawn over collecting data 

pertaining to the furnace. 3) Variables affecting energy consumption are identified and measured. 

4) Preliminary analysis is conducted in Excel™ and formulas are developed for calculating heat 

losses, and 5) As discussed in Section 3.8, the efficiency of the system and the load factor of the 

burners are established.  
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CHAPTER 4 

DESIGN AND DEVELOPMENT OF MODEL 

4.1 Purpose of Modeling 

This chapter deals with the development of a computer-based model using Microsoft Excel™ 

referred to as the Enhanced Galvanizing Profiler Decision Support System (E-GEPDSS). It  is 

used to establish baseline energy levels for galvanizing operations. This model can also be used 

to analyze the effect of different products and process parameters on the system. The model 

incorporates different spreadsheets for Inputs, References, Results and Analysis. It also contains 

a reference spreadsheet, which has the properties of different fuels along with the decomposition 

of those fuels, and compounds that give their standard heat of formation and Molecular weights. 

The objective of this model is to exactly track the heat input given to the system that helps in 

determining the energy assessment potential and energy efficiency index for a particular facility 

by developing their energy baseline.  

Following are some of the major purposes of building the E-GEPDSS model: 

 to enable the user to input data regarding the energy usage in galvanizing operations to 

perform system energy analysis; 

 to estimate actual energy consumption by various elements of the annealing and 

galvanneal furnace from the real-time data collection, such as temperatures, and flow 

measurements; 

 to establish the energy baseline by tracking the nonessential energy consumption for the 

galvanizing process; 

 to ease the user in studying the effect of process parameters on energy by executing the 

model  for varying process and product parameters-sensitivity analysis; 

 

4.2 E-GEPDSS Model Development 

The model has two excel spreadsheets named as "Heat Balance" and "Heat Losses". The user is 

supposed to fill all the required information in these spreadsheets in order to get proper results. 

The model is designed in such a way that the user can get the results immediately after entering 
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all the necessary data required for calculation. The cells that are not colored are for the user to 

input the details. The cells that contains formula or reference are marked blue to let the user 

know that these cells are locked and cannot be modified. Once the user gives the model the 

required inputs, it will automatically calculate the results with the formulas fed in the respective 

cells and display the answer in the cells that are colored green.  

The "Heat Balance" spreadsheet calculates the mass and heat balance for all the zones in the 

furnace.  This spreadsheet takes the flow of natural gas and air as an input and calculates the 

amount of charge reacted and products produced during combustion. It also calculates the 

amount of heat carried away by products of combustion through the stack. The balancing of the 

products should be done manually and the values have to be entered in the model. The basic 

combustion reaction for complete combustion  is. 

2222224 ONOHCONOCH   

If there are different products of combustion that the user would like to consider, then the user 

has to manually add the product or reactant and do a mass balance with the equation and give the 

input to the model. The screenshot of the spreadsheet is shown in Figure 4.1. 

 

Figure 4.1 Mass Balance of Reactants and Products of Combustion 

The "Heat Losses" spreadsheet has different cells designated for entering the zone details of the 

furnace system, area details of different components of the system, and stack analysis. The user 
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has to input the values for each of the input parameters in their respective cells on the input 

sheet. The model is capable of analyzing up to seven zones. When there is a need to input more 

than seven zones, the user can combine details of two or more zones which are similar and 

consolidate to a single zone.  

The first section in the "Heat Losses" Spreadsheet is zone inputs. In this section, the user is 

supposed to enter the dimensions of the zone, number of heating elements in the zone, zone 

temperatures, and the rated capacity of the heating element. The user also has an option to select 

the type of fuel from the drop down menu and choose the respective fuel that is being used in the 

system. The type of fuel that is most commonly used is the natural gas hence, natural gas heating 

is considered in this study. The utilization factor of the system should be given as 1; if the system 

operates continuously else,  it is calculated by dividing the operating hours of the system by the 

total hours in a year. The screenshot of input section is shown in Figure 4.2. 

 

Figure 4.2 Input Sheet for Zone Details 

 The next input section in the "Heat Losses" spreadsheet is the area inputs. The area section in 

the input sheet will be automatically calculated by the model with the dimensional details entered 

in the input zone section. The model also considers other miscellaneous structures of the system 

and enables the user to input the area details of those structures. The user approximates the area 

of the miscellaneous structures to input in the model. The screenshot of area input section is 

shown in Figure 4.3. 
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Figure 4.3 Input Sheet for entering Area of Heat Emitting Surfaces 

The final input section in the "Heat Losses" spreadsheet is  the stack analysis. The stack input 

section will allow the user to input details on the flow rate of natural gas and air that is fed into 

the system. The user will also have to enter the details of the oxygen percentage in the stack and 

the stack temperature in each zone. These inputs will be used as references to calculate the 

combustion efficiency in the zones. The screenshot of stack analysis section is shown in Figure 

4.4. 

 

Figure 4.4 Input Sheet for Stack Analysis 
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After entering all the data in the input sheet, the user should scroll down the sheet to go to the 

losses section as shown in Figure 4.5 to 4.10. As shown in the figures the output section gives 

the values for various heat losses in terms of MMBtu/hr of fuel. The losses are the outputs for the 

model and are calculated once the user enters the required information. The various losses as 

discussed above are conduction, radiation, convection, opening loss, water cooling loss, and 

phase change loss. 

 

Figure 4.5 Radiation Heat Loss 

 
 

Figure 4.6 Convection Heat Loss 
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Figure 4.7 Conduction Heat Loss  
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Figure 4.8 Opening Loss 

 

 
 

Figure 4.9 Water Cooling Loss 

 
 

Figure 4.10 Phase Change Heat Loss 
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The model calculates the different losses associated with the system and gives the result as 

shown in the above screenshots. The user at this point has to switch over to the "Heat Balance" 

spreadsheet and input the values for heat losses in the sensible heat of products section as shown 

in Figure 4.12. The user has to convert the losses units from MMBtu/hr (US units) to MCal/hr 

(SI units) to input in this section. The change in units is used in the model as the traditional 

formulas used to calculate the enthalpy change is given in SI units. Once the user inputs the 

values in MCal/hr the model will automatically calculate the values in US units. The 

unaccounted losses are  the difference between the heat input (sensible heat of reactants) and the 

other calculated losses in the sensible heat of products section.  The model is developed in a way 

that the total heat input equals the total heat output as shown in Figure 4.11 and 4.12. 

