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ABSTRACT 

Comprehensive and Integrated Model for Atmospheric  

Status in Sealed Underground Mine Areas 

 

Jianwei Cheng 

 

Mine gas explosion is one of the most feared hazards in the coal industry 

worldwide. More often one gas explosion related accident can cause the death of 

multiple coal miners. Since the beginning of coal mining, numerous mine workers 

have lost their lives as a result of gas explosions. Such occurrences have long 

been a major concern for mining engineers. Examination of two coal mine disas-

ters (Sago mine and UBB mine) that have occurred in the U.S. in recent years 

reveals that all explosions originated from or around the sealed areas. Therefore, 

a good understanding of the atmospheric status in a sealed coal mine area is 

crucial in preventing and reducing accidents associated with mine combustible 

gases and also for planning and implementing a mine rescue strategy. Due to the 

lack of comprehensive research carried out so far in this area, this dissertation 

work seeks to contribute to understanding the behavior of a coal mine sealed vo-

lume and improving safety in coal mines. The following improvements have been 

made in this research:  

 Important influential factors to control the mine atmospheric compositions 

has been investigated and analyzed. They are: (1) effect of the barometric 

pressure change; (2) effect of coal mine seals; and (3) categories of gases 

making up the sealed atmosphere and their changing characteristics. 

 Based on the principle of mass conservation and the ideal gas law, a step-

wise dynamic mathematical model that uses the control volume approach 

to simulate the sealed mine atmospheric gas species changes over time 

has been developed. All the above mentioned influential factors have 

been incorporated into the mathematical model.  



 

 A modified Coward explosibility diagram method is proposed to analyze 

the explosive mine atmosphere. The improvements include: (1) expanding 

the original Coward diagram; (2) corrections of flammable limits; (3) rede-

fining the nose limit for each combustible gas; (4) developing an equation 

to predict the excess amount of inert gas for each combustible gas; and 

(5) introducing the concept of explosibility Safety Factor (SF) which im-

proves the Coward diagram‘s further applications. 

In order to facilitate these researches findings and improvements, a new 

software program, CIMMAS (Comprehensive and Integrated Model for Mine At-

mospheric Status), has been developed. The program is coded using an object-

oriented programming (OOP) language, Visual Basic 6.0. It offers friendly graphi-

cal user interfaces with schematic views and allows users to reduce input works 

and understand the program outputs.   



iv 

 

DEDICATION 

To 

My wife: Mrs. Jian Wang 

My son: Evan J. Cheng 

who give me their loves and allow me to achieve this goal at their expense. 

 

To 

My father: Mr. Xianming Cheng 

My mother: Mrs. Xiaoli Chen 

My father-in-law: Mr. Zhaoshi Wang 

My mother-in-law: Mrs. Jichun Xu 

who give me strong roots and understanding supports and sacrifices. 

 

In 

Memory of the past ten years 2001-2011. 

 

 

To you they cried out, and they got away safe; In you they trusted, and they did 

not come to shame. 

Psalms 22:5  



v 

 

ACKNOWLEDGMENTS 

I would like to thank all my committee members Dr. Christopher J. Bise, 

Dr. Keith A. Heasley, Dr. Lian-Shin Lin and Dr. Lihong Zhou for spending their 

precious time in going through this dissertation, and for giving their valuable sug-

gestions throughout my dissertation work. His experiences in computer applica-

tion in numerical modeling, mining design and rock mechanics have constantly 

inspired me. 

I take this opportunity to express my sincere gratitude to my advisor Dr. Yi 

Luo for his supports; encouragements and advices during my course works and 

researches at West Virginia University (WVU). Without his abundant help and 

invaluable assistance, this dissertation cannot be accomplished so smoothly. 

I would like to thank my advisor Dr. Shengqiang Yang when I was finishing 

my master degree at China University of Mining and Technology (CUMT). It is he 

who led me to this interesting research area—mine ventilation. It will be my life-

long career.  

I would like to express my deep and sincere gratitude to my friends, Der-

rick Poage and Bongani Dlamini, and special thank for June Jones. They cleared 

all the grammar and spelling errors for me and made my dissertation much more 

professional. I am so grateful I have these friends who are always there to help. 

  



vi 

 

TABLE OF CONTENTS 

 
ABSTRACT .......................................................................................................... II 

DEDICATION...................................................................................................... IV 

ACKNOWLEDGMENTS ...................................................................................... V 

TABLE OF CONTENTS ..................................................................................... VI 

LIST OF FIGURES .............................................................................................. X 

LIST OF TABLES ............................................................................................. XIII 

LIST OF SYMBOLS ......................................................................................... XIV 

CHAPTER 1 INTRODUCTION ............................................................................. 1 

1.1 Mine Gas Explosion Accidents ............................................................... 1 

1.2 Problem Statement ................................................................................. 4 

1.3 Research Objectives .............................................................................. 7 

1.4 Outline of the Dissertation ...................................................................... 9 

CHAPTER 2 LITERATURE REVIEW ................................................................. 12 

2.1 Coal Mine Sealed Atmosphere Modeling.............................................. 12 

2.1.1 Coal mine gas emission ................................................................ 12 

2.1.2 Effects of barometric pressure ....................................................... 15 

2.1.3 Geology and coal properties .......................................................... 17 

2.1.4 Mining methods ............................................................................. 20 

2.1.5 Chemical reactions in gob area ..................................................... 21 

2.2 Techniques to Analyze or Control the Sealed Mine Volume ................. 22 



vii 

 

2.2.1 Theoretical analysis approach ....................................................... 23 

2.2.2 Numerical simulation ..................................................................... 23 

2.2.3 Mine seal Practices ....................................................................... 25 

2.2.4 Pressure chamber ......................................................................... 26 

2.2.5 Positive pressure chamber ............................................................ 27 

2.3 Determination of Mine Gas Explosibility ............................................... 28 

2.3.1 Tertiary diagram ............................................................................ 29 

2.3.2 USBM method ............................................................................... 30 

2.3.3 Maximum Allowable Oxygen (MAO) analysis ................................ 32 

2.3.4 Revised Le Chatelier‘s method ...................................................... 33 

2.3.5 Kukuczka method .......................................................................... 35 

CHAPTER 3 MATHEMATICAL MODEL FOR SIMULATING ATMOSPHERE IN 

A SEALED COAL MINE VOLUME .................................................................... 37 

3.1 Introduction ........................................................................................... 37 

3.2 Factors Controlling the Mine Atmospheric Compositions ..................... 38 

3.2.1 Barometric pressure change ......................................................... 38 

3.2.2 Coal mine seals ............................................................................. 45 

3.2.3 Gas compositions in a sealed mine volume .................................. 51 

3.3 Mathematical Model ............................................................................. 56 

3.3.1 Control volume approach .............................................................. 56 

3.3.2 Ideal gas law ................................................................................. 58 

3.3.3 Mathematical derivation ................................................................. 59 

3.4 Verification Case Study ........................................................................ 69 



viii 

 

3.4.1 Background information ................................................................. 69 

3.4.2 Simulation strategy ........................................................................ 73 

3.4.3 Results comparison ....................................................................... 75 

3.5 Summary .............................................................................................. 77 

CHAPTER 4 MODIFIED COWARD EXPLOSIBILITY DIAGRAM METHOD ..... 80 

4.1 Introduction ........................................................................................... 80 

4.2 The Coward Explosibility Diagram ........................................................ 83 

4.3 Common Combustible Gases in Sealed Mine Atmosphere .................. 86 

4.4 The Corrections of UFL and LFL .......................................................... 89 

4.4.1 Effects of nitrogen and carbon dioxide .......................................... 90 

4.4.2 Effects of temperature ................................................................... 95 

4.4.3 Effects of pressure......................................................................... 98 

4.5 Redefining the Nose Limit ................................................................... 100 

4.6 Determination of Quantity of Excess Inert Gas ................................... 101 

4.7 Development of Safety Factor to Assist Using the Coward Method ... 103 

4.8 Modified Coward Explosibility Diagram Method .................................. 112 

4.9 Cross-verification Study ...................................................................... 113 

4.10 Summary ............................................................................................ 119 

CHAPTER 5 CIMMAS PROGRAM DEVELOPMENT WITH VISUAL BASIC .. 121 

5.1 Introduction ......................................................................................... 121 

5.2 Object-Oriented Programming (OOP) and Microsoft Visual Basic 

Language ....................................................................................................... 121 

5.2.1 Object-Oriented Programming (OOP) ......................................... 122 



ix 

 

5.2.2 Microsoft Visual Basic language .................................................. 123 

5.3 Design of CIMMAS ............................................................................. 124 

5.3.1 Graphical User Interface (GUI) .................................................... 124 

5.3.2 Structure of CIMMAS ................................................................... 124 

5.3.3 Required input data ..................................................................... 126 

5.3.4 CIMMAS Modules........................................................................ 129 

5.4 Summary ............................................................................................ 132 

CHAPTER 6 ILLUSTRATIVE EXAMPLES OF CIMMAS ................................. 133 

6.1 Introduction ......................................................................................... 133 

6.2 Case Study 1 ...................................................................................... 133 

6.2.1 Description of case ...................................................................... 133 

6.2.2 Data completion .......................................................................... 134 

6.2.3 Simulation results ........................................................................ 135 

6.3 Case Study 2 ...................................................................................... 139 

6.3.1 Description of case ...................................................................... 139 

6.3.2 Data completion .......................................................................... 140 

6.3.3 Simulation results ........................................................................ 141 

CHAPTER 7 CONCLUSIONS .......................................................................... 148 

7.1 Summary and Conclusions ................................................................. 148 

7.2 Recommendations for the Future Research ....................................... 151 

REFERENCES ................................................................................................. 153 

 

  



x 

 

LIST OF FIGURES 

Figure 2.1 Screenshots of CMGGP (Lunarzewski, 2010) ................................... 14 

Figure 2.2 Explosibility changes over time (Francart & Beirer, 1997) ................. 16 

Figure 2.3 Typical adsorption isotherms as a function of coal rank (GRI, 1996) . 19 

Figure 2.4 Pressure chamber (Smith, et al., 1994) ............................................. 27 

Figure 2.5 Positive pressure chamber (Brady, et al., 2008) ................................ 28 

Figure 2.6 Tertiary diagram for hydrogen, oxygen and nitrogen ......................... 30 

Figure 2.7 Methane explosibility diagram (Zabetakis, et al., 1959b) ................... 31 

Figure 2.8 Determining MAO (Timko & Derick, 2006) ......................................... 33 

Figure 2.9 Limits of flammability of hydrogen, carbon monoxide, and methane 

containing various amounts of carbon dioxide and nitrogen (Greuer, 1974) ....... 34 

Figure 3.1 Typical barometric pressure fluctuation curves .................................. 41 

Figure 3.2 Monthly barometric pressure fitting .................................................... 43 

Figure 3.3 Gob seal constructed with steel Kennedy panels and Omega blocks 

(Stephens, 2011) ................................................................................................ 46 

Figure 3.4 Longwall extraction and sealed gob gas emission trend changes 

(Lunarzewski, 2003) ............................................................................................ 54 

Figure 3.5 Fluid flow through a control volume ................................................... 57 

Figure 3.6 Volume of the sealed atmosphere and its leakage depending on the 

differential pressure (after Zipf & Mohamed, 2010) ............................................. 60 

Figure 3.7 Area of interest in the coal mine ........................................................ 71 



xi 

 

Figure 3.8 Interested sealed area in the longwall panel and its ventilation airflow 

pattern ................................................................................................................. 72 

Figure 3.9 Simulation results vs. Field measurement data ................................. 76 

Figure 4.1 An event tree showing typical consequences of accidental releases of 

combustible gas or liquid into the atmosphere (Bjerketvedt, et al., 1997) ........... 81 

Figure 4.2 Coward explosive triangles for methane, carbon monoxide and 

hydrogen ............................................................................................................. 84 

Figure 4.3 Limits of flammability of methane in separate mixtures of air with 

carbon dioxide, water vapor, nitrogen, helium and argon (Coward & Jones, 1952; 

Zabetakis, 1965) ................................................................................................. 91 

Figure 4.4 Comparison between the observed and calculated values of 

flammability limits of methane-nitrogen blend of various compositions (Kondo, et 

al., 2006a) ........................................................................................................... 92 

Figure 4.5 Variation of flammability limits as a function of temperature (Arnaldos, 

et al., 2011) ......................................................................................................... 96 

Figure 4.6 Variation of flammable limits for different gas-mixture, as a function of 

pressure (Arnaldos, et al., 2001) ......................................................................... 99 

Figure 4.7 Coward explosive triangle for methane, carbon monoxide and 

hydrogen (McPherson, 1993) ........................................................................... 102 

Figure 4.8 Comparing scenarios with different risks ......................................... 105 

Figure 4.9 Illustration of Coward diagram characterizes ................................... 106 

Figure 4.10 Defining SF for Zone ABN ............................................................. 107 

Figure 4.11 Defining SF for Zone CDN ............................................................. 108 



xii 

 

Figure 4.12 Defining SF for Zone DFN ............................................................. 109 

Figure 4.13 Defining SF for Zone AEN ............................................................. 110 

Figure 4.14 Defining SF for Zone ENFO ........................................................... 111 

Figure 4.15 SF distributions based on mine gas samples ................................. 112 

Figure 4.16 Flowchart of modified Coward explosibility method ....................... 114 

Figure 4.17 Determining mine atmospheric explosibility using three methods for 

testing cases ..................................................................................................... 118 

Figure 5.1 Main view of CIMMAS...................................................................... 125 

Figure 5.2 Schematic structure of the CIMMAS program system ..................... 125 

Figure 5.3 Typical data flow chart of sealed mine atmospheric status analysis 128 

Figure 5.4 Screenshot of atmospheric gas species change predication module130 

Figure 5.5 Screenshot of explosibility analysis module ..................................... 131 

Figure 6.1 CH4, N2, and O2 change over time in the sealed volume ................. 136 

Figure 6.2 Effects of different number of mine seals used ................................ 138 

Figure 6.3 Explosibility analysis ........................................................................ 139 

Figure 6.4 longwall panel layout........................................................................ 140 

Figure 6.5 Different gas species changes over time in the sealed volume at point 

crosscut 21 ....................................................................................................... 143 

Figure 6.6 Different gas species changes over time in the sealed volume at point 

32213(1) main return .......................................................................................... 144 

Figure 6.7 Time-series plots of the explosibility triangles and the mixture points147 

 

  



xiii 

 

LIST OF TABLES 

Table 1.1 List of coal mine disasters due to gas explosions (1970-2010) ............. 3 

Table 1.2 The six worst coal mine disasters, since 1940 ...................................... 3 

Table 2.1 Values of different coefficients ............................................................ 36 

Table 3.1 Coefficients in Eq. (3.1) ....................................................................... 42 

Table 3.2 Coefficients in Eq. (3.2) ....................................................................... 44 

Table 3.3 Coefficients in Eq. (3.3) ....................................................................... 45 

Table 3.4 MSHA-established tentative guidelines for air leakage through a seal 

(Weiss, et al., 1993) ............................................................................................ 48 

Table 3.5 Values for leakage coefficient into sealed atmosphere (Weiss, et al., 

1993, Weiss, et al., 1996; Zipf, et al., 2010) ........................................................ 48 

Table 3.6 Suggested resistance values for stoppings and seals (Ns2/m8) (After 

Stephens, 2011).................................................................................................. 50 

Table 3.7 Chronicle of Main Events .................................................................... 70 

Table 4.1 Vertices of the explosive triangles (percentages) ................................ 85 

Table 4.2 Vertices of explosive triangles (percentages) ...................................... 89 

Table 4.3 Parameters values (Kondo, et al., 2006a) ........................................... 94 

Table 4.4 Parameters values (Kondo, et al., 2006b) ........................................... 95 

Table 4.5 Coefficients in Eq. (4.24) ................................................................... 100 

Table 4.6 Inert gas coefficients ......................................................................... 101 

Table 4.7 Recommended SF Values for different risk levels ............................ 111 

Table 4.8 Composition data recorded during a real mine fire ........................... 115 

Table 6.1 Chronicle of Main Events .................................................................. 140  



xiv 

 

LIST OF SYMBOLS 

Pb(t) barometric pressure 

t time 

Pt(t) total pressure of the sealed atmosphere at time t 

QL air-leakage flowrate 

LC leakage coefficient 

∆p differential pressure 

L entry length 

O perimeter of the mine entry 

V average velocity 

A cross-sectional area 

k friction coefficient 

Q airflow quantity 

R a single air resistance value 

N number of airways in parallel 

v velocity vector 

n normal vector 

  
angle between the velocity vector and the outward directed unit 
normal vector 



xv 

 

P partial pressure of a given gas 

V sealed volume value 

T absolute temperature 

airm  inflow rate of air in the control volume 

4CHm  inflow rate of air in the control volume 

2Nm  inflow rate of nitrogen in the control volume 

2COm  mass inflow rate of carbon dioxide in the control volume 

M total mass in the control volume at any time 

M0 initial mass in the control volume 

air  air density 

mixm  mass leakage rate from the sealed volume at a given time 

mix  density of gas mixture leaking through the mine seals 

im  rate of change of gas i  in the volume 

mi total mass of gas i in the volume and is a function of time 

Ri specific gas constant of gas i 

i  density of gas i 

Pi partial pressure of gas i 

n number of the seals used 

K the reaction rate constant 



xvi 

 

C1 volume percentages of the three combustible gases 

Li lower limits of the gas i are substituted in the places of 

Nex excessive volume of nitrogen 

Ln nose flammability of the mixed gases 

On oxygen percentage at the nose limit 

L lower flammable limit of the combustible gas in air 

U lower flammable limit of the combustible gas in air 

L’ corrected lower flammable limit mixture of the blend and air 

U’ corrected lower flammable limit mixture of the blend and air 

c1 
fraction of combustible gas in an assumed blend gas only consisted 
of this combustible gas and  the nitrogen 

cin fraction of inert gas in the above assumed blend gas 

n1 
moles of oxygen when one mole of combustible gas is consumed at 
the upper flammable limit 

TLFL  lower flammable limit at the given temperature, T 

298LFL  lower flammable limit at the temperature of 298 K 

minT  minimum temperature which must be reached to allow flame propa-
gation 

pC  specific heat of fuel-air mixture 

cH  heat of combustion of the fuel 

( )UFL T  upper flammable limit at the current temperature T 

( )UFL P  upper flammable limit at the current pressure P 



xvii 

 

Ki,j inert ratio of inert gas j to combustible gas i 

SF safety factor value 

ELc 
explosive range induced by adding or subtracting more combustible 
gas 

ELa explosive range induced by adding or subtracting the air quantity 

  

  

  

  

  

 

 



1 

 

1 CHAPTER 1 INTRODUCTION 

1.1  Mine Gas Explosion Accidents 

During 1900-2006, a total of 11,606 underground coal mine workers died 

in 513 U.S. underground coal mining disasters1. However, most of disasters were 

resulted from mine gas and coal dust explosions. Actually, 420 gas explosion 

disasters were responsible for 10,390 deaths which represented 89.52% of all 

fatalities in coal mine disaster (CDC, 2009). Hence, gas and coal dust explosion 

is the most feared hazard in the coal industry and it has long been a concern for 

mining engineers. In most cases, coal mine explosions initially start with the igni-

tion of the underground combustible gases. Generally, the most commonly en-

countered explosive gas in underground mines is methane. Methane is also the 

most dangerous and hazardous gas in underground mining extracting sedimen-

tary minerals such as coal, trona, potash, limestone, oil shale and salt. Methane 

with most of it to be CH4 is lighter than air and easy to accumulate along the 

mine roofline and cavities if sufficient ventilation is not provided. Methane has an 

explosive range between 5% and 15% and 9.5% is the most dangerous due to 

complete combustion of the air-methane mixture. In addition, other underground 

combustible gases in the underground mine atmosphere include carbon monox-

ide, hydrocarbons, hydrogen sulfide etc., which can also contribute to explosions. 

Most of these gases are by-products of the coal formation process.  

                                                           
1
 According to WebPages of the United States Mine Rescue Association, the term "mine disaster" histori-

cally has been applied to mine accidents claiming five or more lives. 
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The majority of deaths arising from mine explosions are caused, not by 

blast effect itself, but by the inhalation of toxic residual gases, which are generat-

ed by the explosion chemical reactions. The most hazardous of these residual is 

carbon monoxide. Carbon monoxide is a colorless, odorless, and tasteless gas 

which is slightly lighter than air and is highly toxic to humans since it has strong 

ability to combine with hemoglobin to produce carboxyhemoglobin, which inter-

feres with the delivery of oxygen to body tissues. 

Mine gas explosions present the most feared hazards in the coal industry 

worldwide. In 2009, a total of 157 gas explosions were responsible for 755 fatali-

ties in Chinese coal mines. This number represented 28.7% of all Chinese coal 

mine fatalities (Huang, 2010). Two explosions in the Pike River Mine disaster be-

gan on November 19, 2010 in New Zealand killed 29 miners. This mine accident 

ranks as New Zealand's worst mining disaster since 43 men died at Ralph's Mine 

in Huntly in 1914 (Wikipedia, 2010). On March 21, 2011, a serious gas explosion 

in Pakistan‘s Sorange mine killed 43 miners (CNN, 2011). In the U.S. coal mining 

history, gas explosions are also considered as the most dangerous hazard. The 

Monongah Mine disaster in Monongah, West Virginia that occurred on December 

6, 1907 has been described as "the worst mining disaster in American history.‖ 

The lives of 362 workers including children were lost in this underground explo-

sion.  

Statistics from the Mine Safety and Health Administration (MSHA) shows 

the historic underground coal mine disasters due to gas explosions from 1970 to 

2010 as listed in Table 1.1. It can be seen that more than half of the disasters re-

http://en.wikipedia.org/wiki/Monongah,_West_Virginia
http://en.wikipedia.org/wiki/West_Virginia
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sulted in 10 more coal miners killed at one accident. In addition, the six worst 

coal mine disasters since 1940 are also listed in Table 1.2. 

