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Abstract 
 
 

FORMATION AND CHARACTERIZATION OF METAL AND 
METAL OXIDE NANOPARTICLES 

 
 
 

Garry Glaspell 
 

This dissertation contains two parts. The first part is focused on Laser 
Vaporization Controlled Condensation (LVCC). Silver nanoparticles of controlled size 
were synthesized by this method in order to produce a Surfaced Enhanced Raman 
Scattering (SERS) active material. We have investigated the effects of particle size on 
SERS enhancement and how the addition of halides can further increase the limits of 
detection. We have also explored using LVCC to synthesize cobalt oxide nanoparticles. 
This is significant since a simple chemical route doesn’t currently exist. Finally, we have 
reported the synthesis of cobalt nitrate hexahydrate by this method using cobalt metal, 
oxygen and nitrogen as starting materials. The second part of this dissertation focuses on 
synthesizing transition metal doped titanium dioxide and zinc oxide by various novel sol-
gel techniques for applications in spintronics. Spintronics is based on the concept of 
carrying information due to the relative spins of electrons. Utilizing spin up and spin 
down allows twice as much information to be carried on the flow of the electrons. One of 
the key requirements for a spintronic material is that it must exhibit room temperature 
ferromagnetism (RTFM).  Thus, we synthesized 10% cobalt and iron doped titanium 
dioxide by a novel synthesis which displays RTFM. We have also explored synthesizing 
5% cobalt doped zinc oxide by a room temperature process which also displays RTFM. 
Finally, RTFM 5% cobalt and iron doped zinc oxide were synthesized by a novel process 
involving microwave irradiation.  
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Chapter 1 
 

Surface Enhanced Raman Spectroscopy Using Silver Nanoparticles: 
The Effects of Particle Size and Halide Ions on Aggregation 

 
 
1.1 Introduction 

 Raman spectroscopy was first observed by C.V. Raman in 1928.1 It was not a 

widely accepted technique until the advent of lasers in the 1960’s. In 1974 Fleischmann 

first observed intense Raman signals from pyridine on a silver electrode which was 

attributed to surface effects by Van Duyne three years later.2,3 The surface-enhanced 

Raman (SER) effect is currently explained using chemical (CE) and electromagnetic 

(EM) mechanisms.4 Chemical effects provide enhancement via an increase in the 

molecular polarizability of the absorbate due to the interaction of the adsorbate with the 

metal surface. Maximum chemical enhancement is observed when the substrate forms a 

monolayer on the metal of interest. Atomic scale structural features produce varying 

degrees of enhancement. Electromagnetic effects provide enhancement due to an increase 

in the electromagnetic field experienced by the molecule on the metal surface. The latter 

effect is paramount when investigating nanoparticles.5 The size and shape of the particles, 

the specific metal, and hence the nature of the surface plasmons, which can be defined as 

a sea of electrons with a particular resonance, contribute to the EM mechanism. 

  We have investigated the change in SER intensity of Rhodamine 6G 

(R6G) on silver nanoparticles as a function of initial particle size and as a function of 

aggregate formation with time. The latter work was performed both with and without the 

influence of halides ions. Faraday first reported that the addition of salts to metal sols 

resulted in aggregation of individual particles and this approach has been applied to metal 
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colloids in numerous SERS studies.6,7 There are three mechanisms that describe the effect 

of adding salts to a metal colloid are: aggregation, co-adsorption (activation), and 

desorption.8-10 A possible explanation provided by Hildebrandt is that the enhancement 

factors are a combination of the chemical and electromagnetic mechanisms. 11  

Kniepp 12-14, Brus 15, and Nie 16,17 have shown that not all particles are SER active and 

have reported that the aggregation of individual particles can lead to intense SER 

enhancement through the formation of “hot spots” that could provide enough 

enhancement for single molecule detection.  Xa 18 and Van Duyne 19-21 have reported that 

the enhancement factors for a “hot spot” can be as high as 1013 to 1014 and that this could 

be responsible for single molecule detection. At low concentrations of salt the metal 

particles become activated showing an immediate increase in surface enhancement, but 

do not experience aggregation. 11-13,15,16  

Recently, synthesis of various semiconductor and intermetallic nanoparticles via 

laser vaporization controlled condensation (LVCC) has been of particular interest. This 

method utilizes well defined conditions to produce nanoparticles of controlled size and 

composition without the need for chemical precursors or heat treatments. Specifically, a 

laser is used to produce a supersaturated metal vapor from a target inside a chamber. 

Convection currents, resulting from the top plate of the chamber being cooled and the 

bottom plate heated, affects the rate of nucleation of the metal vapor. This can be 

achieved by the choice of laser power, chamber pressure, and temperature gradient. 22-25 

Particles generated by this procedure are predominately spherical and have significantly 

less fluctuation in diameter (usually +/- 3 nm) compared to most reduction methods.  
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Silver nanoparticles were generated and SER data were collected using Rhodamine 6G 

(R6G) since this adsorbate gives good enhancement on silver.26-28 

 

1.2 Experimental 

Silver metal (99.98%) was purchased from Alpha Aesar (Ward Hill, MA). 

Nanoparticles of silver were generated via LVCC. The LVCC chamber was home built 

and consists of two metal plates modified to provide uniform heating and cooling. To 

provide convection the top plate was cooled with liquid nitrogen and the bottom plate 

was heated with circulating water. A Laser Photonics (Orlando, Florida) Nd / YAG laser 

was used to ablate the metal target. Altering the laser power, chamber pressure, and 

temperature gradient between the two plates results in the formation of particles of 

various sizes. 29 The size and shape of the particles were confirmed via transmission 

electron microscopy (TEM) using a JEOL 1220 (Tokyo, Japan) operating at 80 Kev. 

Immediately after formation, the particles were placed in a test tube and mixed with a 

stock solution of R6G (3x10-4 M) in ethanol. The R6G (99%; Lamda Physik, Fort 

Lauderdale, FL) and ethanol (99.9%; Fisher Scientific, Pittsburgh, PA) were used without 

further purification. 

Stock solutions of aqueous NaF, NaCl, NaBr and NaI were prepared at various 

concentrations and added to the solution of particles and R6G. The concentrations of the 

anions in the solutions that were interrogated ranged from1.7x10-4M to 1.7x10-1M. The 

salts (99%) were purchased from Fisher Scientific (Pittsburgh, PA) and used without 

further purification. 
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SER spectra were obtained using a SPEX Triplemate spectrometer (Edison, NJ) 

equipped with 1200 grooves/mm gratings and an Oxford Instruments CCD detector 

cooled to 133K. A krypton ion laser (Lexel Laser, Fremont, CA) was used to provide 

excitation at 647.1 nm. The laser power was set to 18 mW (at the sample) and the 

collection time was 5 seconds. The intensities of the SER signals were normalized 

relative to the well-separated ethanol peaks at 2931 cm-1 (internal intensity standard). No 

signals due to ethanol were observed below 2900 cm-1. Spectra were collected up to 46 

hours after sample preparation after which oxidation of the silver surface obviated the 

possibility of obtaining reproducible data. 

 

1.3 Results and Discussion 

Stock solution of R6G was added to the Ag particles until a maximum SER 

intensity was observed (probably due to monolayer coverage since excess amounts of 

R6G decreased the SERS intensity). Once the optimum intensity was reached SER 

spectra were collected at various times for each of the initial particle sizes. Over the range 

of particles tested (5 – 50 nm in diameter) it was determined that 11 nm particles 

exhibited maximum spectral enhancement during a 46 hour period (vide infra). Figure   

1-1 shows the spectra for 11nm particles as a function of time through 46 hours. Plots of 

normalized intensities versus time for 15, 11 and 8  nm particles for four selected 

aromatic ring based normal modes (1650 cm-1, 1523 cm-1, 1365 cm-1, 1310 cm-1) are 

presented in Figures 1-2 to 1-5. It can be seen that the 11 nm particles exhibit the largest 

initial enhancement for each of the normal modes, although all three particle solutions do 
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exhibit increased SER enhancement with time. Table 1-1 shows how the slopes differ 

among particle sizes for the four modes. 

The observed enhancements could be explained via the chemical and 

electromagnetic effects of individual particles, hot spots of preformed clusters, or any 

combination of these. We can deduce that the chemical effect is minor since particles in 

the range of 40 – 50 nm do not exhibit a significant initial enhancement compared to the 

11 nm particles, i.e., the initial spectra show a particle size dependent enhancement. 

Preformed clusters would produce varying degrees of initial enhancement due to random 

numbers of “hot spots” which would be independent of particle size. We have observed 

reproducible initial enhancements and so preformed clusters are not a major contributor 

to the observed enhancements. Thus we can infer that the major contribution to the initial 

enhancement is the electromagnetic effect. 18,20 

 In order to show that the intensity enhancements are related to aggregate 

formation we collected TEM images of the11nm particles throughout the period of SER 

spectra collection. These images are depicted in Figure 1-6. Aggregation is also reflected 

in the red shift of the Raman signals with time (15 cm-1 shifts after 46 hours).26 As 

aggregates form, it is possible that “hot spots” are generated where the particles come in 

close contact.18 Our data indicate that the energies of the “hot spots” associated with all 

three initial particle sizes increase their overlap with the excitation energy as the 

aggregates form since we observe increasing enhancement. Clearly the 11 nm particles 

do this more efficiently as evidenced by the time versus intensity slopes presented in 

Table 1-1. After 46 hours the relative intensities of the SER signals of the 11nm particles 

are significantly stronger than their initial intensities.  
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Another observed trend is the difference in the slopes (see Table 1-1) of the 

intensity versus time plots for the four Raman bands arising from totally symmetric in-

plane aromatic C-C stretching normal modes.26 The differences are do to the orientation 

of the R6G with respect to the “hot spots” where stretching modes perpendicular to the 

“hot spots” should exhibit the greatest enhancement. Thus, the increase in SER 

enhancement is dependent on the magnitude of the change of the dipole of each normal 

mode perpendicular to the surface. One possible explanation is that with increasing 

numbers of aggregates the contributions from adjacent particles perturb the orientation of 

the adsorbed molecule into a more rigid conformation. 