 

Figure 4.11 Sensible Heat of Reactants (Heat Input) 
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Figure 4.12 Sensible Heat of Products (Heat Output) 

The "Heat Losses" spreadsheet has totally three modules incorporated in it. The worksheets are 

1) Losses and Results, 2) Cooling sections, and 3) References. The losses and results module 

contains all the losses as discussed earlier. After entering all the necessary information needed by 

the model, the model calculates the losses and consolidates in the Results section of the Losses 

and Results module.  

The results section contains reference from other modules and sheets. The values are pulled by 

the model and displayed  in this section. The results section also estimates the load factor of the 

burners in different zones. The snapshot of the results section is shown in Figure 4.13.  
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Figure 4.13 Heat Balance Results 

The next module in the "Heat Losses" spreadsheet is the cooling section. The model calculates 

the amount of heat that is being released by the steel strip in the cooling section. The heat 

released by the steel strip in the cooling section is considered as the amount of work done by the 

cooling section. The model also accommodates jet cooling section which is present in the same 

module. The jet cooling section is same as the cooling section except the steel strip looses 

significant amount of heat when compared to the cooling section. The type of cooling does not 

affect the model, as the model is currently designed to estimate the work done by the cooling 

section by tracking the strip temperature at the entry and exit. A snapshot of cooling section is 

shown in Figure 4.14. The final reference module has a list of references that the model pulls out 

for calculation. The reference module also helps the user to refer for values if there is a change in 

condition. Figure 4.15 represents the inputs for induction heating. The induction heating section 

in the model takes into account the line current and voltage that is being supplied to the induction 

coils present inside the furnace. 
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Figure 4.14 Cooling section 

 
 

Figure 4.15 Induction Heating 
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4.3 Advantages and Limitations of modeling 

Advantages 

 

 The model developed is a quick and reliable method to identify the areas of improvement 

 without doing a lot of hand calculations. 

 The model helps the user in identifying the potential areas of improvement by enabling 

 the user to test the effect of process and product parameters on the efficiency of the 

 system. 

Limitations 

 

 The model developed is restricted to seven zones and if the user wishes to input the    

 details for more than seven zones he can do so by consolidating two similar zones as one 

 zone. 

 The results generated using this model may not be accurate but can be used as an 

 indicator for the areas of potential improvement. 

 

4.4 Conclusion 

This chapter deals with a systematic approach to help establish an energy baseline through the 

development of a user-friendly, interactive model named as E-GEPDSS. It talks about the 

architecture of the model and various input and output modules. These modules provide 

information pertaining to the energy consumed by various elements of the furnace.   

The developed E-GEPDSS model will help the galvanizers to run their furnaces as efficient as 

possible by identify key parameters that are sensitive to energy. The user can vary the input 

parameters to the E-GEPDSS model and study its effect on energy basis. It also helps the user in 

providing the results for varying product and process parameters.   
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CHAPTER 5 

MODEL EXECUTION, ANALYSIS AND RESULTS 

5.1 Model Execution 

This chapter deals with the execution of E-GEPDSS model by using real-time data from one of 

the facilities visited during the conduct of this research. The goal here is to present the data 

collected from the site visits and demonstrate its use in the model inputs section. 

5.2 Model Inputs: 

The data collection has been done through plant visit. Extensive details on product, process, and 

system parameters were collected during the plant visits. The following sections utilize data on 

product, process, and system parameters to illustrate the workings of heat balance models. 

However, the models can be applied to variety of parameters as considered and reported earlier. 

It should be noted that not all losses will be applicable to specific manufacturing conditions.  

Since all the losses and their formulas were discussed in detail in the previous section, this 

section will exclusively focus on the calculations and the values for outputs in table format. The 

details of the two facilities will be discussed as Facility A and Facility B. The heat balance 

calculations are detailed for Facility A and the results are shown for Facility B in the results 

section. 

5.2.1 Facility A: 

The product parameters (US Units): 

Product: Carbon Steel  

Strip width: 4.3 ft 

Strip gauge: 0.00208 ft 

Line speed: 423ft/min 

The model was populated with data collected from the host facility A. This facility uses unit 

values. Therefore, the data was populated using the US unit spreadsheet. The heat balance results 

were obtained from the model and screenshots are provided in the section below.  
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5.2.2 Process Parameters: 

Table 5.1: Furnace Parameters 

Inputs Values Units 

Furnace Details   

Type of section considered Radiant tube  

Number of Zones 7  

Type of Heating   

Zone 1 - Zone 7 Gas Heating  

Type of fuel used Natural Gas  

Burner Details   

Zone 1 32  

Zone 2 36  

Zone 3, Zone 4 34  

Zone 5, Zone6 & Zone 7 30  

Zone Temperatures   

Zone 1 1689 oF 

Zone 2 1701 oF 

Zone 3 1680 oF 

Zone 4 1719 oF 

Zone 5 1722 oF 

Zone 6 1690 oF 

Zone 7 1720 oF 

Ambient Temperature 95 oF 

Dimensions of the Zones (Zones 1 - 7)   

Length of zones 45 feet 

Width of zones 9 feet 

Height of zones 9 feet 

 

The heat absorbed by various elements in the furnace is discussed in the order as it was discussed 

in the previous section.  
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5.3 Heat Losses 

This section details the methods and results for heat loss through various furnace components. 

Calculations to show the heat balance aspects for the product, process, and system parameters. 

All the calculations shown in this section is formulated for zone 1 and the values for the rest of 

the zones will be tabulated.  

