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Abstract  
AI Assisted History Matching- Proof of Concept 

Alireza Shahkarami 

History matching is the process of adjusting uncertain reservoir parameters until an acceptable 
match with the measured production data is obtained. Complexity and sub-optimal knowledge 
of reservoir characteristics makes this process time-consuming with high computational cost. 
In the past, computer-assisted history matching has attempted to make this process faster; 
however, the degree of success of these techniques continues to be a subject for debate.  

In this study, the objective is to prove and examine the application of a relatively new 
Artificial Intelligence based technology (Surrogate Reservoir Model – SRM) to assist the 
history match process. SRM is a prototype of full-field reservoir simulation model that runs in 
fractions of a second. The capability of generating meaningful outputs in a short time period 
with acceptable accuracy makes SRM a unique tool for assisted history matching.  

In this project, an SRM was created for a synthetic case study of a heterogeneous and complex 
oil field, with 24 production wells and 30 years of production history. The history matching 
was performed for this field using SRM and tuning static data (permeability). The result of this 
study is a proof of concept and shows that SRM is able to reproduce the numerical simulator 
results faster and with an acceptable accuracy. These characteristics make SRM a fast and 
effective tool for assisted history matching. 
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Chapter 1 
Introduction 
 

1.1 Introduction to Reservoir Simulation and Modeling 
Reservoir simulation is an area of reservoir engineering, which uses computer models to 

predict the flow of fluids (typically, oil, water, and gas) through porous media. Reservoir 

simulation is an assimilation of physics, mathematics, reservoir engineering, and computer 

programming, and its objective is building a tool to predict interaction between hydrocarbon 

and reservoir under different operating conditions. 

Reservoir simulation began in 1954 with the radial gas-flow computations (Watts, 1997). 

Since then, advancements in computer technologies have resulted in tremendous 

improvements in reservoir simulation. During these years, advancements happened in model 

size, technical methods and user communities. These all changed the role of reservoir 

simulation in industry and business. In addition, the introduction of high-speed computers and 

electronic resources in the last two decades have changed reservoir simulation from a fancy 

and costly approach to a practical toolbox, which could be available on the laptop of a student. 

Today, although reservoir simulation is an established technology, it continues to improve. 

Nowadays, results of reservoir simulation models are used in almost all reservoir development 

decisions. Simulating reservoirs easily and realistically makes them a primary and reasonable 

choice for oil and gas companies in the development of new (green) fields. Similarly, they are 

used in developed (brown or mature) fields where production forecasts are needed to help 

make future investment decisions. 
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A reservoir simulation model provides means to incorporate geology, reservoir and fluid 

characteristics into a cohesive computer model in order to calculate pressure and saturation 

changes throughout the reservoir and predict fluid rate and pressure profile at the wellbore.  

 A typical reservoir model is used to accomplish the following tasks: 

• Sensitivity analysis of uncertain parameters 

• Conditioning a simulation model to history data (History Matching) 

• Field-development planning and production optimization  

• Probabilistic forecasting and risk analysis (Uncertainty Assessment) 

Figure 1 shows the workflow for the reservoir simulation process. 

 

Figure 1- Typical Reservoir Model Workflow 

1.2 History Matching 

1.2.1 Introduction 
 

Engineers face different degrees of limitation to build a simulation model. One limitation is 

lack of data in order to create the simulation model. Table 1 summarizes the essential data to 

create a simulation model (Fanchi, 2006). The techniques to acquire these data mostly are well 
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testing, well logs, core analyses, laboratory studies of reservoir fluids and wellbore 

performance. Compared to the size of a reservoir, these data are inadequate and their sources 

represent a limited portion of the reservoir. However, these data and techniques are the only 

tools that provide input data for the reservoir simulation model of the field under study. The 

sources and techniques for preparing input data have been reviewed extensively in reservoir 

simulation literature  (Ertekin, Abou-Kassem, & King, 2001).  The main point is that a large 

part of the reservoir remains unknown to the engineers and geologist working on the 

simulation model. As a result, the initial simulation model needs adjustment to match the 

available historical production data and predict the future performance of reservoir. This 

tuning procedure is performed during history matching process. Thus, history matching is a 

calibration process that includes adjusting uncertain parameters of a reservoir model until the 

model reproduces the historical field performance as closely as possible.  

Table 1- Data Required for a Simulation Study, (Fanchi, 2006) 

Property Sources 

Permeability Pressure transient testing, Core analyses, 
Correlations, Well performance 

Porosity, Rock compressibility Core analyses, Well logs 
Relative permeability and capillary 
pressure 

Laboratory core flow tests 

Saturations Well logs, Core analyses, Pressure cores, 
Single well tracer tests 

Fluid property (PVT) data Laboratory analyses of reservoir fluid 
samples 

Faults, boundaries, fluid contacts Seismic, Pressure transient testing 
Aquifers Seismic, Material balance calculations, 

Regional exploration studies 

Fracture spacing, orientation, 
connectivity 

Core analyses, Well logs, Seismic, Pressure 
transient tests, Interference testing, 
Wellbore performance 

Rate and pressure data, completion and 
workover data 

Field performance history 
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1.2.2 Objective of History Matching 
The main objective of history matching is to improve and validate the reservoir simulation 

model by incorporating the observed data into the characterization process, in order to obtain 

reliable production forecasting (Maschio & Schiozer, 2005). Generally, the initial reservoir 

model does not match the historical data well enough to use it confidently for future forecasts 

(Ertekin, Abou-Kassem, & King, 2001) (Chen Z. , 2007). By having a verified reservoir model 

coming from history match process, prediction of future performance has a higher degree of 

confidence. Moreover, once the most uncertain reservoir parameters have been estimated by 

matching observed reservoir behavior, the tuned model can be used to predict the performance 

of the reservoir under different operating scenarios. 

On the other hand, a quality history match has a potential to better capture the production 

mechanisms in the reservoir. Therefore, there is a chance to improve the future development 

plans of the reservoir and modify the different reservoir characterization and data acquisition 

programs (Ertekin, Abou-Kassem, & King, 2001). These data will help improve the reservoir 

model and consequently history match, model forecasts, and general understanding of the 

reservoir. Another beneficial consequence of a well-done history match is to reconcile certain 

observations in the field. This kind of behavior could be due to unusual operating constraints 

or some hidden reservoir properties. For example, problems such as casing leaks, improper 

allocation of fluids to wells etc  (Mattax & Dalton, 1990) could be identified during a history 

matching process. 

1.2.3 Performance Data and Selecting Adjustable Parameters 
In general, the reservoir performance data include production and pressure data coming from 

all wells (injection, production or observation). Usually for a given production schedule the 

matching data are (Mattax & Dalton, 1990) (Chen Z. , 2007):  

• Oil, water and gas production rates 

• Average pressures (shut-in pressures) or pressures at observation wells 

• Flowing well pressures  

The historical data are checking points in a matching process; as a result, having a precise and 

reliable historical data is very crucial in the history match process. Untrustworthy data will 

mislead the matching procedure and the results of history match process will be different from 

the actual. This will result in having an unreliable simulation model, which gives wrong 

prediction of reservoir performance. For example in the past, gas production measurements 
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were not precise, especially if gas was flared. Usually oil production measurements are more 

accurate. For injection data, there is a chance to lose fluids in other layers or leaking can 

happen in the casing or behind the pipe (Mattax & Dalton, 1990). 

The quality and quantity of available historical data and the quality of initial reservoir model 

affects the history match process. Having reliable knowledge of geological properties of the 

reservoir will decrease the uncertainty involved in the process of tuning model parameters. 

Performing sensitivity analysis as a pre-history matching process is giving some ideas about 

the sensitive parameters in the model and can save some time during history matching. As 

previously mentioned, the calibrated model is used to forecast the future performance of the 

reservoir with a higher degree of confidence. The process could be repeated as new production 

and pressure data become available.  

A primary step in history matching process is identifying the uncertain parameters. In practice, 

some parameters such as well locations, hydrocarbon PVT parameters, oil flow rates, gross 

thickness, initial pressure, and net-to-gross cutoff values are known with confidence and not 

adjusted to get a match (Cosentino, 2001). In case of having aquifer in the field, some 

parameters such as aquifer transmissibility, storage, and strength are candidates to be changed 

in order to get a match. In a reservoir, following parameters are the most uncertain parameters 

and they can be adjusted to achieve a calibrated model: reservoir permeability, porosity, 

thickness, relative permeability, capillary pressure functions, rock properties such as 

compressibility as well as reservoir fluid properties and their distribution, water properties, 

WOC, and GOC, (Mattax & Dalton, 1990). 

