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Abstract

Echo Phenomena in Populations of Chemical

Oscillators

Tianran Chen

The emergence of collective behavior has been observed in all levels of biological systems,
for example, the aggregation of slime mold, swarm motion of insects and the collective mo-
tion in schools of fish. Synchronization is one of the most important collective behaviors
and can play a pivotal role in maintaining the normal function of a living system, such as
pacemaker cells in the heart, circadian rhythms, and insulin release from pancreatic cells.
Synchronization typically arises as a result of the interaction of large ensembles of oscilla-
tors. Studies of the Belousov-Zhabotinsky (BZ) chemical oscillators have shown a variety
of collective dynamical behaviors, such as phase clusters, dynamical quorum sensing and
chimera states. The discovery of echo phenomena in large populations of coupled Kuramoto
oscillators motivates us to study this dynamical behavior using photosensitive BZ oscillators.

In this thesis, we examine echo behavior experimentally and mathematically. The exper-
iments are carried out with a BZ micro-oscillator system. A large system of micro-oscillators
is achieved by the design of a large oscillator array (LOA), which permits coupling of over
1000 oscillators. The dimensionless Zhabotinsky, Buchholtz, Kiyatkin and Epstein (ZBKE)
mathematical model is used to investigate the behavior. The experiment and numerical re-
sults illustrate that if a BZ system of oscillators is subject to two perturbations, separated by
time τ , then at the time τ after second perturbation, the oscillators show a measurable re-
sponse in their collective signal. Factors such as noise and size of the perturbation impacting
the magnitude of the echo are examined and a theoretical calculation of the magnitude of the
echo as a function of the size of the perturbation exhibits good agreement with simulation
results using the ZBKE model.
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Chapter 1

Collective Behavior of Oscillators

1.1 Oscillation of Pendulum

Oscillations are common phenomena that appear in daily life, such as the swinging of

a pendulum clock, the blinking of a turn signal, the beating of the heart and the circadian

rhythms of the body [4, 19, 3]. In an oscillatory system, the motion is periodic and is typ-

ically characterized by a certain frequency and amplitude. Figure 1.1 shows the oscillation

of two ideal pendulums swinging with small amplitude. The oscillation is governed by the

following equation:

d2θ
dt2

+ g
l
sinθ = 0, (1.1)

where θ is the angular displacement, l is the length of the pendulum and g is the constant

1



Figure 1.1: The osillcation of two pendulums with length l = 1.0 (blue) and l = 0.2 (green).

of gravitational acceleration. The amplitude, period and phase are the most important

properties to describe any oscillation. The amplitudes of the two oscillators, blue and green,

are 2.5◦, which represents the maximum displacement from the equilibrium position (θ =

0◦). The period is the time taken for one complete oscillation cycle. The two pendulums

oscillate with different periods due to the differing lengths of the pendulums. The longer l

pendulum leads to a larger period (blue). The phase defines the specific state of a periodic

oscillator and is important in characterizing synchronization, which will be discussed in next

section.
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1.2 Synchronization of Coupled Oscillators

Synchronization is one of the most fascinating cooperative phenomenon appearing in bi-

ological [5, 6, 32], mechanical [12, 16, 20] and chemical oscillatory systems [10, 31, 30]. A

classic example of synchronization in nature occurs in the community of Southeast Asian

fireflies [22]. Hundreds of thousands of fireflies aggregate in trees along the river bank and

flash in synchrony for hours during the night. A general mechanism behind different types

of synchronization phenomena mystified scientists for years. In 1975, the Japanese physicist

Yoshiki Kuramoto proposed a tractable mathematical model [13] to investigate synchroniza-

tion phenomena. This mathematical model came to be known as the Kuramoto model. The

typical form of the governing equations are given by [13]:

dθi
dt

= ωi +
K
N

∑N
j=1sin(θj − θi), (1.2)

where N is number of oscillators, ωi is the natural frequency of ith oscillator and K is cou-

pling strength, which determines the strength of interaction between the coupled oscillators

[2]. θ is the phase variable, which defines the specific state in given osciilatory cycle. The

phase θ can be mapped into a unit circle (radius of 1), as shown in Figure 1.2. The filled red

circle indicates the state of the oscillator at θ = 0.5. This unit circle is also called a phase

circle. The phase circle is in the complex plane, in which the complex number z associated

with an oscillator is calculated by the following equation:
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Figure 1.2: The phase of oscillator with θ = 0.5 in the unit circle

z = eiθ, (1.3)

where i =
√
−1 and e ≈ 2.718 is Euler number.

The dynamics of Kuramoto oscillators are completely determined by their phases and

this type of oscillator is therefore called a phase oscillator. A simple type of synchronization

phenomenon can be demonstrated using two coupled Kuramoto oscillators, as shown in
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Figure 1.3(a). These two coupled, non-identical oscillators start with different phases and

gradually synchronize to a common frequency due to their interaction, which is determined

by the difference between their phases. Owing to the complete overlap of the phase of the two

oscillators, this particular synchronization is known as in-phase synchronization. Another

state of synchronization is known as anti-phase synchronization. This occurs when two

coupled oscillators synchronize with a constant phase difference of π, as shown in Figure 1.4.

The anti-phase synchronization can be achieved using a negative coupling strength between

two phase oscillators.

(a) (b)

Figure 1.3: (a) In-phase synchronization of coupled Kuramoto oscillators. The blue oscillator

has θ(0) = 0.0 and ω = 0.0; the green oscillator has θ(0) = 3.2 and ω = 0.5. The coupling

constant K = 0.04. (b) Order paramter of the coupled oscillators as function of time.

To quantify the degree of synchrony, Kuramoto introduced an order parameter R, which

describes the phase-coherence of a community of oscillators. The order parameter is defined

5



by the following equation [13, 2]:

Reiψ = 1
N

∑N
j=1 e

iθj , (1.4)

where R is the order parameter, ψ is the average phase, N is the number of oscillators and

θj is the phase of jth oscillator. The order parameter R has values from 0 ≤ R ≤ 1. When

R ≈ 1, the oscillators are completely synchronized, and when R ≈ 0, the oscillators are

completely asynchronous. Partial synchronization occurs when the value of R is between

these two boundaries. Figure 1.3(b) shows a plot of the order parameter versus time for the

in-phase synchronization of two coupled Kuramoto oscillators. The order parameter starts

with a small value (R ≈ 0.1), which indicates almost no phase-coherence between these two

oscillators. R gradually approachs the value of one as the two coupled oscillators begin to

synchronize. When time ≈ 650, the phases and frequencies of the two coupled oscillators

become identical.

