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ABSTRACT

A two-component Doppler Global Velocimeter (DGV) system was constructed

and tested to research problems associated with the accuracy of this unique system.  The

uniqueness of the system lies in its ability to simultaneously and non-intrusively measure

velocities in a laser illuminated plane.  A key component of the system is a frequency

discriminating optical filter containing iodine vapor which allows direct measurement of

the Doppler frequency shift caused by particle motion.  Corrections for optical distortions

and non-uniform intensities as well as the conversions from intensity data to velocity data

are performed by an extensive image processing algorithm.  Measurements were made of

a 12” diameter rotating wheel and turbulent pipe/jet flow.  Both RMS deviations and

velocity range measurement errors from a single component for the rotating wheel with a

maximum velocity of 58 m/s were less than 2%, better than most published results, to

date, for similar systems.  Pipe/jet flow profiles agreed very well with the shape of pitot

probe measurements.  RMS errors were on the order of 5-10%, but velocity offset error

was as much as 10-15% of the 42 m/s velocity range.  DGV measured turbulence

intensities at the center of the pipe, 4 diameters downstream agreed with hot wire data,

with some reservations.  Several factors such as repeatability of calibrations, precision of

wheel/pipe speed measurement, measurement of viewing angles, and 8-bit camera

digitization contributed to the errors in DGV velocity data.  Proper techniques for

preparing and acquiring correction images are also critical steps toward the goal of

producing accurate velocity data.
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Chapter 1: INTRODUCTION

In any analysis of fluid flow, the ability to measure the velocities in the flow is a

basic requirement on the way to basic understanding and modeling.  The types and

techniques of these measurements are varied.  They can be broken down into two classes:

intrusive and non-intrusive; non-intrusive methods being principally optically based.

Intrusive velocity measurements involve placing a physical object (or probe) into

the flow at the point of measurement.  Point-wise measurement techniques of this type

include hot wire and hot film anemometry, as well as pressure sensing probes (pitot and

pitot-static).

The hot wire and film probes operate on the principles of convective heat transfer

and electrical resistive heating (Bruun, 1995).  A small, thin, wire is mounted on two

probe supports, and a voltage is applied through the activation of a wheatstone bridge.

The probe takes the place of one of the resistors in the bridge, so that a small resistance

change corresponds to a large voltage change.  When a voltage is applied, the wire then

heats and is cooled by convection to the cooler fluid passing around it.  A change in the

temperature of the wire corresponds to a change in resistance, which can then be

measured with a resistance bridge.  The addition of a feedback control system produces a

more useful system in most cases by varying the bridge current to produce a constant

resistance through the wire, and therefore a constant temperature.  When set-up in

constant temperature mode, a hot wire probe can deliver continuous velocity data with a

frequency response in the tens of thousands of hertz, which is very useful in measuring

turbulent quantities.

The pressure probes either measure total (stagnation) pressure at the probe face

and static pressure at the wall at the same streamwise location, or have the total and static

pressure ports on the head of the probe (pitot-static probe).  The pressure probes have a

maximum frequency response in the tens of hertz, so they are mainly used for measuring

mean flow quantities (Rae and Pope, 1984).

Advantages of the hot wire and pressure sensing probes include their low-cost,

fast, easy implementation at a point in the flow where the sensing position is known

immediately.  The main disadvantage is that the probe body itself disturbs the flow at the
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measuring point and thereby decreases the accuracy of the measurement.  Also, these are

one-dimensional devices; that is, to resolve the full three-dimensional velocity vector,

three of these devices must be placed at the same or nearly the same point, oriented at

different angles.  For a hot wire probe, an additional difficulty lies in distinguishing the

direction of the velocity since the wire responds to all velocity vectors aligned

perpendicular to the span of the wire with nearly equal sensitivity.  Minimization of this

problem requires careful design of the experiment and/or the addition of more probes.

Extending the point probes into line or area measurement devices is just a matter

of arranging several probes into a row and is done mainly with pitot probes to form a

"wake rake", which is an instrument commonly used in momentum deficit wake surveys.

The pressures from the line of probes can be read to determine a velocity profile, which is

crucial to momentum equation integrations.

Optically based measurement instruments usually use a laser beam as the source

of the interrogating light.  Fluid molecules themselves provide very weak scattering;

consequently, the flow to be measured generally needs to be seeded.  The degree to which

the particles follow the actual flow varies depending on the size of the seeding and the

character of the flow.  For a given flow, smaller particles follow the flow better, but

provide less scattered light in return.  Hence, there is a trade-off between particle size and

scattered light intensity.  Point-based methods utilize laser light for its coherent,

collimated beams to provide precise spatial location and predictable interference patterns.

Laser-2-focus (L2F) is a method which focuses two laser beams very near each other in

the flow while receiving optics record the two flashes that come from a particle passing

through the beams.  The time between the flashes determines the velocity of the particle

since the spacing of the beams is known.  Care must be taken, however, to ensure that the

same particle passes through both foci.  Laser velocimetry (LV) relies more heavily on

the coherent property of lasers to create interference patterns when the beams are

intersected.  Then, when a particle passes through the intersection point, it scatters the

light and dark bands of the interference fringes at a frequency proportional to its velocity.

Again, both of these point-based measurement techniques are one-dimensional.  By far

the most popular, LV has seen great success as a three-component system by intersecting
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three pairs of beams of different frequencies from different directions at a single point.

Planar optical velocimetry systems have only recently matured enough to provide

accurate test data.  The most prominent of these systems is Particle Image Velocimetry

(PIV).  Normally, PIV works by opening the shutter on a CCD array, then illuminating

the measurement plane with two pulses of laser light spread into a two-dimensional sheet.

The pulses are timed such that a small but measurable amount of particle travel can be

observed in the resulting image.  The path of the individual particles can be resolved

either by computer or by eye, but either way, the velocity is determined based on the time

between pulses and the path length of the particle.  The advantages include low

cost/complexity and ease of implementation as well as a good qualitative feel for the

velocity data.  The disadvantages lie primarily in the data reduction scheme.  The

examination of frame after frame of images, tracking individual particles by hand, is

tedious at best.  Assigning a computer the task involves lengthy correlation routines

which are needed to increase the chance that the same particle is being tracked from

frame to frame, and that particles that entered or left the volume of the laser sheet are not

mistakenly used in velocity calculations.  The tradeoff lies between long computing times

and inaccurate data.  This method provides two-dimensional information, but only in the

plane of the laser sheet.  To extract a third component, a difficult and not yet perfected

method involving a laser hologram defined volume where particles are tracked in three

dimensions needs to be implemented.

The measurement technique which is the focus of this work falls in the more

recent category of optical filter based, planar, velocity measurement systems.  In this

category, the scattered light collected from the particles in the flow is filtered with some

frequency discriminating device such that a Doppler shift in the light frequency produces

a change in intensity through the filter.  However, variations in the scattered light

intensity would also be interpreted as Doppler shifts, necessitating the use of an unfiltered

or reference image which is used to remove the sensitivity to scattered light intensity.

The ratio of the filtered and unfiltered images is then proportional to velocity according to

the characteristics of the optical filter.  One advantage of a planar frequency discriminator

is its relative insensitivity to particle size and seeding density.  There are still size and
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concentration issues to contend with, but the technique is not concerned with the

individual particles as the other methods are.  Velocity can be measured perpendicular to

the light sheet just as well as any other direction.  Discrete particle independence allows

velocity measurements to be found in the plane of the laser sheet at all locations

providing scattering, and also gives the opportunity to increase spatial resolution.

The focus of the research presented here was to construct and analyze the

accuracy of a two-component, Doppler sensitive, planar optical velocimeter.  The first

step was to develop a two-component point system based on the same methods as the

planar system.  The point system allowed familiarization of the theory and configuration

of the measurement system without the burden of an extensive data reduction process.

The next step was to switch the light intensity sensing devices from point-oriented

photodetectors to plane-oriented CCD arrays.  The planar system was then tested by

measuring the velocity of a rotating wheel, as well as fully turbulent pipe/jet flow.  The

rotating wheel uniformly scatters laser light, has a homogeneous surface, and has a

continuous variation of velocity that includes zero.  Therefore, the rotating wheel is a

device which has fewer variables to consider when identifying sources of error.

However, the usefulness and advantages of the DGV measurement system are best

demonstrated in a complex, turbulent fluid flow such as pipe flow, or, when measured

several diameters downstream of the pipe exit, low-speed jet flow.

A side by side comparison of DGV velocity measurements with measurements

from another, more established instrument has been largely absent in the field of DGV

research.  This work documents, in detail, the results of such a comparison.  Research in

this field can only benefit from an experimental investigation into the accuracy of this

DGV system when stood next to familiar and established standards.
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Chapter 2: PREVIOUS WORK IN DOPPLER VELOCIMETRY

2.1 Point Measurement

As a point system, a Doppler sensitive, filtered velocimeter does not bring much

new to the family of point measurement methods.  Perhaps this is why many of the

researchers currently developing this technology start with a true planar system imaged by

CCD arrays.  However, three researchers have investigated such a point system either as a

stepping stone to a more unique planar measurement technique or to develop it as an

additional point system on its own merits.  Unlike LV, a filter based point system

provides a continuous analog signal with which to calculate time dependent

characteristics of the flow.  Hoffenberg (1993) used a continuous wave (cw) laser to

illuminate smoke at the exit of an axisymmetric jet, and an iodine vapor filled cell as the

optical frequency filter.  A single component point system was constructed using two

photomultiplier tubes (PMTs) as the intensity measuring devices for both the filtered and

unfiltered light paths. Two measures were taken to ensure that light from the same probe

volume was being seen by both PMTs.  First, light collected by a main frontal lens was

passed through a beamsplitter where half of the light went straight to the reference PMT

and the other half was filtered.  The other measure was the addition of pinholes mounted

on X-Z traverses just in front of the PMTs, presumably at the focal point of the front lens.

The pinholes were adjusted until the cross correlation of the two signals was at a

maximum.

Roehle and Schodl (1994) also used spatial filtering, but placed a single pinhole at

the focal point of the front lens in front of the beamsplitter.  In this configuration, no

examination of the cross correlation is necessary, as the PMTs are receiving light from

the exact same point.  The remainder of Roehle’s setup included a cw argon-ion laser and

an iodine cell as the optical filter for taking measurements in a jet flow.  The cw argon

laser is effectively pulsed via an optical chopper, then the photodetectors (one filtered) are

amplified in phase with the laser pulses with a lock-in amplifier.  The signals are then

sent to an analog divider to remove the effects of varying brightness and sampled with an

A/D converter.

Filtering scattered light received from Doppler shifts works well if the laser
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frequency remains constant.  Otherwise, a laser drift would be construed as a velocity

change.  There are two ways of dealing with this possibility; either to measure the drift

and correct for it, or to control the frequency of the laser to assure that there is no drift.

The latter is the configuration that Roehle and Schodl use.  Their cw argon laser is fitted

with a piezo-electric translator on the back laser mirror so that the effective cavity length,

and hence, the frequency can be kept constant.  The reference signal for their controller

comes from monitoring iodine hyperfine lines which are a substructure within the

absorption “well”.  The hyperfine lines of iodine are much less dependent on temperature

and pressure than the main absorption well, so they serve well as a frequency reference.

Measuring and subtracting the laser frequency is a more common and less

complex way of dealing with laser drift.  Hoffenberg described a reference channel

assembly just for that purpose as a future improvement in his system.  The system he

describes is common to other researchers during and since the time that the paper was

published (1993).  The outlined reference system was similar to a velocity sensing setup,

but instead of passing scattered light through an optical filter, a portion of the laser beam

was fed directly to the beamsplitter, and then to two photodetectors.  One beam path

passed through an iodine cell, and the ratio of the filtered to unfiltered signals gave a

relative measure of the laser frequency.  Subtracting this from the scattered light

frequency left a measure of true Doppler shift.

McKenzie (1995) used a point system to compare readings made on a rotating

wheel where the velocity is known at all points.  Although the principle is the same, the

setup used was very different.  A pulsed, injection seeded, frequency doubled Nd:YAG

laser was used in place of a cw argon laser, and only one pair of photodetectors was used

for both signal and reference systems.  Two signals which occur simultaneously at the

source were received separately by the photodetectors by time delaying one signal.  The

scattered light was sent to the photodetectors via a fiber optic cable which was more than

ten times longer than the fiber carrying the laser reference signal.  Since the pulse length

was very short (on the order of 20ns), the signals were effectively separated.  The signals

were sent from the diodes to a 10 ns  integrator which then gave 12-bit digital outputs

proportional to the energy of each reference and signal pulse.
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Initially, Hoffenberg used no laser frequency drift compensation (Hoffenberg and

Sullivan, 1993), and the results showed the effects of this.  When compared to LV data or

theory, the point Doppler measurements of axial jet velocities less than 100 m/s were up

to 25% in error.  It was recognized that drift was the primary source of error, and future

configurations were suggested which would include some type of compensation, either

monitoring or control.  Roehle controlled the laser frequency and achieved stability of ±1

MHz.  With drift essentially removed, an accuracy of ± 3 m/s in a jet flow between 40

and 130 m/s was achieved, which translates to a maximum error of 7.5%.  These

accuracies were obtained by using L2F as the standard measurement, but since that

method has inaccuracies of its own, the margin of error could be slightly different.

Compensation for drift by monitoring is equally effective, according to results obtained

by McKenzie.  When measuring velocities on a rotating wheel, the velocity is more

precisely known, which makes McKenzie's  ±2 m/s maximum error all the more

impressive.  This error is on the order of the 12-bit A/D board's discretization error of ±1

bit.

2.2 Planar Measurement

The idea of using an iodine filled cell as a frequency dependent optical filter was

patented by H. Komine working at the Northrop Corporation in 1990.  He called it a

Doppler Global Velocimeter, or DGV.  This patent is the basis for several papers with

topics on filtered particle scattering (FPS), and arguably those based on a slightly

different method called filtered Rayleigh scattering (FRS).  The patent describes a basic

planar FPS velocity measuring system containing a frequency controlled laser projected

into a sheet that intersects a seeded flow, with the receiving optics gathering the scattered

light.  The receiving optics package first splits the incoming scattered light, then passes

half through a molecular iodine cell to a CCD array, and the other half straight to a

second CCD array.  The setup is very similar to the point systems described above; it

ought to be, since the point systems were motivated by this same planar idea, and exist

largely as a simplification to the complexities of obtaining an accurate planar velocity

measurement.  Much of the research that followed the patent included small changes and

improvements in the configuration and signal processing of the system.  For example, the
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patent calls for routing the images from the CCD cameras to an analog video divider, then

storage on a high-quality video cassette recorder.  Researchers have abandoned that

technique because of problems in cleanly separating individual signals into channels on a

VCR.  Also, the advancement of high speed digital frame grabbers to acquire the signals,

digital video image processing to handle the division, and personal computers for storage

and display of velocity information makes the digital path much more appealing.

Komine and Brosnan (1991) and Komine, et al. (1991), in proof of concept

papers, expand on the idea of the original patent by using both a CW and a pulsed laser

for illumination, and video frame grabbers for image acquisition.  Still present though, is

the analog normalization, thought by many other researchers to be a significant source of

error since small errors in the optics prohibit exact reference-to-signal camera alignment.

Current thinking is that this division can be more accurately carried out after image

processing software has stretched and shifted the images so that they overlay more

precisely.  In the CW laser experiment, no measures were taken to account for the laser

drift, while the pulsed laser was controlled by a feedback loop with correction signals

coming from a spectrum analyzer.  Velocity data were generated in simple flows from

these experiments, but no comparison was made with velocity readings from any other

measurement technique.  Therefore, the accuracy of this preliminary system was

undocumented.

Ford and Tatam (1995) describe a basic, single component system roughly based

on the patent by Komine, except the system includes digital image acquisition and

processing components.  Results from the measurement of the velocity of a rotating

wheel were presented.  The authors made a detailed examination of the effect of the

angular variation across the viewing area, both due to the scattering angle deviation away

from the center of the image, and the incident laser angle resulting from spreading the

beam through cylindrical optics.  Calculations showed that the error due to angular

variation across the field of view is on the order of the resolution of the system when the

angle reaches 5 degrees on either side of center, and 10 degrees of incident beam angle.

A more complex data processing scheme is at the heart of a three-component

DGV system in operation at NASA Langley under the supervision of J. Meyers.  In his
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introductory paper, co-written with Komine (1991), Meyers essentially reiterates the

Komine patent and presents details on the signal processing along with laboratory

experimentation and preliminary wind tunnel testing.  According to Meyers and Komine,

there are three main responsibilities of the signal processing scheme:  to synchronize the

reference and signal cameras, to overlay and normalize the images, and to correct for

varying pixel sensitivities across the CCD array.  To synchronize the CCD cameras, the

internal sync pulses were disabled and an externally generated pulse was sent to all of the

cameras and associated frame grabbers, thus assuring that all images were simultaneously

sampled.  Normalization of the images can be done either with an analog divider, or

digitally, using frame grabbers.  The accuracy of either method depends on the pixel-to-

pixel alignment of the images from the signal and reference cameras.  Optimally, a

beamsplitter will split the image undistorted so that the adjustment of pathlength, pan,

and tilt on the cameras is enough to assure that each pixel in the signal camera receives

light from the same volume as does a corresponding pixel in the reference camera.  This

was assumed to be the case in the preliminary system.  For real-time data acquisition, it is

necessary to divide these two images with an analog divider, then sample or record the

resultant image.  A much more accurate, albeit significantly slower, method involves

simultaneously sampling each raw image, then digitally dividing pixel by pixel to

produce the normalized image.  The analog divider can still be used in parallel, and its

results sent to a monitor, for a visual check of the status and integrity of the data.  The

correction for CCD pixel sensitivities is done on a camera-by-camera basis to account for

manufacturing inconsistencies.

DGV data was taken by Meyers, et al. (1991) on a rotating wheel, a subsonic jet,

and 75° delta wing in a wind tunnel.  Qualitatively, the results were as they should be,

and agreed with known velocities.  However, there was still no direct quantitative

comparison with previous or concurrently measured data.  The unprocessed results were

very noisy, mainly as a result of noisy CCD detectors.  To smooth the data, several

images were averaged yielding mean velocities.  If no meaningful data can be deduced

from individual frames, real-time data acquisition is an unrealistic goal.  The results from

these experiments and both the analog and digital approach to the signal processing are
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presented in more detail in a follow-up paper by Meyers, Lee, and Cavone (1991).

As work on this system progressed, Meyers (1992, 1994) added more signal

processing steps to the data reduction scheme for the images acquired by the video

cameras.  One realization arising from the wind tunnel experiments was the need for

exact pixel overlay which could not be achieved by simply moving the cameras.  The

optics used to steer the image to the cameras, as well as the pixel spacing in the cameras

themselves, contained imperfections that made it impossible to align all the pixels in any

one image pair.  The image processing algorithms were tasked with the image warping

needed to minimize these imperfections.  After the warping algorithms were applied,

spatial cross correlation routines were used to correct any remaining misalignment during

data taking by identifying the proper pixel position at the peak value of the correlation.

