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ABSTRACT 

 
A System Dynamic Transmission Model (SYStrans) to Simulate 

Epidemic Dengue Environment 

         Rifat Anwar 

Dengue is the most significant arthropod-borne virus in terms of human morbidity and 

mortality. Geographic expansion of dengue and intensity of outbreak has amplified 

significantly during the last few decades. Thus, the understanding of the dynamic of the 

large outbreaks has become indispensable for planning of control interventions in future 

epidemics. In this regard, local entomological, meteorological and epidemiological 

parameters based dengue models can be an essential tool for better interpretation of 

dengue-climate relationship at a regional scale. Process based modelling is resourceful in 

combining the vector and host dynamic along with the response to the meteorological 

factors for dengue transmission. In previous studies, process based models have not dealt 

with the integrated impact of vector-host dynamic and dengue transmission epidemiology 

by incorporating weather dependent transmission mechanism. In this study, a process-

based model has been developed and validated for Iquitos of Peru, based on both vector 

and host population dynamic as well as the whole infection transmission mechanism. The 

sole objective was to develop a simple model to represent the actual scenario triggering 

dengue epidemic considering the most important features of vector population dynamics, 

transmission mechanism and environmental linkages. The model has used remote sensing 

or satellite based environmental data and also introduced dew point temperature as a new 

and effective weather parameter to depict the transmission process of dengue. The model 

has been capable of simulating the peak and moderate scenario in temporal scale, with 

considerable quantification of the actual number of cases for the 2004 and 2008 epidemics. 

Eventually, this type of model can be modified to use for different regions to predict the 

peak scenario based on local weather parameters effecting the infection transmission and 

vector development process along with population density. 
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1. Introduction 

1.1 Background 

                         Dengue is the most significant arthropod-borne virus in terms of human 

morbidity and mortality  (DJ, 2002) (SB, 2008). Geographic expansion of dengue has 

intensively amplified since the last few decades (Morrison, et al., 2010). Whereas, higher 

urban population density and availability of vector habitats have intensified the 

transmission with increasing number of cases (Karl, Halder, Kelso, Ritchie, & Milne, 

2014). Thus, the understanding of the dynamic of the large outbreaks has become 

indispensable for planning of control interventions in future epidemics (Anderson & May, 

1992). Aedes aegypti is considered as the main vector for dengue transmission, which is 

the most efficient vector for abroviruses as it is anthropophilic and flourish in close 

proximity to humans (Otero & Solari, 2010). However, vector population and vector 

competence of Aedes varies significantly with seasonal environmental condition 

(Mohammed & Chadee, 2011). 

                             Climatic condition and variability play a significant role in regulating 

entomological process of vectors and epidemiology of vector borne diseases like dengue 

(Githeko, et al., 2000). The evolving and survivor factors of Aedes are temperature 

dependent and there is a favorable threshold range of temperature supporting the 

development at each stage (Hopp & Foley, 2001). The ecology of virus transmission and 

replication is also temperature dependent, which regulates extrinsic incubation period 

(EIP), gonotrophic cycle, biting rate, life span as well as human response or interaction 

(FOCKS, et al., 2000) (Barbazan, et al., 2010) (Mohammed & Chadee, 2011). On the other 

hand, precipitation pattern has been associated to the availability of aquatic breeding sites, 

while few studies discussed about the opposite impact of precipitation on vector availability 

(Althouse, et al., 2015) (Shope, 1991) (Kearney, et al., 2009) (O'Gower, 1956) (Olson, 

2006). The effect of other environmental variables has been skeptical and utilize differently 

in different studies. 

                          Local entomological, meteorological and epidemiological parameters based 

dengue models can be an essential tool for better interpretation of dengue-climate

http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001472)(1)(2)


2 
 

relationship at a regional scale. Vector-host transmission modelling, representing both 

vector and host dynamic, is essential to evaluate the effectiveness of different intervention 

activities (Andraud, et al., 2012). In addition, deterministic and process-based modelling 

facilitates in analyzing the regional ecology of dengue-climate relations and thus pivotal to 

adopt regional control strategies (Bannister-Tyrrell, et al., 2013). Different deterministic 

models have been developed focusing on different aspects including variable human 

population, variable vector population, vertical and mechanical transmission and presence 

of different strains (Otero & Solari, 2010). 

                         Process based modelling is resourceful in combining the vector and host 

dynamic along with the response to the meteorological factors for dengue transmission 

(Vezzani, et al., 2004). This dynamic modelling process can incorporate the biophysical 

relationship between different entomological and environmental factors (Vaidya, et al., 

2014). In previous studies, process based models have not dealt with the integrated impact 

of vector-host dynamic and dengue transmission epidemiology by incorporating weather 

dependent total transmission mechanism (Morin, et al., 2013). In this study, a process-

based model has been developed for Iquitos of Peru, based on both vector and host 

population dynamic as well as the whole infection transmission mechanism. The response 

of entomological activities and transmission dynamic to the daily local weather parameters 

has been incorporated to the model to represent the local transmission scenario. Aedes 

aegypti based vector life cycle model is integrated with SEIR based population model and a 

conceptual transmission model developed by replicating the infection transmission process 

between vector and host.  The study has proposed the use of remote sensing or satellite data 

in process-based modelling. The potential of remote sensing data has inflated recently for 

the study of diseases related to environmental condition as it provides information about 

weather or environmental variability on different spatial and temporal scale (Side & 

