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ABSTRACT

Integrating Spatial and Spectral Information for Automatic
Feature Identification in High Resolution Remotely Sensed Images

Jong Yeol Lee

This research used image objects, instead of pixels, as the basic unit of analysis in

high-resolution imagery.  Thus, not only spectral radiance and texture were used in the

analysis, but also spatial context.  Furthermore, the automated identification of attributed

objects is potentially useful for integrating remote sensing with a vector-based GIS.

A study area in Morgantown, WV was chosen as a site for the development and

testing of automated feature extraction methods with high-resolution data.  In the first

stage of the analysis, edges were identified using texture.  Experiments with simulated

data indicated that a linear operator identified curved and sharp edges more accurately

than square shaped operators.  Areas with edges that formed a closed boundary were used

to delineate sub-patches.  In the region growing step, the similarities of all adjacent sub-

patches were examined using a multivariate Hotelling T2 test that draws on the classes’

covariance matrices.  Sub-patches that were not sufficiently dissimilar were merged to

form image patches.

Patches were then classified into seven classes:  Building, Road, Forest, Lawn,

Shadowed Vegetation, Water, and Shadow.  Six classification methods were compared:

the pixel-based ISODATA and maximum likelihood approaches, field-based ECHO, and

region based maximum likelihood using patch means, a divergence index, and patch

probability density functions (pdfs).  Classification with the divergence index showed the

lowest accuracy, a kappa index of 0.254.  The highest accuracy, 0.783, was obtained from

classification using the patch pdf.  This classification also produced a visually pleasing

product, with well-delineated objects and without the distracting salt-and-pepper effect of

isolated misclassified pixels.  The accuracies of classification with patch mean, pixel



based maximum likelihood, ISODATA and ECHO were 0.735, 0.687, 0.610, and 0.605,

respectively.

Spatial context was used to generate aggregate land cover information.  An

Urbanized Rate Index, defined based on the percentage of Building and Road area within

a local window, was used to segment the image.  Five summary landcover classes were

identified from the Urbanized Rate segmentation and the image object classification:

High Urbanized Rate and large building sizes, Intermediate Urbanized Rate and

intermediate building sizes, Low urbanized rate and small building sizes, Forest, and

Water.
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Chapter I

INTRODUCTION

The automated mapping of map features such as roads and buildings in remotely

sensed imagery can be a highly complex process.   This is because automated feature

extraction involves the analysis of multidimensional spectral, spatial and contextual

relationships, and is analogous to the perceptual and cognitive processes of the human

vision system (Hodgson, 1998).  It is thought that a fundamental process in human vision

is the recognition of more abstract and complex information, particularly edges (Marr,

1982) and multi-scale patterns (Woodcock and Harward, 1992; Ford and McKeown,

1992; Baumgartner et al., 1997).  This recognition process may work in two directions.

Firstly, local regions may be examined in detail in order to identify fine-scale features,

which are then aggregated to objects at coarser scales (Woodcock and Harward, 1992).

Alternatively, the process may work in reverse, for example, starting with the recognition

of generic objects, and then moving to the identification of attributes and finer scale

features (Ford and McKeown, 1992).  For this second approach, the human ability to use

prior knowledge and heuristic understanding is important in the identification of the
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generic objects.  Because of the difficulties of duplicating these procedures in computer

algorithms, it would appear that the first approach, that of generalizing from fine features

to coarser objects, would have more potential for remote sensing-based feature

extraction.

One of the reasons for the past difficulties in applying spatial analysis methods to

remotely sensed data is the traditional focus on a single element of the data structure, the

individual raster pixel.  The focus on the pixel has been driven in part by the very

successful use of aspatial statistics in image classification.  With its 80 meter

Instantaneous Field of View (IFOV), the Landsat MultiSpectral Scanner (MSS), the first

major civilian earth-observing sensor, had sufficiently coarse resolution that the internal

heterogeneity in most land use classes was smoothed, thus reducing the importance of

spatial information.  The higher spatial resolution of later Thematic Mapper (TM) and

Satellite Pour l’Observation de la Terre (SPOT) produced improved delineation of fine

detail, but somewhat counter-intuitively produced a lower overall accuracy for land use

studies (Cushnie, 1987).  This is because the 20-30 meter pixel size of these sensors is

close to the scale of the objects within each land use class.  Woodcock and Strahler

(1987) have shown that under such circumstances a scene has the greatest variability in

pixel values, and consequently the lowest potential for conventional classification.  This

has led to a concentration on texture and other measures of local variability, to improve

classification at these scales (Møller-Jensen, 1990; Hay et al., 1996; Ryherd and

Woodcock, 1996; Kuroso et al., 1999).

With the advent of high resolution, 1-4 meter data (Kramer, 1996), new approaches

to classification will be required.  In particular, spatial processing may become even more
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important.  This may partly be driven by an interest in object identification, instead of

land cover mapping.  With high resolution data, individual objects such as buildings and

roads become potentially resolvable.  Remote sensing-based classification could possibly

be much more useful if objects, not arbitrary pixels, were the basic structural element of

map products.  Furthermore, research has suggested that classification can be much more

accurate when spatial information is utilized (Kettig and Landgrebe, 1976; Treitz and

Howarth, 2000).   Perhaps most important of all, the recognition of objects will facilitate

the incorporation of remotely sensed data within a GIS (Janssen and Molenaar, 1995;

Cleynenbreugel et al., 1990).

1-1.  Research objectives

The fundamental goal of this research is to seek computer-based methods to extract

spatial information for urban and peri-urban areas from high spatial resolution remotely

sensed data.  This research has four objectives, which are listed and then discussed in

more detail below:

1. Develop a method of segmenting images into discrete image objects.

2. Classify the image objects with spectral and spatial information.

3. Aggregate the extracted information in order to map local land use/cover at an

Anderson et al. (1976) Level II.

4. Compare the hierarchical image object classification developed in this research

to standard aspatial classification methods.
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The first objective of this research is to develop a method to segment remotely

sensed data as the initial step in automatic feature recognition for classification of urban

areas using high resolution imagery (1m or finer).  The discrete scene model (Woodcock

and Srahler, 1987; Woodcock and Harward, 1992) is employed.  The scene is

conceptualized as comprising discrete objects, such as buildings, roads, and lawns.  The

initial segmentation draws on the concept of directional texture (Warner et al., 1999).

This segmentation, however, is unlikely to produce groups of pixels that directly

correspond to the objects of interest.  The main causes of this include the presence of

shadow and topographically induced variations in illumination, as well as variations in

the spectral properties within objects.  Therefore, segmentation is carried out in a

hierarchical fashion, first identifying groups of pixels that may be part of an object,

defined here as sub-patches.  Adjacent sub-patches are then aggregated to form patches,

which are in turn aggregated to form objects, for example, houses or roads.

The second objective is to develop a classification method in which image segments

(objects) are the basic classification unit (Kettig and Landgrebe, 1976; Bryant, 1990).

This approach is in contrast to standard pixel-based classification, in which each pixel

value is individually compared with the training area’s statistics.  Due to internal

variation within each object, pixel-based classification tends to have randomly distributed

misclassified pixels.  This is particularly distracting for visual interpretation, and can

cause highly complex vectorization.  Classification using image segments overcomes this

problem because the variance, and potentially the covariance, of image segments can be

used for classification.
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The third objective is to produce a thematic map by aggregating the classified

objects to the next hierarchical layer.  The identification of low level scene objects can

potentially result in a much greater accuracy in mapping at the next hierarchical level.

This is because the land cover, and by inference land use, is mapped from the

composition and proportion of scene objects such as buildings and roads , and not by the

average spectral characteristics of the land use itself.

To accomplish the final objective, that of providing an evaluation of the success of

this research, the classification is tested on high spatial resolution data of Morgantown

and compared to a conventional aspatial classification (Richards, 1994) and the ECHO

(Extraction and Classification of Homogeneous Objects) field-based classifier (Kettig

and Landgrebe, 1976).  The ground reference data for evaluation is derived from a

combination of expert visual interpretation of the imagery and local knowledge.

1-2.  Research hypotheses

The research objectives outlined above are based on several hypotheses regarding

ways of incorporating spatial properties within an image analysis procedure.  These

hypotheses, as well as the assumptions on which they are based, are discussed in more

detail in this section.

Firstly, it is assumed that with high-resolution data the spectral characteristics of

individual objects, such as individual buildings and roads, are relatively homogeneous,

and that objects are distinguishable against the background and adjacent objects.

Therefore, the edges of individual objects will be characterized by a relatively high
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spectral gradient, manifested as a "ridge" of high local variance surrounding the lower

values associated with the interior of objects.  Theoretically, this ridge should form

closed loops that delineate objects.  This leads to the first hypothesis, that edge detection

using a “ridge finding” procedure applied to local variance will be an effective method of

image segmentation.

The second hypothesis is that the location of edges will be detected more accurately

by multiple, centrally co-incident, linear shaped edge detection operators, rather than

traditional square shaped windows.  Because of the differences between the geometric

characteristics of edges and square shaped windows, the precision of the edges detected

will be lower with square windows.  For example, with a square window, the derived

edges on a sharp corner of an object will not follow the object edge, but will rather be

rounded.  This will be most serious for large window sizes.  This is significant, because

large windows are generally needed for high spatial resolution images (Ferro, 1998).  The

data for this experiment comprise simulated images of geometric objects on a

background.  The results for edge detection using linear operators are compared to those

obtained using square windows.

The final hypothesis is that a region-based classification will result in a higher

classification accuracy than traditional pixel-based classification for high spatial

resolution imagery.  The variability of spectral characteristics of individual pixels within

an object is likely to increase for high spatial resolution imagery.  Consequently, this will

reduce the efficacy of pixel-based classification approaches.  By contrast, for a region-

based approach, the spectral variability can be a part of the characteristics used for

classifying a region.  The data used to test this hypothesis is aircraft-acquired digital
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imagery of Morgantown, WV.  Traditional classification, ECHO (Kettig and Landgrebe,

1976), and the method developed in this research is compared to ground data through the

use of standard error matrices.

1-3.  Description of terminology

In the previous sections a number of terms have been used in a relatively loose

sense.  To facilitate a more in-depth discussion, it is important to define the terminology

used more rigorously (Table 1-1).  The term ‘object’ will be used in this thesis to refer to

Table 1-1. Major terms used in this research

Class Associated Boundary Description of Class

Feature - Generic object class

Object Object edge
Entity instance, produced by aggregation of like-
classified patches

Patch Patch edge
Group of pixels of similar radiance, produced by
region-growing applied to sub-patches

Sub-
patch

Sub-patch edge
Closed polygons formed by texture ridges after
branch texture ridges removed

     - Texture ridge Local high in texture image in at least one direction

the concept of an ‘entity instance’ as defined by the American National Standard for

Information Systems (USGS, 1997), and the term ‘feature’ will be used as a generic

concept for object classes.  Objects are the fundamental units of interest in this study.

Variations in illumination caused by differences in slope and aspect, as well as real

differences in spectral properties within an object, will cause the spectral segmentation to



8

subdivide objects into segments smaller than objects.  Thus many real objects will be

represented in the image by a number of discrete, spectrally separable areas, defined here

as 'patches.'  A patch itself might also be segmented into spurious subdivisions, termed

'sub-patches', due to the presence of edges internal to a patch such as walls or other two-

dimensional features.  The sub-patches belonging to a single patch are, however,

spectrally similar to one-another, and therefore can be aggregated using multivariate

measures of spectral similarity.

The edges are derived from a texture image (Table 1-1).  The term 'texture ridge', or

more briefly, 'ridge,' is used to refer to the primitive edge pixels that are local highs in

spatial profiles drawn in at least one direction in the texture image.  The ridges include

'branch ridges,' which are edges within sub-patches that do not delineate groups of pixels

(i.e. they do not form closed polygons).  Once a ridge has been determined to define a

closed polygon, it is re-classed as a sub-patch edge.   The boundary pixels of patches are

similarly referred to as 'patch edges.'  The term 'object edge' is used for the boundary

pixels of objects.

The purpose of automated feature extraction is the extraction and identification of

image objects, and not necessarily the building of an object-oriented database, although

the product of a feature extraction algorithm could be used to support an entity-based

model (Worboys, 1994).  An advantage of an object identification approach is that it

facilitates the integration of remote sensing and GIS (Gahegan and Flack, 1999; Tang et

al., 1996).  This is because individual objects are more appropriate for incorporation in a

GIS environment, especially one that is vector-based (Usery, 1996; Usery, 1993).
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Conventional remote sensing classification produces labeled pixels, rather than delineated

objects.

A fundamental assumption of this research is that the objects of interest, such as

buildings and roads, are clearly resolved by the high spatial resolution imagery.  Strahler

et al. (1986) have labeled such imagery as H- resolution imagery, in contrast to L-

resolution imagery in which the pixel size is too large to resolve the individual objects of

interest.  However, because this research is focused on meter imagery, a scale commonly

referred to as “high resolution,” this term will be used in preference to the term H-

resolution imagery.

Several terms have been used for the process of rescaling data, including degradation

(Pax-Lenny and Woodcock, 1997), upscaling (Hay et al., 1997), aggregation (Kloditz et

al., 1998; Bian and Butler, 1999), as well as upward and downward resampling.  In this

study, the term 'aggregation' will be used for resampling imagery to lower resolutions

(Kloditz et al., 1998; Bian and Butler, 1999).

1-4.  Organization of the dissertation

This dissertation has seven chapters, including this chapter.  Following the

introductory material in Chapter I, Chapter II summarizes the theoretical background and

previous research.  Scene models in remote sensing, the relationship between object

identification and spatial resolution, the exploitation of spatial information in remote

sensing, and previous approaches to image segmentation for feature extraction are

discussed.
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The following four chapters discuss the four steps of the image analysis procedure

developed in this research (Figure 1-1).  In each chapter additional literature is presented,

and both methods and results are discussed.  Two types of data are used to develop and

test the methods investigated in this research.  Simulated data is used where it is

important to have absolute knowledge of the data and the scene it represents.  Aircraft

imagery of Morgantown, West Virginia is used to test real world applications of this

research.

Chapter III describes the proposed ridge following edge detection method, and

compares image segmentation based on this method to the results obtained from a square

texture window.  Chapter IV is an investigation of image segmentation based on the

amalgamation of patches identified through ridge-following edge detection.  A central

aspect of this work is the development of a topology for the patches to facilitate the

analysis of the spatial relationships between adjacent patches.

Figure 1-1. Research Flow Chart

                Sub-patch identification

                      Patch identification

                   Patch classification

    Land Use/Land Cover Map Generation
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Chapter V proposes a region-based classification scheme using the image elements

derived in the image segmentation.  Three approaches for the classification using patch

statistics are compared:  classification using the patch mean, a divergence index, and

patch probability density functions (pdfs).  The results from these methods are compared

with those derived from various traditional and field-based classifications.  Chapter VI

discusses feature-based land cover classification.  A classification is produced from the

proportion of the image objects within each class, instead of the average spectral

properties of the class.  This method makes it possible to classify imagery hierarchically.

For example, density of residential area is produced based on the percentage of built-up

area and density of building polygons per unit area. Finally, Chapter VII gives the overall

conclusions and suggestions for future studies of high spatial resolution remotely sensed

data.
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Chapter II

REMOTE SENSING USING HIGH SPATIAL

RESOLUTION IMAGERY

This work is designed to exploit the current generation of high resolution

panchromatic and multispectral sensors (Kramer, 1996).  The research draws on a

theoretical understanding of the spatial properties of high resolution data to develop new

methods appropriate for the scale of such imagery.  This section, therefore, places the

research in its theoretical context, demonstrating its conceptual heritage and the

significance of the research problem.

2-1.  Scene models in remote sensing

Scene models in remote sensing originate from conceptual developments in the

understanding of imagery.  There are two main scene models in remote sensing:  the

discrete model and the continuous model (Strahler et al., 1986).  For the discrete model,

the scene is conceptualized as discrete objects on a background.  The objects have
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distinctive, homogeneous spectral properties, which potentially allow identification of the

class to which the object belongs.  Therefore, an instantaneous field of view (IFOV)

smaller than the object is important in order to ensure that the distinctive spectral

properties of the object can be identified.