5.3.1 Heat Conducted Through the Walls 

A: 405 sq.ft 

Tp: 1689 F 

Tw: 290 F 

tp: 0.25 ft 

t1: 0.25 ft 

t2: 0.75 ft 

kp: 24 Btu/hr.ft.F 

k1: 0.5 Btu/hr.ft.F 

k2: 0.5 Btu/hr.ft.F 

Table 5.2: Conduction Heat Loss 

 
 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 

Top of the furnace        

Tw - Top (oF) 290 300 290 320 320 300 300 

Insulation Material 1 Block Insulation 

Thickness of Insulation (ft) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Insulation Material 2 Arch Brick 

Thickness of Insulation (ft) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

Bottom of the furnace        

Tw - Bottom (oF) 280 290 290 300 310 295 300 

Insulation Material 1 Block Insulation 

Thickness of Insulation (ft) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Insulation Material 2 & 3 Straight Brick 

Thickness of insulation (ft) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
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 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 

Sides of the furnace        

Tw - Sides (oF) 300 320 310 325 325 315 330 

Insulation Material 1 Block Insulation 

Thickness of Insulation (ft) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Insulation Material 2 & 3 Straight Brick 

Thickness of insulation (ft) 0.375 0.375 0.375 0.375 0.375 0.375 0.375 
 

An example calculation for the heat conducted through the top of the furnace for zone 1 is 

calculated as, 
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     = 281,829 Btu/hr = 0.28 MMBtu/hr 

Similarly the heat conducted through the furnace walls ( Zone 1 - Zone 7) are calculated and the 

results are shown below: 

Heat conducted through the top:  1.97 MMBtu/hr 

Heat conducted through the bottom:  1.75 MMBtu/hr 

Heat conducted through the sides:  4.69 MMBtu/hr 

Total Heat conducted through the furnace walls: 8.41 MMBtu/hr 

5.3.2. Heat Loss Through other Surfaces (Fins, Burner walls and other typical surfaces 

emitting heat)   

5.3.2.a Radiation 

 : 0.8 

B: 0.1714 Btu/hr-ft
2
-
o
R

4
 

A: 121 sq.ft 
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Ts: 850 F 

Ta: 555 F 

Table 5.3: Radiation Heat Loss 

 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 

Area of other surfaces (ft2) 

Walls 

121 130 126 126 117 117 117 

Emissivity 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

Ts - Temperatures (oR) 850 860 855 860 855 850 860 

        

Results 

 

       

Total heat radiated (MMBtu/hr) 0.07* 0.08 0.08 0.08 0.07 0.07 0.07 
*Value calculated  as an example below 

An example calculation for the heat radiating from other surfaces of zone 1 is calculated as, 

)( 44

as TTBAQ  
 

)555850(121101714.08.0 448^  Q
 

    = 71,077 Btu/hr = 0.07 MMBtu/hr 

Similarly the heat radiated through the surfaces ( Zone 1 - Zone 7) are calculated and the results 

are shown in table:
 

Total heat radiated from the surfaces  = (0.07+0.08+0.08+0.08+0.07+0.07+0.07) MMBtu/hr 

      = 0.52 MMBtu/hr 

5.3.2.b Convection 

h: 1 Btu/hr.ft
2
.F 

A: 121 sq.ft 

Tz: 390 F 

Ts: 95 F 
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Table 5.4: Convection Heat Loss 

 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 

Area of other surfaces (ft2) 

Walls 

121 130 126 126 117 117 117 

Tz - Temperatures (oF) 390 400 395 400 395 390 400 

Heat transfer coefficient (Btu/hr.ft2.F) 1 1 1 1 1 1 1 

        

Results        

Total heat convected (MMBtu/hr) 0.036* 0.040 0.038 0.038 0.035 0.035 0.036 
*Value calculated  as an example below 

An example calculation for the heat convecting from other surfaces of zone 1 is shown here. 

)( az TThAQ 
 

)95390(1211 Q
 

     = 35,695 Btu/hr = 0.036 MMBtu/hr 

Similarly the convected heat through the surfaces ( Zone 1 - Zone 7) are calculated and the 

results are shown in table:
 

Total heat convected from all surfaces = (0.036+0.040+0.038+0.038+0.035+0.035+0.036)  

         = 0.257 MMBtu/hr 

5.3.3 Heat carried away by steel strip 

Line speed = 423 ft/min 

Density of steel = 490 lbs/ft
3
 

Strip width = 4.3 ft 

Strip thickness = 0.00208 ft 

Strip entry temperature in zone 1= 300
0
F = 421

0
K  

Strip exit temperature at zone 1= 455
0
F = 508

0
K 

Mass flow rate of strip =                        

=                

Carbon steel: 0.03% C,  

Amount of carbon: 0.03 x 111,229 = 33.37 



61 
 

Amount of Fe: 111,229 - 33.37 = 111,196 

Amount of Fe =          
   

  
 
        

         
 

    

       
     

      

  
 

Amount of C =        
   

  
 
        

      
 

    

       
      

      

  
 

Sensible heat of Fe at 421
0
K: 

H421 - H298  = 
                                          

    
  =     

    

      
 

Potential heat of Fe at 421
0
K =           

    =                 

Sensible heat of Fe at 508
0
K: 

H508 - H298  = 
                                          

    
 

=     
    

      
 

Potential heat of Fe at 739
0
K =           

    =                  

Potential heat gain of Fe =                

=                

=               

The amount of C in the strip is negligible since the concentration is only 0.03% , hence its is not 

included in calculation. 

Therefore heat absorption of steel strip from zone 1=     
     

  
 

Similarly the heat absorbed by the steel strip ( Zone 1 - Zone 7) are calculated and the results are 

shown below: 

Total heat carried away by steel strip    = (2.05+2.99+2.43+2.45+2.61+2.42+2.61)  

         = 17.56 MMBtu/hr 
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5.3.4 Stack Loss 

Natural Gas flow in zone 1 = 4,500 ft
3
/hr 

Air Flow in zone 1 = 47,853 ft
3
/hr 

Density of natural gas = 0.044 lbs/ft
3
 

Density of air = 0.075 lbs/ft
3
 

Mass flow rate of natural gas = Density x Volume = 4,500 x 0.044 = 198 lbs/hr 

Mass flow rate of air = Density x Volume = 47,853 x 0.075 = 3588.98 lbs/hr 

Amount of CH4 =      
   

  
 
        

      
 

    

       
      

      

  
 

Amount of O2 =         
   

  
 
            

           
 
            

        
 

    

       
       

      

  
 

Amount of N2 =        
   

  
 
            

           
 
            

        
 

    

       
       

      

  
 

Therefore the balanced equation is: 

2222224 46.187.4726.1163.587.4772.1263.5 ONOHCONOCH   

The moles of combustion products are obtained by balancing the equation 

Stack temperature = 842 F = 450 C = 723 K 

Sensible heat of CO2 at 723
0
K: 

H723 - H298  = 
                                           

    
 

=     
    

      
 

Potential heat of CO2 at 723
0
K=            

    =                
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Sensible heat of H2O at 723
0
K: 