The pixels were then shifted to that position, providing maximum pixel to pixel

correlation for the entire image.  Before the images are ratioed, background light images

recorded under the same conditions but with no seed particles are subtracted from each

image.  Then, the correction for unequal pixel sensitivities is performed.  The images

were then lowpass filtered to remove some of the CCD camera noise, just prior to being

normalized.  Additional light-intensity problems were addressed as a result of images

recorded which were saturated in the center of the light sheet, and very dim near the

edges.  The cause was traced to the way the light sheet was created, by simply expanding

the laser beam through lenses.  When a sheet is formed in this manner, the original

Gaussian intensity distribution in the beam is evident in the sheet, producing high

intensity at the center and lower intensity on the sides.  The fix for this had to be in the

hardware configuration since the cameras were not capturing useful images.  A high

speed galvanometric scanner was used to 'fan' the beam into a sheet of uniform intensity.

Additional concerns about the variation in the laser propagation angle, which is vital to

determining velocity, are unwarranted if the spreading angle of the laser sheet is kept

small.

The need for all of the additional signal processing was identified through

problems in accuracy encountered in the laboratory and wind tunnel testing.  One result of

additional processing is the abandonment of the analog method of data reduction.  While
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fast, the analog method does not provide an acceptable level of accuracy to allow the

DGV system to evolve as a formidable planar velocity instrument.  In an application

oriented paper (Gorton, et. al., 1996), Meyers uses the DGV system in place at NASA

Langley to measure aerodynamic rotor-tail-fuselage interaction on a small scale helicopter

model.  The results were compared with LV measurements taken in the same locations,

and significant errors in the DGV data were apparent. The main source of these errors

was found to be large temperature fluctuations in each of the iodine cells used for

frequency discrimination.  Insulation was added around the filters, and corrections were

applied in post-processing in an attempt to minimize the effects of these fluctuations, but

they still caused an increase of 5 ft/s in the velocity uncertainty.  Because of this test, an

insulating box surrounding the iodine cell was constructed to isolate it from high

convection situations.  Even with that precaution, the barrel and sidearm temperatures

were measured at each data run to calculate a theoretical absorption curve with which to

calculate velocities.  The next generation DGV system at NASA Langley has more

improvements to improve the accuracy of the system.  The most significant contributor to

those changes is the incorporation of a pulsed laser.  This will continue and improve upon

the research of Komine and McKenzie.  Also, 10-bit Matrox frame grabbers replaced the

8-bit frame grabbers to provide better velocity resolution and, less cross-talk between

cameras.  Future plans may include incorporating sealed cells which contain no iodine

crystals, only vapor.  With no crystals present, the vapor pressure, and therefore the

absorption characteristics of the cell are much less likely to vary with small changes in

temperature.

Beutner and Baust (1997) describe a test on a delta wing model that took place in

the Subsonic Aerodynamic Research Laboratory at Wright Laboratory using essentially

the same system as Meyers at NASA Langley.  A cw laser was fanned into a light sheet

and placed perpendicular to the flow at various chord locations on the model.  Due to the

size of the test and the distances involved, the three-component system did not use a

beamsplitter system on each component to ensure angular invariance between the

reference and signal images.  Instead, the cameras were placed close to one another and

focused independently on the same region of the flow.  This small angular difference
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could have had consequences not accounted for in the data processing such as intensity

variation versus viewing angle due to Mie scattering.  In what Beutner describes as a

“velocity discriminating flow visualization technique,” measurement results for the

velocity distribution of a very complex vortical flow are presented in very general terms

only.

Also working at NASA Langley, but developing a system independent of Meyers

and his researchers, are Smith and Northam (1995, 1996).  Smith and Northam also

illuminate a seeded flow, but use a frequency controlled pulsed laser to produce the light

sheet, and a single camera to image both signal and reference images.  The single camera

feature allows the use of higher quality, more expensive cameras, or allows more velocity

components to be implemented since cameras are a major cost item.  Another advantage

is the reduction of some of the image processing relating to unequal camera pixel

response between reference and signal cameras.  Since both images are placed side by

side on the same CCD array, errors due to manufacturing inconsistencies should be less

than they would be between two different cameras.  Different camera and lens

configurations were studied, all by measuring supersonic and sonic jet flow.  In the first

experiment, a liquid cooled high performance camera was used to acquire data.  The

camera required about 10 seconds to acquire and transfer an image, so data acquisition at

the maximum laser pulse repeat rate of 30 Hz was impossible.  Mean velocity images

were acquired by illuminating the measurement area with several laser pulses, and single

shot images were gathered by shuttering the camera and exposing it to one pulse.  In the

second experiment, a less expensive, non-intensified Sony camera was used.  This camera

had no problem gathering data at 30 frames per second, but image brightness was

considerably lessened.  Signal strength was reduced to the extent that the flow had to be

slowed to sonic speed, so that the concentration of seed particles could be increased.  In

the last experiment, a larger diameter lens was fitted to the Sony camera.  The primary

reason for this was to reduce noise from laser speckle.  Smith and Northam (1995) derive

an equation for determining the uncertainty that laser speckle adds to a measurement

image.  The effect of speckle on a measurement is a function of several factors including

a direct proportionality with the magnification of the image and the f number of the lens.
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These two parameters are more easily changed than the other factors such as wavelength,

and a smaller f-number has the additional advantage of collecting more light, which

permitted the flow velocity to be returned to supersonic with the data collection rate

unchanged at 30 Hz.

In a subsequent paper, Smith (Jan, 1998) investigated a compressible jet with a

single component, pulsed laser DGV system.  The flow had a novel core/co-flow seeding

apparatus which enabled velocity measurements throughout the mixing layer of the jet.

In addition, the seeding could be enabled for both the co-flow and the core separately.

Results of the mean core velocity showed good agreement with both isentropic

calculations based on the exit conditions and pitot probe data.  The fluctuations both in

the shear layer and in the core were measured to be slightly higher than the comparison

data.  The causes of this discrepancy were identified as seed laser dither and speckle

noise.  Great care was taken in this paper to minimize the velocity deviations caused by

laser speckle.  In a separate but related effort, Smith (June, 1998) has researched the

problem of reducing speckle noise for DGV systems utilizing pulsed lasers, and applied

his findings in this paper.  Laser light scattered by both a moving and stationary screen

provided reference and signal images Smith could ratio to remove the RMS variation due

to surface roughness or beam intensity variation, yielding variation in brightness due

exclusively to laser speckle.  Methods were then studied in an attempt to minimize this

variation.

The primary noise reduction mechanism found was to influence the size and

concentration of speckle “dots” on the CCD array.  This was done several different ways,

with varying degrees of success.  One of the most effective methods was to decrease the

f-number of the lenses used to collect the scattered laser light.  Reiterating the derivation

presented in his previous paper, Smith found a direct inverse proportionality between the

lens f-number and the signal to noise ratio of speckle induced images.  Another

component that had a strong influence on the speckle noise is the type of CCD array used

in the camera.  Both pixel spacing and readout method are factors, with a more compact

(higher fill factor), frame transfer array favored.  Less effective was a double pulse

exposure with the second pulse delayed by approximately 20ns meant to allow the flow to
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slightly change the scattering characteristics as seen by the imaging system.  However,

20ns was not enough time to allow the flow to move, and therefore the reference and

signal exposures were still highly correlated.

McKenzie (1996) also used a pulsed laser and a single camera for each velocity

component in his setup.  He shows that a high quality camera makes a significant

difference in accuracy, and therefore it is more cost effective to use one high quality

camera than to use two average quality cameras.  Also, it was shown that the scientific

grade, cooled, slow-scan CCD arrays had less noise than many other types of photo

sensitive devices, including photomultiplier tubes and photodiodes.  In addition to

virtually eliminating CCD camera noise by selecting a high quality scientific grade

camera, McKenzie sought to compensate for the small pulsed laser frequency drift.  Laser

drift contributes both random, shot to shot noise, and systematic, long term error.  By

monitoring the laser frequency separately and subtracting any variation from the

measured Doppler shift, the impact of both kinds of errors are minimized.  Additional

systematic error sources are background scattered light, and secondary scattered light.

Secondary scatter is Doppler shifted once from the flow seeding, but is shifted again an

unknown number of times by additional particles with unknown velocities and directions.

Reducing the light intensity or seed density is presently the only way to minimize this

error, but this lowers the scattered light intensity, which decreases the signal to noise

ratio.

Next, McKenzie examines in depth the effects of temperature and vapor pressure

on the iodine cell frequency filter and its many transmission lines.  The iodine cell has a

main body where the light transmission takes place, and a small protrusion called a stem

which is kept colder than the main body so that any crystal solidification will occur out of

the optical path.  The significance of the stem temperature on the depth and slope of a

transmission line within tuning range of the pulsed laser is illustrated for purposes of

broadening and steepening of the slope.  In addition, if the transmission line is made deep

enough to block all light of a certain frequency, the cell can effectively function as a

notch filter.  Studies done on the sensitivity of the line shape revealed that the shape is a

very strong function of stem temperature, but only a weak function of main body
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temperature.  Therefore, it is vital to control the stem temperature accurately since that

controls the optical density which is indicative of the vapor pressure of the iodine.

A thorough error analysis follows, which concludes that the CCD camera array is

the limiting error source.  Even though the camera is a scientific grade, cooled, slow-scan,

12 bit camera, all other sources of error have been minimized to a point below the

accuracy of the camera.  This error analysis differs from that of Meyers, in that Meyers

will test the system, then find places where the accuracy could be improved, usually

through improvements to the data reduction software, after a thorough analysis of the

data.  McKenzie approaches the error analysis from a more theoretical point of view by

creating uncertainty trends from variance data, which is obtained more often from theory.

This is not meant to remove any practicality from McKenzie's study.  Rather, his results

stand as an ultimate limit for other researchers of what is possible with a similar planar

velocimeter system.

The most recent effort from McKenzie (Jan, 1997, Sept, 1997) focused on a

pulsed laser, planar system.  Expanding on his earlier effort, a thorough error analysis was

presented for the system as configured.  Unique among his methods of reducing these

errors is a 3 X 3 binning scheme whereby each pixel value in a 3 X 3 grid is replaced by

the sum of all pixel values in the grid.  This reduces many of the sampling and mapping

errors associated with acquiring and overlaying two images read from a CCD array.  A

discussion of laser speckle is also presented, and an analysis of speckle noise contained in

images collected at different focal lengths and apertures concludes that speckle noise is

reduced in direct inverse proportion to the f-number of the receiving optics, as Smith had

previously concluded.  Average velocity measurements of a rotating wheel and a low-

speed turbulent jet were presented.  Significant scatter was seen in portions of the wheel

data, and it was attributed to a spatial variation in laser frequency across the beam, which

was expanded to illuminate the surface of the wheel.  It appears that this phenomenon is

unique to pulsed-YAG lasers, and only affects the data in the case where the profile of the

beam is enlarged.  Measured RMS fluctuations of the jet flow were found by subtracting

an estimate of the noise due to the laser and cameras from the total RMS of the signal.

What remained was postulated to be due to turbulent fluctuations in the flow.  Away from
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these variations, the minimum resolved velocity is approximately 2-3m/s, which is the

best accuracy published to date by anyone with a similar system.

Over a span of three years, Reinath (1997) made measurements of different flows

in two different NASA Ames wind tunnels, including the 40 X 80 ft. full scale tunnel.

The system used was a three component, six camera, cw laser system with a frequency

monitoring leg.  Because of the large distances involved in some of the tests, a powerful 8

watt argon ion laser was used in conjunction with a galvanometer scanner to create a

uniform, high intensity light sheet.  Optical access to the test section had a large influence

on the geometry chosen for the tests, and the errors associated with angular resolution and

transformation into orthogonal components showed the results of this limitation.  In the

early tests, the iodine cells were left uninsulated, causing the temperature, and therefore

the partial pressure of the iodine vapor to vary.  Since the cell calibrations were

performed in the laboratory prior to the experiment, they were characterized at a different

temperature than that of the test conditions, and as a result, there was an offset in the

velocity data collected at the test site.  In later tests, the cells were calibrated just before

data was taken to yield a more reliable transformation.

Ainsworth and Thorpe at the University of Oxford (1994) published their plans to

develop a three component DGV system to make measurements on stator/rotor flow

interactions.  Some initial test data in the form of images of a rotating wheel were also

presented.  Their experimental setup utilized a single camera with a 6-bit digitization

frame grabber, split image system with a reference photodiode system to monitor laser

frequency.  Angular variation of the Mie scattering light intensity was analyzed and

placement of the measurement components reflected this.  Also, they have successfully

documented the behavior of an argon ion laser operating in single frequency mode.  They

suggest caution be taken since the short term frequency fluctuations occur on a time scale

which is on the order of a single CCD camera exposure.  In this preliminary study, the

only results presented are trends of ratio value across a vertical cut of a rotating wheel.

No velocity comparisons were made.

The same Oxford group (Thorpe, et. al., 1995) published a more application

orientated paper a year later, examining the flow of a free jet, as well as presenting
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velocity results of the same rotating wheel used in the previous paper.  The imaging

equipment used changed to a high grade, cooled scientific CCD camera linked to a 15 bit

digitization frame grabber.  From an analysis of error sources, error bounds were

calculated for both the wheel and jet velocities.  Since the velocity of the wheel was

known, a comparison of the RMS deviation of the velocity and the error bounds could be

performed.  The results showed the error bounds to be several times larger than the actual

error. They were used in the presentation of the pipe data, but identified as overly

conservative.  The presentation of pipe velocity data in this paper shows the DGV system

to be qualitatively accurate, but stops short of a numerical data comparison.

A later paper (Thorpe, et. al., 1996) investigates the free jet further by time-

averaging the acquired images and carefully documenting the accuracy of their system.

Time averaging was accomplished by opening the shutter of the camera for extended

periods of time.  In this manner, average velocity fields were attained by processing only

one image.  Measurements were taken with the light sheet perpendicular to the flow, as

well as axially, down the center of the jet.  In both cases, the sensitivity vector was in a

direction which allowed the axial component to be found.  Their detailed presentation of

the velocity results shows a very good agreement with theoretical profiles of jet velocity.

These researchers (Ainsworth, et. al., 1997) recently published a survey of the work done

to date by themselves and others in the field of Doppler Global Velocimetry, highlighting

the common trends and various differences of existing systems and methods.

An early paper by Chan, et. al. (1995) is one of the first to explicate the

advantages of a single camera, split image DGV system.  Simplified electronics, lower

cost, and higher quality images are all potential benefits of adopting a velocity system

configuration containing a single camera.  Measurements of a rotating wheel were

presented in terms of gray level ratio values and not velocity, presumably due to difficulty

in establishing a reliable iodine transfer function.  Instead, the focus of the work was

more directed on reducing the variations and noise seen in the raw ratio images.  Image

alignment problems were identified as causing the majority of the low frequency

variations from the expected linear trend of ratio values.  To improve the pixel to pixel

image alignment in the near field, the authors refined the procedure used to adjust the
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image position on the CCD array by viewing a speckle image formed by scattered laser

light.  When the speckle was viewed by a perfectly aligned system, the pattern was

identical in both images.  Painstaking alignment in this manner allowed the acquisition of

data with a more linear trend.  For suppression of the high frequency noise which was

superimposed on the linear ratio measurements, two different digital filters were tested.

The first filter was a 3 by 3 spatial averaging filter, which removed some of the high

frequency content from the data, but introduced a bias in the trend of the variation.  The

second filter was a 3 by 3 median filter, where the center pixel in the array was replaced

by the median of the pixel values of all nine pixels.  The median filter was less effective

at reducing the noise level, and also induced a bias in the data.

Clancy, et. al. (1998) researched a three-component system used to investigate a

supersonic jet flow.  Their system included a pulsed-YAG laser, and iodine vapor cells

for frequency discrimination.  The iodine vapor was pressure broadened with nitrogen to

allow the absorption feature to span a wider range of frequencies, made necessary by the

large Doppler shifts encountered in the flow.  A single camera split image system was

used in an attempt to minimize the cost while maintaining a high level of accuracy.  Mean

velocity as well as turbulence intensity results taken in both cross stream and streamwise

directions were compared with LV data.  A thorough error analysis was also presented

which quantified errors associated with each aspect of the system.  As with other

researchers using pulsed lasers, one of the biggest contributors to the measurement error

was found to be speckle noise.  The approach taken in this work was to use a variation of

a Weiner filter in post-processing.  While this reduced some of the speckle noise, it also

had adverse effects on the measured turbulence intensities and definition of features in the

shear layer, as would most filtering techniques.

Work done by Reeder (1996) extended the split image concept to a two-

component, one iodine filter, one camera system with four separate images captured on

one CCD array.  While this obviously reduced the spatial resolution for the data images,

data taken for a supersonic jet showed velocities to within 10% of both PIV and pitot

probe data, showing promise for the possibility of research of this measurement technique

on a much smaller budget.
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Researchers from Texas A&M University (Morrison, Gaharan, and DeOtte, 1994)

developed a one-component DGV system based on the setup used by Meyers and

developed by Komine.  Their paper centered around the difficulties of setting up and

obtaining accurate measurements from such a system.  Problems included difficulty in

setting the gains on the cameras purchased, inoperative or damaged CCD sensor

elements, and non-uniform response to light intensity.  Optics problems involving lenses,

beamsplitters and polarization effects were also discussed.  Additionally, they pointed out

the importance of attenuating the scattered light that enters the reference camera using

polarization filters rather than neutral density filters, on the assumption that the scattered

light was completely polarized.  However, other researchers have discussed the effects of

particle scattering, and polarization, and they concluded that while the polarization of the

scattered light may have a preferred direction, particle scattering interferes with the

complete polarization of the incident laser light, producing a non-deterministic

distribution of polarization.  If care is not taken, the use of polarizing filters as neutral

density filters may unintentionally discard a disproportional amount of scattered light

leading to erroneous readings.  Morrison, et al. also used a rotating wheel, but as a

velocity calibration device.  Other researchers used the rotating wheel to verify the

accuracy of their measurements which were calculated based on the molecular

characteristics of iodine and the geometry of the setup.  By directly calibrating the

velocity with light intensity, Morrison's group chose a much less complex method of

resolving velocity data.  However, using this type of calibration assumes that many

variables not included in the calibration will remain constant.  Consequently, the results

of an experiment measuring the centerline velocity of a axisymmetric jet show wide

scattering (±20%) when compared with LV data.

The planar velocity imaging method most commonly yields three velocity

components in different vectoral directions by focusing three systems of receiving optics

on the measurement area and acquiring the data simultaneously.  This is the only

configuration that allows simultaneous acquisition of all three velocity components.