Noorani, 2013). The study also introduces dew point temperature as a new and effective 

weather parameter to depict the transmission process of dengue. Eventually, this type of 

model can be modified to use for different regions to predict the peak scenario based on 

local weather parameters effecting the infection transmission and vector development 

process along with population density. 
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1.2 Outbreak Locations 

As a background study, a detail literature review has been conducted on identifying 

historical hotspots of dengue epidemic. Annual large outbreaks or epidemic scenarios has 

been reviewed to obtain country wise specific locations on city level. Figure 1 shows 

locations of dengue  outbreaks, where mainly epidemic scenarios has been included for the 

period of 1960 to 2016. For African regions outbreaks has been suggested to be less 

documented in literatures, where the number of locations is supposed to be more in terms 

of risk and vulnerability. The hotspot countries have been classified based on quantitative 

historical evidence of large outbreaks (Figure 2). Countries with less than five large 

historical outbreaks have been identified as low-risk countries, whereas countries have been 

demonstrated to be at medium-risk where large outbreaks occured between five to ten times 

(Figure 2). Countries with more than ten outbreaks have been stated as high-risk countries 

(Figure 2). This background study facilitated in selecting the study area based on 

vulnerability and depicts the overall global pattern of dengue outbreak. 

Figure 1: Dengue Hotspot Locations 
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Figure 2: Classification of Hotspot Countries 

1.3 Study Area 

                         Our model has been developed for Iquitos, an isolated city in the 

Amazonian region of Peru having around 400,000 people (Figure 3). Peru has been 

identified as a country with high dengue risk (Figure 2). The city of Iquitos has well 

documented history of dengue virus transmission with recent and dramatic outbreaks. The 

climate of the city is tropical, with precipitation occurring throughout the year (Morrison, et 

al., 2010). In Iquitos, dengue serotype DEN-1 was first identified in 1990, where American 

genotype DEN-2 invaded during the large outbreak of 1995-1996 (Chowell, et al., 2008). 

However, the cocirculation of all four serotypes started during the epidemic of 2000-2001 

(Montoya, et al., 2003). 
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Figure 3: Study Area 

2. Literature Review 

2.1 Literature Review on Dengue Modelling 

                      The dynamics of dengue epidemic has been modelled in different literatures 

to perceive the ideal outbreak scenario as these models can exemplify the disease dynamic 

and eventually aid in disease control (Diekmann & Heesterbeek, 2000) (Esteva & Vargas, 

1998). The development of these models require intensive knowledge on relationship 

between different entomological and epidemiological variables (Ljung, 1999) (Massad, et 

al., 2003). However, unreported and misdiagnosed cases is a source of uncertainty in the 

model (World Health Organization, 2009), whereas understanding the relationship and 

prominence of different environmental factors and disease epidemic has been observed to 

be the prime challenge. The influence or impact of environmental factors can vary spatially 

due to socio-economical condition and life style (Lozano et al). Also, the lag between 
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dengue prevalence and these environmental factors has been identified to be different for 

models developed for different locations (Yu, et al., 2011).  

                          A generalized mixed model (GLMM) approach was followed by Lowe et 

al, where Bayesian framework was used for epidemic forecasting. The model quality has 

been assessed based on the ability to depict the warning of the peak dengue season (Lowe, 

et al., 2011). Torres et al used fuzzy model identification technique, where multiresolution 

analysis has been used to replicate original dengue and severe dengue epidemic in 

Colombia (Torres, et al., 2014). Buczac et al used fuzzy association rule models to identify 

spatial risk level of dengue incidence in terms of environmental and social condition of 

prior outbreaks (Buczak, et al., 2012). Yu et al proposed spatio-temporal prediction 

approach for dengue, using stochastic Bayesian Maximum Entropy (BME) analysis (Yu, et 

al., 2011). Studies developed mathematical and statistical models (deterministic or 

stochastic) to illustrate spatial or spatio-temporal epidemic pattern in terms of interaction 

between vectors and their human-hosts (Nishiura, 2006) (Otero, et al., 2006) (Maidana & 

Yang, 2008).  

Time-series regression approach has been used for predicting dengue fever using different 

weather variables in many literatures (Depradine & Lovell, 2004) (Wu, et al., 2007) (Luz, 

et al., 2008) (Brunkard, et al., 2008) (Chakravarti & Kumaria, 2005). Lu et al predicted 

dengue incidence for China using one-month prior minimum temperature, minimum 

humidity and wind velocity as the major predictors (Lu, et al., 2009). Brunkard et al and 

Diaz et al developed weather variable based autoregressive model to predict weekly 

changes in dengue incidence with changing weather pattern (Brunkard, et al., 2008) 

(Hurtado-Diaz, et al., 2007). Autoregressive integrated moving average (ARIMA) models 

have been fitted with time series of dengue fever incidence in few literatures (Wu, et al., 

2007) (Hu, et al., 2010). Chan et al developed historical case based regression model using 

environmental condition and population density to provide risk prediction for small areas 

(Chan, et al., 2015). Regression models have been mainly used to assess cross correlations 

between environmental variables and dengue fever cases with different lags (Fuller, et al., 

2009). Regression models have been also explored to evaluate weather dependent vector 

abundance and their impact on dengue outbreak (Azil, et al., 2010). Some studies also 
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developed transmission potential models for dengue, with major focus on temperature 

dependent transmission capacity of the vector population (Barbazan, et al., 2010). These 

studies used historical dengue cases for risk prediction and most of these models utilized 

temperature, precipitation and humidity to forecast the dengue fever cases (Wu, et al., 

2007) (Hu, et al., 2010). 