H723 - H298  = 
                                          

    
 

=     
    

      
 

Potential heat of H2O at 723
0
K=             

    =                

Sensible heat of N2 at 723
0
K: 

H723 - H298  = 
                          

    
 

=     
    

      
 

Potential heat of N2 at 723
0
K=             

    =                 

Sensible heat of O2 at 723
0
K: 

H723 - H298  = 
                                        

    
 

=     
    

      
 

Potential heat of O2 at 723
0
K =            

    =               

The total amount of heat that goes through the stack from zone 1 is: 

     = 24.02 + 40.85 + 146.04 + 4.56 = 215.47 Mcal/hr 

     = 0.84 MMBtu/hr 

Similarly the stack heat loss ( Zone 1 - Zone 7) are calculated and the results are shown below: 

Total heat carried away by steel strip    = (0.84+1.04+0.93+0.99+1+0.94+0.97)  

         = 6.71 MMBtu/hr 
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5.3.5 Water Cooling Heat Loss 

m: 5.72 gallons/min = 5.72 x 8.35 x 60 = 2865.72 lbs/hr 

cp: 0.998 Btu/lb.F 

Texit: 150 F 

Tentry: 65 F 

Table 5.5: Water Cooling Loss 

 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 

Type of rolls Steel Steel Steel Steel Steel Steel Steel 

Water Flow (gpm) 5.72 5.72 5.72 5.72 5.72 5.72 5.72 

Specific heat capacity of water  0.998 0.998 0.998 0.998 0.998 0.998 0.998 

Water in Temperature (F) 65 65 65 65 65 65 65 

Water out Temperature (F) 150 150 150 150 150 150 150 

        

Results        

Total water cooling heat loss 0.24* 0.24 0.24 0.24 0.24 0.24 0.24 

Total* (MMBtu/hr) 0.24 x 7 = 1.68 
*Value calculated  as an example below 

The total water flow is (5.72 x 7) = 40 gallons per min. The flow is divided zone by zone for 

calculation purpose. The flow is assumed equal through all the zones.   

An example calculation for water cooling heat loss for zone 1 is calculated as, 

)( entryexit TTmcQ 
 

)65150(6035.872.5 Q
 

     = 243,586 Btu/hr = 0.24 MMBtu/hr 

Similarly the heat lost due to water cooling ( Zone 1 - Zone 7) are calculated and the results are 

shown in table: 

Total water cooling loss = (0.24+0.24+0.24+0.24+0.24+0.24+0.24) MMBtu/hr 

     = 1.68 MMBtu/hr 
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5.3.6 Opening Loss
 

 : 0.8 

B: 0.1714 Btu/h-ft
2
- 

o
R

 4
 

A: 3 sq.ft 

Ts: 930 R 

Ta: 555 R 

Table 5.6: Loss due to Openings 

 Zone 1 

Emissivity at the opening 0.8 

Temperature at the opening (F) 850 

 Temperature of the Strip entering (F) 90 

Ambient Temperature (F) 95 

Average Temperature at opening (R) 930 

Stephen Boltzmann Constant 0.1714 

Area of Opening 3 

  

Results  

Heat loss through opening (MMBtu/hr) 0.00269* 

 

 

 

       *Value calculated  as an example below 

 

The heat loss due to opening is calculated as, 

)( 44

as TTBAQ  
 

)470930(38^101714.08.0 44 Q
 

    = 2686.89 Btu/hr = 0.00269 MMBtu/hr 

The opening loss is present only in the entry section of the furnace, hence the loss is considered 

only for zone 1.  
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5.3.7 Cooling and Jet Cooling Sections 

number of sections: 1 

Line speed = 423 ft/min 

Density of steel = 490 lbs/ft3 

Strip width = 4.3 ft 

Strip thickness = 0.00208 ft 

Strip entry temperature in cooling section = 1400
0
F  

Strip exit temperature at cooling section = 1140
0
F  

Mass flow rate of strip =                        

=                

The work done by the cooling section is calculated as, 

)( entryexit TTnmcQ 
 

)11401400(115.0229,1111 Q
 

     = 3,325,758 Btu/hr = 3.32 MMBtu/hr 

Similarly the work done of jet cooling section can be determined by tracking the temperature of 

the strip at entry and exit of the section. 

5.4 Sensitivity Analysis 

There are many factors that influence the total loss, but major causes for these losses are volume 

of the zones, insulation material inside the zones, line speed, strip gauge, strip density, and zone 
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temperatures. The following section discusses the effect of these parameters over the total heat 

loss. 

Volume of the zones 

Table 5.7 Sensitivity for Volume 

Volume Scenario1  Scenario2 Scenario3 

Unit ft ft ft 

Length 45 50 40 

Width 9 10 8 

Height 9 10 8 

 

This sensitivity is to see the effect of changing the dimensions of the zones on total heat loss. In 

this sensitivity analysis, the length, width, and height of the zones have been increased and  

decreased in Scenario 2 and 3 respectively. 

Table 5.8 Effect of Volume on Total Heat Loss 

Heat  Scenario 1 Scenario 2  Scenario 3 

Steel Strip Heat 17.56 17.56 17.56 

Stack Loss 6.710 6.710 6.710 

Conduction throught the walls  8.413 10.387 6.648 

Radiation through other surfaces 0.517 0.517 0.517 

Convection through other surfaces 0.257 0.257 0.257 

Opening Loss 0.003 0.003 0.003 

Water Cooling Loss 1.702 1.702 1.702 

Total 35.161 37.135 33.396 

 

As shown in table 5.8, increasing or decreasing the volume of the zone changes only the heat 

conducted through the walls and does not have any effect on other losses. The volume of the 

zone and total heat loss are directly proportional to each other. As shown in table 4.8, an increase 

in volume leads to increase in losses and similarly decrease in volume results in less heat loss. 

Figure 5.1 shows a graphical representation of the effect of volume of the zones on total heat 

loss.  
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Figure 5.1 Effect of Volume of the Zones on Total Heat 

Insulation Material 

Table 5.9 Sensitivity for Insulation Materials 

Insulation Material Bricks Fiber Insulating Board Fireclay brick 

  Scenario1  Scenario2 Scenario3 

Thermal Conductivity 0.5 Btu/hr.ft.F 0.027 Btu/hr.ft.F 0.8 Btu/hr.ft.F 

 

This sensitivity is to see the effect of changing the insulation material inside the zones on total 

heat loss. In this sensitivity analysis, the insulation material used inside the zones have been 

changed in Scenario 2 and 3 respectively. 