However, if time-averaged data is all that is required, a different configuration is possible.

Roehle (1996) used a three component system to measure flow exiting a swirl nozzle, as
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well as the flow field behind a scale model of  an automobile.  The components were

found using a single imaging system and three different laser sheets, switched on one at a

time.  The imaging system used two 12 bit, slow scan CCD cameras focused on the same

area through the use of a non-polarizing beamsplitter.  Careful alignment, using micro

positioning equipment, of the viewing angle of each camera precluded the use of any

dewarping software to obtain corresponding pixel registration.  The author plans to

include such a dewarping scheme in future work.  As in the point measurement system

discussed earlier by the same author, active control of the laser frequency was achieved to

within 1MHz of the setpoint.  Control of the laser frequency of that precision nullifies the

need for a frequency monitoring and compensation system.  Roehle emphasizes the

comparatively short time required to acquire and process a DGV measurement as the

greatest advantage of the method.  Less emphasis is placed on the accuracy of the data,

indicating in the paper that an accuracy study is planned for the future.

Two pulsed lasers operating at different wavelengths are used in a two-color

approach to DGV in Arnette, et. al. (1998).  One laser emits green light at 532 nm, and

the other, red light at 618 nm.  Both beams are spread into a co-planar sheet and the

scattered light is passed through an iodine cell and imaged on a color camera.  The green

laser light is tuned so that it is attenuated, by the iodine cell, in direct proportion with the

frequency shift, as is the norm with DGV systems.  The red light intensity in the images

has no frequency dependence.  Consequently, there is no need for two cameras or even

one camera viewing a split image.  The reference and signal images are both collected on

one color CCD array.  Velocity measurements taken in a compressible jet flow show

potential for this type of system, although the increased cost of an additional laser may

outweigh the benefit of needing one less camera or having a simpler data acquisition and

reduction algorithm, making this novel approach cost prohibitive.

An alternative to the iodine cell as a frequency discriminator is presented by S.

Bloom, et al (1991). in their setup for a long range Doppler velocimeter.  In this setup, a

small telescope is used to collect the back scattered light from a laser diode.  The

telescope is field limited by placing a pinhole at the focal point of the primary mirror.

The scattered light is focused through a polarizing beamsplitter, then each half is passed
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through a frequency discriminator.  The filters are filled with atomic cesium, which, when

heated and placed within a magnetic field, rotate the polarization by an amount

proportional to the frequency of the light passing through it, the strength of the magnetic

field, and the temperature.  By placing polarizers rotated by 90° on both ends of the cell,

the intensity will vary with a change in frequency.  The light is then focused on a

photodiode for output to a data collection device.  The other half of the light coming out

of the beamsplitter is passed through identical optics, but in this case, the magnetic field

is changed such that an absorption feature lies centered on the same frequency as the

other cell, but with opposite slope.  A system set up in this manner provides double the

velocity resolution as does a filtered/unfiltered optics system.  No cameras are involved

with this system, but it is still a planar system;  this system simply outputs the average

velocity in the plane.  The technical details of the cesium cell line filtering method are

outlined in a prior paper by Menders, et al. (1991).  An application of this technology is

presented by Bloom, et al. (1993), and consists of long range detection of a helicopter

plume.

Normally, when molecular iodine is used as the frequency discriminator, a cw

argon-ion or pulsed Nd:YAG laser is used for the interrogating laser beam.  Research

done by Leporcq, et. al., focused on using a narrow bandwidth, tunable dye laser.  This

type of laser has a linewidth of approximately 500kHz, compared to a 12MHz linewidth

for a cw argon ion laser.  An even more attractive feature is the ability of the dye laser to

be tuned over a much larger frequency range, allowing the selection of an iodine

absorption line to complement the experimental setup and expected velocity range.

Rotating wheel data was presented to show the validity of the use of this type of laser.

Research similar to Bloom and Menders’ is being conducted at Purdue University

(Crafton, et. al., 1998), but with a point based system.  The system under development

there also contains a Cesium vapor Faraday cell functioning as a frequency discriminator

instead of an iodine vapor cell favored by many other researchers.   A large portion of

their research has been focused on the establishment of a stable laser frequency for

interrogation of the flows.  To a large extent, this has been accomplished through the use

of active PID controllers.  Some improvement is to be made in the low frequency area of



22

control of the laser diode.   However, the high frequency control produced a stable

enough laser frequency to record velocities with measurement errors under a meter per

second.

Irani and Miller (1995) and Irani (1995) describe a single component system that

used a cw argon ion laser with two cameras and an iodine cell.  The authors used this

system to measure, with some difficulty, a low speed jet seeded with model train smoke.

Problems with keeping the laser frequency stable for any period of time prohibited

acquiring an iodine absorption curve calibration, and the capabilities of the frame grabber

system did not include simultaneous acquisition from the two cameras.  Despite these

serious limitations, measurements were made and compared to hot film and pitot probe

data.  Since no calibration of the cell was made, the comparisons were more qualitative in

nature, but the data showed the potential of the system nonetheless.

All of the research discussed previously used particles to generate scattered light

either by seeding the flow with various aerosols or relying on the flow's own

contaminants.  The amount of scattered light collected is proportional to the density of the

seeding.  Another planar velocimeter is being investigated by several researchers which

involves a different method of scattering the laser light to the receiving optics.  The laser

light is scattered by the air molecules themselves in a process called Filtered Rayleigh

Scattering (FRS).  Miles, Forkey, and Lempert (1992) incorporate this method of

scattering in their FRS velocimeter.  In order to collect enough scattered light on the CCD

arrays to analyze, the laser power must be very high.  Currently, pulsed lasers are the only

practical choice when very high power is needed.  Continuous wave lasers can develop

high enough power, but not when lasing in a single longitudinal mode, which is what is

required for the type of velocimeter under discussion.  When enough scattered signal is

achieved, that signal can be interpreted as follows:  the intensity of the scattered light is

proportional to the density of the air, the linewidth is proportional to temperature (so

called temperature broadening), and the frequency shift is proportional to velocity.  Miles,

et al. discussed in detail the structure of the iodine absorption lines and their sensitivity to

stem temperature changes, and developed a theoretical model based on iodine

spectroscopy data which predicts the major spectral features of iodine to within 5% of
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their peak values.  Measurements were made in a Mach 5 free jet to test the system.

Since the flow was at such high velocity, the absorption line was used to block all light

entering the optics at the laser frequency and let pass only the Doppler shifted light.  For

this method to work, an optically thick iodine filter must be used.  This is the same "notch

filter" application as was described above.

In a follow up paper, Forkey, Finkelstein, Lempert and Miles (1996) analyzed the

uncertainty of an FRS system, and made measurements of stationary room air and a Mach

2 jet.  Temperature stabilization of the iodine cell, found to be critical in previous work,

was also employed here.  The transmission profiles of iodine as well as the laser

lineshape and frequency were measured and accounted for.  An uncertainty analysis

quantified the error in laser wavelength, laser sheet distribution (line shape), stability of

the laser frequency, background scattered light intensities, and the setup geometry.  Total

uncertainty was on the order of 5 m/s, and largely due to background scatter and laser

drift.  Errors of +31 to -12 m/s in the mean 0 m/s room air were attributed to variations in

lineshape as the frequency of the laser was changed, and errors of 15 m/s were said to be

due to the jet flow exiting the nozzle at an angle slightly different than 90° to the nozzle.

Future work involves employing an ultraviolet laser with cameras sensitive to that

wavelength.  The higher frequencies are beneficial to FRS because the amount of

scattered light is proportional to the laser frequency to the fourth power.

More recently, Miles and Lempert (1996) examined various three-dimensional

flow diagnostics and their relative merits.  Techniques discussed included methods based

on flow tagging and Rayleigh scattering.  The tagging methods are based on passing a

high intensity laser pulse through the fluid and either vibrationally exciting molecules in

the fluid so that they briefly emit light, or activating a fluorescent additive which glows

when interrogated by a second laser beam or sheet.  The accuracy of both of these tagging

methods is determined by the accuracy of the time delay and line displacement

measurements and can be as good as 1% error for a single component velocity

measurement.  To extract the second and third velocity components as well as rotational

information, the fluid may be tagged with two or more intersecting beams, then viewed

from different directions by two or more cameras.  Rayleigh scattering, in the manner
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previously discussed, is used to determine three orthogonal velocity components

everywhere in the measurement plane.  Volumetric velocity data can be obtained by

rapidly scanning the laser sheet during an exposure.

Elliott, et al. (1994) are also researching an FRS instrument.  Their system

incorporates many of the same techniques and hardware as Miles’ FRS system described

above.  The technique of using one pressure broadened iodine cell for velocity

determination, and the other for suppression of background signals has been used in their

setup.  The cell is broadened by adding various amounts of nitrogen to the iodine vapor.

The slope of the absorption line is decreased, and therefore the usable frequency shift is

increased in an amount proportional to increase in the nitrogen partial pressure.  The

setup used to trace the shape of the iodine absorption curve used a small piece of the laser

beam used to take measurements, and split it three ways.  One of the three passed through

the iodine cell to be mapped, and terminated at a screen.  The second, serving as a

reference, passed freely to a nearby point on the screen, while the third, which provided

frequency information,  passed through a confocal etalon and onto the screen.  The three

spots are then imaged with a CCD camera and analyzed.  The fact that the same laser that

is used for measurements is being used to interrogate the iodine cell leads to a calibration

that is unique to that laser, and would be in error if a laser with a different linewidth were

used for calibration.  Measurements were taken in a supersonic/subsonic mixing layer

where coherent structures are present, and were evident in the data taken.  The errors in

these measurements are quantified and discussed.  They discuss the possibility of

reducing the ±8% error to about ±3% when accounting for the laser drift by measuring it

on a frame by frame basis as other researchers have done.

2.3 Summary

There have been many researchers involved in the development of DGV as a

technology.  Most, in recent years, are going through the work of constructing and testing

their systems, without much attention paid to documenting the accuracy of the

instrument.  Recently, that has begun to change.  McKenzie at NASA Ames and Clancy

at Ohio State have both done thorough error analysis and velocity comparisons.  It is the

goal of the research outlined in this paper to add to this growing body of knowledge.
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Chapter 3: APPARATUS AND CONFIGURATION

This chapter will describe the DGV apparatus and setup configuration for both the

rotating wheel and pipe flow tests.  A brief description of this system, along with

preliminary single component measurements on a rotating wheel, have been given by

Naylor and Kuhlman (1998).  The role and behavior of each of the system components

will also be described.  The overall principle of the DGV system is to measure the change

in light frequency due to particle motion, and resolve that frequency shift into a particle

velocity.  The component sensitive to changes in frequency is the iodine cell filter, which

possesses many narrow absorption lines, one of which lies within the tuning range of a

cw argon laser.  When the laser frequency lies on the edge of one of these lines, the filter

has an attenuation which is a function of frequency.  When the laser is set to a frequency

that corresponds to partial light attenuation, variations of the intensity of laser light

scattered from moving particles, as seen through the iodine cell, correspond to Doppler

frequency shifts, laser light frequency variations, or simply changes in the intensity of the

scattered light due to nonuniform seeding and uneven laser power output.  The laser

frequency and scattered light intensity are not constant, at least not to the degree needed

to resolve velocity changes.  To compensate for changes in laser intensity, part of the

incoming scattered light is imaged on a photodetector or camera so that the signal

intensity may be compared with a reference.  To compensate for laser frequency drift, a

portion of the interrogating laser beam is passed through another iodine cell such that the

output of this reference system yields the frequency change in the unshifted laser light and

can be subtracted from the frequency change calculated by the velocity measuring

components.

The preliminary point-based system developed was an optical point measurement

device which resolved velocities in two orthogonal directions.  The basic elements of the

system are similar to what was described in Hoffenberg (1993), and are outlined in more

detail in James (1997).  The planar, camera based system shares some of the same

components with the point configuration, and a top view photo of a velocity measuring

system can be seen in Figure 3.1.
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3.1 Geometry

The placement of the laser beam and the velocity sensing optics relative to the

flow is critical because the Doppler shift is a function of the scattered and incident light

directions.  This geometry dependence is contained within the Doppler shift equation

given as

∆ f
f

= − ⋅o

c
a l V( $ $)

r
(1)

where ∆f is the Doppler change in frequency, fo is the incident laser frequency, c is the

speed of light, $a is a unit vector describing the direction scattered light travels toward the

receiving optics, $l is a unit vector representing the laser propagation direction, and 
r
V  is

the particle velocity vector (Figure 3.2).  The frequency change per unit velocity can be

thought of as the sensitivity of the instrument, and is constant for a given geometry.
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Maximizing the sensitivity provides finer velocity resolution, which has a positive effect

on the RMS deviation due to noise.  Since $a  and $l  are both unit vectors, their difference

always lies halfway between the observation direction and the direction of the incoming

laser beam.  This vector is labeled as the measured component.  It is important to

visualize this angle so that the component of the flow under examination can be made to

align or nearly align with the measured component.  Adjustment of the measured

component direction affects the dot product magnitude and is maximized when perfectly

aligned with the flow direction.

The one remaining way to further increase the sensitivity is to maximize the

length of the resultant vector of the difference between the laser direction and the viewing

direction by making them as close together as possible.  The ideal arrangement would be

to have the laser and the receiving optics in the same position, so that scattered light

would travel directly back along the laser beam (direct backscatter), with the flow moving

either towards or directly away from the laser and optics.  This setup is impractical for a

number of reasons including physical size/space limitations, mie scattering intensity

distributions, and the inability to view the scanned beam as a sheet; however, it serves as
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a reference of the maximum sensitivity achievable from a geometric standpoint.

The geometry used for wheel velocity measurements is shown in Figure 3.3.  The

sensitivities for this configuration are 1.1 and 3.1 MHz/(m/s) for components 1 and 2,

respectively.  Component #2 has a higher sensitivity because the viewing angle is more

closely aligned with both the laser and velocity vector direction, producing higher values

for both the subtraction and the dot product.

The original configuration for the pipe/jet flow velocity measurements was similar

to that of the wheel.  The expected velocity vector, however, was changed by more than

90° with the substitution of the pipe apparatus.  Also, the signal strength for the

component in backscatter was less than half of the signal collected by the component in

forward scatter.  Consequently, the quality of the data for the component in backscatter

suffered.  In an attempt to equalize the signal received by both velocity measuring

components, each component was placed in forward scatter at an angle of approximately

40-45° on either side of the laser sheet (Figure 3.4).  The sensitivity value for components

1 and 2 were -1.2  and 1.3 MHz/(m/s) respectively.  The sensitivity value for component

#1 is negative because it views the measurement area from the pipe side of the laser sheet.

From this viewing angle the velocity vector is primarily opposite the measurement vector.

Viewing angles were referenced from the center of the measurement area to the

center axis of the collection optics.  Because DGV is planar in nature, the viewing angles

will be different for points not at the center of the measurement plane.  An analysis was

performed to determine the extent to which these angle variations affected the data.  The

wheel geometry was chosen for the analysis because the wheel was the largest item

tested, and also required the spreading of the laser beam into a cone, which changed the

incident laser angle over the surface of the wheel.  Therefore, the wheel test presented the

largest potential for variable viewing angle error.  Based on the geometry of Figure 3.3,

there exists a maximum angle error (between opposite sides of the wheel) of

approximately 7% for component #1, and 3-4% for component #2.  The sensitivities of

viewing angles to the measurement of the velocity normal to the wheel are 1.1 and 0.38

(m/s)/deg for components #1 and #2, respectively.  Tangential velocity sensitivities are

0.76 and 0.86 (m/s)/deg.  Given these sensitivities and the maximum viewing angle error
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possible for each component, a maximum error of 8 m/s (out of 57 m/s) occurs in the

normal velocity measurement of component #1.  For this effort, the results (“cuts”

through velocity images) are given as velocity values along the horizontal center, where

no Doppler shift is measured, and the vertical center, where the viewing angle is

referenced.  Therefore, no significant viewing angle errors should be seen in the results as

they are presented.

3.2 Laser

The laser used for this research is a Coherent Innova Model 305, continuous

wave, 5 watt, argon-ion laser operating in single line mode at 514.5 nm.  The single line

modification includes a prism mounted on one end of the laser cavity with a high

reflectivity mirror aligned so that only one wavelength, or frequency, is reflected back

along the resonance cavity.  Each individual frequency may be selected by adjusting the

tilt of the prism, but the strongest occurs on the "green line" at 514.5 nm which will

output approximately 2 watts of power.  Within the green line, there are many individual,

closely spaced modes separated by a frequency determined by the laser cavity length and

the speed of light, ∆f=c/2L.  The cavity length of the Innova 305 is 1.16 m, which

corresponds to a mode spacing of 129 MHz.

The numerous modes within the green line span almost 4 GHz, which is more

than the entire width of an absorption line of molecular iodine, rendering frequency

discrimination impossible.  By inserting a tilted etalon into the laser cavity, single

frequency operation is achieved.  An etalon is a cylindrical piece of fused silica which,

when slightly tilted, acts as a bandpass filter wide enough for only one mode, and the

passed frequency is selected by changing the effective pathlength of the light undergoing

many internal reflections inside the etalon.  Filtering out all but one mode gives a very

narrow linewidth (<25MHz), but since all other modes are not resonating, laser output

power is decreased.  The maximum power output of the Innova 305 with the etalon tuned

to the highest power frequency in the green line is approximately 1.5W.  Tilting the

etalon produces very small changes in etalon length, and changing the etalon temperature

changes the index of refraction, both of which affect the pathlength and therefore cause

the etalon to pass different frequencies.
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When the preferred frequency changes, it does so quickly and is referred to as a

mode hop.  The tilting or heating of the etalon produces frequency changes, but they are

discrete selections of the modes already present in the laser cavity.  In a very basic sense,

the etalon can be thought of as a selector switch on a TV, used to select a specific

channel, but like a TV, only one channel can be tuned at a time.  Since the spacing of the

modes within the green line is equal to a constant 129 MHz, forcing the laser to mode hop

produces a fixed, known, frequency change which can be used as a calibration standard

for mapping the absorption line of the iodine cell.   Conversely, an uncontrolled,

continuous frequency change in the form of laser drift is unwanted.  Laser frequency drift

on the order of one mode spacing or less can be seen as the laser cavity length changes

due to slight internal temperature changes.  Presently, the only way to prevent this drift is

through active cavity length adjustment, which monitors the laser frequency and adjusts

the cavity length to maintain a specified frequency.  A less complex solution, which has

been employed in this research, is to measure the drift and compensate for it.

3.3 Iodine Cells

Using the evenly spaced mode hops to map out the iodine absorption line works

well only if the vapor pressure of the iodine in the cell remains constant during the

calibration and subsequent data collection.  The cells used in the present work have been

constructed by Opthos Instruments, Inc. to the specifications of cells made previously for

the researchers at NASA Langley (Meyers, 1996).  The cells are 2.5 inches long and 2

inches in diameter with optically flat anti-reflective coated crown glass fused to the ends.