In order to history match a model, adjustments are usually needed in the parameters (e.g., pore 

volume and net to gross ratio, contact levels, capillary pressure) that influence the volume of 

original oil in place (OOIP). However, the final OOIP from dynamic modeling should be in an 

acceptable range with calculated from the geological model, material balance and/or decline 

curve analysis (Cosentino, 2001). 

1.2.4 History Matching Procedure 
History matching is a complicated task. The following criteria determine the degree of success 

of this process: the quality and quantity of available data, the specific characteristic of the 

reservoir under study, the time and resources allocated to the study, and finally the experience 

and knowledge of the group working on the model. Consequently, each one of these criteria 

give the history matching problem its most important characteristic which is the non-
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uniqueness character of the solution. There is no specific and unique method for history 

matching process. Each reservoir has a particular specification and behavior. Geological 

characterization, performance history, production development and operations, reservoir drive 

mechanism, and wells’ specifications are the properties that make each field unique 

(Cosentino, 2001).  

Numerous literatures have described a systematic approach to perform history matching 

(Mattax & Dalton, 1990) (Cosentino, 2001) (Ertekin, Abou-Kassem, & King, 2001), therefore 

in this section we are not trying to go through the details of a history match process.  

Identifying the most uncertain parameters, which at the same time have a significant impact on 

the reservoir performance, is an initial step in any simulation process. Mostly these parameters 

are determined based on the type of the reservoir; however, some parameters such as 

permeability due to their effect on the fluid flow in the porous media play an important role in 

all kinds of reservoirs.  

Similarly, key wells are playing important role in simulation process. Cosentino (2001), 

defines key wells as the wells whose production behavior is typical and must be correctly 

reproduced by the model. In studies that include a limited number of wells, possibly less than 

20, all the wells can virtually be considered as key wells and the matching effort can be 

addressed with the objective of correctly reproducing the behavior of all these wells. 

By identifying the critical reservoir properties and defining the key wells, the reservoir 

engineers working the project have a simplified reference framework to begin the history 

match process. In a manually performed history match, two general steps can be considered.  

• The first step, called pressure match, is trying to get a match for pressure behavior of 

the field. At this step, the objective is adjusting the global energy balance. Figure 2, 

(Toronyi & Saleri, 1988) (Cosentino, 2001) describes the procedure at this level. As it 

was mentioned, permeability is a vital parameter affecting flow in the reservoir. 

Therefore, permeability could be modified globally and locally to achieve the pressure 

match. 



7 
 

 

Figure 2- Matching pressure behavior (Cosentino, 2001) (Toronyi & Saleri, 1988) 

 

• The second phase, called saturation match, is trying to match the fluid saturation in the 

reservoir. In the same way, permeability as well as relative permeability curves and 

functions are the critical parameters in order to get a match. Figure 3 demonstrates the 

steps to get a saturation match.   



8 
 

 

Figure 3- Matching saturation performance of reservoir (Toronyi & Saleri, 1988) (Cosentino, 2001) 

1.3 Computer Assisted or Automated History Matching 
History matching, by nature, is an ill-posed inverse problem. Correspondingly, classical 

history matching where reservoir parameters are adjusted manually by trial-and-error makes 

this process more tedious and time consuming. As a result, automatic history matching was 

proposed to decrease the amount of labor-intensive work in manual history matching.  
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During the last decade, there has been a large increase in deployment of permanent down-hole 

gauges (PDGs) and as a result acquisition of real-time data. The amount of data is beyond the 

potential of manual history matching; resulting in demands to develop tools that speed up 

history matching (Kabir, Chien, & Landa, 2003). 

Generally, automated history matching tries to keep the geological model plausibility and 

estimates some uncertain reservoir properties while trying to match the field performance. The 

basic process is to start from an initial parameter guess and improve it by integrating field data 

in an automatic loop. The quality of the match between measured and computed data is 

generally evaluated by using an objective function. 

Many efforts to improve manual history matching techniques have been made since the mid 

1960’s to both speed up and automate history match process (Kruger, 1961) (Jacquard & Jain, 

1965) (Jahns, 1966). Gradient optimization methods were used for history matching in late 

1960’s (Coats, Dempsey, & Henderson, 1968) (Slater & Durrer, 1970). Chen et al (1974) tried 

to formulate history matching as an optimal control problem. Bush and Carter (1996) showed 

that simple optimization techniques are not good enough to address complex history matching 

problems. He and Chamber (1999) claimed that automatic history matching using an object-

based approach could provide acceptable results without the need to manually adjust the 

model.  

In the early 90’s, stochastic modeling was used to generate multiple realizations (Tyler, 

Svanes, & Omdal, 1993) (Palatnic, Zakirov, Haugen, & van Roosmalen, 1993). Stochastic 

modeling, which provides many different equi-probable geological realizations, allows 

variation of the most important input parameters while honoring the underlying available data, 

e.g. the geological properties influencing fluid flow. 

Sultan et al (1994) and Ouenes et al (1993) used the simulated annealing method (SAM) to 

automate history matching process. SAM was a nongradient optimization method capable of 

handling large number of parameters. 

Gao et al (2004) for the first time suggested the idea of combining the simultaneous 

perturbation stochastic approximation (SPSA) method with a simulator to perform automatic 

history match of multiphase flow production data. Hajizadeh et al (2009) (2010) introduced a 

stochastic approach for automatic history matching based on a continuous Ant Colony 

Optimization (ACO) algorithm. Other stochastic algorithms have been examined in this area. 

Following are algorithms applied in order to automate history match process: 
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• Neighborhood algorithm (Subbey & Christie, 2003), Genetic algorithms (Erbas & 

Christie, 2007) (Castellini, 2005), Scatter search (Sousa, 2007), Tabu search (Yang, 

Ngheim, & Card, 2007), Hamiltonian Monte Carlo (HMC) (Mohamed, Christie, & 

Demyanov, 2009), Particle Swarm Optimization (PSO) (Mohamed, Christie, & 

Demyanov, 2009) (Kathrada, 2009), Markov chain Monte Carlo (Maucec, 2007), and 

Chaotic optimization (Mantica, 2002). 

Nonlinear behavior of the problem, substantial computational expenses and large dimension of 

a real size field make the process difficult. Although significant computational and solver 

efficiencies have been gained over the past four decades, ever-increasing size of geo-statistical 

earth models have continued to challenge the computational speed issue (Kabir, Chien, & 

Landa, 2003). 

Figure 4 introduces some computer assisted tools have been developed by different major 

companies. 

 

Figure 4- Some famous Assisted History Matching Tools in the industry 

Although assisted history matching could be a rapid way to handle parameter adjustments 

especially when the number of parameters increase, it is not a good replacement for engineer’s 

judgment in identifying the appropriate parameters for history matching and the weights 
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assigned to the variables being matched. Based on what was mentioned, during last two 

decades there have been many efforts to improve this branch of science in a way that could be 

applicable in the real world. But despite all the attempts, due to increasing rate of complexity 

and resulotion in the reservoir models, there is a huge hesitation about the practicality and 

potential of these methods to handle highly complicated real reservoir models. This makes 

automated (assisted) history matching still a challenging research topic. However, with no 

doubt assisted history matching is an effective and fast tool to learn integrity of input data.  

1.4 Application of Neural Networks in petroleum 
engineering 
Artificial neural networks (ANNs), usually called Neural Networks (NNs), are algorithms that 

were originally motivated by the goal of having machines that can mimic the brain. They are 

non-digital, intensely parallel and distributive information processing systems that are the state 

of the art technique for many applications. 

A neural network consists of an interconnected group of artificial neurons. NNs are physical 

cellular systems capable of obtaining, storing information, and using experiential knowledge. 

In fact, a NN is an adaptive system that adjusts its structure based on output and input 

information that flows through the network during the learning phase (Mohaghegh S. D., 

1995). A neural network consists of an interconnected group of artificial neurons and its 

structure is an idea coming originally from human neural system.  