Table 5.10 Effect of Insulation Material on Total Heat Loss 

Heat Scenario1 Scenario2 Scenario3 

Steel Strip Heat 17.56 17.56 17.56 

Stack Loss 6.710 6.710 6.710 

Conduction throught the walls  8.413 0.448 13.164 

Radiation through other surfaces 0.517 0.517 0.517 

Convection through other surfaces 0.257 0.257 0.257 

Opening Loss 0.003 0.003 0.003 

Water Cooling Loss 1.702 1.702 1.702 

Total 35.161 27.196 39.912 
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As shown in table 5.10, changing the insulation material from bricks to fiber insulation board 

decreases the heat loss significantly. The reason for the change in the loss is that the fiber 

insulation board has a thermal conductivity of 0.027 Btu/hr.ft.F which is less when compared to 

the thermal conductivity of bricks. Similarly, a change in bricks to fireclay bricks will increase 

the heat loss as shown in table 5.8 due to the increase in thermal conductivity. Therefore, thermal 

conductivity and total heat loss are directly proportional to each other. Figure 5.2 shows a 

graphical representation of the effect of insulation material on total heat loss. 

 

Figure 5.2 Effect of Insulation Material on Total Heat Loss 

Line Speed 

Table 5.11 Sensitivity for Line Speed 

Line Speed Scenario 1 Scenario 2 Scenario 3 

Speed 423 ft/min 400 ft/min 450 ft/min 

 

This sensitivity is to see the effect of changing the line speed of the steel strip entering on total 

heat loss. In this sensitivity analysis, the line speed of steel strip entering the furnace have been 

decreased and increased in Scenario 2 and 3 respectively. 
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Table 5.12 Effect of Line Speed on Total Heat Loss 

Heat Scenario 1 Scenario 2 Scenario 3 

Steel Strip Heat 17.56 16.61 18.69 

Stack Loss 6.710 6.710 6.710 

Conduction throught the walls  8.413 8.413 8.413 

Radiation through other surfaces 0.517 0.517 0.517 

Convection through other surfaces 0.257 0.257 0.257 

Opening Loss 0.003 0.003 0.003 

Water Cooling Loss 1.702 1.702 1.702 

Total 35.161 34.211 36.291 

 

As shown in table 5.12, decreasing the line speed decreases the heat loss due to less amount of 

pounds per hour of steel entering inside the furnace. Similarly, an increase in line speed results in 

more heat loss. Therefore, line speed and total heat loss are directly proportional to each other. 

Figure 5.3 shows a graphical representation of the effect of line speed on total heat loss. 

 

 

Figure 5.3 Effect of Line Speed on Total Heat Loss 

Strip Gage 

Table 5.13 Sensitivity for Strip Gage 

Strip Gage Scenario 1 Scenario 2 Scenario 3 

Gage 0.00208 ft 0.0023 ft 0.00195 ft 
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This sensitivity is to see the effect of changing strip gage on total heat loss. In this sensitivity 

analysis, the strip thickness of steel strip entering the furnace have been increased and decreased 

in Scenario 2 and 3 respectively. 

Table 5.14 Effect of Strip Gage on Total Heat Loss 

Heat Scenario 1 Scenario 2 Scenario 3 

Steel Strip Heat 17.56 19.43 16.47 

Stack Loss 6.710 6.710 6.710 

Conduction throught the walls  8.413 8.413 8.413 

Heat Scenario 1 Scenario 2 Scenario 3 

Radiation through other surfaces 0.517 0.517 0.517 

Convection through other surfaces 0.257 0.257 0.257 

Opening Loss 0.003 0.003 0.003 

Water Cooling Loss 1.702 1.702 1.702 

Total 35.161 37.031 34.071 

 

As shown in table 5.14, increasing the thickness of the strip increases the heat loss due to more 

amount of pounds per hour of steel entering inside the furnace. Similarly, a decrease in thickness 

results in less heat loss. Therefore, strip gage and total heat loss are directly proportional to each 

other. Figure 5.4 shows a graphical representation of the effect of strip gage on total heat loss. 

 

Figure 5.4 Effect of Steel Strip Gage on Total Heat Loss 
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Strip Density 

Table 5.15 Sensitivity for Strip Density 

Strip Density Scenario 1 Scenario 2 Scenario 3 

Density 490 lb/ft3 450 lb/ft3 540 lb/ft3 

 

This sensitivity is to see the effect of changing strip density on total heat loss. In this sensitivity 

analysis, the strip thickness of steel strip entering the furnace have been decreased and increased 

in Scenario 2 and 3 respectively. 

Table 5.16 Effect of Strip Density on Total Heat Loss 

Heat Scenario 1 Scenario 2 Scenario 3 

Steel Strip Heat 17.56 16.13 19.36 

Stack Loss 6.710 6.710 6.710 

Conduction throught the walls  8.413 8.413 8.413 

Radiation through other surfaces 0.517 0.517 0.517 

Convection through other surfaces 0.257 0.257 0.257 

Opening Loss 0.003 0.003 0.003 

Water Cooling Loss 1.702 1.702 1.702 

Total 35.161 33.731 36.961 

 

As shown in table 5.16, increasing the density of the strip increases the heat loss due to the mass 

of the strip being high. Similarly, a decrease in density results in less heat loss. Therefore, strip 

density and total heat loss are directly proportional to each other. Figure 5.5 shows a graphical 

representation of the effect of strip density on total heat loss. 

 

Figure 5.5 Effect of Strip Density on Total Heat Loss 
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Furnace Temperature 

Table 5.17 Sensitivity for Furnace Temperature 

Average Zone Temperature Scenario 1 Scenario 2 Scenario 3 

Temperature 1700 F 1850 F 1450 F 
 

This sensitivity is to see the effect of changing the zone temperature on total heat loss. In this 

sensitivity analysis, the average temperature maintained inside the zones have been increased 

and decreased in Scenario 2 and 3 respectively. 