They are first evacuated, then a few iodine crystals are placed inside and the glass stem

(nominally 0.5 inches long) is melted shut.  The iodine crystals undergo sublimation until

the volume is saturated with vapor.  Since the iodine cells are sealed, the only way to

increase or decrease the vapor pressure is to change the temperature.  Therefore, in order

to keep the vapor pressure, and hence, the absorption profile constant, the temperature

must be kept constant.  To this end, each iodine cell is fitted with a 3/8" thick cylindrical

copper sleeve, slightly longer than the cell, around which two electric band heaters are

placed.  The copper serves to evenly distribute the heat transfer to the cell from the bands,

and it also provides a large thermal mass, aiding the operation of the temperature
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controller.  A picture of an iodine cell with copper jacket and thermal ground visible is

shown in Figure 3.5.  The controller is an Omega CN9000A Miniature Autotune

Temperature Controller.  It is a PID controller, with user adjustable gains, but it can also

be set to automatically select the proper gains when operated in autotune mode.  When

the controller was configured in the autotune mode, the resulting temperature control had

less than the desired stability.  Consequently, the controller gains were manually adjusted

until the proper response was achieved (Figure 3.6).  The response has a long settling

time (~40 min.), but long-term stability, shown in more detail in Figure 3.7, was needed

more than a fast settling time.  The use of an accurate temperature controller allows the

flexibility to set a desired temperature and have it maintained throughout the calibration

and data collection.

When the temperature of the cell is elevated, the iodine will tend to solidify in the

cooler regions.  For optical reasons, it is not desirable to have crystals form on the

windows, which would ordinarily be the coolest points on the body of the cell.  To

prevent these deposits, two 1.5" lengths of thermally insulating phenolic tubing are

inserted in the ends of the copper jacket and capped with anti-reflective coated, optically

flat, crown glass.  This provides a buffer of insulating air, keeping the cell windows at a

higher temperature than the stem temperature.  With this arrangement, solid deposits are

not allowed to form anywhere on the cell body, so a place must be available for crystals

to form.  This space is furnished by the stem originally used to fill the cell.  One end of a

heavy gauge stranded copper wire is bonded to the outside of the stem to function as a

heat sink, while the other end is fastened to the optical breadboard.  The wire cools the

stem temperature to approximately 10°C lower than the body temperature.  It was found

by McKenzie and others that the vapor pressure was a very strong function of the stem or

crystal temperature, and a very weak function of the body or vapor temperature.

Therefore, the thermocouple that the temperature controller uses for feedback comparison

to the setpoint is bonded to the stem, and the body temperature is allowed to reach

whatever value required to provide enough heat to the stem to keep its temperature equal

to the setpoint.  To further insure a stable cell temperature, the entire device is surrounded

by an insulated box with holes cut for the phenolic tubes.  The long-term temperature
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variation (Figure 3.7) of this system during summer months with the building air

conditioning running, has been shown to have a standard deviation of less than 0.1°C

(peak-to-peak of 0.5°C) with a room temperature fluctuation of 1.5°C.  Room

temperature variations during winter months are typically 4°C over a 40 minute period,

while measured stem temperature variations are similar to those in Figure 3.7.  It is

important to note that the time scales for calibration and data acquisition are more on the

order of the short term fluctuations, and therefore, the standard deviation is more

representative of the performance of the controller for this application.  The iodine cell

control and insulation was developed for the reference system cell, and has been

duplicated for the signal systems.

Since the body temperature is held approximately 5-10°C higher than the position

of the stem where the thermocouple is bonded, there exists a fairly steep temperature

gradient over the length of the stem.  Therefore, the placement of the controller feedback

thermocouple relative to the solid iodine crystals is critical.  When the thermocouples

were bonded to the stems, no effort was made to maintain consistent placement along the

length of the stem.  Also, stem lengths vary somewhat from cell to cell.  As a result, even

though the temperature controllers were all set at the same setpoint, the iodine crystal

temperatures were all different.   This can be seen in Figure 3.8 where the calibration

curves from the three cells have been normalized and overlaid.  If all three cells contained

an identical amount of iodine vapor, the curves would be the same (assuming negligible

optics effects).  The most pronounced difference in these curves is the variation of slope

in the vicinity of the linear region, which is a primary indicator of a difference in crystal

temperature.

3.4 Reference System

The function of the reference system is to monitor the frequency of the laser beam.

A layout of the components can be seen in Figure 3.9.  A small portion (approximately

8%) of the main beam is split at a 90° angle by a placing a 2" round piece of Pyrex glass

in the path of the laser beam.  The glass is untreated; that is, it is not coated with any

antireflective material, so multiple beams are split from the front and back surface of the

glass.  Next, the multiple beams pass through another 2” piece of Pyrex which splits off
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a portion and sends it to the spectrum analyzer.  The second piece of Pyrex is identical

to the first, so that the number of strong (first order reflection) beams reaching the

spectrum analyzer is doubled.  Continuing past the second Pyrex beamsplitter, the beam

passes through a 1% transmission neutral density filter, then hits a beam selector plate

which is nothing more than a piece of aluminum with a hole drilled in it the size of one of

the beams (~2-3mm).  The beam that is not blocked by the plate is sent through a 50/50

beamsplitter for passage through both the reference and signal legs of the system.

The entire system is placed under a 1.5’ X 5’ wooden box.  The box is dual

purpose; as a light box, it blocks all outside light except for a portion of the laser beam

that is sent through a small (1/2”) hole in the side of the box.  As an insulator, it serves to

lessen the variation in temperature of all the components inside the box, including the

photodetectors which have a response to light that is slightly temperature sensitive.

On the reference leg of the system, the beam is turned 90° by a 1" front surface

mirror, then focused by a 2" diameter, 100mm focal length (f 2) lens on a photodetector.

The photodetector was purchased from Thor Labs as an amplified, but fixed gain, silicon

diode device.  It has a maximum output of 1.5V and a bandwidth of 50MHz.  A 1%

transmission neutral density filter is placed ahead of the 50/50 beamsplitter in the beam

path to prevent photodetector saturation.  With the neutral density filter in place, and the

laser tuned for maximum power, the photodetectors have a nominal output of 0.8V.

For the signal leg, concerns about saturating the iodine cell were addressed.  That

is, by passing the laser light as a concentrated beam directly through the iodine vapor, the

absorption characteristics would be a function of laser power.  To ensure functional

independence from laser power, the beam is first passed through a CVI Instruments 10:1

beam expander.  CVI was chosen because the desired exit quality of the beam did not

require the purchase of an expander with tighter tolerances and higher price.  The

nominally 2mm diameter laser beam enters through a small hole in one end, then after

passing through a series of lenses, exits as a parallel beam 2cm in diameter.  It then

continues through the iodine cell and is focused by a lens-photodetector combination

which is similar to that used in the reference leg.

The two voltages from the signal and reference photodetectors are simultaneously



33

sampled with an IOTech 16-bit IEEE 488 interfaced A/D board set to a range of ±1V.

The maximum sampling rate supported by this board for two channels is 50kHz.  First, a

reading is taken from each photodetector when all light is blocked from striking the

sensing elements.  These “dark voltages” are then subtracted from all subsequent readings

acquired from their respective channels.  The signal voltage, now due only to scattered

light, is divided by the reference voltage to yield a percent transmission for the iodine

cell.  Once the laser is tuned to the slope of one of the iodine absorption lines, any change

in the ratio corresponds to a change in laser frequency.  Typical short term laser frequency

drift can be seen in Figure 3.10, which shows the ratio of the voltage output of the

reference system photodetectors.  Similar short term frequency fluctuations were

documented by Ainsworth and Thorpe (1994), also for an argon ion laser.  The data have

been acquired over the time span that a single field is acquired, 1/60th of a second.  The

board is set to the maximum sampling rate (50 kHz for 2 channels) and the number of

samples adjusted so that the acquisition lasts the required amount of time.

The photodetector selection for the reference system was intended to mirror the

components that had been successfully installed in the DGV system in operation at

NASA LaRC.  The Thor Labs’ PDA-150, fixed gain photodetectors were purchased in

error, and were thought to be the variable gain type, PDA-50.  When used for the

reference system though, where the beam is steered directly into the photodiode, their

amplification provided sufficient voltage for A/D conversion.  Testing of the

photodetector performance revealed the PDA-150 to have a smaller level of noise than

the PDA-50s, but the PDA-50s were required in the velocity sensing systems of the point

measurement system, given the low light intensities of scattered light.  The PDA-150s

remain installed in the DGV reference system, since light intensity is not an issue, and

their signal to noise ratio is the same or better than the PDA-50s.

Prior to striking the beamsplitter for the reference and signal legs of the frequency

monitoring system, the two strong beams (~2% of main laser beam), and many much

weaker beams, are split again with a 2” diameter piece of Pyrex.  The primary

reflections from the Pyrex are sent to the spectrum analyzer, but only a portion of one

beam enters the analyzer through a pinhole aperture mounted on the front.  The spectrum
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analyzer system (SAplus) was manufactured by Burleigh Instruments and uses a confocal

Fabry-Perot interferometer consisting of two spherical mirrors spaced apart a distance

equal to their radius creating a bull’s-eye interference pattern.  This arrangement was

touted to have a higher precision than similar analyzers made by Spectra Physics.  A

measurement of precision or resolution (R) is given by the finesse (F) and the free

spectral range (FSR) by R=FSR/F.  The finesse is a parameter than quantifies the quality

of the instrument and its ability to measure the laser lineshape.  The confocal mirror set is

constructed to have a 2GHz FSR, and the mirrors are of sufficient reflectivity (>99.5%) to

provide a maximum finesse of approximately 300, giving the analyzer a 6-7MHz

resolution.  The highest finesse indicated for the argon ion laser being used was

approximately 100, which gives some indication of the laser’s linewidth (~20MHz).  To

output a useful electrical signal, the bulls-eye interference pattern is scanned across the

surface of a photodiode by peizo-electrically vibrating one of the mirrors, causing the

interference pattern to move.  The output of the photodiode can then be amplified and

displayed on an oscilloscope or sampled and analyzed by a computer.  The most useful

configuration involved the use of the oscilloscope to monitor discrete frequency changes

during continuous scan calibrations to optimize the rate of etalon tilt.

3.5 Velocity Sensing System

The velocity sensing system (Figure 3.1) is functionally the same as the reference

system in that it monitors the frequency of laser light.  The difference lies in the fact that

it monitors the frequency of Doppler shifted, scattered, laser light.  Light scattered from a

seeded flow within the plane of the laser sheet passes through and is reflected by a 50/50

beamsplitter.  The portion that is passed through the beamsplitter continues through the

iodine cell and into a zoom lens attached to the front of a (signal) CCD camera.  The

portion reflected from the beamsplitter is turned on a front surface mirror which steers the

image directly into another (reference) lens/CCD camera combination.  The CCD

cameras used are Hitachi KP-M1 black and white, interlaced cameras with 8 bits of

resolution.  The frame rate is fixed at 30Hz, or 60Hz for fields.  The zoom lenses used are

Nikon 35-135mm focal length lenses with a minimum f-number of 3.5 at 35mm, and 4.5

at 135mm.  Zoom lenses allow flexibility in positioning of the receiving optics as well as
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selection of the spatial resolution desired, typically at the cost of reduced collected light

when compared to similar focal length fixed lenses.  The zoom lenses attached to the

signal cameras have always been operated with the aperture fully open, and the apertures

for the reference cameras have been adjusted to approximately match the intensity of the

signal cameras when the laser was tuned outside the iodine absorption band.  Four-inch

optics were used for the beamsplitter and turning mirror so that a sufficient clear aperture

could be obtained when the optics were angled.  The optics have been held with 4"

gimballed mounts with fine-adjust micrometer type screw adjustments.  The beamsplitter

is a dielectric plate-type, 4” in diameter and approximately 0.1” thick.  It has been found

that the gimballed mount that held the beamsplitter put too much force on the three points

of contact around the perimeter, and bending of the plate glass produced a warped image.

The springs were subsequently removed and shortened to gently hold the glass in place,

but there still existed, due to slight bending, a significant amount of image distortion due

to the beamsplitter which, in addition to the perspective warping, had to be removed by

image processing.  The 4” mirror did not have this problem since it was deposited on a 1"

thick glass substrate.  Also, the dielectric beamsplitter was polarization sensitive, splitting

vertically and horizontally polarized light by different amounts.  Since polarization of

light scattered off particles is known to be size dependent (Meyers, 1997), the ratio of

light split by the beamsplitter would change as a function of particle size.  No effort has

been made to ensure uniform particle size, so for seeded flow measurements, polarization

filters were placed in front of the beamsplitters to block all but the principal polarization

direction so that the beamsplitters would split the incoming scattered light at a constant

ratio.

3.6 Computer Related Equipment

Computers

The computers used in this research were IBM compatible, personal computers

(PCs) with Windows 95 and Windows NT as operating systems.  The manufacturer of the

frame grabber board required that Windows NT be the operating system for the computer

housing their board.  That computer had a Pentium II processor with a clock speed of 266

MHz, and 96 MB of memory installed. Also, a 4 GB hard drive was added for storage of
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image data acquired and subsequently processed with the frame grabber.  The other

computer, also a PC, ran Windows 95 on a Pentium processor at 200 MHz.  This

computer was responsible for acquisition of both temperature and photodetector voltages,

using two different A/D boards.  Since the size of the data collected with this computer

was minuscule (~102 bytes) when compared to the image data collected by the first

computer (~109 bytes), no special consideration was given to memory or hard drive

requirements.  All data, calibration, and correction images, acquired with both computers,

were archived on recordable CD-ROMs.  This allowed examination of past data for

referencing and re-processing, if necessary.

A/D Boards

Two A/D boards have been used to collect various data for the DGV system.  The

IOTech board, introduced above, is a 16-bit, simultaneously sampling, 8 channel, variable

gain, external board with 100 kHz maximum sampling rate divided between the number

of selected channels.  Also available externally, with a separate connector, are 8 digital

input and 8 digital output lines, one of each used for status indication and synchronization

control with the frame grabber board.  The digitized data is brought to a PC via an IEEE

488 data bus and controller card.  The controller card, which brings data from the IEEE

bus to computer memory, is a National Instruments AT-GPIB/TNT and is capable of

transfer rates of up to 1 MB/sec.  The maximum output of the IOTech board, which is the

only device connected to the controller card, is 200 kB/sec.

The second A/D board is an internal model made by National Instruments, and is

also 16-bit and variable gain, but has a slower sampling rate of 20 kHz maximum over 8

channels, and it does not sample simultaneously.  Simultaneous sampling provided by the

IOTech board is necessary when sampling photodetectors so that the signal from each

detector pair will be correlated and like variations will cancel when divided.  The slower,

non-simultaneously sampling board has been used to collect temperature data from

thermocouples mounted on the body and stem of the iodine cells.  Since these signals

have much longer time constants than the 50 MHz bandwidth photodetectors, high speed

simultaneous sampling was not necessary.

IOTech’s ADC488/SA was purchased to read the signals from all photodetectors
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because the specifications showed that, at the time, it was the least noisy 16 bit A/D board

with the highest sampling rate.  However, during initial testing, when the inputs were

directly grounded at the terminal,  a large noise signal was found, apparently internal to

the device.  Figure 3.11 shows a comparison of the outputs of the two 16-bit A/D boards

in use for this research.  For both boards, the inputs only to channel one were grounded

and 1000 samples were taken at each board’s maximum sampling rate.  The other

channels were left ungrounded since the data was also acquired with this configuration.

This test shows the relatively large noise levels inherent to the measurements made with

the IOTech A/D board.  However, this noise is not likely to have affected the DGV data,

because the cameras used to acquire the velocity data digitized the intensities with 8-bit

resolution, and even with a noise intensity of 6 bits, the board still had 10 bits of effective

resolution.  In the point based system, where there was no other device limiting

resolution, the reduced resolution of the IOTech board had a significant impact.

Frame Grabber

A frame grabber is essentially a high speed A/D converter with specialized

triggering and interface hardware attached.  For example, for a typical CCD image with

640 picture elements (pixels) horizontally and 480 pixels vertically, with frames grabbed

at video rates of 30 Hz and sampled at 8-bit digitization, the frame grabber must

throughput data at a rate of 9.216 MB/sec.  For DGV applications, where multiple

cameras need to be sampled simultaneously, the data rate is multiplied accordingly.

These large data rates have only become possible in the last few years, and this

performance requirement drove the selection of a high-end board manufactured by

Matrox, Inc. called the Genesis.  The Genesis was, at the time of purchase, the only board

available on the market that was able to sample 4 CCD cameras simultaneously, and

digitize them individually.  It also features a parallel processor integrated on the board

that allows image operations to be performed much faster than if carried out using the

host computer alone.  Local to the board is 16MB of memory, approximately 14MB of

which is useable after initialization and device allocation.  This memory can be allocated

for 30 Hz acquisition and storage of 47 images, or  11 sets of 4 simultaneous grabs at the

maximum camera rate of 30Hz.  In addition to having 4 analog inputs, the board also
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accepts input from digital cameras and other non-standard cameras such as line-scan

CCD devices.

Traverse

A three degrees of freedom computerized, motor-driven traverse was constructed

to facilitate mounting and positioning of experimental apparatus.  The traverse allows

approximately 1’ of movement in the z direction (up-down), and within a 2’ by 1½’

rectangle in the xy plane.  The traverse was designed and built by S. Ramanath (see

Figure 3.12) using steel beams for the base and aluminum beams for the remaining

structure.  Using stepper motors for movement, translations on the order of inches are

repeatable to within 0.001 inches in the same direction, but increase to 0.01 inches when

a change of direction is involved, due to hysteresis.  The ability to move the experiment

rather than the optics and laser is pivotal in keeping the measuring volume aligned with

the receiving optics.
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Chapter 4: DATA ACQUISITION AND IMAGE PROCESSING

The software written for all data acquisition, image processing, and the operation

of the frame grabber is a mixture of C and Visual Basic.  Visual Basic provides the front-

end for all grabbing and processing DLLs, which have been written in C.  The acquisition

hardware for the reference (photodiode) system is housed in one personal computer,

while the frame grabber is installed in a different, but nearby, PC.  Additional details of

the software may be found in Appendix A.

4.1 Synchronization

The problem of synchronizing the photodiode and camera based acquisitions for

the acquisition of velocity data has been solved through the use of digital inputs and

outputs on both systems.  The Genesis frame grabber board has two logic-level ports

which can set or read a binary value.  These two ports are connected to the first two bits

of an 8-bit digital I/O port on an IOTech 16-bit A/D board.  The connections form IO1

and IO2, which can be thought of as simple digital communication lines indicating a

ready state for each acquisition device.  Handshaking ensures that both systems are ready

before any data are acquired.  An example of this handshaking is outlined in Figure 4.1

and is described as follows:  the software for the A/D converter is started and the board is

set to continuously monitor IO1, triggering the predefined data acquisition task when it

goes high.  When the board is done initializing, it sets IO2 to high to indicate a ready

state.  After the frame grabber board software is started and the initialization is complete,

it checks the status of IO2.  When IO2 becomes high, if it is not already, the frame

grabber board sets IO1 high and starts a frame acquisition, triggering a simultaneous

acquisition by the A/D board.  Each system immediately resets the corresponding ready

bit to low and repeats the process.