1.3 Collective Behaviors of Coupled Oscillators

Rich and complex collective dynamical behaviors can arise from ensembles of interacting

oscillators. The emergence of collective behavior depends on multiple factors, such as the

nature of the oscillatory system, number of oscillators and the form of coupling. One of

the most important factors is the strength of interaction, given by the coupling strength,

6



Figure 1.4: Anti-phase synchronization of coupled Kuramoto oscillators. The blue oscillator

has θ(0) = 0.0 and ω = 0.0, and the green oscillator has θ(0) = 0.1 and ω = 0.5. The coupling

strength K = -0.04.

K. In a large population of globally coupled Kuramoto oscillators, the degree of synchrony

increases with increasing coupling strength; the oscillators gradually change from randomly

distributed phase to a common frequency and phase. This type of synchronization behavior

is referred to as Kuramoto synchronization [2]. The collective signal can be described by

the order parameter. In Figure 1.5(d), the value of order parameter sigmoidally grows as

the coupling strength increases. The simulation results are performed using globally coupled

Kuramoto oscillators (N = 500). To visualize the state of each oscillator, their phases can

be plotted on the phase circle. Three different magnitudes of K, 0.05, 1.8 and 6.6, are used,

7



with the results shown in Figure 1.5(a), 1.5(b), 1.5(c). For clarity, only the first 200 of the

500 oscillators are plotted. The corresponding value of R for each coupling strength (K =

0.05, 1.8, 6.6) is indicated as a red dot in Figure 1.5(d). With a coupling constant of K

= 0.05 (weak coupling strength), the oscillators randomly distribute along the phase circle,

showing an incoherent state. When K is increased to 1.8 (medium coupling strength), the

oscillators partially synchronize, in which some of them synchronize and the rest of them

oscillate at their natural frequency. For K = 6.6 (strong coupling strength), the oscillators

completely in-phase synchronize. Figure 1.5(e) shows the natural frequency distribution of

500 oscillators. The frequencies are randomly selected from a Gaussian distribution.

In addition to complete in-phase synchronization, the populations of globally coupled

oscillators can also evolve from an incoherent state to phase clusters. This behavior can

occur during the transition before complete synchronization, in which the coupled oscillators

spontaneously form multiple synchronized groups with a constant phase difference between

the groups. Synchronized cluster phenomena have been observed theoretically with the

Kuramoto model [8, 33] and experimentally in electrochemical oscillatory [11] and chemical

oscillatory systems [24, 26].

Another type of transition, as well as the Kuramoto transition, has been observed in bio-

logical systems. It is known as a quorum sensing transition. Collective behaviors of bacteria,

such as biofilm formation, virulence and antibiotic resistance [18, 23, 7] are thought to be

regulated and coordinated by quorum sensing type transitions. The bacteria produce and re-

lease signaling molecules, called autoinducers, in which the concentration of the autoinducer

8



(a) (b) (c)

(d) (e)

Figure 1.5: Numerical simulation of the 500 coupled Kuramoto oscillators: (a) coupling

strength = 0.05; (b) coupling strength = 1.8; (c) coupling strength = 6.6; (d) order parameter

as a function of the coupling strength, with values indicated by red dots for (a), (b) and (c);

(e) natural frequency distribution of the 500 oscillators.
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molecule corresponds to the population density of the bacteria [15]. Collective behaviors of

various types will arise once the concentration of the signaling molecule reaches a certain

threshold. Quorum sensing transition phenomena also have been observed using local or

global coupled chemical oscillators [29, 28, 25]. Another peculiar collective behavior of cou-

pled oscillators consists of incongruous behaviors of groups: one coherent and synchronized,

the other incoherent and asynchronous. This phenomenon is known as the chimera state [1].

It was discovered and studied using the Kuramoto model [14, 21]. The chimera state has

been investigated experimentally using coupled chemical oscillators [27] and coupled-map

lattices [9].

Recently, E. Ott et al. [17] reported a remarkable collective behavior using a population

of weakly coupled Kuramoto oscillators, referred to as echo phenomena. This thesis provides

insight into echo phenomena using heterogeneous photosensitive Belousov-Zhabotinsky (BZ)

oscillators. The detailed reaction mechanism and mathematical model of the BZ reaction are

described in Chapter 2. In Chapter 3, echo phenomena are studied with large populations of

coupled and uncoupled oscillators. The experimental behavior is consistent with the behavior

of a mathematical model.
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Chapter 2

The Belousov-Zhabotinsky Reaction

2.1 The Belousov-Zhabotinsky Reaction

The Belousov-Zhabotinsky (BZ) oscillating chemical reaction was first discovered by the

Russian biochemist B. P. Belousov [1] in 1950 and then further investigated by A. M.

Zhabotinsky [26]. The BZ reaction has been extensively studied in the past due to its

dynamical similarity to many biological systems [13, 8, 12, 9]. The reaction is driven by a

large negative Gibbs energy, with the overall reaction given by [21]:

3 MA(aq) + 2 BrO3
−(aq) + 2 H+(aq) −−→ 2 BrMA(aq) + 4 H2O(l) + 3 CO2(g). (2.1)

In general, an organic substrate, such as malonic acid (MA), is oxidized by bromate, BrO3
– ,

in the presence of acid. The concentration of three intermediate species, HBrO2, Br– and
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the catalyst, undergo periodic changes and give rise to the observed oscillatory behavior.

A detailed mechanism and mathematical model of the reaction will be described in the

following section.

2.2 The FKN Mechanism of the BZ Reaction

In 1972, R. J. Field, E. Körös and R. M. Noyes [2] proposed the FKN mechanism for the

BZ reaction, which consists of three main processes. In process A, bromate is reduced to

bromine, resulting in the removal of bromide. In process B, the catalyst is oxidized via the

autocatalysis of bromous acid. In process C, the catalyst oxidizes the brominated organic

species to regenerate the bromide.

Process A:

5 Br− + BrO3
− + 6 H+ −−→ 3 Br2 + 3 H2O, (2.2)

Process B:

BrO3
− + HBrO2 + 2 Mred + 3 H+ −−→ 2 HBrO2 + 2 Mox + H2O, (2.3)

Process C:

MA + 2 Mox + BrMA −−→ fBr− + 2 Mred + other products, (2.4)
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where the Mox and Mred represent the oxidized and reduced state of metal catalyst, respec-

tively. f is a stoichiometric factor that describes the number of bromide ions produced for

every two metal catalyst ions reduced. In process A, the inhibitor, Br– , is removed by re-

acting with BrO3
– . Process B will initiate as the concentration of Br– falls below a critical

concentration. In this process, the activator species, HBrO2, is produced autocatalytically,

driving the oxidization of the metal catalyst. The rate of the autocatalysis step accelerates

as the concentration of HBrO2 increases, which causes the rapid oxidization of the metal cat-

alyst ion. Once the oxidized catalyst concentration is high enough, the inhibitor is reformed

via oxidization of bromomalonic acid in process C. This reinitiates process A, and the cycle

then repeats itself.