Table 1.1 List of coal mine disasters due to gas explosions (1970-2010) 

No Year Day Mine Name Location Type 
Death

s 

1 2010 4-5 Upper Big Branch Mine Montcoal, WV Explosion 29 

2 2006 5-20 Darby Mine No.1 Holmes Mill, KY Explosion 5 

3 2006 1-2 Sago Mine Tallmansville, WV Explosion 12 

4 2001 9-23 No. 5 Mine Brookwood, AL Explosion 13 

5 1992 12-7 No.3 Mine Wise, VA Explosion 8 

6 1989 9-13 William Station No. 9 Mine Sullivan, KY Explosion 10 

7 1983 6-21 McClure No.1 Mine Dickinson, VA Explosion 7 

8 1982 1-20 No.1 Mine Floyd, KY Explosion 7 

9 1981 12-8 No.21 Mine Marion, TN Explosion 13 

10 1981 12-7 No.11 Mine Knott, KY Explosion 8 

11 1981 4-15 Dutch Creek No. 1 Redstone, CO Explosion 15 

12 1980 11-7 Ferrell No.17 Boone, WV Explosion 5 

13 1976 3-9 Scotia Mine Oven Fork, KY Explosion 26 

14 1972 12-16 Itmann No. 3 Mine Wyoming, WV Explosion 5 

15 1970 12-30 No. 15 and 16 Mines Hyden, KY Explosion 38 

 

Table 1.2 The six worst coal mine disasters, since 1940 

No Year Day Mine Name Location Type 
Death

s 

1 1968 11-20 CONSOL No. 9 Farmington, WV Explosion 78 

2 1951 12-21 Orient No. 2 West Frankfort, IL Explosion 119 

3 1947 5-25 Centralia No. 5 Centralia, IL Explosion 111 

4 1943 3-16 Smith Mine Washoe, MT Explosion 74 

5 1940 3-16 Willow Grove No. 10 St. Clairsville, OH Explosion 72 

6 1940 1-10 Pond Creek No. 1 Bartley, WV Explosion 91 
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From these two tables, it can be seen that both number of mine explosion 

and severity have declined dramatically. Today, mine accidents resulting in five 

or more deaths are no longer common. However, it should be noted that mine 

explosions not only cause fatalities, but also result in production losses and huge 

financial burdens for mining companies (Zhou, 2009). For instance, due to the 

Sago mine disaster, besides the thousands, even millions, of dollars of safety vi-

olation fines issued by MSHA and the mine property damages, the International 

of Coal Group (ICG), the owner of the mine, finally decided to close the mine 

permanently under the pressures of social blame.  

 

1.2  Problem Statement 

According to the investigative report of the Sago mine disaster, the original 

location of the explosion that occurred on January 2, 2006 was in a newly sealed 

section of the mine. Not unique, but in a similar manner, another coal mine ex-

plosion resulted in five fatalities in the Darby mine No. 1 on May 20, 2006 which 

also originated from a sealed mine section. Hence, a problem and challenge on 

how to safely manage the mine sealed volume to avoid any accidents associated 

with mine combustible gases arise for mining engineers. This is a safety problem 

that needs to be resolved. 

When the coal production in an active mine section ends, mine operators 

usually choose to build mine seals to isolate the abandoned area. The functions 

of mine seals are built to withstand potential explosion pressures and to prevent 

or control leakage of potential explosive or toxic gases, such as methane, carbon 
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monoxide, etc., into the active mine workings (Kallu, 2009). However, due to the 

inaccessibility to the sealed areas, it is hard to understand what the composition 

of gases is in the sealed volume and how the gas species change over time. This 

may result in difficulties in ventilation management of the sealed areas. In gener-

al, the explosibility of the mine atmosphere depends on the composition of oxy-

gen, combustible and inert gases. Once the inactive mining areas are sealed, 

methane or other combustible gases may be continuously released from the sur-

rounding strata or remnant coal. The concentrations of these gases could change 

with time. Eventually, the air-gas-mixture would pass the so-called explosive 

range; explosions could occur when sufficient ignition energy (e.g., a flame or 

spark) is provided under the condition of sufficient oxygen. However, the gas 

species change over time are governed by many factors including inflows of 

combustible gases, air leakage, inert gases injected, barometric pressure effects, 

etc. Each of these factors is controlled by physical processes, chemical reactions 

or environmental effects, and needs to be carefully analyzed and calculated in 

the process to develop a reliable prediction tool.  

On the other hand, some new findings and developments in recent years 

should also be well considered in order to finish such predicting simulation of the 

dynamic process of the atmospheric gas species change in a sealed area. 

Hence, a comprehensive mathematical model that considers all the factors and 

previous researches should be developed to assist in managing the sealed vo-

lumes. 
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Additionally, a proper method to determine the coal mine gas explosibility 

is another very important subject following up the previous prediction works. De-

termination of explosibility is definitely a significant work for mine safety especial-

ly when planning and implementing any mine rescue strategies. 

Under normal coal mine production situations, the explosibility of the mine 

atmosphere, especially for the sealed volume, should be monitored and deter-

mined in a timely matter. The critical time when the methane or other combusti-

ble gases build up and enter the explosive range and may trigger a potential ex-

plosion should be carefully watched. The correlative emergency managements 

for critical circumstances are also needed to reduce the potential accidents.  

Determination of the explosibility is also critical for mine rescues and con-

trolling the severity of a mine accident especially for a gas explosion event. After 

a large scale coal mine fire, explosion or discovery of a concealed thermal event, 

a common practice is to seal the related area, and then inject inert gas (N2 or 

CO2) into the sealed area to extinguish the fire and prevent potential explosions 

from occurring. At the same time, rescue efforts will be immediately organized to 

perform the related works. In most cases, in order to prevent the risk associated 

with a potential secondary explosion and to protect rescue workers‘ safety and 

their lives, they are not allowed to go underground until the atmosphere of the 

sealed area has sufficient safety margin to prevent potential explosions. 

In summary, an integrated model, which is capable of both predicting the 

changes of gas species over time in a sealed volume and accurately and quickly 

determining the potential mine gas explosion, is needed. It also can be as a use-
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ful tool to improve the mine safety management and a reference to guide coal 

mine rescues efforts.  

 

1.3  Research Objectives 

Methane explosions are the most feared hazards in the coal industry 

worldwide. Nearly all coal mine explosions initially started with the ignition of 

combustible gases such as methane, carbon monoxide, etc. Both the Sago mine 

disaster and the Darby mine No. 1 explosion caused huge property damage and 

loss of life. Hence, how to manage sealed mine areas and keep them under ef-

fective controls and to avoid any potential risks, are intractable problems for min-

ing engineers and researchers. 

Due to the inaccessibility of a mine sealed area, it is nearly impossible to 

implement directly measurements for the overall atmospheric compositions in the 

entire sealed area for safety assessment. However, the gas composition in a 

sealed mine area changes with time especially in the first few weeks or months 

after being sealed. Sometimes, this time range is often called ―critical‖ period 

which historically indicates most explosions have occurred during this time. 

Hence, it should be carefully watched and well controlled. Generally speaking, 

the gas species changes with time are governed by various influential factors. It 

is a complicated work to reach an accurate prediction. But some new findings 

and research developments in recent years may provide possible approaches to 

finish such dynamic prediction simulation of the atmospheric gas species 

changes in a sealed area. Therefore, a useful tool, essentially a mathematical 
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model which can inosculate the field reality, to perform such simulation is urgent-

ly desired. In other words, a good understanding of the behavior of gas in a 

sealed mine volume is needed for coal mine operators. 

In order to adequately address the previous problem concern, the follow-

ing questions may arise: is there any potential risk, what is the probability of an 

explosion occurring and how severe will it be? In order to answer these ques-

tions, an effective way is to develop a reliable method to determine the mine gas 

explosibility for the sealed mine atmosphere. This task is also very critical for 

managing the sealed mine area, especially for planning and implementing a mine 

rescue strategy after an accident. 

In addition, a computer software incorporating all the above works to offer 

time-dependent comprehensive analysis about the behavior of sealed coal mine 

atmosphere is also needed to help the users understand the mine atmosphere. 

Therefore, an object oriented programming language, Visual Basic 6.0, is em-

ployed to code the program. Friendly graphical user interfaces with schematic 

views are also designed and provided for offering easy input works and displays 

of the program outputs. 

In summary, this dissertation research work has contributed to an im-

proved ability to understand and analyze the sealed mine atmosphere. Such abil-

ity could be used to improve mine safety. The major dissertation tasks are: (1) 

Analyze the most important influential factors controlling the atmosphere compo-

sitions, such as barometric pressure changes, mine seals, gas categories and 

their change characteristics. Then based on these analyses, a methodical model 
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to simulate the sealed mine atmospheric gas species changes over time has 

been developed. Such a model can provide a useful tool for mining engineers to 

understand and effectively manage the sealed mine atmosphere. (2) Modify and 

improve an explosibility determination method for the gas-mixture in a sealed 

mine volume. The new proposed explosibility diagram method has considered 

the effects caused by various environmental factors, such as: pressure, tempera-

ture, contained inert gas, etc., on the upper flammable limits and the lower flam-

mable limit of each combustible gas in a sealed mine atmosphere. Other impor-

tant parameters to construct the explosive triangle, such as nose limits, etc., 

have also been calibrated. (3) Incorporate these tasks or improvements into a 

computer program which can offer a useful software program easily used by 

mine operators. 

 

1.4  Outline of the Dissertation 

The complete work carried out in this research has been organized in 7 

chapters commencing with Chapter 1 introducing the accidents, challenges or 

problems with mine explosions, and the scope of present work.  

Chapter 2 includes a thorough literature review related to the coal mine 

sealed atmosphere modeling and introductions of various methods to determine 

the mine gas explosibility. 

Chapter 3 deals with the development of the time-dependent mathematical 

model of simulating sealed mine atmospheric gas species changes. The mathe-
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matical derivations are based on the combination of the law of mass conserva-

tion and the ideal gas law by using the control volume approach. The most im-

portant factors to control the mine atmospheric gas species changes in a mine 

sealed volume, such as inflows of methane and other combustible gases, air lea-

kage through the seals, inert gases injected into the sealed volume, and quality 

of mine seals, etc. are discussed and considered. Therefore, the developed 

model is capable of representing the gas species changes more realistically. At 

the end of the chapter, a verification case study has been done to test the practi-

cability of the developed model. 

Determination of the explosibility is also a very important task following up 

the contents stated in Chapter 3.  It should be noted that a good understanding of 

that is particularly critical for planning and implementing a successful mine res-

cue strategy. In Chapter 4, after briefly introducing one of the popular methods, 

the Coward explosibility diagram method, which is widely considered as a fast 

and easy way to determine mine gas explosibility, some of the unique influential 

factors existing in a mine sealed volume which may greatly change the determi-

nation judgments are reviewed and presented. Without considering the effects 

induced by these factors, errors may be introduced and result in a huge risk for 

mine accident rescue efforts. Unfortunately, the original Coward explosibility dia-

gram fails to take these into account. In order to achieve better and more accu-

rate explosibility judgments, a modified Coward explosibility diagram method is 

proposed in this chapter. The important characteristic points or parameters to 

construct the explosibility triangle such as: upper flammable limit, lower flamma-
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ble limit, nose limit, etc. are corrected or modified. The cross-verification study 

using the USBM explosibility diagram served as a double check and has also 

been referenced at the end of this chapter.  

Chapter 5 deals with coding the software program with the Visual Basic 

language. The computer program named ―CIMMAS‖ (Comprehensive and Inte-

grated Model for Mine Atmospheric Status) which is capable of both predicting 

the gas species change trends and tracking of the explosibility of mine atmos-

phere at any time points has been developed. An object oriented programming 

language, Visual Basic 6.0, is employed to code CIMMAS. Such program can be 

run under the Windows environment and offers friendly graphical user interfaces. 

Users can easily input the data and the computer then automatically calculates 

results and displays the outputs with schematic and tabular views. They are very 

helpful and useful for the users to perform the secondary analysis or take proper 

management strategies.   

In Chapter 6, examples are given to illustrate the applications of ―CIM-

MAS‖, the developed computer program. 

The dissertation is ended with the Chapter 7, which concludes the whole 

research work, lists the new findings and also discusses the research ideas for 

the future. 
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2 CHAPTER 2 LITERATURE REVIEW 

2.1  Coal Mine Sealed Atmosphere Modeling 

In order to improve mine ventilation efficiency and to deal with mine fire 

and explosion events, mine operators often choose to seal the non-active mine 

area after coal is extracted. Technically speaking, a sealed atmosphere in a 

mined-out area of an underground coal mine is simply a volume governed by 

boundary conditions. Due to the Sago mine disaster in 2006, the proposed new 

criteria for mine seals indicates that the U.S. mining industry become more aware 

of the atmospheric composition within sealed atmospheres (Zipf & Mohamed, 

2010). Actually, mining engineers have already previously noticed the behavior of 

the sealed atmosphere and have discussed the controlling factors since the 

1950s. However, although people have known these factors and their effects for 

a long time, there has been no extensive scientific research work carried out so 

far. Many researchers started their researches only from one or few discrete as-

pects with simply analyzing the sealed atmosphere and its potential effects on a 

mine ventilation system. Each of the previous research efforts will be summa-

rized separately in the following sections. 

2.1.1  Coal mine gas emission 

Coal mine gas is stored in the host strata which are mainly the coal 

seams. The formation of coal gases along with the coalification is a geological 

process that needs thousands or millions of years to complete. These gases are 
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released from the surrounding strata or broken coal pieces into mine atmosphere 

when the virgin coal is extracted in mining activities. 

The emissions of the mine gases may greatly change the ingredients of the 

mine atmospheres. Due to their continuous flow into an underground sealed 

area, an accumulation of the gases occur. However, the gas emission rates are 

controlled by various factors. The most obvious factor is the mining production 

status. Different mining stages have different gas emission curves. Fortunately, 

extensive studies on gas emission for mine gob have been conducted. Profes-

sional engineering software titled ―Coal Mine Goaf Gas Predictor (CMGGP)‖ has 

been developed by Australian researchers. CMGGP is a simulation software for 

predicting the declining rate of gas generation and calculating the gas reservoir 

capacity of coal mine gobs. The software comprises of three main modules which 

are ―Coal mine parameters‖, ―Gas reservoir characteristics‖ and ―Methane de-

cline curves and gas reservoir‖ (Lunarzewski, 2010). Figure 2.1 shows the input 

screenshots of the software. 

The U.S. Environmental Protection Agency (EPA) has also focused atten-

tion on methane emissions from the abandoned underground coal mine. Starting 

from 2000, the EPA has released a number of publications to discuss the aban-

doned coal mine as a source of methane emissions and to present various tech-

nical methodologies to predict methane emissions from the sealed mines in the 

United States (EPA, 2002; EPA, 2008). For example, a research to estimate 

abandoned mine emissions in 1995 has been conducted by Kirchgessner based 

on pre-abandonment data and vent pipe emissions measured at 21 abandoned 
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underground coal mines in the Appalachian and Black Warrior basins 

(Kirchgessner, et al., 2001). 

 

Figure 2.1 Screenshots of CMGGP (Lunarzewski, 2010) 

The EPA has also proposed regression fitted functions to predict the 

emission rate for three different mine status: Venting mines, Flooded mines and 

Sealed mines. Based on the historical mine data from Mine Safety and Health 

Administration (MSHA) and the United States Bureau of Mines (USBM), they in-

corporated a probabilistic analysis (Monte Carlo simulation) to develop a range of 

emission estimates with a high degree of confidence (EPA, 2004). 
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2.1.2  Effects of barometric pressure  

It is well known that the barometric pressure can affect atmospheric condi-

tions in mines. The barometric pressure variations can change the in-mine gas 

air density, and the differential pressure between the sealed areas and the active 

mining workings can induce the mass exchange. Fauconnier conducted statistic-

al analyses of explosions in South African coal mines and found that barometric 

pressure drops longer than 1 day were a contributing factor to gas explosions 

(Fauconnier, 1992). 

Barometric pressure changes also have been an important consideration 

in a mine sealing operation. They can induce airflows across the seals which 

may create explosive mixture of mine gases, cause intensification of mine fires 

and create irrespirable atmosphere outby the seals (Francart & Beiter, 1997). A 

real case was presented to demonstrate the effect of a falling barometer on the 

explosibility of samplings from an area which was not yet completely sealed. Fig-

ure 2.2 shows the explosibility compositions changes for the case. 

Fauconnier, et al. (1978) correlated measured barometric and sealed at-

mospheric pressure changes, and showed that a time lag between the two. 

Stevenson conducted consecutive CH4 observation works in an under-

ground mine. He investigated the influence of atmospheric pressure changes ex-

erting in a gassy coal mine on a ventilating air current with a system of bleeder 

entries. He found that the rate of coal production caused a more significant 

change in methane concentration than the barometric change did, but the hazard 

that accompanies methane release due to expansion of the gob gases during 
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atmospheric lows was minimized by the effective bleeder system (Stevenson, 

1968). 

 

Figure 2.2 Explosibility changes over time (Francart & Beirer, 1997) 

Preliminary theoretical analysis for the effect of the barometric pressure 

was conducted by some researchers. The following equation was proposed to 

calculate the mass flowrate of gas (Hemp, 1994): 

g

V dP
M

R T dt
 

      (2.1)

 

where: P is the absolute pressure; 

V is the total volume;  

M is the mass flowrate of gas (air); 
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Rg is the gas constant; 

T is the absolute temperature. 

This simple relationship can be used to calculate the mass flows into and 

out of an area by a given variation in barometric pressure. Such flows are ana-

logous to the flow of electric current in a series resistance capacitance circuit, 

and this gave some useful indications as to methods for the analysis of the re-

sults  (Hemp, 1994). 

However, it is just a rough equation to estimate the mass exchange since 

the assumption neglects the mixing of in-flowing fresh air with the gas mixture 

existing in a sealed volume. 

Hemp (1994) also performed computer simulation works of the barometric 

pressure variation. Besides to estimate possible leakages, simulations were also 

used to assess the performance of existing seals and determine sampling times 

for obtaining reliable gas samples from a sealed area. 

 

2.1.3  Geology and coal properties 

Geology and coal properties are the primary factors to control the gas con-

tent of coal, which mainly are: 

 Geologic structure; 

 Coal rank, type and quality; 

 Depth; 

 Sorption and diffusion properties of the coal. 



18 

 

Geologic structure is the most important factor to impact the gas storage 

in coal seams. For example, common types of folded structures (i.e., anticline 

and syncline) have different effects in storing the gas. Anticline, which is a series 

of up-arched strata with side portions dipping in opposite directions away from 

the central portion of fold split by the axial plane (convexly bent), has a good 

place, like ―dome‖, to store the coal gas due to its enclosed structure (Enotes, 

2012). On the contrary, syncline, which is a series of down-arched strata with 

limbs dipping inwards in opposite directions towards the fold axis (Enotes, 2012), 

has an opened structure and may connect the surface to result in the coal gas 

draining away. 

The natural fracture is another typical geologic structure. It can greatly 

change the average permeability of a certain area and affect the coal gas migra-

tion within coal seams. 

Coal rank represents the level of maturation reached, ranging from peat 

through anthracite. The three typical levels of coal ranks are: Lignite, Bituminous 

and Anthracite. 

Coal rank profoundly influences the gas content in coal seams. The 

processes of coalification (both thermogenic and biogenic) are associated with 

the generation of oil and gas in the subsurface. Thus, a substantial proportion of 

methane, carbon dioxide, and other occluded volatile components of coal may 

have been generated from the coal itself as by-products of coalification (GRI, 

1996).  
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The relationship between gas content and depth is also distinct and well-

known (Eddy & Rightmire, 1982). The impacts of depth consist of two aspects. 

First, greater depth causes higher pressure. High pressure can increase the 

quantity of gas adsorbed on the coal surface. Second, greater burial depths nor-

mally result in more effective sealing of strata, reducing gas losses (English, 

1997). Figure 2.3 shows typical desorption isotherms as a function of coal rank. 

 

Figure 2.3 Typical adsorption isotherms as a function of coal rank (GRI, 1996) 

One function commonly used for methane adsorption on coal is called the 

Langmuir isotherm, which is based on the ideal case of a single layer of mole-

cules adsorbed on the coal surface (EPA, 2004).  The Langmuir isotherm is gen-

erally expressed as:  

L

L

V P
V

P P



      (2.2) 
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where: V is the volume of methane at standard temperature and pressure 

per ton of coal, m3/ton; 

VL is the Langmuir volume constant, m3/ton; 

P is the pressure in the coal cleat system, kPa;  

PL is the Langmuir pressure constant, kPa. 

In the desorption stage, the desorption isotherm is the link between the 

flow in the coal matrix system (where gas flow is controlled by concentration gra-

dients) and flow in the coal cleat system (where gas flow is controlled by pres-

sure gradients). At low pressures, the relationship between gas content and 

pressure is linear and is referred to as a Henry‘s Law isotherm. At very high 

pressures, all of the storage sites will be occupied if sufficient molecules are 

available, and the storage capacity will reach its maximum value equal to the 

Langmuir storage capacity (GRI, 1996). 

 

2.1.4  Mining methods 

There are mainly two mining methods used to extract coal in U.S. under-

ground coal mines. They are room-and-pillar mining and longwall mining.   

In 2006, nearly 48.8 percent of underground coal production was pro-

duced by using the room-and-pillar mining methods while the longwall mining 

method took up to 50.2 percent (Peng, 2008). Practically speaking, the mining 

rate of a room-and-pillar mine is slower than that of a longwall mine and the ex-

traction ratio rarely reaches 100% as it does in longwall operations (English, 
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1997). Longwall mining allows the full collapse of overlaying strata to form a gob 

zone, and it also destroys strata and breaks coals more than room-and-pillar min-

ing does. Strata exposed above the coal seam extraction area are greatly in-

creased due to the creation of the gob. The distance of the relaxed zone extends 

in the roof is equal to or greater than the longwall width and extends in the floor 

up to half of the longwall width (Lunarzewski, 1998). Therefore, desorbed and 

released gas more easily emit into the underground workings.  

An empirical equation, which describes the relationship between the gas 

emission and associated tonnage of extracted coal, has also been given as the 

following (Lunarzewski, 1998): 

Q a CP b 
     (2.3)

 
where: Q is the total methane emission rate expressed in liters CH4 per 

second; 

CP is the daily coal production rate expressed in tons; 

a and b are empirical coefficients related to weekly coal production 

levels and number of working days per week. 