Any typical neural network data processing procedure has two major steps: the learning and 

application step. At the first step, a training database is needed to train the networks. This 

dataset includes an input vector and a known output vector. Each one of the inputs and outputs 

are representing a node or neuron. In addition, there are one or more hidden layers. The 

objective of the learning phase is to adjust the weights of the connections between different 

layers or nodes. After setting up the learning samples, in an iterative approach a sample will be 

fed into the network and the resulting output will be compared with the known output. If the 

result and the known output are not equal, changing the weights of the connections will be 

continued until the difference is minimized. After acquiring the desired convergence for the 

networks in the learning process, the validation dataset is applied to the network for the 

validating step (Hagan, Demuth, & Beale, 2002) (Haykin, 1998). Figure 5 depicts the input, 

hidden and output layers and their connections. 

http://en.wikipedia.org/wiki/Artificial_neuron�
http://en.wikipedia.org/wiki/Artificial_neuron�
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Figure 5- An artificial neural network is an interconnected group of nodes  

Shahab Mohaghegh is one of the pioneers in applying Artificial Intelligence (AI) in petroleum 

engineering. He (Mohaghegh S. D., 1995) refers the main advantage of NN to the type of 

recognition ability and the difference in the mechanism with which human brain processes 

information compared to conventional digital computers. Computers are fast and accurate 

tools in performing prepared instructions. On the other hand, human brain performance is 

tremendously slower but more efficient than computers at computationally complicated jobs 

such as speech and other pattern- recognition problems. 

NNs can be helpful tool to solve many conventional and unconventional problems in 

petroleum engineering. Although they have a long history, their popularity in petroleum 

engineering started three decades ago (Ali, 1994). Since this time, the applications of NNs in 

addressing conventional problems of petroleum industry have been widely studied. Following 

are a brief list of different applications of NNs in petroleum engineering:  

• Application of NNs in well log interpretation (Baldwin, Otte, & Whealtley, 1989) 

(Jong-Se & Jungwhan, 2004) (Masoud, 1998) 

• Using NNs in well test data analysis (Al-Kaabi & Lee, 1990) (Ershaghi, Li, Hassibi, & 

Shikari, 1993) (Athichanagorn & Horne, 1995) (Sultanp & Al-Kaabi, 2002) 
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• NNs a helpful tool in reservoir characterization (Mohaghegh., Arefi, Ameri., & Rose., 

1995) (Ahmed, Link, Porter, Wideman, Himmer, & Braun, 1997) (Singh, Painuly, 

Srivastava, Tiwary, & Chandra, 2008) 

• Application of NNs to calibrate seismic attributes (David, 1993), seismic pattern 

recognition (Yang & Huang, 1991), inversion of seismic waveforms (Roth & 

Tarantoia, 1992)  

• Prediction of PVT data (Briones, Rojas, Moreno, & Martinez, 1994) (Gharbi & 

Elsharkawy, 1997) (Osman, Abdel-Wahhab, & Al-Marhoun, 2001) (Oloso, Khoukhi, 

Abdulraheem, & Elshafei, 2009)  

• Identifying fractures and faults (L.Thomas & Pointe, 1995) (Key, Nielsen, Signer, 

Sønneland, Waagbø, & H. Veire, 1997) (Sadiq & I.S. Nashawi, 2000) (Aminzadeh & 

deGroot, 2005) 

• Detecting hydrocarbons (Cheng-Dang, Wu, Mo, Zhu, & Xu, 1994) (Aminzadeh & 

deGroot, 2005), forecast formation damage (Nikravesh, Kovscek, Johnston, & Patzek, 

1996) (Kalam, Al-Alawi, & Al-Mukheini, 1996) etc 

1.5 Artificial Intelligence (AI) assisted History Matching  
Reservoir simulation and modeling is utilized throughout field development in different 

capacities. Although in some cases they are not perfect, they are mostly the best realization of 

the subsurface. Sensitivity analysis, uncertainty assessment, history matching, production 

forecasts and operations optimization using reservoir simulators is conventional in full field 

model studies (Ertekin, Abou-Kassem, & King, 2001). Realistic modeling of the complexities 

of a reservoir requires large number of grid blocks. As the complexity of a reservoir increases 

and consequently the number of grid blocks, so does the time required to accomplish the 

abovementioned tasks. Even though parallel processing features of some commercial 

simulators can take advantage of computational hardware advancements in order to perform 

many runs at the same time, it cannot still solve the problem properly. Today, finding a 

method to perform a real time analysis is a hot topic in academia and industry.  It is obvious 

that with the available resources, numerical and conventional simulators cannot address the 

problem of convergence time for highly complicated reservoir models.  

During the last decade, there has been lots of effort to find alternative methods to reduce the 

amount of CPU time needed to execute a numerical full field model. Artificial Intelligence 

(AI) methods are one of most famous and efficient examples of these kinds of techniques. 
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Zangl et al (2006) trained a NN as a proxy model by using a limited number of simulation runs 

of a gas storage model. Then they applied this proxy model to replace the numerical model in 

order to make hundreds and thousands runs in a very short time in an optimization loop. One 

of the objectives was to perform history matching. The results were acceptable and had low 

computational expenses compared to using numerical reservoir simulation.  

The objective of Rodriguez et al’s (2007) work was to accelerate history match process by 

applying singular value decomposition method. This method helped them save 75 % of total 

CPU time. At the same time, they used a NN in order to reduce number of simulations and 

help increase the accuracy of solution. Silva et al (2006) (2008) presented the application of 

global optimizers combined with NNs to address the history matching problem. Their results 

supported the potential of NNs to reduce the computational effort in history matching process. 

Sampaio et al (2009) used feed-forward neural networks as nonlinear proxies of reservoir 

simulation to speed up history matching. The focus of their work was to discuss the technical 

criteria that will lead to successful implementation of NN. The points they mentioned in this 

paper are very crucial for researchers who are interested in applying NN in petroleum 

engineering problems.  

In this study, we are attempting to speed up the traditional history matching process. The focus 

of our work is on a relatively new technology known as Surrogate Reservoir Model (SRM). 

SRM has been introduced as a tool for addressing many time-consuming operations performed 

with reservoir simulation models (Mohaghegh S. D., 2006). In 2006, SRM was presented for 

the first time by Shahab Mohaghegh to solve problem of time-consuming runs for an 

uncertainty analysis of a giant oil field with 165 horizontal wells in the Middle East. The 

reservoir simulation model included about one million grid blocks and took 10 hours to run 

using a cluster of twelve 3.2 GHz processors. In his study, SRM was used as an objective 

function for a Monte Carlo Simulation to build hundreds and thousands of simulation runs in a 

very short time compare to numerical simulator. Mohaghegh defines a Surrogate Reservoir 

Model, “SRMs are ensemble of multiple, interconnected neuro-fuzzy systems that are trained 

to adaptively learn the fluid flow behavior from a multi-well, multilayer reservoir simulation 

model, such that they can reproduce results similar to those of the reservoir simulation model 

(with high accuracy) in real-time.” (Mohaghegh S. D., Liu, Gaskari, Maysami, & Olukoko, 

2012b, p. 2). Since 2006, application of SRMs as an accurate and rapid replica of a numerical 

simulation model have been reviewed (Mohaghegh, Modavi, Hafez, & Haajizadeh, 2009) 

(Mohaghegh S. , 2009) (Mohaghegh S. , 2010) (Mohaghegh S. D., Liu, Gaskari, Maysami, & 
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Olukoko, 2012b) (Mohaghegh, Amini, Gholami, Gaskari, & Bromhal, 2012) (Amini, 

Mohaghegh, Gaskari, & Bromhal, 2012). Mohaghegh in another paper (2011) exclusively 

explains all types of AI-based reservoir models, particularly surrogate reservoir models.  
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Chapter 2      
Methodology 
 
 

 

2.1 Methodology 
Mohaghegh (2011) indicates the source of SRMs in his recently published paper. These 

models are developed based on representative spatio-temporal databases. Building this 

database is the first step of developing AI-based reservoir models. The main objective of this 

database is to teach the AI model the whole process of fluid flow phenomena in the reservoir. 

There are different criteria to categorize the AI models. One classification factor is the source 

of these databases, which could be a base reservoir simulation model or from the field data. 

The database to build an SRM are feeding by a numerical reservoir simulation model, while if 

the source of database is actual field data then the AI-based model is called a Top-Down, 

Intelligent Reservoir Model, or Top-Down Model (TDM) for short (Mohaghegh S. D., 2011). 

In general, this database should meticulously provide static and dynamic information of the 

reservoir. The quality and quantity of this database determines degree of success in developing 

a successful AI-based reservoir model including an SRM (Mohaghegh S. D., 2011).  

As mentioned earlier, history match techniques are used in reservoir modeling to fine-tune 

reservoir properties such as porosity and permeability by matching the measured production 

data (pressure or production profiles at each well). The objective of this study was to examine 

the utility of Surrogate Reservoir Model as a tool for assisted history matching. In this project, 

a SRM was created for a synthetic but highly heterogeneous and complex oil field, with 24 

production wells and 30 years of production history. The aim of the project was to achieve a 

match for the production history by tuning the static data (permeability distribution). SRM was 

trained using several heterogeneity realizations and then validated by a blind simulation run. 