The discrete model is separated into three sub-models based on the scene

composition (Strahler et al., 1986).  Simple models comprise scenes that consist of a

single object and background, whereas complex models deal with scenes that are

composed of multiple classes of objects or backgrounds.  Nested models are multi scale

(Woodcock and Harward, 1992), with each level in the hierarchy comprised of

aggregations of objects or classes from the next finer level of objects or classes

(Woodcock and Strahler, 1987).  For example, in the Anderson et al. (1976) scheme, the

Urban and Built-up Land Level I class is composed of seven level II classes, such as

Residential and Industrial.  Finer levels of detail, for example Buildings, Roads, Lawns

and Trees, are specified on a project-specific basis.

The continuous model assumes that the changes in the scene are continuous, not

abrupt.  Consequently, in an image of such a scene, continuously changing spectral

properties are portrayed.  Individual objects cannot be resolved (Collins and Woodcock,

1999a; Foody, 1999).  An example of a real world analogue of the continuous model is a

field with varying densities of crops, imaged with a sensor that has an IFOV larger than

the size of the individual plants.  The main concern of the continuous model is the

relationship between the IFOV and the spectral variability in the scene (Collins and

Woodcock, 1999a; Henebry, 1993).  However, even with the continuous model, regions

with certain average or statistical properties can usually be identified.  If so, the result of



14

an analysis can sometimes take the form used for the discrete model.  Otherwise, a fuzzy

approach may be appropriate for analysis of continuous models (Bezdek, 1993; Warner

and Shank, 1997a; Foody, 1999).

This study assumes that individual buildings, roads, and patches of vegetation may

be discerned with high spatial resolution remotely sensed data, and can be represented in

corresponding detail in the land use/land cover maps derived from such data.  This detail

can be aggregated to coarser scales for map display.  Therefore, this research is

embedded within the conceptual framework of the nested discrete model.  However, the

edge detection methods used in this research focus on mixed pixels on the boundaries

between cover types, and therefore in a sense draw on a continuous model of the scene.

2-2.  Spatial resolution and scene objects in remote sensing

The spectral variability of remotely sensed data is determined by the spatial

properties of the sensor (Collins and Woodcock, 1999b), as well as the spatial properties

of the spectral classes (Fung and Chan, 1994; Marceau et al., 1994a), as represented by

the size and arrangement of the objects making up the classes (Woodcock et al., 1988a;

Woodcock et al., 1988b).  The hierarchical nature of these scene objects is the basis for

the USGS land-use/land-cover classification system (Anderson et al., 1976; Woodcock

and Harward, 1992).  Because of the complex nature of remotely sensed images, the finer

the detail that is observed, the lower the hierarchical level of the classes that can be

mapped.  Jensen and Cowen (1999) reported the relationship between hierarchical level

of classes and the corresponding spatial resolution required (Table 2-1).  For example,

mapping USGS land-use/land-cover level I classes requires 20-100 meter resolution,
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whereas delineating building perimeters requires a spatial resolution of 0.25-0.5 meter.

To identify individual objects of interest, an IFOV that is at least several times smaller

than objects is required (Welch, 1982).

One of the most important studies to illustrate the issue of image scale and its

potential influence on classification accuracy, is that by Woodcock and Strahler (1987).

They found that the local variance, when plotted as a function of spatial resolution,

reached a peak at a spatial resolution 50 – 75 percent of the average size of objects in

Table 2-1.  Minimum Spatial Resolution Requirements for Land Use/Land Cover Type.
(After Jensen and Cowen, 1999.)

Land Use/Land Cover Type Minimum Spatial Resolution
Requirements

USGS Land Use/Land Cover Level I 20-100 meters

USGS Land Use/Land Cover Level II 5-20 meters

USGS Land Use/Land Cover Level III 1-5 meters

USGS Land Use/Land Cover Level V 0.25-1 meter

Building Perimeter 0.25-0.5 meter

the scene.  This scale produces the greatest proportion of mixed pixels, and is the least

desirable for automated classification because of the high degree of variance that does not

contribute to spectral discrimination of the classes of interest (Latty et al., 1985).

Atkinson and Curran (1997) developed this concept further, using a semivariogram to

quantify image scale.  Warner and Shank (1997b) suggest that the optimum spatial

resolution could be defined as the resolution that clearly resolves the objects of interest,

but maximizes the spectral mixing of objects and the next finer hierarchical level.  The
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optimal scale is thus one at which both the within-class and between class variance is

minimized.

The previously mentioned studies have focused on identifying a single, most

appropriate spatial resolution for an image.  However, the optimal spatial resolution is

likely to vary with the size of the objects in an image.  Marceau et al. (1994a; 1994b)

evaluated the impact of spatial resolution and spatial aggregation on the classification

accuracy of very high spatial resolution (3.7-m to 0.5-m) images of tree stands.  They

found that coarsening the spatial resolution reduced image variance, but the effects of

aggregation were different for different objects and spatial structures.  Hay et al. (1997),

using images with pixel sizes of 1.5, 3, 5, and 10-m, showed that each of the six forest

classes studied has its own most appropriate scale.  Marceau et al.  (1994a; 1994b) and

Hay et al. (1997) argued against the concept of a single optimal scale, and noted that no

single scale is capable of accurately describing the various sizes and shapes of objects

within a remotely sensed scene.  These studies therefore suggest that the size and spectral

properties of objects under investigation should be defined clearly in order to determine

the most appropriate scales of analysis (Marceau et al., 1994b).

2-3.  Incorporating spatial information in image processing

Traditional classification methods in remote sensing were designed to deal with

moderate resolution satellite images that have 30-80 meter pixels (Swain and Davis,

1978).  These methods typically employ an aspatial, pixel-based approach for image

classification that is not very effective for classifying high spatial resolution data
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(Gougeon, 1995a).  Spatial analysis of imagery remains one of the most important areas

of research in remote sensing, because of its potential for increasing classification

accuracy, especially for high spatial resolution data.  The major methods that have been

investigated include reduction of noise or within class variance through the aggregation

of pixels and low pass filtering, texture analysis, and image segmentation.  Generally,

these methods are focused on modifying, or converting the spatial measurements into

pixel data that can be regarded as an additional spectral band for the purposes of

classification.  Therefore, these methods are referred as pixel-based approaches.

2-3-1.  Pixel based approaches

There are many empirical investigations of aggregating spatial resolution to find the

most appropriate spatial resolution for particular applications and to quantify the effect of

spatial resolution on classification accuracy (Pax-Lenney and Woodcock 1997; Teillet et

al., 1997; Latty et al., 1985).  Pax-Lenney and Woodcock (1997) assessed the effect of

spatial resolution on change detection accuracy for agricultural land-use in the Western

Desert adjacent to the Nile delta.  The accuracy of change detection products using TM

data and four lower resolution data sets was found to decrease slightly as spatial

resolution decreased.  However, they suggested that the coarse spatial resolution images

were valuable because of the smaller data volume.  Teillet et al. (1997) produced a

similar analysis for forested regions, and concluded that aggregations in spatial resolution

were influenced by specific land cover characteristics.  Latty et al. (1985) also performed

an analysis to test the classification accuracy according to the different spatial resolution
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sizes for Landsat TM data.  TM data were aggregated from 28.5 to 57 meter resolution,

and the data sets were classified with pixel-based and field-based methods.  The mean

accuracy observed for the 57 meter aggregated data was higher than that obtained from

the finer scale original data, except when the field-based ECHO (Kettig and Landgrebe,

1976) classifier was used.

Although aggregation can be useful for selecting optimal scales, aggregation

inherently implies a loss of the shape information that may be useful in high resolution

image analysis.  Spatial convolution filtering, used to suppress the high spatial

frequencies in imagery (Jensen, 1996), may be an alternative to aggregation.  In this

method, low pass filters are used to generate pixel values representing the average of a

local region of pixels (Meyer et al., 1996; Hay et al., 1996).  A problem with all

convolution methods is that the effect of spectral mixing between classes, sometimes

referred to as the edge effect (Ryherd and Woodcock, 1996), tends to dominate over the

information of interest, the within class variance, and may result in an unacceptably poor

classification.

The methods discussed so far focus on modifying spectral radiance measurements to

suppress unwanted variation.  In contrast to this approach, many methods have been

developed to quantify the local spectral variability.  One of the most common uses local

properties obtained from a moving window, especially the statistical properties of

variance and standard deviation (Woodcock and Strahler, 1987).  It is interesting to note

that with this approach, the spatial arrangement of the pixel values within the window

itself is not measured in any way.
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The gray level co-occurrence matrix (GLCM) provides conditional probabilities of a

matrix based on the frequency of the co-occurance for all pairs of spectral values at a

certain distance and angle in a window (Haralick et al., 1973).  It is therefore unlike the

variance-based filter, in that it incorporates measures of the spatial arrangements of

Digital Numbers (DN values) within the window.   Examples of the spatial arrangements

that are measured with the GCLM include uniformity, correlation, and entropy.  Barber

and LeDrew (1991) demonstrated the discrimination power of GLCM.

Wang and He (1990) developed a texture measurement based on comparing the

spectral magnitude between various orderings of pixels within a window.  For example, a

3 by 3 window has 256 possible combinations of spatial orderings.  The different

combinations of the data within the window are counted, and a histogram of data

combinations is produced.  Three texture measurements are defined based on the

histogram, including black-white symmetry (BWS), geometric symmetry (GS), and

degree of direction (DD).  Gong et al. (1992) used these texture measurements to

compare spatial feature extraction algorithms with SPOT HRV data.  However, these

spatial features added only limited improvements to the overall classification accuracy

that could be achieved using the multispectral data alone.

The semivariogram was developed to represent the spatial dependence between each

point and its neighbors over a range of distances, known as lags (Matheron, 1963; Journel

and Hiujbregts, 1978; Curran, 1988).  The average variance of pixels at various lagged

distances generally increases as the lag increases for short ranges, but reaches a sill at a

lag where the pixels are no longer correlated with their neighbors (Curran, 1988).  St-
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Onge and Cavayas (1997) have shown the value of the semivariogram for mapping forest

structure from high spatial resolution imagery.

Image segmentation is another widely used method of reducing spatial variability

prior to classification.  For example, local variance was used for segmenting of forest

images by Ryherd and Woodcock (1996), and Hay et al. (1996).  Following

segmentation, summary spectral information on pixel clusters, for example the mean

spectral measurement (Gougeon, 1995a; Hay et al., 1996; Meyer et al., 1996), is used to

characterize the clusters as a single group.  Thus, the spatial variability within the cluster

is often ignored.  Euclidean spectral distance between cluster means has generally been

used as a criterion to merge the groups of adjacent pixels in image segmentation methods

(Woodcock and Harward, 1992; Franklin and Wilson, 1991), and for classification.

The spatial structure of the tonal values is stressed in texture transformations, and the

spectral characteristics of the objects are ignored.  In this respect, spectral and spatial

approaches are mutually complementary and have been combined in some studies (for

example, Ryherd and Woodcock, 1996; Meyer et al., 1996; Hay et al., 1996).

2-3-2. Object-based feature extraction

With high resolution data, it should be possible to map individual objects, such as

buildings in urban areas, for example.  Thus classification methods could evolve from an

approach based on the spectral characteristics of individual pixels in classes, to an object-

based approach.  A study that gives support to this idea is that of Hodgson (1998), who

examined the way humans identify urban classes.  He carried out experiments using 1.5
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meter data and image subsets of a range of sizes.  He found that the smaller the window

size, the more the classification depends on the spectral characteristics of objects.

However, with increasing window sizes, the human subjects were progressively able to

incorporate the context of the scene.  For example, a minimum area of 40 by 40 pixels

was needed for classification of Anderson level II land use.  It can therefore be postulated

that for classification human vision requires information not only on the individual

objects of interest in a scene but also the context of those objects.  This suggests that an

object-based nested model might be an effective method of automated classification of

remotely sensed imagery.  Such an approach could be employed to convert pixel

brightness values into spatial information.

The first stage of an object-based approach is to identify segments or groups of

pixels that may correspond to objects or parts of objects.  For example, in his tree

identification studies, Gougeon (1992; 1995a) separates forest area and background based

on the spectral properties of these classes, and identifies individual tree crowns using a

valley following method that exploits the relatively low spectral radiance associated with

the shadowed regions between trees in coniferous forests.  More than 80 percent of

individual trees were successfully identified in a mixed red pine and white spruce forest

using this scheme.  In a forest study using coarser resolution data, Woodcock and

Harward (1992) identified image segments using a region growing method based on the

spectral similarity of neighboring pixels.  Trinder et al. (1997) found segments of roads

using an edge detection method.  The segments are combined into a road network by

exploiting spatial knowledge concerning the characteristics of roads, for example the

association of sub-parallel line pairs.
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In most segmentation studies, the segments are classified as a unit based on

summary spectral properties.  On the other hand, Meyer et al. (1996) first classified the

individual pixels with maximum likelihood and parallelepiped techniques using spectral

and textural information, and then used manually digitized crown boundaries to identify a

single dominant class for each crown.  Janssen and Molenaar (1995) and Gougeon

(1995a) also investigated post classification as a method of classifying segments.  Post-

classification approaches are, of course, of limited value if the purpose of the

segmentation is to allow the classification to be carried out over regions, instead of

pixels.

The geometry of features in high spatial resolution data has also been used for

identifying objects.  For example, Sahar and Krupnik (1999) extracted building outlines

by first extracting edges from the image, including both relevant building edges and

spurious edges.  Geometric properties such as parallel lines and corners connecting

parallel lines were used to identify corners of buildings, which were then connected to

determine building shape.  McKeown (1990) identified linear and sharply curving

boundaries using an edge detection method.  A ‘collinear’ line linking process is used to

combine edges that share the same structure (Shufelt, 1999).  One criticism of these

methods is that the geometric approach is effective for rectangular or square shape

buildings, but may not be effective for irregular shaped objects and complex road

networks.  Although object-based approaches have advantages over pixel-based

approaches for the analysis of high spatial resolution data, object-based approaches

generally deal with only simple models.  In particular, it is difficult to characterize the

rules for complex urban scenes that contain a variety of different objects.
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Contextual information can be used to overcome the limitations of simplistic

geometric approaches.  For example, Baumgartner et al. (1997) used contextual

radiometric and geometric information to extract a road network using edge detection

data from 0.25 meter, high spatial resolution imagery.  The road segments separated by

shadows cast by high buildings and trees were connected by spatial context rules.  For

example, if two approximately co-linear road segments were interrupted by a low DN

region, the dark region was examined to identify whether it could be a shadow from an

adjacent object.  If the region was confirmed as a shadow, the separate parts were

connected.

2-3-3.  Summary

The level of detail provided by new meter and sub-meter scale imagery may support

an analysis that is grounded on the discrete scene model in which individual objects are

discerned.  With high resolution imagery, the use of traditional approaches might result in

excessive within-class variation.  Traditional approaches addressed such problems by the

aggregation of pixels to minimize the within-class variation.  However, the potential of

high resolution data may not be fully realized with these approaches because they do not

support the recognition of individual features and tend to blur shape information.

This dissertation does not focus on thematic approaches, which are the foundation of

traditional image classification, but instead will focus on feature extraction using object

identification.  Edges of the individual objects will be associated with zones of high

variance.  Thus texture information will be used to delineate groups of homogeneous
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pixels with a low within class variance.  It will be necessary to extend simple model

oriented feature-based approaches to a complex or nested model applicable to more

general urban scenes that have various objects.  This study will explore the feature-based

approach based on a nested model for an urban scene.  It is anticipated that such an

approach will have the greatest potential in realizing the possibilities of high resolution

imagery.  In particular, this approach can contribute to the integration of raster and vector

data models.

In the next section the conceptual framework, and the data used in the research, will

be presented.