 

2.1.5  Chemical reactions in gob area 

In the U.S., whether in the room-and- pillar or the longwall mines, the ex-

tensive use of multiple-development entries leads to the need to build numerous 

mine seals in the underground to isolate the gob or sealed areas (Smith, et al., 

1994). However, due to air-leakage across the seals, oxygen is sufficiently pro-
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vided with the leakage airflow and coal oxidation or spontaneous combustion 

may occur. In such conditions, coal self-heating around seals would greatly 

change the atmospheric composition of a sealed area.  

Generally, three categories of gases make up the atmospheric mixture in 

such sealed mine areas. They are: (1) atmospheric gases, (2) products of low 

temperature oxidation, combustion or explosion (Timko & Derick, 2006), and (3) 

the gas emitted from the coal seam such as CH4 and CO2.  

Atmospheric gases are typical gases found in the normal air including ni-

trogen (N2), oxygen (O2), argon (Ar), and carbon dioxide (CO2). The byproduct 

gases of coal oxidation in the sealed volume are CO2, CO, and CxHy as shown in 

the following chemical reaction equation.  

Coal oxidation: aCoal+bO2=cCO+dCO2+eH2O+fCxHy  (2.4) 

In Eq. (2.4), a, b, c, d, e and f are stoichiometric coefficients. Field expe-

riences show CxHy is generally the alkane (CnH2n+2), alkene (CnH2n) or alkyne 

(CnH2n-2) series of hydrocarbon gases. 

 

2.2  Techniques to Analyze or Control the Sealed Mine Volume 

Explosions originating from or around the sealed areas in underground 

coal mines present a serious safety threat. In order to improve mine safety, prop-

er monitoring and control of the sealed volume are needed by mine operators. 

For many years, mining engineers and researchers did numerous investigations 

for controlling the composition changes in sealed areas. Some typical research 

findings and practices will be discussed separately in the following sections. 
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2.2.1  Theoretical analysis approach 

The ―Gob Assistant Program‖, which was published by (Foster-Miller, 

1988), may have been the first effort to understand the sealed atmosphere quan-

titatively and to calculate leakage quantity in and out. The aim of this developed 

program was only to investigate and simulate the changes of CH4 behind seals. 

Zipf, et al. (2010) carried on the ideas and expanded their model that can handle 

up to four different gas species, which are O2, N2, CO2 and CH4. Systems of dif-

ferential equations in their model are also derived based on the time rate of 

change for each gas species. It is an assistant tool when designing the seals and 

the sealed area with controlling leakage to remain the inert sealed atmosphere 

and to minimize the explosion hazard. However, considering mine safety issues, 

it should be noted that oxidation of wood and coal at ambient temperature would 

likely occur in the sealed areas. In such case, various combustible gases besides 

CH4 may exist in the sealed area. Therefore, more gas species should be consi-

dered in order to more accurately analyze the atmospheric status of a sealed vo-

lume. 

 

2.2.2  Numerical simulation 

The rapid growth of computational power and the corresponding maturing 

of computational fluid dynamics (CFD) have led to the development of CFD 

based ―field‖ models applied to coal mine fire research problems (McGrattan, et 
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al., 2007). CFD models can separate a compartment into hundreds to thousands 

of tiny calculation cells and then calculate composition in each cell using higher 

level mathematics to specifically relate energy transfer and flow of fluids to each 

other. The calculations are based on the laws of mass, momentum, energy con-

servation, etc. and are applied in each cell and balanced with all adjacent cells. 

CFD can output much more details about the fluid, such as temperature, velocity 

and concentration of chemical species (Zhou, 2009). CFD is a well-know tool of 

analyzing the mine atmosphere.  

Lolon, et al., (2009) conducted both experimental measurements and CFD 

simulation to identify the hot spots, where most coal fires starts. They designed 

four different gob scenarios to simulate the potential coal self-heating process, 

and the results showed that the hot spots always started in the consolidated area 

near the bleeder shaft for the bleeder system but not in the unconsolidated area 

along the face line. The leakage flows though the gob played an important role in 

determining the size and location of the hot spot. 

Yuan, et al., (2007) noted that the barometric pressure change is an im-

portant factor affecting the air density change, and the mass of the gas in the 

gob. Therefore, they performed CFD simulations which were used to investigate 

the potential effect of barometric pressure changes on spontaneous heating of 

coal in a bleederless longwall gob area. 

Simulation results from their works demonstrate that the effect of barome-

tric pressure changes on the spontaneous heating is found to be dependent on 

the gob permeability and the coal oxidation rate. Oxygen concentrations and 
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temperature in the gob are also examined in their CFD results. However, due to 

the complexity of the problem and lack of field data, the results reported are 

needed to validate and calibrate to cooperate with U.S. coal mines in the future 

study. 

 

2.2.3  Mine seal Practices 

On November 20, 1968, an explosion occurred at Consolidation Coal 

Co.‘s No. 9 mine near Farmington, WV, resulting in the deaths of 78 miners, The 

Farmington disaster led to passage by Congress of the Federal Coal Mine Health 

and Safety Act of 1969 (1969 Coal Act).  The 1969 Coal Act was more compre-

hensive and more stringent than any previous federal legislation governing the 

mining industry (Breslin, 2010). It first recognized that an underground mine must 

use ―solid, substantial, and incombustible‖ mine seals to isolate mine abandon 

areas. Following the 1969 Coal Act, both the number of mine explosions and se-

verity have declined dramatically. The use of mine seals may have contributed to 

fewer explosions in active mine areas. 

On the other hand, to control methane in mined-out areas of coal mines 

and thereby reduce explosion risks from methane buildup, current mining regula-

tions require mining companies to either ventilate or seal abandoned mining 

areas (Zipf, et al., 2007). However, due to the high operating costs to continuous-

ly ventilate abandoned areas, sealing is generally more economical and possibly 

a safer alternative to ventilation. Without sealing, large mined-out areas still re-
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quire regular inspections and can expose miners to a variety of underground ha-

zards  (Zipf, et al., 2007). Therefore, seals are extensively used throughout the 

U.S. coal mines to isolate abandoned mining areas from the active workings. 

Four seal applications are currently used, they are: (1) panel seal, (2) dis-

trict seal, (3) crosscut seal, and (4) fire seal (Zipf, et al., 2007). Mine seals gener-

ally affect the air exchange between a sealed area and an active working. It has 

two effects: location and quality. The seal location is crucial in their ability to limit 

air exchange. Seals should be generally located in areas where entry closure or 

seal crushing is minimal so airflow leakage can be minimized (Smith, et al., 

1994). On the other hand, high quality construction can also reduce leakage. The 

mine seal quality is controlled by various factors, such as: roof and floor conver-

gence, seal materials, explosion-loading, etc. 

Timko, et al. (1987) measured gas velocity through longwall gobs and 

sealed atmospheres that ranged from 0.0051 to 0.0150 m/s. By this rate, gas 

might take about 8 hrs to cross a 300-m wide longwall panel. The measured gas 

leakage through each 140 kPa seal ranged from 0.12 to 0.24 m3/s. 

 

2.2.4  Pressure chamber 

Seal leakages induced by barometric pressure are amplified in larger 

mined-out areas. A common way to reduce atmosphere exchanges within a 

sealed area is to construct pressure chambers. These can be used to pressure 

balance the sealed areas to limit atmosphere exchanges with the mine.  
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The pressure chamber is located on the lower ventilation-pressure side of 

the sealed area and is composed of a series of seals and a void space. The void 

space is then pressurized by connecting it with a duct to a high-pressure ventila-

tion network in the mine. An exhaust regulator on the outer seal is then adjusted 

to equalize the atmospheric pressure behind the inner seal with the void space 

pressure (Smith, et al., 1994). Figure 2.4 illustrates the pressure chamber.  

 

Figure 2.4 Pressure chamber (Smith, et al., 1994) 

 

2.2.5 Positive pressure chamber 

The positive pressure chamber (Figure 2.4) is a new proactive method of 

mitigating the risks associated with active and sealed gobs to manage the at-

mosphere in the fire affected sealed area. This method has been applied in Aus-

tralia and the related practices show it has a good applicability (Brady, et al., 

2008). 
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Figure 2.5 Positive pressure chamber (Brady, et al., 2008) 

The positive pressure chamber includes the erection of a rated 5 psi flexi-

ble seal on the gob side of the chamber and a rated 20 psi outer structural seal. 

The 5 psi seal has been designed to overcome significant strata deformation and 

is responsible for damaging conventional gob seals. The outer seal is designed 

to counter strata convergence. Nitrogen is then injected into the chamber and the 

quantity of nitrogen injected at each site is measured with pressure and atmos-

phere monitoring available both within the chamber and the gob.  

 

2.3  Determination of Mine Gas Explosibility 

For many years, mining engineers and researchers have developed a 

number of methods for assessing the explosibility of the air-gas mixture. Kukucz-

ka analyzed the composition of the coal mine gas and created a model to deter-

mine the explosibility through a mathematical transformation to convert intricate 

combustible contents into a single gas (Kukuczka, 1982). Zigmund and Janovsky 

developed the graphical computer software named ―Vybuchovy trojuhelnik‖ for 
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assessing the explosibility of fuel-air mixture (Zigmund & Janovsky, 2007). Ja-

cobs and Porter proposed their algorithms to generate a control chat depicting 

the changes in percent of combustibles and the lower and upper explosive limits 

of the mine atmosphere (Jacobs & Porter, 1998).  It also provided a predictive 

option for the user to look into the potential changes in the atmosphere over a 

period of time. The USBM explosibility diagram is a method widely used in the 

U.S. mining industry (Ray, et al., 2004).  This method uses the effective combus-

tibles (converted from the methane, hydrogen, and carbon monoxide) and the 

effective inert (converted from the carbon dioxide and nitrogen) in the atmos-

phere to assess the explosibility of the mine atmosphere.  Some of the typical 

methods will be introduced and discussed separately in the following sections. 

 

2.3.1  Tertiary diagram 

Dwyer, et al., (2003) introduced the tertiary diagram to determine the ex-

plosibility of the fuel-air-inert mixtures. Figure 2.6a shows a tertiary diagram for 

any ratio of hydrogen, oxygen and nitrogen at ambient conditions. The top of the 

triangle represents 100% hydrogen and the base of the triangle represents 0% 

hydrogen, so as oxygen and nitrogen.  Using line A as an example, it represents 

30% hydrogen. Hence, line B and line C can represent 30% oxygen and 30% ni-

trogen, respectively.  Similarly, the example point D consists of 30% hydrogen, 

27% oxygen and 43% nitrogen, and point E represents pure air (21% oxygen and 

79% nitrogen). 
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Figure 2.6b provides the full tertiary diagram for hydrogen, oxygen and ni-

trogen including the flammability envelope for ambient conditions. Mixtures inside 

the envelope are flammable. Line F is drawn from air (point E in Figure 2.6a ) to 

100% hydrogen and thus any mixture of hydrogen and air alone must lie on line 

F. Note the conventional lower flammable limit (LFL) and upper flammable limit 

(UFL) points for hydrogen in air (4% hydrogen and 75% hydrogen, respectively). 

Note also the LFL and UFL of hydrogen in oxygen (4% hydrogen and 94% hy-

drogen, respectively) (Dwyer, et al., 2003). 

 

      a) without flammability envelope                b) with flammability envelope 

Figure 2.6 Tertiary diagram for hydrogen, oxygen and nitrogen 

 

2.3.2  USBM method 

Zabetakis presented a simplified graphic method for determining the ex-

plosibility of mine atmospheres under mine fire conditions from mine atmosphere 

composition data (Zabetakis, et al., 1959b). This method is also called the USBM 
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explosibility diagram. It is a popular method widely used in the U.S. mining indus-

try.  

Figure 2.7 shows the diagram developed by Zabetakis. This diagram 

shows that methane-air-inert gas mixtures fall into one of three categories:  (A) 

explosive, (B) explosive when mixed with air, or (C) non-explosive, depending on 

the percentage of methane and the percentage of ―effective inert.‖ (Kissell, 

2006). The effective inert can be obtained from the excess nitrogen percentage 

and the carbon dioxide percentage. The arrows in the diagrams indicate how the 

composition point moves if more methane, air or inert gas is added within this di-

agram. It is a simple method to determine the explosibility of the gas-mixture. 

 

Figure 2.7 Methane explosibility diagram (Zabetakis, et al., 1959b) 
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2.3.3  Maximum Allowable Oxygen (MAO) analysis 

A quantity of oxygen required for a flame propagation. Therefore, the Max-

imum Allowable Oxygen (MAO) analysis can be used to determine if the atmos-

phere is inert or will become explosive (Timko & Derick, 2006). To use this me-

thod, the ratio R should be calculated using the following equation: 

4

4 2

%

% % %

CH
R

CH H CO


 
     (2.5) 

Then, using the R-value to find the corresponding MAO value by referring 

to Figure 2.8, the status of the atmosphere could be determined. If the actual 

measured oxygen concentration is less than the MAO, the atmosphere cannot be 

ignited in its present state. Conversely, it may be considered as explosive. How-

ever, the non-explosive atmosphere may become explosive when mixed with air 

since more oxygen would make the oxygen concentration over the MAO. 

The MAO analysis provide an easy and simply way to judge the status of 

the sealed atmosphere. But a big drawback of this method is hard to tell whether 

the atmosphere is explosive if the measured oxygen value is greater than the 

MAO. Under such conditions, the explosibility diagrams need to be used to ana-

lyze the composition again. 
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Figure 2.8 Determining MAO (Timko & Derick, 2006) 

 

2.3.4  Revised Le Chatelier’s method 

The flammability limits of complex gases, which are a mixture of several 

flammable gases, can be derived with the help of Le Chaterlier‘s rule. This rule is 

based on the assumption that the individual flammable constituents do not react 

with or on one another nor do they have any catalytic influence upon each other. 

For mixtures of complex gases with air and inert diluents, the influence of 

the ratio of inert gas on the flammability limits has to be taken into account 

(Greuer, 1974). Figure 2.9 shows these limits for hydrogen, carbon monoxide 

and methane diluted with nitrogen or carbon dioxide when mixed with air. The 

upper and lower limits of mixtures of complex gases with inert gases is dissected 

into simpler mixtures, each of which contains only one flammable gas and mix-
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tures are determined from tables or graphs like Figure 2.9. If Pn is the volume 

percent of the dissected mixtures and Nn is the corresponding flammable limit. 

The resultant flammable limit, L, of the total mixtures of complex and inert gases 

when mixed with air can also be calculated based on the Le Chaterlier‘s prin-

ciples: 

1 2

1 2

100

n

n

L
PP P

N N N



  
     (2.6) 

This method has shown sufficient accuracy for mixtures of hydrogen, car-

bon monoxide and methane with nitrogen, and carbon dioxide and can therefore 

be used for mine fire gases. 

 

Figure 2.9 Limits of flammability of hydrogen, carbon monoxide, and methane 
containing various amounts of carbon dioxide and nitrogen (Greuer, 1974) 
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2.3.5  Kukuczka method 

A polish scientist, Kukuczka, also analyzed the problem of influences by 

inert gas on flammability limits and developed a series of mathematical formulas 

to correct the position of the mixture gas point in his explosive determination 

model (Kukuczka, 1982).The calculation procedure is described as follows (Yu, 

1992): 

 Determine the explosive triangle; 

 Determine the influential factor ― ‖ for the flammable limit due to the 

contained carbon dioxide; 

2

2 2 2

0.03

3.778

CO

CO N O

P

P P P





  
     (2.7) 

 Determine the total combustibles percentage; 

4 2 2 2

2 4 2 6 6 3 83

T CH CO H C H

C H C H C H C H

P P P P P

P P P P

   

   
     (2.8) 

 Determine the influential factor ―  ‖for each combustible gas due to the 

contained carbon dioxide; 

2

20.93 ( 0.2093 )O T

i

i i

P P

a b




 



    (2.9) 

Note: If the value of ―  ‖is over ―1‖, it must be reset as ―1‖.  

 Determine the position of the actual gas-mixture point or state point; 

a) Eq. (2.9) can be used to compute the ―X‖ coordinates (Combusti-

ble gas percentage) 
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2

1

( )
n

i
i i T i O i i

i T

P
X c d P e P f

P




    
   (2.10) 

b) Eq. (2.10) can be used to compute the ―Y‖ coordinates (Oxygen 

percentage) 

2

' ' ' '

1

( )
n

i
i i T i O i i

i T

P
Y c d P e P f

P




    
   (2.11) 

Where Pi is the volumetric percentage of a certain combustible gas, 

' ' ' ', , , , , , , , ,i i i i i i i i i ia b c d e f c d e f are corresponding coefficients for different combus-

tibles and their values are listed in Table 2.1.  

The relative position between the explosibility triangle and the state point 

shows the explosibility status of the air-gas-mixture at the current state and the 

potential when conditions change. 

Table 2.1 Values of different coefficients 

Gas 

Coefficients 

ia  ib  ic  id  ie  if  
'

ic  
'

id  
'

ie  
'

if  

Methane (CH4) 10.376 3.016 0 1 0 -0.78 0 0 1 
-

2.852 

Hydrogen (H2) 14.918 3.533 4.643 0.140 
-

0.010 

-

0.107 
5.401 0.116 0.698 

-

2.435 

Carbon monox-

ide (CO) 
13.039 3.396 3.117 0.161 

-

0.007 

-

0.400 
3.622 0.133 0.797 

-

2.619 

Ethylene (C2H4) 14.269 3.526 4.121 0.385 
-

0.009 

-

0.216 
4.849 0.072 0.729 

-

2.519 

Ethane (C2H6). 11.872 2.909 1.937 1.052 
-

0.005 

-

0.724 
2.233 

-

0.037 
0.875 

-

2.391 

Propene (C3H6). 12.869 3.383 2.934 1.098 
-

0.006 

-

0.429 
3.442 

-

0.061 
0.808 

-

2.637 

Propane (C3H8) 12.105 3.294 2.164 1.382 
-

0.005 

-

0.538 
2.537 

-

0.110 
0.858 

-

2.710 

Acetylene (C2H2) 15.308 3.577 4.901 0.127 
-

0.011 

-

0.045 
5.719 0.115 0.680 

-

2.415 
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3 CHAPTER 3 MATHEMATICAL MODEL FOR SIMU-

LATING ATMOSPHERE IN A SEALED COAL MINE 

VOLUME 

3.1  Introduction 

Coal mine explosions from the sealed area often cause large casualties 

and enormous property damage. They present the most hazards for the coal 

mining industry. In order to eliminate the risk of mine explosion, sealing off the 

old mine workings in an extensively used measure in underground coal mines. 

The functions of sealing are shown in the following aspects. Firstly, it is a good 

way to improve mine ventilation efficiency. Normally, underground coal mines 

choose to seal old mined-out areas so that ventilation to these areas is no longer 

needed to save the ventilation costs. Secondly, sealing the old mine areas can 

isolate the contaminants generated in the sealed volume and their associated 

hazards from the active mine workings. For an example, building seals is often 

implemented to extinguish large mine fire events. It can provide a help to reduce 

numerous air-gas-exchanges between the mine fire zone and the active working 

areas. As the combustion-support (oxygen) in the sealed area depletes, the mine 

fire will enter the ―decay‖ stage. In other words, mine fires can be controlled 

sooner.  

In general, once a mined area is sealed the atmospheric composition con-

centrations would change over the time. However, because of its inaccessibility, 

it is impossible to perform any direct measurements. For effectively managing the 

atmosphere in the sealed areas, it is very important to know the gas composi-
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tions and their changing patterns in advance. This chapter deals with the devel-

opment of the mathematical model for simulating the atmospheric compositions 

in the sealed mine areas. 

 

3.2  Factors Controlling the Mine Atmospheric Compositions 

3.2.1  Barometric pressure change 

Barometric pressure is the force that is exerted on objects by the weight of 

the air above them. Because of the effect of earth‘s gravity upon the air, the air 

pressing down to the earth causes air pressure. When it is measured, this force 

is referred to as barometric pressure. Sometimes, barometric pressure is often 

referred to as atmospheric pressure. 

The barometric pressure changes depend on a number of factors, such as 

temperature, elevation, location, weather condition, etc. Essentially, the changes 

are caused by the atmospheric heating and cooling on the surface of earth. Due 

to the uneven heat distribution in a region, the thermodynamic relationships for 

gases can make the expansion or contraction of a body of gas so as to change 

the barometric pressure. 

The effect of the barometric pressure changes to influence gas composi-

tions in a sealed volume is shown in the following aspects. First, when the baro-

metric pressure changes, it can affect the gas emission not only from the active 

mining seam itself, but also from the overlying and underlying strata into the 

mined coal seam (Yuan & Simth, 2007). Second, the expansion or contraction of 
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the gas within a sealed volume is related to the change of barometric pressure. 

As the atmosphere within a sealed area expands, gases leave the sealed area at 

a certain rate through the mine seals or other leakage paths. Francart & Beiter 

(1997) reported that, based on the Boyle‘s law, a barometric pressure change of 

0.50 inches of mercury over 12 hours can create the expansion of 235 cubic feet 

per minute for an unrestricted air volume of 10,000,000 cubic feet. In addition, in 

some circumstances, the change of the barometric pressure is even more a mine 

fan can provide. According to the base method for estimating ventilation require-

ment listed in SME handbook, the mine fan head for a coal mine with 10,000 tons 

daily production (3.65 M tons/year) can be estimated as 0.44 inches of mercury. 

On the other hand, based on a recorded typical barometric pressure variation 

over a 22-day period in western Pennsylvania area reported by Yuan & Smith 

(2007), the biggest pressure change can be expected as 1.3 inches of mercury 

which is more than two times of a mine fan‘ ability.  

Measurements of surface barometric pressure reveal that their fluctuations 

underlying any short-term or longer-term variations (Platzman, 1996). The typical 

curves of barometric pressures include a diurnal, a monthly and an annual fluc-

tuation curve.  