2.3 ZBKE Model

In 1993, Zhabotinsky, Buchholtz, Kiyatkin and Epstein (ZBKE) [27] developed a math-

ematical model of the BZ reaction, which included the intermediate species HBrO2
+. The

reaction scheme is written in Table 2.1. The Mred represents the reduced form of the catalyst,

and Mox represents the oxidized form of the catalyst.

In this mechanism, the reactions of RA-1 and RA-2 are rapid, so all other reactions of

HOBr and Br2 can be neglected. Moreover, CBr2(COOH)2, CHOH(COOH)2 and CO(COOH)2

are considered as final products and the equilibrium of reaction R5c is completely shifted to
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Table 2.1: ZBKE model reaction scheme

H+ + Br– + HOBr −−→←−− Br2 + H2O (R1)

H+ + Br– + HBrO2
−−→←−− 2 HOBr (R2)

H+ + Br– + HBrO3
−−→←−− HBrO2 + HOBr (R3)

2 HBrO2
−−→←−− HOBr + HBrO3 (R4a)

H+ + HBrO2
−−→←−− H2BrO2

+ (R4b)

HBrO2 + H2BrO2
+ −−→←−− HOBr + HBrO3 + H+ (R4c)

H+ + BrO3
– −−→←−− HBrO3 (R5a)

H+ + HBrO3 + HBrO2
−−→←−− HBrO2

+ + BrO2
• + H2O (R5b)

H+ + BrO2
• −−→←−− HBrO2

+ (R5c)

Mred + HBrO2
+ −−→←−− Mox + HBrO2 (R6)

Mox + CHBr(COOH)2 −−→←−− Mred + CBr(COOH)2
• + H+ (R7)

H2O + CBr(COOH)2
• −−→ COH(COOH)2

• + H+ + Br– (R8)

H2O + CHBr(COOH)2 −−→ H+ + Br– + CHOH(COOH)2 (R9)

2 COH(COOH)2
• −−→ CHOH(COOH)2 + CO(COOH)2 (R10)

COH(COOH)2
• + CBr(COOH)2

• −−→ CHBr(COOH)2 + CO(COOH)2 (R11)

HOBr + CHBr(COOH)2 −−→ CBr2(COOH)2 + H2O (RA-1)

Br2 + CHBr(COOH)2 −−→ H+ + Br– + CBr2(COOH)2 (RA-2)
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the right [27]. Based on these assumptions, a simplified mathematical model can be written

as

dX

dt
= −k2h0XY + k3h0XY − 2k∗4X

2 − k5h0AX +K−5U
2 +K6U(C − Z)−K−6XZ, (2.5)

dY

dt
= −k2h0XY − k3h0AY + k′8R1 + k9B, (2.6)

dU

dt
= 2k5h0AX − 2k−5U

2 −K6U(C − Z) + k−6XZ, (2.7)

dZ

dt
= k6U(C − Z)− k−6XY − k7BZ + k−7h0R1(C − Z), (2.8)

dR1

dt
= k7BZ − k−7h0R1(C − Z)− k′8R1 − k11R1R2, (2.9)

dR2

dt
= k′8R1 − 2k10R

2
2 − k11R1R2, (2.10)

where the following definitions are used: X = [HBrO2], Y = [Br−], Z = [Mox], U = [HBrO+
2 ],

R1 = [CBr(COOH)2
•], R2 = [COH(COOH)•2], A = [HBrO3] = h0[NaBrO3]0/(0.2+h0), B =

[CHBr(COOH)2], C = Z+[Mred], h0 = Hammet acidity function, k∗4 = k4(1+0.87h0), and k−5

= (k−5bk−5c)/(k5ch0). Further simplification can be made by applying the quasi-steady-state
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approximation to R2 and assuming that radical reactions R10 and R11 are very fast. Then

the rate equation of R1 is simplified to:

dR1

dt
= k7BZ − k−7h0R1(C − Z)− k′8R1

q(R1)
, (2.11)

where

1

q(R1)
= 1− k211R1

4k′8k10
(1− (1 +

8k′8k
′
10

k211R1

)1/2). (2.12)

The parameter q(R1) can be varied from 0.5 to 1.0. If R10 reacts much faster than R11,

then q(R1)=1, and if R10 reacts much slower than R11, then q(R1)=0.5 [27]. If the interme-

diate species HBrO2
+ is assumed to be at a steady state (Uss), then the above differential

equations are simplified to the following three-variable mathematical model [22]:

dX

dt
= −k2h0XY + k3h0XY − 2k∗4X

2− k5h0AX + k−5U
2
s s+ k6Uss(C −Z)− k−6XZ, (2.13)

dY

dt
= −k2h0XY − k3h0AY + q

k7k8BZ

k−7h0(C − Z) + k8
+ k9B, (2.14)

dZ

dt
= k6Uss(C − Z)− k−6XZ −

k7k8BZ

k−7h0(C − Z) + k8
, (2.15)

Uss =
1

4k−5
(k6(C − Z) + (k26(C − Z)2 + 16k−5k5h0AX + 8k−5k−6XZ)1/2). (2.16)
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This system of equations can be non-dimensionalization using the appropriate scalings shown

in Table 2.2. The system of differential equations is then given by [22]:

dx

dτ
=

1

ε1
(−x2 − x+ ε2γu

2
ss + uss(1− z)− δxz + µy − xy), (2.17)

dy

dτ
=

1

ε4
(−xy − µy + q

αz

ε3 + 1− z
+ β), (2.18)

dz

dτ
= uss(1− z)− δxz − αz

ε3 + 1− z
, (2.19)

where the dimensionless variables x, y and z represent bromous acid, bromide and the ox-

idized form of the metal catalyst, respectively. uss is the steady state concentration of

HBrO2
+.

2.4 The Photosensitive BZ Reaction and Modified

ZBKE Model

In 1983, the effects of illumination on the ruthenium-complex catalyzed BZ reaction were

investigated by V. Gáspár et al. [3]. They observed that the period and amplitude of the

oscillation in the ruthenium-complex catalyzed system are altered by visible light. The illu-

mination effects on the ruthenium-catalyzed BZ reaction are sensitive to the recipe [5, 25]
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Table 2.2: Scalings for the three variable ZBKE model

Variable Scaling
X k5h0Ax/2k4
Y k5Ay/k2
Z Cz
U (k5h0A)2µ/2k4k6C
t 2k4Cτ/(k5h0Ax)2

Parameter Scaling
ε1 h0Ax/2k4C
ε2 (k5h0A)2/2k4k6C
ε3 k8/k−7h0C
ε4 k5A/k2C
α 2k4k7k8B/k

2
5k−7h

3
0A

2

β 2k4k9B/(k5h0A)2

µ 2k3k4/k2k5h0
γ k−5/k6
δ k−6C/k5h0A

and light intensity [11, 16, 15]. S. Kádár et al. [6] studied the reaction mechanism of the

light sensitive Ru(bpy)2+3 BZ reaction and showed that the photosensitivity involves two

different photochemical processes [6]: photoexcitation and photoinhibition. Illumination at

wavelength 460 nm excites the Ru(bpy)2+3 to produce the strong reducing agent Ru(bpy)2+*3 ,

which is able to reduce BrO–
3 and BrMA to produce HBrO2 and Br– , respectively. The

former reaction pathway, photoexcitation, is given by the following [7, 4]:

Ru(bpy)2+∗3 + Ru(bpy)2+3 + BrO−3 + 3 H+ −−→ 2 Ru(bpy)3+3 + HBrO2 + H2O. (2.20)

The BrO–
3 is reduced to HBrO2 via formation of Ru(bpy)3+3 . The increased concentration of
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HBrO2 initiates the autocatalytic step, which gives rise to a phase advance of the oscillators.