2-4.  Conceptual Framework

In this research, the concept of a scene will be based on the nested, hierarchical

model (Woodcock and Harward, 1992).  It is assumed that the scene is composed of

patches, which are regions of relatively uniform spectral properties that differ from

neighboring patches (Table 2-1 and Figure 2-1).  Patches may be sub-divided into sub-

patches by the presence of internal boundaries such as walls or narrow shadows, but they

have similar spectral properties to adjacent sub-patches of the same spectral class.

Patches represent variation at a scale finer than the objects of interest, and are resolved

because a fine scale of data capture is required to identify object shapes.  Furthermore,

the hierarchy of scales is overly simplistic; the distinctive scales of organization actually

overlap.  Thus to identify the spectral properties of small buildings, a small IFOV is
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required.  This IFOV may result in the discrimination of unwanted detail in large

buildings.

Land cover objects (Table 2-1 and Figure 2-1), which are the fundamental units of

interest in this study, include buildings, roads and vegetation, and are derived by merging

patches of different spectral classes, but of the same informational class.  Land cover

objects have a hierarchical structure in the composition of the scene.  For example,

Residential and Commercial land use classes, although an abstraction from land cover,

can usually be inferred from characteristic numbers, sizes and arrangements of land cover

units such as buildings, parking lots, etc.  This is because human activity and associated

economic functions normally impose distinctive local spatial patterns of

Level of abstraction

Regional land use

Land use

Land cover object

Patch

Figure 2-1. Nested model of urban land use/land cover
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Residential
area

Commercial
area

Industrial area

Roads Houses Lawn

Illuminated
roof

Shadowed
roof

Spectrally
distinct roof
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organization (Lillesand and Kieffer, 1994).  There are multiple hierarchical land use

classes.  For example, Residential and Commercial land use can in turn be aggregated at

the next higher hierarchical level to a regional land use class such as Urban.

2-5.  Data and study area

The identification of individual buildings and roads requires imagery with a spatial

resolution that is much smaller than objects in the scene.  For this reason, the spatial

resolution of image data should be very high, one meter or less.  Because, at the time this

project was started, high resolution satellite data was not yet available, Airborne Data

Table 2-2. Spectral properties of the ADAR System 5500 data (Positive Systems, 1997,
unpublished data.)

Band Color Band Width
(nm)

Aperture Exposure
(seconds)

1 Blue 450 – 540 f 2.8 1/500
2 Green 520 – 600 f 2.8 1/800
3 Red 610 – 690 f 4.0 1/640
4 Infrared 780 – 1000 f 5.6 1/2500

Acquisition and Registration (ADAR) 5500 data (Stow et al., 1996) was selected for the

analysis.  The system captures images 1,000 by 1,500 pixels in size, producing a field of

view of 1,000 by 1,500 meters at the nominal IFOV of one meter.  The ADAR system

acquires four bands of data with four separate digital cameras sensitive to blue, green,

red, and infrared wavelengths covering the range from 400 to 1,000 nm (Table 2-2).  The

separate image bands were co-registered by Positive Systems following the image

acquisition.
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The data were acquired at 19:42:18 GMT (2:42 pm local time) on March 24 1997

from an altitude of 2,522 meters.  Late March in West Virginia is early spring, prior to

leaf-out of the deciduous trees.  Imagery without the obscuring presence of deciduous

leaves minimizes the occlusion of ground objects, and is therefore preferable to summer

imagery.  In addition, atmospheric visibility tends to be high at that time of year.  On the

other hand in summer imagery, forest cover would be more spectrally distinctive, and

thus easier to identify than in spring imagery.

The study area comprises part of West Virginia University and downtown

Morgantown, as well as the adjacent South Park and Woodburn residential areas (Figure

2-1).  The scene includes the Monongahela River and its tributary, Decker's Creek.  The

latter river is bordered by a wooded area.

This area has diverse topographic characteristics.  Steep slopes are common adjacent

to the rivers.  The Downtown area, located between the Monongahela River and Decker’s

Creek, is relatively flat, with an overall slope to the southwest.  The complex topography

results in both straight and twisted roads, resulting in a varied road pattern.

A range of land use/land cover classes occur in the study area, including a Central

Business District (CBD), various densities of residential housing, institutional facilities, a

forested area, lawn, and water bodies.  The CBD is composed of relatively tall buildings

up to 10 stories high, although the majority are 3-4 stories.  The institutional buildings of

West Virginia University tend to be larger in size than the other buildings in the area.

The residential area to the east and northeast of the study site is hilly, and the houses are

located on relatively large plots.  These houses are detached, and separated from their
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neighbors by lawn and trees.  The residential area south of Decker’s Creek is relatively

dense, with much smaller plots.

Lawn is associated with both public buildings and houses, but not the CBD

buildings.  Although in West Virginia forests leaf out after late March, when the image

was acquired, lawns are typically green.  Deciduous forest occurs on both sides of

Decker’s Creek.  The Monongahela River has relatively deep water, and consequently a

relatively low overall reflectance.  By contrast, Decker’s Creek is swallow, and has a

higher radiance due to reflectance from exposed and shallowly covered rocks in the

streambed.

Different scenes might result in slightly different or additional problems.  Rural

scenes may have relatively simple land cover classes compared to the selected study area.

Furthermore, shadows obscuring neighboring buildings are less likely in rural scenes,

although tall structures, such as grain silos and large trees, may cause additional

problems.  Reduced shadow occlusion should result in a clearer delineation of land cover

classes.  However, the main determinant of the success of both the image segmentation

and classification is likely to be the spectral contrast between the objects of interest.

Spectral contrast between objects in rural area, for example, may be more dependent on

the seasons than in urban areas because of the smaller proportion of the scene likely to be

covered by non-vegetated surfaces.

Urban scenes with taller buildings are likely to suffer from even more shadowing

problems than the Morgantown study area.  Shadowing may be reduced by careful

selection of data acquisition time and season, in order to ensure a high solar angle.

Additionally, parallax distortion may cause high buildings to obscure streets and
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neighboring buildings, although this can be minimized by acquiring the images from a

higher altitude, with a longer lens.  In many cases, however, the user has little choice over

the acquisition parameters of the imagery used in a study because imagery is often

collected for multiple purposes, or previously acquired archived data is used.

Areas with simpler street patterns may be amenable to straightforward geometric

rules for identifying the road network.  However, an approach based on simple geometry

is unlikely to be sufficiently general to be applied across a broad range of cultural and

topographic landscapes.

In summary, the study area includes a wide range of topographic settings and land

use/land cover types, with a complex road pattern.  Classification of such a diverse area

presents a challenging task, and a successful approach is likely to be useful over a wide

range of regions. Consideration of alternative location may produce different results,

though it is very possible that the results could be better than those achieved for the

relatively complex urban form of Morgantown.
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Figure 2-2. Study area of Morgantown.  The study area is approximately 1 by 1.5 kilometers in size.  North is towards the
top of the image.
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Chapter III

IMAGE SEGMENTATION

3-1. Introduction

Image segmentation is a common initial step in object identification from remotely

sensed imagery (Barzohar et al., 1997; Ford and McKeown, 1992).  The major objective

of image segmentation is to partition an image into regions that are spectrally and

texturally homogeneous, and that are assumed to delineate the objects or regions in the

scene.  This approach reduces the complexity of an image, and the delineated objects can

be used as a single group in further analysis (Woodcock and Harward, 1992; Coleman

and Andrews, 1979; Canny, 1987; Fjørtoft et al., 1998).

There are two major approaches to the segmentation of imagery:  region-based and

edge-based approaches (Fjørtoft et al., 1998; Haralick and Shapiro, 1985).  The region-

based approach defines the segments of an image by direct identification of areas with

similar spectral or textural values.  In contrast, the edge-based approach focuses on the
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identification of boundaries through an analysis of tonal or textural change gradients

(Fjørtoft et al., 1998).

3-2.  Review of image segmentation literature

3-2-1.  Region-based approaches

One approach to region-based segmentation is to use thresholding of image digital

numbers (DN) (Haralick and Shapiro, 1985).  Thresholding exploits natural breaks in the

frequency histogram of an image, such as local frequency minima, to identify spectral

clusters.  Groups of spatially adjacent pixels that fall in the same spectral cluster define

the individual segments.  One-dimensional thresholding uses the histogram for a single

gray level image (Haralick and Shapiro, 1985).  For multispectral images, thresholding

requires multivariate identification of frequency clusters (Colemen and Andrews, 1979).

Although thresholding is simple to implement, it has a number of drawbacks.  The

initial clustering is aspatial, and therefore there is no a priori control over the size or

distribution of the spatial clusters.  Another problem is that the frequency histogram is

developed from global statistics, and this may hinder the identification of overlapping

spectral clusters, or the classes that comprise a very small area.

Region growing methods provide an inherently spatial approach compared to the

aspatial thresholding methods described above.  Region growing is based on annexation

processes in which pixels, or groups of pixels, are merged with adjacent pixels or groups

that have similar properties.  The measures of similarity are typically based on the



33

statistics of the regions that are being compared, for example, the minimum distance

between the region means, and student’s t-test (Woodcock and Harward, 1992; Franklin

and Wilson, 1991).  The annexation process is sometimes applied in multiple iterations,

so that groups that were formed in one pass through the image may be merged in a later

pass.

An important difference between region growing approaches is the spatial unit used

in the aggregation process.  Single-linkage algorithms compare individual adjacent pixels

only (Haralick and Shapiro, 1985; Ryherd and Woodcock, 1996). Single-linkage

algorithms tend to produce many small regions because, in the context of graph theory,

each pixel is regarded as a node.

The hybrid single-linkage algorithm applies the local statistics of k x k neighborhood

pixels to the center pixel (Haralick and Shapiro, 1985).  Conceptually, this approach has

similarities to low pass filters and texture measures.  Because a larger group of pixels is

evaluated for similarity, this method works better on noisy data than single linkage

algorithms.  However, two potential problems are associated with hybrid single-linkage

methods.  Firstly, the user has to specify a fixed neighborhood size.  Secondly, the

neighborhood operator may cause extraneous segmentations near class boundaries.

The field-based approach is particularly suited to multivariate data.  In the ECHO

classification of Kettig and Landbgrebe (1976), homogeneous regions are identified

based on the means of fields of multiple univariate data.  The initial spatial units are

groups of four adjacent pixels.  The candidate group’s mean for each band is examined

sequentially, to determine if the pixels are sufficiently similar to belong to the same

region.  After the procedure has been applied to the whole image, it is iteratively
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reapplied to allow additional merging of the regions.  Pixels that are not merged into

regions are classified individually.

In contrast to the aggregation approach of region growing image segmentation, split

and merge methods are a top-down approach (Haralick and Shapiro, 1985).  In the first

step, the entire image is subdivided into a small number of arbitrary segments.  Dividing

the image into fourths clearly lends itself to a quadtree approach (Franklin and Wilson,

1991).  Each segment produced by the subdivision of the image is tested for internal

homogeneity.  Regions that meet the homogeneity criterion, for example a student’s t-

test, are not divided further.  Regions that fail the homogeneity tests are recursively

divided until all individual regions are considered homogeneous.  Subdivided regions can

also be as aggregated if they meet a similarity criterion (Muerle and Allen, 1968).  A

limitation of this approach is that the regions are by definition based on geometric shapes,

typically rectangles.  Furthermore, the results will depend on the user-chosen values

selected for the thresholds of internal homogeneity and similarity between regions that

determine when to split and merge the segments.

3-2-2. Edge-based approaches

Region-based approaches suffer from an inherent contradiction.  Although the

purpose of segmentation is usually to identify regions that can subsequently be classified

as a group, a preliminary classification is necessary to identify the group itself.

Therefore, an alternative is to use edge enhancement to identify areas of significant

spectral change that may represent the boundaries of regions.  Typically, a threshold is
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applied to the edge enhancement output, in order to identify edges.  The underlying

assumption of this approach is based on the discrete scene model.  Real objects or regions

in the scene are assumed to be characterized by a homogeneous spectral radiance that

contrasts with that of the background across sharp boundaries (Gougeon, 1995b).

Edge detectors, as the name implies, are designed to find the break points between

regions with abruptly different spectral radiance (Elder and Zucker, 1998; Fjørtoft et al.,

1998).  Most edge detectors are based on a gradient analysis, although texture

measurements, such as local variance or GLCM indices (Holyer and Peckinpaugh, 1989),

are also frequently used.  The intensity gradient within the window is defined by:
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where:

)(xf : Spectral radiance of a pixel adjacent to the pixel under investigation

)(Nf : Spectral radiance of the pixel under investigation

N : Location of the pixel under investigation

x : Adjacent location to N

Unfortunately, this formula cannot be solved directly in the spatial surface of the

image.  Therefore, the gradient is calculated over a local proxy, the kernel.  A number of

kernels have been used, including 1st-order derivatives (Roberts, 1965) and zero-sum

filters, such as Prewitt’s and Sobel’s operators.  The first order derivatives can best be

described by assuming the image radiance values, r, represent the height value of a three-

dimensional surface on an x,y coordinate plane:
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When y has a fixed value, the derivative will be determined by the difference

between the value of x and x + ∆x .  The same procedure can be applied to a fixed value

of x.  The derivatives of the function for fixed x or y, the so called partial derivatives of r

about x and y, are defined respectively as the following (Chiang, 1974):
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The first order derivative operators are based on this partial derivative concept, in

which the gradient in the x direction is the derivative for the fixed value of y, and the

gradient in the y direction is obtained for fixed x.  Within the operators, the kernel values

are divided into two groups on either side of the center row or column, and the difference

between the two parts of the kernel is used to estimate the gradient.  If the directions of

the edges are unknown, or not regarded as important, then the average value of the partial

derivatives about the x and y directions can be used as a proxy for the derivative at a

point:

f = (fx
2 + fy

2)1/2 , or

f = fx + fy

where:

f: The gradient

fx and fy: The gradient in x and y directions
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The above approach, commonly used in traditional edge enhancement algorithms,

tends to blur the representation edges through a smoothing effect.  For the Roberts edge

detection operator (Roberts, 1965) the gradients are determined by:

fx = DNi,j – DNi+1, j+1

fy = DNi+1, j – DNi, j+1

and the Sobel edge detection operator (Holyer and Peckinpaugh, 1989) is calculated

from:

fx =  –  DNi-1,j-1 – 2DNi, j-1 – DNi+1, j-1 + DNi-1, j+1 + 2DNi,j+1 + DNi+1, j+1

fy =  –  DNi-1,j-1 – 2DNi, j – DNi, j+1 + DNi+1, j-1 + 2DNi+1,j + DNi+1, j+1

where:

i and j : The row and column values that define a pixel location

DN: Spectral digital values

In contrast to the techniques discussed so far, Laplacian techniques use an

approximation of 2nd-order derivatives, which differentiate the first order derivatives for

every pixel.  The 2nd order derivatives have a zero value where the gradients reach a

local maximum.  The formula used is as follows:

f = fx + f0 +fy

For the unweighted Laplacian operator (ERDAS, 1999),

fx =  – DNi-1,j-1 - DNi, j-1 - DNi+1, j-1

fy  =  – DNi-1,j+1 - DNi,j+1 - DNi+1, j+1

f0 =  2DNi-1,j + 2DNi, j + DNi, j + 2DNi+1, j

The intensity gradient methods are generally simple to apply, but tend to be too

sensitive to noise, fine-structure, and weak gradients (Holyer and Peckinpaugh, 1989).
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To limit these problems, normalization can be used.  For example, Fjørtoft et al. (1998)

used an infinite symmetric exponential filter (ISEF) as an edge detection operator to

eliminate the effect of noise in a synthetic aperture radar image.  The filter normalizes the

pixel values with an ISEF that calculates the exponentially weighted means of each half

window.  The center pixel’s gradient is computed based on the normalized values of the

two half windows.