The diurnal fluctuation rhythm is the result of surface temperature varia-

tions. Due to the warming of the upper atmosphere (mainly the thermosphere) by 

the sun, Bernhard discovered that waves move across the upper atmosphere, 

westward with the speed of the sun. Upper level variations of temperature distort 

isobaric surfaces (Platzman, 1996). According to surface pressure measure-
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ments, a-rule-of-thumb shows that the pressure is typically the lowest around 4 

p.m. and the highest around 10 a.m. local standard time. A typical diurnal pres-

sure fluctuation can be shown in Figure 3.1.  

The seasonal or annual barometric pressure variation is also induced by 

the temperature. Throughout the year, as the earth orbits the sun, many parts of 

the earth experience changing seasons. That is because the axis of the earth is 

tilted slightly resulting in part of the earth leaning towards the sun, while part of it 

is hidden either beneath the earth or above it. Thus, different parts of the earth‘s 

surface receive a different amount of sunlight and heat. Figure 3.1 also illustrates 

a short-term (2 weeks) behavior of the barometric pressure fluctuation. 

 

a) Diurnal barometric pressure change (Francart & Beiter, 1997) 
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b) Short-term (2 weeks) barometric pressure change (Rocca, et al., 2010) 

Figure 3.1 Typical barometric pressure fluctuation curves 

Due to the importance of effects on atmospheric compositions in a sealed 

volume induced by natural barometric pressure, a comprehensive research study 

should be carried out to quantitatively analyze the barometric pressure and its 

changing patterns. According to the coalfield distributions in the United States, 

three typical locations are selected: the Northern Appalachian coalfield, the Cen-

tral Appalachian coalfield and the Illinois Basin, respectively. In order to accurate-

ly represent the typical barometric pressure curve, proper functions can be se-

lected to describe corresponding pressure curves by using mathematical curve 

fitting of the measurements of local barometric pressures.  

For diurnal pressure fluctuation curves, 5th degree polynomial function 

could be used to fit the actual data by using least-squares method and the vertic-

al deviation R2 of fitting is over 0.96. The general mathematical expression equa-

tion is shown in Eq. (3.1). Table 3.1 summarizes all coefficients used in Eq. (3.1). 
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5 4 3 2

bP at bt ct dt et f     
   (3.1)

 

where: Pb is the barometric pressure, in-Hg; 

t is the time, s; 

a, b, c, d, e and f are coefficients. 

Table 3.1 Coefficients in Eq. (3.1) 

Location 
Coefficients 

a b c d e f 

Northern  
Appalachian 

-1.2803E-10 4.4386E-08 -5.3379E-06 2.7816E-04 -8.0211E-03 3.0011E+01 

Central 
Appalachian 

8.1510E-10 -4.5315E-08 -3.9332E-06 2.6956E-04 -3.4592E-03 3.0130E+01 

Illinois 
Basin 

2.8845E-09 6.1585E-07 -4.6574E-05 1.4908E-03 -1.5435E-02 3.0003E+01 

 

For a monthly pressure fluctuation curve, due to noises existing in the ac-

tual data set, it is hard to capture an important pattern within the data. Therefore, 

smoothing a data set is very useful for identifying important trends in the data 

and helping to create an approximating function to represent themselves without 

noise phenomena. ―7-Span quadratic smoothing‖ algorithm is used here for 

smoothing the data. Figure 3.2 shows their comparisons.  
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Figure 3.2 Monthly barometric pressure fitting 

The purple dots stand for the raw data while the green dots stand for the 

data after smoothing. Based on the ―smoothed‖ data, the best equation to cap-

ture the pattern of the monthly barometric pressure is 8th degree Fourier function. 

The general mathematical expression equation for the monthly barometric 

pressure is shown in Eq. (3.2). Table 3.2 summarizes all coefficients used in Eq. 

(3.2). 

   0  1*cos( * )  1*sin( * )  

                 2*cos(2* * )  2*sin(2* * )  3*cos(3* * )  3*sin(3* * )  

                 4*cos(4* * )  4*sin(4* * )  5*cos(5* * )  5*sin(5* * )  

bP a a t w b t w

a t w b t w a t w b t w

a t w b t w a t w b t w

  

   

   

                 6*cos(6* * )  6*sin(6* * )  7*cos(7* * )  7*sin(7* * )  

                 8*cos(8* * )  8*sin(8* * )

a t w b t w a t w b t w

a t w b t w

   

 

(3.2) 

where: Pb is the barometric pressure, in. Hg;

 

t is the time, hr; 
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a0...a8, b1…b8 and w are coefficients; 

Table 3.2 Coefficients in Eq. (3.2) 

Coefficients 

Location 

Northern  
Appalachian 

Central 
Appalachian 

Illinois 
Basin 

a0 3.0050E+01 3.0090E+01 2.3920E+01 
a1 -3.4650E-02 9.7090E-02 -8.4780E+00 
a2 1.3930E-01 4.8770E-02 1.3090E+00 
a3 -1.1130E-01 2.2920E-02 9.8570E+00 
a4 -2.5960E-02 -1.2580E-03 7.9450E+00 
a5 -1.3160E-01 9.3550E-03 4.7450E-02 
a6 7.9240E-02 1.1740E-02 -3.3360E+00 
a7 1.2990E-01 1.5370E-02 -1.3470E+00 
a8 5.8080E-03 -1.8310E-02 1.4120E-01 
b1 -1.0990E-01 6.3000E-02 8.9470E+00 
b2 -1.0210E-01 1.8450E-02 1.2230E+01 
b3 4.7700E-02 -3.9050E-03 5.5760E+00 
b4 1.1630E-01 6.3450E-03 -4.3720E+00 
b5 -7.4490E-02 2.8460E-02 -6.3570E+00 
b6 7.0680E-02 -5.3830E-03 -1.8070E+00 
b7 -5.1330E-02 -2.8230E-02 1.1140E+00 
b8 9.1940E-02 1.1920E-02 4.2740E-01 
w 8.9700E-03 8.4020E-03 5.5970E-03 

 

Like fitting a monthly pressure fluctuation curve, smoothing is also needed 

when processing the measured annual pressure data, and the 6th degree Fourier 

function is used to describe the wave fluctuation of an annual barometric pres-

sure. The general mathematical expression equation for annual barometric pres-

sure is shown in Eq. (3.3). Table 3.3 summarizes corresponding coefficients. 

   0  1*cos( * )  1*sin( * )  2*cos(2* * )  2*sin(2* * ) 

                 3*cos(3* * )  3*sin(3* * )  4*cos(4* * )  4*sin(4* * ) 

                 5*cos(5* * )  5*sin(5* * )  

bP a a t w b t w a t w b t w

a t w b t w a t w b t w

a t w b t w a

    

   

   6*cos(6* * )  6*sin(6* * ) t w b t w

(3.3) 

where: Pb is the barometric pressure, in. Hg; 

t is the time, hr; 

a0...a6, b1…b6 and w are coefficients; 
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Table 3.3 Coefficients in Eq. (3.3) 

Coefficients 

Location 

Northern  
Appalachian 

Central 
Appalachian 

Illinois 
Basin 

a0 3.0050E+01 3.1050E+01 -4.9650E+09 
a1 -3.0530E-02 7.5590E-01 7.9600E+09 
a2 -6.2490E-02 -9.6030E-01 -3.9760E+09 
a3 3.2580E-02 -1.0360E+00 1.0810E+09 
a4 -2.2150E-02 -1.0740E-01 -6.7950E+07 
a5 3.0870E-02 2.9800E-01 -3.8120E+07 
a6 -5.3900E-02 1.1320E-01 7.2070E+06 
b1 2.0120E-02 -1.7310E+00 3.0840E+09 
b2 -2.3550E-02 -1.1970E+00 -3.6260E+09 
b3 4.9130E-02 2.3570E-01 2.1730E+09 
b4 -2.7550E-02 6.5450E-01 -7.3970E+08 
b5 -1.5070E-03 1.8940E-01 1.3330E+08 
b6 -3.1790E-02 -7.5560E-02 -9.4980E+06 
w 1.4610E-03 4.8560E-04 8.4330E-05 

 

Generally, base on the period of the prediction time, three typical barome-

tric pressure fluctuation curves can be wisely chosen by the simulation mathe-

matical model (will be discussed later in this chapter). For example, if a time span 

of less than 24 hours is needed to be simulated, the diurnal mathematical fitting 

equation is going to be used to generate the pressure fluctuation curve, or, if a 

time span of 240 hours (10 days) is needed, the monthly pressure fluctuation 

curve can be generated by the corresponding mathematical expression equation 

to represent the local barometric pressure. 

 

3.2.2  Coal mine seals 

The Federal Coal Mine Health and Safety Act of 1969 (Coal Act), the pre-

decessor to the existing MINER Act, first recognized that mine operators must 

seal abandoned and isolated areas of underground coal mines with ―explosion 
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proof bulkheads‖ that are to be constructed with ―solid, substantial and incom-

bustible materials‖ for the protection of miners‘ safety (Kallu, 2009). Currently, 

mine seals are widely constructed in U.S. underground coal mines. The purpose 

of building seals is not only to improve the ventilation efficiency with isolating the 

waste areas of a mine from active workings but also to prevent an explosion 

which may occur in the sealed atmosphere from propagating to the outside of the 

seals (Kallu, 2009). Generally, the mine seals are capable of preventing potential 

explosion, controlling toxic gas leakage into the active mining areas, and also 

minimizing fresh air leaking into the sealed areas. Building mine seals is also a 

measure to mitigate the mine accidents especially if there is a risk of spontane-

ous combustion (Chalmers, 2008). An example gob seal is shown in Figure 3.3. 

 

Figure 3.3 Gob seal constructed with steel Kennedy panels and Omega blocks 

(Stephens, 2011) 

The effect of mine seals can be discussed in the following two aspects: 

The first consideration is the quality of mine seals. Prior to 2006, federal regula-

tions required seals to withstand a 20-psi explosion pressure. Following the Sago 
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Mine disaster, Federal regulators prepared to greatly increase the strength re-

quirements for underground mine seals to protect mine workers. On April 18, 

2008, MSHA issued "Sealing of Abandoned Areas; Final Rule" which includes 

requirements for seal strength, design, and construction of seals. The MSHA‘s 

new rule requires that mine seals must (MSHA, 2008): 

 Withstand 50 psi if the sealed area is monitored and maintained in-

ert; 

 Withstand 120 psi if the sealed area is not monitored; 

 Withstand greater than 120 psi if the area is not monitored and cer-

tain conditions exist that might lead to higher explosion pressure. 

Due to the higher requirements, new design methods and materials to 

build the seals are needed in order to meet the new explosion pressure design 

criteria. Considering the previously mentioned high design criteria, a better struc-

tural integrity of the mine seal is required. That must result in increasing the seal 

thickness, the shear resistance, or internal bending resistance, etc. Thus, new 

seals can offer higher capacity to effectively guard against gas expansion 

(Francart & Beiter, 1997) and higher air resistance to minimize air-leakage 

through them.  

Researchers and mining engineers have already considered the air-

leakage across the mine seals. MSHA personnel have developed tentative 

guidelines for acceptable air-leakage rates through a seal (Weiss, et al., 1993). 

Table 3.4 shows these maximum acceptable air leakage rates, in ft3 per minute. 
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Table 3.4 MSHA-established tentative guidelines for air leakage through a seal 
(Weiss, et al., 1993) 

Pressure differential (in-H2O) Air-leakage through seals (ft
3
/min) 

Up to 1.0 100 
Up to 2.0 150 
Up to 3.0 200 

More than 3.0 250 

 

Zipf & Mohamed (2010) proposed the following equation to calculate the 

quantity of air-leakage through a mine seal. 

( ) ( )L C t bQ L P t P t 
    (3.4)

 

where: QL is air-leakage flowrate; 

LC is leakage coefficient;  

Pt(t) is total pressure of the sealed atmosphere; 

Pb(t) is barometric pressure outside of the sealed atmosphere. 

The value of leakage coefficient, LC, can be referred as Table 3.5. 

Table 3.5 Values for leakage coefficient into sealed atmosphere (Weiss, et al., 
1993, Weiss, et al., 1996; Zipf & Mohamed, 2010) 

 
Leakage 
quantity 
(m

3
/s) 

Pressure 
differential 

(Pa) 

Leakage 
coefficient 
(m

3
/s/Pa

1/2
) 

Lowest values measured at NIOSH 0.019 1000 0.0006 
Old MSHA guideline for 140 kPa 

seals 
0.047 250 0.0030 

 

In 1854, J.J. Atkinson published an equation that was originally derived 

from the Chezy-Darcy fluid flow equation. It is perhaps the most widely used eq-

uation in mine ventilation. 

nk L O V
P

A

  
 

     (3.5)
 

where: ∆p is differential pressure; 
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L is length of the mine entry; 

O is perimeter of the mine entry; 

V is average velocity; 

n is power coefficient,: laminar flow, n=1; turbulent flow, n=2; 

A is cross-sectional area; 

k is friction coefficient;  

In mines, airflow quantities are calculated from of the average air velocity 

and cross-sectional area of an airway. 

Q V A 
      (3.6) 

where: Q is airflow quantity. 

Generally, the state of airflow though the mine seals is turbulent flow. 

Therefore, substituting Eq. (3.6) into Eq. (3.5) yields: 

2

3
( )
k L O

P Q
A

 
  

     (3.7)
 

The first part on the right side of Eq. 3.7 containing coefficient k and air-

way parameters L, O and A is termed the airway resistance, R.  Thus, the above 

Equation can be simplified to what is commonly called the Square Law of mine 

ventilation.  The typical R values for mine stoppings and seals are shown in Ta-

ble 3.6. 

. 

2P R Q  
      (3.8) 
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Table 3.6 Suggested resistance values for stoppings and seals (Ns2/m8) (After 
Stephens, 2011) 

Source 
Very 
Poor 

Poor Average Good 
Very 
Good 

Description 

Oswald, et al., 
2008 

 1,786 3,329 5,311 6,628 Kennedy Stoppings 
 2,425 4,691 7,758 10,674 Block Stoppings 

Calizaya & 
Stephens, 

2006 

 112 320   Omega block 
 757    Kennedy Stoppings 
  3,258   Concrete/Masonry 

Schophaus, 
et al., 2005 

100 300 1,000 5,000 25,000  
      

Bruce & 
Koening, 

1987 

1 112 559  781,900 Masonry Stoppings 
  0.009   Single Overcast 
    >1,117 Single Seal 

Luo, 2009 

 1,118   11,180 Seals 

  55.9   
Brattice Cloth Wood 

Frame Stopping 
 1,118   1,677 Kennedy Stoppings 

 1,118   2,236 
Dry Stack and Plaster 

Block Stopping 

 1,677   3,913 
Wet Stack and Plaster 

Block Stopping 

 

The second consideration is the number of mine seals used during sealing 

of an abandoned area in underground mines. Seals are often built in entries 

around the sealed area. Logically speaking, these seals are parallel with each 

other and can be considered in parallel relationship. Based on Kirchhoff‘s Vol-

tage Law (KVL), an equivalent resistance Re for n number of airways in parallel 

can be determined by: 

2 2

1 1 1 1

e nR R R R
   

    (3.9)

 

The prerequisite to use Eq. (3.9) is that all the seals share two common pres-

sure nodes and thus subjected to the same pressure head. It may not be met in 

the underground reality. However, since the pressure differences of all the paral-

lel seals are insignificant, therefore, it can be used to determine the equivalent 

resistance.  
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In the case of coal mines, similar characteristics, such as physical dimen-

sion, materials, etc., are often encountered in mine seals. Therefore, assuming 

the resistances of all the seals have same characteristics and Eq. (3.9) is more 

usefully written as: 

2e

R
R

n


     (3.10)
 

The resultant equation for a set of n mine seals with combining Eq. (3.8) 

and Eq. (3.10) yields: 

2

2

R
P Q

n
  

     (3.11)
 

or 

P
Q n

R




     (3.12)
 

It shows that the more seals used results in more airflow quantity leaking 

though seals. 

 

3.2.3  Gas compositions in a sealed mine volume 

In a sealed mine volume, the following categories of gases make up the 

sealed mine atmosphere. They are: (1) atmospheric gases, (2) products of chem-

ical reactions in underground mines including low temperature coal oxidation, 

combustion or gas explosions, and (3) coal gases emitted from the virgin coal 

seams, such as CH4, CO2 and H2; and other inert gas, N2 or CO2, injected into 



52 

 

the sealed volume in order to extinguish the mine fire events or minimize the risk 

of potential explosions. 

Atmospheric gases refer to the gases found in an ambient gas sample. 

Almost 99% consist of nitrogen and oxygen; the remaining gases are very small 

quantities of argon and carbon dioxide. 

Products of chemical reactions in underground mine include the alkane 

(CnH2n+2), alkene (CnH2n) and alkyne (CnH2n-2) series of hydrocarbon gases. 

These gases are not often detected in underground atmosphere. Only when a 

chemical reaction such as mine fire, coal oxidation, combustion, etc. exists, these 

gases can be produced in significant amounts. The progression of evolving gas-

es is dependent on the temperature of oxidation.  

The total amount of the hydrocarbon gases is not very larger. Typically, it 

only makes up to less 1% (can be slightly higher when mine fire is severe). How-

ever, due to their wide explosive ranges, they have a great effect on the explosi-

bility of a sealed volume. 

Coal gases liberated from the virgin coal seams include H2S, CO2, CH4; 

etc. The most important gas is CH4 that is produced by bacterial and chemical 

action on organic materials. It is evolved during the formation of coal. CH4 is par-

ticularly dangerous because coal contains a large amount and it is easily flamm-

able and can form an explosive mixture with air. CH4 is retained by coal on its mi-

cro-surfaces and in its voids and pores. When the strata are disturbed and coal is 

mined, the gas pressure gradient that is created induces migration of the CH4 
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towards those mine openings through natural or mining-induced fracture patterns 

(McPherson, 1993). 

Coal gas (mainly CH4) emission in the underground mine is influenced by 

various factors, such as: gassy condition, geological condition, barometric pres-

sure, etc. For an instance, Mitchell (1996) reported that a short-term high gas 

emission rate would happen during periods of falling barometric pressure, and it 

may cause explosive gas leakage flowing into the active mine atmosphere from 

sealed areas and result in an explosion hazard somewhere in the mine. 

Mine gas emission is also affected by the mining activities. Figure 3.4 

shows different gas emission in different stages. When the longwall face is in 

production, gas emission keeps at a high rate due to large gases librated from 

broken coal. However, once the longwall face stops production or the panel is 

sealed, the gas emisson goes into the decline stages. In post-production period, 

there are two physical processes/stages controlling gas emission versus time; 

rapid gas decay – ‗Stage 1‘ and slow gas decay – ‗Stage 2‘ (Lunarzewski, 2003): 

Stage 1 can be identified in the following three initial periods: 

 One month - the most rapid decay - up to 50% of final gas emission; 

 Two months - second rapid decay - up to 70% of final gas emission; 

and 

 Six to fourteen months - stabilized period. 
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Figure 3.4 Longwall extraction and sealed gob gas emission trend changes 
(Lunarzewski, 2003) 

 

Lunarzewski (1993) proposed the following logarithmic approximation 

function to fit the emission rate curve: 

    -   ( )  Gas Emission Rate A ln Time B      (3.13) 

Coefficient ‗A‘ is dependent on: 1) roof and/or floor gas sources position; 

2) gas emission rate (permeability); 3) mining depth; and 4) barometric pressure 

changes. 

Coefficient ‗B‘ defines gas emission initial range and strata permeability 

and is dependent on: 1) the final methane emission rate; 2) gob capacity; 3) spe-

cific gas emission (SGE); and 4) sealed gob area tightness. 

Stage 2 can continues up to 20 years after the cessation of longwall pro-

duction, and can use the exponential approximation function to obtain the best 

fitting: 
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( )    D TimeGas Emission Rate C e       (3.14) 

Coefficients ‗C‘ and ‗D‘ define gas reservoir capacity and are dependent 

on: 1) final methane emission rate; 2) gobs capacity; 3) roof and/or floor gas 

sources position, and 4) virgin and remaining in-situ gas contents. 

If the coal spontaneous combustion event or a large mine fire occurs in an 

underground mine, mine operators often decide to control and, if possible, extin-

guish it by sealing the affected mine area. A number of methods can be used for 

this purpose. Among these, the most practical and powerful method of dealing 

with mine fire is to inject inert gas into the sealed mine volume. This technique 

originally rose in the 1950's but was significantly developed through the 1980's. 

The purposes of using this technique can be listed as follows (McPherson, 1993): 

 To accelerate the development of an inert atmosphere in a newly 

sealed zone and to prevent the creation of an explosive mixture when it is 

re-opened; 

 To prevent concealed heating in zones that are highly susceptible to 

spontaneous combustion; 

 To reduce the explosion risk during sealing or stopping-off procedures. 

Generally speaking, two gases which are carbon dioxide (CO2) and nitro-

gen (N2) are often used as inert gases.  

Carbon dioxide has a density of 1.52 relative to air. This makes it particu-

larly useful for the treatment of fires in low-lying areas such as dip workings or 

inclined drifts (Froger, 1985). Carbon dioxide has high efficiency to finish the de-

velopment of an inert atmosphere. When it is injected, it can significantly change 
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flammable limits of combustible gases, and minimize their explosive ranges to 

reduce the explosion risk. However, the use of carbon dioxide as an inert gas 

has several disadvantages. Because its molecular weight is heavier than air, it is 

hard to mix with combustible gases in the sealed volume and also easily forms 

―CO2 layer‖. Carbon dioxide is also adsorbed readily by coal surfaces, while 

drives the adsorbed methane from the coal, which means the concentration of 

carbon dioxide, may be reduced after injection. In addition, the most important 

disadvantage is the cost of producing carbon dioxide; it is considerably more ex-

pensive than nitrogen. 

Compared with carbon dioxide, although the inertization efficiency of ni-

trogen is not as good as carbon dioxide, it still widely considered as an ideal inert 

gas. Nitrogen has almost the same density as the air. Therefore, it mixes readily 

without stratification. Nitrogen is a by-product of the commercial production of 

oxygen and is much less expensive than carbon dioxide. Also, high injection rate 

can be guaranteed. Experiences shows that the maximum gas feed rate into the 

mine typically is within the range 1 to 6 m3/s (McPherson, 1993). 