Table 5.18 Effect of Average Zone Temperature on Total Heat Loss 

Heat Scenario 1 Scenario 2 Scenario 3 

Steel Strip Heat 17.56 17.56 17.56 

Stack Loss 6.710 6.710 6.710 

Conduction throught the walls  8.413 9.309 6.890 

Radiation through other surfaces 0.517 0.517 0.517 

Convection through other surfaces 0.257 0.257 0.257 

Opening Loss 0.003 0.003 0.003 

Water Cooling Loss 1.702 1.702 1.702 

Total 35.161 36.058 33.638 
 

As shown in table 5.18, increasing the average temperature inside the zones increases the heat 

loss due to high heat escaping from the furnace by conduction, convection and radiation.. 

Similarly, a decrease in density results in less heat loss. Therefore, zone temperature and total 

heat loss are directly proportional to each other. Figure 5.6 shows a graphical representation of 

the effect of strip density on total heat loss. 

 

Figure 5.6 Effect of Average Furnace Temperature on Total Heat Loss 
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5.5 Results and Discussion 

The model has been populated with the data collected in the host facility and results were 

obtained. The calculations on different losses and heat inputs were discussed in section 5.3. This 

section exclusively deals with providing snapshots of the results obtained from both "Heat 

Losses" and "Heat Input" spreadsheets for the whole furnace (Zone 1 - Zone 7). 

Inputs: "Heat Losses" Spreadsheet, Module 1 - Losses, Zone Details 

 

Figure 5.7 Input - Zone Details 

Inputs: "Heat Losses" Spreadsheet, Module 1 - Losses, Area   

 

 Figure 5.8 Input - Area Details 
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Inputs: "Heat Losses" Spreadsheet, Module 1 - Losses, Stack Analysis 

 

 

Figure 5.9 Input - Stack Analysis 

Figure 5.7 - 5.9 represents the schematic of input section in the "Heat Losses" spreadsheet. The 

data collected by the user on the furnace should be entered in these sections. The values to 

calculate different losses are pulled from these sections by the model. As shown in Figure 5.7, 

the furnace in the host facility has seven zones maintained at different temperatures. The 

dimensions of the zone are equal and ratings on the burners differ zone by zone. Figure 5.8 

displays the area calculated for the zones and miscellaneous surfaces. Stack analysis helps the 

user in identifying the amount of oxygen present in the stack, and the air in excess used for 

combustion.  

Figure 5.10 shows the schematic of radiation loss. Radiation loss is significant when the surface 

temperatures are high. It was observed that the miscellaneous surfaces of the furnace were at 

high temperatures in the host facility and radiate significant amount of heat to atmosphere. As 

shown in Figure 5.10 the average surface temperature is around 400
o
F. Emissivity is a key 

parameter in radiation. An emissivity factor of 0.8 is taken in this study as these surfaces are 

steel surfaces. Emissivity differs for different metals and materials. The user should be precise in 

finding out the emissivity of the metal or material used.    
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Outputs: "Heat Losses" Spreadsheet, Module 1 - Losses, Radiation 

 

Figure 5.10 Output - Radiation Loss 

A schematic representation of conduction loss is shown in Figure 5.11. Insulation materials used 

inside the furnace plays a key role in conduction heat loss. The model takes up  to 3 insulation 

layers The user has to input the type of material used, its thermal conductivity, and thickness of 

the layers. Conduction through the walls is highly influenced by the type of insulation material 

used inside the furnace.  The insulation material used in the host facility is bricks and block 

insulation. There are two layers of insulation on top and three on the bottom and sides of the 

furnace. The thickness of each layer is around 0.25 ft to 0.75 ft. The surface area of heat 

conduction through the top, bottom and sides are calculated by the model with the dimension 

details entered in the input zone section. Infrared temperature gun was used to observe the 

temperature on the surfaces of furnace. The temperature difference with the thickness, area, and 

thermal conductivity determines the heat conducted through the walls.   
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Outputs: "Heat Losses" Spreadsheet, Module 1 - Losses, Conduction 

 

Figure 5.11 Output - Conduction Loss 

Figure 5.12 displays the convection loss in the model. The convection loss is similar to radiation 

loss except heat transfer coefficient is used in place of emissivity and Stephen Boltzmann 

constant. Heat transfer coefficient is taken as 1 in this study as the type of convection is natural 

convection. Natural convection is a mechanism, or type of heat transport, in which the fluid 

motion is not generated by any external source (like a pump, fan, suction device, etc.) but only 

by density differences in the fluid occurring due to temperature gradients.   
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Outputs: "Heat Losses" Spreadsheet, Module 1 - Losses, Convection
 

 

Figure 5.12 Output - Convection Loss 

A schematic representation of opening loss is shown in Figure 5.13. The furnace in the host 

facility  had a small opening of about 3 ft2 to accommodate steel strip to enter. Any opening in 

the furnace is considered as radiation loss. The temperature is taken as the average of the 

temperature at the opening and the temperature of the steel strip entering. Emissivity is taken as 

the average of the emissivity of the furnace wall surface and steel trip. Opening loss is 

comparatively smaller than other losses as there are not much openings in the furnace. Presence 

of too many openings will result in infiltration of air inside the furnace. 

Figure 5.14 displays the water cooling loss considered in the model. The transfer rolls used to 

move the steel strip inside the furnace absorbs significant amount of heat. The rolls used in the 

host facility are steel rolls and are integrated with a common water-cooled hydraulic drawbar to 

ensure straight consistent transfer to downstream head hardening equipment. Water cooling is 

not needed when ceramic rolls are used as ceramics resist high temperatures. Water flow for the 

transfer rolls is measured as 40 gallons/min and is divided equally for seven zones for calculation 

purpose. The water in temperature and water out temperature is also noted to observe the amount 

of heat being absorbed by the water.   
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Outputs: "Heat Losses" Spreadsheet, Module 1 - Losses, Opening Loss 

 

Figure 5.13 Output - Opening Loss 

Outputs: "Heat Losses" Spreadsheet, Module 1 - Losses, Water Cooling Loss 

 

Figure 5.14 Output - Water Cooling Loss 
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Input and output - "Heat Balance" Spreadsheet, Module 1 - Zone 1 Heat Balance 

 

 

Figure 5.15 Heat Balance - Zone 1 

The heat balance for zone 1 is shown in Figure 5.15. The steel sheet enters the zone at 300
o
F(148

o
C) and leaves at 455

o
F(235

o
C).  The 

heat absorbed by the steel strip in zone 1 is 2.05 MMBtu/hr. The heat carried away by the combustion products or stack loss is 0.84 