                    Ecological niche modelling has been also used to predict the risk zone of 

dengue occurrence based on satellite environmental data and history of dengue fever cases. 

Arboleda et al conducted ecological niche modelling with satellite environmental data and 

dengue cases (Arboleda, et al., 2009). Peterson et al used ecological niche modelling to 

predict monthly distribution, dynamics and activity of dengue vector (Peterson, et al., 

2005). The geographical expansion of the risk of dengue fever transmission has been 

assessed by Hales et al, where geographical distribution has been modelled based on vapor 

pressure (Hales, et al., 2002). Studies have conducted tele-epidemiology based analysis to 

map entomological risk of vector distribution around dwellings (Machault, et al., 2014).  

Climate-driven statistical and process based models have been developed to assess the 

climate change impact on global distribution of dengue (Morin, et al., 2013). These type of 

models mainly evaluated the geographic distribution of the risk of dengue and have not 

focused on spatio-temporal risk pattern (Arboleda, et al., 2009). 

Remote sensing data has been used for understanding the spatio-temporal risk of dengue 

and modelling the global distribution of the disease due to promising scope of this higher 

spatial resolution data (Anno, et al., 2015). Remote sensing data has gradually become very 

efficacious for epidemiological studies due to prominent development in providing 

environmental data and landuse pattern (Curran, et al., 2000) (Hay, et al., 2010).  Remote 

sensing or satellite data has been effectively used in modelling vector borne diseases 

(Stefani, et al., 2013) (Yang, et al., 2005) (Kalluri, et al., 2007) (Bergquist, 2001), including 

distribution of dengue vector (Neteler, et al., 2011) (Roiz, et al., 2011) (Estallo, et al., 2008) 

(Fuller , et al., 2009) (Vanwambeke, et al., 2011) (Sarfraz, et al., 2012) as well as human 

dengue cases (Benthem, et al., 2005) (Rotela, et al., 2007). These studies focused on 

mapping vector habitats, evaluating environmental factors influencing vectorial 

entomology and epidemiological risk of disease transmission (Rotela, et al., 2007). In these 



8 
 

studies, temperature, rainfall and humidity were the most commonly used satellite based 

weather variables along with vegetation index and land cover pattern. Some studies have 

also used wind speed and digital elevation model derived drainage pattern in the risk 

modelling (Khalid & Ghaffar, 2015). Many studies utilized the normalized difference 

vegetation index (NDVI) for associating the changing land use pattern with the prevalence 

of dengue (Rotela, et al., 2007) (Troyo, et al., 2009). MODIS and Landsat data have been 

mostly used, whereas some studies have also used AVHRR, SPOT and QuickBird satellite 

data. Remote sensing data can be more expedient for modelling of infectious diseases like 

dengue, compared to the station based data (Tran & Raffy, 2006). Recently, process based 

or network based modelling has emerged as a proficient tool for studying geotemporal 

epidemics of infectious diseases (Newman, 2002). However, their practical simulation has 

not been adapted with use of realistic remotely sensed data (Tran & Raffy, 2006).  

                   Studies used SEIR (susceptible-exposed-Infective-resistant) models to study 

vector borne diseases like dengue (Murray, 2003). These type of compartmental models 

have been majorly used to assess the host dynamics (Pongsumpun & Tang, 2001), 

influence of vector control strategies (Newton & Reiter, 1992) and competition between 

different strains (Feng & Velasco-Herna´ndez, 1997). However, these models have not 

considered combined dynamics of the mosquito life cycle and development as well as the 

infection transmission process to represent the actual scenario. Modelling vector 

distribution can portray the risk pattern of dengue, however is not sufficient to replicate the 

actual scenario with the transmission dynamics (Machault, et al., 2014). On the other hand, 

modelling population dynamic cannot determine the effect of vector development and 

transmission activity, thus combination of the whole process is necessary to illustrate the 

real scenario. 

A detail literature review has been conducted to evaluate the previous studies on dengue 

modelling (Figure 4). Figure 4 shows that only few studies used remote sensing data, while 

mathematical modelling based studies have not explored the field of remote sensing or 

satellite data. There are some commonly used environmental parameters. Most of the 

studies based on mathematical modelling approach have not evaluated the combined 
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impact of the environmental variables on vector development, host dynamic and vector-

host transmission process.  

 

 

Figure 4: Literature Review on dengue modeling 
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2.2 Literature Review on Climatic Parameters 

Climatic condition and variability play a significant role in regulating entomological 

process of vectors and epidemiology of vector borne diseases. Different literatures 

discussed that vector-host distribution as well as vector-host-virus complex interaction 

influences prevalence of dengue epidemic (Althouse, et al., 2015). The intricate 

relationship is related to seasonal climatic condition as vector abundance, competence and 

virus transmissibility is significantly climate regulated (Mohammed & Chadee, 2011) 

(Focks, et al., 2000). In most of the studies, temperature and precipitation have been 

recognized as the major climatic factors, linking dengue prevalence and climate around the 

endemic areas (Descloux, et al., 2012) (Dom, et al., 2012). Many studies discussed and 

reviewed the significant influence of temperature on faster viral replication rate within 

vector as well as intensified transmission scenario (Morin, et al., 2013). Precipitation and 

temperature has been observed to be the most commonly used climatic factors for 

prediction of dengue epidemic and developing risk maps (Sang, et al., 2014) (Yu, et al., 