Finally, the full field model was substituted by the trained SRM for the history match process. 

It is worth mentioning that this project was just a proof of concept and we are trying to show 

the potential of SRM to assist in the history matching process. Further studies on a variety of  t 

cases should be considered in the future. 
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Following are the steps involved in developing the SRM: 

1.  Model development and dataset generation:  

a. SRMs are developed using a representative spatio-temporal database 

developed based on the reservoir simulation models. The extent that how 

good this database represents the fluid flow phenomena in the reservoir, is 

determining the degree of success in developing an SRM (Mohaghegh S. D., 

2011). Because of important effects of this database on the developed SRM, 

high attention and care should be involved to develop the dataset. Therefore, 

this part is one of the most time consuming steps in an SRM development. 

b. Development of a heterogeneous reservoir model using a commercial 

simulator (the model specifications will be explained in the following). A 

base-case permeability distribution was used to initiate the modeling process. 

In addition to the base model, ten different realizations with various 

permeability distributions were created to train NN. Another realization as a 

blind model was built to validate NN models as well. 

c. In order to apply time series data, a tiering system was applied based on the 

Voronoi diagram. 

d. Different static and dynamic data were extracted from the simulation models 

in order to build the spatio-temporal database. 

2. SRM Development: 

a. Key performance indicator (KPI) analysis was performed to identify and rank 

the influence of different reservoir characteristics on the reservoir 

performance. 

b. An SRM was trained and calibrated using ten geological realizations of the 

reservoir.  

c. The SRM was validated using a complete blind (eleventh) realization of the 

reservoir.  

3. History Matching: 

a. The SRM was used to calculate the oil production rates of 24 wells during 30 

years (2000 to end of 2029). Consequently, oil production of all 24 wells was 

history matched in a short period of time by modifying the permeability 

distribution throughout the reservoir. 

4. The final output of history matching is a permeability distribution that is compared 

with the original permeability distribution used as input to the full field model.  
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The original (actual) permeability distribution was used for comparison purposes after the 

completion of the history matching process. Figure 6 describes different steps involved in the 

project.  

 

Figure 6- A diagram describing different steps in the project 

2.2 Model Generation and Dataset Preparation 

2.2.1 Base Model Description and Historical Data 
The base simulation model is a single porosity oil reservoir, which was constructed in CMG-

IMEXTM1

The field is producing oil at initial pressure of 2000 psi and bubble point pressure of 300 psi, 

therefore it is expected the candidate reservoir will be producing oil for a long time in an 

under-saturated condition. The model is synthetic and does not represent a real field. The 

model includes 24 vertical wells distributed in the reservoir. 

. The reservoir has been divided into 4800 Non-Orthogonal grid blocks, 80 in X 

direction and 60 in Y direction. The reservoir is single layer and thickness is variable in 

different girds. 

Figure 7 shows a 3D and 2D view 

of the reservoir structure. Figure 8 and Figure 9 show 3D and 2D views of porosity and grid 

thickness distributions.  

                                                           
1 Computer Modelling Group 
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Figure 7- 3D and 2D top views of simulation model 

 

 

Figure 8- 3D and 2D views of porosity distributions 
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Figure 9- 2D and 3D views of Thickness map 

The given permeability range for the base model is 10 to 75 md (Figure 10). In addition, the 

geological information from the field indentifies a high permeable zone (Figure 11). 

 

Figure 10- Given Permeability map for the base case 
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Figure 11- Geological information identifies a high permeable zone in the field 

Twenty-four production wells have been drilled in the field and they produce oil for 30 years. 

The production constraint is minimum bottom-hole pressure (BHP). Figure 12 demonstrates 

the recorded monthly bottom-hole pressure for a couple of wells. Other wells’ BHP are 

available in Appendix A. Table 2 contains the values of porosity, thickness and permeability 

in the base model at wells' locations. 

 

Figure 12- Bottom-hole pressure as constraints for the production wells 
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Table 2- Porosity, Thickness and Permeability values at the Wells Locations 

 

The wells produce for 30 years, starting in 2000/01/01. The available historical data include 

oil rate production and cumulative oil production for all the wells. Figure 13 shows the oil rate 

and cumulative oil for four wells. The complete historical data are given in Appendix A.  

 

Figure 13- Production Historical data for some wells, rest of wells are available in Appendix A 
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2.2.2 Training Realizations 

In order to introduce the uncertainties involved in the reservoir simulation model to the SRM, 

a small number of simulation runs should be made. This approach is common in SRM and the 

response surface methods. However, there is a main difference between these two methods, 

which is the functional forms behind these models. Response surface and other reduced 

models are developed using statistical approaches, which use predetermined functional forms. 

Then the output of reservoir simulation models are fitted to these predetermined functional 

forms. Mostly to match these functional forms, hundreds of runs are needed. On the other 

hand, the mechanism of SRM is not based on the predetermined functional forms. Mohaghegh 

(2012a) addresses this mechanism as, “SRMs are developed using universal function 

approximation technology that will adapt and fit an infinite set of functional forms that may 

change from one set to another many times within the time and space domain.” 

The above introduction explains why it is possible to develop an SRM just by couple of runs. 

However, there is no algorithm to find the optimum number of simulation runs to build an 

SRM. The best number to train the SRM is mostly rule of thumbs. It changes depending on the 

intricacy and heterogeneity of the reservoir model. Nevertheless, it is obvious if the number of 

simulation runs is small, the SRM will not be able to reproduce the simulator results properly. 

Otherwise, if the number of simulation runs is too big, there is no reason to develop an SRM 

since the solution is close to the original problem, which is the high number of simulation 

runs.  

In this study, ten different realizations of the base model were designed to develop the SRM. 

By utilizing the provided permeability distribution map, ten different permeability maps were 

created. The range of permeability for the base model is 10 to 70 md. Due to the uncertainty 

involved in reservoir properties, we considered a range of 10 to 200 md to create the 

permeability distributions. Developing the permeability map was based on assigning different 

values at the wells’ locations and using a geo-statistical method “Inverse Distance Method” 

provided by BuilderTM1

Table 3

 (CMG). Subsequently, to create ten different cases of permeability 

values at well location, one experimental method (Latin Hypercube) was used.  

summarizes generated permeability values at the wells’ locations. The permeability values for 

each well have been ranged by color, in which red and blue represent minimum and maximum 

value respectively. 

                                                           
1 Computer Modelling Group 
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Table 3- Different permeability values at wells’ locations for creating permeability maps 

 

Figure 14 shows three different permeability maps; the rest of the realizations are listed in 

Appendix B. In these realizations, permeability distributions as well as the range of 

permeability values are different. 

 

Figure 14- Different permeabilty distributions created to train SRM (the rest is available in Appendix B) 

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Well-1 44.6 21.6 21.0 38.7 60.5 67.1 31.3 66.4 44.2 89.7

Well-10 40.3 29.8 51.5 140.8 49.7 142.8 146.9 87.5 113.6 107.3
Well-11 41.7 85.8 32.6 83.8 138.6 39.0 122.6 117.7 97.1 33.0
Well-12 33.4 18.0 44.7 51.9 40.1 21.2 89.8 73.9 75.5 34.9
Well-13 64.3 41.3 64.3 61.0 74.9 69.2 54.7 60.9 118.4 104.9
Well-14 17.6 42.8 30.0 31.0 38.1 28.4 43.1 56.1 35.2 62.9
Well-15 18.9 44.9 37.5 47.4 55.8 32.7 92.0 93.1 91.2 59.6
Well-16 21.7 40.0 29.9 32.5 41.1 33.9 43.0 57.8 38.8 66.8
Well-17 78.1 45.0 27.7 44.6 84.1 102.4 93.8 143.9 158.9 152.5
Well-18 34.6 24.6 40.2 56.8 29.5 44.1 75.7 74.9 54.6 81.3
Well-19 76.8 60.3 95.6 38.9 54.0 81.7 107.5 172.6 49.3 61.4
Well-2 58.8 42.9 52.6 92.2 78.0 105.4 93.7 81.6 107.2 119.5