MMBtu/hr and rest of the losses accounts for 1.62 MMBtu/hr. 
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Input and output - "Heat Balance" Spreadsheet, Module 2 - Zone 2 Heat Balance 

 

 

Figure 5.16 Heat Balance - Zone 2 

The heat balance for zone 2 is shown in Figure 5.16. The steel sheet enters the zone at 455
o
F(235

o
C) and leaves at 662

o
F(350

o
C).  The 

heat absorbed by the steel strip in zone 1 is 2.99 MMBtu/hr. The heat carried away by the combustion products or stack loss is 1.04 

MMBtu/hr and rest of the losses accounts for 1.66 MMBtu/hr. 
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Input and output - "Heat Balance" Spreadsheet, Module 3 - Zone 3 Heat Balance 

 

 

Figure 5.17 Heat Balance - Zone 3 

The heat balance for zone 3 is shown in Figure 5.17. The steel sheet enters the zone at 662
o
F(350

o
C) and leaves at 815

o
F(435

o
C).  The 

heat absorbed by the steel strip in zone 1 is 2.43 MMBtu/hr. The heat carried away by the combustion products or stack loss is 0.93 

MMBtu/hr and rest of the losses accounts for 1.69 MMBtu/hr. 
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Input and output - "Heat Balance" Spreadsheet, Module 4 - Zone 4 Heat Balance 

 

 

Figure 5.18 Heat Balance - Zone 4 

The heat balance for zone 4 is shown in Figure 5.18. The steel sheet enters the zone at 815
o
F(435

o
C) and  leaves at 959

o
F(515

o
C).  The 

heat absorbed by the steel strip in zone 1 is 2.45 MMBtu/hr. The heat carried away by the combustion products or stack loss is 0.99 

MMBtu/hr and rest of the losses accounts for 1.72 MMBtu/hr. 
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Input and output - "Heat Balance" Spreadsheet, Module 5 - Zone 5 Heat Balance 

 

 

Figure 5.19 Heat Balance - Zone 5 

The heat balance for zone 5 is shown in Figure 5.19. The steel sheet enters the zone at 959
o
F(515

o
C) and  leaves at 1103

o
F(595

o
C).  

The heat absorbed by the steel strip in zone 1 is 2.61 MMBtu/hr. The heat carried away by the combustion products or stack loss is 1 

MMBtu/hr and rest of the losses accounts for 1.65 MMBtu/hr. 
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Input and output - "Heat Balance" Spreadsheet, Module 6 - Zone 6 Heat Balance 

 

 

Figure 5.20 Heat Balance - Zone 6 

The heat balance for zone 6 is shown in Figure 5.20. The steel sheet enters the zone at 1103
o
F(595

o
C) and  leaves at 1229

o
F(665

o
C).  

The heat absorbed by the steel strip in zone 1 is 2.42 MMBtu/hr. The heat carried away by the combustion products or stack loss is 

0.94 MMBtu/hr and rest of the losses accounts for 1.69 MMBtu/hr. 
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Input and output - "Heat Balance" Spreadsheet, Module 7 - Zone 7 Heat Balance 

 

 

 Figure 5.21 Heat Balance - Zone 7  

The heat balance for zone 7 is shown in Figure 5.21. The steel sheet enters the zone at 1229
o
F(665

o
C) and  leaves at 1360

o
F(737

o
C).  

The heat absorbed by the steel strip in zone 1 is 2.61 MMBtu/hr. The heat carried away by the combustion products or stack loss is 

0.97 MMBtu/hr and rest of the losses accounts for 1.68 MMBtu/hr. 
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Summary - "Heat Losses", Module 1 - Summary for total heat losses 

 

 

Figure 5.22 Summary of Total Heat Loss 

The losses are summarized in the results section as shown in Figure 5.22. The losses are identified zone by zone and the consolidated 

loss accounts for 100%. The total loss in each zone has been identified and the load factor of the zones is estimated by dividing the 

total zone loss by the rated capacity of the burner with efficiency of the burner included.  
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5.6 Conclusion 

Pie chart - Loss Percentage 

 

 
 

Figure 5.23 Losses in Percentage 

Three Galvanizing facilities were visited for research and analysis purposes. Data collected from 

facility 2 was used to determine the energy baseline and useful heat determination in the 

industry. The model consolidates the percentage of heat transferred in a furnace in a pie chart. As 

seen in Figure 5.23, the heat carried away by the steel strip results for 49%, i.e. the useful heat 

that is transferred to the steel strip is 49% of the total heat supplied to the furnace. The remaining 

51% accounts for losses. Therefore the furnace is only 50% efficient. Conduction loss accounts 

for 23% of the total heat supplied to the furnace due to high temperatures maintained inside the 

furnace. The factors that influence these losses are insulation materials and their thickness. The 

stack loss is significant as it accounts for 19% of the total heat supplied to the furnace. The 

factors that influence stack loss is due to excess air that is combusted along with the fuel. This 

excess air and the products of combustion carries significant amount of heat through the stack. 

Water cooling losses results for 5% of the total heat supplied and these losses are significant due 

to the cooling water picking up heat when passing through the hot rolls inside the furnace. 

Radiation loss is influenced by the emissivity of the radiating surface and convection loss by the 

heat transfer coefficient. These losses are minor due to the area of the heat emitting surfaces and 
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their temperatures. Phase change loss occurs only when the steel strip is heated to high 

temperatures and when there is a drastic change in its phase.  

The nonessential energy consumption was determined by the model. Important factors 

influencing the nonessential energy consumption were discussed, and factors contributing to the 

establishment of energy baseline were analyzed. Thus, the concept of energy efficiency measures 

will play an important role in utilizing the heat wisely.  

5.7 Facility B  

The model was also populated with data collected from other host facility B. This facility uses 

metric unit values. Therefore, the data was populated using the metric unit spreadsheet. The heat 

balance results were obtained from the model and screenshots are provided in the section below.  

The Product and Process Parameters (Metric Units) 

Product: Carbon Steel  

Strip width: 1.225 m 

Strip gauge: 0.0048 m 

Line speed: 125 m/min 

 

 

Figure 5.24 Product and Process Parameters 

Figure 5.24 shows the product and process parameters which include the furnace dimensions, 

temperatures, burner ratings etc. 
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Figure 5.25 Heat Loss Calculations 
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The heat losses are calculated with the data collected during the plant visit. The heat balance 

through the walls for this loss is calculated only by radiation and convection not including 

conduction as facility A since the insulation information on the furnace was not available with 

the plant personnel. The results show that a loss due to radiation is higher than the loss due to 

convection.  This may be a result of poor insulation inside the furnace. By insulating the furnace 

with better material or adding another layer of insulation will reduce these losses. 