When the signal is given to start acquisition, the frame grabber simultaneously

grabs one field (half of a full image--due to interlacing) for each camera, while the A/D

board samples the reference photodiodes for the same 1/60th of a second.  The A/D board

will acquire 833 points during this time, but only record the average ratio value such that

there is one reference ratio for every image field acquired.  Because one field is taken

after another, 1/60th of a second apart, the flow is likely to move a significant amount
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between the first and second field acquisitions.  For this reason, the two fields that make

up an interlaced image cannot be used as one velocity image in DGV.  Instead, the first

field of each frame is kept and recorded so that in post-processing, the missing lines in

the acquired field are filled in with the average of the pixel values directly above and

below the empty line, creating a full frame to be analyzed.  The other option would be to

remove half of the lines in all of the correction images, then process the data fields as

required.  This option was not implemented.

The cameras, by themselves, are free running.  That is, they provide their own

horizontal and vertical sync pulses.  In order to simultaneously acquire data from all four

cameras, the internal sync pulses were overridden with externally supplied horizontal and

vertical sync pulses generated by the Genesis board.

4.2 Iodine Cell Calibration

Calibration of the iodine cell absorption line is important because an accurate plot

of intensity ratio vs. frequency is needed to ensure reliable frequency measurement and

accurate velocity results.  Calibrations were performed on each cell to account for slight

variations in iodine cell stem temperature as well as any optical differences that may

exist.  Iodine cell calibrations were accomplished using a continuous scan of the mode

structure of the Argon ion laser operating on the 514.5nm (green) laser line, which is

comprised of many resonant modes which are narrower in frequency by approximately

20-30 times than the width of the green line.  By mechanically altering the tilt of the

etalon through about 10-20 modes, the transfer function for one side of the absorption

feature can be resolved.

A coarse calibration can be done by mode hopping the laser and recording the cell

transmission ratio at each selected frequency.  The reference system needs no

modifications to do a mode hop calibration, and the velocity system needs only to be

focused on a non-moving object which scatters the laser light.  With this setup, the laser

etalon is tilted such that the laser frequency lies at a point in the iodine absorption spectra

of maximum transmission, and a set of ratios is taken and averaged.  Then the laser is

forced to resonate at a different mode frequency by slightly tilting the etalon via a screw

adjust at the rear of the laser and data is taken again.  The selection of consecutive modes



41

is continued until the transmission through the iodine cell is at a minimum.  The total

range of the etalon is 30-40 mode hops, but one side of the iodine transition line is only 8-

10 modes, or 1.032-1.29 GHz wide (Figure 4.2).  A curve fit is performed to fill in the

gaps.

A modified calibration procedure has been used in favor of the discrete calibration

described above.  The preferred procedure makes use of a longer data collection time of

30 seconds, during which, the etalon is tilted “continuously” to scan the laser frequency

through the frequency range of one side of the iodine absorption well.  Both images and

photodiode voltages have been acquired over the 30 second period, where 60-80 image

sets and 1500 photodiode voltages were recorded.  Optimally, the scattering medium is

the same as that which is used for subsequent testing, helping to maintain consistency

between the calibration and the velocity data.  Occurrence of mode changes was detected

by a sudden jump in reference photodiode voltage and reference camera gray level.

When the ratios are plotted with time, the data has a stair step trend with several data

points forming each ‘step’ (Figure 4.3).  Ideally, the data would be constant from mode to

mode; ie, the steps would be flat.  However, the process of tilting the etalon produces

changes in the laser frequency, most likely due to small changes in the length or shape of

the laser cavity, that manifest themselves as fluctuations in the ratio data within a single

mode.  Heating and cooling the etalon to produce the required length changes would most

likely have less of an adverse effect on the stability of the laser cavity.  However, the time

required to change the temperature of the etalon enough to span a side of the absorption

well, is long enough to allow external factors (namely ambient temperature and cooling

water) to affect the overall frequency drift.  In order to minimize the effect of the

frequency changes within a mode, the ratio value for any one mode was computed as an

average of all ratio data that were collected while the laser was in that mode.  Earlier

experiments were conducted on cell calibrations, within the context of the point system,

where the values at the left and right ends of a mode were compared with the average

value, and the best, most consistent results were obtained using the average value (James,

1997).  It was also found that this continuous scan mode hop calibration technique

offered better accuracy than an earlier technique involving discrete mode changes
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followed by many averaged data points for each mode.  It was more accurate because it

took less time to perform a scan, allowing less chance for the laser frequency to drift.

Also, the effects due to variability of where one stops the mechanical screw adjust on the

etalon tilt screw are minimized by this technique.

Significant further improvement in calibration accuracy, through a more

representative curve fit, has been obtained by using several individual continuous scan

mode hop calibrations together (James, 1997).  This improved calibration consists of

several (from 7 to 10) continuous mode hop calibration data sets for each cell.  A single

cell calibration data file is formed by "sliding" all mode hop calibrations for any one cell,

to overlay them on one arbitrarily-selected calibration scan of the set.  This procedure is

accomplished by linear interpolation, and is necessary because of arbitrary starting points

for each calibration data set, as well as temperature induced laser frequency drift between

mode hop calibrations.  After the calibration data are shifted, a best-fit curve is found in

order to determine a relative frequency given a measured ratio.  The most consistent

method of fit was found to be a form of a Boltzmann fitting function.  Other curves tested

include, an nth order polynomial and a stretched and shifted curve generated by theoretical

means (McKenzie, 1995).

The form of the Boltzmann fitting function used is as follows:
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where A1 and A2 are the top and bottom boundary ratio levels, respectively, x0 is a

horizontal shift, and Dx is a horizontal stretching coefficient.  This function is used

heavily in neural network algorithms as an activation function.  The function is fit to the

data by varying the four coefficients until the error between the data and the curve is

minimized.  A non-linear, least squares, iterative method called Levenberg-Marquardt

was used to perform the minimization (Press, et. al., 1992).  An example of this curve fit,

shown with the calibration data for each of the three iodine cells can be seen in Figure

4.4.  Individual data points show less scatter than McKenzie has shown for calibration

using a pulsed YAG laser (1997), especially for the photodiode data.  The camera data

show more scatter, but that is because significantly fewer points were used (~1/102) to
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calculate an average value for each mode.  The curve fits the data very well in the middle,

and less so near the top and bottom of the curves, which is why care is taken to acquire

velocity data near the middle of these curves.  Figures 4.5 and 4.6 compare two

calibration curve fits for each of the two velocity measuring components.  The curve fits

were applied to data taken on two different days.  The expanded portion of the curve

more clearly shows the difference in slopes of the two fits.  Figure 4.5 contains the curve

fits for component #1, with a maximum velocity change of 1.9 m/s due to frequency

differences at maximum data ratios (up to ±0.15).  The fits for component #2, in Figure

4.5, show less frequency difference at the extreme ratio values.  The maximum velocity

error for component #2 is 1.4 m/s.  The geometry used to calculate these velocity errors

was the same as shown in Figure 3.3.

The calibration procedure for the DGV system has an added step for the cells that

are calibrated with video cameras as opposed to photodiodes.  As in the point system,

voltage data from the reference system photodiodes is acquired continuously while the

laser is mode hopped through an iodine absorption line, but images through the other two

cells are acquired as quickly as possible (~2 images/sec).  Then, the average gray level

within a user-defined area for each calibration image is found and recorded before further

ratioing, data shifting and curve fitting can take place.  In this way, the cameras operate as

very large, slow, lower resolution photodiodes.

A typical calibration scan takes 30 seconds to complete, while a set of 10 scans

can be acquired in 10 to 20 minutes, depending on the behavior of the laser during the

scans (scans for which a mode is skipped are discarded and repeated).  Therefore, cell

stem temperature drift is not as much a factor over the course of a single scan as it is

during the acquisition of an entire calibration set.  Over the course of a single scan, the

frame grabber grabs images at a rate that allows 3 or 4 images per mode, whereas the A/D

board acquires approximately 100 data points during a single mode for the reference cell.

Consequently, after averaging over a mode, data from the cameras is less consistent than

that from the photodiodes.  Use of a larger number of individual scans in the curve fit

process helps to correct for this inconsistency.

Some researchers skip an experimental calibration altogether, and instead use a
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theoretical model that predicts the absolute frequency of the absorption line based on cell

body and stem temperature (Meyers, 1996).  Others use a combination by fitting the

experimental calibration with the theoretical model (McKenzie, 1995).  If the theoretical

model is used alone, absolute velocities can be calculated directly from photodetector

ratios, provided accurate temperatures are available.  In a mode hop calibration, no

absolute frequency is known; therefore, only a comparison between the reference and

signal cell calibrations can give an absolute velocity.  However, temperatures must

remain constant between calibration and data collection.  Since this is very difficult to

achieve, an apparent velocity offset is produced.

4.3 Image Processing Procedure

Two main goals of the image processing software are to more accurately represent

the imaged area and to better align the views of the signal and reference cameras.  A

block diagram of the data reduction process is shown in Figure 4.7.  Most of the steps

shown closely follow the comprehensive image processing methods developed at NASA

Langley by Meyers (1992, 1996).  Besides the cell calibrations, several additional images

of a corrective nature need to be taken before each data run, while the system remains

undisturbed.  In each case where the target is stationary, several exposures are taken and

averaged for each camera.

4.3.1 Intensity Corrections

Background

The first of these additional images is the background image. The background

image is an image (average of several frames) of the data area with laser illumination but

without seeding.  Contributing to the apparent background light level is the camera dark

current, which is due to the spontaneous generation of electrons in the CCD elements

without photon stimulation, and appears as additive charge on top of the output image.

The background light level can be partially reduced by cooling the array, or, as was done

in this work, the sum of the dark current with the image of the test area can be subtracted

from each data image to more completely compensate for these effects.  The background

images must be removed from the raw data image before the reference and signal pixel

levels are divided.  If not subtracted, the background scattered laser light represents a
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constant added to the particle scattered light signal, which does not cancel when dividing.

Background scattering is more of a problem when using cameras as the light intensity

sensing devices, because the depth of the field of view cannot be limited through the use

of a pinhole, as it can be in a point based photodetector system.  An improvement in

signal from the point system photodetectors has been seen when the velocity sensing

systems were covered with a black drape and boards blocked light from the front and

back.  Light has only been permitted to enter the system via a hole in the front masking

board.  Similar arrangements have been made for the reference system by covering it with

a specially constructed box.  This configuration has been preserved for the planar system.

An alternative method of minimizing the background light error, presented by

Elliot, et. al. (1994), is to place an additional I2 filter in front of all receiving optics.  The

filter is constructed such that light that is not Doppler shifted is completely attenuated,

and Doppler shifted scattered light from the particles passes through to the receiving

optics, effectively removing background scattered laser light from the image.  The flow

being measured must produce a large enough Doppler shift such that a fraction of the

shifted light is passed through the cell, while the incident laser light is not.  This method

is most applicable in systems measuring high speed flows where the interrogating laser is

of high power pulsed type and there exist many reflections from objects in the test

environment, such as a wind tunnel model.

White Card

An averaged image of a laser-illuminated white card is also recorded.  Laser light

is used, rather than white light, in an attempt to closely emulate test conditions.  Also, the

laser is tuned such that the frequency does not fall in an iodine absorption line during this

acquisition (McKenzie, 1997).  The signal and reference images of the white card go

through the same processing steps as do the data images up to and including the ratio

step.  After the division of signal and reference images, each channel’s white card ratio

array is normalized with respect to the average ratio value.  The resulting matrix of

floating point numbers should, ideally, be equal to 1.0, but imperfections in the imaging

system (lenses, beamsplitters, mirrors, and cell ends) will cause variations in the light

intensity, and therefore, the ratio.  In particular, interference fringes produced by coherent
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laser light reflecting off nearly parallel glass surfaces of the iodine cell affect the light

intensity of the signal camera, and must be removed by the white card correction.  Near

the end of the processing steps, ratioed data images are divided by the white card matrix

to correct for these imperfections (Meyers, 1996).

Pixel Flattening

White card images do nothing, however, to account for the slight variations in

sensitivity for individual pixels across the CCD array.  In an effort to force all pixels in an

array to have the same sensitivity, two average images are taken with all lenses removed

and the array exposed to two different uniform light levels.  These images only need to be

taken once, since the pixel sensitivity imperfections are inherent to the cameras and are

not likely to change with changes to the configuration or alignment of the system.

Individual pixel sensitivities (or slopes), which, ideally, should be equal to 1.0, are

calculated at each pixel by
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where P1x,y is the gray level value at the x,y pixel location in the first image, and P2x,y is

the pixel value at the same location in the second image.  Avg1 and Avg2 are the average

gray level values for the first and second images, respectively.  Data was taken at several

(8-10) gray levels with the slopes between any two levels being almost identical.  Gray

level images of 100 and 200 were chosen to represent the linear response of the CCD

array and form the sensitivity correction.  The correction is applied by dividing the data

image from each camera by the corresponding array of pixel slopes (Meyers, 1992).

Figure 4.8 shows an example of X and Y cuts through the center of a flat-field image

from one of the cameras before and after the pixel sensitivity correction has been applied.

The X and Y cuts were separated by 5 gray levels, and the two sets are separated by 10

gray level values.  Otherwise, the four curves would be practically indistinguishable.  The

RMS deviations of the X and Y cuts before the correction are 1.7 and 0.98 gray levels.

After the correction, they are reduced to values of 0.92 and 0.86, respectively.  When

viewing false color images of the pixel correction buffers, unique “hot spot” patterns can

be seen for each camera in a pattern that is unique to that camera.  These patterns are
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identical in shape to features seen in the raw data images, which are removed from the

slope images, reaffirming the need for this type of correction.

Smoothing

The next step in the algorithm is to low-pass filter the image resulting from the

steps above.  A convolution is performed between a flat 5X5 kernel and the image, in

effect, blurring it.  Low-pass filtering reduces the effects of both the CCD readout noise,

as well as any laser speckle noise (McKenzie, 1997).  Speckle noise is less of a problem

with the cw laser used in this research than with a pulsed laser, but low-pass filtering still

improves the quality of the images acquired.  As a result of testing described below, the

modulation transfer function (MTF) of the camera/lens combination was found to be

approximately 3 to 5 pixels wide, so a 5X5 kernel actually causes minimal loss of

meaningful velocity information.

An examination of the magnitude of the noise caused by laser speckle has been

conducted on two targets.  The first was the wheel surface which was painted anodized

aluminum, and the second surface was a large piece of poster board.  The results in both

cases were very similar, so only the results for the wheel are discussed here.  Two sets of

images, taken while laser light was scattered from the surface of the disk, were acquired

and analyzed.  The analysis was limited to the examination of the standard deviation of

the pixel gray level values over a selected area of the image which was slightly smaller

than a rectangle inscribed within the boundary of the disk.  The first set of images was

taken when the wheel was stationary.  This set produced a standard deviation of

approximately 20% of the average gray level.  The speckle interference pattern could

easily be seen by eye during this test.  The second set of data was taken with the wheel

rotating slowly (~20 rpm).  The RMS variation for this data set was approximately 10%

of the average gray level value, a 50% reduction over the stationary data.  Ideally, though,

the speckle pattern would be perfectly correlated between signal and reference cameras,

effectively canceling any variation and producing a flat ratio image.  When signal and

reference camera speckle images were dewarped and overlaid, the speckle noise was

reduced to 3% of the average gray level value.



48

Additional speckle testing at different laser power levels was performed to

determine the extent to which the speckle noise (as defined by the RMS percentages of

the mean pixel value) was independent of scattering intensity.  Four intensities were

tested with average gray levels ranging from 140 at the highest laser power setting to 30

at 0.6 watts of laser power.  The RMS percentage increased with decreasing average

intensity, from 17% at 140 gray levels to 22% at approximately 30 gray levels.  A 5%

change over a 79% reduction in intensity is negligible, and could possibly be attributed

partly to camera effects such as readout noise or pixel bleed.

Another artificial source of intensity variation that the low pass filter helps to

correct is the CCD camera itself.  In transferring the image from the CCD array to the

data bus, there exists readout noise.  Readout noise is the partial transfer of one sensor

element's charge to a neighboring element.  When pixel charge is read from an array, it is

done serially; that is, row by row, each charge element in a row moving to the next bin,

previously occupied by a neighboring charge, and whole rows moving up until all of the

elements are read, one by one.  In this bucket brigade of charge transfer, some electrons

are left behind and added to the following charge, but it too leaves some electrons behind,

and if it leaves behind a number unequal to what it gains, then there will be readout noise.

A similar effect can be seen when pixel bleed occurs.  For example, when viewing a high

contrast image such as a sharp black object on a white background, the transition between

black and white should be no more than one pixel wide.  However, pixel bleed results

from neighboring CCD elements with widely varying charges “leaking” charge to lower

potential elements.  When combined with readout noise, the resulting transition occurs

over a greater number of pixels (Amelio, 1974).  Measuring this transition provides

information on the effective resolution of the CCD array by characterizing the modulation

transfer function (MTF).  For the Hitachi cameras used, the MTF was approximately 4-5

pixels wide.  An example output from the measurement of a sharp transition from light to

dark is shown in Figure 4.9.  This figure illustrates the MTF for the camera/lens

combination, where the lens was operated at an f-number of approximately 4.5.  The

actual MTF for the camera alone is likely to be slightly better.
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4.3.2 Spatial Correction - Dewarping

Another averaged image is one of a rectangular reference grid of small dots placed

in the plane of measurement which is key to the spatial corrections needed for accurate

alignment of the signal and reference camera images.  This “dot card” image provides

reference points with which dewarping calculations are made.

The need for dewarping is obvious when trying to overlay velocity images to

resolve orthogonal velocity components.  Resolution of those components necessitates

measuring velocity from different directions, resulting in perspective warping.  However,

even though both signal and reference cameras within a DGV component system are

viewing the same area through a beamsplitter, dewarping is also needed for these images

to correct for imperfect pixel-to-pixel alignment (Meyers, 1992).  Since the measurements

are taken in a plane, the dominant distorting effect is a perspective warping (keystone

effect) originating from non-perpendicular imaging.  If this were the only effect, the

correction would be a simple linear transformation applied to the whole image at once.

However, there is also significant warping due to irregular optics; specifically, the

beamsplitter is a thin piece of glass 4 inches in diameter which bends easily within the

mounting hardware, producing distortions that are most noticeable in the reference image.