3-3.  Image segmentation methods

Thresholding of DN values and split and merge methods are not well matched

conceptually with object identification.  Although region growing methods are more

appropriate for object identification, they require user-selected levels for the similarity

criteria.  Furthermore, the results of region growing may be dependant on the starting

point and order of region growing.  Therefore, in this study an edge-based approach was

used for image segmentation.  However, it should be borne in mind that drawbacks of the

edge-based approach include the requirement of a user-specified threshold for an edge to

be regarded as significant, and the need for several additional procedures to produce

segments from the edges.  In this research the edge detection method consists of five

steps:  edge enhancement, ridge finding, ridge connection, ridge thinning, and ridge

pruning (Figure 3-1).
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Figure 3-1. The image segmentation process of identifying sub-patches in the image.
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3-3-1. Image enhancement

The image segmentation method used is an edge-based approach, which has been

modified to incorporate directional linear kernels.  The gradients around a point are

assumed to have a maximum value in a direction perpendicular to an edge, if one is

present.  In order to exploit this approach, the partial first derivative concept should be

substituted by the total first derivative concept, in which partial derivatives are extended

to all directions with the simultaneous change of x and y.  If r is a function of x and y, the

total differential is thus the change of r by the change of x ( )f dxx plus the change of r by

the change of  y ( )f dyy :

dr f dx f dyx y= +  …………………………………..….(3-1)

When )(xhy = , the change of x affects not only r directly, but also y.  In order to

count the two effects, the total derivative is required.  The total derivative of r with

respect to x is expressed as follows (Chiang, 1974):

dr

dx
f

dx

dx
f

dy

dx
x y= +

     = +
∂
∂

∂
∂

r

x

r

y

dy

dx

When )(xhy = , the maximum total derivative g at (x,y) among the possible

directions can be defined by:

g = max
dr

dx
   ………………………………………...(3-2)

In order to produce a proxy based on this approach, it is necessary to adapt the shape

of the operators.  Rectangular shaped operators used by traditional edge enhancement
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operators are not appropriate for estimating the total derivative.  Rectangular operators

are insensitive to edge shape, specifically edges with sharp curves.  As discussed earlier,

the operators divide the kernels into two parts that are generally a half of the kernel, and

produce gradients by comparing the difference between them.  In the case of corner of an

object, neither half of the kernel represents the object under investigation.  This will tend

to cause an offset in the location of the derived edges.  This problem is likely to be most

acute for the larger windows that may be particularly important with high spatial

resolution data (Ferro, 1998).

In this study, directional linear operators are used for edge enhancement.  Because

linear shaped operators are only a single pixel wide, the operators will be affected less by

non-straight edges.  However, as the formula (3-2) implies, the operators are sensitive to

directional differences.  This is crucial in order to measure the magnitude of the gradient

correctly.  Figure 3-2 (a) shows the bright roof of a building from the ADAR data of

Morgantown.  Profiles in the green DN values for three directions at a point on the roof

edge are marked A, B, and C in the image, and are graphed in Figure 3-2 (b).  The profile

that is perpendicular to the edge has the steepest slope, while the profile that is parallel to

the edge has the gentlest slope.

The green band was selected for the edge enhancement and ridge finding process

because this band was found to produce the best results.  The red and blue bands, were

found to have a lower contrast in the ADAR data, and therefore produced edge images

with more spurious edges than the green band.  The infrared band provided good

discrimination of green vegetation, but did not discriminate the edges of important cover

types.
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                                  a)                                                                           b)

Figure 3-2. Spatial profiles for three directions for a subset of the green band of the
Morgantown ADAR image. a) is the subset of Morgantown ADAR image,
and b) is the spectral radiance profiles for the three directions.

The size of operator used is partly determined by the scale of the imagery.  When

situated on an object edge, each half of the kernel should be large enough to capture the

spectral properties of the objects or background, but not too large to straddle more than

one object.

The size of the operator also determines the number of potential directions that

can be examined, with larger operators allowing more directions.  For example, if a linear

directional operator with five pixels is used, eight directions can be investigated (Figure

3-3).

Edge
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Figure 3-3. The eight directions associated with a linear operator five pixels in extent.

The use of the directional operator to identify the direction that is perpendicular to an

edge is shown  in Figure 3-4,  which  shows  the gradient  index  calculated from  the first

                         a)                                                                     b)

Figure 3-4. First order derivatives for three directions for the image shown in Figure
3-2. a) is the spectral radiance profiles for the three directions, and b) is
the corresponding gradient index, which is calculated from the first
derivative.
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derivative of the three profiles illustrated in Figure 3-2.  Profile A, which is perpendicular

to the edge of the building, has the highest gradient measurement.  By comparison, the

direction parallel the building edge has the lowest values.

The sensitivity of the kernel shapes and sizes described in the previous section has

been examined through the application of a variety of filters to simulated data sets

(Figure 3-5) using custom-written Fortran programs.  The data sets are composed of

geometric objects that are distinguished from their background by a strong contrast in

radiance values.  The objects have three edge shapes, namely perpendicular (A), round

(B) and acute (C).  These shapes were chosen because perpendicular edges are typical of

buildings, whereas all three types of edges are associated with roads.  Three operator

sizes were tested:  3, 7, and 11 pixels.  In Figure 3-5, the upper case letters indicate the

results of gradient measurements from directional linear operators, and the lower case

letters indicate the results from traditional square shaped operators.  Firstly, the linear

operators provide a narrower, and more consistent delineation of edge location than the

square shaped operators (compare the rows labeled A, B and C to those labeled a, b, and

c).  The advantage of the linear operators is most clear in the delineation of the acute

angled corners of the triangles (C-3 vs. c-3).  Secondly, the blurring effect of larger

operators (compare columns 2 and 3 to column 1) is much less significant for the linear

operators, compared to square operators.  With square operators, the highest texture is

found when the operator is displaced from the corner, because when the operator is

shifted towards the interior of the object, more edge pixels are within the operator.
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Figure 3-5. A comparison of edge enhancement images for three simulated images (A,
B, and C) using a directional linear operators and traditional rectangular
shaped kernels.  The colors in the edge detection image are coded
according to the strength of the response:  from blue (low) to red (high).
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Figure 3-6. Edge enhancement of Morgantown ADAR data for a subset of the study area, including downtown and parts of the
neighboring suburbs.
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Because the minimum size of an object of interest in this study is approximately two

to three meters, a three pixel operator was used for the edge enhancement in this study.  If

a size of operator greater than this is used, spectral mixing between multiple classes or

objects is likely.  Figure 3-6 shows the results of the edge detection applied to the ADAR

data of Morgantown. The edges of buildings are clearly delineated in light tones (high

values), however, the edges of roads and vegetated regions are less well defined.

3-3-2.  Ridge finding

The result of edge enhancement is a continuous tone image.  Edge extraction is then

applied to this image in order to select those pixels that best represent edges.  For this

study, it was assumed that edge pixels are represented in the edge enhancement image by

the local highs, termed ‘texture ridges,’ or ‘ridges’ for short.  Ridges can be identified by

values that are higher than adjacent pixels in at least one transect through the point of

interest.  Thus no a priori window size for maximum ridge width need be specified.  Both

peaks and saddles in the edge-enhanced data are classified as ridges.  An important aspect

of this procedure is that the transects are extended until a local maximum is reached, and

therefore even wide flat areas can potentially be identified as ridges.  Transects are

searched in four directions:  rows, columns and both diagonals.

This ridge finding procedure can be expressed more formally as the identification of

a pixel or pixels that locally have a zero value total derivative, but that on one side are

immediately adjacent to a region with a positive total differential, and on the other side
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are adjacent to a region with a negative total differential.  Furthermore, the positive and

negative total differentials should be co-linear in direction.

The points that have these properties are the edges in the spectral reflectance

measurement space.  This means that the derivative of equation 3-1 for the direction

should have zero value.  This result can be shown to be a consequence of differentiating

equation 3-1 once again:

d 2 dy
y
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dx
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A Fortran edge extraction program was written to implement the procedure outlined

above.  Because of the simplification required for raster data, junctions of ridges were

sometimes found to have discontinuities.  This problem was overcome with a ridge

connection procedure that checked for one-pixel gaps between ridges with differing

directional trends.

Figure 3-7 shows the results of applying the ridge finding process to the subset first

shown in Figure 3-2.  In Figure 3-7, it can be seen that spectral contrast in the scene gives

rise to texture ridges along the building edges, as well as around many other fine scale

objects in the scene.  However, many of the ridge pixels are in clumps several pixels wide

in areas where the DN values are similar along an edge.  This occurs because the
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                          a)                                                                      b)

Figure 3-7. A small test subset of the ADAR data of Morgantown, and the results of
the ridge finding process. a) is the original green band image, and b) is the
results of ridge finding

transects are oriented in multiple directions, and thus spurs on the ridge are also defined

as ridges.

3-3-3. Thinning

The ridge pixels were skeletonized into lines one pixel wide.  The thinning

procedure was implemented iteratively by erosion from left to right, right to left,

downward, and then upward.  In the thinning process, each pixel was checked to see if

removing it would break the continuity of a polygon edge.  Only pixels that are redundant

for defining polygons were removed.  Where an edge that had two or more pixels wide

was found, the ridge pixels with the lowest edge enhancement value was eroded.  The

procedure was designed to retain ridge pixels over the original edges in the spectral
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reflectance measurement space.  Figure 3-8 (a) shows the results after applying this

process.

                         a)                                                                        b)

Figure 3-8. The results of the thinning and pruning process.  a) Skeletonized image
after thinning process, and  b)  Image after pruning process for a part of
the study area.  (Compare with Figure 3-7.)

3-3-4. Pruning

The thinning process results in skeletonized ridges that have many branches that

terminate without forming closed polygons (Figure 3-8a).  Branches tend to represent

edges that do not define object boundaries.  Based on a careful examination of the image,

removing these branches does not appear to remove any real edges, and therefore

branches can be removed.  This was achieved through an iterative erosion of pixels that

are terminal nodes on the skeletonized ridges.  This leaves only ridges that define closed

polygons (Figure 3-8b), termed sub-patches in this work.  The sub-patches represent

segments of relatively homogeneous radiance within an object, and are bounded by zones
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of the spectral variation.  This approach is necessary, because as Mason et al. (1988) has

noted, segmentation errors or ambiguities are inevitable.  Errors can arise from noise in

the scene, or real variations within the individual objects, few of which are completely

homogeneous.  The river and vegetated areas tend to be highly segmented through the

pruning process, presumably due to variation in the tree and wave distributions of these

two classes.

3-4.  Application to simulated and real data

Figure 3-9 shows the result of the ridge finding procedure applied to the simulated

data (Figure 3-5).  The first image in every row represents the overlapped images of

ridges identified by the different window sizes in the row.  It is clear that the linear shape

edge detection operators produced stable and accurate estimates of the edges of the

geometric objects.  Larger window sizes did not diminish the accuracy of the estimate of

the edge location, except for a slight offset of the triangle corner using the seven pixel

linear window.  In contrast, the traditional rectangular edge detection operators produced

results that were less accurate than the linear operator, even for the smallest window (3

by 3).  Furthermore, results for the rectangular edge detection operators deteriorated with

larger window sizes.

Figure 3-10 shows the image sub-patch segmentation results, using a directional

linear operator, for a subset of the Morgantown ADAR data.  The river and vegetated

areas tend to be highly segmented through this process, presumably due to variation in
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the tree and wave distributions of these two classes.  In the next two chapters, the

procedure to merge sub-patches to form patches, and ultimately objects, is described.

Figure 3-9. Comparison of edge detection results for directional linear (rows with
upper case letters) and square operators for three sizes of
windows/operators:  3 by 3 /3 (green), 7 by 7/7 (blue) and 11 by 11/11
(red).  The leftmost column shows an enlarged composite of the three edge
detections, with the smallest windows overlain on the larger.  Compare to
Figure 3-5.
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Figure 3-10. The sub-patch boundaries identified in the initial image segmentation stage of the Morgantown ADAR data overlain on
a standard false color composite of the scene.
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Chapter IV

REGION GROWING WITH IMAGE SEGMENTS

4-1.  Introduction

Edge detection methods tend to be sensitive to noise and slight variations in

reflectance even within objects (Holyer and Peckinpaugh, 1989).  Thus when edge

detection is used for image segmentation, the delineated areas are often much smaller

than a single object.  It is referred to these delineated regions as sub-patches in order to

emphasize the necessity to amalgamate the initial segmentation into spatial units that can

be related to image objects.  The presence of these overly segmented sub-patches within

the image objects reduces the effectiveness of object identification.  A major issue in

edge detection is therefore the discrimination of true edges from spurious edges (Fjørtoft

et al., 1998).  Unfortunately there is no general method to achieve this (Elder and Zucker,

1998).

One technique used to distinguish significant edges, is to threshold only the higher

values after edge enhancement (Lea and Lybanon, 1993; Karniell et al., 1996; Touzi et

al., 1988).  For example, Fjørtoft et al. (1998) was able to find a satisfactory threshold
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that greatly reduced the over-segmentation produced by their edge-finding, local maxima

watershed algorithm (Vincent and Soille, 1991).  Generally, however, selecting a

threshold is not necessarily a strait forward process because the optimal threshold tends

to vary across the scene.  Adjacent low contrast objects require a very low threshold,

whereas in regions of high contrast a much higher threshold is required (Elder and

Zucker, 1998; Fjørtoft et al., 1998).  If the threshold is set too low, many spurious edges

are identified.  However, if the threshold is set too high, additional complex processing is

required to subdivide segments.

The four criteria of Haralick and Shapiro (1985) for ideal image segmentation help

explain why the selection of edges that define segments is so difficult.  First,

segmentation should result in the grouping of pixels with uniform or homogeneous

characteristics, such as gray tone or texture.  Second, adjacent regions of a segmented

image should have different radiometric or texture characteristics.  Third, each region

should have spatially accurate and simple boundaries.  Fourth, the interiors of the regions

should not have numerous small holes.  Finally, it is also important to satisfy all the

criteria simultaneously (Haralick and Shapiro, 1985).

In this research, the first criterion of internal homogeneity was addressed by

applying thresholding and region growing methods sequentially (Figure 4-1).  An optimal

threshold level was selected by incorporating a dual approach in which vegetation

boundaries were selectively identified in a separate procedure.  For the second criterion,

that adjacent regions should be different, the spectral similarity of adjacent sub-patches

was evaluated by multivariate statistical methods, and sub-patches that did not have

sufficiently  different radiometric  values  were  merged.   The third  criterion,  relating to
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Figure 4-1. Overview of the region growing stage and patch identification.
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simple and accurate boundaries, was satisfied partly by the ridge finding technique

described in Chapter III, and is refined further by the region growing described in this

chapter.  The fourth criterion, specifying that holes within regions are undesirable, was

addressed in two stages.  Firstly, many of the small holes within objects were removed by

the thresholding procedure itself.  Secondly, small unwanted objects, such as cars on

roads, and small structures on the roofs of buildings, were retained until after the

classification stage, and only then merged with the surrounding classes.  The reason for

keeping such objects until after classification is that they tend to have distinctive spectral

characteristics, and thus their inclusion in the surrounding class would violate the first

two criteria of Haralick and Shapiro (1985).

This chapter describes the procedures for identifying edges, the thresholding

procedure, the evaluation of the similarity of adjacent sub-patches, and the aggregatation

to form patches (Figure 4-1).  In Chapter V, the procedure for patch classification and the

delineation of objects, is described.

4-2.  Thresholding

An empirical approach was used to select the optimal threshold for identification of

the sub-patch edges from the edge enhancement data.  The binary ridge data was

converted into continuous data by multiplying the ridge finding result and edge

enhancement data.  A threshold was applied to the resulting image, in order to suppress

low edge enhancement value ridges.  After applying the threshold, a cleaning process is

carried out to remove the remaining sections of polygon edges that have been broken in
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the thresholding process.  Real edges can potentially be lost through this cleaning,

because no test is applied to determine what proportion of the edge has been removed by

applying the threshold.  Nevertheless, this procedure appears to remove very few real

edges because a very low threshold is chosen.