 

Figure 5.26 Heat Loss Calculations (Cont) 

The opening loss is not significant since the opening that was present in the start of the furnace 

was very small to accommodate steel strip entry. The water cooling loss is observed only in first 

3 zones since steel transfer rolls are used. The fourth zone is electric and has ceramic rolls inside 

them which does not need external water cooling. 
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Figure 5.27 Total Heat Losses (Facility B)
 

The total heat loss calculations for facility B is shown in figure 5.27. This shows that the loss due 

to stack is much higher than the other losses. Proper measures to reduce stack losses will help to 

reduce the total loss from the system.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

Galvanizing facilities are highly energy intensive operation with electrical and fuel energy 

representing a significant share of their total energy usage. Furnaces are extensively used in 

galvanizing process. The galvanizing industry conducts a remarkable level of ongoing research 

and developed a considerable knowledge base and maintains its expertise in steel coating [17]. 

Production process expertise along with the energy conservation practices can play a significant 

role in proper usage of energy at galvanizing facilities. Therefore, benchmarking galvanizing 

energy consumption and understanding the specific energy consumption by various elements are 

critical.  

This research involved the analysis of galvanizing operations focusing on the furnace side of 

energy consumption. A user-friendly interactive model named E-GEPDSS (Enhanced 

Galvanizing Energy Profiler Decision Support System) was developed to enable the user to 

simulate the complete galvanizing process by providing information about the process and 

product parameters. Upon feeding the model with proper data, it has the capability of developing 

the heat balance of the furnace for the facility under consideration. The user can easily identify 

the effect of product and process parameters on energy by utilizing the model. The use of E-

GEPDSS does not hinder the production process and the user may run the model for different set 

of operating conditions and observe the results. The results obtained from the analysis will help 

the user to make energy enhancing decisions. 

The furnace operation is identified as one of the energy intensive process in the galvanizing 

process. A methodology to determine their theoretical and actual energy consumption was 

presented along with the data collection methods. A complete heat balance for the furnace is 

modeled according to the data entered for a particular facility. From the energy analysis 

conducted for the furnace equipment at the host facility, it was found that the useful heat 

absorbed by the product is only 50% of the heat supplied to the furnace and rest of heat 
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dissipates as losses. Energy Efficiency Measures (EEM) can be adopted and improve the 

efficiency of the process. Hence, it can be concluded that there is significant potential for energy 

savings opportunities at the overall facility level.  

Energy Efficiency Measures: 

1. From analysis, it was identified that heat loss due to conduction accounts for 23% of total heat 

supplied to the furnace. This situation can be enhanced by changing to a better insulation 

material as discussed in Section 5.4. Better insulation material results in less heat conducted 

through the furnace and holds large amount of heat inside the furnace which results in heating up 

the product.  

2. The stack loss was another area identified for improvement. Proper amount of air-fuel ratio 

combustion will result in less heat loss through the stack. The heat through the stack can be 

recovered by heat exchangers and used to preheat the combustion air increasing combustion 

efficiency.  Regular monitoring and regulating oxygen percentage in the stack will help to 

enhance the situation.  

3. Proper insulation of other miscellaneous surfaces in the furnace will result in less radiation and 

convection heat loss.  

The following research objectives were met and are as follows.  

1. Development of an interactive model to estimate the energy baseline for galvanizing process. 

2. Enable sensitivity analysis using the model to identify key parameters sensitive to energy. 

3. Validate the model for a galvanizing facility.  

As a final conclusion, benchmarking of energy levels plays an important role in the 

determination of energy efficiency measures and has provided ways to improve the process 

efficiency at the host facility.  
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6.2 Future Work 

An ongoing research is required to make the process more reliable. Any system has to be refined 

by including minute details that can affect the system output. The development of E-GEPDSS 

model in this study has given a feasible methodology to help the galvanizers analyze their 

furnace heat losses and benchmark it for the determination of energy efficiency measures. 

However, the following work would further improve the appearance, comfort, robustness, and 

credibility of the E-GEPDSS model. 

1. Convert the model from Microsoft Excel to a user-friendly Visual Basic interface. 

2. Link the model with GEPDSS to make it a complete package of energy efficiency model for    

galvanizers.  

3. Develop alternate methods to determine the work done in cooling section. 

4. Fine- tune the induction heating option in the model. 

5. Improvise the model by collecting data in more detail, and verify the model to make it more 

reliable and universal. 

6. Run the model for the data collected on process and product parameters from different 

galvanizing facilities. 

7. Execute the model by varying inputs from the data collected and analyze the output to develop 

operating strategies for the production process. 
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APPENDIX A 

Heat Content Constants for Metals and Gases 

  Metals   

  Fe  Al Zn C 

  0 - 1033K 

1033K-

1179K 

1179K-

1674K 

1674K-

1803K >1803K 

0 - 

931.7K >931.7K 

0 - 

692.7K >692.7K   

  α β γ δ liq cryst liq cryst liq Graphite 

a 3.37 10.4 4.85 10.3 10 4.94 7 5.35 7.5 4.1 

b  0.00355 0 0.0015 0 0 0.00148 0 0.0012 0 0.00051 

c  -0.0000043 0 0 0 0 0 0 0 0 210000 

d -1176 -4280 390 -4420 -180 -1605 330 -1702 -850 -1972 

 

 

  Gases 

  

Rare 

Gases CO CO2 CH4 H2 H2O H2S N2 O2 SO2 SO3 

a 4.969 6.79 10.55 5.65 6.52 7.17 7.02 6.66 7.16 10.38 13.7 

b 0 0.0005 0.00108 0.00572 0.0004 0.00128 0.00184 0.00051 0.0005 0.00127 0.00321 

c 0 0.0000011 0.0000204 0.0000046 -1.2E-06 -0.0000008 0 0 0.000004 0.0000142 0.0000312 

d -1481.6 -2105 -3926 -2347 -1939 -2225 -2257 -2031 -2313 -3683 -5417 
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APPENDIX B 

Combustion Efficiency 
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