Vertical lines cannot be made to simultaneously appear vertical in this image.

The dewarping process begins with the acquisition of a dot card image by each

camera, as described above, which provides an array of discrete reference points with

which to align the images.  Each dot card image is then masked by passing the result of a

standard edge-finding (Sobel) filter through a threshold function, and the dot center

locations are found using blob centroid analysis routines provided by the frame grabber

manufacturer.  The centroid coordinates are calculated by weighting the gray level of each

pixel identified by the threshold function as part of a dot, then finding the second moment

for the grouping.  The centroid coordinates are then stored for each image.

Next, a grid is generated which marks the location of the dots in the dewarped

image.  The numbers of rows and columns of dots visible in the distorted image are

counted, and the grid coordinates are calculated in such a way as to fill the entire

dewarped image with that number of equally spaced points.  This has been done so that
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the warped image is always stretched when dewarped, and pixels referenced in the

warped image are guaranteed to be defined within the image area, leaving no holes or

overlap.  Consequently, the resulting dewarped images will thus almost always have

slightly different X and Y scale factors; however, this distortion has been minimized

through the use of a grid pattern that has the same aspect ratio as the CCD array.

The centroids of the dots in the warped image are sorted in the x-coordinate by

Shell’s method (Press, et. al., 1992).  Next, the three closest dots to the upper left corner

of the image (0,0) have been found using a standard two dimensional distance formula.

The upper left most dot is the dot with the minimum distance to the origin.  The dot

which is closer in the X direction than in the Y direction is the second dot in the first

column, and the last dot in the group of three identified is the second dot in the first row.

These three dots are then used to predict the location of dots in the first row and column,

which, in turn, are used to predict the second row and column, and so on.  In this manner,

the dots are assured to be sorted into rows as they are viewed on the dot card, provided

the warping exists at a reasonable level as can be expected in a planar imaging system

such as DGV.

Next, two floating point buffers which are the same size as a data image, are filled

with X and Y coordinates.  The X and Y coordinates specify exactly where, in the warped

image, the gray level value for every pixel in the dewarped image came from.  The values

that are placed in these buffers are calculated by first finding where each pixel is as a

percentage of distance from the four pixels that surround it.  Then, those percentages are

used to find the X and Y coordinates of the location that is in the same position relative to

the four surrounding dots as they appeared in the warped dot card image (Wolberg, 1990).

Figure 4.10 gives a visual representation of this process.

When this is done, there exist two floating point arrays for each camera; one

containing X pixel coordinates, the other Y.  To dewarp a warped data image, first the

appropriate X and Y buffers are loaded into memory.  Then, pixel by pixel, the X and Y

coordinates are read from the buffers, and if both coordinates are whole numbers, then the

gray level from that location in the warped image is placed in the same location that the

coordinates were read from, in a separate, blank image buffer.  However, the X and Y
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coordinates are not likely to be whole numbers, so the interpolated values from the four

closest pixels to each coordinate normally must be calculated for each dewarped pixel.

Here, the percentage distance from the four neighboring pixels can be read using the

decimal portion of the X and Y coordinates since pixels are enumerated as a whole

number grid.  Equations used for the bilinear interpolation are given in Equation 5.
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In these equations, Px,y is the gray level at pixel location (x,y) in the warped image, u’ and

v’ are the X and Y percentages defining location between four points, and DGL is the

dewarped gray level.

Two tests were conducted to test the accuracy of the dewarping algorithm.  The

first test, which was more of a test for dewarping repeatability, involved acquiring 30 sets

of four dot card images.   The dewarping coefficients were found for each set of images

using the algorithm described above.  During this process, the centroids for all reference

dots in the original, warped images were recorded.  The original dot centroid locations

were then dewarped and their locations in the dewarped buffer were recorded.  The

standard deviation of all 120 sets of dewarped centroid locations from the desired equally

spaced grid was found.  The standard deviations were approximately ±0.00001 pixels,

which is on the order of the floating point accuracy with which the centroid locations

were stored.  The second test was conducted to quantitatively describe the accuracy of the

dewarping of a single image.  The normal procedure for dot card image acquisition and

processing was followed for a dot card which had approximately 10:1 dot spacing and a

4:3 aspect ratio (2” X 2.7”).  The dot card was then moved in the plane of the card using

the 3-axis computer controlled traverse.  The card was moved in both the vertical and

horizontal directions an amount equal to half the dot spacing, and the normal acquisition

and processing procedure was repeated.  The centroid locations for both dot card images

were then dewarped using the coefficients calculated from the dot card image taken

before the movement.  The X and Y difference between the pre- and post-move dewarped

coordinates of the dot centroids was then calculated.  The distance moved was made to be
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half of the dot spacing in an attempt to represent the dewarping of the pixels that were

farthest away from the dot reference points, and therefore, most likely to have the largest

associated errors.  Table 1 shows the standard deviations of the differences in X and Y

coordinates for the pre- and post-move dewarped images for all four cameras.

Table 1.   Standard deviations of dot centroids (in pixels)

Camera A Camera B Camera C Camera D
X 0.25 0.27 0.34 0.28

Y 0.19 0.20 0.18 0.18

A - B C - D
X 0.34 0.43

Y 0.28 0.24

The bottom half of Table 1 gives the standard deviations of the dewarped post-

move dot centroids between cameras of the same velocity component, which is a better

measure of the overlay accuracy.  An example of the overlay accuracy between signal and

reference cameras for both velocity components is shown in Figure 4.11.  The X

coordinate standard deviations in Table 1 are consistently higher than that of the Y

coordinate due to the type of warping caused by the geometry of the system tested.  All

cameras were placed in the same plane; therefore, the primary warping is due to

perspective effects which have a greater influence on the apparent width of the image.

The dot card used for this test was approximately 2” high and 2½” wide.  The test has

been repeated with another dot card approximately 6 times taller and wider.  The standard

deviations for the larger dot card are approximately half the values of those shown above,

much closer to the 0.3 pixel accuracy quoted by McKenzie (1997).  The increased f-

number that was a result of a smaller focal length needed to image the larger dot card is

thought to be responsible for an improvement in the accuracy and consistency with which

the algorithm calculates the centroid location of each dot.  This would lead, in part, to a

smaller variation in dewarped centroid location.

4.3.3 Division

The dewarped signal and reference images for each component are checked for

zero or extremely low gray level values, which are replaced with a value of -1 for the

reference images, and 20 for the signal images.  This produces an out-of-range ratio value
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when passed through the curve-fit equations if either one or both of the images has low-

valued pixels.  The signal and reference images are then divided, producing, where

sufficient signal exists, a ratio “image” containing values which are proportional to

velocity.  The ratio for each pixel is checked for out of range values (produced in the step

above) before being passed through the curve-fit of the appropriate cell calibration data

by checking the ratio value against the upper and lower ratio limit of the calibration

curves.  If a pixel has an out of range ratio value, it is marked and set equal to a mid-range

value so that no numeric errors occur during the calculation.  After all calculations have

been completed, the marked pixels are set to zero frequency shift which results in a zero

velocity reading in the final velocity image.

The frequency found from dividing the signal and reference voltages from the

reference system photodiodes and passing the resulting ratio through the reference curve-

fit is subtracted at this point from both relative frequency arrays of the two components.

The goal of subtracting the reference system frequency is to eliminate the velocity change

that would be measured as a result of laser frequency drift.  The effectiveness of this

reference system will be discussed in a later section.  At this point, there exist two

Doppler frequency “images” which are used in Equation 1 to produce two velocity

images.  Velocity images are actually floating point buffers which can not be displayed

normally, but when scaled from 0 to 255, can be viewed as grayscale or color images.

The combination of system geometry and laser wavelength in Equation 1 yields a number

that is a constant for each component for a particular test setup.  This number is called the

component sensitivity because it quantifies the measured Doppler frequency shift per

(m/sec) of velocity along the sensing direction.  It has units of MHz/(m/sec), with typical

values ranging from 2-3 MHz/(m/sec).  The frequency images are simply divided by the

corresponding sensitivity to produce velocity images as the final step in the data reduction

process.
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Chapter 5: VELOCITY MEASUREMENT EXPERIMENTS

5.1 Rotating Wheel

Two experiments were used to evaluate the accuracy of both the point and planar

velocimetry methods.  The first and most basic experiment involved the measurement of

the velocity of a rotating wheel.  A constant RPM wheel provides a good velocity

standard to compare with measurements.  The wheel used was a black anodized

aluminum disk approximately twelve inches in diameter, driven by a speed controlled DC

motor.  The wheel was tilted at a shallow angle to the laser beam, and the beam was

spread into a cone with a small, 9mm diameter, f1 lens, such that the entire surface of the

disk was illuminated.  The black anodized surface of the disk was painted white to create

more scattered light, and therefore a higher signal level for the receiving optics.  For the

planar system, the wheel was tested at maximum RPM only.  Variation of the wheel

speed or traversing of the wheel itself was not needed as it was in the point system,

because a single image shows the entire range of in-plane velocities along a vertical

diameter.  The RPM of the motor at the maximum setting on the speed controller was

measured by aiming a laser pointer from in front of the wheel, into a photodiode mounted

just behind the spinning disk.  Thin strips of heavy stock paper were taped to the edge of

the wheel, protruding just enough to break the beam of the laser pointer to the

photodetector.  The output of the photodetector was then viewed on an oscilloscope

where the period between the strips was read.  The angular velocity was calculated and

was used to determine tangential velocity when multiplied by the radius.  The controller

setting which produced the measured RPM was found by measuring the voltage on one

side of a voltage dividing potentiometer within the controller, providing a much more

reliable way to consistently set the speed than to try and return to the same mark on the

dial each time by eye.  The entire wheel was imaged using the setup shown in Figure 3.3.

5.2  Pipe Flow

The second experiment was the measurement of fully developed, turbulent pipe

and turbulent jet flow.  Configuration and geometry of the test is shown in Figure 3.4.  A

1.5” diameter copper pipe, 90” long (L/D = 60) was attached to a high speed centrifugal
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type blower.  Reynolds number for the pipe was approximately 100,000 based on

diameter.  Flow seeding was added to the intake of the blower by a Rosco fog machine

which vaporized a propolyene glycol based fluid into “smoke” particles on the order of 1

to 10 µm in diameter.  A large volume container was placed in-line between the fog

machine and the blower intake to minimize the pulsating effect with which the machine

dispensed the fog.  Downstream of the exit of the pipe, a 3:1 reducing cone connected to

exhaust ducts was used to remove the fog from the pipe flow out of the building.  A laser

light sheet formed by the x-y scanner head was placed at various positions at the exit

plane as well as multiple diameters downstream, and the fog particles scattered the laser

light into the receiving optics of the DGV velocity measuring systems.  The speed of the

flow was governed by the blower RPM which was controlled by a variable voltage AC

transformer; a maximum speed of approximately 40 m/s was set by limitations in

removing the smoke from the lab.  The settings on the transformer were calibrated to pipe

velocity with a pitot-static probe.
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Chapter 6: RESULTS

6.1 Wheel Results

Analysis of the wheel velocity data is presented as RMS variations and percent

error of the total velocity range (since the wheel velocity distribution is linear).  The RMS

error is the standard deviation of the velocity from a straight line fit through the data, not

the deviation from the known velocity.  It is a good descriptor of the minimum resolvable

velocity of the instrument.  Since the wheel velocity distribution (in the plane of the

instruments) is linear for any vertical cut down a wheel image, the RMS error from a

linear fit is also a good indicator of the error level resulting from a combination of several

different sources.  Camera noise, 8-bit digitization, truncation in data processing, various

sources of environmental electromagnetic radiation, and non-uniformity in the wheel

surface all contribute to the RMS error.

Percent error of the total velocity range is an indication of the overall accuracy of

the system.  Contributors to this type of error tend to be more systematic, such as the non-

repeatability of the iodine cell calibrations, camera and photodetector dark voltage bias,

measurement errors in the system geometry, and the accuracy to which the wheel speed

(or pipe/jet flow) can be determined by an alternate measurement device.

Four sets of 30 images of the surface of the wheel were acquired while the wheel

was rotating at maximum RPM.  The individual velocity images found along the

sensitivity vector for each velocity component are treated as projections of the actual

velocity vector in the sensitivity directions of the respective components (See equation 1

and Figure 3.2).  As a result, each component under-estimates the value of the velocity

vector by measuring a quantity that is the cosine component of the angle between the

velocity vector and the measurement angle.  If the direction of the velocity vector can be

assumed, as can safely be done in the case of a rotating wheel, each component can be

made to measure the velocity in that direction.

The average of 30 images taken in one 15 second set (1/60th of a second exposure,

each) are shown for each component in Figures 6.1 and 6.2.  Both measuring components

are reduced in the direction of the known velocity vector (parallel to the surface of the

wheel), producing velocity images which show the comparative accuracy of each velocity
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component very well.  Figure 6.1 is the velocity image from component #1, which shows

more non-uniformity due to a large measurement angle (with respect to the velocity

vector) of 66.5°.  Any measurement made at that angle was multiplied by 1/cos(66.5°) or

2.5.  Component #2, shown in Figure 6.2, has much less variation giving it an overall

smoother appearance.  Referring to Figures 3.2 and 3.3, it can be seen that the

measurement angle for component #2 is a much smaller 35.5°.

Data read from horizontal and vertical cuts through the center of these images and

trimmed at the edges of the wheel are shown in Figures 6.3 and 6.4.  Cuts were frequently

used to more closely evaluate the quantitative accuracy of the measuring components.

Table 2 shows the standard deviations and velocity ranges of the horizontal (X) and

vertical (Y) cuts of the average velocity images.  The total velocity range for the rotating

wheel was 58.7 m/s.  In the σY case, the standard deviation was calculated as the

variation from the linear fit.  These data highlight the dependence of instrument precision

on the system geometry because RMS values from component #2 are consistently double

those from component #1, and the velocity magnitude errors are smaller by a factor of 10.

Table 2.  Standard deviations(σσ) and measurement accuracies
of average image X and Y cuts (m/s) for components 1 and 2

Data Set # σσX1 σσX2 σσY1 σσY2 ∆∆V1 (%error) ∆∆V2 (%error)
1 2.96 1.30 2.19 1.19 47.6 (18.9%) 59.2 (0.9%)
2 3.25 1.27 2.17 1.12 48.2 (17.9%) 59.3 (1.0%)
3 2.63 0.91 2.28 1.22 51.1 (12.9%) 57.5 (2.0%)
4 2.85 0.90 2.45 1.25 50.9 (13.3%) 57.8 (1.5%)

The data were reduced a second way by calculating the velocity in two orthogonal

directions, which is by far the more practical case since no assumptions are made about

the direction of the flow being tested.  In the rotating wheel experiment, the orthogonal

directions were chosen to be normal and tangential to the surface of the wheel (see

Appendix B).

Two-component rotating wheel DGV data is presented in Figures 6.5 and 6.6.

Figure 6.5 is the velocity image of the component parallel to the surface of the wheel, and

Figure 6.6 is the component normal.  Both images are a combination of the results of the

two measurement systems.  Cuts through these images are shown in Figures 6.7 and 6.8.

The range of velocities on the wheel are linearly distributed along any vertical cut with
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the maximum range occurring at the horizontal center of the wheel.  The maximum and

minimum velocities for a vertical center cut are 29.35 m/s and -29.35 m/s for a total range

of 58.7 m/s.  The DGV measurement shown has a range of 61.6 m/s for a 5% error.  The

normal velocity component is known to be zero since the wheel never moves out of

plane, however, the measured velocity in Figure 6.8 shows wide variations of up to ±10

m/s with a maximum standard deviation of 3.8 m/s.  This is due to the fact that the

component providing the most velocity information in the normal direction is the

inherently noisier component #1.  The RMS values and tangential velocity ranges for all

four data runs are shown in Table 3.

Table 3.  Standard deviations(σσ) of orthogonal velocity components, 
and tangential component measurement accuracies (m/s)

Data Set # σσXT σσXN σσYT σσYN ∆∆VT (%error)
1 1.30 3.10 1.67 3.12 63.4 (8.0%)
2 1.24 3.50 1.58 3.04 63.5 (8.1%)
3 1.43 3.50 1.62 3.27 61.6 (4.9%)
4 1.49 3.89 1.77 3.58 62.0 (5.6%)

Data were obtained for the same rotating wheel by the two-component Point

Doppler Velocimetry (PDV) system (Kuhlman, et. al., 1997) developed prior to the planar

system described in this work.  The RMS deviations of that data, reduced in orthogonal

directions, averaged approximately 0.5 m/s, while the percent error in velocity range was

less than 2%.  The best data acquired with the planar system shows an approximate factor

of 3 increase in error over a point system that had 257 times greater resolution (8-bit

DGV compared to 16-bit PDV).  Also, each rotating wheel velocity measurement for the

PDV system was the average of several hundred data points collected over times on the

order of seconds.  In the same time scale, the DGV system might acquire 5 individual

data sets.

The effect of the white card correction as discussed in Section 4.3.1, is shown in

Figures 6.9 and 6.10.  The image shown in Figure 6.9 contains the same data as in Figure

6.6, but reduced without the white card correction.  The circular patterns visible in the

image are interference fringes present in only the signal camera of each measurement

component.  The fringes are a result of an interferometer-like setup of the iodine cell end

windows.  This irregularity illustrates the need for laser light illumination of the white
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card, because had the white card been illuminated with white light, the interference

fringes would not be present in the white card images nor corrected for in the data

images.  The range of variation of the component #1 white card ratio along vertical and

horizontal cuts is 1.09 to 1.02.  When the ratio of the data images is divided by the white

card ratio, this 7% variation causes a ±0.02 change in data ratio.  Assuming the data ratio

is approximately 0.57, the iodine cell absorption profiles translate ±0.02 changes in ratio

to ±9.7 MHz of frequency change.  Using the geometry of component #1, because it is the

main contributor to the velocity image shown in Figure 6.9, the white card variation

produces a ±8.8 m/s change in velocity.  Ideally, this correction would be of equal and

opposite magnitude as the data image errors.  In practice, though, while it has roughly the

same variations as the data errors, the error in the measured data is not reduced by an

amount equal to the change in the white card because the white card contains errors of its

own.  Gross deviations (such as the interference pattern) in the data images are greatly

reduced, but smaller variations in relatively featureless areas of the data images are not as

well correlated with the white card ratio variations, and thus, do not produce the same

level of correction.  Perhaps this white card correction can be further improved.

6.2  Turbulent Pipe/Jet Flow Results

Using the geometry shown in Figure 3.4, a large set of data measuring the flow

exiting the 60 diameter pipe apparatus was taken.  Representative selections from this

data set will be subsequently discussed.  In all velocity images shown for seeded flow, the

pictured result is the average of 30 individual images acquired over approximately a 10

second time period, and both components have been reduced along the axial direction of

the pipe using the same dot card warping correction for all data sets.  The Reynolds

number for the pipe flow was approximately 100,000 based on diameter.  Also, the

approximate diameter and position of the pipe has been shown by a black circle in each

image.