Well-20 41.2 27.3 14.4 53.9 70.7 27.4 18.9 37.4 88.0 21.9
Well-21 19.5 22.4 39.5 27.4 19.6 47.5 50.5 63.4 60.7 89.6
Well-22 30.0 36.0 31.9 42.4 46.1 43.3 63.6 61.3 70.1 57.4
Well-23 58.6 67.8 60.4 117.6 109.0 59.6 82.4 55.8 47.6 73.2
Well-24 29.2 31.6 21.5 44.0 28.2 57.5 17.5 77.4 69.4 27.8
Well-25 29.5 88.8 46.1 68.4 31.7 109.8 159.9 112.4 182.8 153.0
Well-3 67.0 38.5 76.5 55.4 72.5 53.2 36.8 43.1 123.5 94.0
Well-4 26.5 37.5 32.9 71.0 66.7 42.0 31.6 29.8 22.8 19.0
Well-5 43.2 30.2 31.7 15.9 26.4 66.3 60.4 86.2 83.2 72.5
Well-6 24.5 38.1 34.9 40.3 46.5 38.5 62.3 63.4 56.7 61.7
Well-7 41.6 15.9 30.7 65.1 39.2 20.6 44.5 49.6 50.4 57.0
Well-8 54.1 79.0 73.4 112.9 101.4 71.8 193.9 161.8 140.1 131.8

Permeabilty @ Wells' Location for 10 Runs applied in Training partWell
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2.2.1 Reservoir Segmentation- Tiering System and offset wells 

In order to include the static data of adjacent grid blocks of a well in the spatio-temporal 

database, a tiering system was generated. Another objective of this part is to summarize the 

information of different grid blocks based on their influences on the wells’ production. 

Different grid blocks have different impacts on the fluid flow depending on their distance from 

the production well. For example, the well grid block has the maximum influence on the 

production of a well, whereas the farther grid blocks have less impact on the production of a 

well. Therefore, this influence should be considered during the development of the database. 

In addition, the impacts of the neighborhood wells’ production were considered (offset wells’ 

effects).   

The first step in identifying tiers is dividing the reservoir using the Voronoi algorithm. Based 

on this method the reservoir is assumed as a homogenous reservoir, and the drainage area for 

each well is calculated based on the Voronoi diagram. Let us assume an ideal and homogenous 

reservoir, in which all the wells produce at the same rate and at the same time. For this 

example, after a specific time the drainage area for each well will become a polygon, in which 

the boundaries have equal distance to the nearby wells. In other words, the polygons are 

separated using image wells theory, which says that a reservoir being produced under 

homogenous conditions and the same rate will result in a no flow boundary at the midpoint 

between two wells. In this study, the reservoir was divided into the Voronoi segments using 

IDEATM 1 Figure 15 ( ). IDEA is a software application made by ISI2

After creating the segments, in order to take the effects of different grid blocks into account, 

each drainage area is divided into four tiers. The first tier is the grid block that the well is 

located on. The second, third and fourth tiers stand for the outer surrounding grid blocks of 

each drainage area. 

 for the development of 

data driven, intelligent models. We will explain more about the applications of this software 

later in this chapter. 

Figure 16 shows different tiers for a drainage area. It should be noted that 

the number of grids in the first (1), second (8) and third (16) tiers are constant. Consequently, 

the last or fourth tier includes the rest of grid blocks. 

                                                           
1 Intelligent Data Evaluation & Analysis 
2 Intelligent Solutions Inc 
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Figure 15- The reservoir divided to different drainage areas following Voronoi diagram 

 
Figure 16- Different tiers were designed based on the Voronoi diagram 

In order to consider the effect of nearby wells on the performance of a specific well, the three 

closest wells have been assigned as the offset wells. Generally, there are a couple of facts that 

affect the number of offset wells. The first one is the conductivity of a reservoir, which is a 

function of reservoir characteristics, particularly permeability. The more conduct a reservoir, 

the easier it is for the fluid to flow and see the other parts of a reservoir faster. Therefore, the 

number of offset wells will be higher in a conduct reservoir than in a tight reservoir. The 
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second fact is the background of the reservoir. In a brown (mature) field with a long period of 

production, the reservoir has reached a further distance than a green field, which still is at the 

initial levels of production. Finally, the measureable impact (practical observation) of other 

wells’ performances should be considered. Based on the diffusivity equation, the effect of a 

change in a part of system can be observed simultaneously all over the system. However, the 

amount of this change that is desired to be measured, is another factor.  

In this study based on the reservoir characteristics of the reservoir, which is mainly a 

conductive reservoir, the three closest wells were considered as the offset wells. Since the 

process of choosing the number of offset wells is mostly a trial and error procedure, the stage 

is still open for arguing another number of offset wells. In addition, it is worth mentioning that 

the dimension of the spatio-temporal database should be unique, therefore a single number of 

offset wells was decided.  

2.3 SRM Development 

2.3.1 Input Selection 
Up to this point, the required simulation runs have been designed, the runs were made, the 

reservoir was divided into the desired segments and three offset wells were recognized for 

each well. At this step, the inputs to develop the spatio-temporal database are selected. As it 

was mentioned, building this database is the most important step of developing an SRM. In the 

building of this database, the objective of the reservoir modeling should be considered (Amini, 

Mohaghegh, Gaskari, & Bromhal, 2012) (Mohaghegh S. D., Liu, Gaskari, Maysami, & 

Olukoko, 2012a). For instance, the objective of this study is to use the SRM to estimate the 

well parameters such as oil production. Therefore, the reservoir properties, which are affecting 

the objective of the study, have higher degrees of importance.  

The database includes different types of data such as static and dynamic reservoir 

characteristics, operational constraints, etc. Static data refers to properties of the reservoir that 

are not changing through time, such as permeability, porosity, top and thickness. On the other 

hand, the dynamic data addresses variable parameters that are changing through time, such as 

oil production rate, bottom-hole pressure, and time.  

The reservoir tiers and segmentation were explained in the previous section. One objective of 

the reservoir segmentation is to summarize the grids’ properties based on the degree of 

influence for each grid block. For example, the well block is the most important grid block 
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affecting the production; therefore, this block is considered a separate tier (tier1).  However, 

for other tiers there is more than one grid block at each tier. Consequently, in order to assign 

one value to each tier, arithmetic mean calculation is performed. This calculation is done just 

for static properties.  

Figure 17 summarizes the different types of data in the spatio-temporal database. The number 

of rows in this database is 24(number of wells) X 30 (number of production time steps per 

well). The number of columns is 92 (static and dynamic properties). 

 

Figure 17- Different types of data in the spatio-temporal database 

2.3.2 Creating NN models  
After preparing the database, it is time to create the NN models. N order to generate NN, 

software developed by Intelligent Solutions Inc (ISI) called IDEATM is used (Intelligent 

Solutions Inc., 2012). IDEA provides multiple training paradigms for NN models including 

Generalized Regression (GR) and Back Propagation. Back Propagation, the most common 

training method to train the NN, is utilized to train the NN models. The time-based model 

development feature of this paradigm is appropriate for our study. 

 An SRM, depending on the application, could consist of one or multiple NN models. In this 

study, there are two separate NN models. The differences between these NNs are in inputs and 

output selections. The output of the first NN, called the Initialization model, is the oil rate at 

the end of the first year of production (2000/31/01). While the output of the second NN, 

named the Main model, is the oil rate for the other years of production. In addition, the inputs 

to train these models are different. 
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The reason for making two different models goes back to the initial reservoir response to the 

production. In the early stages of production, reservoirs are at the initialization process and 

still at the unstable phase. Mostly at this level, the production of the target well has not been 

influenced by the nearby wells, and reservoir properties (static data) are the most influential 

parameters to characterize the production. Eventually the SRM would be the result of the 

combination of these two networks. The process of building the networks are the same for 

these models and will be explained gradually in the following sections. 

 2.3.3 Importing Data Set 

This section and the following sections (2.3.3 to 2.3.5) mostly explain how to work with IDEA 

in order to make the NNs. The first step in building a NN is to import the prepared database 

into the software. After defining the project, IDEA provides an interface to import the 

database and define the type of data in the database (Figure 18). By default, all parameters 

have been defined as an “Input” but the user is able to label them as another type of data such 

as “Output”, “ID” (Identifier) or “Not Used”. At least one output must be chosen for each 

model. In this project, the oil rate is the output of the system.  

 

Figure 18- Attribute Selection for Imported Data Set 
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2.3.4 Key Performance Indicator 

It is a fact that all the imported parameters do not necessarily have equal impact on the output 

of the model. Therefore, screening the input data not only saves run time, but also provides a 

better understanding of the models’ behavior. IDEA has some features to accomplish these 

kinds of analyses. In the “Data Mining” section of this software, you are able to perform some 

basic and advanced statistical analyses (Figure 19).  