 

3.3  Mathematical Model 

3.3.1  Control volume approach  

According to the law of mass conservation, the mass may be neither 

created nor destroyed. With respect to a constant sealed volume, the law of con-

servation of mass can be simply stated as:  
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Considering a general control volume 2  located in a fluid flow field as 

shown in Figure 3.5, for the small element of area dA on the control surface, as-

suming the velocity vector is v  and   is the angle between the velocity vector 

and the outward directed unit normal vector, n  to dA. From vector algebra, the 

rate of mass efflux can be rewritten as (Welty, et al., 2001): 

 

Figure 3.5 Fluid flow through a control volume 

( )  cosdA v dA   v n v n
    (3.15) 

Physically, this dot product represents the amount of mass flowing through 

a unit cross-sectional area per unit time. If integrating this quantity over the entire 

control surface, the net outward flow of mass across the control surface, or the 

net mass efflux from the control volume can be expressed as: 

                                                           
2
 A control volume: A definite volume specified in space.  Matter in a control volume can change with time 

as matter enters and leaves its control surface. 

 -  +  = 0 

Rate of mass 

efflux from 

sealed volume 

Rate of mass 

influx into 

sealed volume 

Rate of accumula-

tion of mass within 

sealed volume 
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. .
( )

C S
dA  v n

     (3.16)
 

On the other hand, the rate of accumulation of mass within the control vo-

lume may be expressed as: 

.
 

C V
dV

t




        (3.17)
 

The integral expression for the mass balance over a general control vo-

lume becomes: 

. . .
( )    0

C S C V
dA dV

t
 


  

 v n
  (3.18)

 

 

3.3.2  Ideal gas law 

An ideal gas is defined as one in which all collisions between atoms or 

molecules are perfectly elastic and in which there are no intermolecular attractive 

forces. One can visualize it as a collection of perfectly hard spheres which collide 

but otherwise do not interact with each other. In such case, all the internal energy 

is in the form of kinetic energy and any change in internal energy is accompanied 

by a change in temperature (Nave, 2011). 

The ideal gas law is the equation of state of a hypothetical ideal gas. It is a 

good approximation to the behavior of many gases under many conditions, al-

though it has several limitations (Wikipedia, 2011). The state of an amount of a 

specified gas is determined by its pressure, volume, and temperature and is es-

tablished as: 

http://en.wikipedia.org/wiki/Gas
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PV nRT       (3.19) 

where: P is the partial pressure of a given gas; 

V is the sealed volume; 

n is measured moles of the gas; 

R is the universal gas constant;  

T is the absolute temperature. 

As the amount of substance could be given in mass instead of moles, 

sometimes an alternative form of the ideal gas law is useful. The number of 

moles (n) is equal to the mass (m) divided by the molar mass (M): 

m
n

M


     (3.20)
 

By replacing n and defining Rg as the specific gas constant, Eq (3.19) can 

be rewritten as: 

gPV mR T
     (3.21)

 

The ideal gas law equation demonstrates that a connection between mass 

and pressure.

  
 

3.3.3  Mathematical derivation 

A mathematical model is developed to simulate the gas species changes 

in a sealed mine area. Figure 3.6 shows the airflow exchanges between the 

sealed volume and its surroundings. In the sealed volume (V), the atmosphere 

consists of the following nine common gases (reasons of selecting gas species 
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will be discussed in Chapter 4): CH4, CO, N2, C2H2, C2H4, C2H6, CO2, H2 and O2.  

The volume occupied by each gas is denoted by subscripts with corresponding 

chemical formula. The total pressure in the sealed volume (Pt) is the sum of the 

partial pressures of the individual gases. The barometric pressure outside the 

sealed volume is shown as Pb. Apparently, if Pt < Pb, the outside air flows 

through the mine seals into the sealed volume and this process is called air-

inflowing. Conversely, if Pt > Pb, air in the sealed volume flows out and it is called 

gas-outflowing. In addition, this model also considers the inflow of combustible 

gas, mainly CH4 from surrounding strata to the sealed volume, and the effects of 

injecting inert gas into the sealed volume to prevent potential gas explosion. 

Therefore, the concentration and partial pressure of each gas in the 

sealed volume would change with time and the changes are controlled by the in-

flows and outflows as well as by the atmospheric pressure.  

                                  
Figure 3.6 Volume of the sealed atmosphere and its leakage depending on the dif-

ferential pressure (after Zipf & Mohamed, 2010) 
 

Sealed Volume V 

V= VCH4+VCO+VH2+VC2H2+VC2H4+VC2H6+VCO2+VN2+Vo2 

Gas leakage 

outflow 

If Pt > Pb 

Combustible 

gases inflow      

         Vg 

Inert gas    

   inflow   

      Vi 

Air leakage 

inflow 

if  Pt < Pb 
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The following assumptions are made in developing the dynamic gas spe-

cies changes model:  

1) The volume of the sealed mine area (V) is constant. 

2) Generally, two categories of added gases are expected in the sealed 

mine area. They are injected inert gas and mine gases (Mainly CH4). The in-

jected inert gas usually enters the sealed area as a turbulent jet via the mine 

seals or surface gob wells. Due to such a turbulent jet, a turbulent flow often 

takes place in the sealed volume. The transversal mixing (Perpendicular to the 

flow direction) is accomplished within a very short distance while the longitudinal 

mixing (in flow direction) takes place also. For the coal mine gases (Mainly CH4), 

they are emitted from all the surrounding strata into the sealed mine volume and 

can be expected to mix with the original atmospheric compositions very soon. 

Therefore, any added gases can be considered as mixed instantaneously. 

3) The mine sealed area often generally reflects the rectangle volume. 

The typical one is a mine entry or a gob area. Once it needs to be sealed, the in-

by and outby mine seals at the both sides of the area are going to be built. Con-

sidering the previous assumption, a turbulent flow induced by the inert gas injec-

tion work can exist in the seal area; therefore, a zone of homogeneous mixed 

composition can be formed within a short period. Hence, it assumes that the gas 

throughout the whole sealed volume is homogeneous. 

4) The gas ingredient of the gas-outflowing flow is identical to that of the 

sealed atmosphere. 
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5) The inert gas argon (Ar) concentration in the sealed volume is negligi-

ble and assumed zero. 

6) The temperature in the sealed area can be considered as constant.  

Since absolute temperature is used in the ideal gas law, the possible variation in 

temperature in a sealed mine volume (unless in fire situation) will be insignificant. 

The model includes nine gas species and their mathematical change equ-

ations as a timely matter. Considering N2 as an example to demonstrate the ma-

thematical derivation: 

In the mathematical model, a negative value indicates an influx of mass to 

the sealed volume while a positive value for an efflux to leak out of the volume.  

For the air-inflowing condition, Eq. (3.18) is applied to express the total amount of 

mass in the sealed volume as a function of time, for the control volume (mine 

sealed volume) shown: 

4 2 2CH N CO
. .

( )  air
C S

dA m m m m       v n    
   (3.22)

 

0
0

.
 ( )

M

C V M

d d
dV dM M M

t dt dt



  

  
   (3.23) 

where: airm is the inflow rate of air in the control volume; 

4CHm
 
is the inflow rate of methane in the control volume; 

2Nm   is the inflow rate of nitrogen in the control volume; 

2COm  is the mass inflow rate of carbon dioxide in the control vo-

lume; 

M is the total mass in the control volume at any time; 



63 

 

M0 is the initial mass in the control volume. 

Writing the complete expression yields: 

4 2 2CH N CO 0
. . .

( )  +  ( ) 0air
C S C V

d
dA dV m m m m M M

t dt
 


        

 v n    
(3.24)

 

Separating variables and solving for M gives 

4 2 20 CH N CO( )airM M m m m m t       
   (3.25)

 

Now, letting mN2 be the amount of N2 in the control volume at any time. The 

concentration by weight of N2 may be expressed as: 

2 2

4 2 20 CH N CO( )

N N

air

m m

M M m m m m t


      
   (3.26)

 

On the other side, air consists of nitrogen and oxygen. Based on the mass 

percentage of gas in the air, the nitrogen in the air can be expressed as 0.75 airm . 

Using the definition, applying Eq. (3.18) to the N2 and obtaining: 

2. .
( )  0.75N air

C S
dA m m     v n  

    (3.27) 

and 

2 2

2
(0)2

.
 

N

N

m N

N
C V m

dmd
dV dm

t dt dt



 

  
   (3.28) 

The complete expression is now: 

2

2. . .
( )  +  0.75 0

N

N air
C S C V

dm
dA dV m m

t dt
 


     

 v n  
 (3.29)

 

Applying the Ideal Gas Law, Eq. (3.21) yields: 

2 2 2N N NP V m R T
     (3.30)
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Considering the air-inflowing condition, only the normal air can leak 

through seals into the sealed volume. Therefore, airm can be expressed as: 

air L airm Q 
      (3.31)

 

where: air is the air density; 

LQ
 
is the inflow rate of air leakage, and can be obtained from Eq. 

(3.12).  

Combing Eq. (3.12), Eq. (3.29), Eq. (3.30) and Eq. (3.31) to give a system 

of equations: 

2

2

2 2 2

0.75 0

( ) ( )

N

N air

N N N

air L air

b t
L

dm
m m

dt

P V m R T

m Q

P t P t
Q n

R




   







 
 


 



   (3.32)

 

The developed equation can be used to describe the timely-dependent 

change of nitrogen in the sealed volume under the condition of air-inflowing sce-

nario.  

For gas-outflowing condition, Eq. (3.18) is applied to express the total 

amount of mass in the sealed volume as a function of time: 

4 2 2CH N CO
. .

( )  mix
C S

dA m m m m       v n    
   (3.33)

 

0
0

.
 ( )

M

C V M

d d
dV dM M M

t dt dt



  

  
   (3.34) 

where: mixm  mass leakage rate from the sealed volume at a given time; 
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4CHm
 
is the inflow rate of air in the control volume; 

2Nm
 
is the inflow rate of air in the control volume; 

 M    is the total mass in the control volume at any time; 

 M0    is the initial mass in the control volume. 

Writing the complete expression yields: 

4 2 2CH N CO 0
. . .

( )  +  ( ) 0mix
C S C V

d
dA dV m m m m M M

t dt
 


        

 v n    
 (3.35)

 

Separating variables and solving for M gives 

4 2 20 CH N CO( )mixM M m m m m t       
   (3.36)

 

Now, letting mN2 be the amount of N2 in the control volume at any time. The 

concentration by weight of N2 may be expressed as: 

2 2

4 2 20 CH N CO( )

N N

mix

m m

M M m m m m t


      
   (3.37)

 

Using the definition, applying Eq. (3.18) to the N2 and obtaining: 

2

2. .
( )  

N

N mix
C S

m
dA m m

M
     v n  

    (3.38) 

and 

2 2

2
(0)2

.
 

N

N

m N

N
C V m

dmd
dV dm

t dt dt



 

  
   (3.39) 

The complete expression is now: 

2 2

2. . .
( )  +  0

N N

N mix
C S C V

m dm
dA dV m m

t M dt
 


     

 v n  
(3.40)

 

Applying the Ideal Gas Law, Eq. (3.21) yields: 
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2 2 2N N NP V m R T
     (3.41)

 

Considering the gas-outflowing condition, the gas mixture would leak air 

through seals into the active mine. Therefore, mixm can be expressed as: 

mix mix Lm Q
      (3.42)

 

where: mix  is the density of gas mixture leaking through the mine seals at 

standard pressure and temperature at a given time; 

LQ
 
is the inflow rate of air leakage, and can also be obtained from 

Eq. (3.12).  

Combing Eq. (3.12), Eq. (3.40), Eq. (3.41) and Eq. (3.42) to give a system 

of equations: 

2 2

2

2 2 2

0

( ) ( )

N N

N mix

N N N

mix mix L

b t
L

m dm
m m

M dt

P V m R T

m Q

P t P t
Q n

R




   







 
 


 



   (3.43)

 

The developed equation can be used to describe the time-dependent 

change of nitrogen in the sealed volume under the condition of gas-outflowing 

scenario. 

In addition, the same mathematical derivation procedure can be applied 

for the other gas species in the sealed volume.  

In summary, the mathematical model of simulating atmosphere gas spe-

cies s in a coal mine sealed volume can be described as follows: 
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When the total gas pressure in the sealed area is lower than the atmos-

pheric pressure outside, Pt(t) < Pb(t), it is an air-inflowing condition. The normal 

mine air flows into the sealed volume.  

9

1

0

( )

( ) ( )

( ) ( )

i
i

i i

t i

i

b t
L

dm
m

dt

P t V mRT

P t P t

P t P t
Q n

R




  





 


 








    (3.44)

 

When the total gas pressure in the sealed area is higher than the atmos-

pheric pressure outside, Pt(t) > Pb(t), it is a gas-outflowing condition. The gases 

flow out of the sealed volume.   
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9

1
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( )

( )

i i
mix i

i i

t i

i

b v
L
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
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 
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 

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
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 



    (3.45)

 

The variables and constants in equations are defined as follows: The sub-

script ― i ‖ represents each of the nine gases in the sealed volume. They are listed 

as 1,2 ,9i    for CH4, N2, O2, CO, CO2, H2, C2H2, C2H4 and C2H6, respectively. 

Term mi is the total mass of gas i in the volume and is a function of time. Term 
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im  is the rate of change of gas i  in the volume. In an air-inflowing process, they 

are defined as: 

41 1 CHm Q
        (3.46)

 

22 20.75 air L Nm Q Q  
      (3.47)

 

3 0.25 air Lm Q
       (3.48)

 

25 5 COm Q
        (3.49)

 

4 6 7 8 9 0m m m m m        
      (3.50)

 

In the gas-outflowing process, they are defined as: 

41 1 CHm Q
        (3.51)

 

22 2 Nm Q
        (3.52)

 

25 5 COm Q
        (3.53)

 

3 4 6 7 8 9 0m m m m m m          
     (3.54)

 

In these equations, QCH4 is the CH4 volumetric inflow rate, QN2 and QCO2 

are the volumetric inflow rates of N2 and CO2 injected into the sealed volume. 

They are assumed to be 100% pure. air  is the air density. 

Ri is the specific gas constant of gas i. 

i  is the density of gas i at standard pressure and temperature. 

Pi is the partial pressure of gas i at a given time. 

Pt is the total pressure or the sum of the partial pressures of all individual 

gases at a given time.   
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Pb is the barometric pressure outside of the sealed area.  It could change 

significantly over time 

n is the number of the mine seals used. 

 

3.4  Verification Case Study 

3.4.1  Background information 

The verification case study is conducted at a coal mine located in the 

southern West Virginia. Due to the elevated CO concentration event found in a 

number of crosscuts adjacent to the gob area on the tail-entry side of an active 

longwall panel, mine operators carried out some mitigation measures such as 

water pumping and CO2-N2 injection to control the a suspicious ―oxidation‖ event 

in the longwall gob. Figure 3.7 shows the location of longwall panel in the mine. 

The longwall panel with a plow operation is 1,000 ft (304.8 m) wide (center 

to center) and about 10,000 ft (3048 m) long. Figure 3.8 shows the portion of the 

longwall panel of interest and its ventilation airflow pattern. The mining direction 

is from top to the bottom in the figure. The tailentry of the panel is on the left 

while the headentry on the right. At the time of the elevated CO event, a 1,500 ft 

(457.2 m) long block of the longwall panel has been mined and the face is be-

tween breaks 55 and 56 as shown in Figure 3.8. 

The company has tried two methods to control the suspicious ―oxidation‖ 

event. The first effort was to pump water to cool down any potential ―hot‖ spots in 

the gob, the pumping through the gob well 9F-1 within first five days. A total 
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amount nearly 2 million gallons of water has been pumped into the mine. How-

ever, this effort was ineffective to significantly reduce the CO level. Then a total 

of 48 hours 50%-50% CO2-N2 mixture was injected initially through the gob well 

then through bleeder fan shaft. The CO2-N2 injection indeed had strong impacts 

on the gas compositions in the panel.  After the first injection stopped about 40 

hours later, the second CO2-N2 mixture injection was re-commenced to inert the 

gob and that effort continued for 6 days. The Main Events during the CO mitiga-

tion are also listed in the Table 3.7. 

Table 3.7 Chronicle of Main Events 

Date Time Main Events 

Day 1 6:00PM Elevated CO found 

Day 12 8:00 PM 1st Water Pump Started 

Day 14 2:35 PM 1
st
 Water Pumping Stopped, 1,400,000 gallons pumped 

Day 15 3:35 PM 2nd Water Pumping Started 

Day 16 4:00 AM 2
nd

 Water Pumping completed, 1,890,000 gallons pumped 

Day 20 5:00 AM 1
st
 50%-50% CO2-N2 Injected into gob 

Day 20 5:00 AM CO2 Injection via gob well at 600 scfm (0.28 m
3
/s) 

Day 20 5:00 AM N2 Injection via bleeder shaft, 1,200 scfm (0.57 m
3
/s) 

Day 22 9:30 AM 
CO2-N2 Injection stopped, 4.8 M ft

3
 (0.136 M m

3
) CO2 & 5.1 M ft

3
 (0.144 

M m
3
) N2 Injected 

Day 24 5:00 AM Bleeder Fan turned off 

Day 24 5:00 AM 2
nd

 50%-50% CO2-N2 Injected into gob 

Day 24 5:30 AM CO2 Injection via gob well at 1,400 scfm (0.67m3/s) 

Day 24 5:30 PM N2 Injection via bleeder shaft at 1,600 scfm (0.75 m
3
/s) 

Day 24 7:30 AM Additional  N2 generator in service 

Day 30 8:00 PM 2
nd

 CO2-N2 injection reduced 
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Figure 3.7 Area of interest in the coal mine 
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Figure 3.8 Interested sealed area in the longwall panel and its ventilation airflow 

pattern 
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3.4.2 Simulation strategy 

Validating the accuracy of the established mathematical simulation model 

has been done in the isolated gob area which found CO event as stated in the 

previous section. Based on the mitigation measures carried out by the mine 

company, three typical stages are divided. They are:  

(1) Stage 1: The stage of water pumping period. The first effort performed 

by the mine company was to pump the water into the suspected ―hot‖ spots in the 

gob area to flush the potential coal oxidation location. Water was pumped twice 

into the gob area. Nearly 3.3 million water gallons (12.5 M liters) was pumped 

into the underground and the whole water pumping stage is about 312 hours. Un-

fortunately, this effort was considered as ineffective.  

(2) Stage 2: The first CO2-N2 mixtures injection. After the effort to control 

the CO event by pumping water, mine managers then began to perform a 48 

hours CO2-N2 mixture injection into the gob area to reduce CO concentration. 

The gas ratio of CO2-N2 is about 50%-50%. CO2 was injected via the gob well 

while N2 was injected via the exhaust shaft. A total of 4.8 M ft3 (0.136 M m3) CO2 

and 5.1 M ft3 (0.144 M m3) N2 was injected after completing the first CO2-N2 Injec-

tion. However, the bleeder fan kept running through the whole stage. 

(3) Stage 3: The second CO2-N2 mixture injection. After the first injection 

stopped about 43 hours later, the mine fan was turned off and managers started 

to do the second CO2-N2 mixtures injection. It continued for about 6 days until the 

injection rate was reduced again since an inert state in the monitored area within 

the panel was reached. During this period, CO2 injection rate is about 1,400 scfm 
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(0.67 m3/s) and the initial injection rate of N2 injection initial rate is about 1,600 

scfm (0.75 m3/s), then another nitrogen generator is in service to increase injec-

tion rate at 1,900 scfm (0.87 m3/s). 

Hence, comparing to the stages 1 and 2, stage 3 has good characteristics 

of a sealed area and also has the conditions closest to all assumptions made by 

the developed simulation model. Thus, the verification simulation is conducted in 

this stage. The calculation parameters used are listed as follows: 

 Initial gas compositions are: CH4: 1.05%; CO: 10ppm; N2: 77.21%; 

C2H6: 100ppm; CO2: 0.19%; H2: 20ppm and O2: 20.61%.  

 The barometric pressure fluctuation curve used is the typical pressure 

wave for Central Appalachia coalfield basin as stated in the section 

3.2.1. 

 The temperature of the sealed area is set as 30 ℃ (303 K). 

 The total sealed volume is 4,200,856 ft3 (118,955 m3) (Including all en-

try spaces but excluding compacted zone in the gob). 

 The flowrate of CH4 can considered as the summation of two parts, 

which are the CH4 from the vertical gob well 9F-1 due to the gas drai-

nage production (360 cfm) and the CH4 in ventilated mine air from the 

gob area (105,780cfm with a concentration of 0.5% but excluding the 

CH4 in incoming air (Equivalent 113,668 cfm with a concentration of 

0.06%). Therefore, the CH4 volumetric inflow rate in the sealed area is 

820 cfm (0.38 m3 /s). CO2 injection rate is 1,400 scfm (0.67 m3 /s), CO 

generation rate is estimated at 0.126 cfm (7.65E-05 m3 /s) and N2 injec-
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tion average rate is 1,783 cfm (0.84 m3 /s). In this case, the equivalent 

mass inflow rates are 0.2581 Kg/s, 1.234 Kg/s, 8.27E-05 Kg/s and 

0.9804Kg/s, respectively. 

 A total of 20 mine seals is used to isolate the mine gob area, and the 

equivalent air resistance for each of seals is 3.5E-06 in.min2/ft6 (3913 

N.S2/m8). 

 

3.4.3  Results comparison 

Based on gas samples collected from the break 61 on the tail entry side, 

both the measured gas concentrations and the results by the simulation model 

(marked as solid lines) for all gases in the gob area are plotted and are com-

pared with each other in the following figure.  