2011) (Chan, et al., 2015). Also, relative humidity has been perceived as a significant 

climatic factor along with temperature and precipitation in different studies (Descloux, et 

al., 2012) (Dom, et al., 2012) (Duncombe, et al., 2013).  Hales et al conferred expedition of 

transmission efficiency with increasing temperature and relative humidity effecting 

epidemiological activities of vector like extrinsic incubation period (EIP) and gonotrophic 

cycle (Hales, et al., 2002). Costa et al discussed the influence of relative humidity in 

regulating the effect of temperature on vector survival rate, which eventually control 

transmission efficiency of vector (Costa, et al., 2010). Descloux et al modeled dengue 

outbreaks in Noumea relating temperature, precipitation, relative humidity, potential 

evapotranspiration and wind force (Descloux, et al., 2012). Dom et al and Lu et al (Dom, et 

al., 2012) (Lu, et al., 2009) incorporated temperature, precipitation and relative humidity as 

climatic parameters for modelling dengue outbreak scenario. Duncombe et al also utilized 

these parameters for assessing dengue transmission risk through computation of vector 

density (Duncombe, et al., 2013). Deviation of these parameters (temperature and relative 

humidity) has been also considered as predictive factors in studies (Wu, et al., 2007). 

Studies also reconnoitered the association of El Niño southern oscillation (ENSO) with 
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dengue fever epidemic for different coastal countries (Descloux, et al., 2012). ENSO is 

acknowledged as an indicator of climate variability, which effects the distribution of 

dengue vector (Hu, et al., 2010). Hales et al modelled global distribution of dengue based 

on vapor pressure as an indicator of humidity (Hales, et al., 2002). Studies also considered 

drainage pattern and land cover type for predicting dengue outbreak, which are eventually 

influenced by precipitation pattern by providing or flushing vector breeding sites (Khalid & 

Ghaffar, 2015). 

                           Repercussion of different climatic or environmental factors on dengue 

vector abundance and competence has been observed to be skeptical in different studies 

(Jansen & Beebe, 2010). Different studies discussed the dominance of different climatic 

factors for prevailing outbreak condition of dengue to portray the climate dependent 

transmission efficiency of vector (Rohani, et al., 2009). Biswas et al analyzed and 

suggested precipitation and humidity to have more profound impact on vector density 

compared to temperature as they control larval development and survival (D, et al., 1993). 

Few studies also suggested the prominence of rainfall over temperature and humidity, 

whereas dominance of temperature and humidity over precipitation has been conferred in 

few studies (Anno, et al., 2014) (Favie, et al., 2006). On the other hand, studies speculated 

lower dengue incidence with higher mean temperature, which contradict with most of the 

other studies on climate dependent dengue epidemic (Limper, et al., 2014). Araujo et al 

analyzed association of dengue prevalence with urban heat islands having higher land 

surface temperature, lower humidity and poor vegetation cover (Araujo, et al., 2015). Also 

studies identified vegetation dynamics to be a controlling factor for dengue epidemic as it 

can regulate local moisture supply, evaporation rate and wind speed (Fuller, et al., 2009). 

 

3. Methodology 

3.1 Background on Model Set-up 

                         Mathematical modeling has been used intensively for simulating dengue 

outbreak, based on the concept of SIR (Susceptible-Infected-Recovered) (Side & Noorani, 

2013). For dengue epidemiology, most of the studies have considered changing host 
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population dynamic with constant vector population, while few have considered both host 

and vector dynamics. On the other hand, few studies have considered the changing vector 

dynamic with constant population (Esteva & Vargas, 2000). However, time series 

modelling has been used for dengue to use long term environmental dataset for predicting 

dengue cases, where validation of these models with real data have contributed in assessing 

the significance of different environmental variables. These types of models have been 

used in many studies with the major focus on environmental data, not considering the 

population and vector dynamic and concluded with the significance of different variables 

with different time lag. But, the use of process based simulation model for dengue 

epidemic has been observed to be limited (Bannister-Tyrrell, et al., 2013).  Compared to the 

statistical models, process based models explicitly explain and illustrate each step of the 

transmission process as well as the biological life cycle of the vector and thus can be very 

effective . However, previous studies of process based modelling has not compiled the 

whole weather influenced infection transmission process with vector and host dynamic 

models. Moreover, they used station based environmental data and none of them explored 

the significance of remote sensing data in this regard. They mainly used local temperature 

and precipitation as environmental variable to simulate local dengue cases (Morin et al, 

2013). 

                        In our study, a process based mathematical modelling approach has been 

used with a system dynamic simulation software named Vensim. It supports continuous 

simulation and provides graphical modelling interface with interactive tracing of behavior 

between model variables.  Generally process based models provide the advantage of 

realistically associate different variables and connect them to process the real scenario. This 

approach is mainly based on theoretical understanding of the whole vector development 

and dengue transmission process, providing the framework to incorporate the response of 

environmental conditions to the overall process. It provides easier interpretation of the real 

scenario with a framework to associate the impact of the different condition on the disease 

dynamic. In this model, the dynamic or cyclic process is triggered by arrival or introduction 

of infected people. In our model, we have introduced dew point temperature as a new 

environmental variable that have not been evaluated before for dengue models. Dew point 
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temperature is related to temperature and humidity and higher dew point temperature 

interpret existence of more moisture in the air and depicts that the air is maximally 

saturated with water. Temperature and relative humidity has been observed to be the 

determinant in dengue outbreak occurrence and persistent condition for the outbreak was 

determined based on number of days with these two variables being in the favorable range 

(Descloux, et al., 2012). Moreover, studies found absolute humidity to be the most 

consistent factor for dengue transmission, which elucidate the combined impact of mean 

temperature and relative humidity on infection proliferation (Xu, et al., 2014). In previous 

studies, it has been analyzed that the combined effect of temperature and humidity has 

influence on dengue virus propagation in the vectors (HM, et al., 1998). Thus, we 

hypothesize that dew point temperature can be a significant factor contributing persistent 

climatic condition for dengue as it portrays the combined effect of temperature and relative 

humidity. 