 

1.4 Effects of Halide Ion Addition 

Figure 1-7 shows large intensity enhancements as a function of time for the four 

Raman bands after the addition of chloride ions (the final concentration of R6G and Cl- 

are 0 .003M and 0 .0017M respectively) over a 7 hour period after which the particles 

become oxidized and intensity diminishes.23 Table 1-2 shows the slopes of intensity 

versus time plots for the various salt additions with 11 nm particles.  

Again, one possible explanation of the enhancement as a function of time is the 

formation of “hot spots” due to aggregated particles. Comparing fluoride, chloride and 

bromide ions (omitting iodide because of its tendency to form I3
- in aqueous solution), 

enhancement increases proportionally with the size of anion. To elucidate the effects of 

co-adsorption of the anions, the intensities of the Raman bands were observed 

immediately after the addition of each salt. The results are reported in Table 1-3. 

Maximum enhancement is observed when the concentration of halide anions is 
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approximately equal to the concentration of the adsorbate. The decrease in intensity when 

the halide concentration is high is assumed to be due to coverage of the SERS active 

regions by anions rather than R6G as described by the chemical and electromagnetic 

mechanisms. Considering the trend in the slopes for the intensity versus time plots for the 

four aromatic modes, shown in Table 1-2, we find remarkable consistency for each anion 

at each concentration in reference to particles without the addition of halides. This leads 

to the assumption that the addition of halides to the R6G – silver nanoparticle solution 

does not change the orientation of the R6G. One indication is the red shift of the Raman 

signals as a function of time. 21 In the absence of halide ions the peaks shifted 

approximately 15 cm-1 after 46 hours, whereas, the same red shift of 15 cm-1 was 

observed after 26 hours with the addition of bromide ions (1.7x10-3 M). 

 

1.5 Conclusion 

We have observed that the range of sizes for Ag particles needed for significant 

SERS enhancement is relatively narrow (± 3 nm) for 647.1 nm excitation. The main 

contribution to enhancement is the electromagnetic mechanism since particles outside the 

range exhibit little or no enhancement. Since the excitation wavelength was invariant we 

attribute the increased SER enhancement with time to be due to particle aggregation. The 

interaction of nanoparticle aggregates could provide an increase of hot spots on the 

surface. The formation of aggregates is supported by TEM images as a function of time. 

Thus the EM mechanism must contribute significantly to the intensity although more 

rigorous studies of the surface morphology need to be conducted to confirm the 
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dependence of this effect. Future work will involve the determination of the optimum size 

of Ag particles for SER enhancement at various excitation wavelengths. 

We have also observed that the effect of halide concentration on SER enhacement 

is related to the concentration of adsorbate. Maximum enhancement is observed when the 

concentration of the halide is approximately equal to that of the adsorbate when 

monitoring the effects of aggregation and co-adsorption on the SER signal. In comparing 

the enhancement provided by various halides (fluoride, chloride and bromide) we have 

also observed a dependence on the size of the anion involved. Furthermore, no variations 

observed in the trends of the slopes of intensity versus time plots with and without the 

presence of halide ions leads to the assumption that the addition of halides does not alter 

the orientation of R6G on the surface. Finally, the degree of aggregation of particles 

without halides present in 46 hours is approximately equal to bromide assisted 

aggregation (.0017M) in 2 hours. 
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  Particle Size (/nm) 

SER Line/cm-1 15 11 8 

1650 23 198 48 

1523 63 243 88 

1365 38 238 77 

1310 37 182 77 
 
Table 1-1. Slopes of the time versus intensity plots for four Raman lines of R6G as a 
function of size of the silver nanoparticles. 
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Raman Line 

 
Salt Concentration 

1310 cm-1 
 
 

1365 cm-1 
 
 

1523 cm-1 
 
 

1650 cm-1 
 
 

No salt 181.8 238.3 242.7 197.9 

F-     

.00017 M 556.5 607.8 782.6 554.3 

.0017 M 522.7 658.5 740.1 574.2 

.017 M 168.4 193.6 206.4 137.1 

Cl-     

.00017 M 1764.5 2078.7 2947.9 1871.1 

.0017 M 2300.4 2716.4 2967.3 2250.3 

.017 M 663.3 880.6 914.6 587.4 

.17 M 643.4 773.5 835.2 587.7 

Br-     

.00017 M 2564.5 2729.3 3588.6 2704.2 

.0017 M 2847.2 3268.3 4908.7 2411.8 

.017 M 1315.8 1337.8 2751.9 1510.1 

.17 M 1045.9 1227.0 1649.4 1111.8 

I-     

.00017 M 1214.2 1450.4 1521.0 937.3 

.0017 M 1718.5 1928.9 2295.7 1528.2 

.017 M 490.3 553.5 595.0 462.2 

.17 M 475.5 483.8 512.3 476.3 
 
Table 1-2. Slopes of the time versus intensity plots for various Raman lines for R6G 
(3.0x10 –4M) adsorbed on 11 nm Ag particles for various halides. The molarities reported 
are the final concentrations of the halide. The addition of  0.17 M F- induced precipitation 
of R6G. 
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Raman Line 

 
Salt Concentration 

1310 cm-1 
 
 

1365 cm-1 
 
 

1523 cm-1 
 
 

1650 cm-1 
 
 

No salt 73.8 91.4 109.8 67.2 

F-     

.00017 M 235.5 299.5 735.9 331.6 

.0017 M 331.6 431.4 825.5 288.8 

.017 M 241.5 305.6 529.2 182.5 

Cl-     

.00017 M 1163.2 1574.0 1943.2 673.8 

.0017 M 2095.5 2927.2 7766.2 1935.9 

.017 M 1673.9 2371.8 4018.3 1717.7 

.17 M 1170.1 1222.8 1441.3 981.3 

Br-     

.00017 M 1329.2 1840.4 2464.5 786.8 

.0017 M 5006.3 6532.5 11290.3 4065.8 

.017 M 2862.7 4006.5 5752.9 2045.4 

.17 M 1138.1 1605.3 2425.1 796.2 

I-     

.00017 M 216.6 342.9 602.3 156.1 

.0017 M 670.9 931.5 1668.5 438.7 

.017 M 267.7 381.8 616.9 157.4 

.17 M 118.6 180.4 429.5 183.0 
 
Table 1-3. Intensities of the Raman peaks measured immediately upon addition of the 
halide to the silver nanoparticles. 
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Figure 1-1. Diagram Diagram of LVCC chamber and photograph showing 532nm light 
striking the metal target inside the chamber. 
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Figure 1-2. Raman spectra (647.1 nm excitation) of R6G (3x10 –4M) on 11 nm Ag 
particles as a function of time (hours). Ethanol peaks are only observed between 2900 
cm-1 and 3000 cm-1. Asterisks indicate which bands are being monitored. 
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Figure 1-3. Plot of normalized intensities of the R6G band at 1650 cm-1 as a function of 
time for 15 nm (◊), 11 nm ( ) and 8nm (∆) diameter Ag particles. Error bars indicate the 
standard deviation of 5 trials. 
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Figure 1-4. Plot of normalized intensities of the R6G band at 1523 cm-1 as a function of 
time for 15 nm (◊), 11 nm ( ) and 8nm (∆) diameter Ag particles. Error bars indicate the 
standard deviation of 5 trials. 
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Figure 1-5. Plot of normalized intensities of the R6G band at 1365 cm-1 as a function of 
time for 15 nm (◊), 11 nm ( ) and 8nm (∆) diameter Ag particles. Error bars indicate the 
standard deviation of 5 trials. 
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Figure 1-6. Plot of normalized intensities of the R6G band at 1310 cm-1 as a function of 
time for 15 nm (◊), 11 nm ( ) and 8nm (∆) diameter Ag particles. Error bars indicate the 
standard deviation of 5 trials. 
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Figure 1-7. TEM images of 11 nm Ag particles as a function of time (hours). Formation 
of aggregates is clearly visible. 
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Figure 1-8. Raman spectra (647.1 nm excitation) of R6G (3.0x10 –4M) on 11 nm Ag 
particles with the addition of chloride ions (1.7x10 -4M) as a function of time (hours). 
Ethanol peaks are only observed between 2900 cm-1 and 3000 cm-1. Asterisks indicate 
which bands are being monitored.   
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Chapter 2 

 
Formation of Cobalt Nitrate Hydrate, Cobalt Oxide, and Cobalt 

Nanoparticles Using Laser Vaporization Controlled Condensation 
 
 

2.1 Introduction 

El-Shall and coworkers have explored producing a variety of metal oxide 

nanoparticles using LVCC by adding oxygen to the reaction chamber.1-14 This  method 

provides insight into the physical chemistry of the formation of these materials. In this 

regard, we attempted to synthesize metal nitrates from a metal target in the presence of 

N2 and O2 at controlled pressures.  

For the first time, we have successfully synthesized cobalt nitrate hexahydrate. 

We have also explored how the ratio of N2 and O2 controls the physical chemistry of the 

various types of cobalt compounds produced. Surprisingly, we could also synthesize 

cobalt oxide (CoO) nanoparticles. It is important to mention that pure CoO cannot be 

synthesized easily by a simple chemical route since this approach typically produces a 

mixture of Co3O4 with small amounts of CoO. Our objective is to optimize the conditions 

to synthesize pure CoO nanoparticles and other related cobalt compounds. This chapter 

describes the LVCC method for the synthesis of cobalt nitrate hydrate, cobalt oxide, and 

cobalt nanoparticles produced high a purity cobalt metal target at various N2 and O2 

pressures.  
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2.2 Experimental 

The cobalt metal target material (99.9%) was purchased from Alpha Aesar (Ward 

Hill, MA). The N2 (99%) and O2 (99%) were obtained from Air Gas (Westover, WV) and 

used without any further purification. LVCC, as described in Chapter 1, was used to 

synthesize the various particles. Altering the laser power, chamber pressure, and 

temperature gradient between the two plates formed particles of various sizes. The size 

and shape of the particles were determined using a JEOL 1220 transmission electron 

microscopy (TEM) operating at 80 Kev. X-ray diffraction (XRD) patterns of the powder 

sample were measured at room temperature with a Rigaku Diffractometer (DMAX-B) 

using CuKα radiation (λ = 1.5418 Å). The samples were mounted on a silicon plate for X-

ray measurements. IR spectra were obtained using a MIDAC M2000 series FT-IR (Costa 

Mesa, CA). 