A number of thresholds were tested, and the derived edges were overlaid on the

original image for visual comparison.  For example, Figure 4-2 demonstrates the

differences in segmentation that result from applying varying thresholds to the output of

the ridge finding process.  When the threshold level is set to 30 (units are arbitrary edge

enhancement DN values), the building in the center of the image is segmented into many

small sub-patches; however, with a threshold level of 150, the objects in the image are

Figure 4-2. Comparison of threshold levels of 30, 70, 100, 150 for image sub-patch
boundary identification for a small test site within the Morgantown data.
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grouped into large sub-patches that have an undesirably wide range of radiance values.

The final threshold level was therefore chosen to minimize the grouping of separate

objects into a single clump, with the exception that vegetation boundaries were ignored

because they could be identified separately, as is described in Section 4-3.  Thus, a level

of 70 was selected for the final threshold, despite the aggregation of vegetation and other

cover classes within individual sub-patches (Figure 4-3).  Although the separate treatment

of vegetation boundaries allowed a much higher threshold than would otherwise have

been possible, a threshold of 70 results in many small sub-patches.  Some of the small

sub-patches are a result of cars on the roads and structures on the roofs of buildings.  The

forest area also has small sub-patches produced by the geometric patterns of trees and

tree stands.  However, for the water class, the threshold is sufficiently high that the entire

Monongahala River was segmented into a single sub-patch because ridges found in the

water class (Figure 3-10) were all below the final threshold chosen.

4-3.  Preliminary extraction of vegetation edges

Vegetation areas were found to have relatively diffuse boundaries and a low contrast

with adjacent land cover types such as road, water, and shadow.  This was a consequence

of the selection of an early spring image for the analysis.  However, a summer image

would have had additional problems associated with the obscuring effect of vegetation on

ground objects.  Therefore, vegetation edges required a very low threshold in this image.

Nevertheless, because vegetation has such a distinctive spectral signature, it is possible to

identify vegetation edges through an alternative approach, namely a rule-based pre-
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Figure 4-3. Image sub-patches delineated by an edge enhancement threshold level of 70.
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classification.  A number of rule-based classifications have been found to be effective.

For example, Ton et al. (1991) developed rules that use a standard TM vegetation index,

the ratio of infrared to red (Band 4/Band 3):  Pixels with a vegetation index greater than

2.5 were labeled as vegetation, below 1.5 as non-vegetation, and between 2.5 and 1.5 as

ambiguous.   In a slightly more complex approach, Møller-Jensen (1990) used an

approach based on the expert system developed by Wharton (1987) for the identification

of green vegetation with Landsat TM data.  In Møller-Jensen’s method, vegetation pixels

must have (band 4 + band 5) > (band 2 + band 3 + band 7), and band 4 > band 5.

Because the bands used in this study were different from those of Landsat TM, and

because this image was acquired prior to forest leaf out, new rules exploiting the spectral

characteristics of green lawns and senesced deciduous forest vegetation were developed.

In the first step, a normalized difference vegetation index (NDVI) (Tucker et al., 1981),

was employed for identification of potential vegetation:

NDVI
Band Band

Band Band
=

−
+

4 3

3 4

where:

band 3: ADAR red band

band 4: ADAR infrared band

The initial rule was that pixels with NDVI > 0.0 were identified as Potential

Vegetation.  For the second step, Potential Vegetation pixels that fell in the range from

100 to 140 in band 3, and 115 to 150 in band 4, were labeled Potential Non-Vegetation.

In the third step, Potential Non Vegetation pixels were reassigned back to the vegetation

if band 1 < band 2 < band 3 < band 4 (i.e. the DN values increase across the bands
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sequentially).  Figure 4-4 presents the results of the application of this procedure to the

Morgantown ADAR data.

The vegetation edges were obtained directly from the boundary pixels of the

vegetation areas, rather than applying the edge enhancement method used for other edges.

Notice in Figure 4-4 that the lower-left part of image has a very simple structure, because

this area is highly built-up, and does not have many green spaces.  However, a number of

small green areas were detected.  The upper-right side of the image is a residential zone

with a forested area along a stream, and consequently has rather complex vegetation

edges.

The edges from the results of the previous two procedures were combined into one

edge-detection image.  After pruning edges that terminate without forming a closed

polygon, the sub-patch image is complete (Figure 4-5).  A careful comparison with

Figure 4-3 shows that roads, water, and some shadows, are delineated better in Figure 4-5

than in the initial segmentation of Figure 4-3, which only incorporates the general edges

from the ridge-finding procedure.

4-4.  Sub-patch topology and database development

Image segmentation results in the labeling of each pixel according to the spatial

grouping into which it falls.  This data can be used for additional image processing

analysis (Woodcock and Harward, 1992), such as amalgamation to form entities that can

be related to image objects.  In this work, sub-patches are treated conceptually as proto-

objects, with spatial topology that goes beyond the traditional pixel-based segmentation.
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Figure 4-4. Preliminary vegetation areas and associated edge pixels.  Edge pixels are depicted in black, vegetation in green.
Compare to Figures 4-3 and 4-5.
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Figure 4-5. Image segments of sub-patches modified by vegetation edges.
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The research of Gahegan and Flack (1999), Usery (1996), Albrecht (1996), and

Roberts and Gahegan (1991) provides a conceptual framework for the analysis of objects

or proto-objects in remote sensing.  Roberts and Gahegan (1991) considered features to

have associated spatial and aspatial properties.  In Usery’s (1996) approach, objects are

geographic entities that incorporate spatial, thematic, and temporal information.  Albrecht

(1996) defined real-world geographic entities as geographic objects that have three

components:  geometric, metadata, and a set of relationships with other objects.  A

common theme with these approaches is that the object comprises more than the

geometric properties, but includes geographic representation. (Roberts and

Gahegan,1993).

This research builds on this geographic approach to object definition.  A Fortran

program was developed to provide the database for cataloguing and accessing the spatial

and aspatial properties of the sub-patches, as well as for the subsequent processing.  The

analysis is therefore based on sub-patches as the spatial unit, rather than pixels, and the

spatial relationship between the sub-patches are an important part of the processing.  The

irregularly shaped sub-patches were treated as raster polygons, which are similar in

concept to GIS polygons.  These raster polygons, however, were defined by pixels

instead of the points and lines that are used in a vector-based GIS.  Nevertheless, the

relationships between adjacent polygons can be defined by the raster network, as the sub-

patch edge pixels can be regarded as the arcs of a traditional vector GIS.  Figure 4-6

shows an example of the sub-patch identification for a part of the study area.  Sub-

patches are the white areas separated by black sub-patch edge pixels.  The sub-patch

identification numbers were assigned by a rule developed in this study.
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Figure 4-6. An example of the sub-patch segmentation, and the associated polygon
identification codes for selected polygons.

A database was built for the sub-patches, including the topology and statistical

parameters based on the distribution of spectral radiances of the pixels within each sub-

patch.  The database includes four main information sections for each sub-patch:  the

polygon identification information, spectral measurements, topology, and aspatial

information.  Identification information includes each sub-patch polygon identification

number, as well as the locations of sub-patch edge pixels and the pixels that belong to

each sub-patch.  Spectral information includes the original DN values of the pixels in the

sub-patch.  Topology contains the spatial relationships between contiguous sub-patches.

Aspatial information incorporates the number of pixels in each sub-patch and the average

DN value, sum of squares, variance for each band, as well as the covariance between

each possible pair of bands.  This information provides the basis for merging the sub-

patches, as well as later classification.
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4-5.  Region growing with image segments

In the process of segmentation, it was assumed that it is easier to merge sub-patches

than to subdivide them.  Therefore, the threshold chosen resulted in many sub-patches

within objects.  In the next processing step, the method to identify and merge similar sub-

patches is explored.

The region growing procedure is based on a test for similarity between adjacent sub-

patches.  This procedure differs in two aspects from generic region growing methods that

merge regions sequentially.  Firstly, the similarity is quantified for all pairs of spatially

adjacent sub-patches identified by the topological relationships in the database, and the

merging procedure is subsequently applied in a single pass through the data.  This

approach, in which all adjacent regions are compared prior to any merging of regions, has

the advantage that the starting point of region growing does not determine the result.

Furthermore, the fact that the sub-patches are not arbitrary units, such as a square

window, but instead are regions with similar spectral characteristics, allows a more

flexible definition of the seed units for amalgamation..

The second important difference compared to previous studies is the way in which

multivariate statistical analysis was used in the region growing.  Several criteria for

merging segments have been used, including minimum distance, likelihood ratio (Kettig

and Landgrebe, 1976; Oliver et al., 1996), and student’s t test (Fjørtoft et al., 1998).

Kettig and Landgrebe (1976) also used a “multiple univariate approach” that did not

consider the covariance between variables for sub-patches.
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The approach used in this study was a multivariate form of univariate t2 statistics.

With univariate t2 analysis, the means from two groups are assumed to be drawn from a

single population.  The null hypothesis is that the two means are similar, and a certain

level of significance is associated with the result.  If the null hypothesis is proved, it is

accepted that the two groups originated from the same population.

Let Xi=(xi1, xi2, xi3, ……, xi n1
) represent the elements of a group Xi.  Then the

similarity between two groups X1 and X2 can be tested with t2:

t2 =
( )X X

s
n

s
n

1 2
2

1
2

2

2
2

1

− −

−

+
  ……………..(4-1)

Where:

s1
2 : variance of group X1

s2
2 : variance of group X2

X1

−

: mean of group X1

X
−

2 : mean of group X2

n1 : number of observations of group X1

n2 : number of observations of group X2

Equation (4-1) can be extended to multivariate data (Anderson, 1984).  Suppose that

there are two groups of observations with multiple variables.  The two groups X1 , X2

have respectively n1 , n2 number of observations, for p variables.  Then the observation of

group X i , for i=1,2, can be represented in matrix form:
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where:

i : ith group

j : jth observation in group i

k : kth variable

ni : number of observation in group i

p : number of variables involved

xijk : value for jth observation for kth variable in ith group

The scalar mean for univariate analysis is replaced by a mean vector, X i
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, for

multivariate analysis.
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The scalar variance for the univariate case is extended to a variance-covariance

matrix, Si, for multivariate analysis:

Si  = 
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Where:

sijj : variance of jth variable for the group i

sijk : covariance between jth and kth variables for group i

The multivariate equivalent of equation (4-1) can now be defined as:

T2 = 

1

2

2

1

2
21 )(

n
S

n
S

XX

+

−
−−

 ……………..(4-2)

This formula does not require that the two variance-covariance matrices be equal.

However, the null hypothesis assumes that the variance-covariance matrices of the two

populations are equal.  If the null hypothesis is true, it is better to use all the data to

estimate the common variance-covariance matrix, instead of first calculating the

variance-covariance matrices for each of the two groups.  When the two groups have a

different number of cases, the common variance is best estimated using a weighting

based on the number of observations of the two groups.  This is intuitively correct for the

diagonal elements of the variance-covariance matrices, which are simply the variances of

each variable.  Using the common variance-covariance matrix, the denominator of

equation (4-2) becomes:

( ) ( )S
n S

n n

n S

n n
=

−
+ −

+
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+ −
( ) ( )1 1

1 2

2 2

1 2

1

2
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2

Where:

S : the pooled variance-covariance matrix

Using the common variance-covariance matrix, the denominator of equation (4-2)

becomes:
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Formula (4-2) then becomes:
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This T2-statistic, originally described by Hotelling (Anderson, 1984), has the

following F distribution multiplied by the coefficient when µ  is the population mean:

2T ~ )1,(
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21)2(
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−−+
pnnpF

nnp

pnn
………………(4-3)

When equation (4-3) is rearranged to focus on F, the result is as follows:

n n p

p n n
T1 2

1 2

21

2

+ − −
+ −( )

 ~ F p n n p( , )1 2 1+ − −

If we find the T2 value with multivariate data for two sample groups, the significance

of the similarity of the groups can be examined by an F distribution with degrees of

freedom p and n1+n2-p-1.

4-6.  Application to Morgantown ADAR data

In order to examine the performance of the proposed method, 
n n p

p n n
T1 2

1 2

21

2

+ − −
+ −( )

values were computed for all pairs of adjacent sub-patches identified in the topology

database for the Morgantown ADAR data.  The Hotelling T2 test was based on all four

bands of ADAR data, as well as NDVI.  NDVI was included in the analysis for two

reasons.  Firstly, NDVI is very effective for vegetation discrimination, as discussed
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earlier.  Secondly, NDVI is a ratio measure, which tends to normalize for illumination

variation, thus minimizing the effect of slope-aspect differences between sub-patches.

The significance of the F distribution was calculated with the subroutines FTEST and

AVEVAR, and functions BETACF and GAMMLN of Press et al. (1999).

Various levels of significance were tested for identifying similar sub-patches.  Figure

4-7 shows the results for a small test site within the study area.  The center of the image is

a building with a complex structure.  The image is oriented with north at the top of the

page.  The building has entrances on its northwest and southeast sides, and is surrounded

by grass areas that are shadowed on the southwest and northeast sides, and part of the

southeast side.  A road is located on the southeast of the building, adjacent to the grass.

The building roof has eight separate parts that have different elevations and which are

separated by associated shadows.  Each part was segmented into one or more sub-patches

prior to the merging step.

Figure 4-7 shows that the lower the significance level used, the greater the degree to

which the sub-patches are merged.  The central part of the building had twelve sub-

patches before region growing.  When region growing with significance level of 0.001

(Figure 4-7e) was used, most of sub-patches of the central section of the building was

merged into one patch.  At the significant level of 0.00075, the road was amalgamated

into a single patch.

Figure 4-8 shows the region growing results with significance level of 0.0005 for

Hotelling multivariate T2 test applied to the Morgantown ADAR data.  Figure 4-8 shows

a great improvement in segmentation over Figure 4-5, especially for roads, the forested

area, and for some buildings.   However,  many small patches smaller than five pixels are
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Figure 4-7. Comparison of different significant levels applied to the region growing
procedure.

still present at this stage, as well as patches that appear to be zones of differing

illumination caused by varying geometric structure within an object.  These regions are

dealt with in the next stage of the processing.
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Figure 4-8. Patches produced by region growing with a significance level of 0.0005.
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CHAPTER V

IMAGE CLASSIFICATION WITH A REGION-

BASED APPROACH

5-1.  Introduction

Perfect classification could be achieved if each spectral class were to have a unique

spectral signature, because a one-to-one relationship could be established between

spectral radiance pattern and class type.  However, spectral overlap between most real

classes occurs as a result of noise in the system, the natural variability of objects within a

specific class, and the spatial variability of radiance within each object (Swain and Davis,

1978; Price, 1994).  For example, because most tree species have similar leaf pigments,

different tree species tend to have overlapping spectral properties.  An added

complication is that the spectral structure of an image is a function of scale (Cao and

Lam, 1997).  Higher spatial resolution may actually lead to greater variability within

classes, as additional detail is resolved.

A number of studies have been carried out to find an appropriate spatial resolution to

which to aggregate data in order to reduce the variation within an object, and minimize
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the classification error (Pax-Lenney and Woodcock 1997; Teillet et al., 1997; Latty et al.,

1985).  Such approaches are pixel-based, and do not draw on the spatial variability as a

source of information.  Another problem with methods that search for an optimal scale is

that real objects and classes are variable in size, and thus there is usually no single spatial

resolution that suppresses all unwanted spectral variability (Marceau et al., 1994a;

1994b).  Studies that use image segmentation to identify single objects (Gougeon, 1995a)

can overcome this problem of a single optimal scale.  However, most such studies use

mainly aggregated information such as average DN, and to a limited extent the variance

within the image segments (Kettig and Landgrebe, 1976; Gougeon, 1995a; Meyer et al.,

1996).  The variability within an object can provide additional information that can be

used for image classification.  The spectral correlation between bands, as quantified by

the covariance matrix, is in fact often a key determinant in traditional maximum

likelihood classification for separating classes that overlap in their univariate

distributions.