 

Figure 19- Statistical Analysis features of IDEA 

One of the most important features of IDEA to rate the influence of parameters on the output 

is Key Performance Indicators (KPIs). This feature identifies the most influential parameters 

in any given process prior to modeling. The identification of KPIs makes the process of 

training, matching and validating SRM efficient. The result of this process is a tornado chart 

that indicates the percentage of degree of influence for each individual variable. Table 4 and 

Figure 20 summarize the results of KPI analysis for the first NN (Initialization model). As 

expected, the most high-ranking parameters for this model are permeability values for the 

target well and the offset wells. 
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Table 4- KPI Analysis for the Initialization NN model 

 

 

Figure 20- KPI Analysis, tornado plot for the Initialization model 

Table 5 and Figure 21 show the results of KPI analysis for the Main NN model. In this model, 

dynamic parameters such as bottom-hole pressure, time and oil rate are the most important 

properties. 
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Table 5- KPI Analysis for the Main NN model 

 

 

Figure 21- KPI Analysis, tornado plot for the Main NN model 

After identifying the most important parameters for both models, the next step is to develop 

the NN models. The inputs of NN models are selected based on the provided information from 

the KPI analysis. Table 6 shows the selected inputs for the Initialization NN model, which 
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only includes the static properties. The selected inputs (dynamic and static properties) are 

shown in tables 7 and 8. 

Table 6- Selected inputs for the Initialization NN model 

 

Table 7- Dynamic inputs for the Main NN model 
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Table 8- Static inputs for the Main NN model 

 

 

2.3.5 Training, Calibration and Verification Sets of Data 

After passing the initial data analysis and selecting the proper inputs to build the SRM, the 

next step is to train the SRM and match its performance with the reservoir simulation model. 

At this step, SRM is trained to learn the reservoir simulation behavior and the fluid flow 

process in the reservoir. The main source of information for this process is the provided 

spatio-temporal database prepared in the previous steps. 

The training process includes three different procedures: training (learning), calibration and 

validation. The database is then divided into three sets: training or learning set, calibration set 

and validation or verification set. The training set is the part of data shown to the NNs during 

the training process. The NNs are adapted to this set to match the provided outputs (reservoir 

simulation results). On the other hand, the calibration set is not used to adjust the outputs. This 

set is utilized to assure that any increase in accuracy over the training data set will lead to an 

increase in accuracy over a data set that has not been shown to the NNs before. This set of data 
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is helpful to find out when the training should be stopped. If the error trend for the training 

data set has a decreasing trend, but the same error for the calibration set has a different trend, 

the NN is over-fitting and it is time to stop the training process. Finally, the verification set is 

the part of the database used to verify the predictability of the trained NN. This data set has not 

been used to train the NNs. It is worth mentioning that the elapsed time to perform the training 

process (learning, calibration and verification) is negligible compared to the reservoir 

simulation run-time. 

The IDEA provides a data-partitioning algorithm, called Intelligent Data Partitioning, to set 

the training, calibration and verification shares of the database. Intelligent Data Partitioning 

presents a random picking out of the database. As mentioned, the spatio-temporal database 

was built based on the information from the ten simulation runs. The training, calibration and 

verification included 80%, 10% and 10% of the data in the database, respectively. It should be 

noted that the size of each partition, like many other things in the development of SRMs, is a 

function of the complexity of the problem at hand. There is no “one size fits all” but there are 

“rules of thumb” that can be followed. Besides the aforementioned verification part, another 

validation procedure was utilized in this study. The difference between these verification 

methods goes back to the type of data has been used to perform them. The details about this 

process, which is called “Blind Verification”, come in the following sections in this chapter 

(Section 2.3.7).   

2.3.6 Training the SRM 

So far, two different NNs have been initiated to develop the SRM. The database was imported 

into the software, inputs were selected to train NNs and the database was divided into three 

parts. At this step, the SRM was ready to begin the training procedure. The training algorithm 

used in this study is back propagation method. Back propagation networks always consist of at 

least one hidden layer. Krose and Smagt (1996) mentioned in their book that only one hidden 

layer is enough to approximate any function with finitely many discontinuities to arbitrary 

precision. Therefore, one hidden layer was used in this study.  

The number of neurons in the hidden layer is completely our choice and there is no rule to 

determine the best possible number. If the number is too large, it will encourage the network 

to memorize the input patterns instead of learning the prototype of reservoir simulation.  On 

the other hand, a hidden layer with a too small number of neurons will drastically increase the 

number of iterations needed to train the model. The IDEA always has a suggested number of 
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neurons, which depends on the number of inputs.  In this study, the recommended numbers of 

IDEA were used, which are 20 and 50 for the Initialization and Main models, respectively. 

Figures 22 and 23 show the NN structures for the Initialization and Main models. These 

graphs portray three different layers of NNs. The input layer includes the parameters chosen in 

the input selection part. The hidden neurons were suggested by IDEA and the output of the 

models is oil rate. Different layers were connected by weight vectors, and these weights 

changed constantly during the training to reach the desired output (reservoir simulation 

results).  

 

Figure 22- The Initialization NN model structure with 20 neurons in the hidden layer 
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Figure 23- The Main NN model structure with 50 neurons in the hidden layer 

Figure 24 is a snapshot of the training procedure. The graph shows the changes in the errors of 

the training and calibration data sets. The error is calculated by subtracting the SRM predicted 

oil production from the measured oil production of the reservoir simulator. 

 

Figure 24- A snapshot of the training procedure 
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Figures 25 to 30 show the results of the training process for the learning, calibration and 

verification sets in the Initialization and the Main NN models. The graphs are scatter plots 

comparing simulator results with the SRM predictions. 

 

Figure 25-Scatter plot of Training set results in the Initialization Model 
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Figure 26- Scatter plot of Calibration set results in the Initialization Model 

 

Figure 27- Scatter plot of Verification set results in the Initialization Model 

 

 

Figure 28- Scatter plot of Training set results in the Main Model 
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Figure 29-Scatter plot of Calibration set results in the Main Model 

 

 

Figure 30- Scatter plot of Verification set results in the Main Model 
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2.3.7 Validation the SRM by a Blind Realization 
The trained SRM was validated against a complete blind realization of the reservoir. 

Therefore, the 11th simulation run was made where the permeability realization was 

completely different from the ten runs that were used for training the SRM. This blind testing 

set is a complete realization of the reservoir, while the verification set used in the training 

process was a randomly selected portion (10%) of ten realizations. The same process of data 

extraction was applied. It is also worth mentioning that this blind realization should honor the 

range of permeability, which was used to train the SRM. Finally, the trained SRM was applied 

to predict the oil rate from the blind realization inputs. Figure 31 and Figure 32 depict the 

permeability distribution for the blind realization. The results of the blind verification run 

compared to the reservoir simulator values are in Chapter 3. 

 

 

Figure 31- 3D view of permeability map for the blind verification realization 
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Figure 32- 2D view of permeability map for the blind verification realization 

2.4 History Matching 

At this step, the SRM is trained and is ready to replicate the reservoir simulator performance. 

The history match process could be described as a procedure where we try to find a replica for 

the reservoir based on real production history. By comparing the results from the SRM and the 

real data, if the production rate that comes from SRM does not match the values from the field, 

we conclude that the reservoir characteristics may not be correctly calculated and they must be 

modified in order to get the match. 

In order to accomplish the history match, permeability values at each defined tier were 

adjusted. The oil rates predicted by the SRM were compared against the real production rates. 

This procedure was repeated until an acceptable match in each well was obtained.  

At the first step of the history match process, objective functions (OF) were defined. The 

following equations are of the most common objective functions used for the history match 

process (Computer Modelling Group Ltd., 2011). This objective function measures the relative 

difference between the SRM results and measured production data. Equation 1 calculates the 

differences for a single well. The subscripts 𝑖 and 𝑡 represent well and time respectively.  

𝑁𝑡(𝑖) is the total number of measured data points (in this study, 30 annual oil rates for each 
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well). 𝑌𝑖,𝑡𝑆  are the predicted production by SRM and 𝑌𝑖,𝑡𝑚 are measured production data. ∆𝑌𝑖𝑚 is 

the scale calculated by subtracting the maximum and minimum of measured production data 

for well 𝑖. In a real case, there is measurement error and it should be considered in the 

calculation, but we assumed there was not this kind of error in this study.  