The photoinhibition reaction is written as follows [6]:

Ru(bpy)2+∗3 + BrMA −−→ Ru(bpy)3+3 + Br− + organic products. (2.21)

In this process, the inhibitor, Br– , is produced. The addition of bromide affects process A in

the FKN mechanism and can suppress the oscillations. This is because it takes a longer time

to consume the higher bromide to the critical concentration, which leads to a longer period

of the oscillation. The reaction favors either the photoinhibition or photoexcitation channel

depending on the light intensity and composition of the system. The photoexcitatory sys-

tem is utilized in the current work. The ZBKE model, which was described in the previous

section, can be modified to account for the photosensitive reactions. V. K. Vanag et al. [24]

introduced a φ term into the ZBKE model to represent the photochemical reactions. The

three-variable, dimensionless photosensitive ZBKE mathematical model is given as follows:

dx

dτ
=

1

ε1
(φ− x2 − x+ ε2γu

2
ss + uss(1− z)− δxz + µy − xy), (2.22)

dy

dτ
=

1

ε4
(−xy − µy + q

αz

ε3 + 1− z
+ β), (2.23)

dz

dτ
= φ+ uss(1− z)− δxz − αz

ε3 + 1− z
. (2.24)
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2.5 Experimental Setup

Figure 2.1(a) shows the main components of the experimental setup, including the re-

actor where the BZ reaction takes place, the spatial light modulator (SLM) to control the

illumination and the charge-coupled device (CCD) camera to monitor the dynamics of the

reaction. A catalyst-free BZ solution in a volumetric flask is placed in an ice bath and is

continuously pumped into the reactor at a flow rate of 1.5 ml/min. The water bath main-

tains the temperature of the fresh solution at 21 ◦C and the solution is then pumped into the

reactor, which is well mixed by the stirrer. The solution is also pumped out at the same flow

rate to keep a constant depth of solution. The preparation of the BZ solution is discussed

in the following section.

2.5.1 Preparation of BZ Solution and Catalyst-Loaded Beads

The catalyst-free BZ solution is prepared by mixing the appropriate amount of malonic

acid (MA), sodium bromide (NaBr), sulfuric acid (H2SO4) and sodium bromate (NaBrO3)

so that the system is a photoexcitatory BZ solution. In the present work, the catalyst-free

BZ solution consists of 0.08 M malonic acid, 0.02 M sodium bromide, 0.9 M sulfuric acid and

0.48 M sodium bromate. The catalyst-loaded beads are prepared by mixing 3.0 grams of
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ion exchange resin (DOWEX 50WZ2-100) with 1.0 ml tris(bipyridine)ruthenium(II) chloride

solution (25.0 mM). The mixture is stirred for 24 hours and is filtered using filter paper until

the beads are completely dry. The dry beads are stored in a glass vial, keeping them away

from light.

2.5.2 Preparation of Large Oscillator Array

In order to investigate collective behavior of a large number of oscillators, we designed a

new reactor that can hold up to 2000 oscillators in one reaction container. This large oscil-

lator array (LOA) is prepared by positioning the beads (diameter around 250 µm) onto an

acrylic plate drilled with micrometer conical holes (slightly larger than the bead diameter).

The distance between each hole is larger than two diameters of the bead to prevent local

diffusive coupling. The beads are then transferred to a Teflon substrate which is covered

by polydimethylsiloxane (PMDS). The PMDS is prepared by thoroughly mixing 10:1 weight

ratio of dimethylsiloxane gel with the curing agent (SYLGARD184) and left at room tem-

perature for 24 hours. The LOA is placed into the reactor vessel, which is located directly

below the camera at a distance of 30 cm. The Figure 2.1(b) shows a typical example of the

LOA recorded by the CCD camera.
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(a)

(b)

Figure 2.1: (a) Experimental setup: charge-coupled device (CCD) camera records the dy-

namics of each individual oscillator. The image is processed by the computer and the feed-

back illumination is applied to the oscillators via a spatial light modulator (SLM). (b) The

large oscillator array (LOA) is recorded by the CCD camera.
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2.5.3 Experimental Process

The coupling method used in this experiment is light-based feedback [20, 23, 19]. The

experiment is conducted using a duty cycle of 3.4 s and is controlled by Matlab. The reaction

image is taken by a CCD camera every cycle under background light with intensity of 0.5

m W cm−2. The changes of transmitted light intensity of individual oscillators are recorded

over time. In the catalyst-free BZ solution, the ruthenium micro-beads periodically change

color between green (Ru(bpy)3+3 ) and orange (Ru(bpy)2+3 ), giving rise to different transmitted

light intensities. In order to simplify the image analysis, the RGB image is converted to B &

W. The measured intensity is then used to calculate the feedback illumination by a specific

algorithm depending on the experiment. The specific feedback calculations are discussed

in Chapter 3. The SLM is used to illuminate each individual oscillator. The illumination

intensity range is between 0.04 mW cm−2 and 2.11 mW cm−2. A typical time series of an

oscillator under the background illumination is shown in Figure 2.2.

2.6 Phase Response Curve

The response of an oscillator to an external perturbation can be described using a phase

response curve (PRC). The external perturbation can take various forms, including light,

chemical and temperature stimuli. A PRC illustrates the phase change of an oscillator fol-

lowing a perturbation at a given phase. The PRC provides useful information to analyze the

dynamics of oscillators and is widely applied in circadian rhythms [17, 10] and neuroscience
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Figure 2.2: Time series showing transmitted light intensity

[18, 14]. Our PRC experiment is conducted with the setup described in Section 2.5, and the

external perturbation is high-intensity light. The period of unperturbed oscillator is T0 and

the phase, φ(t), at the perturbation is measured between 0 and 2π using following equation:

φ(t) = 2π(T − Tpeak)/T0, (2.25)

where φ is the phase of the oscillator, T is the time of perturbation and Tpeak is the time of the

most recent peak. The transient change of the phase of an oscillator following a perturbation

is quantified by comparing the period difference between perturbed and unperturbed cycles.
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The magnitude of the phase changes ∆φ is given by the equation:

∆φ = 2π(T0 − T1)/T0, (2.26)

where the T1 is the period of the cycle with the perturbation. If ∆φ < 0, the cycle becomes

longer after a perturbation and is called a phase retardation. If ∆φ > 0, the oscillator has a

phase advance. The phase has no shift when ∆φ = 0.