In the next section, several traditional classification methods are reviewed.  A new

approach for classification of a previously segmented image is then described.  The

ADAR data, discussed in Chapters III and IV, is used to compare the new approach with

traditional methods.

5-2.  Traditional image classification

Pixel-based image classification procedures have focused on categorizing pixels in

meaningful groups that have spectral homogeneity (Lillesand and Kiefer, 1994), or that
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minimize the probability of misclassification (Swain and Davis, 1978).  It is beyond the

scope of this study to explore all of the many methods that have been developed.

However, among the most commonly used methods are Iterative Self-Organizing Data

Analysis Technique (ISODATA) (Tou and Gonzalez, 1974) for unsupervised

classification and maximum likelihood for supervised classification.  Another important

image classification approach is the field-based method called ECHO (Kettig and

Landgrebe, 1976).  This latter procedure is available as part of the free software package,

Multispec (Landgrebe and Biehl, 2000).  Because this method employs some of the same

statistical approaches one of the methods used in this study, ECHO will also be discussed

in the next section.

The unsupervised ISODATA approach is a clustering algorithm (Jensen, 1996).  The

user specifies parameters for merging and splitting classes, as well as the number of

initial clusters, which are normally spaced in some arbitrary fashion within the data

space.  Each pixel is initially assigned to the closest cluster based on a Euclidean measure

of the spectral distance.  Each cluster mean is then recomputed from the pixels that have

been assigned to the cluster.  Using the new cluster locations, the classification procedure

is recursively executed for a specified number of iterations, or until the cluster locations

become stable, and do not move with subsequent iterations.

Several problems can be identified with this procedure.  First, the clusters are

determined by statistical properties calculated from the entire image.  Thus small spectral

classes may be overlooked, and classes with overlapping spectral properties may be

aggregated into a single class.  As with other aspatial classifiers, the results tend to be

noisy, with many isolated pixels of different classes, because the spatial properties are
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ignored.  Second, in common with other unsupervised classifications, the user has to

assign the clusters to informational classes after the classification.  This can be tedious

and subjective if a large number of classes are identified.

The maximum likelihood classifier is a pixel-based supervised approach.  Maximum

likelihood classifies unknown pixel-based on multivariate probability density functions

(pdf) of the classes of interest.  However, the pdf of the classes are generally unknown.

Therefore, the statistical properties of training data sets from ground reference data are

used to represent the pdfs of the classes.  Each unknown pixel is assigned to the class

with the highest probability at the pixel location.  The decision rule is as follows:

p X p p X pc c i i( ) ( ) ( ) ( )ω ω ω ω≥

Where:

X : the spectral multivariate vector

p X c( )ω : pdf of X, given that X is a member of class c

p c( )ω : a priori probability of class c in the image

i: class number among the m number of classes in the image

The a priori probability of a class is the probability of the class prior to

classification, and can be approximated by the expected extent of the class in the image.

However, in many cases the a priori probabilities of the classes are unknown, and are

therefore simply set to an equal value for all classes.  The pdf of the classes are calculated

based on an assumption that they have a normal distribution.  The probability of a pixel

belonging to a particular class can then be calculated using the class variance and mean:

p X X Xc p i
T

i( ) exp[ ( ) ( )ω
π

µ µ= − − −−1

2
1 22 1 2

1

Σ
Σ  …….(5-1)
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Where:

p : number of variables used

Σ : variance-covariance matrix of class i

Σ : determinant of variance-covariance matrix of class i

µi : mean vector of class i

To simplify the calculation process, equation (5-1) is modified by multiplying the

equation by 2 2π p  and taking the natural log.  Because 2 2π p  is a constant, and the

natural logs of any sequence of numbers does not change the order of their magnitudes,

the resultant likelihoods (D) can be used as surrogates for probabilities.

D = [ln( ( ) ( )] ln( ( ) ln( ) ( ) ( )p X p p X Xc c
p

c i
T

iω ϖ π ϖ µ µ2
1

2

1

2
2 1= − − − −−Σ Σ

The maximum likelihood classifier is an aspatial approach in which each pixel is

independently classified.  Pixels with low pdf values have a high probability of being

misclassified.  Figure 5-1 shows the pdfs of two spectral classes.  Although the pdf of the

two classes extend over all potential DN values, the pdfs have been arbitrarily terminated

at a low probability level.  The area marked with diagonal lines is the overlap region of

for the class pdfs.  The decision rule for this method is that all pixels are assigned to the

class with the higher pdf for that spectral value.  For example, even if a pixel with the

value of “a” belongs in reality to class B, it will be classified as class A (Figure 5-1).

This is an inevitable result of overlapping class pdfs.
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Figure 5-1. The decision rule of a pixel-based maximum likelihood classifier.

The ECHO classification (Kettig and Landgrebe, 1976) has been discussed in

Chapter III with regards to segmentation.  After segmentation, ECHO uses maximum

likelihood classification on the means of the groups of pixels.  Pixels that are not

incorporated into groups, are classified using the standard maximum likelihood approach.

5-3.  Methods

Instead of pixels, groups of pixels that form image segments were used for image

classification in this study.  There are few studies that evaluate the use statistic of

segmentated regions for classification (Kettig and Landberge, 1976; Meyer et al., 1996;

Gougeon, 1995a; Janssen and Molenaar, 1995).  However, most studies employing

aggregated information focus on first order statistics and only use second order statistics
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to a limited extent.   In this section, new methods that exploit multivariate statistics to

improve the image classification are suggested.

Figure 5-2 represents a conceptual comparison between traditional classification and

the methods developed in this study.  An example of the pixel-based approach (Figure 5-

2, left) is the traditional supervised maximum likelihood classification.  Within a patch,

pixels from the outliers of the class distribution are likely to be misclassified.  Window-

based approaches  use  arbitrary  groupings  and  return the value  of  the window  to  the

Figure 5-2. Comparison of object-based classification with traditional image
classification approaches.
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central pixel (Figure 5-2, middle).  In the case of the object-based classification (Figure 5-

2, right), patches are not expected to consist of pixels with completely homogeneous

spectral radiances, but rather certain levels of variability are expected.  This approach,

therefore, incorporates a more realistic representation of real phenomena.  The variation

in an object is used as one characteristic of the object in this method, whereas it is an

obstacle with traditional pixel-based classification methods.  To treat this variation within

objects, multivariate normal distributions were assumed for every group of pixels in each

patch, and multivariate variance-covariance matrices were calculated.  Three methods of

exploiting this information were investigated:  the divergence index, maximum likelihood

based on the patch mean, and maximum likelihood with Gaussian pdf.

5-3-1.  Classification with divergence index

Divergence is sometimes used as a band selection method, in which a subset of the

original bands is chosen that best represent the overall data structure (Swain and Davis,

1978; Jensen, 1996).  Band selection is often used as a method of reducing computing

cost with the minimum effect on classification accuracy.  Divergence is calculated from

the average of the probability ratios between two classes:

L X
p X

p Xij
i

j

( )
( | )

( | )
=

ω
ω

Where:

L Xij ( ) : likelihood between class i and j

p X j( | )ω : pdf of class j, given that X is a member of class j
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As shown for point k1in Figure 5-3, the greater the probability that the point is class

i, and the smaller the probability that it is class j, the greater the likelihood

L Xij ( ) becomes.  Furthermore, the more similar the probabilities of the two classes, the

closer to 1 the likelihood L Xij ( ) becomes (Figure 5-3, point k3).  Thus, the ratio will be

increased by the combination of a large p X i( | )ω  and small p X j( | )ω .  The more the two

values have extreme values, the greater the increase is (Swain and Davis, 1978).

An efficient method of calculating the likelihood ratio is to take natural log for both

side of the equation:

)|Pr(ln)|Pr(ln)(ln)('
jiijij XXXLXL ωω −==

Divergence between class i and class j is defined by this logarithmic ratio as follows:

D E L X E L Xij ij i ji j= +[ ' ( )| ] [ ' ( )| ]ω ω

Figure 5-3. The decision rule for L Xij ( ) .  a is the probability for class i p X i( | )ω , and

b is the probability for class j p X j( | )ω .
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Where:

Dij :  divergence

E L Xij i[ ' ( )| ]ω = L X p X dxij i' ( ) ( | )ω∫

E L Xji j[ ' ( )| ]ω = L X p X dxji j' ( ) ( | )ω∫

When the two classes i and j are assumed to have a normal distribution, Dij is

represented with mean vectors and variance-covariance matrices as follows (Swain and

Davis, 1978):

Dij =
1

2

1

2
1 1 1 1tr tri j j i i j i j i j

T[( )( )] [( )( )( ) ]Σ Σ Σ Σ Σ Σ− − + − − −− − − − µ µ µ µ

Dij  is a function of L Xij ( ) , and as mentioned previously, the greater the difference

in the pdfs between two classes investigated, the greater Dij  becomes.

Divergence is useful in classification, because when the separability between two

groups of pixels is small, the groups possibly belong to the same class.  When divergence

is employed for patch classification, Dij  is calculated for the patch and each of the

training data sets.  The training data set with the lowest Dij  values can be assumed to be

the most similar spectrally to the patch.  So the decision rule classification using this

method is as follows:

Dic ≤ Dij

Where:

D: divegence

i: patch number
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j: training data set, where j varies from 1 to the total number of training data sets

c: class number for the patch

5-3-2.  Maximum likelihood classification using the patch mean

Maximum likelihood classification with the patch mean uses a decision rule

modified to use the mean vector of a group of pixels, instead of individual pixels.  When

the mean of the group is classified as belonging to a certain class, all the pixels in the

group are assigned to that class.  Therefore, the results are highly dependant on the

accuracy of the segmentation employed.  The decision rule is as follows:

p X p p X pc c i i( | ) ( ) ( | ) ( )
− −

≥ϖ ω ϖ ω

Where:

X
−

: mean vector of a group

p X c( | )
−

ω : probability associated with the mean of the group of pixels of class c,

given that the mean vector X
−

 is a member of class c

This method classifies each group of pixels as a unit.  This will tend to minimize

misclassification for isolated pixels with outlier spectral characteristics.  ECHO employs

this method for classification of the homogeneous regions identified through image

segmentation (Landgrebe and Biehl, 2000).  However, the variability of spectral

measurements of spatially adjacent pixels within a group is collapsed into the mean

vector of the group, and is not exploited in the classification.
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5-3-3.  Region-based maximum likelihood classification with pdf

The method suggested in this study can be summarized as a comparison of the pdf of

an unknown group with pdfs of each of the training data sets.  If two samples originate

from the same population, the pdfs of the two groups should be similar to each other.

Significantly, the distribution of radiance values that causes misclassification in pixel-

based approaches (Swain and Davis, 1978), is critical information for the method

developed in this study.

To simplify the explanation, suppose two normally distributed populations have

means µ1  and µ2 , and standard deviation σ1  andσ2 , respectively.   Figure 5-4 represents

Figure 5-4. Likelihood measured with pdf.  The areas with diagonal lines indicate the
degree of similarity between two classes.  (a) Two almost completely
overlapping class.  (b) Two partially overlapping classes.  (c) Two almost
completely separated classes.
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three different cases that could occur.  If two populations are very similar, then the two

pdfs almost completely overlap (Figure 5-4a).  If it is possible to estimate the area of the

overlapped region, it should be close to 1, because the sum of all possible probabilities is

equal to 1.  However, if two populations are very different from each other, there should

only be a very small overlap area for the two pdfs (Figure 5-4c).  Thus it can be seen that

the size of the overlapped area is proportionate to the similarity of the two pdfs.  If the

two pdfs are identical to each other, the overlapping area is equal to 1, if completely

different, then 0, and the values between are an index of similarity (Figure 5-4b).  The

area of overlap can be found by integrating the relevant overlap portions of the two pdfs:

O
X

m

m m

m
12

2

2

1

2 2
=

− −
−∞

+∞

∫ { exp[
( )

πσ
µ

σ
]} dX m

Where:

O12 : likelihood index between X1  and X2

m  = 2 for X1 ≥ X 2

m  = 1 for X1 < X2

When the likelihood index is extended to a multivariate pdf, with p variables and

multiple samples, the equation is modified as follows:

O X X X Xij p
m

m m
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m m m= − − −
−∞

+∞

−∞

+∞

−∞

+∞
−∫ ∫ ∫..... { exp[ ( ) ( )]}

_ _1

2

1
22 1 2

1

π Σ
Σ ]} dX dX p1....

Oij : likelihood index between X i  and X j

i : patch id under investigation

j : training data set id under investigation

m  = j  for X i ≥ X j
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m  = i  for X i < X j

The decision rule in this study is extracted from the relationship between the

likelihood and similarity as follows:

O Oic ij≥

Thus a patch is assigned to class c if the maximum of the likelihood index values is

found for the pdf comparison of the patch and training data set c .  With this method, a

very stable similarity index is obtained because the variance and covariance information,

as well as the class mean, are all directly used.  One disadvantage of this method is that

the computing cost is high, specifically computing time.

5-4.  Application of the pixel and group-based classification methods

The analysis procedure in this study comprises three stages (Figure 5-5).  It is

assumed that patches have previously been identified by image segmentation using the

region growing process incorporating thresholding and region growing.  In the first stage,

statistics for the patches are computed.  The statistics used were the same as those used in

the region growing stage, including the mean vectors and variance-covariance matrices.

For the second stage, representative patches were selected to build a training data set

for seven classes:  Building, Road, Forest, Lawn, Shadowed Vegetation, Water, and

Shadow. The patches selected as training data were treated as independent spectral

classes within each informational class.  This means that the selected patches were not

aggregated into composite statistics for the seven classes.  The likelihood index for each
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Figure 5-5. Outline of the spectral classification procedure using previously
segmented data.

patch was computed for all individual training data set patches by the divergence index,

the maximum likelihood using the patch mean, and the patch pdf.

Small patches with fewer than six pixels were excluded from the region-based

maximum likelihood analysis, and treated as part of the “melt pond,” to use McDevitt and

Peddada’s (1998) term.  There were two reasons for identifying melting pond pixels.

Firstly, because five variables were used in this study, patches with fewer than six pixels

had less than the minimum number of pixels potentially required to characterize the

Patch imageOriginal image NDVI image

Patch statistics building
process

Patch classification
process

Patch class image

Same class patch
Merging

Object image



90

multivariate statistics.  Secondly, the melting pond was assumed to represent objects that

are not of direct interest, but rather extraneous objects such as cars, or chimneys on

buildings.

For maximum likelihood with patch pdf, the range over which the pdf was calculated

was limited to three standard deviations.  The pdf is very low outside of this range, and is

not expected to have much significance in the calculation.  Excluding pdf values greater

than three standard deviations has the advantage of reducing the computing cost.  Figure

5-6 shows a one dimensional representation of the process.  Within the pdf overlap

region, the decision range was divided into ten equal cells.  The probability of the center

of each cell calculated for both the training and the patch classes, and the lower of the

two probabilities is used for the cell height.  After multiplying cell height by the width,

the cell area is calculated.  The total area of the overlap is then estimated by summing the

cell areas (Figure 5-6).  This procedure is modified for the multivariate case by dividing

the multidimensional overlap region into 10n cells, where n is the number of bands.  For

two bands a volume of the overlap region is calculated, and for three or more bands a

hypervolume is calculated.  For this work, five bands were used, thus, 105 cells were

calculated for each likelihood index.  The patch was assigned to the class with the highest

likelihood after the unknown patch is compared with each patch in the training data set.

In the next step of the classification, melting pond pixels are classified.  These small

patches are treated as noise, and therefore assigned to an adjacent class.  If the patch is

surrounded by a single class, it is assigned to that class.  In the general case, however, the

patch is adjacent to more than one class.  In this case, the patch is assigned to the adjacent

class with the most similar DN values in the green band (Band 2).  A more sophisticated,
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Figure 5-6. Maximum likelihood calculation utilizing patch pdfs.

multivariate approach was not used because of the small sample size of these patches.  In

the final step, adjacent patches of the same class were merged to form objects.