Equation 1-Individual Well Objective Function 

 

It is common to define a global objective function in order to have calculations in the field 

level as well. Equation 2 describes the global objective function using the well level objective 

function, which was defined in Equation 1. Here 𝑂𝐹𝑔𝑙𝑜𝑏𝑎𝑙 is the global objective function, 𝑄𝑖 

is the objective function for well 𝑖, and 𝑁𝑤 is the total number of wells (24 wells in this 

study). In practice, it is also common to consider that the quality and importance of measured 

data may be different for some specific wells. 𝑤𝑖 is the defined weight for well 𝑖. In this study, 

all the wells were considered equally important and the weight coefficient is one for all of 

them. 

Equation 2-Global (Field) Objective Function 

 

Our manual history match process has two steps, which helps to save a lot of time. In the first 

step, we try to get a match just for the first year of the production by using the first NN model 

(Initialization). It starts with the initial guess for permeability at each tier for all wells. The 

initial guess can be any value within a reasonable range (for instance, the base case 

permeability values are a good start).  

Starting with the well 𝑖 (𝑖 can be any of the wells) SRM calculates the first year of the 

production. If the results are not desired it is easy and fast to tune the permeability values at 

the different tiers to acquire the reasonable match. The matching process for the first year of 

production is performed for all the wells. It should be noted that the permeability value at the 



44 
 

first tier (well block) is the most influential parameter to obtain a match. In addition, the 

permeability value at the fourth tier of the offset wells is an input for the SRM. That means 

after achieving a match for well 𝑖, the adjusted value of permeability should be used to predict 

the output of the wells that have well 𝑖 as their offset well. Therefore, after adjusting each 

permeability value, the adjusted value should be updated in the database. Figure 33 explains 

the approach used in this study to accomplish the history match process using the SRM. The 

left side of this flowchart explains the first year of production match.  

The first year of the production is matched for all the wells. Consequently, there is a set of 

permeability values at this step. This set of permeability values feeds the next step of history 

match, which obtains a match over the whole range of the production including the first year. 

The second step has two main differences compared with the first step. In this step, instead of 

a random initial guess we are using the set of permeability values coming from the previous 

step. Based on the experiences in this study, the final matched values of permeability are close 

to the values of adjusted permeability coming from the matching process for the first year of 

production. Therefore, in the second phase of the matching process the final answer is strictly 

close to the used initial guesses. In addition, this step covers the entire range of production, 

which is 30 years. After each calculation, the objective functions (well and global) are 

measured. 

 
Figure 33- A flowchart explaining the manual history match process in this study 
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By having a final set of permeability values, a permeability distribution map can be made. The 

matched and actual permeability maps are given in Chapter 3.  

Each run of the developed SRM took less than one second to perform in a personal computer 

with 2.83 GHz processor speed. On the other hand, the elapsed time to run the simulation 

model using the same computer was about one minute. To perform the history match without 

using SRM, over 900 simulation runs would be necessary. Although the number of simulation 

runs in a manual history match is not the optimum number, the optimization methods can be 

utilized to reduce the number of simulation runs. However, to train and validate the SRM only 

11 simulation runs were used. The only time consuming part of SRM development was the 

preparation of spatio-temporal database. In addition, the time spent to train the NN models 

with the aforementioned personal computer was less than two hours. In the following chapter, 

by presenting the results of SRM, the accuracy of SRM will be discussed. 
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Chapter 3 
Results and Discussion 
 

3.1 Results  
This chapter intends to present the results for one of the wells (well # 20) for different steps of 

developing and applying the SRM. The results for the rest of the wells are available in 

Appendix C. Figure 34 shows the results after the training process; the chart portrays the oil 

rate profile for 30 years of the production comparing SRM results with the simulator outputs. 

In this report, the blue squares represent the SRM and the red line with stars shows the 

simulator results. It can be seen that SRM can reproduce the simulator results with high 

accuracy.  

 

Figure 34- Training results well # 20 

Figure 35 shows the results of the blind verification realization. As was mentioned before, a 

blind realization was used for testing the SRM with a realization set which has not been seen 

by the SRM. Therefore, this graph shows the potential of SRM to predict a realization 

performance out of the training dataset. 



47 
 

 

Figure 35- Blind run results for well # 20 

Finally, Figure 36 shows a snapshot of the history match results for this well. This graph is the 

comparison of the SRM with the measured production data.  

 

Figure 36- SRM-Based History Matching Results for well# 20 

The matched permeability values are shown as a permeability distribution map in Figure 37. 

The right side of this figure pictures some shots of the matched permeability map, while the 

left side shots are the actual permeability distribution. In addition, Figure 38 shows the error 

between the actual permeability and the matched one.  
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Figure 37- comparison of matched and actual Permeability distributions 

 

Figure 38- A snapshot of error distribution of permeability 
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3.1.1 Importing the matched map into the simulator  
In this study, an SRM was developed to perform the simulator’s (CMG-IMEX) role. We were 

curious to see the results of the simulator after using the matched permeability map coming 

from the developed SRM. Figure 39 shows the field cumulative production results of the 

simulator after importing the matched permeability map from the SRM into the simulator. 

This graph compares the simulator results with the actual field cumulative production. The 

blue dashed curve represents the simulator results after using the matched permeability map, 

and the red line shows the actual performance. It is clear from the graph that there is a good 

match between the simulator and field results (the curves are overlapped).  

 

Figure 39 - Comparison of field cumulative production between actual data and the simulator performance. The 
permeability map is the matched permeability map coming from the SRM.  

Figure 40 and Figure 41 depict the oil rate profile and cumulative oil production for four 

different wells. These figures compare the actual field performance to the simulator results 

that used the matched permeability map. Similarly, the blue-dashed curve and red curve 

represent the simulator and actual values, respectively.  
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Figure 40- Comparison of oil rate production between actual data and the results coming from simulator after 
applying the matched permeability map from SRM 

 

Figure 41-Comparison of cumulative production between actual data and the results coming from simulator 
after applying the matched permeability map from SRM 
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Figure 42 shows the error distribution of the results after the history match process. Figure 43 

also shows the error frequency distribution of these results.  

 

Figure 42- Error distribution for history matched results 

 

Figure 43- Error frequency distribution for the history match results 
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3.2 Summary and Conclusion 
Reservoir simulation and modeling is utilized throughout field development in different 

capacities. Sensitivity analysis, history matching, operations optimization and uncertainty 

assessment are the conventional analyses in a full field model study. Realistic modeling of the 

complexities of a reservoir requires a large number of grid blocks. As the complexity of a 

reservoir increases, and consequently the number of grid blocks increase, so does the time 

required to accomplish the abovementioned tasks. A relatively new technology known as 

Surrogate Reservoir Model has been introduced as a tool to address many time-consuming 

operations performed with reservoir simulation models. SRMs are replicas of full field models 

that run in fractions of a second. In this study, we tried to prove that SRM is an efficient tool 

to replicate the reservoir simulator performance faster and with a reasonable accuracy in order 

to assist the history match process.  

History matching techniques are used in reservoir modeling to fine-tune reservoir properties 

such as porosity and permeability by matching the measured production data (pressure and 

production profiles at each well). The objective of this study was to prove and examine the 

utility of SRM as a tool for assisted history matching. 

In this project, an SRM was created for a synthetic but heterogeneous and under-saturated oil 

field, with 24 production wells and 30 years of production history. The aim of the project was 

to achieve a match for the production history by tuning the static data (permeability 

distribution). SRM was trained using several heterogeneity realizations and was validated by a 

blind simulation run. Finally, the full field model was substituted by the trained SRM for the 

history match process. 

Accomplishment of the objectives of this project included the following steps: 

1. Development of a reservoir model using a commercial simulator. This model included 

about 5000 grid blocks with 24 production wells with 30 years of oil production history. 

This reservoir was under-saturated. A base-case permeability distribution was provided to 

initiate the modeling process. 

2. An SRM was trained, calibrated and validated using ten geological realizations of this 

reservoir. The SRM was further validated using a complete blind realization of the 

reservoir.  
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3. The SRM was used as the replica of a reservoir simulator (CMG-BuilderTM) in an assisted 

history match process. The oil production of all 24 wells was history matched in a short 

period of time by modifying the permeability distribution throughout the reservoir. 

4. The final result of the history match was a permeability distribution that was compared 

with the original permeability distribution used as an input in the full filed model. The 

comparison is shown in Figure 37. 

As previously mentioned, this work intended to prove the potential of an SRM to assist the 

history match process. Therefore, future studies of this work certainly are our interest. 