 

2.3 Results and Discussion  

Numerous experiments were completed with various the O2 and N2 pressures in 

the chamber in order to obtain various compounds of cobalt. As a technique, LVCC has 

been used to make metal oxides of semiconductor powders. In our experiments it has 

been demonstrated that various compounds of cobalt are formed by simply varying the 

O2 and N2 ratios. Moreover the physical chemistry of the cobalt nitrate is intriguing. The 

cobalt metal vapor formed via the laser simply reacts with the N2 and O2 to produce 

cobalt nitrate.   

The nanoparticles generated in pure nitrogen are primarily cobalt and are also the 

primary product at low concentrations of O2 (below 0.3%; Figure 2-1). It is evident from 
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the XRD pattern that cobalt nanoparticles are produced due to the peaks at scattering 

angles (2θ) at 44.31 and 51.65 which are assigned to scattering from the 111 and 200 

planes of the cobalt crystal lattice.15 This would indicate that nanoparticles having the 

same crystal structure as bulk cobalt have been formed. When the percentage of O2 is 

increased to 2.3% we begin to observe the formation of cobalt oxide (CoO) together with 

trace amounts of cobalt as confirmed by XRD (Figure 2-2). The CoO peaks are observed 

at scattering angles 36.53, 42.41 and 61.64 and are assigned to scattering from the 111, 

200, and 220 planes of the CoO crystal lattice.15 The trace amounts of cobalt disappear as 

the O2 concentration is increased to 3% (Figure 2-3). It is also observed that the 

nanoparticles of CoO possess the same crystal structure as bulk CoO. The approximate 

crystallite size for the CoO was 4 nm determined via TEM (Figure 2-4). This is a 

significant result since the commercially available CoO (Alfa-Aesar) has mixed oxide 

phases as indicated by X-ray diffraction (Figure 2-5). Strong peaks are observed at 2θ 

angles 31.63, 36.64, 38.90, 45.10, 56.01, 59.71 and 65.50 that can be assigned to 

scattering from the 111, 200, 222, 400, 422, 511 and 533 planes, respectively, of the 

CoCo2O4 crystal lattice.15 

Formation of a mixture of cobalt nitrate tetrahydrate and cobalt oxide is observed 

when the percentage of O2 is raised to 6.6% (Figure 2-6). The h, k and l indicies are not 

indicated for cobalt nitrate tetrahydrate as they are not available in the database (PDF 43-

1004).15 It is believed that hydrates are observed due to the presence of residual moisture 

that is present when the nanoparticles are formed. Surface moisture probably is present in 

the chamber even after the chamber was evacuated and purged repetitively with 

nitrogen.16,17 Cobalt oxide peaks continue to diminish as the O2 concentration is increased 
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to the 33-50% range. The primary product is cobalt nitrate hexahydrate in this case 

shown in Figure 2-7. For completeness, the standard crystallographic peak assignments 

for the XRD pattern are given in Table 2-1 and indicates that cobalt nitrate hexahydrate 

produced via LVCC possess the same crystal structure as its bulk counter part.15 For 

comparison, the XRD pattern of cobalt nitrate hexahydrate, purchased from Aldrich, was 

collected (Figure 2-8) and compared to cobalt nitrate hexahydrate produced via LVCC. It 

is significant to note that the two spectra possess some significant differences. 

Specifically, the XRD for cobalt nitrate produced via LVCC (Figure 2-7) contains a peak 

at 2θ angle of 19 and the presence of peaks 24.48 and 41.78 2θ (indicated by *’s in the 

XRD spectrum) in the Aldrich sample which may be due to other hydrate phases present 

in the sample. 

We have summarized the results in Table 2-2 indicating all the reaction conditions 

responsible for the products that are produced at various concentrations of O2 and N2. It 

should be noted that the number of water molecules coordinated to the metal nitrate 

hydrate change as the ratio of oxygen changes. This can be explained by the amount of 

oxygen available in the chamber. When oxygen is present in the 3 to 33% range the 

amount of cobalt oxide surrounding the cobalt nitrate can vary significantly. In this range, 

the number of water molecules in contact with cobalt nitrate may be controlled by the 

amount of CoO which depends on the ratio of oxygen to nitrogen. Thus, oxygen plays a 

major role in the production of cobalt oxide and cobalt nitrate hydrate as well as the 

number of water molecules bound to the latter. It is important to note that (vide supra) the 

major product was cobalt nitrate hydrate with a maximum of six water molecules for the 

33-50% oxygen range.  
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Figure 9 compares the IR spectra of cobalt nitrate hexahydrate formed by LVCC 

and cobalt nitrate hydrate purchased from Aldrich. The nitrate group has six normal 

vibrations that are IR active. These are the antisymmetric stretching v4 (A’), symmetric 

stretching v1 (A’), totally symmetric stretching v2 (A’), out of plane bending v6 (A’’), 

antisymmetric in-plane bending v5 (A’) and the symmetric in-plane bending v3 (A’) 

observed at 1629, 1388, 1052, 870, 729 and 664 cm-1 respectively.18,19,20 The broad peak 

at 3500 cm-1 is indicative of moisture and the cluster of peaks at 2400 cm-1 can be 

assigned to CO2. No significant differences were observed in the spectra which again 

confirm the formation of cobalt nitrate hexahydrate. 

One possible explanation for the formation of the cobalt nitrate hexahydrate is the 

high temperature generated at the metal surface by the laser. This could provide enough 

energy to form NO from N2 and O2. The NO could then react with O2 to form NO2 (a 

brown gas; such a gas was observed in the chamber within minutes of turning on the 

laser). NO2 in the presence of O2 could then react with the metal vapor to produce the 

resulting metal nitrate.21 It is also important to indicate that the resulting product was 

Co3O4 when nitrogen was replaced by helium or argon. This is similar to chemical 

methods, where optimum conditions to produce CoO were not successful.  

 

2.4 Conclusion 

The results reported here clearly indicate that nanoparticles of cobalt, cobalt 

oxide, and cobalt nitrate hydrate were generated via LVCC by controlling the ratio of N2 

to O2 present in the reaction chamber. Nanoparticles of cobalt can be synthesized in pure 

nitrogen and at low levels of O2 since the metal vapor produced is cooled through 
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collisions with N2 before it can interact with O2. As the concentration of O2 increases 

(0.3% – 2%) the metal vapor is able to interact with oxygen before the energy necessary 

for binding is quenched. The formation of only cobalt oxide (CoO) could be achieved by 

keeping the O2 ratio at 2.7%. When the O2 ratio was increased to the range 33-50% the 

resulting product was found to be cobalt nitrate hydrate with six water molecules. Work 

is in progress to further understand such processes with other metals such as Ni, Fe, and 

Mn and to produce various particle sizes of the metal mono oxides by varying laser 

power, chamber pressure, temperature gradient, etc. 
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2-Theta h k l 

15.1 0 0 2 
15.84 -2 0 2 
16.28 0 1 1 
19.1 -2 1 1 
23 2 1 1 

23.91 2 0 2 
25.34 -4 0 2 

26 -2 1 3 
27.06 0 1 3 
28.15 -2 0 4 
29.09 0 2 0 
30.54 0 0 4 
31.51 1 2 1 
32.1 -2 2 0 
32.84 0 2 2 
33.24 -2 2 2 
34.26 4 1 1 
38.42 -2 1 5 
38.97 -4 2 2 
40.46 -4 1 5 
40.95 -2 2 4 
41.07 6 0 0 
41.32 0 1 5 
42.76 0 2 4 
43.06 -2 0 6 
43.93 -4 0 6 
46.66 0 0 6 
48.4 2 1 5 
48.73 2 2 4 
49.67 6 0 2 
53.23 -4 1 7 
58.37 -4 0 8 
63.65 0 0 8 

 
Table 2-1. Standard crystallographic peak assignments for cobalt nitrate hexahydrate 
produced via LVCC. 
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% O2 Products # of 

coordinated 
H2O’s 

0.3 Co - 
1.7 CoO / Co - 
2.3 CoO / Co - 
2.7 CoO - 
3 CoO / 

CoNO3OH 
1 

6.6 Co(NO3)2 / 
CoO 

4 

20 Co(NO3)2 / 
CoO 

4 

33 Co(NO3)2 6 
50 Co(NO3)2 6 

 
Table 2-2. Percent oxygen in the LVCC chamber related to the primary products and 
number of waters coordinated to the metal nitrate hydrate. 
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Figure 2-1. XRD pattern showing cobalt (PDF 15-0806) as the primary product formed 
when the ratio of O2 to N2 is 0.3%. The bracketed numbers indicate the cobalt crystal 
lattice planes giving rise to each line. 
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Figure 2-2. XRD pattern showing the decrease of cobalt ;(PDF 15-0806) and the 
formation of cobalt oxide ;(PDF 43-1004) when the ratio of O2 to N2 is 2.3%. 
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Figure 2-3. XRD pattern showing cobalt oxide (PDF 43-1004) as the primary product 
formed when the ratio of O2 to N2 is 3%. 
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Figure 2-4. TEM image of CoO nanoparticles. The average particle size was calculated to 
be ~ 4nm. 
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Figure 2-5. XRD pattern showing Alfa Aesar 95% CoO exhibiting mixed oxide phases 
referenced to CoCo2O4 ;(PDF 01-1152) and CoO ; (PDF 43-1004). 
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Figure 2-6. XRD pattern showing a mixture of cobalt oxide (PDF 43-1004) and cobalt 
nitrate tetrahydrate (PDF 18-0425) produced when the ratio of O2 to N2 is 6.6%. 
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Figure 2-7. XRD pattern showing cobalt nitrate hexahydrate (PDF 25-1219) as the 
primary product formed when the ratio of O2 to N2 is 50%. 
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Figure 2-8. XRD pattern showing cobalt nitrate hexahydrate (PDF 25-1219) purchased 
from Aldrich. The asterisks indicate peaks not matching with the database.  
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Figure 2-9. Comparison of the infrared spectra of cobalt nitrate hydrate purchased from 
Aldrich (A) and that synthesized by LVCC (B). The nitrate normal vibrations are the 
NO3