Several improvements to the system had to be made before obtaining these data

sets. A coaxial duct was installed to deliver low speed smoke particles to the entrainment

area around the exit of the pipe, with the object of lowering the light intensity gradients in

the mixing layer.  A second smoke generator injected a vapor mist into a large volume
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container which then exhausted the particles through a four-inch dryer duct which was

placed around the end portion of the pipe.  Data acquired previous to this modification

exhibited large errors in the mixing layer, where particle concentration decreased very

quickly.  In areas of sufficient signal, a correction needed to be made to offset a random

velocity bias of unknown origin.  It is the purpose of the reference frequency monitoring

system to compensate for all velocity bias due to laser frequency change.  However,

correlations of the reference system ratio to that of the velocity measuring systems were

less accurate than expected.  A more direct approach was taken to correct for any velocity

offset bias by providing a laser illuminated, non-moving object in the field of view of

each component.  An uncoated 2” piece of Pyrex was placed in the beam path, and the

approximately 8% reflection from the first surface of the glass was focused into a 300 µm

fiber optic cable.  The fiber optic was used to illuminate a  small, rectangular piece of

paper which served as the “zero tab”.  The velocity of this tab, as measured by the two

DGV components, was subtracted from every velocity image, including all results

presented here.  An earlier attempt using a separate defocused zero tab for each

component was not as successful as using a single tab in field of view of both

components.

Problems with obtaining a uniform and properly corrective white card have been

addressed by first identifying the location of the interference rings that were present in

every camera signal image.  The iodine cell, which caused the fringes as discussed earlier,

was slightly rotated, enough to move the fringes away from the center of the image.  Two

different white cards were then taken.  The first was actually a set of two white cards, one

for each component.  A piece of poster board was illuminated very close to each

component such that it appeared out of focus.  While acquiring white card images, both

the poster board and a thin plastic film optical diffuser were in constant motion to help

create a smooth image free of speckle and numerous interference fringes produced by the

9mm focusing lens at the end of the fiber optic.  The second white card was placed in

view of both components near the measuring plane and illuminated in a similar manner.

This card resulted in a correction that was a more successful than the first.
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Figures 6.11 and 6.12 contain velocity images from component #2 which is

looking back on the measuring volume from downstream (see Figure 3.4).  Because of

this angle, component #2 is able to clearly view measurements of turbulent pipe flow

taken at the pipe exit, while component #1 is not.  Figure 6.11, taken 0.2 inches from the

pipe exit, shows the average velocity distribution of fully developed turbulent pipe flow

as measured by component #2.  The spots on the left side of the image are specular

reflections of the scattered laser light from the lip of  the copper pipe.  After traversing

the pipe apparatus 1.5 inches away (1 diameter) from the laser sheet, Figure 6.12 was

obtained.  At this position, component #1 is just able to view the entire measuring

volume.  However, for this data set, some of the pixels in the center of the image received

too much signal and were saturated, producing erroneous velocity data.  Images that

contained saturated data have not been included in these results.  Significant mixing and

shear layer growth can be seen in Figure 6.12 just 1 diameter downstream of the exit.

Horizontal and vertical cuts through the center of these images are shown in Figures 6.13

and 6.14.  Figure 6.13 approaches the classic profile of fully developed turbulent pipe

flow except for approximately 3m/s fluctuations and a few minor anomalies (for example,

on the left side of the image) that can be attributed to secondary scattering and reflections

from the illuminated edge of the copper pipe.  Figure 6.14 shows a more rounded profile

which is to be expected due to the shear layer growth at the increased downstream

location.  Approximately 200 pixels span this profile, for a 100 pixels/inch spatial

resolution.  Both the horizontal and vertical cuts have the same overall shape in both

figures, as they should since the pipe flow is axisymmetric.  The peak magnitudes of all

of the velocity plots show an inconsistency that is entirely due to the not-completely-

perfected method of setting up and acquiring an accurate zero tab.  The peak centerline

velocity value as measured by a pitot probe at the exit of the pipe is 42m/s for both data

sets.

A two-component measurement 1 diameter from the exit is shown in Figures 6.15

and 6.16.  The velocity fluctuations on the right side of Figure 6.15 are believed to be due

to secondary scattering from core flow particles.  A similar phenomena can be seen in

Figure 6.16, but on the left side and with reduced intensity.  Referring to Figure 3.4,
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component #1 must view the right side of the measuring volume through a dense stream

of seed particles.  Likewise,  imaging of the left side by component #2 must take place

through a similar volume of particles, albeit less dense.  This may also account for the

slight imbalance shown in the horizontal and vertical cuts (Figures 6.17 and 6.18) through

these images.  That is, a slightly higher velocity is measured in regions of higher

secondary scattering.  Noise in these cuts is visually estimated to be approximately 5 m/s

peak to peak, or less than 2 m/s RMS.  This is comparable to the noise in the wheel data

results.

Measurements taken 2 diameters from the exit of the pipe are shown in Figures

6.19 and 6.20.  In these images, the middle velocity range (in green) has spread to cover a

greater portion of the radius.  The core velocity is less well defined in these images.

Quantitative support of these observations can be seen in Figures 6.21 and 6.22.  Figure

6.23 shows even more mixing as the jet has spread to approximately 2 diameters in width

6 inches (4 diameters) downstream.  The measurement from component #1 was again

saturated, and has not been shown here.  The profile shown in Figure 6.24 has a smooth

Gaussian shape characteristic of a jet profile.  Also, the edges of the image show more

velocity fluctuations because of both higher turbulence intensities in this region and a

lower probability of particle illumination.  Once again, the inconsistency of the zero tab

can be seen in Figure 6.24.  At 4 diameters, the centerline velocity should be slightly less

than the 42m/s measured at the pipe exit.  If the velocity data near the edges of the image

are assumed to be close to zero, Figure 6.24 shows a maximum velocity of 35-40 m/s,

whereas use of the zero tab indicates 47 m/s.  This would be closer to the 40 m/s

centerline velocity measured by the pitot probe.

Measurements taken at 6 diameters (9 inches) downstream are shown for both

components in Figures 6.25 and 6.26.  The width of the maximum velocity region seen in

the images has been reduced to a fraction of the pipe diameter, indicating a steeper

profile, while the mixing and entrainment has increased the local jet diameter to be

between 2 and 3 pipe diameters.  In Figure 6.26, striations can be seen in the top and

bottom of the image.  These are likely due to several 8-bit truncations inherent in the

image processing procedure.  Figures 6.27 and 6.28 show good symmetry, although they



63

are quite noisy (maximum deviations of 6-12 m/s), especially towards the edges of the

flow.

Pitot probe data were taken at the pipe exit and 1 diameter downstream to validate

the DGV data.  Figure 6.29 shows horizontal and vertical cuts through the exit velocity

image (Figure 6.11) overlaid with pitot probe data taken at the same location.  Only the

offset (approximately 5 m/s) of the DGV data was modified to create the good fit

displayed in this figure.  Similarly, the offset of cuts through the 1 diameter velocity

image were changed to create the overlay in Figure 6.30.  The repeatability of the pitot

data is approximately 3-4% of the maximum velocity.  The peak profile velocity was

found to be extremely sensitive to small changes in the position of the ducting that

delivers the smoke to the blower inlet.  The positioning of the duct was bound to change

from day to day due to both regular movement around the lab space, as well as operation

of the blower itself.  Nevertheless, the pitot probe data validates the goodness of the

shape of these two profiles and reinforces the self-consistency of the flow velocity

measurements.

Images of RMS fluctuations of the jet at 4 diameters downstream provide a

limited view of general turbulence characteristics of the jet as indicated by the DGV

system results.  Figure 6.31 is the RMS of 30 velocity images and shows the

characteristics of  turbulent jet flow; the center of the jet having a much lower RMS than

the edges where larger scaled turbulence is known to exist.  Figure 6.32 is the RMS

image (Figure 6.31) divided by the mean velocity image (Figure 6.23), pixel by pixel.

This image gives some indication of either the noise to signal ratio in areas where the

actual flow turbulence is low, or the flow turbulence intensity where the actual flow

turbulence level is high.  Figure 6.33 and 6.34 are cuts through the above mentioned RMS

images.  Figure 6.33 has two interesting features at approximately ±0.4 r/D.  It is possible

that the two spikes in the RMS plot at these locations identify an increased turbulence

value in the shear layer.  It is also possible that the spikes are simply noise, but because

they occur in both the horizontal and vertical cuts, it is more likely to be a flow feature.

Figure 6.34 indicates less than a 10% RMS velocity fluctuation at the center of the jet.

This is slightly lower than the approximately 10-20% (Kuhlman, 1994) expected along
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the centerline for jet flow.  One likely cause for the low RMS values is the long (when

compared to estimates of the large eddy time scale of 5 ms) exposure time of 1/60 of a

second and subsequent averaging by the CCD cameras.  Also, 30 images may not be a

large enough sample size for turbulence quantities to converge.  However, preliminary

hot-wire data acquired for this flow suggests an agreement in the turbulence intensities

measured at the center of the pipe, 4 diameters downstream.  The data also suggests that

the self-preserving region characteristic of downstream jet flow takes longer to develop in

this turbulent jet.  It is not possible that the DGV system measured the small scale

turbulence of this flow, which the hot-wire could readily resolve.  Therefore, it may be

merely a coincidence that the DGV data agrees with the centerline turbulence intensity as

measured by the hot-wire.  Investigation of this matter is ongoing.
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Chapter 7: CONCLUSIONS & RECOMMENDATIONS

A two-component Doppler Global Velocimeter (DGV) system was developed and

tested.  Techniques for calibrating and acquiring data with the instrument were developed

and refined.  Some of the more basic principles of this system were tested with a two

component Point Doppler Velocimeter (PDV) prior to the construction of the DGV

system.  The bulk of the experience gained from the PDV system was in the area of

iodine cell behavior and calibration procedures.

The transition from successful PDV measurements to successful DGV

measurements was not easy.  One of the biggest obstacles was the large amount of

detailed image processing needed with a planar system.  Software was written to start

with raw intensity images, apply corrections to them, and calculate the measured velocity.

Velocity offsets not compensated for by the reference system continue to plague both

PDV and DGV measurements.  However, DGV localized velocities with the current

system are clearly in correct proportion to other areas in the same velocity image.

Numerous procedures were developed to try and improve the quality of the DGV

measurements.  Polarizing film filtered all depolarized scattered light collected by the

DGV optics to compensate for the polarization dependence of the beamsplitters used;

however, the vast majority of light scattered from the seeded flow was still polarized.

The polarization film had little effect other than a reduction in signal strength.

Conditioning and regulation of the seed particle density caused a reduction in

secondary scattering levels.  A large volume container placed in line between the smoke

generator and the flow effectively filtered short time-scale fluctuations of the smoke

intensity.  With this modification, it was easier to regulate the concentration of seed

particles over the time period of a test run so that the overall smoke particle intensity

could be reduced, minimizing secondary scattering.

The procedure for non-homogenous intensity corrections (white card or flat field)

is not yet perfected.  Laser illumination of the white card is essential; however, coherent

light does not evenly illuminate an area very well.  Various forms of interference and

non-uniformity prevented the acquisition of a truly corrective white card.  Slight
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adjustment of the iodine cell yaw angle aided the acquisition of a homogeneous white

card by moving interference fringes set up by the cell to a less critical area in the

measurement image.  Sealed, vapor-only iodine cells manufactured to less stringent

tolerances may help ease the detrimental effects of cell-generated fringes.  Some

improvement in uniformity may be gained by illumination of the white card by means of

secondary reflection.  In addition, diffusion of the laser light coupled with movement of

the white card while averaging a large number of images provided the best results for the

white card correction.

The addition of coaxial smoke generation helped the accuracy of seeded flow

experiments near the edge of  the velocity region, but this smoke needs to be delivered to

the exit plane in a more uniform, less turbulent manner.  Great care was taken to insure

that the dot card was imaged in the same plane as the laser sheet.  The testing of slight

out-of-plane dot card positions (as small as the width of the laser beam) produced

significant measurement errors.

Much room exists for improvement in the image processing software. Loss of

information due to truncation at various points in the software could be avoided by

rewriting some portions of the code.  Obtaining higher resolution data images from 12 or

16-bit cameras would help the loss of data precision as well.  The current software was

written without speed optimization in mind.  A significant reduction in processing time

could be gained with some attention given to this area.

Recommendations on correcting the inconsistent velocity offset are not as obvious

or plentiful, yet this is currently the biggest obstacle to having a fully developed

instrument.  There exists a poor correlation between the reference system ratio, which is

essentially an offset measuring component, and the velocity measuring systems.  For an

accurate measurement of offset, this cannot be.  The zero tab is essentially an auxiliary

offset measuring device that works reasonably well when placed in the plane of

measurement.  Perhaps more uniform illumination of the zero tab from a stronger laser

light source could ease this restriction.

The best accuracy documented by this system was less than 2% error on both the

RMS variation from a precise measurement and the total range velocity error on a rotating
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wheel with maximum tip speed of ±29.4 m/s, which is better accuracy than most

published results to date.  For pipe/jet flow measurements, minimum RMS noise values

were estimated to be comparable to that of the wheel data (1-3 m/s).  The pipe/jet average

velocity data also agrees well with pitot probe measurements of the same flow.  The

maximum velocity offset that was subtracted from the data to match the pitot and DGV

profiles was approximately 5 m/s, which is on the order of the repeatability of the pitot

probe measurements (2 m/s).  RMS measurements made with the DGV system 4

diameters downstream of the pipe exit agree with hot wire measurements in the center of

the flow.  The validity of the turbulence intensities as measured by the DGV system is

still in question, since there is an inherent 1/60 sec. averaging in the camera based system.

Continuing research on the white card correction is a high priority.  The white card and

zero velocity tab are seen as the biggest limiting factors to obtaining more accurate and

less noisy results.
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Figure 3.10.  Ratio of the voltage outputs of the reference system photodiodes over the time
span that an image is acquired (1/60 sec. = 833 samples ÷50 kHz)
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Figure 4.11.  Overlay of signal and reference dewarped dot card images showing
alignment for both Component #1 (Top) and Component #2 (Bottom)
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Figure 6.1.  Colorized DGV Component #1 average velocity image of rotating wheel 
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Figure 6.2.  Colorized DGV Component #2 average velocity image of rotating wheel 
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Figure 6.3.  Cuts of the average DGV velocity measurement from Component 1 
of a rotating wheel surface, reduced in direction of motion

Figure 6.4.  Cuts of the average DGV velocity measurement from Component 2
of a rotating wheel surface, reduced in direction of motion
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Figure 6.5.  Colorized 2-component DGV tangential average velocity 
image of rotating wheel 

Figure 6.6.  Colorized 2-component DGV normal average velocity image of rotating wheel 
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Figure 6.7.  Cuts of the 2-component, average orthogonal velocity measurement
parallel to the surface of a rotating wheel

Figure 6.8.  Cuts of the 2-component, average orthogonal velocity measurement
normal to the surface of a rotating wheel
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Figure 6.10.  Cuts through image in Figure 6.9 showing the need for white card correction
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Figure 6.11.  DGV averaged velocity image of fully turbulent pipe flow (Component #2)

Figure 6.12.  DGV averaged velocity image of turbulent jet flow, 1 diameter from exit
 (Component #2)
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Figure 6.13.  Cuts through Figure 6.11, Component #2 DGV fully turbulent pipe flow
velocity measurements

Figure 6.14.  Cuts through Figure 6.12, Component #2 DGV jet velocity measurements
1 diameter from the exit
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Figure 6.16.  DGV averaged velocity image of turbulent jet flow, 1 diameters from exit
 (Component #2 -- run 2)

Figure 6.15.  DGV averaged velocity image of turbulent jet flow, 1 diameters from exit
 (Component #1-- run 2)
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Figure 6.17.  Cuts through Figure 6.15, Component #1 DGV jet velocity measurements
1 diameter from the exit

Figure 6.18.  Cuts through Figure 6.16, Component #2 DGV jet velocity measurements
1 diameter from the exit
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Figure 6.20.  DGV averaged velocity image of turbulent jet flow, 2 diameters from exit
 (Component #2)

Figure 6.19.  DGV averaged velocity image of turbulent jet flow, 2 diameters from exit
 (Component #1)
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Figure 6.21.  Cuts through Figure 6.19, Component #1 DGV jet velocity measurements
2 diameters from the exit

Figure 6.22.  Cuts through Figure 6.20, Component #2 DGV jet velocity measurements
2 diameters from the exit
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Figure 6.24.  Cuts through Figure 6.23, Component #2 DGV jet velocity measurements
4 diameters from the exit

Figure 6.23.  DGV averaged velocity image of a turbulent jet, 4 diameters from the exit 
(Component #2)
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Figure 6.26.  DGV velocity image of turbulent jet flow, 6 diameters from exit
 (Component #2)

Figure 6.25.  DGV velocity image of turbulent jet flow, 6 diameters from exit
 (Component #1)
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Figure 6.27.  Cuts through Figure 6.25, Component #1 DGV jet velocity measurements
6 diameters from the exit

Figure 6.28.  Cuts through Figure 6.26, Component #2 DGV jet velocity measurements
6 diameters from the exit
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Figure 6.29.  Cuts through Figure 6.11, Component #2 DGV fully turbulent pipe flow
velocity measurements with velocity offset set to match pitot probe data

Figure 6.30.  Cuts through Figure 6.12, Component #2 DGV jet velocity measurements
1 diameter from the exit with velocity offset set to match pitot probe data
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Figure 6.31.  RMS fluctuations of a turbulent jet, 4 diameters from the exit 
(Component #2)

Figure 6. 32.  RMS fluctuations divided by the local mean of a turbulent jet,
4 diameters from the exit   (Component #2)
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Figure 6.33. Cuts through Figure 6.25, RMS fluctuations of a turbulent jet 

Figure 6.34. Cuts through Figure 6.26, RMS fluctuations divided by the local mean
velocity 4 diameters downstream of a turbulent jet 
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APPENDIX A
Discussion of Specially Written Software

The front ends for the image acquisition and processing routines were written in

Visual Basic (VB), while the routines themselves were written in C and compiled into

DLLs.  A DLL is a piece of compiled code that contains externally callable functions.

Functions written in DLLs called from VB typically execute many times faster than if that

same function were written and executed in VB.  This is because compiled code has been

optimized and converted into machine level instructions which is readily accepted by the

CPU, whereas VB code is read line by line and interpreted as it is being executed,

creating serious overhead for the processor.  The use of DLLs  allowed a friendly user

interface to be constructed in VB, while retaining the computational capabilities and

advantages of compiled C code.