2.6.1 PRC Experimental Procedure and Results

The PRC experiment is performed using the large oscillator array BZ reaction. The

background light is initially applied and the beads oscillate at their natural periods. At an

arbitrary time, high-intensity light is switched on for 3.0 s and then switched back to the

background light intensity. The large number of oscillators have random initial phases, and

the phases prior to the perturbation of the oscillators are randomly distributed between 0

to 2π. Therefore, a single perturbation is sufficient to construct the PRC. Experimental

PRCs based on small and large light perturbations are shown in Figure 2.3(a). The high-

intensity perturbation gives rise to a larger phase advanced region, also called the phase

resetting region. This is the region of the phase where oscillators are phase reset to 2π. The

ZBKE photosensitive modeling results show similar featured PRCs, Figure 2.3(b). In the

simulation, a small region of phase retardation (negative response) is observed. This phase
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retardation is not apparent in the experimental PRCs due to experimetnal noise.

The mechanism of the light perturbation on the photosensitive BZ reaction is described

in Section 2.4. The HBrO2 and Br– have a pivotal influence on the phase advance and delay.

The oscillators undergo phase advance or delay depending on the stimulus time with respect

to previous peaks. In the phase advancing region, the dominant process is the HBrO2

generated along with Ru(bpy)3+3 by the light perturbation. This gives rise to a positive

phase response. Phase delay, the negative response, is due to the production of the inhibitor

Br– . The photochemically generated Br– takes a longer time to be consumed than in the

unperturbed system, leading to a lengthening of the period of the oscillation.

In conclusion, in the photoexcitatory system, the response of oscillators to light pertur-

bations depends on the phase of the oscillators and the magnitude of the perturbation. The

experimental and modeling PRCs characterize the oscillators’ response to a pulse perturba-

tion, in which the phase resetting region is observed. The photoexcitatory BZ system is used

to investigate the echo phenomena, as discussed in the next chapter.

31



(a)

(b)

Figure 2.3: Experiment and simulation of PRCs under different sizes of simulus. (a) Exper-

iments: (i) perturbation of high light intensity, φ = 2.10 mW cm−2, blue; (ii) perturbation of

low light intensity, φ = 1.05 mW cm−2, red. (b) Simulations: (i) high intensity perturbation,

φ = 0.147, blue; (ii) low intensity perturbation, φ = 0.0218, red.
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Chapter 3

Echo Phenomena in Populations of

Chemical Oscillators

3.1 Introduction

The emergence of collective dynamical behaviors in biological systems has attracted con-

siderable attention [15, 2, 4, 5, 3]. The BZ chemical reaction has been used as an idealized

model to study a number of such biological behaviors [8, 19, 9, 21, 1]. In the past decade,

studies of populations of coupled BZ chemical oscillators have showed a variety of complex

collective behaviors, such as synchronization [8, 20], phase clusters [17, 16] and the chimera

state [18, 13]. A recent report demonstrated that large populations of Kuramoto oscillators

can exhibit echo behavior [14]. Echo behavior has previously been reported in a number of

fields in physics, including nuclear magnetic resonance studies, cyclotron and plasma waves
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[7, 6, 11]. The recent discovery by E. Ott et al. [14] is of particular importance since it is

the first demonstration of echo behavior in a biologically relevant system. In their report, a

set of coupled phase oscillators was perturbed twice, at t = 0, and at an arbitrary time t = τ

later, with the oscillators rapidly phase dispersing following each perturbation. Then, at

t = 2τ , a measurable response is seen in the collective signal of the oscillators. The macro-

scopic response is quantified using a global order parameter [10]. In this work, we explore the

echo phenomenon using a community of photosensitive heterogeneous BZ oscillators. This

chapter includes details of the experiment and simulation results on echo phenomena. These

are the first experimental studies of echo phenomena using a chemical oscillator system.

3.2 Experiment

3.2.1 Experimental Measurements

The large oscillator array (LOA) system is used to investigate the phenomenon, which

permits coupling of over 1000 oscillators. The experimental setup and duty cycle are de-

scribed in Section 2.5 of Chapter 2. Two coupling conditions have been investigated with this

system: uncoupled and globally coupled. In the latter, the oscillators are photochemically

coupled by light perturbations governed by the feedback equation as follows:

φi = φb + k
N

∑N
j=1(zj − zi), (3.1)

38



where φi is the feedback light intensity to the ith oscillator within the range of 0 − 255 in

grayscale units. φb is the background intensity, which is selected to be 140 in grayscale. k is

the coupling strength, N is the number of oscillators and the gray level is a measurement of

the transmitted light intensity and is proportional to the catalyst Ru(bpy)3+3 concentration.

The order parameter R is used to measure the phase coherence of the population of oscillators

( Section 1.2 of Chapter 1 ). The order parameter varies as 0 ≤ R ≤ 1, where R = 1 indicates

that the oscillators are completely synchronized and R = 0 indicates that the oscillators are

completely asynchronous. When the oscillators are partial synchronized, R has a value in

the middle range.

3.2.2 Experimental Results

The experiments are carried out using the excitatory photosensitive BZ reaction oscilla-

tor in an LOA subject to two high-intensity light pulses separated by a time interval τ . The

global Kuramoto order parameter as a function of time from a typical experiment without

global coupling is shown in Figure 3.1(a). After each light perturbation, the order parameter

value suddenly increases and then exponentially decays with increasing time. The increase

in the order parameter is due to the phase alignment of a portion of oscillators. These oscil-

lators simultaneously fire since they are in the phase resetting region of their phase response

curve (PRC). The value of R decays with time due to the oscillator frequency heterogeneity.

The echo response forms spontaneously at time τ following the second perturbation. Echo
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Figure 3.1: Experimental measurements illustrating echo behavior in populations of

Belousov-Zhabotinsky (BZ) oscillators. The order parameter R is calculated from the phases

of the oscillators and plotted as a function of time. The phases of the oscillators are deter-

mined using linear interpolation between consecutive peak times. An echo is exhibited in

the magnitude of the order parameter R at time tp+2τ for a system perturbed at times tp

and tp+τ . (a) Uncoupled system, k = 0, with tp = 376 s, τ = 378 s and N = 1295. (b)

Coupled system, k = 0.25, with tp = 373 s, τ = 336 s and N = 1001. Average natural period

and standard deviation in (a) T0 = 36.5 ± 3.2 s, (b) T0 = 42.6 ± 8.2 s.

behavior in an experiment with weak coupling is shown in Figure 3.1(b). The phase disper-

sion of the coupled oscillators is now slower following each perturbation. An echo is again

observed at time τ following the second perturbation.