3.2 Model Set-up 

                           We have studied the spread of the disease by host and vector activities, 

while considering the effect of different environmental variables on entomological 

activities of vectors and epidemiology of dengue transmission. The host dynamic has been 

incorporated based on the traditional approach of susceptible-infected-recovered (SIR), but 

inspecting the impact of different weather dependent activities before simulating infected 

host. The motivation of the model is based on combining the vector and host population 

dynamics, incorporated with weather parameters and delay for fertilization and incubation 

periods, to simulate realistic temporal and numerical pattern of dengue cases. The model 

consists of three sub-models (Host Population Dynamic Model, Vector Population 

Dynamic Model and Dengue Transmission Model), which have been integrated in a way 

that it represents the whole process (Figure 7). Figure 5 and 6 show the model sketch in 

normal and simulated form and figure 7 illustrates the schematics of different variables and 

their interrelationships within different sub models. The model is simulated with daily time 

step and the model calculates daily vector population at each stage of life depending on 

survival and development rate related to the daily temperature as well as water availability. 
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Figure 5: Model sketch 

 

                           Figure 6: Model sketch in simulated form 
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Figure 7: Brief Model Interpretation 

                                  The dynamical evolution of the vector population is modeled 

representing the whole life cycle. The biological events of the life cycle is associated to the 

transition rates between different stages of life and their dependence and relationship with 

temperature and water availability has been taken from experimental observations. Egg, 

larvae and pupae development and survival rate were determined from previous studies, 

which are associated with temperature and require the availability of water. In the 

developed model, it has been assumed that there is minimum availability of water to lay 

eggs. We have considered the development of larvae in density dependent manner, as 

discussed in few previous literatures (Morin et al, 2013). Larva survival rate is dependent 

on larva density and carrying capacity of habitable water. Generally, precipitation or 

artificial storage can make availability of aquatic breeding sites or habitable water. We 

followed the approach that adequate habitable water has been developed through 

precipitation, as the study area has continuous pattern of rainfall through the year. Thus, it 

has been assumed that there is absence of Human-made or artificial water storage due to 
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unavailability of field data on artificial storage and as dry condition does not prevail in the 

study area. On the other hand, larva-sustaining capacity of habitable water is declined 

during continuous high rainfall scenario due to overflowing effect. So, it has been assumed 

that continuous pattern of extremely high rainfall reduce the larva sustaining capacity of 

habitable water and thus habitable water is not considered as proper breeding site under this 

scenario.  Through this development and survival rate, larvas are emerged as pupae and 

pupaes are converted to emerging adults with temperature dependent development and 

survival rate. Only 50 percent of the adults are emerged as female adults and thus fertilized 

as gravid adults after a delay of three days. The transformation from fertilized adults to 

gravid adults is associated with temperature dependent ovarian development and adult 

survival rate. In the model, availability of gravid adults has been considered from the initial 

stage as the study area is vector dominant and always prevail the condition for their 

development.  

                                   The simulated gravid adults from this life cycle model were then 

transformed into the effective infectious adult. This part of the model represented the 

interactive infection transmission process between vector and host. The conversion or 

transformation of gravid vector adults to the effective infectious adults is significantly 

dependent on the vector-infected host interaction as well as the temperature dependent 

extrinsic incubation period (EIP), and eventually this transformation dynamic effectively 

govern the whole process of dengue transmission. The transformation is also related to 

temperature dependent adult biting rate and vector infection probability. Vector-infected 

host interaction or adult biting rate can also rely on socioeconomic factors that have not 

been considered in this study. Sufficient vector-host interaction and vulnerable 

socioeconomic condition has been considered in the study area. In the developed model, we 

have also integrated a persistency factor that is related to the effect of dew point 

temperature on dengue transmission, which has impact on the conversion of gravid adults 

to infectious adults. This variable is assimilated based on the hypothesis that comparatively 

higher dew point temperature supports and expedite the propagation of infection. The 

infectious adults are transformed in to effective infectious adults after the delay for 

extrinsic incubation period (EIP), depending on temperature effect on EIP.  
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                                    The host population dynamic model is compiled with healthy, 

infected and recovered population. Fifty to ninety percent of the population of the study 

area has been considered as susceptible host. The percentage has been used as a calibration 

parameter. These susceptible hosts become ‘Hosts with infected bloodmeal’ through the 

interaction with available effective infectious adult vectors, based on temperature 

dependent adult biting rate and host infection probability. After the delay for intrinsic 

incubation period (IIP), these hosts are altered to become infected. The infected hosts 

interact with the gravid adults of the vector population dynamic model, increasing the 

susceptibility of intensive transformation of gravid adults to infectious adults. The whole 

cycle of this infection transmission is started with few initial infected host. The number of 

initial infected host has been collected from real dengue data. The proportion of infected 

hosts are recovered with a certain recovery rate and again join the susceptible host. The 

whole modelling framework and background is briefly presented in figures of the appendix. 