-  symmetric stretching mode (v1), totally symmetric stretching mode (v2), symmetric 
in-plane bending mode (v3), antisymmetric stretching mode (v4), antisymmetric in-plane 
bending mode (v5) and the out of plane bending mode (v6).  
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Summary of Part I 
 

A surfaced enhanced Raman spectroscopic investigation of the aggregation of 

silver nanoparticles formed via laser vaporization controlled condensation (LVCC) was 

undertaken. Using Rhodamine 6G as the adsorbate, nanoparticles with diameters in the 

range 5 to 50 nm were studied with the results from 8nm, 11nm and 14nm diameter 

particles reported to highlight the effects of particle size and halide ion concentration on 

particle aggregation. It was found that with 647.1 nm excitation maximum enhancement 

is observed using particles with 11nm diameters.  Aggregates formed from particles of 

this size also exhibit significantly greater enhancements compared to aggregates formed 

from the other size particles. Upon addition of sodium salts enhancement is proportional 

to the size of the anion for F, Cl, and Br. Maximum enhancement was observed when 

the concentration of the anion was approximately equal to the concentration of the 

adsorbate. These observations are explained in terms of electromagnetic contributions to 

the enhancement. 

We also report for the first time the synthesis of cobalt nitrate hexahydrate, cobalt 

oxide, and cobalt particles formed from a high purity cobalt metal by a novel LVCC 

method under controlled pressures of N2 and O2. The metal vapor produced from a cobalt 

target in the presence of 50% N2 and 50% O2 results in the formation of cobalt nitrate. 

We also explored the possibilities of forming cobalt oxide and cobalt nanoparticles by 

altering the ratio of N2 and O2 present. The synthesis of pure cobalt oxide (CoO) 

nanoparticles is of importance and challenging since no simple chemical route is known. 

We believe that this work will be significant since the present method is promising as a 

general method for synthesis of metal mono oxides.



 42

 

Part II 

 
VARIOUS SOL-GEL SYNTHESES OF TRANSISTION METAL 

DOPED TITANIUM DIOXIDE AND ZINC OXIDE  
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Chapter 3 
 

Controlled Transformation of Paramagnetism to Room-Temperature  

Ferromagnetism in Cobalt-Doped Titanium Dioxide 

 

3.1 Introduction  

Recent reports1-4 of room temperature ferromagnetism (RTFM) in cobalt doped 

titanium dioxide thin films, for both the anatase and rutile phases, have attracted a great 

deal of interest primarily for the use of such materials in spintronics. However the cause 

of this RTFM remains controversial since more recent reports5-8 have indicated the 

presence of cobalt nanoparticles in the thin films prepared by sputtering and pulsed laser 

depositions. This raises the serious possibility that the observed RTFM could be due to 

undetected Co nanoparticles, which, because of the high Curie temperature of bulk cobalt 

(Tc ≃ 1388 K), could easily account for the observations. It was recently reported9 that 

10% cobalt-doped TiO2 anatase films prepared by a different technique, viz. spray 

pyrolysis, are paramagnetic at room temperature. The temperature dependence of the 

magnetic susceptibility (χ) of the sample followed the Curie-Weiss behavior, viz. χ = χ0 

+ C/(T - θ), with θ ≃ -5 K and it was noted that for T < 5 K, a hysteresis loop was 

observed.   

We have prepared a 10% Co/TiO2 (anatase) powder by a sol-gel technique. 

Magnetic studies show that the sample is paramagnetic at room temperature and follows 

a similar Curie-Weiss law.  However, by controlled hydrogenation of this sample at 573 

K, the paramagnetic 10% Co/TiO2 is transformed to a ferromagnet with a Curie-
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temperature Tc ≃ 470 K. This occurs without any observable change in the crystal 

structure as revealed by x-ray diffraction (XRD).  High resolution transmission electron 

microscopy (TEM) studies of the hydrogenated sample failed to detect the presence of 

any cobalt nanoparticles. 

  

3.2 Experimental 

Samples of 1, 5, and 10% Co/TiO2 were prepared by mixing (reacting) 

appropriate amounts of titanium isopropoxide (Aldrich, Milwaukee, WI) and cobalt 

nitrate (Aldrich) in ethanol.  The solution was dried at 80oC and the resultant powder was 

heated at 750 K for 1 hr yielding a dark-green sample.  X-ray diffraction of these 

powders confirmed the anatase form of TiO2, with only a trace amount of the rutile phase 

(Figures 3-1 to 3-3). Part of the powder was used for magnetic measurements and the 

remaining used for 1, 3 and 6 hrs of hydrogenation carried out at 573 K.  The hydrogen 

reduction set-up consisted of a tubular furnace kept inside a continuously vented hood. 

The sample was contained in an open glass boat and was placed inside the tubular 

furnace with H2 gas passed over the sample at 573 K with the help of a gas flow control 

unit. Temperature and magnetic field variations of the magnetization (M) of these four 

samples were then measured using a commercial superconducting quantum interference 

device magnetometer (SQUID).   

  

3.3 Results and Discussion 

The temperature dependence of χ for the as-prepared samples (prior to 

hydrogenation) for 1% Co/TiO2 is shown in Figure 3-4 where the solid line is fit to the 
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Curie-Weiss law: χ = χ0 + C/(T - θ). This dependence is similar to the one reported for 

the sample prepared by spray pyrolysis.9 From the Curie-constant C = 2.5 × 10-4 (emu-

K/gOe) (C = Nµ2/3kB with N being the number of magnetic ions/g, kB = Boltzmann 

constant and µ = magnetic moment), µ(Co2+) = 4.0 µB is obtained.  This magnitude of µ 

is consistent with the high spin state of Co2+, assuming that Co2+ substitutes for Ti4+ in 

the anatase unit cell for 1% cobalt doping with the balance of the charge compensated for 

by O2.  After hydrogenation at 573 K, the sample retains its paramagnetic behavior as 

shown in Figure 3-5 (with a similar µ).  

The as-prepared sample of 5% Co/TiO2 displays paramagnetic behavior similar to 

that of 1% Co/TiO2 with µ = 4.0 µB (Figure 3-6). However, after hydrogenation for 3 

hours at 573 K the sample displays room temperature ferromagnetism as indicated by χ 

vs T (Figure 3-7) and M vs H (Figure 3-8) plots. The temperature variation of the 

magnetic susceptibility and the magnetization are also indicative of RTFM for the sample 

hydrogenated for 6 hours as shown in Figures 3-9 and 3-10. The absence of a peak in χ 

for the zero-field cooled (ZFC) cases, which is a signature of the blocking temperature 

(TB) for cobalt as reported recently for the thin films of Co/TiO2 prepared by sputtering6, 

provides additional assurance for the absence of cobalt nanoparticles in our samples. The 

reported TB values of Co nanoparticles of different sizes are: TB ≃ 20K (3 nm), TB ≃ 50 

K (6 nm), TB ≃ 100 K (8 nm) and TB ≃ 260 K (11 nm)10,11. Again, it is significant to note 

that hydrogenation does not appear to affect the crystal structure since no significant 

differences are observed in the XRD patterns of the four samples (Figure 3-2).  From the 
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widths of the XRD lines, the average particle size of the anatase phase is ≃ 10(±2) nm, 

without any major changes upon hydrogenation. 

The temperature variation of χ for the as-prepared samples for 10% Co/TiO2 is 

shown in Figure 3-11. It is significant to note that temperatures in Figure 3-11 are plotted 

on a log scale in order to show the details of the χ vs. T behavior at lower temperatures. 

After hydrogenation at 573 K, the sample acquires RTFM. Figure 3-12 shows the 

hysteresis loop measured at 350 K for the 6 hour sample. Hysteresis loops were measured 

for the 1, 3 and 6 hr. hydrogenated samples. Figure 3-13 shows the temperature variation 

of the remanance Mr (M at H = 0) from 5 K to 350 K for the 1, 3 and 6 hrs. samples 

(measurements for T > 350 K could not be made because of experimental limitations). 

The variations of Mr vs T are typical of a ferromagnet, with Tc ≃ 470 K determined by 

extrapolating the Mr data to Mr = 0 (Figure 3-13).  The primary effect of increasing the 

hydrogenation time from 1 to 6 hrs is to increase Mr, demonstrating a similar source of 

the RTFM for the three samples.  This is further confirmed by the temperature variation 

of the coercivity which extrapolates to zero at Tc ≃ 470K (Figure 3-14).  Thus it appears 

that with increase in the hydrogenation time, more of the sample is transforming to a 

ferromagnet. In the extrapolations shown in Figures 3-13 and 3-14, a similar Tc is 

determined for the 1, 3 and 6 hrs. samples, although the extrapolations are clearly  

approximate since Mr and Hc are often non-linear on their approach to Tc. Thus an 

increase in Tc with increase in hydrogenation time is not ruled out by the data in Figs. 13 

and 14. Finally, we measured χ vs. T for the 6 hrs sample under zero-field-cooled and 

field-cooled conditions (Figure 3-15). 
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 In light of the recent reports about the presence of Co nanoparticles in Co/TiO2 

films prepared by sputtering in different partial pressures of oxygen,5,8 we employed 

several characterization techniques in addition to XRD to check for Co nanoparticles in 

our samples. X-ray Photoelectron Spectroscopy (XPS) of the as-prepared and the 6 hr. 

hydrogenated samples indicated that neither Ti nor Co are in their metallic states. For the 

hydrogenated sample, the Ti2p peaks were observed at 457.5 eV and 463.2 eV and the 

Co2p peaks at 779.5eV and 795.2 eV. The corresponding values for the as-prepared 

samples were 458.1 eV and 463.8 eV for Ti2p and 780.5 eV and 796.2 eV for Co2p.  