To gain insight into this spontaneous response, the phase of each oscillator as a function

of its frequency has been plotted in a time sequence in Figure 3.2. Figure 3.2(a) shows the
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time just before the first stimulus, in which the oscillators are randomly distributed in phase.

Just after the first stimulus, the phase of the oscillators within the phase resetting region

have phase advanced to accumulate near zero, as shown in Figure 3.2(b). At time τ/2, the

phases of oscillators form three bands, as shown in Figure 3.2(c). With increasing time, the

number of bands and their steepness increase, while their thickness decreases, as shown in

Figure 3.2(d). Figure 3.2(e) shows a portion of the oscillators are phase reset at the second

perturbation. The phase distribution at 2τ , the time of echo, is plotted in Figure 3.2(f). The

banding structure is clearly visible at time of echo. To further investigate these patterns,

the ZBKE simulation is performed.

3.3 Simulation

3.3.1 ZBKE model

A nondimensional, three-variable photosensitive ZBKE model is used to simulate the

experiment [22]. The dimensionless equations are modified to
dxi
dτ

= φi + Φ + fx(xi, yi, zi),

dyi
dτ

= fy(xi, yi, zi, qi) and
dzi
dτ

= φi + Φ + fz(xi, zi). The terms xi, yi, zi and qi are HBrO2,

Br– , Ru(bpy)3+3 and stoichiometric coefficient of the ith oscillators respectively. fx, fy and fz

are rate equations of non-photosensitive ZBKE model. The term Φ is incorporated into the

variables x and z to describe the light perturbation, as discussed in Section 2.4 of Chapter
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Figure 3.2: Plots of phase as a function of frequency of oscillators from the experiment

shown in Figure 3.1(a) at the following times: (a) Immediately prior to first perturbation at

tp, (b) immediately following the first perturbation, in which the oscillators in the resetting

region of their phase are phase reset to 0, (c) half-way between the two perturbations,

tp+τ/2, (d) immediately prior to the second perturbation, (e) immediately following the

second perturbation, in which oscillators in the resetting region of their phase are phase

reset to 0 and (f) at the time of the echo.
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2. The global coupling term, φi, is realized by the equation:

φi =
k

N

N∑
j=1

(zj − zi) (3.2)

where k is the strength of coupling, N is number of oscillators and variable zi and zj represents

the term of Ru(bpy)3+3 of the ith and the jth oscillators. The simulations are carried out with

and without global coupling for comparison with experiment. The three coupled differential

equations are numerically integrated using Euler’s method, in which the step size is 0.0005.

Hetergenity is incorporated into the model using the stoichiometric coefficient qi. The initial

phase of each oscillator is set to be randomly distributed, and their natural periods are

normally distributed. Simulations are carried out using up to 100,000 oscillators, with a

typical period distribution of 42.5 ± 2.4.

3.3.2 Simulation Results

Figure 3.3(a) shows the order parameter R as a function of time from simulations of an

uncoupled system, with k = 0. The system is perturbed by increasing the light intensity

at tp = 500 and then at time τ = 650 later. Each perturbation is followed by rapid phase

dispersion, with a corresponding decrease in the global order parameter. An increase in the

order parameter is exhibited at time tp + 2τ , the echo, and a smaller second echo can be

seen at time tp + 3τ (not shown in Figure 3.3(a)). The second echo, which was predicted

theoretically [14], is not typically visible in the experimental system owing to experimental

noise, although we have observed it on occasion. The value of τ used in the simulation is

43



500 1000 1500 2000
0

0.5

1

25000 50000 100000
0

0.5

1

time

0 1
0

.1

.2

R

or
de

r 
pa

ra
m

et
er

, R

(a)

(b)

D ( /10−4 )

Figure 3.3: Simulations of the modified ZBKE model illustrating echo behavior in popula-

tions of uncoupled photosensitive BZ oscillators. The order parameter R is calculated from

the phases of the oscillators and plotted as a function of time. An echo is exhibited in the

magnitude of R at time tp + 2τ for a system perturbed at times tp and tp+τ . (a) System

with k = 0, tp = 500, τ = 800, and N = 5000. Inset, magnitude of the echo as a function of

the noise intensity D. (b) System with k = 0, tp = 5000, τ= 40000, and N = 5000. Average

natural period T0 = 42.5 ± 2.4 (dimensionless time units).

approximately 15 times the mean period of the oscillators. Figure 3.3(b) shows that the echo

phenomenon also occurs in a simulation with a much larger value of τ , equal to approximately

1000 periods.

Figure 3.4(a) reveals that, as in the experimental system, the introduction of coupling
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Figure 3.4: (a) Numerical simulation of a coupled system with k = 3.35 × 10−4, τ = 650,

and N = 5000. Note the slower phase dispersion following each perturbation and the slightly

larger magnitude of the echo. (b) Simulated maximum value of the order parameter at the

time of the echo as a function of coupling strength.

leads to slower phase dispersion of the oscillators following each perturbation. The impact

of coupling strength on the maximum magnitude of the order parameter in the vicinity of

the echo is shown in Figure 3.4(b). The magnitude of the echo is an increasing function of

k. However, at larger values of k, the phase dispersion is sufficiently slow that the oscillators

have not fully dispersed at the time of the echo, which interferes with the observation of the

echo phenomenon.

45



Any experimental system has inherent noise, including our system of photosensitive BZ

oscillators. The impact of such noise on the echo behavior can be explored in the numerical

system by introducing additive independent Gaussian white noise to the simulation, with

noise intensity D [12]. The inset in Figure 3.3(a) shows the impact increasing noise intensity,

with the size of the each peak reducing with increasing noise intensity. At a larger magnitude

of noise, the echo phenomenon is no longer observed.

Another factor impacting the magnitude of the echo is the size of the perturbation.

The dependence on the magnitude of the perturbation is shown in Figure 3.5(a). The x-

axis of this figure is defined by measuring the size of the associated phase resetting region

of the phase response curve (PRC) of the oscillators for a given size perturbation. The

PRC has been discussed in Section 2.6 of Chapter 2. The y-axis is determined using a

perturbation of the corresponding magnitude in the echo simulation and measuring the

maximum value of the order parameter in the vicinity of the echo. Figure 3.5(b) shows two

PRCs constructed from simulations using large and small stimuli, with the size of the phase

resetting region, X, indicated in both graphs. Since the size of the phase resetting region is

a monotonically increasing function of the stimulus size, as shown in Figure 3.5(a), we are

effectively illustrating the size of the echo as a function of the perturbation size. This plot

shows the maximum echo response for a value of X = 0.6.