4. Data  

We modelled dengue outbreak based on data collected in Iquitos, Peru. The latitude and 

longitude of the station data is -3.783 and -73.3 respectively. The dengue outbreak data 

used for Iquitos dates between 2000-2009. Dengue outbreaks were recorded and separated 

into the four serotypes (DENV1 - DENV4) for each week of these years from U.S. Naval 

Medical Research Unit 6 (NAMRU-6). For climatic continuous daily observations, we 

used NOAA’s NCEP climate Forecast System (CFS) reanalysis data. CFS reanalysis is a 

global, high-resolution system to provide the best continuous daily estimate over the period 

of record. Our collected climate data set include daily precipitation. dew point temperature 

and air temperature. Figure 8 shows the actual weekly dengue cases of Iquitos for different 

years. The data for year of 2002, 2004 and 2008 have been used for model calibration and 

validation as they represent the epidemic environment. 
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Figure 8: Dengue weekly actual data 



19 
 

5. Model Optimization and Calibration 

                                 The model development and calibration approach has been adopted 

based on experimental field data or empirical equation. Few equations has been developed 

following our own hypothesis. The unknown or uncertain parameters has been used to 

calibrate the model. For example, the area of habitable water has been associated with 

precipitation and has varied with precipitation pattern. Different amount of habitable water 

for different scenario has been used for calibration of the model, as we have not used any 

land use pattern or human dwelling density data. For medium range of continuous 

precipitation, higher amount of habitable water has been considered; whereas lower amount 

of habitable water has been considered for very low and extremely high precipitation 

pattern. The other calibrated parameters are larva carrying capacity of the habitable water 

and proportion of open containers that are uncertain. The term ‘proportion of open 

containers’ has been used as an indication of socioeconomic condition or lifestyle pattern 

and utilized to calibrate the model. The initial availability of vectors is a crucial factor, 

which provides eggs for the initiation of the cycle. Due to unavailability of any trapping or 

field data, the initial quantification of gravid adults has been considered to be a calibration 

parameter. In dengue endemic regions, sufficient vector availability is maintained 

throughout the year and thus general availability is considered from initial stage of the 

model. These four calibration parameters were used in vector population dynamic part of 

the model. Delay for intrinsic incubation period (IIP) and recovery rate has been used for 

calibrating the other part of the model. Literatures suggested that intrinsic incubation period 

vary between 4 to 8 days (Side & Noorani, 2013), while recovery rate can also vary within 

a range depending on the immunity. Literatures suggested the duration of infectiousness of 

the host to be strongly influential factor for seasonal pattern of dengue transmission and the 

timing of peak prevalence is dependent on it (Bartley, et al., 2002).Thus recovery rate has 

been used as a calibration parameter. Moreover, in the study area a proportion of the total 

population can be immune from the infection, which is an uncertain parameter. The percent 

of immune people can vary and has been used as a calibration parameter. Monte Carlo 

approach based vensim sensitivity analysis has been conducted to evaluate the sensitivity 

of the calibration parameters. Monte Carlo Marcov Chain approach of Vensim has been 
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used to identify the values of calibration parameters that resulted in the best fit to the real 

dengue cases. Table 1 represents the set of calibration parameters with their range. Among 

these calibration parameters, only two parameters (initial vector availability and initial 

exposed host) have been changed manually as they were not used as constant in the model 

and Vensim optimization is modified for constant parameters only.  Figure 9 and 10 show 

the sensitivity of these parameters on the major output parameter of the model (infectious 

host). 

Table 1: Set of calibration parameters 

Variables Range 

Habitable water 1*10^4 to 8*10^6  

Carrying capacity 0.5-1 

Proportion of open container 0.1-1 

Initial vector availability 1*10^4 to 1*10^8 

Intrinsic incubation period (IIP) 4-8 days 

Recovery rate 0.05-0.1 

Initial exposed host 50 to 90 percent of the total population 
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Figure 9: Sensitivity graph for all parameters 



21 
 

sensitivity 1

run 1

Infectious host

20

15

10

5

0
1 91.75 182.5 273.3 364

Time (Day)

 

Figure 10: Sensitivity graph without recovery rate 

                                 Calibration of model requires simulating thousands of combinations of 

different parameter values. Vensim is a visual modeling tool that allows simulation, 

optimization and sensitivity analysis for an established system dynamic model (Lin, et al., 

2012). Literatures suggested Vensim as an effective tool to connect the simulation with 

optimization and to choose sensitive parameters to get optimum output (Kasperska, et al., 

2014). In system dynamic models, there are many parameters and the effect of their 

variation on model simulation is significant. Vensim follows Markov Chain Monte Carlo 

approach to adjust the parameters to get the optimal match between model behavior and the 

real data. In this approach, the output is optimized under uncertain environment using 

different combinations of calibration parameters within a certain range (Lin, et al., 2012). 

Monte Carlo Multivariate sensitivity analysis of Vensim can be used as an entrance for 

optimization as it facilitates in selecting the sensitive parameters for optimization 

(Kasperska, et al., 2013). Different literatures used optimization set up of Vensim where 

certain range and weight can be identified for each payoff or calibration parameter. 

Literatures suggested Vensim’s optimization and sensitivity set ups as efficient approach as 

it allows searches within confidence bounds or optimal values to provide the best fit to the 
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real data. The process of optimization is advantageous as it allows providing weights to 

different calibration parameters according to its sensitivity (Kasperska, et al., 2013).  