These magnitudes indicate 2+ and/or 3+ states of Co and 2+ and/or 4+ states for Ti (the 

metallic Co2p peak position should be at 778.3 eV). High resolution TEM studies of the 

hydrogenated samples clearly showed particles of about 10 nm whose Energy Dispersive 

X-ray (EDX) spectra yielded the presence of Co, Ti and oxygen, again ruling out the 

presence of metallic cobalt. Also, no exchange bias could be detected at 5K for the 6 hrs 

sample when cooled from 300K to 5K in H = 20 kOe. This indicates the absence of a 

ferromagnetic/antiferromagnetic interface (e.g. Co/CoO) in the system12.  

 

3.4 Conclusion 

 It has been suggested that oxygen vacancies near cobalt in Co-doped TiO2 are 

essential to provide the exchange coupling between cobalt ions which leads to intrinsic 

RTFM13.  This was the motivation for the hydrogenation experiments, since H2 is likely 

to extract oxygen from the sample thus producing oxygen vacancies. From the 

experiments described above, we were unable to detect the presence of cobalt 

nanoparticles, thus suggesting the intrinsic nature of RTFM in our hydrogenated samples. 
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Additional experiments such as accurate measurements of electrical conductivity as a 

function of hydrogenation time would be useful to confirm these observations. 
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Figure 3-1. X-ray diffraction patterns of the as-prepared (0 hrs) sample of 1% Co/TiO2 
and the sample hydrogenated for 3 and 6 hrs. at 573 K.  The expected line positions for 
the anatase phase are shown. 
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Figure 3-2. X-ray diffraction patterns of the as-prepared (0 hrs) sample of 5% Co/TiO2 
and the sample hydrogenated for 3 and 6 hrs. at 573 K.  The expected line positions for 
the anatase phase are shown. 
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Figure 3-3. X-ray diffraction patterns of the as-prepared (0 hrs) sample of 10% Co/TiO2 
and the sample hydrogenated for 1, 3 and 6 hrs. at 573 K.  The expected line positions for 
the anatase ; and rutile ; phases are shown. 
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Figure 3-4. Temperature dependence of the magnetic susceptibility (χ) of the as-prepared 
sample of 1% Co/TiO2.  The solid line is fit to the equation shown. The magnetic field 
applied was 500 Oe. 
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Figure 3-5. Temperature dependence of the magnetic susceptibility (χ) of the as-prepared 
sample of 1% Co/TiO2 hydrogenated at 573K for 6 hours.   The solid line is fit to the 
equation shown. 
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Figure 3-6. Temperature dependence of the magnetic susceptibility of the as-prepared 
sample of 5% Co/TiO2.  The solid line is fit to the equation shown. 
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Figure 3-7. Temperature variation of the magnetic susceptibility of the 5% Co/TiO2 
hydrogenated at 573 K for 3 hr. under zero-field-cooled and field-cooled conditions. 
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Figure 3-8. M vs H variation of 5% Co/TiO2 hydrogenated for 3 hours measured at 300 K 
(A) and an expanded view (B). 
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Figure 3-9. Temperature variation of the magnetic susceptibility of the 5% Co/TiO2 
hydrogenated at 573 K for 6 hr. under zero-field-cooled and field-cooled conditions. 
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Figure 3-10. M vs H variation of 5% Co/TiO2 hydrogenated for 6 hours measured at  
300 K. (A) and an expanded view (B). 
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Figure 3-11. Temperature dependence of the magnetic susceptibility of the as-prepared 
sample of 10% Co/TiO2.  The solid line is fit to the equation shown.   
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Figure 3-12. M vs H variation of 10% Co/TiO2 hydrogenated for 6 hours measured at  
300 K. (A) and an expanded view (B). 
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Figure 3-13. Temperature variation of the remanance (Mr) of 10% Co/TiO2 hydrogenated 
for 1, 3 and 6 hours at 573 K.  The dotted lines are extrapolations, indicating Tc ≃ 470 K 
where Mr goes to zero.  
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Figure 3-14. Temperature variation of the coercivity (Hc) of 10% Co/TiO2 hydrogenated 
for 1, 3 and 6 hrs. at 573 K.  The dotted lines are extrapolations, indicating Tc ≃ 470 K 
where Mr goes to zero. 
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Figure 3-15. Temperature variation of the magnetic susceptibility (χ) the of 10% Co/TiO2 
sample hydrogenated at 573 K for 6 hr. under zero-field-cooled and field-cooled 
conditions. 
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Chapter 4 
 

Novel Sol-Gel Synthesis and Magnetic Studies of Titanium Dioxide 
Doped with 10% M (M = Fe, Mn & Ni) 

 
 

4.1 Introduction 

Titanate nanoparticles have been extensively studied for applications in 

photocatalysis, optical coatings, and opto-electronic devices.1-7 The properties of the 

titinate nanoparticles can be tuned by adding dopants to the lattice. Experiments have 

shown that transition metal doped titanium dioxide can be produced in a variety of ways 

including pulse laser deposition, sputtering, molecular-beam epitaxy, and sol-gel 

techniques. Typically, sol-gel methods are employed since they offer the advantages of 

small particle size and high purity.8-11 

Currently, room-temperature ferromagnetism (RTFM) in cobalt doped TiO2 has 

attracted significant attention since the cause of the RTFM is under debate.12-17 One 

explanation (as  noted previously) is that undetected cobalt particles could readily 

account for the RTFM due to the high Curie temperature of bulk cobalt (Tc = 1388 

K).18,19 Another possibility is that cobalt atoms substitute for titanium atoms and the 

exchange interaction between the substituted n-type carriers induces ferromagnetism.20,21 

Lastly, ferromagnetism could be achieved by cobalt atoms occupying the interstitial 

positions in the lattice.22 

Recent reports have shown that 10% Co/TiO2 prepared by sol-gel synthesis is 

paramagnetic at room temperature with the magnetic suspectability following the Curie-

Weiss law.23,24 However, by controlled hydrogenation of this sample at 573 K, the 

paramagnetic 10% Co/TiO2 is transformed to a ferromagnet with a Curie-temperature Tc 
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≃ 470 K. This transformation occurs without any observable change in the crystal 

structure as revealed by x-ray diffraction. It has also been shown that increasing the time 

of hydrogenation from 1 to 6 hours increases the remanance. XPS and TEM studies of the 

hydrogenated sample failed to detect the presence of any cobalt nanoparticles.  

That study has been extended to include other transition metals, namely Fe, Mn 

and Ni doped into TiO2. It has been suggested by Park and co-workers that when these 

metals dope into TiO2 the resulting material may be suitable for spintronic 

applications.25,26 The present work focuses on the synthesis and characterization of 

various metal doped TiO2 nano-crystaline powder prepared by a simple sol-gel route.  

 

4.2 Experimental: 

Samples of 10% M doped TiO2 (where M = Fe, Mn and Ni) were prepared by 

mixing (reacting) appropriate amounts of titanium isopropoxide (Aldrich, Milwaukee, 

WI) and  each metal nitrate (Aldrich) in ethanol.  The solution was dried in an oven at 

353 K and the resultant powder was placed into a furnace at 723, 743, and 723 K for Fe, 

Mn, and Ni, respectively, for 5 min.  Parts of these powders were used for magnetic 

measurements and the remaining used for 3 and 6 hour hydrogenations carried out at 573 

K.  The hydrogen reduction set-up was described in Chapter 3. 

X-ray diffraction (XRD) patterns of the powder sample were measured at room 

temperature with a Rigaku Diffractometer (DMAX-B) and CuKα radiation (λ = 1.5418 

Å). The samples were mounted on a silicon plate for X-ray measurements. Temperature 

and magnetic field variations of the magnetization (M) of the samples were measured 

using a commercial SQUID magnetometer (Quantum Design).   
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4.3 Results and Discussion: 

 X-ray diffraction (XRD) of the powders confirm the anatase form of TiO2, with 

only a trace amount of the rutile and/or brookite phases in the as-prepared samples as 

shown in Figures 4-1 (A), 4-2 (A) and 4-3 (A). This is significant since other methods of 

producing samples of similar percentages of dopant do not show a single phase of TiO2. 

Optimization of the temperature used for calcination is critical since deviations from the 

above stated temperatures resulted in the appearance of either amorphous (lower 

temperatures) or rutile (higher tempatures) phases. From the widths of the XRD lines, the 

average particle size of the anatase phase is 10±2 nm without any major changes upon 

hydrogenation. 

 The results of the hydrogenation are shown in Figure 4-1 (B, C), 4-2 (B, C), and 

4-3 (B,C). Figure 4-1 illustrates that Fe is doped into the TiO2 lattice upon calcination 

and remains doped within the lattice after hydrogenation. Figure 4-2 shows that Mn is 

doped within the lattice when hydrogenated for 3 hours, but that MnO2 is present after 

hydrogenating for 6 hours. Figure 4-3 shows that metallic Ni is detected after 

hydrogenation in both the 3 and 6 hour samples. Alteration of the temperature and 

duration of hydrogenation has yet to produce a single phase. 

The temperature variation of χ for the as-prepared 10% M / TiO2 (prior to 

hydrogenation) is shown in Figures 4-4, 4-5, and 4-6 where the solid line is the fit to the 

Curie-Weiss Law. From the Curie-constant, as previously described in Chapter 3, µ 

values for the as-prepared 10% Fe, Mn and Ni (prior to hydrogenation) are shown in 

Table 4-1.  
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A previous report has shown that 10% Co/TiO2 acquires RTFM after 

hydrogenation at 573 K. This was confirmed by measuring χ vs. T for the 6 hr sample 

under zero-field-cooled (ZFC) and field-cooled (FC) conditions. The absence of a peak in 

χ for the ZFC cases, which is a signature of the blocking temperature (TB) for cobalt as 

reported recently for the thin films of Co/TiO2 prepared by sputtering15, provides 

additional support for the absence of cobalt nanoparticles in our samples. 