ERDAS Imagine was used to conduct the traditional pixel-based classifications.  The

unsupervised ISODATA program (Tou and Gonzalez, 1974; ERDAS, 1999) was

executed with 24 clusters.  After classification, the 24 clusters were assigned empirically

to the most appropriate class among the seven classes based on the ground truth and

knowledge of the area.

For each of the supervised classification methods, the same training data sets used.

Multispec version 1.2, IBM-compatible (Landgrebe and Biehl, 2000) was employed for

the ECHO classification.

5-5.  Evaluation of the classifications

Figure 5-7 shows the results from the six previously mentioned methods.  (Note, for
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ease of access, Figure 5-7a-g is incorporated at the end of this chapter.)  To compare the

accuracy of the six methods, error matrices for the kappa index and errors of commission

and omission were produced using the IDIRSI program ERRMAT (Eastman, 1997)

(Table 5-1).  Ground reference maps for the accuracy evaluation were produced using

photo-interpretation and expert knowledge for three parts of the study area: Downtown

Morgantown, a medium density residential area, and a forested stream valley.

The overall kappa values of the unsupervised and supervised pixel-based

classifications were 0.610 and 0.687, respectively.  The field-based ECHO classifier

produced a 0.605 kappa, a value that is lower than that of the pixel-based classifiers.  The

lowest accuracy, 0.254, was obtained with the classifier that utilized the divergence

index.  The maximum likelihood classifier using the patch mean resulted in a relatively

high kappa value of 0.735.  Maximum likelihood classifier with pdf produced the overall

best accuracy, 0.783.

Table 5-1. Summary accuracy statistics for 7 classes by the 6 classification methods
used in this study.

Building Road Forest Lawn Shadow
ed

Vegetat
ion

Water Shadow Kappa
index

CERR 0.363 0.489 0.135 0.440 0.567 0.024 0.062ISODATA
OERR 0.487 0.320 0.147 0.046 0.373 0.981 0.352

0.610

CERR 0.391 0.347 0.063 0.366 0.440 0.123 0.137MHL with pixel
OERR 0.202 0.412 0.133 0.214 0.297 0.308 0.359

0.687

CERR 0.301 0.569 0.077 0.491 0.240 0.084 0.251ECHO
OERR 0.383 0.304 0.191 0.684 0.497 0.150 0.320

0.605

CERR 0.663 0.643 0.199 0.545 0.834 0.654 0.808Divergence
index OERR 0.334 0.468 0.733 0.552 0.925 0.106 0.911

0.254

CERR 0.309 0.291 0.104 0.304 0.360 0.095 0.048MLH with
patch mean OERR 0.194 0.292 0.042 0.503 0.691 0.232 0.398

0.735

CERR 0.225 0.243 0.101 0.294 0.306 0.042 0.054MLH with
patch pdf OERR 0.170 0.249 0.045 0.480 0.603 0.089 0.234

0.783



93

Looking at the results in more detail, the unsupervised classifier resulted in many

isolated pixels and small clusters, as expected (Figure 5-7 b).  The Water class in the

region of the stream was almost completely misclassified as Building with this method.

The stream has exposed and shallow covered rock that is apparently spectrally similar to

the materials from which buildings are constructed.  Building was also misclassified as

Road, and consequently the Building omission error was relatively high (Table 5-1).

Pixel-based supervised classification (Figure 5-7 c), like the unsupervised classification,

resulted in a rather noisy classification.  The classes of Buildings and Roads were

extensively confused, resulting in high errors of commission and omission for both

classes.  However, compared to the unsupervised classification, the confusion between

Building and Water was dramatically reduced for the pixel-based maximum likelihood

classification.

The ECHO classification (Figure 5-7 d) resulted in significant errors of commission,

especially between the classes Road and Lawn, and high omission error between

Shadowed Vegetation and Lawn.  The ECHO classifier uses the same decision rule as the

maximum likelihood classifier utilizing patch means, but ECHO employs a different

segmentation rule (Kettig and Landgrebe, 1976).  In comparing the segmentation of

ECHO to the that of the ridge finding process (Figures 5-7 e, f, g), it is apparent that

ECHO produces a far more noisy segmentation.  In particular, the shape of the buildings

is not particularly clear.  ECHO’s segmentation is designed to allow isolated pixels that

are not similar to their neighbors to be classified independently.  Therefore, although

ECHO is likely to produce a less noisy classification than the pixel-based classifiers, the

results can still be poor in places.
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The divergence approach (Figure 5-7 e) had greatest problems with Forest

vegetation, Shadowed Vegetation, Shadows and Roads.  In addition, misclassified water

is scattered throughout the downtown and residential areas.  It is apparent that the

divergence approach was the least successful method of incorporating spatial information

in the classification process.

The maximum likelihood classifier using the patch mean (Figure 5-7 f) yielded a

visually pleasing classification, and the second best overall accuracy.  The higher

classification accuracy of the maximum likelihood classification with patch pdf is most

likely a result of the incorporation of differences in the kurtosis of classes through the

variance-covariance matrix data.  When only the patch mean is used in the classification,

such differences are suppressed.  The particular classes that were less well classified in

the maximum likelihood using the patch mean, compared to the patch pdf, were the

Building and Road classes.  But the computing cost for classification with the mean was

much lower than with the pdf.  Thus, the classifier with the patch mean is an efficient

alternative to classification with pdf.

The maximum likelihood classification with pdf produced higher accuracy than any

other classifier (Table 5-1).  The segmentation suppresses isolated pixels and small

clusters (Figure 5-7 g), and thus classification error resulting from high within object

variance was efficiently controlled by this method.  However, a number of cases of

confusion arose between Building and Road, and Lawn and Forest.  The confusion

between Lawn and Forest can be related to segmentation.  Although these two classes

generally had sufficient spectral difference between them for good classification, in some

cases the low contrast boundaries between Lawns and Forest areas resulted in these
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regions being merged into a single patch.  The confusion between Building and Road was

not a result of segmentation as generally these two classes were well delineated.

However, confusion occurred because the spectral radiances of the two classes were

sometimes very similar.  This arises because materials such as asphalt, stone and concrete

are used for both building roofs and roads.

As part of the classifications carried out using maximum likelihood, all pixels were

assigned to the class with the highest likelihood.  This is a relative, not an absolute

measure.  Thus even classes that result in very low likelihood when compared to all the

training data sets are classified.  It is possible that a region is not represented by any of

the training data sets, and this should be identified.  In future work, it may be desirable to

establish an absolute minimum maximum likelihood for classification.  Patches that fail

to meet the minimum value would be flagged as unknown.

Figure 5-7. Results of the classifications. a): Legend. b): ISODATA from ERDAS
Imagine.  c): Maximum likelihood classification from ERDAS IMAGINE.
d): ECHO from Multispec.  e): Divergence index.  f): Maximum
likelihood classifier with patch mean.  g): Maximum likelihood classifier
with patch pdf.

a)
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Chapter VI

OBJECT-BASED LAND COVER CLASSIFICATION

In the previous chapters the procedure for identification of objects in remotely

sensed imagery has been presented.  In many cases it is desirable to present this data in

conjunction with aggregated land cover or land use information at a coarser spatial scale.

Therefore, as the final step in the image analysis procedure, a land cover map was

synthesized from the image object map. In this study, the term land cover class is used in

a broad sense relating to building density and related measures that can be used to infer

land use.  One advantage of producing land cover information in this manner is that a

more detailed definition for land cover type is possible than using traditional methods

with low spatial resolution data.  With traditional methods it is necessary to infer land

cover from the average spectral properties of the classes.  However, with high-resolution

data it is possible to make direct estimates of object properties such as building density.

The land cover analysis procedure has three stages (Figure 6-1).  The study area was

segmented into regions of relatively homogeneous urbanization levels.  The index for this

segmentation is  the “Urbanized Rate,”  defined as  the local proportion of  Building  and
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Figure 6-1. Land cover type map classification

Road cover in an area.  In calculating the rates, shadowed areas were excluded so as not

to bias the results.  Road and Building were used for calculating the Urbanized Rate

because of their potential value in differentiating the major land cover classes.  For

example, the USGS land use and land cover classification system (Anderson et al., 1976)

notes that level II commercial and service areas are associated with large buildings such

Object image

Image segmentation

Object level image

Extraction of land
cover type properties

Urbanized
rate

Proportion of
building area

Number of
building per ha

Average
building size

Categorization of land
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as office complexes, warehouses, and retail establishments, as well as driveways, parking

lots, waste disposal areas, and landscaped zones.  On the other hand, Anderson et al.

(1976) define low density residential as an example of a Level III class in which the lot

for each house is greater than one acre.  The low density residential class is therefore

characterized by a much lower urbanized rate than commercial and service areas.  Thus

land cover attributes such as the Urbanized Rate provide a quantifiable metric that can be

used to infer land cover, and possibly even land use.

The Urbanized Rate was computed from the object classification map using a

moving window, 100 by 100 pixels in size.  This window size was chosen based on

Hodgson’s (1998) study and the definition of the low density residential class in

Anderson et al. (1976).  Hodgson (1998) examined classification accuracies with window

sizes that ranged from 15 by 15 meters to 150 by 150 meters, and reported that cognitive

classification accuracies improved with larger window sizes, up to approximately 60 by

60 meters in size.  Because a 70 by 70 meter window is needed to cover one acre, a

window size greater than this was needed to evaluate low density residential areas, where

densities are lower than one house per acre.  Consequently if the window size is smaller

than this, the Urbanized Rate will produce unwanted spatial variation.

The edge detection and ridge method was applied to the Urbanized Rate image to

find homogeneous areas.  Edge enhancement was carried out using the 11 by 11 linear

shape operator.  The segments generated were refined first by thresholding with a level of

15.  This initially produced many small segments, which were eliminated through two

passes with an erosion method.  The intended minimum segment size was 50,000 m2.  If

the minimum segment size is set too small, the variation within a relative homogeneous
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region might dominate the result.  The thresholds for the maximum polygon size eroded

for the two passes were 100 and 700 pixels, respectively.  The two step process, using an

increased size of threshold on the second pass, was required because otherwise too many

polygons were eliminated in the first pass, leading to displaced boundaries.  In the next

step, for each segment, an average Urbanized Rate was computed, and then categorized

into four classes:  1-19, 20-39, 40-89, and greater than 90 per cent.  Then the same class

regions were merged.  The results still include a number of regions smaller than the

intended minimum size.  These regions were merged into adjacent regions by further

erosion.  This had the effect of smoothing the data, and removing distracting minor

variation associated with small regions.  The results are shown in Figure 6-2a.

Within each region identified as having a relatively uniform Urbanized Rate,

additional land cover parameters were calculated:  the percentage of Building area, the

number of building polygons per hectare, and average building polygon size for each

region.  Table 6-1 and Figure 6-2b, c and d show the results of this step.  The percentage

of Building area ranged from 4 % to 45 %.   As expected,  regions with a  high Urbanized

Rate  tend to have a high percentage of Building area.  the average size of  buildings  was

Table 6-1. Land cover properties by region

Region
Urbanized Rate

(percent)
Building as

percentage of
total area

Number of
Buildings / ha

Average
building
size(m2)

1 16 5 2      163

2 89 45 6 255

3 61 30 11 199

4 35 16 10 128

5 19 6 4 124

6 66 35 12 195

7 11 4 4 88
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Figure 6-2. Land cover properties of regions.  (a) Urbanized rate,  (b) the percentage of building areas, (c) number of building
polygons per hectare, (d) average building polygon size
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also relatively large for regions with a high Urbanized Rate.  The number of buildings per

hectare map produced a somewhat different pattern from other indicators, particularly for

the large numbers of buildings in the intermediate Urbanized Rate region.

Based on the properties of land cover, the regions were generally categorized into

four classes:  High Urbanized Rate and Large Building Size Region, Intermediate

Urbanized Rate and Intermediate Building Size Region, Low Urbanized Rate and Small

Building Region, Water/Water Front Region, and Forest Region  (Figure 6-3).

Figure 6-3. Land cover classification map.
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Region a in Figure 6-3, the High Urbanized Rate and large building size region,

comprises most of downtown Morgantown.  This region is highly urbanized, and large

buildings  are  common  in this region.  The  Urbanized  Rate  of  this  region was over 80

percent, and average building polygon size was over 250 m2.  The average building

polygon size was over-estimated in this region.  This occurred because the distances

between buildings were small, the background between buildings was not well detected

at the given spatial resolution, and the buildings and background were spectrally similar.

Region b, the Intermediate Urbanized Rate and intermediate building size region, is

adjacent to region a, and is transitional from the highly developed region a to the

residential class.  The average building polygon size of this region was intermediate, at

around 200 m2, and included both large and small buildings.  The Urbanized Rate of this

region was about 60 percent.  The southernmost of the three region b zones is an old

residential area in this city.  The building polygon size of this area was also

overestimated, because the houses are built very close together, and therefore many

houses on the same block were merged into the same object.  Region c, the Low

Urbanized Rate and small building region, has a low Urbanized Rate that was around 35

percent, but the number of building polygons per hectare is one of the highest regions.

This region is a comparatively low density residential area, with relatively small houses

separated from each other by lawns and gardens.  Region d and region e are Water/Water

Front and Forest Regions, respectively.  The Urbanized rate of these regions were less

than 20 percent.  The Forest Regions included only a small number of buildings on the

Decker’s Creek floodplain and adjacent steep slopes, less than five buildings per hectare.
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The overall land cover pattern of the study area shows the expected pattern of a

highly developed core, with adjacent transitional zones, which are in turn surrounded by

low density housing.  Thus development decreases in intensity with distance from

downtown.  The presence of the Forest and Water classes is determined by the

topographic constraints, and does not disrupt the overall pattern.

The final result of object-based classification (Figure 6-3) was vectorized to examine

the possibility of incorporation with GIS. The software used was ERDAS IMAGINE,

which supports vectorization of thematic raster maps using ArcInfo functionality.  The

result is shown in Figure 6-4, which shows the potential of incorporating remotely sensed

Figure 6-4.  The vectorized land cover map.
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data and GIS.  Specifically, the problem of isolated class pixels and small cluster classes

has been overcome.  On the other hand, the fundamental difference of data structure

related to the square shapes of the pixels creates a rather blocky vectorization that could

possibly be ovecome by additional smoothing.



111

Chapter VII

CONCLUSIONS

This study produced a new feature-based image segmentation and classification

approach specifically designed for high spatial resolution imagery.  An important part of

this work was the identification of image objects through the development of a reliable

method of image segmentation.  The new classification method resulted in improved

results at both the image object scale and a richer attribution at the aggregate land cover

scale.

This research made a contribution to the growing field of analysis of high spatial

resolution imagery.  Although much of the latter research has in the past focused on trees

and forested areas, high spatial resolution data could be a very efficient source of

information for urban land use spatial information systems. There is a need for highly

detailed information, for example in urban planning and cadastral mapping.  Automated

methods have the potential for more rapid and more consistent mapping than human

interpretation.
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The results of this research should be especially useful to under-developed or

developing countries, especially those that do not have sufficient large scale maps of land

use/land cover for urban and regional planning.  This approach could also be used for

updating large scale maps, because land use/land cover is continuously changing.

However, new procedures would need to be written to draw on the existing data if the

approach were used for updating maps.

The methods developed in this research are important not just because they produce

more accurate results that show the spatial patterns more clearly because of their lack of

distracting high frequency noise.  The delineation and attribution of image objects, rather

than classified pixels, is an important step toward integrating remote sensing with GIS.

Attributed image objects are conceptually much closer to the vector data structure of

most commercial GIS packages.  Furthermore, the image processing procedure used in

this study is based on an image-database concept, which could be used to incorporate

image information into the metadata and attribute tables in the GIS.  For example,

information on classification confidence for each object could be tracked, as well as

details such as the radiance properties of the sub-patches that made up the object.  The

land cover map is also unlike a conventional image classification.  The land cover map is

based on segmented regions, and has attribution, such as the number of building polygons

per unit area, information that is not normally available directly from remote sensing

classifications.