As a comparison to the experimental results, the phase of each oscillator as a function of

its frequency at various times during simulation is plotted in Figure 3.6. Prior to the first

perturbation, the oscillators (plotted as blue dots) are distributed randomly in phase, Figure
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Figure 3.5: Magnitude of the simulated order parameter R at the time of the echo as a

function of the size of the phase resetting region, X, which increases monotonically with the

size of the perturbation. ZBKE simulation values (dark blue line), values calculated using

groups I and II (light blue line), values calculated using groups I - IV (red dashed line).

(b) Simulated phase response curves for stimulus Φperturb = 0.147 (blue line) and Φperturb =

0.0218 (red line). The size of the associated phase resetting regions is shown by the red and

blue horizontal arrows, respectively. Simulation parameters as in Figure 3.3.

3.6(a). Immediately following the first perturbation, the oscillators that were in the resetting

region of their phase are phase reset to zero, Figure 3.6(b), where the reset oscillators are

plotted as red dots overlying the unreset oscillators plotted as blue dots. The oscillators then

advance in phase until all of the phases of the oscillators that were perturbed, as well as the

phases of the oscillators that were not perturbed, are distributed along a series of bands.

The steepness and number of the bands increase with time, while their thickness decreases.
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This can be seen in Figure 3.6(c) (which occurs halfway between the two perturbations)

compared to Figure 3.6(d) (which occurs immediately prior to the second perturbation). At

the time of the second perturbation, tp + τ , any oscillator lying in the resetting region is

phase reset to zero, as shown Figure 3.6(e), where the red (blue) oscillators of Figure 3.6(d)

that are reset are plotted in Figure 3.6(e) with their color changed from red (blue) to green

(black). At the time of the echo, tp + 2τ , the oscillators are distributed along either a thin

set of bands or a set of short steeper band segments that appear to branch off of the primary

bands, Figure 3.6(f). Note that the four colors appearing in Figure 3.6(e),(f) correspond to

four distinct groups of oscillators: group I (green) contains those oscillators that are reset

by both perturbations; group II (red) contains those oscillators that are reset by the first

but not the second perturbation; group III (black) contains those oscillators that are reset

by the second but not the first perturbation; and group IV (blue) contains those oscillators

that are not phase reset by either perturbation.

Examination of the Figure 3.6(f), there are clearly detailed structures, with the oscillators

distributed along either a thin set of bands or a set of short steeper band segments that

appear to branch off of the primary bands. Figure 3.6(f) reveals that there are structure and

information within the phase distribution of the oscillators at the time of the echo; however,

how this arises and why it leads to an increase in the order parameter at time tp + 2τ is not

immediately apparent.

To further our understanding, we focus on the numerical simulation and the division of

the oscillator populations into four groups, as previously discussed. By tracking the behaviors
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Figure 3.6: Plots of phase as a function of frequency of oscillators in the ZBKE simulation

shown in Fig. 2(a) at the following times: (a) Immediately prior to first perturbation at tp,

(b) immediately following the first perturbation, in which oscillators in the resetting region

of their phase are phase reset to 0, (c) half-way between the two perturbations, tp + τ/2,

(d) immediately prior to the second perturbation, (e) immediately following the second

perturbation, in which oscillators in the phase range X through (1−X) are phase reset to

0, and (f) at the time of the echo when a series of narrow bands, each with a single branch

segment is observed. Parameters: τ = 650; other parameters as in Figure 3.3.
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of groups I and II, we find that much of the underlying structure of the echo phenomenon

can be understood, as groups III and IV have a smaller influence on the order parameter.

Due to the form of Figure 3.5(a), we can approximate X as the fraction of the oscillators that

are phase reset by a perturbation, assuming that the oscillators are uniformly distributed

through the phase at the time of a perturbation. The numbers of oscillators in groups I

and II are then estimated to be NX2 and NX(1−X), respectively, in which N is the total

number of oscillators.

Figure 3.7 shows phase as a function of the frequency of the oscillators belonging to group

I and group II at various times during a simulation. Just prior to the first perturbation, the

oscillators of both of these groups are, by definition, found between phases (1 −X) and 1,

Figures 3.7a(i), b(i). Owing to the random initial conditions used in the simulation, there is

no dependence of phase on frequency. Both sets of oscillators are phase reset to zero by the

first perturbation. Oscillators with a higher frequency advance faster, and their phases form

a set of points initially lying along a line, the steepness of which increases with time. At any

arbitrary time between perturbations, the phases of the oscillators lie along a series of offset

line segments due to the wrapping of the phases (from 0 to 1). At the time of the second

perturbation, the group II oscillators, by definition, are not phase reset, and the oscillators

form line segments parallel to each other, Figure 3.7b(ii). In contrast, the line segments

associated with group I oscillators align in the resetting region of the phase and are phase

reset to 0 by the second perturbation, Figure 3.7a(ii).

At the time of the echo, group I oscillators have exactly the same phase as immediately
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Figure 3.7: Phase as a function of the frequency of oscillators from ZBKE simulation for (a)

group I oscillators and (b) group II oscillators at various times: (i) Immediately prior to the

first perturbation, (ii) immediately following the second perturbation, and (iii) at the time

of the echo. All parameters as in Figure 3.3.

prior to the second perturbation, with the oscillators arranged along a series of line segments

mutually aligned in the phase resetting region, Figure 3.7a(iii). Group II oscillators, which

were not phase reset at the second perturbation, are now aligned along a series of line

segments that are twice as steep and twice as long as they were at the time of second

perturbation, Figure 3.7b(iii). In Figure 3.7, there are gaps in the observed frequencies of

both groups, with the missing frequencies in group I plots corresponding to the frequencies

present in group II plots and vice-versa. This occurs because the definition of each group

places separate restrictions on the allowed frequencies of its member oscillators. Because the
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phases of group II oscillators must lie between 0 to (1−X) at time tp+τ and align at zero at

time tp, the allowed frequencies of the oscillators are given by n/τ+ α/τ , with α restricted

to the range 0 < α < (1−X), where n can be any integer value. The separate line segments

in Figure 3.7b(ii) correspond to increasing values of n, with the oscillators arranged along

the central line segment having the range of frequencies corresponding to n = 15. This is

in agreement with the fact that the value of τ for this simulation is approximately 15 times

the value of the mean period of the oscillators. Group I oscillators have frequencies n/τ +

α/τ , with α restricted to the range (1−X) < α < 1. This ensures that they lie within the

resetting region at the time of the second perturbation.

The value of the order parameter at the time of the echo can now be estimated based

upon the phase distributions of group I and group II oscillators. As illustrated in Figure

3.8, group I oscillators are found between (1−X) and 1, while group II oscillators are found

between 0 and 2(1−X). Our approach assumes that the phases of the oscillators in a given

group are uniformly distributed through their respective regions, which is valid for large N .

The actual distribution determined from a ZBKE simulation, shown in Figure 3.8(a), verifies

the validity of this assumption.