 Hydrogenation of 10% Ni/TiO2 resulted in the presence of metallic nickel in the 

XRD pattern. The presence of metallic nickel was also confirmed by measuring χ vs. T 

under ZFC conditions. It is evident in Figure 4-7 that the ZFC condition displays a 

blocking temperature of 21 K indicative of metallic nickel. However, metallic peaks were 

not present in the iron and manganese samples after hydrogenation. The results of 

measuring χ vs. T can be summarized as follows. While the XRD patterns of 

hydrogenated 10% manganese confirmed that metallic manganese was not present in the 

3 hour hydrogenated sample, χ vs. T measurements showed only paramagnetic behavior 

similar to the as-prepared sample. The data was fit to the Curie-Weiss Law and the 

calculated µ = 2.9 µB for the 3 hour hydrongenated sample shows little deviation from the 

as-prepared samples. The χ vs. T measurements for the 6 hour hydrogenated sample 

exhibited significantly higher χ values and did not display Curie-Weiss behavior (Figure 

4-8). The M vs H data indicates room temperature ferromagnetism which may arise from 

the presence of MnO2 as observed in the XRD pattern (Figure 4-9). The magnetic 

moment calculated for 10% Fe/TiO2 hydrogenated for 3 hours was 4.0 µB, also 

comparable to the as-prepared sample. Conversely, χ vs. T measured for 10% Fe/TiO2 

hydrogenated for 6 hours resulted in ferromagnetic behavior as shown in Figure 4-10. 
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The absence of a peak in χ for the ZFC case, signature for the blocking temperature (TB) 

for iron, confirms that iron is doped into the lattice. It has been reported that the TB 

values of iron nanoparticles of different sizes are TB ≈ 230K (5 nm), TB ≈ 150K (4 nm) 

and TB ≈ 120K (3 nm).26 Figure 4-11 shows M vs H for the 10% Fe/TiO2 sample. The 

hysteresis loop observed at room temperature is indicative of ferromagnetism. The values 

of Mr and Hc were found to be .054 (emu/g) and -301.7 (Oe) respectively.  

 

4.4 Conclusion 

 In summary, we have reported the 10% M-doped TiO2 powders successfully 

prepared via sol-gel synthesis and controlled calcinations. XRD for M-doped TiO2 

indicate the formation of single phase without any impurities which are paramagnetic. It 

has been suggested that oxygen vacancies are essential to provide the exchange coupling 

between the doped ions thus leading to intrinsic RTFM.27 As stated in Chapter 3, we have 

shown that hydrogen reduction is necessary to convert the magnetic nature of 10% 

Co/TiO2 from paramagnetic to ferromagnetic. This transformation may be due to 

hydrogen extracting oxygen from the sample thus producing oxygen vacancies. The 

generation of oxygen vacancies via hydrogenation may explain the conversion of the 

paramagnetic behavior for 10% Fe/TiO2 to RTFM. 
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Sample C / (emu-K / g / Oe) µ / µB 

10% Co / TiO2 2.6*10-3 4.1 

10% Fe / TiO2 2.0*10-3 3.6 

10% Mn / TiO2 1.0*10-3 2.5 

10% Ni / TiO2 1.6*10-3 3.2 
 
Table 4-1. Magnetic moments calculated from the Curie-constants for transition metal 
doped TiO2. 
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Figure 4-1. XRD pattern showing 10% Fe/TiO2 as-prepared (A) and hydrogenated for 3hr 
(B) and 6hr (C). The expected line positions for the anatase, rutile, and brookite phases 
are shown. 
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Figure 4-2. XRD pattern showing 10% Mn/TiO2 as-prepared (A) and hydrogenated for 
3hr (B) and 6hr (C). The expected line positions for the anatase, rutile, brookite, and 
manganese oxide phases are shown. 
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Figure 4-3. XRD pattern showing 10% Ni/TiO2 as-prepared (A) and hydrogenated for 2hr 
(B) and 6hr (C). The expected line positions for the anatase, rutile, brookite, and nickel 
phases are shown. 
 

 

2-Theta / (o) 



 75

0 100 200 300 400

0

1

2

3

4
χ (emu / g Oe) = 8.7*10-6 + 2.0*10-3 / (T + 4.2)

 

 

χ 
/ (

10
-4
 e

m
u 

/ g
 O

e)

T / (K)

 10% Fe/TiO2

Figure 4-4. Temperature dependence of the magnetic susceptibility (χ) of the as-prepared 
10% Fe/TiO2. The solid line is fit to the equation shown. 
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Figure 4-5. Temperature dependence of the magnetic susceptibility (χ) of the as-prepared 
10% Mn/TiO2. The solid line is fit to the equation shown. 
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Figure 4-6. Temperature dependence of the magnetic susceptibility (χ) of the as-prepared 
10% Ni/TiO2. The solid line is fit to the equation shown. 
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Figure 4-7. Temperature dependence of the magnetic susceptibility (χ) of the as-prepared 
10% Ni/TiO2 hydrogenated for 2 hours under zero-field-cooled and field-cooled 
conditions. 
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Figure 4-8. Temperature dependence of the magnetic susceptibility (χ) of the as-prepared 
10% Mn/TiO2 hydrogenated for 6 hours under zero-field-cooled and field-cooled 
conditions. 
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Figure 4-9. M vs H variation of 10% Mn/TiO2 at 300 K (A) and an expanded view (B). 
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Figure 4-10. Temperature variation of the magnetic susceptibility (χ) of 10% Fe/TiO2 
hydrogenated for 6 hours under zero-field-cooled and field-cooled conditions. 
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Figure 4-11. M vs H variation of 10% Fe/TiO2 at 300 K (A) and an expanded view (B). 
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Chapter 5 
 
Novel Room-Temperature Syntheis and Characterization of M-Doped 

ZnO (M = Co, Cr, Fe, Mn & Ni) 

 

5.1 Introduction 

In the last decade, zinc oxide (ZnO) has been utilized in a wide range of 

applications such as catalysis, optical materials, functional devices, cosmetics and UV-

absorbers. 1-3 Recently, there has been a great deal of interest in cobalt-doped ZnO for 

possible applications in spintronics. 4-11 A number of methods, such as sputtering, 

chemical vapor deposition, and sol-gel are commonly employed for preparation of these 

materials. In most of these methods, the nature of the produced material is amorphous 

and an additional high-temperature processing step is required in order to obtain 

crystallinity. However, high temperature processes can lead to significant side-effects 

such as the formation of multiple phases. Recently, mechanochemical processing has also 

been applied as a low temperature technique for a wide range of nanoparticulate materials 

involving activation of solid-state displacement reactions in a ball mill.12 We have 

developed a simple room temperature synthesis of pure and M-doped crystalline ZnO 

nanoparticles (where M = Co, Cr, Fe, Mn and Ni) by a sol-gel method.  

 

5.2 Experimental 

 A 1 M solution of zinc nitrate or acetate solution (Aldrich 99%) was reacted with 

a 3 M aqueous solution of NaOH so that the final pH of the solution was 12. The reaction 

mixture was left overnight and the precipitate allowed to settle at the bottom. The clear 
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solution was removed and replaced with water, stirred, and left for 3-5hrs. This process 

was repeated until the pH of the solution was 7. Finally, the precipitate was dispersed in 

ethanol and dried under vacuum. For doping, the appropriate amounts of indicated metal 

nitrate were added to zinc nitrate solution until the concentration of the dopant was 5%. 

In the above reaction, a zinc hydroxy nitrate complex is first precipitated and  then it 

slowly transforms into ZnO, NaNO3 and water according to the following equations. The 

NaNO3 was removed by washing the sample with water. 

 

Zn(NO3)2 + NaOH  Zn(NO3)(OH) + NaNO3      -----------  (1) 

Zn(NO3)(OH) + NaOH  ZnO + NaNO3 + H2O -----------  (2)  

 

 Part of the powder samples were used for hydrogenation experiments. The 

hydrogen reduction set-up was described in Chapter 3. The Raman set-up used is similar 

to the one described in Chapter 1 with the exception of using a microscope attachment. 

Temperature and magnetic field variations of the magnetization (M) of these samples 

were measured using a commercial SQUID magnetometer. 

 

5.3 Results and Discussion 

 Figures 5-1 though 5-5 show the XRD patterns of 5% M-doped ZnO as-prepared 

and hydrogenated at 573K. It is significant to note that only chromium and cobalt 

samples show a single phase of ZnO after hydrogenation (matching with zincite (PDF 36-

1451) without any trace of the dopant or its respective oxide. The temperature variation 

of the magnetic susceptibility (χ) for the as-prepared samples for 5% Cr/ZnO is shown in 
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Figure 5-6 where the solid line is fit to the Curie-Weiss Law. After hydrogenation at 573 

K, the sample retains its paramagnetic behavior as shown in Figure 5-7. The as-prepared 

sample of 5% Co/ZnO displays paramagnetic behavior (Figure 5-8), but after 

hydrogenation for 3 hours at 573 K the sample displays room temperature 

ferromagnetism as indicated by χ vs T (Figure 5-9) and M vs H (Figure 5-10). The 

temperature variation of the magnetic susceptibility and the M vs H data is also indicative 

of RTFM for the sample hydrogenated for 6 hours as shown in Figures 5-11 and 5-12. 