Image Acquisition Software

Before an image can be acquired, the frame grabber board must be configured to

accept the signal that the camera provides as output.  With different cameras having

various sizes and readout rates, parameters such as voltage levels, pixel clock timings,

and horizontal and vertical synchronization timings all must be configured to match the

camera in use.  Matrox provides a configuration utility called Intellicam to accomplish

this camera interface.  The utility is able to continuously grab images from a connected

camera while adjustments are made to the timing and voltage parameters, so that the

effect of the changes can be seen immediately.  The results of the configuration utility are

written to a file with a “.dcf” extension.  With this utility and the flexibility of the Genesis

frame grabber, a wide range of cameras can be made to smoothly interface with the board.

After the cameras were interfaced to the Genesis board, the first piece of software

that was written was an image acquisition program.  Image acquisition refers to the

process of calling the appropriate functions provided by the frame grabber board

manufacturer in order to sample images and place them into a memory buffer.  The image

acquisition software not only acquires images, but also provides some limited analysis

information, mainly for setup and alignment purposes. There are several modes into

which the software can be placed.  The first mode is a single frame grab from an
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individual camera.  In this mode, one of four channels is selected, and the acquired image

is displayed in a separate window.  While being statically displayed, the image can be

analyzed in a limited fashion, as described below.

Gray Level

Gray level values can be examined at discreet pixel locations by moving the

mouse cursor over the image.  Every time the mouse moves over the image, calls are

made to functions which enter the memory buffer with the pixel location and return the

gray level value.  Using the same family of functions, an array of gray level values can be

returned to produce line plots displayed on the edges of the image in response to a user

mouse click.  Gray level inquiries are useful in detecting image saturation or

approximating signal to noise ratios.

False Color

To help qualitatively discern changes in gray level value in a low contrast image, a

false color routine was implemented.  This routine receives a gray level image, parses the

entire matrix for maximum and minimum values, then assigns colors to the range of gray

level values present.  It then returns an image with colors ranging from blue to red

representing increasing gray level values.  It is sometimes necessary to use the false color

routine to see changes in gray level, since the human eye is more sensitive to changes in

color then changes in brightness.

The image acquisition software can also acquire images continuously from a

single camera.  Continuous acquisition is mainly used for gross camera alignment and

focusing.  For more precise camera alignment, a mode may be selected which quickly and

continuously alternates images acquired from the signal and reference cameras so that the

effects of adjustments on the image overlay can be immediately seen.

Multiple Cameras

Perhaps the most directly used feature of the software is that of multiple camera

acquisition.  This mode allows simultaneous data grabs from multiple cameras which are

synchronized at the time of acquisition.   It is this simultaneous acquisition that is used

for the collecting of all data and correction images.  To accomplish this, a separate panel

having no displayed capability is used.  Options on this panel include saving each raw
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image or saving the average of all collected images, or both.  In addition, there is the

option to synchronize the image acquisition with the reference system photodetector

voltage acquisition, which is absolutely necessary when acquiring calibration or velocity

data. Synchronization is accomplished by setting two bits out of an 8 bit status word that

is shared between the two acquisition systems.  Bit 1 is controlled by the image

acquisition system, and bit 2 by the photodetector voltage A/D board.    Bit 2 is normally

low until the A/D board is ready to acquire data, then it sets bit 2 to high and waits for bit

1 to go high.  Bit one is low until two conditions are satisfied: the frame grabber board

must be ready, and bit 2 must be high. When this happens, bit one goes high and both

acquisitions start.

Other Features

The image acquisition program is able to load individual images and save any

number of images in both RAW and TIF format. The program can also zoom an image

from 1/16 to 16 times its original size. In addition, any time the software saves a group of

images, it automatically creates a new directory structure.  The directories are created new

each day with the date as the directory name, and any additional saving or reducing done

on that day is placed in a numbered directory below the date.  This method greatly

reduces the work in finding files.  Since all of the data taken on the same day is simply

numbered in the date directory, a logbook listing the directories and the conditions under

which the data was acquired is helpful.  Future improvements to the organization of data

could incorporate a text file containing test conditions written with the creation of each

directory.

Image Processing Software

The image processing software performs overall data processing starting from raw

correction frames and velocity data fields and ending with final velocity images.   The

input to the program is a listing of 8 file names, each one corresponding to a needed

correction image or data file.  The program has options to calculate the pixel sensitivity

correction image, dewarping coefficients, and cell calibration equations, separate from the

main data reduction.   It also a uses a graphical interface to enter the geometry of the test

configurations.  With this interface, the user can click and drag vectors on the screen and
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immediately see the impact of changes to the instrument geometry.  However, if angles

have been previously measured, as is often the case when a test is configured, they may

be entered into the program numerically.  From the geometry entered, the component

sensitivities are calculated for use in data reduction.

Pixel Sensitivity

Calculation of the pixel sensitivity correction image involves specifying two

images to the software, and utilizing area averaging routines to find the average gray level

value for each image.  The area averaging routines accept an image as input, transfer each

pixel value into an array, then loop through all array elements accumulating values and

dividing by the number of elements.  It returns a single floating point number as the

average gray level value for that image.  Each pixel’s sensitivity is found by subtracting

the gray level value for that pixel in each image and dividing by the difference in the

average gray levels of the images.  The process is repeated for each camera.

Dewarping--Dot Finding

Dewarping coefficients are found through a long process that starts with the

selection of camera A’s dot card image.  The image is passed to a DLL which performs

filtering on the images that identifies areas of sharp contrast, or edges.  The edge finding

filter is a convolution of two 3X3 masks with a data image.  When employing masks

containing these values, they are called Sobel edge finding filters.  The first mask finds

horizontal edges, and the second locates vertical edges.  The resulting image has high

values where the edges exhibit especially high contrast, and low where the image is

“flat”.  These masks are shown below.
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The Sobel filtered image is then passed through a threshold function and converted into a

binary image, where values above the threshold are equal to 1, and values below the

threshold are equal to 0.  This binary image is then passed to a second DLL which

identifies pixel regions, having the same binary value, that are connected.  These regions

are identified as blobs, and they are returned back to the user overlaid with the original
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image for inspection.  The user then decides on the exclusions to be passed back to the

blob analysis routine.   The user can click on an identified blob that should not be

included or outline a grouping of extraneous blobs with the mouse.  In addition,

minimum and maximum blob pixel dimensions may be defined.  After exclusions have

been set, the image is passed back to the DLL for reprocessing.  When the image is finally

returned with only the correct dots identified as blobs, the remaining part of the

dewarping routine may continue.

Dewarping--Blob Analysis

The center of each blob is found through a gray level weighting function that uses

the gray levels of the pixels identified as blobs to find a centroid for that dot.  The center

coordinates are recorded as the reference grid for the warped image.  The coordinates for

the dewarped image are found by equally spacing the total number of dots throughout the

dewarped image.  This means placing all four corner dots in the corners of the image and

filling in the remaining dots such that there is equal spacing between them.  The dot

centroids are then sorted and a transformation is calculated which will place the centers of

each blob at equal intervals covering the entire image.

Before the dewarped grid is generated, the dots need to be sorted based on

position because the dot finding algorithm does not necessarily return the dot positions in

order, from left to right, top to bottom.  The sorting algorithm takes advantage of the fact

that the main source of distortion is perspective warping.  This type of warping preserves

vertical lines within the image, so the dots can first be sorted by their X coordinate, thus

separating them into their correct columns.  Next, given the number of rows in the dot

card image by the user, the sorting algorithm sorts the dot list by their Y coordinate,

column by column.  Finally, the array is sorted to be in ascending order by rows instead

of columns.  This portion of the software would likely need to be rewritten for a three-

component DGV system, where the third component would be significantly out of the

horizontal plane.

Dewarping--Transformation

Once both the warped and dewarped grids are in place, the calculation of the

transformation tables begins.  For every pixel in the dewarped image, the four closest dots
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are found, then the relative distance away from each is calculated.  These relative

distances are then used to calculate the corresponding pixel position between the

corresponding four dots in the warped image, using bilinear interpolation.   The location

of each warped pixel location is recorded in two buffers, one containing X coordinates,

and the other containing Y coordinates for the dewarped image.  This process is then

repeated for each camera, but with the same dewarped grid so that corresponding dots

will be in the same location for all dewarped images.  The resulting files (2 for each

camera) are essentially X and Y floating point buffer table look-ups which indicate

where, in the warped image, the gray level values for that pixel in the dewarped image

should come from.

Cell Calibration

The object of the cell calibration routine is to turn images taken by the cameras

into relative frequency and ratio numbers that can be combined with the reference system

and tabulated, so that a best-fit curve can be found.  The primary mechanism for the

tabulation, at least in the continuous calibration case, is the identification of mode hops.

Cell Calibration--Image Averaging

 To start the calibration data reduction, the user must examine calibration images

from each component to determine the best region over which the pixel gray level values

should be averaged.  This is necessary because the target during a calibration procedure

occupies a smaller or larger space in the image for each component, based on the viewing

angle.  When the user selects this region, the appropriate background image is subtracted,

then it is sent to an averaging routine which returns a floating point average gray level

value for that particular calibration image.  The images from all channels are averaged in

this manner, using the same region.  The result is a file that contains one column of

average gray level values for each channel.

Cell Calibration--Mode Transition Detection

The next task is to identify the transition to new modes in a continuous calibration

from the columns of average gray level values.  When a laser operating in single

frequency mode transitions from one mode to another, the power level decreases until the

new mode is selected which produces a discreet change back to the original power level.
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So, to identify mode transitions, the average gray level value from one of the reference

cameras is examined.  When an increase in gray level from point to point is bigger than a

preset value, the second point is selected as the beginning of the next mode.  A graphical

interface has been developed which aids in the selection of the correct threshold value for

mode hop identification by displaying a plot of the average gray level values of a

reference camera and highlighting which points have been identified as the start of new

modes.  The position of the points that begin each mode are stored and used to define the

regions of ratio values that span a single mode.  Any ratio points that lie between mode

transitions are averaged and recorded as the representative ratio value for that mode.  The

result is a three column file, each column containing the ratio values for each iodine cell

(Reference Cell, Component #1, Component #2), with one file for each calibration scan.

Cell Calibration--Curve Shifting

Several scans are used when fitting a curve through the points.  The goal is to

produce a more representative fit using more data points.  In a single scan curve, only the

spacing between modes is known; the frequency offset of each curve is arbitrary.

Because of this, the curves must be shifted along the X axis so that the frequency offset

for each curve is as close to the same as possible.  The procedure for shifting requires one

curve to be designated as fixed.  The other curves are then slid to overlay the fixed curve

by minimizing the average absolute frequency distance to the fixed curve, from each

point.  This produces a single scan curve shape with more points than a single scan would

have.

Cell Calibration--Curve Fitting

The curve fitting software reads a file containing frequency and ratio values for

the fixed and shifted scans, one pair per cell. It then plots the points for inspection, and

provides the user with three choices.  The first choice is a simple polynomial curve fit.

When selected, the algorithm performs a least squares fit to a polynomial of a specified

order.  The second choice is a theory curve fit.  The source of the theory curve is actually

tabulated data which is stretched and shifted in both frequency and ratio directions using

a Levenberg-Marquardt minimization algorithm (Press, et. al., 1992).   The final choice,
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and the one that has been used most often in the present work, is a form of a Boltzmann

fitting function, as shown in Eqn B2.
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Here, A1 and A2 are the upper and lower ratio bounds of the curve, and xo and Dx are

frequency shifting and scaling factors, respectively.  This method was used the most

because its shape closely matched that of one side of an iodine absorption line, and

therefore, was less likely to be affected by small variations in the shape of the calibration

curve.  The Boltzmann function was also fit using the Levenberg-Marquardt technique.

All three curve fit methods produced small files which contained the coefficients for their

respective fits so that the fits could be used in the reduction process.

Velocity Calculation Software

The last main feature of the image processing software is the routine that reads the

raw data and correction images and calculates velocity images.  This is the last step in

producing velocity images, so all other pre-processing must be completed before running

this algorithm.

The first task of the algorithm is to load into memory all correction images that

are going to be applied to every data image.  These include the background, white card,

and pixel sensitivity images, as well as the eight dewarping coefficient buffers (2 per

camera).  Doing so allows improvement in speed over the case where 20 correction

images are read from the disk every time a new data image is processed.   The main

processing loop starts by loading a raw data image.  Data images are acquired as fields, so

the first operation done to them is to fill in every other line with the average of the two

bordering lines.  Next, the appropriate background image is subtracted, then the result

divided by the pixel sensitivity buffers.  The next step is to low pass filter the image with

a flat 5 by 5 kernel.  After filtering, the images and dewarping coefficients are sent to the

dewarping routine which performs bilinear interpolation on a pixel by pixel basis, as

described in section 4.3.2.  The result is stored and the next data image is processed.

After each signal and reference image pair is reduced, the gray levels of the images are

examined, and any pixel with a gray level less than 10 or equal to 255 is marked by
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replacing the gray value with a value of -1 in the reference image, and 20 in the signal

image.  Overwriting the data in low signal or saturated pixels with these values assures

that the pixel will be identified as invalid, and will not be included in the final velocity

result.  The signal image is then divided by the reference image, and the result is divided

by the white card correction.  The white card correction is found by reading and

processing the white card images before the data images, up to and including the ratio

step.

After the ratio image is calculated for both velocity components, it is passed

through the appropriate curve fit equations.  This involves reading the coefficients from a

previously stored file and processing both the reference voltage ratios and the data image

ratios. The data image ratios are floating point buffers which are passed through the curve

fit equations using arithmetic functions provided by the board manufacturer on an image

level basis.  These functions use the parallel processing features of the Genesis board to

speed the calculations.  As the data image ratios are being processed, any ratio values that

lie outside the maximum and minimum ratio values of the calibration curve are set equal

to zero.  This would include any pixels which had been flagged with a -1 before forming a

ratio.  The curve-fit equations relate ratio to frequency, so after the image ratios are

processed, the buffers contain measured frequency, from which the reference frequency is

subtracted.  This gives a Doppler frequency measurement in the direction of the bisector

of the angle between the laser sheet and the viewing angle of the measurement system.

The velocity is calculated from the Doppler frequency measurement by using Equation 1,

which contains geometry parameters and the laser wavelength.  At this point, the velocity

vectors are in directions defined by the system geometry.  It is more desirable, however,

to express the velocity of a object or flow in an orthogonal coordinate system which is

aligned with some physical aspect of the flow or the setup.  Therefore, a transformation,

shown in Appendix A, was implemented which converts the velocity vectors to their

orthogonal components, perpendicular and parallel to the laser sheet.

Image Calculator

Another often used piece of software is an analysis program that was written to

behave somewhat like a calculator.  The goal was to make single operations available to
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examine a specific image or set of images in more detail.  This is useful for debugging, as

well as in checking data validity.  For example, the buttons on the main panel perform

discrete operations on images such as subtract, low pass filter, multiply, divide, average,

interlace, and make cuts.  Each of these functions, with the exception of making cuts, is

found in the image acquisition/processing programs, but exists only as part of a bigger

operation.  In the image calculator, these functions have been extracted and made

available individually.  The function which makes cuts is derived from the image

acquisition function which plotted X and Y cuts through an acquired image.  The

procedure was automated to process many runs of velocity images at once, naming and

storing them appropriately.

Photodetector Acquisition

The photodetector acquisition program was originally written when the DGV

system existed only as a point based system with photodetectors in place of cameras.

Then, all acquisition was handled with the photodetector acquisition program, and it was

flexible enough to accommodate single or multiple velocity channel acquisition.  It was

modified for the image based system mainly by changing the way data was acquired.

Instead of handling all timing of acquisition internally, there needed to be a way to

synchronize the acquisition of data from the photodetectors with that from the cameras.

Synchronization was accomplished via a hardware trigger and the setting of status bits as

described in the image acquisition program section.

The main function of the photodetector acquisition program is to sample the

photodetector voltages from multiple channels simultaneously and plot them for

examination.  The main panel has many user configurable options such as sampling rate,

number of samples, voltage range, and channel selection.  It has the ability to save

standard deviations, voltage ratios, average values, and raw voltages to a data file.  It also

has options concerning the status of the current trigger state.  At each acquisition, the

software plots a voltage trace for two channels as well as a ratio trace.  The ratio trace is

useful in quickly determining the laser setting and it’s position down the side of the

absorption band.  It is also used during calibrations to observe the quality of the scan.
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APPENDIX B

Development of Orthogonal Velocity Equations

The constraints on the geometry of the two-component DGV measuring system may be

such that the measurement vectors cannot be aligned perpendicular to each other.  In

general, a transformation is needed to extract two-component, orthogonal velocity vectors

aligned in physically meaningful directions.  The transformation is accomplished using

the Doppler frequency equation (Equation 1):

∆ f
f

= − •o

c
a l V( $ $)

r
(B1)

where f is frequency, c is the speed of light, a and l are unit vectors in the direction of the

viewing and laser directions, respectively.  The laser frequency and speed of light can be

combined to define the wavelength.  The wavelength used in this research was 514.5 nm.

f o

c o= λ (B2)

Substituting Equation B2 into B1, and expanding into vector components, yields, for the

first component:
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The angle between the designated x-axis and the viewing direction of the first component

is given by θ1, and γL is the angle that the laser makes with the x-axis.

Simplifying,

λ θ γ θ γo L LU i V j∆ f1 = + + +(cos cos )$ (sin sin )$1 1 (B4-1)

C L1 = +cos cosθ γ1 S L1 = +sin sinθ γ1 (B5-1)
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$ $ (B6-1)

Repeating for the second component:

∆ f 2 = + + + •
+
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λ2 2i j i j

Ui Vj
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o

(B3-2)
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λ θ γ θ γo L LU i V j∆ f 2 = + + +(cos cos )$ (sin sin )$2 2 (B4-2)

C L2 = +cos cosθ γ2 S L2 = +sin sinθ γ2 (B5-2)

λ o C Ui S Vj∆ f 2 = +2 2
$ $ (B6-2)

Solving for U and V by combining Equations B6-1 and B6-2

Multiplying B6-1 by S2:

S C U S V S C S U S S Vo i j o i j2 1 1 1 1 2 1 2 1 2( )$ $ $ $λ λ∆ ∆f  f= + ⇒ = + (B7)

Multiplying B6-2 by S1:

S C U S V S C S U S S Vo i j o i j1 2 2 2 2 1 2 1 1 2( )$ $ $ $λ λ∆ ∆f  f= + ⇒ = + (B8)

Subtracting B8 from B7:

λ o i i i
S S C S U C S U U C S C S( ) ( )$ $ $∆ ∆f f1 2 2 1 1 2 2 1 1 2 2 1− = − = − (B9)

Similarly,

λ o C C C S V C S V V C S C S( ) ( )∆ ∆f f1 2 2 1 2 1 1 2 2 1 1 2− = − = − (B10)

Solving for U from Equation B9:
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Solving for V from Equation B10:
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Equations B11 and B12 were used in the orthogonal data reduction process.
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