 

a) O2 and N2 
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b) CH4, CO2 and C2H6 

 

c) H2 and CO 

Figure 3.9 Simulation results vs. Field measurement data 



77 

 

Figure 3.9 shows development trends of the gas species in the sealed vo-

lume. And it also can be seen that the injection of CO2-N2 has strong impacts on 

the gas gas species s in the sealed area. Due to continuous CH4 inflow from sur-

rounding strata and CO2 injection from outside, the concentrations of CH4 and 

CO2 keep building up. But the simulation results also show that N2 maintains high 

percentage concentration with a small deceasing trend. For other gases, C2H6 

and O2 have both decreasing trends. Over all, compared with field measurement 

data, the simulation results agree well with field measurement data for most gas 

species except H2 and CO. It should be noted that the total amounts and the 

concentrations of these two gases are very small in comparison to the gases 

mentioned previously. The differences between the simulation results and the 

actual data are in the ppm level for these two gases. The reasons may be a small 

scale of coal oxidation at normal temperature could occurred in the longwall gob, 

and the ―piston effect‖ caused by the injected inert gases may result in a hetero-

geneous mixing process. However, it should be noted that all the simulation re-

sults can well show the development trends of each of the gas species over a 

time period. 

 

3.5  Summary 

 Explosions originated from or around the sealed areas in underground 

coal mines present a serious safety threat for coal miners. Generally, the 

gas compositions in a sealed mine area change greatly, especially within 

the first few weeks or months after being sealed. Therefore, a mathemati-
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cal model to simulate such dynamic gas species changes is urgently de-

sired. 

 Barometric pressure, as one of the most important factors controlling the 

mine sealed atmospheric gas species changes, is detail analyzed. Proper 

mathematical functions to represent three typical barometric pressure fluc-

tuation curves in U.S. main coal field locations, which are Northern Appa-

lachian coalfield, Central Appalachian coalfield and Illinois Basin, are fitted 

by using mathematical curve fitting approach based on measurements of 

local barometric pressure data. In addition, these fitted curves are also 

classified for different time periods, which include the diurnal pressure 

fluctuation curve, the monthly pressure fluctuation curve and the annual 

barometric pressure fluctuation curve. 

 Coal mine seal, as another important influential factor, is also discussed in 

this chapter. By using Kirchhoff‘s Voltage Law (KVL), its effects can be 

characterized. The proposed characteristic equation is easily integrated in-

to the simulation model. 

 The categories of gases making up the sealed atmosphere are listed and 

their changing characteristics are also stated. By in-depth analysis, it is 

found that they have great impacts on the mine sealed atmosphere. 

Therefore, they should be considered well when developing the simulation 

model. 

 A step-wise dynamic mathematical simulation model is developed to simu-

late the gas species changes in a sealed mine area.  This model is de-
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rived based on the control volume approach but follows the law of mass 

conservation and the ideal gas law. It can handle up to nine different gas 

species, and two processes which are air-inflowing and gas-outflowing 

conditions are used to characterize the mass exchange between a sealed 

area and active workings. 

 A verification case study is conducted at the end of this chapter. Compar-

ing results calculated from the time-dependent mathematical simulation 

model with the actual field measurement data, the simulation mode has 

good accuracy to predict the gas species changes over a time period. 
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4 CHAPTER 4 MODIFIED COWARD EXPLOSIBILITY 

DIAGRAM METHOD 

4.1  Introduction 

Gas explosion is a violent combustion phenomenon. Generally, it is a 

complicated chemical reaction, consisting of many steps and may include a se-

ries of complicated chain reactions. Simply speaking , It is possible to analyze 

influence factors of the chemical by considering the combustion in a way as a 

bimolecular reaction, in which a combustible A and an oxidizer B react chemically 

with one combustion product M under liberation of the heat Q (Greuer, 1974) : 

A B M Q  
     (4.1) 

If a , b and m  are the molar concentrations of A, B and M, the reaction rate 

can be defined as: 

dm
kab

dt


      (4.2)
 

Where K is called the reaction rate constant; If using the volumetric con-

centrations a, b and m instead of the above molar concentrations, the ideal gas 

law could be used here to set up their relationships, yields:  

P
a a

RT


      (4.3)
 

P
b b

RT


      (4.4)
 

where P is the total gas pressure, T is the absolute temperature and R is 

the universal gas constant. Thus: 
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2
dm P

k ab
dt RT

 
  

       (4.5)
 

The above equation shows that the reaction rate is proportional to the 

product a*b of the volume concentration and the square of the total pressure P, 

but inversely proportional to the square of the temperature T (Greuer, 1974). 

Thus, it can be seen that various factors could greatly affect the gas explosibility.  

In process industries, a gas explosion is defined as a process where com-

bustion of a premixed gas cloud, i.e. fuel-air or fuel/oxidizer is causing rapid in-

crease of pressure. Gas explosions can occur in process equipment or buildings 

or an open process area or a confined area. Figure 4.1 shows that common 

events included both before and after a gas explosion process. 

 
Figure 4.1 An event tree showing typical consequences of accidental releases of 

combustible gas or liquid into the atmosphere (Bjerketvedt, et al., 1997) 
 

Loss experience shows that prevention of gas explosions by reducing the 

risk of accidental releases, formation of explosive clouds and ignition only, is not 

sufficient (Bjerketvedt, et al., 1997). In the mining industry, mine gas explosions 

still present a serious safety threat in the worldwide. As stated earlier, a total of 
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157 gas explosions were responsible for 755 fatalities in Chinese coal mines in 

2009. In the U.S., gas explosions are also the most dangerous hazard. "The 

worst mining disaster in American History", Monongah mine disaster, caused the 

lives of 362 workers including children to be lost. In recent years, coal mine gas 

explosions also continue to happen now and then. In 2006, Sago mine disaster 

killed 12 miners and Upper big branch (UBB) mine disaster, which occurred on 

April 5, 2010, resulted in 29 miners‘ death. UBB mine accident is also the worst 

mine disaster in the United States since 1970. 

Normally, underground mine air consists of about 21% oxygen, 79% nitro-

gen and less than 1% methane. But depending on the geologic characteristics of 

the coal, composition of mine atmosphere always keeps changing due to contin-

ued liberating methane, hydrogen sulfide, or other gases into the mine, especially 

for the abandoned mine area. Another measure, such as nitrogen injection to mi-

tigate the risk of mine gas explosion, also has strong impacts on the composition 

of a mine atmosphere. Therefore, determination of the mine gas explosibility is 

critical for mine rescues or controlling the severity of a mine accident, especially 

for the gas explosion event. 

This chapter presents a modified Coward explosibility diagram method 

which has great and significant improvements for the original Coward explosibility 

diagram method. The proposed modified method actually considers more influ-

ence factors which can affect the explosibility of the gas-mixture, and therefore 

enhance the usefulness of the Coward method, and thus, it can effectively avoid 

the potential wrong judgments when determining the mine gas explosibility but 
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give more accurate results. The modified Coward explosibility diagram method 

can also provide some baselines which can be used to assist any mine rescue 

strategy works. 

 

4.2  The Coward Explosibility Diagram 

The Coward explosive triangle (Coward & Jones, 1952) is considered a 

fast and easy way to determine the explosibility of the mixture of air and com-

bustible gases. In its original version, it considered only three combustible gases 

(i.e., CH4, CO and H2).  When the three combustible gases mix with normal air, 

the explosibility of the mixture depends on the percentages of the combustible 

gases and the oxygen. Figure 4.2 shows the individual explosive triangles for the 

three combustible gases. Each of the explosibility triangles is defined by three 

characteristic points, the lower and upper flammable limits, and the nose flamm-

able limit for the minimum oxygen concentration to support the explosion. The 

characteristic points for the three combustible gases are listed in Table 4.1. The 

explosibility triangle for a combustible gas divides the plot area into five distinc-

tive zones.  Taking the explosibility triangle of gas CO in Figure 4.2 as an exam-

ple, point A represents the fresh air, point B represents 100% combustible gas, 

and the origin of the graph represents 100% inert gas. Any mixture of air, com-

bustible gas and inert gas can be represented by a point inside the diagram. The 

zone located above line AB is a zone impossible to form an air-gas mixture. The 

area on the left of line AE is the non-explosive zone, also known as the absolute 

safe zone. Triangle COD is the zone with potential for an explosion, which means 
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once a sufficient ignition energy is provided, the explosion could happen. The air-

gas mixture in triangle AOC is not-explosive. However, it could become explosive 

if a sufficient amount CO is infused.  Zone ODBE is also a not-explosive one but 

could become so as more fresh air is introduced.  

 

Figure 4.2 Coward explosive triangles for methane, carbon monoxide and hydro-
gen 

 
Figure 4.2 just shows the explosive triangle with only one individual single 

combustible gas existing. If the gas-mixture consists of two or three combustible 

gases, the procedure of generating the resultant Coward triangle can be de-

scribed as follows (McPherson, 1993): 

 Determine the total combustibles percentage. If the volume percentag-

es of the three combustible gases are C1, C2 and C3, respectively. The 

total combustibles percentage is: 

1 2 3TC C C C  
     (4.6) 
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 Determine the gas flammability. The Le Chatelier's principle in the form 

of Eq. (4.7) is used to determine upper, lower and nose flammable lim-

its of the mixed gases. To apply this equation for the lower flammable 

limit of the mixture (Lmix), the lower limits of the three gases are substi-

tuted in the places of L1, L2 and L3. The upper and nose flammable lim-

its can also be calculated with the same procedure. 

31 2

1 2 3

T

mix

CC C C

L L L L
  

     (4.7)
 

 Determine the required excess nitrogen. An effective way to render an 

air-gas mixture into a non-explosive one is to inject an excessive vo-

lume of nitrogen (Nex) into the mixture as shown in Eq. (4.8). In this eq-

uation, Ln is the nose flammability of the mixed gases; N+ is the vo-

lumes of excess nitrogen to be added in order to make flammable gas-

es extinctive. Table 4.1 also presents the excess nitrogen if the com-

bustible content consisted of one gas only. 

1 1 2 2 3 3{ }n
ex

T

L
N N C N C N C

P

    

   (4.8)

 

 Determine the oxygen percentage at the nose limit (On).  

On = 0.2093 (100 - Nex - Ln)   (4.9) 

Table 4.1 Vertices of the explosive triangles (percentages)  

Gas 
Flammable Limits Nose Limits Nitrogen to be added to make 

mixture extinctive: (N+ m
3
 of 

nitrogen per m
3
 of combustible 

gas) 

Lower Upper Gas Oxygen 

Methane (CH4) 5.00 14.00 5.90 12.20 6.07 

Hydrogen (H2) 4.00 74.20 4.30 5.10 4.13 

Carbon monoxide (CO) 

OP) (CO) 

12.50 74.20 13.8 6.10 16.59 
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Using the data obtained from these equations, the explosibility triangle for 

the air-gas mixture can be constructed, and the state point expressed by the 

concentrations of oxygen and total combustible gases can be plotted on the 

same diagram. The relative position between the explosibility triangle and the 

state point shows the explosibility status of the air-gas mixture at current state 

and the explosibility potential when condition changes.  

 

4.3  Common Combustible Gases in Sealed Mine Atmosphere  

In a sealed mine volume, the following categories of gases make up the 

sealed mine atmosphere. They are: (1) atmospheric gases; (2) products of chem-

ical reactions in underground mines including low temperature coal oxidation, 

combustion or gas explosions; (3) gases emitted from the virgin coal seams, 

such as CH4, CO2 and H2; and (4) other inert gas, N2 or CO2 injected into the 

sealed volume in order to extinguish the mine fire events or minimize the risk of 

potential explosions.   

Atmospheric gases refer to the gases can be found in an ambient gas 

sample. Almost 99% of it consists of nitrogen (N2) and oxygen (O2); and the re-

maining part is made up by very small quantities of argon (Ar) and carbon dioxide 

(CO2). 

The second category of gases is the products of chemical reactions occur-

ring in underground mines. Typically, the chemical reactions include two different 

forms, one is the coal oxidation or mine fire, and the other is mine gas explosion. 
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Coal oxidation is an irreversible exothermic reaction and its reaction rate 

increases with temperature. When the heat produced by the coal oxidation is not 

adequately dissipated by conduction or convection, the temperature in the coal 

mass increases. This increase in temperature leads to an increase in the coal 

oxidation rate. If not averted with appropriate action, this process results in ther-

mal runaway and a fire ensues (Yuan & Smith, 2011). 

Spontaneous heating is a low temperature coal oxidation reaction which 

takes place when coal is exposed to air. Once it is intensified, coal mine fires will 

result. To quantify the products of a mine fire, it is important to understand the 

whole process of coal burning. Generally, the following processes are believed to 

occur in sequence (Wang, 2004): 

 Distillation of gases from the coal; 

In this stage, the gaseous products of low-temperature oxidation at the 

very early stages are carbon monoxide (CO), carbon dioxide (CO2), water vapor 

(H2O). Methane (CH4) and hydrogen (H2) are also produced.  

 Oxidation of the coal on its surface with the emission of heat and light;   

Gaseous products during this stage include the alkane (CnH2n+2), alkene 

(CnH2n) and alkyne (CnH2n-2) series of hydrocarbon gases. The progression of 

evolving gases is dependent on the temperature of oxidation (Yuan & Smith, 

2011) . 

 Flaming combustion. 

When a flaming combustion occurs, the combustible gases can burn to a 

degree that is governed by the quantity of oxygen in the air. The final mixture 
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leaving the fire zone is a result of the gases of distillation and the extent to which 

the fire has become fuel-rich. In general, the above processes can be summa-

rized as the following chemical equation: 

aCoal+bO2=cCO+dCO2+eH2O+fCxHy   (4.10) 

In the equation, a, b, c, d, e and f are stoichiometric coefficients. Field ex-

periences show CxHy is generally the alkane (CnH2n+2), alkene (CnH2n) or alkyne 

(CnH2n-2) series of hydrocarbon gases. 

Chamberlain, et al. (1973) found that CO is the most sensitive indicator of 

the early stages of coal oxidation, and the continuous monitoring of this gas pro-

vides the earliest detection of self-heating. Other gases have also been ob-

served, such as CO2, CH4, H2, and higher hydrocarbons (Xie, et al., 2011). CO2 

production increases with increasing temperature and is also useful in determin-

ing the state of a fire. Zhou & Wu (1996) conducted a series of experimental tests 

to determine the order of gaseous products when the coal samples are heated. 

They reported the order is: carbon monoxide (CO) → hydrogen (H2) → ethylene 

(C2H4) → propylene (C3H6) → acetylene (C2H2) →other higher hydrocarbons. 

In addition, mine gas explosions can also generate hydrocarbon gases. 

The chemical reaction equations of the methane explosion depending on the de-

gree of sufficiency of oxygen in the mine space can be listed as: 

CH4+2O2=CO2+2H2O    (4.11) 

2CH4+3O2=2CO+4H2O    (4.12) 

3CH4+5O2=2CO+CO2+6H2O   (4.13) 
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In summary, in coal oxidation, mine fires or explosions, acetylene (C2H2), 

ethylene (C2H4) and ethane (C2H6) are often found in the underground air. Al-

though the total amount of these gases is not large, they are significant to affect 

the explosibility of the mine gas-mixture. The characteristic points for the added 

combustible gases are listed in Table 4.2. 

Table 4.2 Vertices of explosive triangles (percentages) 

Gas 

Flammable Limits Nose Limits Nitrogen to be added to make 
mixture extinctive: (N+ m

3
 of 

nitrogen per m
3
 of combustible 

gas) 
Lower Upper Gas Oxygen 

Ethylene (C2H4) 2.75 28.60 2.89 6.06 15.60 

Ethane (C2H6) 3.00 12.50 3.12 8.41 12.80 

Acetylene (C2H2) 2.50 80.00 2.67 5.07 28.91 

 

4.4  The Corrections of UFL and LFL 

The lower and upper flammable limits specify the range of the proportion 

of combustible gases in a mixture in between this mixture is flammable. Flamma-

ble limits consist of two individual limits; one is the lower flammable limit (LFL). 

Below this flammable limit, the mixture is too lean to burn; therefore, LFL de-

scribes the leanest mixture that still sustains a flame. The other is the upper 

flammable limit (UFL). Above the upper flammable limit, the mixture is too rich to 

burn. Thus, it gives the richest flammable mixture. On the other hand, the quan-

titative difference between the two flammability limits is called the explosive 

range. Once an ignition source is introduced, a flammable mixture will burn or 

explode if its concentration is within the explosive range. 

Knowing the flammable limits is very important for designing any safety 

strategies (Britton, 2002). Generally, mine gas mixture consists of combustible, 
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oxidizing, and inert gases. However, it is also known that the temperature, pres-

sure, and the concentration of the inert gas can greatly influence flammability lim-

its. The following sections in-depth discuss the influence effects by each envi-

ronmental factor.  

 

4.4.1  Effects of nitrogen and carbon dioxide  

Due to the inert effects by the inert gas, once the inert gas is mixed into 

the gas-mixture, it can greatly change the flammable limits. In general, when an 

inert gas is added to a hydrocarbon gas/air mixture, the result is an increase in 

the lower flammable limit concentration and a decrease in the upper flammable 

limit concentration. Figure 4.3 shows the influence of nitrogen, water vapor, and 

carbon dioxide, etc. on the limits of flammability of methane in the air. The differ-

ent effects of the three gases are ascribed to their different heat capacity; as car-

bon dioxide has the greatest heat capacity; it has the greatest extinctive effect on 

flame. The corresponding curve for argon in the same figure agrees with this 

supposition, as argon has a smaller heat capacity than nitrogen. The curve for 

helium, a gas of heat capacity equal to argon, shows that this is not the only fac-

tor determining extinctive effect of an inert gas; apparently the high thermal con-

ductivity of helium makes it a more efficient flame extinguisher than argon. It 

seems, however, that the effect of different thermal conductivities is insignificant 

unless the difference is great. Therefore, the flammable limits must be corrected 

once the inert gas is mixed into the gas-mixture.  
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Figure 4.3 Limits of flammability of methane in separate mixtures of air with car-
bon dioxide, water vapor, nitrogen, helium and argon (Coward & Jones, 1952; 

Zabetakis, 1965) 

 
Generally, there are two important inert gases that can reduce the flam-

mability of an underground mine atmosphere. They are nitrogen (N2) and carbon 

dioxide (CO2). Part of N2 originally comes from the normal air and the other is in-

jected into the sealed volume in order to extinguish mine fires or minimize the 

risk of potential explosions, so as CO2. 

Kondo, et al., (2006b) conducted a series of experimental studies, and the 

effect of inert gas dilution on the flammability limits was measured carefully for a 

number of fuel gases in order to make an accurate numerical analysis of the data 

(Kondo, et al., 2008).  Then, he proposed an extension of Le Chatelier‘s formula 

to apply to mixtures containing inert gas. The equations can be used to fit the in-
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ert gas dilution effect on the flammable limits of fuel gases very well. Hence, his 

method is going to be used to correct the flammable limits of combustible gases. 

Figure 4.4 shows his research works.  

 

a) Flammable limits affected by N2 

 

b) Flammable limits affected by CO2 

Figure 4.4 Comparison between the observed and calculated values of flammabili-
ty limits of methane-nitrogen blend of various compositions (Kondo, et al., 2006a) 
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For the inert effects due to the added nitrogen, the following extension Le 

Chatelier‘s equations can be used to determine the new flammability limits 

(Kondo, et al., 2006a): 

For the lower flammable limits (LFL): 

1 1

' in

c c
ac

L L
 

      (4.14)
 

For the upper flammable limits (UFL): 

2 31 1 1 1

'

1100 ( / ) 100
in in in

c n c n
bc cc dc

U c U
   

 
   (4.15)

 

where: L is the lower flammable limit of the combustible gas in air; 

U is the lower flammable limit of the combustible gas in air; 

L’ is the corrected lower flammable limit mixture of the blend and 

air; 

U’ is the corrected lower flammable limit mixture of the blend and 

air; 

c1 is the fraction of combustible gas in an assumed blend gas only 

consisted of this combustible gas and  the nitrogen. 

cin is the fraction of inert gas in the above assumed blend gas. 

Hence, 1 1inC C 
; 

n1 is the moles of oxygen when one mole of combustible gas is 

consumed at the upper flammable limit. It can be estimated as: 

1

0.21(100 )U
n

U




     (4.16)
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a, b, c, and d are parameters determined in the experiments, and 

their values can be referred in Table 4.3. 

Table 4.3 Parameters values (Kondo, et al., 2006a) 

Gas a b c d 

Methane (CH4) -0.00182 0.00144 0.00107 -0.00178 

Ethylene (C2H4) -0.0266 0.00050 0.00046 -0.00077 

General Hydrocarbon gases -0.00817 0.00122 0.00187 -0.00242 

  

For the inert effects due to the added carbon dioxide, the following revised 

Le Chatelier‘s equations can be used to determine the new flammability limits 

(Kondo, et al., 2006b): 

For the lower flammable limits (LFL): 

1 1

' in

c c
pc

L L
 

     (4.17)
 

For the upper flammable limits (UFL): 

2 31 1 1 1

'

1100 ( / ) 100
in in in

c n c n
qc rc sc

U c U
   

 
   (4.18)

 

where: L is the lower flammable limit of the combustible gas in air; 

U is the lower flammable limit of the combustible gas in air; 

L’ is the corrected lower flammable limit mixture of the blend and 

air; 

U’ is the corrected lower flammable limit mixture of the blend and 

air; 
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c1 is the fraction of combustible gas in an assumed blend gas only 

consisted of this combustible gas and  the nitrogen. 

cin is the fraction of inert gas in the above assumed blend gas. 

Hence, 1 1inC C 
;
 

n1 is the moles of oxygen when one mole of combustible gas is 

consumed at the upper flammable limit. It can be estimated as: 

1

0.21(100 )U
n

U




     (4.19)
 

p, q, r, and s are parameters determined in the experiments, and 

their values can be referred in Table 4.4 

Table 4.4 Parameters values (Kondo, et al., 2006b) 

Gas p q r s 

Methane (CH4) -0.01259 0.00072 0.00220 -0.00258 

Ethylene (C2H4) -0.001042 -0.00083 0.00214 -0.00115 

General Hydrocarbon gases -0.01148 -0.00111 0.00536 -0.00401 

 

4.4.2  Effects of temperature 

To propagate a flame, the layer of unburned gas next to the burning layer 

must be brought to such a temperature that it will ―burst into flame‖ rapidly. If the 

unburned gas is already at a temperature above that of the laboratory, less heat 

has to be supplied from the burning layer; therefore, the lower limit will decrease 

and the upper limit will increase at a higher initial temperature. Thus, a gas mix-
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ture, which is not flammable at one temperature, can become flammable if tem-

perature increases (Arnaldos, et al., 2011). In other words, the range of flamma-

bility should be widened when the temperature is increased (Coward, et al., 

1952). Figure 4.5 shows that the change patterns of the upper flammable limit 

(UFL) and the lower flammable limit (LFL) when temperature increases. 