 Figure 5-13 shows the XRD patterns for 10% cobalt-doped ZnO and 10% cobalt-

doped ZnO hydrogenated at 573 K for 6 hours. It is evident that the XRD patterns for the 

10% doped Co/ZnO indicate a perfect doping of Co into the ZnO lattice. We have also 

carried out X-ray fluorescence (XRF) measurements and found out that the amount of 

cobalt doped in ZnO was 10.4%. Micro Raman spectra of the pure and cobalt-doped ZnO 

are shown in Figure 5-14. ZnO oxide has four atoms per unit cell resulting in 1A1, 1E1, 

2E2, and 2B1 optical phonon modes.13, 14 The A1+E1 modes are polar and split into 

transverse optical (TO) and longitudinal optical (LO) phonons which are Raman and 

infrared active. The E2 modes are only Raman active while the B1 modes are infrared and 

Raman active. Significant differences have been observed between the doped and 

undoped spectra. Specifically, for the 10% cobalt-doped spectrum, the 2E2 modes 

appearing at 101 cm-1 have been downshifted to 97.4 cm-1 and the peak at 437 cm-1 is 

also downshifted when compared to pure ZnO. Moreover, the intensity of the peak at 437 

cm-1 is significantly reduced and broadened in the 10% cobalt-doped sample compared to 

the as-prepared sample of ZnO. These observed features are clearly related to the cobalt-

doping and may be used as indications for its incorporation.  
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 The temperature variation of the magnetic susceptibility (χ) for the as-prepared 

(10% cobalt-doped ZnO) sample (prior to hydrogenation) is shown in Figure 5-15 where 

the solid line is fit to the Curie-Weiss Law. This variation is similar to the one reported 

for the sample of 10% Co/TiO2 described in Chapter 3 and prepared by spray pyrolysis 15. 

From the Curie-constant, C = 3.1 × 10-3 (emu-K/gOe) where C = Nµ2/3kB, we calculated 

µ = 4.465 µB for the Co2+ ion. This magnitude of µ is consistent with the high spin state 

of Co2+, assuming that Co2+ substitutes for the Zn2+in the ZnO lattice. M vs. H behavior 

for the 10% cobalt-doped ZnO at T = 300 K is shown in Figure 5-16. There is no 

hysteretic behavior confirming the existence of paramagnetism. 

Hydrogenation was carried out for the 10% cobalt-doped ZnO at 573 K, and we 

find that the sample acquires RTFM. Figure 5-13 shows the XRD pattern for the sample 

hydrogenated for 6 hours. This pattern looks similar to the pure ZnO pattern and indicates 

no significant impurity peaks for the presence of cobalt or cobalt oxides. From the widths 

of the XRD lines, the average particle size of the ZnO phase is 10±2 nm, without any 

major changes upon hydrogenation. The primary aim of hydrogenation is to induce 

ferromagnetism, similar to recently reported studies in the Co/TiO2 system,16 where a 

controlled transformation of a paramagnetic cobalt-doped TiO2 into a room temperature 

ferromagnet was observed. M vs. H behavior at T = 300 K for the 6 hr. hydrogenated 

10% cobalt-doped ZnO (shown in Figure 5-17) clearly indicates ferromagnetism. Finally, 

we measured χ vs. T for the 6 hour hydrogenated sample under zero-field-cooled (ZFC) 

and field-cooled (FC) conditions (Figure 5-18). The absence of a peak in χ for the ZFC 

case, which is a signature of the blocking temperature (TB) for cobalt as reported recently 

for the thin films of Co/TiO2 prepared by sputtering,9 provides assurance that no cobalt is 
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present in the nanoparticles that we produced. The reported TB values of cobalt 

nanoparticles of different sizes are: TB ≃ 20K (3 nm), TB ≃ 50 K (6 nm), TB ≃ 100 K (8 

nm) and TB ≃ 260 K (11 nm).17-19 

  

5.4 Conclusion 

 In conclusion, a straightforward method has been developed for the synthesis of 

both pure and cobalt-doped zinc oxide at room temperature. XRD measurements show 

the formation of single phase compound without any impurities and the magnetic 

measurements show that the as-prepared cobalt-doped zinc oxide is paramagnetic. 

However, hydrogen reduction at 573 K transforms the magnetic nature from 

paramagnetic to ferromagnetic. This method may possibly be extended to synthesize 

other doped high temperature oxides at room temperature. Work is in progress to study 

the effects of various doping levels of cobalt into zinc oxide. 
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Figure 5-1. X-ray diffraction patterns of the as-prepared sample of 5% Co/ZnO (A) and 
hydrogenated at 573 K for 3 (B) and 6 hours (C) matching with the zincite phase (PDF 
36-1451).  
 
 

2-Theta / (o) 



 90

 
 
Figure 5-2. X-ray diffraction patterns of the as-prepared sample of 5% Cr/ZnO (A) and 
hydrogenated at 573 K for 3 (B) and 6 hours (C) matching with the zincite phase (PDF 
36-1451).  
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Figure 5-3. X-ray diffraction patterns of the as-prepared sample of 5% Fe/ZnO (A) and 
hydrogenated at 573 K for 3 hours (B). The expected lines for zincite and iron are shown 
below. 
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Figure 5-4. X-ray diffraction patterns of the as-prepared sample of 5% Mn/ZnO (A) and 
hydrogenated at 573 K for 3 hours (B). The expected lines for zincite and manganese are 
shown below. 
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Figure 5-5. X-ray diffraction patterns of the as-prepared sample of 5% Ni/ZnO (A) and 
hydrogenated at 573 K for 3 hours (B). The expected lines for zincite and nickel oxide 
are shown below.  
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Figure 5-6. Temperature dependence of the magnetic susceptibility (χ) of 5% Cr/ZnO. 
The solid line is fit to the equation shown above. 
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Figure 5-7. Temperature dependence of the magnetic susceptibility (χ) of 5% Cr/ZnO 
hydrogenated for 6 hours. The solid line is fit to the equation shown above. 
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Figure 5-8. Temperature dependence of the magnetic susceptibility (χ) of 5% Co/ZnO. 
The solid line is fit to the equation shown above. 
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Figure 5-9. Temperature dependence of the magnetic susceptibility (χ) of 5% Co/ZnO 
hydrogenated at 573 K for 3 hours. 
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Figure 5-10. M vs. H of 5% Co/ZnO hydrogenated for 3 hours (A) and an expanded view 
(B). 
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Figure 5-11. Temperature dependence of the magnetic susceptibility (χ) of 5% Co/ZnO 
hydrogenated at 573 K for 6 hours. 
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Figure 5-12. M vs. H of 5% Co/ZnO hydrogenated for 6 hours (A) and an expanded view 
(B). 
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Figure 5-13. X-ray diffraction patterns of the as-prepared sample of 10% Co/ZnO and 
10% Co/ZnO hydrogenated at 573 K for 6 hours matching with the zincite phase (PDF 
36-1451).  
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Figure 5-14. Raman spectra of the as-prepared sample of ZnO and 10% doped Co/ZnO. 
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Figure 5-15. Temperature dependence of the magnetic susceptibility (χ) of 10% Co/ZnO. 
The solid line is fit to the equation shown above. 
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Figure 5-16. M vs. H of 10% Co/ZnO measured at 5 K (A) and an expanded view (B). 
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Figure 5-17. M vs. H measured at 300 K for the 10% Co/ZnO hydrogenated at 573 K for 
6 hours A) and an expanded view B). 
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Figure 5-18. Temperature dependence of the magnetic susceptibility (χ) of 10% Co/ZnO 
hydrogenated at 573 K for 6 hours. 
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Chapter 6 
 

Microwave Irradiation Synthesis and Characterization of M doped ZnO 

Nanoparticles (M = Co, Cr, Fe, Mn & Ni) 

 

6.1 Introduction 

Development of new applications for zinc oxide (ZnO) has been an integral part 

of research for the last decade. Current applications for zinc oxide include catalysis, 

cosmetics, and optical devices.1-3 Recently, Co, Mn and Ni doped ZnO have been 

investigated for possible applications as spintronic materials.4-11 Synthesis of these 

materials is often accomplished by sputtering, chemical vapor deposition and sol-gel 

techniques. 

Previous chapters have reported synthesis of 10% Co/ZnO by a sol-gel method at 

room temperature. Magnetic studies of the as-prepared 10% Co/ZnO sample show it to be 

paramagnetic. However, hydrogenation of the sample at 573 K for 6 hours changes the 

sample to a room temperature ferromagnet. 

This chapter will focus on the synthesis of 5% M-doped zinc oxide (M = Co, Cr, 

Fe, Mn and Ni) using microwave irradiation. This approach has several advantages over 

conventional methods including short reaction time, small particle size, narrow size 

distribution, and high purity.4-13 The synthesis and magnetic properties of these samples 

will be discussed. 
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6.2 Experimental 

Synthesis of ZnO was achieved by dissolving approximately 4 g of zinc nitrate 

(Alfa Aesar) in ethanol. While stirring, 10 ml of 10 N NaOH (Alfa Aesar) was added 

dropwise. Finally, 2 g of polyethyleneglycol MW ~ 2,000 (Avocado) was added. The 

resulting solution was then placed in a microwave. The microwave power was set to 33% 

of 650W and operated in 30 second cycles (on for 10 s off 20 s) for 10 min. The resulting 

powder was washed with ethanol, distilled water, and acetone and left to dry. M-doped 

ZnO (M = Co, Cr, Fe, Mn & Ni) was prepared as above, but with the addition of the 

appropriate amounts of the metal nitrate to was mixed with the zinc nitrate solution until 

the concentration of the dopant was 5%. 

Particles generated by this method have an average size of 10±2 nm. This was 

confirmed by anlysis of the peak widths of the X-ray diffraction patterns (XRD).  The 

XRD patterns of the powder sample were measured at room temperature with a Rigaku 

Diffractometer (DMAX-B) and CuKα radiation (λ = 1.5418 Å). The samples were 

mounted on a silicon plate for X-ray measurements. 

The hydrogen reduction set-up is discussed in Chapter 3. Temperature and 

magnetic field variations of the magnetization (M) of these samples were measured using 

a commercial SQUID. 

 

6.3 Results and Discussion 

X-ray diffraction of pure zinc oxide formed via microwave irradiation is shown in 

Figure 6-1 (A). Figure 6-1 (B, C, and D) show 1, 5 and 7% Co doped ZnO respectively. It 
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is significant to note that 7% Co doped ZnO shows impurity phases. Thus, 5% was 

considered an upper limit for useful synthesis via microwave irradiation. Figures 6-2 (A), 

6-3 (A), 6-4 (A), 6-5 (A) and 6-6 (A) show the XRD patterns of as-prepared samples of 

5% Co, Cr, Fe, Mn and Ni doped ZnO correspondingly indicating a single phase of ZnO 

matching with zincite (PDF 36-1451) with no impurity phases of the dopant or their 

relevant oxides indicating perfect doping of the dopant metals into the ZnO lattice. 