Each step in the image analysis sequence incorporated new approaches to feature

extraction and attribution.  Starting with the edge enhancement, linear shaped operators

were found to be more effective at identifying curved edges than traditional square
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shaped operators.  Furthermore, linear operators are much less sensitive to scale issues

than square operators, the making practical use of linear operators far more robust.  This

is important because high spatial resolution appears to require large window sizes to

produce stable measures of spatial characteristics.

The ridge finding method draws on the edge enhancement data in order to identify

closed polygons with a greater value than an arbitrary threshold.  The ridges that had a

width of more than one pixel were thinned to a one-pixel width ridge by eroding lower

edge enhancement measurement pixels.  This approach represents an improvement over

conventional image erosion methods, which tend to isolate the center of the eroded

features.  In this study, erosion was applied to identify the highest ridge values,

irrespective of their positions on the ridge cross-section.  This will tend to result in a

more accurate estimation of edge location, although it has the disadvantage of being more

computationally intensive.

The region growing method of image segmentation used multivariate statistics for

identifying adjacent sub-patches of similar radiance properties.  Previous region growing

research focused mainly on first order statistics such as the mean (Fjørtoft et al., 1998),

Euclidiean distance (Mason et al., 1988), and occasionally the variance of segments

(Moscheni et al., 1998), but not the interaction effects with other variables.  In this study,

second order multivariate statistics were used.

The classification approach used in this work is based on a polygon concept for

remotely sensed data.  This method is characterized by the identification of objects, the

attributes of which are used in a multivariate analysis.  The object-based approach

resulted in a pleasing simplicity of spatial structure compared to the noisy patterns of
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traditional pixel-based classification.  The new method does not require objects to have a

homogeneous radiance.  Instead, a hierarchy of sub-patches and patches are identified

prior to classification, which produces image objects.  This procedure allowed a complex,

many-to-one relationship between spectral classes and informational classes, even for one

object.  The pdf’s based on the multivariate variance-covariance matrices of the spectral

measurements of individual objects were directly compared with training data sets that

were used in the classification.  This improved the classification accuracy from 0.610 and

0.687, the kappa values respectively from ISODATA and a maximum likelihood

classifier, to 0.785 by maximum likelihood with patch pdf.  Even when only the patch

means were used with the maximum likelihood classifier, the classification accuracy was

0.736, the second-best value obtained.  The patch-based classifier using the divergence

index produced the lowest accuracy.

Land cover maps were produced by aggregating objects to a coarser scale.  With

traditional pixel based approaches land cover is inferred from spectral classes.  The

method developed in this study dealt used the Urbanized Rate Index, an approach based

on the proportion of Road and Building polygons in local regions.  Following

segmentation based on the Urbanized Rate, related statistics such as average sizes of

building polygons and number of building polygons per unit area were employed for land

cover classification.

The raster polygon concept central to this research has broad significance for remote

sensing image processing and classification.  For example, the raster polygon approach

has the potential for extension to include any number of additional attributes, such as

linearity, orientation, and fractal dimension.  In addition, context, such as the proportion
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of area surrounding a building that is covered by lawn, or location of shadow relative to

the building, could be also stored in the database, and used in subsequent processing.

Linearity and orientation could also be used in road identification.  Thus raster polygons

have great potential for image processing.

The methods developed in this research were applied to a Morgantown, WV study

site.  The study site has a wide range of cover types and topographic settings, as well as a

complex road network.  Consequently, this area represents a challenging test site.  If the

methods were applied to other areas, new methods would not necessarily be required.

The high degree of success of the classification for this complex site suggests the

methods are sufficiently generic to apply over differing geographic areas and a variety of

urban densities.  The overall accuracies for alternative areas will, of course, be scene and

context dependent.  Certain scenes are inherently simpler to classify, and therefore should

produce better results.  For example, buildings that are isolated from each other by land

cover that contrasts strongly with the buildings should produce better results than scenes

where the spectral properties of building roofs match those of the ground between them.

This research represents a first step in developing an analytical procedure specially

adapted to high resolution imagery.  Future work should consider the following issues:

- The edge enhancement method used in this work was based on a single band.

However, a multivariate approach to edge detection is likely to provide a more

sophisticated measure of land cover edges.

- The thresholding procedure following the ridge finding process was applied on a

per-pixel basis.  If just one pixel on the edge of a polygon is removed, the rest of

the edge will be suppressed in the cleaning process.  This may cause real edges
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to be lost, although in this study a low threshold was chosen to minimize the

chances of this occurring.  More complex rules for thresholding may allow a

higher threshold value to be chosen, eliminating some spurious edges and at the

same time possibly retaining more real edges.  For example, applying the

threshold to the mean or median edge enhancement value of a polygon edge may

be preferable.  Alternatively, if a per-pixel basis is used for thresholding, a fuzzy

tolerance may be applied so that edges with gaps that are small with respect to

their overall length, are not eliminated, but instead the suppressed edge pixels are

reincorporated into the edge image.

- This study focused on analyzing spectral and textural information rather than the

geometric structure and associated information.  However, there is a limitation in

identifying objects based purely on spectral and/or textural information.  Man-

made objects tend to have a distinctive structure.  In order to incorporate such

information in automated feature extraction, higher spatial resolution than the

one meter imagery used in this study, might be needed.  For example, the data

used for this study was insufficiently detailed for analysis of buildings that are in

close proximity.  Thus in many instances in the central business district of

Morgantown, buildings within a city block were aggregated into a single

composite image object.

- An important issue in automated feature extraction arises from variations in

radiance due to slope/aspect differences, for example the opposing sides of a

pitched roof.  Furthermore, shadows are not only lower radiance regions, but

have a different spectral illumination than sunlit areas.  Normalizing for such
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differences is ideally achieved using a digital elevation model, however,

developing such a high resolution digital elevation model remains very

expensive, at least at this stage.  Therefore, empirical, scene-based normalization

approaches need to be developed, to reduce spurious segmentation associated

with shadows and slope/aspect changes.

In conclusion, this study has shown that high spatial resolution imagery holds great

promise for automated feature identification.  In addition, it has been shown that

automated feature extraction with high resolution imagery is more effective when new

methods are used that draw on the spatial information present in such imagery.
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APPENDIX

1. Error matrix for the result of unsupervised classification with
ISODATA.

Error Matrix Analysis of EVALU (columns : truth) against UNSP7R1 (rows
: mapped)

  Class        1      2      3      4      5      6      7     Total    ErrorC
         --------------------------------------------------
     1 |    8824   1175     43      0     10   1838   1965 |   13855    0.3631
     2 |    7497  10037   1593      6      0     15    497 |   19645    0.4891
     3 |     713   2778  28365    202     90    105    541 |   32794    0.1351
     4 |     107    711   2690   4467      2      0      0 |    7977    0.4400
     5 |      11     31    529      5    475      0     46 |    1097    0.5670
     6 |       1      0      0      0      0     41      0 |      42    0.0238
     7 |      61     19     12      0    181     99   5614 |    5986    0.0621
         --------------------------------------------------
 Total |   17214  14751  33232   4680    758   2098   8663 |   81396
ErrorO |  0.4874 0.3196 0.1465 0.0455 0.3734 0.9805 0.3520 |            0.2896

         ErrorO     = Errors of Omission   (expressed as proportions)
         ErrorC     = Errors of Commission (expressed as proportions)

         90% Confidence Interval  =    0.0026    (0.2870 - 0.2922)
         95% Confidence Interval  =    0.0031    (0.2865 - 0.2927)
         99% Confidence Interval  =    0.0041    (0.2855 - 0.2937)

KAPPA INDEX OF AGREEMENT (KIA)
------------------------------

Overall Kappa =         0.6098

Class values 1: Building, 2: Road, 3: Forest, 4: Lawn, 5: Shadowed
vegetation, 6: Water, 7: Shadow



119

2. Error matrix for the result of MHL classification with pixel.

Error Matrix Analysis of EVALU (columns : truth) against SPE2501 (rows
: mapped)

               1      2      3      4      5      6      7     Total    ErrorC
         --------------------------------------------------
     1 |   13721   4689    979    175     13    481   2460 |   22518    0.3907
     2 |    3028   8670   1073     12     40     44    405 |   13272    0.3467
     3 |     154    849  28810    799     96      2     49 |   30759    0.0634
     4 |      31    328   1762   3681      0      0      0 |    5802    0.3656
     5 |       5     32    288     13    533      0     81 |     952    0.4401
     6 |      43     20     29      0      1   1452    111 |    1656    0.1232
     7 |     232    163    291      0     75    119   5557 |    6437    0.1367
          --------------------------------------------------
 Total |   17214  14751  33232   4680    758   2098   8663 |   81396
ErrorO |  0.2029 0.4122 0.1331 0.2135 0.2968 0.3079 0.3585 |            0.2331

         ErrorO     = Errors of Omission   (expressed as proportions)
         ErrorC     = Errors of Commission (expressed as proportions)

         90% Confidence Interval  =    0.0024    (0.2306 - 0.2355)
         95% Confidence Interval  =    0.0029    (0.2302 - 0.2360)
         99% Confidence Interval  =    0.0038    (0.2293 - 0.2369)

KAPPA INDEX OF AGREEMENT (KIA)
------------------------------

Overall Kappa =         0.6869

Class values 1: Building, 2: Road, 3: Forest, 4: Lawn, 5: Shadowed
vegetation, 6: Water, 7: Shadow
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3. Error matrix for the result of classification with ECHO.

Error Matrix Analysis of EVALU (columns : truth) against ECH2501 (rows :
mapped)

  Class      1      2      3      4      5      6      7      Total     ErrorC

         --------------------------------------------------
     1 |   10622   2662    638     22     13     41   1202 |   15200    0.3012
     2 |    5555  10265   4160   2056    138    182   1479 |   23835    0.5693
     3 |     117    853  26886   1121    161      0      2 |   29140    0.0774
     4 |      26    325   1079   1481      0      0      0 |    2911    0.4912
     5 |       1      1     87      0    381      0     31 |     501    0.2395
     6 |      26     25     53      0      0   1783     59 |    1946    0.0838
     7 |     867    620    329      0     65     92   5890 |    7863    0.2509
          --------------------------------------------------
 Total |   17214  14751  33232   4680    758   2098   8663 |   81396
ErrorO |  0.3829 0.3041 0.1910 0.6835 0.4974 0.1501 0.3201 |            0.2959

         ErrorO     = Errors of Omission   (expressed as proportions)
         ErrorC     = Errors of Commission (expressed as proportions)

         90% Confidence Interval  =    0.0026    (0.2933 - 0.2986)
         95% Confidence Interval  =    0.0031    (0.2928 - 0.2991)
         99% Confidence Interval  =    0.0041    (0.2918 - 0.3001)

KAPPA INDEX OF AGREEMENT (KIA)
------------------------------

Overall Kappa =         0.6045

Class values 1: Building, 2: Road, 3: Forest, 4: Lawn, 5: Shadowed
vegetation, 6: Water, 7: Shadow
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4. Error matrix for the result of classification with divergence index.*

Error Matrix Analysis of EVALU (columns : truth) against DIV2501 (rows
: mapped)

 Class        1      2      3      4      5      6      7      Total    ErrorC

         --------------------------------------------------
     1 |   10464   4910   9916    688     28    121   4948 |   31075    0.6633
     2 |    4719   6806   5997    265    277     35    937 |   19036    0.6425
     3 |     230    397   8015   1312     16      0     32 |   10002    0.1987
     4 |      91    311   1852   1897     22      0      0 |    4173    0.5454
     5 |       3     53    193      1     53      3     13 |     319    0.8339
     6 |      40    224   1319     19    309   1773   1439 |    5123    0.6539
     7 |     163     81   2683     53      0     52    720 |    3752    0.8081
     8 |       0      6      0      0      0      0      1 |       7    1.0000
          --------------------------------------------------
 Total |   17214  14751  33232   4680    758   2098   8663 |   81396
ErrorO |  0.3339 0.4678 0.7326 0.5521 0.9248 0.1064 0.9110 |            0.5955

         ErrorO     = Errors of Omission   (expressed as proportions)
         ErrorC     = Errors of Commission (expressed as proportions)

         90% Confidence Interval  =    0.0028    (0.6320 - 0.6375)
         95% Confidence Interval  =    0.0033    (0.6315 - 0.6381)
         99% Confidence Interval  =    0.0044    (0.6304 - 0.6391)

KAPPA INDEX OF AGREEMENT (KIA)
------------------------------

Overall Kappa =         0.2540

Class values 1: Building, 2: Road, 3: Forest, 4: Lawn, 5: Shadowed
vegetation, 6: Water, 7: Shadow, 8: Unknown
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5. Error matrix for the result of MHL classification with patch
mean.

Error Matrix Analysis of EVALU (columns : truth) against MLH2501 (rows
: mapped)

  Class        1      2      3      4      5      6      7     Total    ErrorC
         --------------------------------------------------
     1 |   12766   2291    160    136     11    440   2672 |   18476    0.3090
     2 |    2712   8936    467     14     88     18    367 |   12602    0.2909
     3 |     190    959  30800   2019    353      8     25 |   34354    0.1035
     4 |      19    365    561   2163      0      0      0 |    3108    0.3041
     5 |       1      5     94     19    212      0      0 |     331    0.3595
     6 |       0     10     40      0      0   1544    112 |    1706    0.0950
     7 |     140     59     19      0     23      0   4807 |    5048    0.0477
          --------------------------------------------------
 Total |   15828  12625  32141   4351    687   2010   7983 |   75625
ErrorO |  0.1935 0.2922 0.0417 0.5029 0.6914 0.2318 0.3978 |            0.1904

         ErrorO     = Errors of Omission   (expressed as proportions)
         ErrorC     = Errors of Commission (expressed as proportions)

         90% Confidence Interval  =    0.0025    (0.2453 - 0.2503)
         95% Confidence Interval  =    0.0030    (0.2448 - 0.2507)
         99% Confidence Interval  =    0.0039    (0.2439 - 0.2517)

KAPPA INDEX OF AGREEMENT (KIA)
------------------------------

Overall Kappa =         0.7348

Class values 1: Building, 2: Road, 3: Forest, 4: Lawn, 5: Shadowed
vegetation, 6: Water, 7: Shadow
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6. Error matrix for the result of MHL classification with patch pdf.

Error Matrix Analysis of EVALU (columns : truth) against GAP2501 (rows
: mapped)

  Class        1      2      3      4      5      6      7     Total    ErrorC
         --------------------------------------------------
     1 |   13139   1827    234    104     17    157   1465 |   16943    0.2245
     2 |    2193   9466    445     13     17     16    362 |   12512    0.2434
     3 |     188    915  30708   1994    368      8      0 |   34181    0.1016
     4 |      20    337    594   2285      0      0      0 |    3236    0.2939
     5 |       3      9     82      2    275      0     25 |     396    0.3056
     6 |       0      2     79      0      0   1843      0 |    1924    0.0421
     7 |     285     25     20      0     15      0   6057 |    6402    0.0539
     8 |       0     26      0      0      0      0      1 |      27    1.0000
          --------------------------------------------------
 Total |   15828  12607  32162   4398    692   2024   7910 |   75621
ErrorO |  0.1699 0.2491 0.0452 0.4804 0.6026 0.0894 0.2343 |            0.1567

         ErrorO     = Errors of Omission   (expressed as proportions)
         ErrorC     = Errors of Commission (expressed as proportions)

         90% Confidence Interval  =    0.0024    (0.2141 - 0.2189)
         95% Confidence Interval  =    0.0028    (0.2137 - 0.2193)
         99% Confidence Interval  =    0.0037    (0.2128 - 0.2202)

KAPPA INDEX OF AGREEMENT (KIA)
------------------------------

Overall Kappa =         0.7828

Class values 1: Building, 2: Road, 3: Forest, 4: Lawn, 5: Shadowed
vegetation, 6: Water, 7: Shadow, 8: Unknown
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