The equations and relationships used for the model are provided in figure 16 to 18 in 

appendix. All the equations or relationships used are for daily scenario. 

6. Results and Simulations 

                        The model has been calibrated for 2002 dengue epidemic and validated for 

2004 and 2008 epidemics, comparing the weekly simulated cases with the weekly actual 

cases. The model simulation has provided daily cases and weekly cases were determined 

through summation of daily cases. All the figures of model simulations are provided in 

appendix. Figure 11 depicts the simulation of the calibrated model, which has been used for 

validation of the model for 2004 and 2008. Figure 12 shows the weekly actual cases and 

model cases for the year 2008. It has been observed that there was an initial peak in dengue 

cases, which diminished after tenth week and the next significant rise started after thirty 

fifth week following almost six months of moderate scenario. The simulation has been 

observed to be competent in capturing the declining trend during tenth week and increasing 

trend during thirty fifth week. The model is capable of replicating the moderate scenario in 

the mid-year and peak scenario during the starting and end of the year. But, the model 

simulated the year end peak with a lag compared to the actual scenario. Figure 13 shows 

the comparison between simulated and actual cases for 2004. During 2004, the peak 

scenario has been observed at the end of the year after continuous moderate condition for 

the first nine months. The cases started rising after the fortieth week, which has been 

captured by the model. The model has been also capable of simulating the peak week, but 

with comparatively lower number of cases than the actual scenario. 

                              The initial peak during 2008 was resulted from previous year scenario as 

the simulation was started with large number of initially infected cases. The cases started 

decreasing due to continuous comparative lower temperature and dew point temperature, 

which was not persistent enough for efficient infection transmission. The precipitation 

scenario has not been observed to have much impact on the case pattern as vector 

availability was maintained throughout the year. The mid year condition influenced the end 
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peak as efficient transmission was allowed by temperature and dew point temperature 

scenario. During 2004, the scenario started with lower number of initially infected host. 

The end of the year peak condition was generated from mid-year persistent higher 

temperature and dew point temperature, the effect of which resulted with a lag at the end of 

the year. 

                         Figure 14 and 15 show the probability of exceedance plot for actual and 

modeled cases for 2008 and 2004 respectively. The probability of exceedance has been 

computed for actual and modeled cases and plotted with normal distribution in order to 

evaluate the model competent. The graphs depict that the model is significantly competent 

and efficient to replicate the dengue epidemic environment as the exceedance plots of 

actual and simulated cases follow almost similar distribution. 

 

 
 

Figure 11: Model simulated and actual cases for 

2002 (Model Calibration) 
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Figure 12: Model simulated and actual cases for 

2008 (Validation) 

 

 
Figure 13: Model simulated and actual cases for 

2004 (Validation) 
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Figure 14: Probability of exceedance of actual and 

medeled cases (2008) 

 
Figure 15: Probability of exceedance of actual and 

modeled cases (2004) 
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7. Conclusion  

7.1 Summary 

                   The model highlighted the overall physical system of the transmission process 

using the linkage and interaction between different parameters to explain the physical 

phenomena contributing in timing and scale of dengue epidemic. The sole objective was to 

develop a simple model to represent the actual scenario triggering dengue epidemic 

considering the most important features of vector population dynamics, transmission 

mechanism and environmental linkages. By simulating 2004 and 2008 outbreaks, the 

model has defined the conditions generating the peak, which can be utilized in future 

prediction and planning for control strategies. As the model has replicated the peak 

condition, it can facilitate in assessing the persistent environmental condition with 

associated lag that can cause significant proliferation in transmission scenario. 

                        From a practical point of view, this model can facilitate in understanding the 

triggering environmental condition that can cause local or regional epidemic scenario. As 

we have used grid based remote sensing data, it is possible to make local risk maps or 

evaluate local risk patterns using the framework and concept of this model. 

                        From a methodological point of view, few detailing and augmentation can 

make the model more effective. There is probability of vertical transmission of infection 

processed by transmission to the descendants by infected female vectors (Side & Noorani, 

2013). However, the rate of this transmission is very low (Side & Noorani, 2013) and has 

not been incorporated in the model.  The model has been developed considering only one 

vector species, while aedes albopictus can be another potential vector with different 

dynamics. Moreover, the model has been developed considering precipitation induced 

habitable water, whereas artificial or human-made habitable water can also prevail in 

comparative dry condition or depending on socioeconomic scenario. Thus, availability of 

different type of habitable water has to be considered for reframing the model for different 

study area with disparate precipitation pattern. Furthermore, the socioeconomic condition 

and life style has significant impact on vector-host interaction and thus regulate the 
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transmission process, which has not been incorporated in the model. Only one calibration 

parameter (proportion of open container) has been used, which indirectly indicate lifestyle 

pattern. Also, survival rate of adult vector has been considered to be effected only by 

temperature, although vector control activities and socioeconomic pattern has significant 

influence in this regard. 

                     The model has been validated using actual data to show that it can almost 

generate the actual scenario capturing the temporal pattern of peak. However, incorporation 

of parameters regarding local socioeconomic condition may facilitate in adaptation of the 

model for different locality with more accurate simulation. 

7.2 Future Work 

                      The model has been simulated for Iquitos; however it has been developed in 

such a way that it can be adopted for different regions of available vectors with different 

environmental data and population density. The transformation is dependent on availability 

of environmental data, demographic data and actual case data. The motivation of future 

work is to develop the model using this concept and framework for other dengue 

vulnerable cities. Incorporation of some social parameters will be another purpose and 

direction of future work. 