Figures 2-6 (B and C) show the results of hydrogenation for 3 hours and 6 hours, 

respectively. XRD indicates that hydrogenation does not affect the composition of the 

sample except for one case where peaks due to NiO were observed as shown in Figure 6-

6 (B). 

The temperature variation of the magnetic susceptibility (χ) for the as-prepared 

samples of 5% Co, Cr, Mn, Ni and Fe doped ZnO are shown in Figures 6-7 though 6-11 

respectively where the solid line in Figures 6-7, 6-8 and 6-9 are the fit to the Curie-Weiss 

Law. Figures 6-10 and 6-11 show χ versus T for the as-prepared samples of Ni and Fe, 

neither of which display Curie-Weiss behavior.  

As shown in a previous chapter, as-prepared10% Co/TiO2 displays paramagnetic 

behavior. Upon hydrogenation of the sample at 573 K, ferromagnetism is induced at 

room temperature. It has been reported that oxygen vacancies are essential to provide the 

exchange coupling between cobalt ions, ultimately leading to intrinsic room temperature 

ferromagnetism (RTFM).13 The results of hydrogenating the as-prepared samples can be 

described as follows. Hydrogenation of 5% Ni/ZnO resulted in the presence of metallic 

nickel in the XRD pattern. However, metallic peaks were not present in the chromium, 

manganese, cobalt and iron samples after hydrogenation. When hydrogenated for 3 hours 
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the chromium and manganese samples still retain Curie-Weiss behavior as shown in 

Figures 6-12 and 6-13. The χ vs. T measurements for the 3 hour hydrogenated samples of 

cobalt-doped and iron-doped are shown in Figures 6-14 and 6-15. The absence of a peak 

in χ for the zero-field-cooled cases, which is a signature of the blocking temperature (TB) 

for cobalt and iron, provides assurance that cobalt and iron nanoparticles are not present 

in our samples. The M vs H data for these two samples indicates a controlled 

transformation from paramagnetism to room temperature ferromagnetism indicated by 

the hystersis loops (shown in Figures 6-16 and 6-17). Hydrogenation for 6 hours did not 

alter the paramagnetic behavior observed for the chromium and manganese samples as 

shown in Figures 6-18 and 6-19. The χ vs. T measurements for the 3 hour hydrogenated 

samples of cobalt and iron are shown in Figures 6-20 and 6-21. The M vs H data indicates 

RTFM with an increase in the coercivity as shown in Figures 6-22 and 6-23.  

 

6.4 Conclusion 

In conclusion, we have demonstrated a one step synthesis of M doped ZnO 

nanoparticles via microwave irradiation. To the best of our knowledge this is the first 

report of a metal being doped into a zinc oxide lattice using microwave irradation. This 

method offers extremely short reaction times and produces high purity nanoparticles. The 

magnetic measurements show that the as-prepared samples of 5% M doped ZnO are 

paramagnetic. However, hydrogen reduction at 573 K for the cobalt and iron doped 

samples transforms the magnetic nature from paramagnetic to ferromagnetic. This 

method may possibly be extended to synthesize other transition metal doped oxides 

quickly and efficiently. 
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Figure 6-1. XRD patterns showing as-prepared samples of pure ZnO (A), 1% Co/ZnO 
(B), 5% Co/ZnO (C), and 7% Co/ZnO (D) matching with the zincite phase (PDF 36-
1451). The asterisks indicate contaminant peaks.   
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Figure 6-2. XRD patterns showing 5% Co/ZnO as-prepared (A) and hydrogenated for 
3hrs (B) and 6hrs (C) matching with the zincite phase (PDF 36-1451). 
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Figure 6-3. XRD patterns showing 5% Cr/ZnO as prepared (A) and hydrogenated for 
3hrs (B) and 6hrs (C) matching with the zincite phase (PDF 36-1451). 
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Figure 6-4. XRD patterns showing 5% Fe/ZnO as-prepared (A) and hydrogenated for 
3hrs (B) and 6hrs (C) matching with the zincite phase (PDF 36-1451). 
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Figure 6-5. XRD patterns showing 5% Mn/ZnO as-prepared (A) and hydrogenated for 
3hrs (B) and 6hrs (C) matching with the zincite phase (PDF 36-1451). 
 

2-Theta / (o) 



 117

 
 
Figure 6-6. XRD patterns showing 5% Ni/ZnO as-prepared (A) and hydrogenated for 
3hrs (B). The expectant lines for zincite and nickel oxide are shown below.  
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Figure 6-7. Temperature dependence of the magnetic susceptibility (χ) of the as-prepared 
5% Co/ZnO. The solid line is fit to the equation shown. 
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Figure 6-8. Temperature dependence of the magnetic susceptibility (χ) of the as-prepared 
5% Cr/ZnO. The solid line is fit to the equation shown. 
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Figure 6-9. Temperature dependence of the magnetic susceptibility (χ) of the as-prepared 
5% Mn/ZnO. The solid line is fit to the equation shown. 
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Figure 6-10. Temperature dependence of the magnetic susceptibility (χ) of the as-
prepared 5% Ni/ZnO.  
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Figure 6-11. Temperature dependence of the magnetic susceptibility (χ) of the as-
prepared 5% Fe/ZnO.  
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Figure 6-12. Temperature dependence of the magnetic susceptibility (χ) of the as-
prepared 5% Cr/ZnO hydrogenated for 3 hours. The solid line is fit to the equation 
shown. 
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Figure 6-13. Temperature dependence of the magnetic susceptibility (χ) of the as-
prepared 5% Mn/ZnO hydrogenated for 3 hours. The solid line is fit to the equation 
shown. 
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Figure 6-14. Temperature dependence of the magnetic susceptibility (χ) of the as-
prepared 5% Co/ZnO hydrogenated for 3 hours under zero-field-cooled and field-cooled 
conditions. 
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Figure 6-15. Temperature dependence of the magnetic susceptibility (χ) of the as-
prepared 5% Fe/ZnO hydrogenated for 3 hours under zero-field-cooled and field-cooled 
conditions. 
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Figure 6-16. M vs H Variation of 5% Co/ZnO at 300 K (A) and an expanded view (B). 
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Figure 6-17. M vs H Variation of 5% Fe/ZnO at 300 K (A) and an expanded view (B). 
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Figure 6-18. Temperature dependence of the magnetic susceptibility (χ) of the as-
prepared 5% Cr/ZnO hydrogenated for 6 hours. The solid line is fit to the equation 
shown. 
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Figure 6-19. Temperature dependence of the magnetic susceptibility (χ) of the as-
prepared 5% Mn/ZnO hydrogenated for 6 hours. The solid line is fit to the equation 
shown. 
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Figure 6-20. Temperature dependence of the magnetic susceptibility (χ) of the as-
prepared 5% Co/ZnO hydrogenated for 6 hours under zero-field-cooled and field-cooled 
conditions. 
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Figure 6-21. Temperature dependence of the magnetic susceptibility (χ) of the as-
prepared 5% Fe/ZnO hydrogenated for 6 hours under zero-field-cooled and field-cooled 
conditions. 
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Figure 6-22. M vs H Variation of 5% Co/ZnO at 300 K (A) and an expanded view (B). 
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Figure 6-23. M vs H Variation of 5% Fe/ZnO at 300 K (A) and an expanded view (B). 
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Summary of Part II 
 

 

Samples of 1, 5, and 10% cobalt-doped TiO2 prepared by a sol gel technique are 

found to be paramagnetic at room temperature with the magnetic susceptibility following 

the Curie-Weiss Law. However, transformation from paramagnetic to room temperature 

ferromagnetism (RTFM) is observed for the 5% and 10% doped samples after 

hydrogenation of the samples at 573 K. The increase in the hydrogenation time from 1 to 

6 hr. increases the remanance and coercivity. X-ray photoelectron spectroscopy and high 

resolution transmission electron spectroscopy failed to detect the presence of cobalt 

nanoparticles suggesting that the observed RTFM may be intrinsic. This study was 

extended to include 10% iron, manganese, and nickel doped TiO2. Upon hydrogenation 

only the iron and manganese doped samples showed a single phase (anatase) in the XRD 

pattern. Magnetic measurements revealed that the manganese doped sample retains its 

paramagnetic behavior after hydrogenation while the iron sample acquires RTFM. 

Transition metal-doped ZnO is also important for applications in spintronics. A 

number of preparation methods, such as sputtering, chemical vapor deposition, sol-gel are 

commonly employed. In most of these methods, the nature of the produced material is 

amorphous and so an additional high-temperature processing step is required in order to 

obtain crystallinity. However, high temperature processes can lead to significant side 

effects, such as the formation of other phases. We have shown that 5% M (M = Cr, Fe, 

Mn, and Ni) ZnO can be synthesized at room temperature. However after hydrogenation 

only the chromium and cobalt samples show a single phase of ZnO as determined by 

XRD. Magnetic measurements revealed that the chromium doped sample retains its 
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paramagnetic behavior after hydrogenation while the cobalt sample acquires RTFM. We 

have extended this study to include 10% Co/ZnO which is also paramagnetic at room 

temperature, but hydrogenation at 573 K changes the magnetic behavior from 

paramagnetic to ferromagnetic.  

 Finally, we have also synthesized 5% M (M = Co, Cr, Fe, Mn and Ni) doped zinc 

oxide using microwave irradiation. Microwave irradiation has several advantages over 

conventional methods including short reaction time, small particle size, narrow size 

distribution and high purity. Upon hydrogenation only the nickel doped sample exhibited 

multiple phases. Magnetic measurements reveal that only the cobalt and iron doped 

samples acquire RTFM after hydrogenation.  
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