Studying more complex reservoirs such as reservoirs with faults, multi-phase reservoirs, 

reservoirs in saturated conditions, and the reservoirs with more wells and complex operational 

constraints, etc could be considered the future work of this study. In addition, the study could 

be extended by having multiple objective functions and combining SRM with the optimization 

methods (using the SRM for stochastic models). 
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Appendix A- Wells Historical Performance 

a. Monthly bottom-hole pressure profile 

 

Figure 44- Bottom-hole pressure profile for the wells 1, 10, 11, and 12 

 

Figure 45- Bottom-hole pressure profile for the wells 5, 6, 7, and 8 
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Figure 46-Bottom-hole pressure profile for the wells 13, 14, 15, and 16 

 

Figure 47-Bottom-hole pressure profile for the wells 17, 18, 19, and 2 
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Figure 48- Bottom-hole pressure profile for the wells 20, 21, 22, and 23 

 

Figure 49- Bottom-hole pressure profile for the wells 3, 4, 24, and 25 
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b. Production historical performance 
 

 

Figure 50- Oil rate and cumulative production for the wells 1, 10, 11 and 12 

 

Figure 51- Oil rate and cumulative production for the wells 13, 14, 15 and 16 
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Figure 52- Oil rate and cumulative production for the wells 17, 18, 19 and 2 

 

Figure 53- Oil rate and cumulative production for the wells 20, 21, 22 and 23 
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Figure 54- Oil rate and cumulative production for the wells 24, 25, 3 and 4 

 

Figure 55- Oil rate and cumulative production for the wells 5, 6, 7 and 8 
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Appendix B- 10 Created permeability distributions for 
training SRM 
 

 

Figure 56- Permeability Map for different Training Realizations- Run#1 

 

Figure 57- Permeability Map for different Training Realizations- Run#2 
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Figure 58- Permeability Map for different Training Realizations- Run#3 

 

Figure 59-Permeability Map for different Training Realizations- Run#4 
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Figure 60-Permeability Map for different Training Realizations- Run#5 

 

Figure 61-Permeability Map for different Training Realizations- Run#6 
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Figure 62-Permeability Map for different Training Realizations- Run#7 

 

Figure 63-Permeability Map for different Training Realizations- Run#8 
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Figure 64-Permeability Map for different Training Realizations- Run#9 

 

Figure 65-Permeability Map for different Training Realizations- Run#10 
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Appendix C- Results 

a. SRM results for training, calibration and verification using 10 
realizations: 

a.1 – Realization # 1: 
 

 

Figure 66- Comparison of the SRM results with simulator outputs after the training process- Run # 1 
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Figure 67- Comparison of the SRM results with simulator outputs after the training process- Run # 1 
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Figure 68- Comparison of the SRM results with simulator outputs after the training process- Run # 1 

 

a.2 – Realization # 2: 

 

Figure 69- Comparison of the SRM results with simulator outputs after the training process- Run # 2 
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Figure 70- Comparison of the SRM results with simulator outputs after the training process- Run # 2 
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Figure 71- Comparison of the SRM results with simulator outputs after the training process- Run # 2 
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Figure 72- Comparison of the SRM results with simulator outputs after the training process- Run # 2 

 

a.3 – Realization # 3: 

 

Figure 73- Comparison of the SRM results with simulator outputs after the training process- Run # 3 
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Figure 74- Comparison of the SRM results with simulator outputs after the training process- Run # 3 
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Figure 75- Comparison of the SRM results with simulator outputs after the training process- Run # 3 
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a.4 – Realization # 4: 

 

Figure 76- Comparison of the SRM results with simulator outputs after the training process- Run # 4 
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Figure 77- Comparison of the SRM results with simulator outputs after the training process- Run # 4 
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Figure 78- Comparison of the SRM results with simulator outputs after the training process- Run # 4 

a.5 – Realization # 5: 
 

 

Figure 79- Comparison of the SRM results with simulator outputs after the training process- Run # 5 
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Figure 80- Comparison of the SRM results with simulator outputs after the training process- Run # 5 
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Figure 81- Comparison of the SRM results with simulator outputs after the training process- Run # 5 



85 
 

a.6 – Realization # 6: 

 

Figure 82- Comparison of the SRM results with simulator outputs after the training process- Run # 6 
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Figure 83- Comparison of the SRM results with simulator outputs after the training process- Run # 6 



87 
 

 

Figure 84- Comparison of the SRM results with simulator outputs after the training process- Run # 6 

a.7 – Realization # 7: 
 

 

Figure 85- Comparison of the SRM results with simulator outputs after the training process- Run # 7 
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Figure 86- Comparison of the SRM results with simulator outputs after the training process- Run # 7 
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Figure 87- Comparison of the SRM results with simulator outputs after the training process- Run # 7 
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a.8 – Realization # 8: 

 

Figure 88- Comparison of the SRM results with simulator outputs after the training process- Run # 8 
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Figure 89- Comparison of the SRM results with simulator outputs after the training process- Run # 8 
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Figure 90- Comparison of the SRM results with simulator outputs after the training process- Run # 8 

 

a.9 – Realization # 9: 

 
Figure 91- Comparison of the SRM results with simulator outputs after the training process- Run # 9 
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Figure 92- Comparison of the SRM results with simulator outputs after the training process- Run # 9 
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Figure 93- Comparison of the SRM results with simulator outputs after the training process- Run # 9 
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a.10 – Realization # 10: 

 

Figure 94- Comparison of the SRM results with simulator outputs after the training process- Run # 10 
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Figure 95- Comparison of the SRM results with simulator outputs after the training process- Run # 10 
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Figure 96- Comparison of the SRM results with simulator outputs after the training process- Run # 10 
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b. Validation of SRM using blind verification realization 
 

 

Figure 97- Comparison of the SRM results with simulator outputs, the blind verification run, wells 5, 17, 18 and 20 

 

Figure 98- Comparison of the SRM results with simulator outputs, the blind verification run, wells 13, 14, 16 and 25 
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Figure 99- Comparison of the SRM results with simulator outputs, the blind verification run, wells 3, 4, 7 and 12 

 

 

Figure 100- Comparison of the SRM results with simulator outputs, the blind verification run, wells 19, 21, 22 and 23 
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Figure 101- Comparison of the SRM results with simulator outputs, the blind verification run, wells 6, 8, 15 and 24 

 

 

Figure 102- Comparison of the SRM results with simulator outputs, the blind verification run, wells 1, 2, 10 and 11 
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c. History match results 
 

 

Figure 103- Comparison of the SRM results with field data, history match results; wells 1, 2, 3 and 4 

 

Figure 104- Comparison of the SRM results with field data, history match results; wells 5, 6, 12 and 13 
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Figure 105- Comparison of the SRM results with field data, history match results; wells 7, 8, 10 and 11 

 

Figure 106- Comparison of the SRM results with field data, history match results; wells 14, 16, 24 and 25 
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Figure 107- Comparison of the SRM results with field data, history match results; wells 15, 18, 19 and 20 

 

Figure 108- Comparison of the SRM results with field data, history match results; wells 17, 21, 22 and 23 
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d. Results of simulator using matched permeability distribution 
 

 

Figure 109- Comparison of oil rate production between actual data and the results coming from simulator after 
applying the matched permeability map from SRM 

 

Figure 110-Comparison of oil rate production between actual data and the results coming from simulator after 
applying the matched permeability map from SRM 
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Figure 111- Comparison of oil rate production between actual data and the results coming from simulator after 
applying the matched permeability map from SRM 

 

Figure 112- Comparison of oil rate production between actual data and the results coming from simulator after 
applying the matched permeability map from SRM 
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Figure 113- Comparison of oil rate production between actual data and the results coming from simulator after 
applying the matched permeability map from SRM 

 

Figure 114- Comparison of oil rate production between actual data and the results coming from simulator after 
applying the matched permeability map from SRM 
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Figure 115-Comparison of cumulative production between actual data and the results coming from simulator 
after applying the matched permeability map from SRM 

 

Figure 116-Comparison of cumulative production between actual data and the results coming from simulator 
after applying the matched permeability map from SRM 
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Figure 117-Comparison of cumulative production between actual data and the results coming from simulator 
after applying the matched permeability map from SRM 

 

Figure 118-Comparison of cumulative production between actual data and the results coming from simulator 
after applying the matched permeability map from SRM 



109 
 

 

Figure 119-Comparison of cumulative production between actual data and the results coming from simulator 
after applying the matched permeability map from SRM 

 

Figure 120-Comparison of cumulative production between actual data and the results coming from simulator 
after applying the matched permeability map from SRM 
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