 

Figure 4.5 Variation of flammability limits as a function of temperature (Arnaldos, 
et al., 2011)  

 
For the lower flammable limit, (Burgess & Wheeler, 1911) showed that 

the heat liberated by a mole of a lower limit mixture at ambient temperature and 

pressure was approximately constant. This is called the Burgess-Wheeler law. 

Based on the Burgess-Wheeler law, a equation to predict the value of lower 

flammable limit (LFL) when the temperature changes is written as (Drysdale, 

1985): 

298 min

298
1

298

TLFL T

LFL T


 

     (4.20)

 

where: 
TLFL is the lower flammable limit at the given temperature, T; 
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298LFL  is the lower flammable limit at the temperature of 298 

K; 

T is the current absolute temperature, K; 

minT is the minimum temperature which must be reached to allow 

flame propagation. 

Zabetakis, et al. (1959a) attempted to extend the law of Burgess-Wheeler 

by adding the enthalpy required to raise a limit mixture from ambient temperature 

to the initial test temperature on the basis of the findings of a constant adiabatic 

flame temperature: 

( )c pLFL H C T k    
    (4.21)

 

where: pC is the specific heat of fuel-air mixture; 

cH is the heat of combustion of the fuel. 

When the LFL is known at a given temperature, 0T , Eq (4.21) can be re-

written as: 

0

0 0

100( )
1 ( )

( ) ( )( )

p

c

cLFL T
T T

LFL T LFL T H


  


   (4.22)

 

Eq. (4.22) is called the modified Burgess-Wheeler law. It is validated by 

comparing the experimental data and calculation data (Rowley, et al., 2010), and 

is also considered to be a reasonable equation. 

Increasing the temperature also increase the upper flammable limits for 

fuel gases. One correlation equation for the temperature dependence of the up-

per flammable limit can be written as (Vanderstraeten, et al., 1997): 
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0
0( ) ( ) 1 ( )

100

T T
UFL T UFL T c

 
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     (4.23)
 

where: ( )UFL T  is the upper flammable limit at the current temperature T ; 

0( )UFL T is the upper flammable limit at a given temperature,

0 =20T ℃; 

c is the coefficient obtained from the experimental measurements, 

and c=0.0854. 

 

4.4.3  Effects of pressure 

The normal variations of atmospheric pressure do not appreciably affect 

the limits of flammability (Carona, et al., 1999). However, once the mine area is 

sealed, due to the continuing gas emission, the inside pressure of the sealed 

area is going to build up; then the inside pressure becomes higher than the am-

bient atmospheric pressure. The direct observation has shown that the pressure 

variation has a considerable influence on the upper flammable limit but a small 

effect on the lower flammable limit. Figure 4.6 shows the changes of flammable 

limits of two typical hydrocarbon gases (Propane and Methane) under different 

environmental pressures. 



99 

 

 

Figure 4.6 Variation of flammable limits for different gas-mixture, as a function of 
pressure (Arnaldos, et al., 2001) 

 
Researchers have done a lot of work to identify the relationship between 

the ambient pressure and the flammable limits. Vanderstraeten, et al. (1997) 

summarized their experiment results and proposed a second order equation to 

describe the upper flammable limit as a function of pressure: 

2

0

0 0

( ) ( ) 1 ( 1) ( 1)
P P

UFL P UFL P a b
P P

 
     

    (4.24)

 

where: ( )UFL P  is the upper flammable limit at the current pressure P ; 

0( )UFL P is the upper flammable limit when ambient pressure is 

the normal pressure P0; 

a and b are the coefficients and listed in Table 4.5.  
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Table 4.5 Coefficients in Eq. (4.24) 

Temperature(℃) Upper flammable limit (UFL) (%) a b 

20 

Obtained from Eq.(4.23) 

0.0466 -0.000269 

100 0.0552 -00000357 

200 0.0683 -0.000541 

410 0.0782 -0.000691 

 

It should be note that the upper flammable limit should first be calibrated 

by the temperature to obtain the temperature-based upper flammable limit (

0( )UFL P ) when the pressure remains at the condition of the normal pressure. 

Then, the Eq. (4.24) is used to convert 0( )UFL P  to ( )UFL P  at an elevated pres-

sure.  

 

4.5  Redefining the Nose Limit  

Generally, nose limits are obtained in the experiments. Without such fun-

damental data, it is not possible to construct the Coward explosive triangle. How-

ever, the original Coward method only provides the nose limits for three combust-

ible gases which are CH4, CO and H2. In order to expand the Coward diagram, 

the nose limits for more combustible gases must be known. On the other hand, 

due to different experimental equipment or conditions in the laboratory, various 

experimental results may be obtained. These may induce the problems when 

applying the Coward method.  Hence, a mathematical model to derivate the nos-

es limit based on other chemical parameters is needed. Noting that the acetylene 
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has widest explosive range among all common combustible gases, (Muzyczuk, 

1974) developed a series of equations to calculate the noses limit as follows: 

,
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     (4.25) 

, , ,O 0.2093[100 (1 )]i j i j i jC K  
   (4.26)

 

Where Ki,j is the inert ratio of inert gas ―j‖ to combustible gas ―i‖. Li and Ui 

are the upper and lower flammability of combustible gas ―i‖, respectively. Ci,j and 

Oi,j are the gas percentages of the combustible and oxygen which are also known 

as the vertex of the nose limit. g and h are coefficients with respect to the specific 

inert gas, their values are shown in Table 4.6.  

Table 4.6 Inert gas coefficients 

Coefficient Inert gas is Nitrogen(N2) Inert gas is Carbon dioxide(CO2) 

g 0.054 0.321 

h 71.77 44.23 

 

4.6  Determination of Quantity of Excess Inert Gas  

The upper and lower limits are defined completely in the previous sec-

tions. However, for a resultant explosive triangle, the oxygen content at the nose 

limit remains to be found before the explosibility triangle for the mixture can be 

constructed. To find the oxygen content at the nose limit, the determination of the 

excess inert gas that has to be added in order to make flammable gases extinc-

tive must be done first. These values are provided in Table 4.1 and Table 4.2 
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based on the experimental results. However, as discussed in the previous sec-

tion, different values of the excess inert gases with respect to various combusti-

ble gases should be known before effectively expanding the Coward method. 

Fortunately, once the nose limit for each individual combustible gas is known, the 

explosibility triangle for multiple combustible and inert gases can be deviated 

based on some characteristics in the Coward triangle. 

 

Figure 4.7 Coward explosive triangle for methane, carbon monoxide and hydrogen 
(McPherson, 1993) 

 
To show the procedure, the methane is considered as an example first in 

Fig. 4.7. If starting from any point on the line AB and adding more nitrogen, the 

gas point shall move in a straight line towards the origin, O. The mixture will be-

come extinctive when crossing the line AC. At that moment, an amount of inert 

gas added which is expressed by per unit volume of methane, is a constant. 
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(This follows from the fact that both AB and AC are straight lines.) As it can 

commence at any position on AB, let us choose point B. As nitrogen is added, 

this point will move towards O.  At time it crosses the extinction line at point C, 

the methane concentration is Nc. The remaining (100 – Nc) percent is nitrogen. 

Therefore, adding at a volume of at least (100 – Nc) / Nc of nitrogen for each m3 of 

methane is necessary to make the gas mixture totally non-explosive.  A similar 

exercise can be carried out for each combustible gas. By mathematical transfor-

mation, the expression equation of the excess amount of inert gas can be written 

as: 

100
1

21

21

ex
c

o

N
N

N

 



     (4.27) 

where: Nex is the excess amount of inert gas; 

Nc is the oxygen percentage at the nose limit; 

No is the combustible gas percentage at the nose limit 

 

4.7  Development of Safety Factor to Assist Using the Coward Me-

thod 

The determination of the explosibility is critical for mine rescues or control-

ling the severity of a mine accident, especially for the gas explosion event. After 

a server coal mine fire or an explosion event, a common practice is to seal the 

related area, and then inject the inert gas (N2 and/or CO2) into the sealed area to 

extinguish the fire and prevent potential explosions. At the same time, rescue 
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works will be immediately planned. In order to prevent the risk associated with a 

potential secondary explosion, the rescue workers are not allowed to go under-

ground until the atmosphere of the sealed area no longer has the explosibility po-

tential. Therefore, mining engineers must precisely know how dangerous the sit-

uation is or what is the risk degree. 

The Coward explosibility method can clearly identify the explosive status 

of mine atmosphere and track its explosibility trend as the compositions of the 

mine atmosphere change. However, the Coward diagram can only point out the 

explosibility of the mine gas, but it lacks the ability to show the safety margin.  

For instance, considering there are two gas-mixture samples which are point P1 

and point P2 shown in Figure 4.8. By comparing the positions of these two state 

points with the explosive triangle, it clearly shows that the status at P2 is much 

safer than that at P1. Thus, their safety margins are significantly different from 

each other and the status P2 is better for performing the rescue works. On the 

other hand, since the composition changes with the time, both the location and 

shape of the explosibility triangle as well as the state point will change with time. 

Since point P1 is located very near the explosibility triangle, it may easily move 

from the not-explosive zone to explosive zone in case air is added to the sealed 

atmosphere. Therefore, a sound measure to measure the safety margin is 

needed in dealing with the explosibility of a sealed mine atmosphere.  
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Figure 4.8 Comparing scenarios with different risks 

A new concept, explosibility safety factor (SF), is introduced and defined 

to improve the safety for the rescue works when using the Coward method. It can 

clearly show how dangerous the current atmospheric status is if the state point 

locates in any not-explosive zones.  

Recalling the contents in Chapter 3, three following categories of gases 

make up the gas-exchanges in a sealed volume of coal mines. They are the 

combustible gas flow, the inert gas flow and the fresh air flow. Precisely, they all 

can be well expressed in the Coward explosibility diagram. Figure 4.9 shows that 

directions of a state point can be shifted by the addition of more combustible gas, 

more air or more inert gas (Holding, 1992). When the combustible gas is added 

to or subtracted from a sealed volume while a constant ration between air and 

inert gas is maintained, the point representing the sealed atmosphere will move 

along a line joining the current state point to the 100% combustible point. If, in-

stead of adding or subtracting combustible gas, air is added to the sealed atmos-
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phere while a constant ratio between combustible gas and inert gas is main-

tained, the point will move from the current state point to the normal fresh air 

point. Similarly, if more inert gas is added, the point will move toward to the origin 

of the diagram. 

 

Figure 4.9 Illustration of Coward diagram characterizes 

Based on the characteristics of the Coward explosibility diagram stated in 

the section 4.2, considering the point moving direction laws, the zones in the dia-

gram can be redefined as follows (Referring Figure 4.10 to Figure 4.14): 

 Zone BNC. It is the zone with potential of explosion, also called the ex-

plosibility triangle. 

 Zone ABN. It is a not-explosive zone, but the status point in this zone 

has a special feature. By analyzing its potential moving direction, it can 

be found that there may appear two sets of the upper and lower flam-

mable limits. One is induced by adding more combustible gas and the 

other is created by reducing the air quantity. Let‘s define the corres-
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ponding upper and lower flammable limits as Uc, Ua, Lc, and La, re-

spectively. Hence, the explosibility safety factor (SF) is going to be de-

fined as the following equation. 

0.6 0.2 0.2c aU P U P PBCN

c a BCN

L L A
SF

EL EL A
     

  (4.28)

 

where: L is the length between the two subscripts; 

A is the area represented by subscripts; 

ELc is the explosive range induced by adding or subtracting 

more combustible gas; 

ELa is the explosive range induced by adding or subtracting the 

air quantity. 

 

Figure 4.10 Defining SF for Zone ABN 

Under this scenario, the possibility that the status point moves 

into the explosibility triangle with following the line PD is greater than 

that with following the line AP. In other words, the gas-mixture is easier 



108 

 

to mix with more combustible gases going into the explosibility triangle 

than to reduce the contained air quantity to enter the triangle. There-

fore, a lager weighting factor (0.6) is assigned in the first term in Eq. 

(4.28) and a small weighting factor (0.2) is assigned for other two 

terms. This idea is also carried on to determine the weighting factors 

for the following zones. 

 Zone CDN. It is also a not-explosive zone, and it could become ex-

plosive if more fresh air is infused or combustible gas is reduced. It 

is also like the zone ABN mentioned above. Two sets of the upper 

and lower flammable limits can also be generated. They are shown 

in the Figure 4.11 and are also noted as Uc, Ua, Lc, and La. There-

fore, the explosibility safety factor (SF) is defined as: 

0.2 0.6 0.2c aL P L P PBCN

c a BCN

L L A
SF

EL EL A
     

  (4.29)

 

 

Figure 4.11 Defining SF for Zone CDN 
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 Zone DFN. It is still a not-explosive zone. Different from the pre-

vious two, there is only a set of upper and lower flammable limits 

that can be touched in this zone, which means only one of three po-

tential moving lines can intersect the explosive triangle. Under this 

scenario, the explosibility safety factor (SF) is defined as: 

0.7 0.3aL P PBCN

a BCN

L A
SF

EL A
   

    (4.30)

 

 

Figure 4.12 Defining SF for Zone DFN 

 Zone AEN. It is a non-explosive zone. Different from the previous 

two, there is only a set of the upper and lower flammable limits can 

be touched in this zone, which means only one of three potential 

moving lines can intersect the explosive triangle. Under this scena-

rio, the explosibility safety factor (SF) is defined as: 

3 0.7 0.3cU P PBCN

c BCN

L A
SF

EL A

 
     

     (4.31) 



110 

 

However, it should be noted that the point in this zone has a 

high safety degree since it already locates in the non-explosive 

zone. But the SF calculated here is only for theoretical analysis.
 

The point will move to the zone ABN when more combustible gas is 

added. Therefore, once this happens, another SF calculation equa-

tion may apply. 

 

Figure 4.13 Defining SF for Zone AEN 

 Zone ENFO. It is the non-explosive zone, and can be considered 

as the ―true‖ absolute safety zone. Whatever any gases (Combusti-

ble gas, inert gas or fresh air) is added, its moving direction will not 

intersect the explosive triangle. Under this scenario, the explosibility 

safety factor (SF) is defined as: 

5 PBCN

BCN

A
SF

A
       (4.32)
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Figure 4.14 Defining SF for Zone ENFO 

To demonstrate the proposal safety factor determination method, a total of 

1345 mine gas samples are selected from three different mine fire events. Based 

on the Eq. (4.27) ~ (4.31), the distribution of safety factors is plotted as shown in 

Figure 4.15. Then, a simple statistics study has been done to investigate the par-

tition of range for the Safety Factor. The percentage numbers in this figure mean 

how many gas samples are located in the corresponding range. According to 

these results, a proper index system is proposed and is also listed in Table 4.7. 

Table 4.7 Recommended SF Values for different risk levels 

Risk levels Ranges Interpretations 

 

Very High >1 and ≤2.9 
High risk danger. Mine atmosphere should be phlegma-

tized. Not recommend to do any reuse works 

High >2.9 and ≤4.5 
Still high. Mine atmosphere should be watched very 

carefully. Not recommend to do any reuse works 

Medium >4.5 and ≤6 
Reuse works can be done unless the current mine at-

mosphere is maintained very well. 
Low >6 No risk exists, and reuse works can proceed 
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Figure 4.15 SF distributions based on mine gas samples 

 

4.8  Modified Coward Explosibility Diagram Method 

The Coward explosive triangle is a fast and easy way to determine the 

mine gas explosibility. However, the fundamental parameters wrong using or po-

tential negative influential factors may result in certain errors when it is applied. 

Compared with the original method, the modified Coward explosibility diagram 

conquers these problems and enhances the accuracy of the method. The major 

works made for such improvements are: (1) Expand the combustible gas species 

in the original version. It becomes better for dealing with the explosibility of mine 

gas, especially when facing a mine fire event or other mine accidents. (2) Devel-
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op a procedure to correct the Lower Flammable Limit (LFL) and the Upper 

Flammable Limit (UFL) in accordance with effects by the environmental tempera-

ture, the pressure or the contained inert gas. (3) Redefine the nose limit for each 

combustible gas. The traditional method to obtain these values only relies on the 

experimental approach. However, the new calculation method can derive them 

based on the UFL and LFL by a series of regression equations. Thus, it can en-

hance to popularize the Coward method. (4) Develop an equation to calculate the 

excess amount of inert gas for each combustible gas. (5) Introduce and define 

the concept of the explosibility Safety Factor (SF) when using the Coward me-

thod. Such factors can clearly notify mining engineers about the potential explo-

sive risk in a sealed mine gas atmosphere.  

The process of the modified Coward explosibility triangle diagram method 

can be described briefly as shown in Figure 4.16. 

 

4.9  Cross-verification Study 

In order to ensure the reliability of the judgments made using the modified 

Coward explosibility diagram method, the USBM explosibility diagram is used as 

a supplemental method to double check the results. The monitored atmospheric 

composition data both from normal underground coal mine atmosphere and vari-

ous spontaneous combustion/fire/explosion events after the mine was sealed 

were investigated by these two methods. In additional, the original Coward dia-

gram is also used to drive the gas-mixture explosibility.  
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Figure 4.16 Flowchart of modified Coward explosibility method 
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Table 4.8 shows the raw data for a total of 27 gas samples recorded from 

the mine atmosphere monitoring system. Figure 4.17 shows the state points of 

the mine atmosphere and the explosibility triangles using the modified Coward 

method, USBM explosibility diagram method and original Coward method follow-

ing the order of gas samples which are listed in Table 4.8.  

Table 4.8 Composition data recorded during a real mine fire 

Sam-

ple 

Num

ber 

O2 % N2 % 
CO2

% 

CH4

% 

CO 

ppm 

H2 

ppm 

C2H2 

ppm 

C2H4 

ppm 

C2H6 

ppm 

Explosibility 

By 

Modified 

Coward 

By USBM 

Method 

By original 

Coward 

1 20.24 78.59 0.11 1.06 53 0 0 0 0 No No No 

2 19.17 79.72 0.09 1.03 7 0 0 0 2 No No No 

3 18.75 77.47 0.10 3.67 41 0 0 0 8 No No No 

4 18.61 77.19 0.11 4.09 48 0 0 0 9 No No No 

5 18.96 76.26 0.11 4.66 40 0 0 0 10 No No No 

6 17.19 77.03 0.19 5.59 55 0 0 0 17 YES YES YES 

7 15.34 77.18 0.13 7.34 55 0 0 0 19 YES YES YES 

8 12.92 80.71 0.11 6.26 51 0 0 0 13 YES No YES 

9 12.65 80.45 0.13 6.76 49 0 0 0 15 YES No No 

10 11.30 81.89 0.17 6.63 54 0 0 0 16 YES No No 

11 10.40 85.49 0.10 4.00 56 0 0 0 14 No No No 

12 6.48 83.06 0.06 1.93 18 0 0 0 6 No No No 

13 7.90 81.09 0.12 10.88 48 0 0 0 17 No No No 

14 6.36 85.22 0.12 8.29 48 0 0 0 18 No No No 

15 6.54 84.21 0.16 9.09 47 0 0 0 20 No No No 

16 6.70 83.63 0.15 9.51 44 0 0 0 20 No No No 

17 4.93 84.91 0.17 9.98 41 0 0 0 21 No No No 

18 4.18 85.53 0.18 10.11 39 0 0 0 25 No No No 

19 4.26 84.97 0.19 10.58 45 0 0 0 25 No No No 

20 4.57 84.24 0.15 11.03 41 0 0 0 26 No No No 

21 4.55 87.82 0.17 7.45 33 0 0 0 32 No No No 

22 3.61 88.44 0.16 7.78 24 0 0 0 33 No No No 

23 4.11 85.76 0.14 9.99 23 0 0 0 27 No No No 

24 2.99 85.34 0.19 11.47 23 0 0 0 31 No No No 

25 3.95 85.80 0.14 10.11 18 0 0 0 17 No No No 

26 2.76 85.50 0.21 11.52 17 0 0 0 29 No No No 

27 2.71 83.30 0.29 13.70 15 0 0 0 34 No No No 
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It can be seen that all three methods get the same determinations of the 

mine gas explosibility for the gas samples 6 and 7. All are considered as explo-

sive gas-mixtures. However, it also should be noted that conflicting scenarios 

happened when determining the explosibility for the gas samples 8, 9 and 10. 

Samples 8, 9 and 10 are considered as non-explosive by USBM method, and 

samples 9 and 10 are also as by the original Coward method, but they are all 

considered as explosive by the modified Coward method. One of the reasons is 

that more combustible gases are included in the modified triangle, thus, the ex-

plosive zone becomes larger. It is also should be noted that, all the state points in 

these cases are very close to the boundary line of the explosibility triangle. They 

are easily to be determined as non-explosive by USBM method or original Co-

ward method but explosive by the modified Coward method. Hence, the modified 

method has better accuracy and safety than other two methods when being ap-

plied in practices. 

In addition, it also can be seen that all three explosibility diagrams can well 

demonstrate the histories of the gas state points of the mine atmosphere during 

the whole sampling process. Due to N2 injection to control the mine fire event, 

the gas-mixture is non-explosive at beginning but explosive later and the final 

state point (red point) was out of the explosibility triangle and could be consi-

dered as non-explosive at that time. In this case, the oxygen concentration and 

the nitrogen concentration play important roles for the determination of explosibil-

ity. In a time period, the nitrogen concentration is comparatively low while the 
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oxygen concentration is comparatively high and the gas-mixture in the sealed 

mine is judged to be explosive.  