The order parameter calculated using the phase distribution of group I and II oscillators

as a function of X is shown in Figure 3.5(a) by the light blue curve. The estimate of the

order parameter can be improved further by including the impact of group III and group

IV. The phase distribution of these oscillators at the time of echo is determined using a

geometric approach, described in the last section. Figure 3.8(a) shows the geometrically
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Figure 3.8: (a) Predicted phase distribution of oscillators (solid lines) and ZBKE simulation

values (symbols) at the time of the echo. Green, red, black and blue lines correspond to

groups I, II, III and IV, respectively. The violet line corresponds to the sum of the four

groups. The ZBKE simulations were carried out with a large number of oscillators, N =

100, 000. (b) Detail of structure from Figure 3.6, color coded according to the four different

groups in (a) at the time of the echo. The frequencies indicated by the left and right red

circles correspond to 14/τ and 15/τ , respectively.

calculated distributions along with ZBKE model simulations. The overall phase distribution

of all oscillators is shown in Figure 3.8(a), where the dominate asymmetry arises from the

overlap of the oscillators from group I and group II, with a smaller contribution from group

III and group IV. Figure 3.5(a) shows remarkably good agreement between our theoretically

determined order parameter as a function of X at the time of echo to that calculated using

the ZBKE model.

A close-up of the central branched band seen earlier in Figure 3.6(f) is shown in Figure
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3.8(b), color coded by the four groups. The members of group I and group II are seen to span

the entire range of allowed frequencies, i.e., between 14/τ and 15/τ , as discussed above.

Member oscillators of these two groups are uniformly distributed along their respective line

segments. Group III oscillators are also distributed along a thin line, although the distribu-

tion is now not uniform. Group IV oscillators are restricted to a certain region of this phase

frequency plot, which forms a band structure instead of a line, since they have never been

reset by a perturbation. While only group I is affected by both perturbations, membership

of any group places restrictions on an oscillator in term of natural frequency. Further, as

observed in the rich structure revealed in Figure 3.8(b), each group of oscillators collectively

holds the memory of this original information. The echo phenomenon, while remarkable,

does not in itself reveal all of this underlying information. Only a component of the infor-

mation is interrogated by calculation of the order parameter, with the increase in R close to

the echo time due to the alignment that occurs between the line segments associated with

group I and those with group II.

3.4 Geometric Approach

We can use a geometric approach to determine the phase distributions of the oscillators

associated with group III and group IV at the time of the echo. Consider the group III

oscillators. At time tp, these oscillators are uniformly distributed between 0 and (1 − X),

Figure 3.9(a). At time τ later, they are uniformly distributed through the region (1 − X)
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Figure 3.9: Geometric determination of phase distribution of group III oscillators. (a)

At time tp, they are uniformly distributed through the refractory region. (b) Just prior

to the second perturbation, the same oscillators are now uniformly distributed through the

excitable region. (c) The oscillators are then phase reset by the perturbation. The red, light

blue and green regions indicate the oscillators in one of three narrow phase ranges at time tp.

The order of their vertical stacking in (b) and (c) is arbitrary. Each horizontal band equally

contributes to the total number of oscillators at a particular phase. (d) The phase range of

each set, red, blue and green, of oscillators at the time of the echo. Since the choice of ε was

arbitrary, the phase spread of the other oscillators is bound by the sides of the parallelogram,

black dotted line.
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to 1. This places restrictions on their allowed frequencies, though, in contrast to group I

and II, the restrictions are now dependent on the particular phase of an oscillator at time

tp. Consider oscillators with the narrow range of phases indicated in red in Figure 3.9(a).

At time τ later these oscillators will lie uniformly between (1 − X) and 1. Therefore, the

allowed frequencies of oscillators in this thin region are n/τ + α/τ , with α restricted to the

range 1−X through 1. In Figure 3.9(b), we schematically draw the phase location of these

oscillators, spread uniformly through the excitable region. Oscillators in the narrow range

of phase indicated in light blue in Figure 3.9(a) show phase a phase advance of between 0

and X. In Figure 3.9(b), these oscillators are schematically illustrated as spread through

the excitable region at the time of the second perturbation. Their allowed frequencies are

given by n/τ + α/τ , with α restricted to the range 0 through X. For the general narrow

region of oscillators at phase ε at time tp, indicated in green in Figure 3.9(a), (b), the value

of α is restricted to the range 1 −X − ε < α < 1 − ε. At time tp + τ , all of the oscillators

are phase reset to 0, Figure 3.9(c). The location of any oscillator τ later can be determined

using the above allowed frequencies. The oscillators that were in the red region, will advance

through (1−X) to 1, whereas the oscillators that were in the light blue region will advance

from 0 through to X. The location of each of these sets of oscillators in phase at the time

of the echo are shown in Figure 3.9(d), with the red and blue oscillators off set from each

other in phase. These sets of oscillators can be thought of as forming the top and bottom

sides of a parallelogram. The location of an arbitrary set of oscillators, which had phases

close to ε at time tp, is bound by the parallelogram’s other sides. The total number of
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oscillators at a particular phase, in Figure 3.9(d), is proportional to the internal height of

the parallelogram at that phase. By internal height, we mean either the vertical distance

from the bottom/top side to its adjacent side or the parallelogram’s altitude. Assuming the

altitude of the parallelogram is one, the internal height as a function of phase, ψ, is equal to

ψ/(1 −X) for 0 < ψ < (1 −X), 1 for (1 −X) < ψ < X and (1 − ψ)/(1 −X) for ψ > X.

This is plotted in Figure 3.8(a) as the red line.

3.5 Conclusion

The occurrence of an echo in this system of chemical oscillators is a counter-intuitive phe-

nomenon. The apparent loss of information, measured using the order parameter, through

inherent phase dispersion belies the fact that the information remains encoded within the

phase structure of the oscillators. It is only due to the mutual alignment at the time of

the echo that this encoded structure is revealed. Our method of analysis clearly shows this

structure embedded within each sub-community of oscillators, Figure 3.8. Noise can lead to

the destruction of the relative phase structure of the oscillators. Our simulation shows that

for a given τ , the size of echo decreases as the magnitude of noise in the system increases.

At the sufficiently large magnitude of noise, the echo no longer occurs. Equivalently, Ott el

al. showed that for fixed magnitude of noise, the size of the echo decreases with increasing

delay value τ [14]. The observation of an echo in our experimental systems, Figure 3.1, indi-

cates, therefore, that the experimental system is within the range where the time-integrated
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amount of noise is sufficiently small that the encoded phase structure is not destroyed, Fig-

ure 3.2. Within this range, as within our numerical simulations subject to small amounts of

noise, the echo phenomenon is robust.

The present work serves as the first example of echo phenomena in a community of

chemical oscillators and supports the finding of previous theoretical work based upon phase

oscillators [14]. It demonstrates that the echo phenomenon is robust enough to occur in a

real-world system. Further, it suggests that the echo phenomenon could be observed and/or

exploited in other natural oscillatory systems representable using a phase model approach.
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