                    With appropriate reparameterisation, this model can be modified for other 

diseases (zika,chikungunya) with same vectors. This model can be modified for these 

diseases if demarcation among their environmental transmission condition is developed. 

With development of demarcation among transmission condition of these diseases, we have 

plan to develop model for zika and chikunguniya using the same concept. 
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Appendix 

 

 
Figure 16: Vector life cycle model interpretation (part 

1) 
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Figure 17: Vector life cycle model interpretation (part 

2) 
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Figure 18: Transmission and population model 

interpretation 
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Figure 19: Precipitation Simulation 
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Figure 20: Precipitation index simulation 
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Figure 21: Precipitation induced container simulation 
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Figure 22: Habitable water simulation 
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Figure 23: Daily temperature simulation 
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Figure 24: Vector egg simulation 
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Figure 25: Egg development rate simulation 
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Figure 26: Egg survival rate simulation 
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Figure 27: Larva simulation 
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Figure 28: Larva development rate simulation 
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Figure 29: Larva survival rate simulation 
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Figure 30: Pupae simulation 
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Figure 31: Pupae development rate simulation 
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Figure 32: Pupae survival rate simulation 
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Figure 33: Emerging adult simulation 
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Figure 34: Female adult simulation 
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Figure 35: Fertilized adult simulation 
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Figure 36: Available adult simulation 
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Figure 37: EIP progress rate simulation 
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Figure 38: Vector infection probability simulation 
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Figure 39: Dew point temperature based persistency factor 
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Figure 40: Adult biting rate simulation 
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Figure 41: Infectious adult simulation 
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Figure 42: Delay for EIP simulation 
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Figure 43: Effective infectious adult simulation 
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Figure 44: Host infection probability simulation 
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Figure 45: Host with bloodmeal simulation 
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Figure 46: Infected simulation 
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Figure 47: Infectious host simulation 
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Figure 48: Precipitation simulation 2008 
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Figure 49: Precipitation index simulation 2008 
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Figure 50: Precipitation induced container simulation 2008 
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Figure 51: Habitable water simulation 2008 
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Figure 52: Temperature simulation 2008 
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Figure 53: Egg development rate simulation 2008 
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Figure 54:Egg survival rate simulation 2008 

Larva

200 M

150 M

100 M

50 M

0

1 34 67 100 133 166 199 232 265 298 331 364

Time (Day)

Larva : run 5

Larva : run 6

Larva : run 4
 

Figure 55: Larva simulation 2008 
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Figure 56: Larva development rate simulation 2008 
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Figure 57: Larva survival rate simulation 2008 
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Figure 58: Pupae simulation 2008 
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Figure 59: Pupae development rate simulation 2008 
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Figure 60: Pupae survival rate simulation 2008 
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Figure 61: Emerging adult simulation 2008 



53 
 

Female adult

400

300

200

100

0

1 34 67 100 133 166 199 232 265 298 331 364

Time (Day)

Female adult : run 5

Female adult : run 6

Female adult : run 4
 

Figure 62: Female adult simulation 2008 
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Figure 63: Fertilized adult simulation 2008 
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Figure 64: Available adult simulation 2008 
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Figure 65: EIP progress rate simulation 2008 
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Figure 66: Vector infection probability simulation 2008 
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Figure 67: Dew point temperature based persistency factor 
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Figure 68: Adult biting rate simulation 2008 
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Figure 69: Infectious adult simulation 2008 
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Figure 70: Delay for EIP simulation 2008 
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Figure 71: Effective infectious adult simulation 
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Figure 72: Host infection probability simulation 
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Figure 73: Host with bloodmeal simulation 2008 
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Figure 74: Infected simulation 2008 
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Figure 75: Infectious host simulation 2008 
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Vensim simulations 2004 
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Figure 76: Precipitation simulation 2004 
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Figure 77: Precipitation index simulation 2004 
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Figure 78: Precipitation induced container simulation 2004 
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Figure 79 : Habitable water simulation 2004 
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Figure 80: Temperature simulation 2004 
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Figure 81: Egg development rate simulation 2004 
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Figure 82: Egg survival rate simulation 2004 
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Figure 83: Larva simulation 2004 
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Figure 84: Larva development rate simulation 2004 
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Figure 85: Larva survival rate simulation 2004 
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Figure 86: Pupae simulation 2004 
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Figure 87: Pupae development rate simulation 2004 
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Figure 88: Pupae survival rate simulation 2004 
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Figure 89: Emerging adult simulation 2004 
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Figure 90: Female adult simulation 2004 
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Figure 91: Fertilized adult simulation 2004 
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Figure 92: Adult survival rate simulation 2004 
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Figure 93: Available adult simulation 2004 
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Figure 94: EIP progress rate simulation 2004 
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Figure 95: Vector infection rate simulation 2004 
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Figure 96: Dew point temperature based persistency factor 
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Figure 97: Adult biting rate simulation 2004 
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Figure 98: Infectious adult simulation 2004 
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Figure 99: Delay for EIP simulation 2004 
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Figure 100: Effective infectious adult simulation 2004 
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Figure 101: Host infection probability simulation 2004 
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Figure 102: Host with bloodmeal simulation 2004 
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Figure 103: Infected simulation 2004 
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Figure 104: Infectious host simulation 2004 
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