 
 

a) Results from modified Coward explosibility diagram 

 
 

b) Results from USBM explosibility diagram 
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c) Results from original Coward explosibility diagram 

Figure 4.17 Determining mine atmospheric explosibility using three methods for 

testing cases 

Due to the importance of the safety issue, determination of the mine gas 

explosibility must be very carefully calculated. Only based on the calculation re-

sults and other considerations, any other management can be performed. There-

fore, it is highly recommended that two or more methods be used when analyzing 

the mine gas explosibility in order to avoid any potential problems from relying 

only one method. A comprehensive study should be done prior to any operations, 

particularly for planning and implementing a mine rescue strategy when facing 

any chemical reactions related to mine accident events (mine fire, gas explosion, 

dust explosion, etc.). 
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4.10  Summary 

 Determination of the explosibility is critical for mine rescues or controlling 

the severity of a mine accident, especially for a gas explosion event. In 

this chapter, a modified Coward explosibility diagram is proposed. 

 The Coward explosibility diagram is expanded. Beside carbon monoxide 

(CO), methane (CH4) and hydrogen (H2) in the original version, acetylene 

(C2H2), ethylene (C2H4) and ethane (C2H6) are now included into the new 

Coward explosibility diagram. Although the total amount of these gases is 

not large, they are significant to affect the explosibility of the gas mixture.  

 Considering the effects of inert gas, temperature and environmental pres-

sure on the flammable limits (general LFL and UFL), a method to correct 

the flammable limits is developed. Such correction can accurately obtain 

the ―ture‖ flammable limits for each combustible gas and is also a very im-

portant fundamental work to determine the mine gas explosibility. 

 A series of equation are used to redefine the nose limit for each combusti-

ble gas. It can provide precise parameter values with avoiding the experi-

mental approach. Therefore, that is also good for popularizing the Coward 

method. 

 Based on characteristics of the Coward triangle, an equation to calculate 

the excess amount of inert gas for each combustible gas is developed. 

 Explosibility Safety Factor (SF) is introduced. Such factor can provide a 

better understanding of sealed mine atmosphere for mining engineers and 
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also supportive guidelines when planning or implementing a mine rescue 

strategy for mine gas accident. 

 Though the cross-verification study, the testing results from the modified 

Coward method agree with that from USBM explosibility method, and it 

should be noted that the modified one can provide more careful judgments 

for critical scenarios. 
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5 CHAPTER 5 CIMMAS PROGRAM DEVELOPMENT 

WITH VISUAL BASIC 

5.1  Introduction  

As an integrated solution for analysis of the atmospheric status in sealed 

underground mine areas, a feasible and user friendly computer program which 

can cover all the previous research efforts should be developed. It is required 

that such computer program be capable of both predicting the gas species 

change trends and tracking of the explosibility of a mine atmosphere at any time 

points. Users can easily input data while the computer can automatically perform 

data preparations, information processing and transformation to final outputs with 

schematic and tabular views which are very helpful and useful for users to con-

duct the secondary analysis or prepare proper management strategies. 

In this chapter, a detailed design and structure of a computer program 

named ―CIMMAS‖ (Comprehensive and Integrated Model for Mine Atmospheric 

Status) is discussed. The software techniques or methods for developing CIM-

MAS are also examined. Finally, the component modules of the CIMMAS are ex-

plored and classified. 

 

5.2  Object-Oriented Programming (OOP) and Microsoft Visual 

Basic Language 
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5.2.1  Object-Oriented Programming (OOP) 

Historically, a program has been viewed as a logical procedure that takes 

input data, processes it, and produces output data. Therefore, the programming 

challenge was seen as how to write the logic, not how to define the data 

(SearchSOA, 2011). 

However, Object-Oriented Programming (OOP) is a programming para-

digm using "objects" – data structures consisting of data fields and methods to-

gether with their interactions – to design applications and computer programs 

(Wikipedia, 2011). It was not commonly used in mainstream software application 

development until the early 1990s. Now, many modern programming languages 

including Visual C++, JAVA, C#, etc. now support OOP. The important benefits 

of applying OOP into software languages are listed as follows (SearchSOA, 

2011): 

 The concept of a data class makes it possible to define subclasses 

of data objects that share some or all of the main class characteris-

tics. Called inheritance, this property of OOP forces a more thorough 

data analysis, reduces development time, and ensures more accu-

rate coding. 

 Since a class defines only the data it needs to be concerned with, 

when an instance of that class (an object) is run, the code will not be 

able to accidentally access other program data. This characteristic 

of data hiding provides greater system security and avoids unin-

tended data corruption. 
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 The definition of a class is reusable not only by the program for 

which it is initially created but also by other object-oriented pro-

grams. 

 The concept of data classes allows a programmer to create any new 

data types which are not already defined in the language itself. 

 

5.2.2  Microsoft Visual Basic language 

Visual Basic (VB) language was derived from BASIC and enables the rap-

id application development (RAD) of graphical user interface (GUI) applications, 

access to databases using Data Access Objects, Remote Data Objects, or Acti-

veX Data Objects, and creation of ActiveX controls and objects. Moreover, Visual 

Basic is the third-generation event-driven programming language and integrated 

development environment (IDE) from Microsoft for its Component Object Model 

(COM) (Wikipedia, 2011). 

Like the BASIC programming language, Visual Basic was designed to be 

easily learned and used by beginner programmers. The language not only allows 

programmers to create simple GUI applications, but can also develop complex 

applications. Programming in VB is a combination of visually arranging compo-

nents or controls on a form, specifying attributes and actions of those compo-

nents, and writing additional lines of code for more functionality. A programmer 

can put together an application using the components provided with Visual Basic 
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itself. Programs written in Visual Basic can also use the Windows API, but doing 

so requires external function declarations. 

 

5.3  Design of CIMMAS 

5.3.1  Graphical User Interface (GUI)  

Graphical user interface (GUI) is a type of user interface that allows users 

to interact with electronic devices with images rather than text commands. GUIs 

can be used in computers, hand-held devices such as MP3 players, portable 

media players or gaming devices, household appliances and office equipment. A 

GUI represents the information and actions available to a user through graphical 

icons and visual indicators such as secondary notation, as opposed to text-based 

interfaces, typed command labels or text navigation. The actions are usually per-

formed through direct manipulation of the graphical elements (Wikipedia, 2011). 

The main view of ―CIMMAS‖ program is shown in Figure 5.1. 

 

5.3.2 Structure of CIMMAS 

Based on the requirements for analyzing atmospheric status in a sealed 

mine area and characteristics of the models, an integrated software program is 

constructed in this dissertation using the structures as illustrated in Figure 5.2. 
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Figure 5.1 Main view of CIMMAS 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Schematic structure of the CIMMAS program system 
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Basically, the software program has two modules, the first one is the mod-

ule of simulating atmospheric gas species changes in a sealed mine area; the 

second one is the module of modified Coward explosibility diagram. Although the 

functional modules are independent with each other, they share the same data 

source. The results calculated from the module of simulating atmospheric gas 

species changes are stored in a database, and also can be used as the input da-

ta for the module of modified Coward explosibility diagram to determine the ex-

plosibility of a gas-mixture sample. Meanwhile, the database also handles with 

the results from the module of modified Coward explosibility diagram indepen-

dently. All the data can be outputted by forms of tabular and graph. Such expres-

sions can give users an intuitive impression. 

In summary, the procedure of this computer program can be performed in 

various sequences as long as the required input data are available. A typical 

process of mine atmospheric status analysis would generally go through the fol-

lowing procedures (Figure 5.3). 

 

5.3.3  Required input data 

Generally, three categories of input data are required by CIMMAS. They are:  

(1) Field measurement data: consist of data representing basic characteris-

tics of the research object, including initial volumetric percentage for each 

gas species in mine sealed area (Mainly: CH4, CO, N2, C2H2, C2H4, C2H6, 

CO2, H2 and O2), injection mass flowrate of inert gases (CO2 and N2), ini-
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tial pressure of the sealed area, average environmental temperature be-

hind the mine seals, total volume of the sealed area, air resistance of the 

mine seal, the number of seals used to isolate the mined-out area and 

coal mine gas (mainly CH4) emission rate from the surrounding rock stra-

ta in an underground mine. 

(2) Barometric pressure data: the recommended typical barometric pressure 

curves, which are diurnal, monthly and annual barometric pressure fluc-

tuation curves for three different locations (Northern Appalachian, Central 

Appalachian and Illinois coalfields) are already integrated into the soft-

ware program based on measurements of local barometric pressures. 

However, if user has actual or more detailed barometric pressure data, 

the program can also allow them to input them during calculations. 

Hence, more accurate and reasonable results can be expected.   

(3) Fundamental gas data: generally, the following two categories of gas da-

ta need to be inputted.  They are: flammable limits and properties for 

each gas species. The gas flammable limits consist of two individual lim-

its; one is the lower flammable limit (LFL) and the other is the upper 

flammable limit (UFL). The gas properties refer to the gas density and the 

gas constant. 
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Figure 5.3 Typical data flow chart of sealed mine atmospheric status analysis 
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5.3.4  CIMMAS Modules 

As stated earlier, a number of functional modules are assigned to accom-

plish different drawing tasks in the developed system. These modules can be 

classified into the following major groups by their designated goals: 

5.3.4.1  Atmospheric gas species changes predication module 

Understanding the gas species changes over time in a sealed volume is 

very significant for effectively managing the sealed mine atmosphere. The most 

important factors for controlling the atmospheric compositions include: barometric 

pressure changes, mine seals, gas categories and their changes which has been 

detail analyzed in Chapter 3. These are incorporated into the developed mathe-

matical model. Based on the control volume approach by following the law of 

mass conservation and the ideal gas law, the developed new mathematical mod-

el is programmed in this module. The program can handle up to nine different 

gas species, which are CH4, CO, N2, C2H2, C2H4, C2H6, CO2, H2 and O2, and si-

mulate their time-dependent changes in a sealed volume. Graphs or tablet files 

can be outputted by the software package for users to conduct secondary analy-

sis in the future.  
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Figure 5.4 Screenshot of atmospheric gas species change predication module 

 

5.3.4.2  Explosibility analysis module 

The explosibility of the air-gas mixture depends on the composition of 

combustible gases, oxygen and inert gases. The modified Coward‘s method with 

considering more combustible gases found in coal mines to generate the explo-

sibility triangle is incorporated into the program. All calculation procedures, in-

cluding correcting the LFL and the UFL, redefining nose limits, determining the 

excess inert gas amount, etc. are computerized in the program module and the 

explosibility Safety Factors (SF) when using the Coward method are also output-

ted by the program. In addition, the software can also be able to track the explo-

sibility change trend of a sealed mine atmosphere. All these are good for mining 
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engineers to know the potential explosion risk of a mine sealed atmosphere and 

such applications of this module can contribute in effectively managing the 

sealed mine atmosphere. 

Due to the importance of the safety issue, determination of the mine gas 

explosibility must be very carefully calculated. All mitigation measures or other 

managements can be established or performed only based on fully considering 

these calculation results. Therefore, it is highly recommended that two or more 

methods be used when analyzing the mine gas explosibility in order to avoid any 

potential error deviations (not sufficient accuracy, etc.) if only one single method 

is relied on. Due to this reason, the USBM explosibility diagram is also included 

in this program package for user to conduct a double check. 

 

Figure 5.5 Screenshot of explosibility analysis module 
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5.4  Summary  

 Visual Basic 6.0, an Object Orientation Programming Language, is used to 

code the program of CIMMAS. 

 A brief Graphical Users Interface (GUI) is also created in the computer 

software and it is helpful and useful for user to perform any calculations or 

analysis. 

 The structure and the standard calculation procedure of the computer pro-

gram ―CIMMAS‖ are both stated. Two functional modules, which are the 

atmospheric gas species change predication module and the explosibility 

analysis module, are included in this computer program for analyzing the 

atmospheric status in sealed underground mine areas. 
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6 CHAPTER 6 ILLUSTRATIVE EXAMPLES OF CIMMAS 

6.1  Introduction  

In order to implement various mathematical models developed in this re-

search, a new software program, CIMMAS, has been developed for systematical 

analyses of the sealed mine atmospheric status. As previously stated, the soft-

ware program is coded by Visual Basic Language, and can be run under the 

Windows Operating System. It is a useful tool to improve the mine safety man-

agement and also helps mining engineers better understand the behavior of the 

mine sealed volume. In this chapter, the following examples serve as an intro-

duction of these new features of CIMMAS. 

 

6.2  Case Study 1 

6.2.1  Description of case  

A mine‘s ventilation system is an important component of an underground 

mining system. It provides a sufficient quantity of air to the underground mine 

workings, to dilute methane and other contaminants, to maintain a suitable work-

ing environment and prevent accidents from happening. For the mined-out areas, 

in order to improve ventilation efficiency, underground coal mines normally 

choose to seal old mined areas so that ventilation to these areas is no longer 

needed.   
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Typically, normal mine atmosphere contains about 21% oxygen and 79% 

nitrogen and less than 1% methane. But once a mined area is sealed, composi-

tion of the mine sealed atmosphere will begin to change, some coals will slowly 

oxidize and therefore remove oxygen and release carbon dioxide into the atmos-

phere of the abandoned area. However, with few exceptions, all underground 

coalbeds liberate methane, and thus the methane concentration within the sealed 

areas will increase (Zipf, et al., 2007). Generally speaking, methane is explosive 

in air when the concentration ranges from 5% to 16% by volume (Cashdollar, et 

al., 2000). Therefore, the sealed atmosphere finally will go through a critical pe-

riod in which methane concentration is in the explosive range. It is reported that 

the time required for the atmosphere in the sealed area to pass beyond the upper 

explosive limit and become inert ranges from about 1 day to several weeks (Zipf, 

et al., 2007). In most cases, the mine‘s methane emission rate plays an important 

role in controlling the time range of so-called critical period. 

In this case, an old coal mine area is simply sealed without any inertiza-

tion.  The simulation is performed to find how long the critical period would be.   

 

6.2.2  Data completion  

In order to cross-validate the developed mathematical model, the parame-

ters used in this case are chosen from one of the previous research works (Zipf & 

Mohamed, 2010), as following statements: 

• Initial gas compositions are: CH4: 0%; N2: 79% and O2: 21%.  
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• The barometric pressure fluctuation curve is change with 6,000 pa de-

creasing over 5 days. 

• The temperature sealed is set as 10 ℃ (283 K). 

• The total sealed volume is 1,000,000 m3 . 

• The CH4 volumetric inflow rate in the sealed area is 0.25 m3/s and the 

equivalent mass inflow rate is 0.167 Kg/s. 

• In order to fit the leakage coefficient which is 0.00625 m3/s/Pa1/2 presented 

in their model, the total of mine seals used to isolate the mined-out area is as-

sumed as 1, and the equivalent air resistance is 25,600 N.S2/m8. 

 

6.2.3  Simulation results 

Figure 6.1 shows the development trends of the gases in the sealed area. 

Due to continuous CH4 inflow from surrounding strata, all gas concentrations de-

crease except CH4. The increasing and high CH4 concentration would cause the 

sealed area to become inert itself. In addition, both the results calculated by the 

old model (Zipf & Mohamed, 2010) and the new mathematical model presented 

in this paper are shown in this figure. The curved lines without markers are the 

calculation results calculated by Zipf‘s model, while the ones with markers indi-

cate that they are calculated by the new mathematical model. It can be seen that 

the change rate of Zipf‘s model for each gas species is a little bit faster than that 

of the new model, which means the sealed mine area becomes self-inertized 

sooner based on their results. For an instance, the old model presents a CH4 
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concentration of 20% can be reached in about 9.3 days, but 11.2 days are 

needed for the new one. 

 

Figure 6.1 CH4, N2, and O2 change over time in the sealed volume 

A slight difference between the results from these two models can be ex-

plained as follows: a) Zipf‘s model was derived based on the time rate of change 

for each gas species, but the new model is developed by the control volume ap-

proach.  The thermodynamic laws are for a system, a specific quantity of matter. 

More often, we are interested in what happens in a fixed volume. For example, 

the rates of heat or mass into and out of a system may be interested. For this 

reason, the control volume form of the system laws is of great importance. It as-

sumes only the incompressibility of the fluid and therefore is a potentially more 

accurate approach. Hence, because a mine sealed volume is a typical control 

volume, this approach may provide a better way to characterize the evolution of 

the sealed mine atmosphere; b) The difference in the determination of the air/gas 
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leakage rate also can contribute to the slight difference. In Zipf‘s model, the air 

leakage rate is only considered as the function of the differential pressure. How-

ever, it is defined as 
( ) ( )b t

L

P t P t
Q n

R


  in the new model, which is not only as a 

function of the differential pressure, but also has an important relationship with 

the number of mine seal used when performing sealing practices and the air re-

sistance for a single mine seal. In other words, the number of seals and the quali-

ty can induce the air/gas leakage rate changes, and then make a great impact on 

the sealed mine atmosphere. Different combinations of these two parameters 

can results in different prediction results. Figure 6.4 shows that when different the 

number of mine seals is used to isolate the same volume in this case (“■” 

stands of 3 seals used;  ―◆‖ represents 5 seals used and ―×‖ for 7 seals). It can 

clearly see that developing trends of concentrations of each gas species in the 

volume are changed a lot by the effects of mine seal. It also shows that the num-

ber of mine seal is a very important parameter. In this case, more seals used 

may create more leakage and finally change the gas species‘ development 

trends. Therefore, in a practice application, it must be precisely estimated.  

 



138 

 

 

Figure 6.2 Effects of different number of mine seals used 

In order to check its explosibility, the modified Coward diagram and the 

status points with a time step of 15 hours are determined and plotted in Figure 

6.3 for the first fifteen days based on the mew model‘s calculation results shown 

in Figure 6.1. The area of explosibility triangle remains constant since only one 

combustible gas (CH4) exists in this case. As methane is continuously emitted 

into the sealed volume, the gas status point always moves. The red triangle is 

that at the end of simulation duration. Figure 6.3 also shows that the status point 

moves from left into the explosive zone on the third day after the area is sealed 

and moves out of it on the right on the eighth day. In other words, the critical time 

to manage the atmosphere in the sealed area lasted 5 days. The red dot is the 

final state point of the simulation duration.  
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Figure 6.3 Explosibility analysis 

 

6.3  Case Study 2 

6.3.1  Description of case  

In this case, inertization effort has been made to shorten the critical time 

period for managing the atmosphere in a sealed coal mine area. 

Due to a mine fire event that happened in a mine gob in a Chinese coal 

mine, the longwall panel was sealed immediately, and mine operators carried out 

a mitigation measure which is N2 injection to control the mine fire. The longwall 

panel uses the comprehensive mechanized coal mining method. Figure 6.4 

shows the portion of the longwall panel of interest and its original ventilation air-

flow pattern. The mining direction is from left to the right in the figure.  
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Figure 6.4 longwall panel layout 

Table 6.1 Chronicle of Main Events 

Date Time Main Events 

Day 1 6:20AM Mine Fire found 

Day 1 8:40 PM Longall panel sealed 

Day 1 23:00 M N2 Injected into gob from surface with 8000m
3
/h 

Day 11 12:00 AM Mine ventilation recover 

 

6.3.2  Data completion  

Two observation points are chosen to conduct the simulations in this case. 

One is the observation point at crosscut 21 and the other is the observation point 

at 32213(1) main return. Both the simulation results and the actual field measure-

ments are going to be plotted and be compared later. The parameters used in 

this case are as following statements: 

For the observation point at crosscut 21: 
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• Initial gas compositions are: CH4: 0.55%; CO: 125ppm; N2: 79.97%; O2: 

19.35%; CO2: 0.9267% and C2H6: 32ppm.  

• The barometric pressure fluctuation curve is fitted by using local data. 

• The temperature sealed is set as 50 ℃ (323 K). 

• The total sealed volume is 178,500 m3. 

• The CH4 volumetric inflow rate in the sealed area is 0.4 m3/s and the 

equivalent mass inflow rate is 0.2672 Kg/s. 

• The N2 volumetric inflow rate in the sealed area is 2.22 m3/s and the 

equivalent mass inflow rate is 2.588 Kg/s. 

• The total of mine seals used to isolate the mined-out area is 17, and the 

equivalent air resistance is 2795 N.S2/m8 

For the observation point at 32213(1) main return, only initial gas percen-

tages are changed. Others are the same as before. 

• Initial gas compositions are: CH4: 0.6981%; CO: 1949 ppm; N2: 

79.4075%; O2: 19.3615%; CO2: 1.2041% and C2H6: 39ppm.  

 

6.3.3  Simulation results 

The simulation results (marked as Sim.) and measured data for the obser-

vation points at crosscut 21 and 32213(1) main return are shown in Figure 6.5 and 

Figure 6.6, respectively. 
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(a)N2 and O2 

 

(b) CH4 and CO2 
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(c) C2H6 and CO 

Figure 6.5 Different gas species changes over time in the sealed volume at point 

crosscut 21 

 

(a)N2 and O2 
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(b) CH4 and CO2 

 

(c) C2H6 and CO 

Figure 6.6 Different gas species changes over time in the sealed volume at point 

32213(1) main return 
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Overall, a good agreement between the calculation result from the ma-

thematical model and the actual measurement has been obtained for most gas 

species at these two observation points. It can be seen that all concentration 

changes of the gases in the sealed volume is changing over time. Because of the 

N2 injection, the concentration of N2 in the sealed volume increases (As shown in 

Figure 6.5a and 6.6a). The concentration of CH4 also increases with time be-

cause of the high methane emission rate in this gassy mine. But the concentra-

tions of the other gases, such as, CO, CO2, etc. decrease due to the diluting ef-

fects of N2 injection. 

It also can be seen that a poor matching of CO and C2H6 for the crosscut 

21. The predicted CO and C2H6 concentrations drop more largely than the meas-

ured CO and C2H6 concentrations. But it has to be noted that a small scale of 

thermal event (coal oxidation or spontaneous combustion) is still going on in gob 

area when the monitoring CO and C2H6 concentration data were collected. How-

ever, the prediction model doesn‘t take into account any chemical reactions. The 

CO and C2H6 released from the spontaneous combustion can be employed to 

explain why the monitored concentrations are higher than the predicted.   

In order to check the effectiveness of N2 inertization, for the first thirty 

hours after N2 injection, the explosibility of the mine atmosphere in the sealed 

area is determined using the modified Coward diagram method in a proper time 

step for sample collect points at the crosscut 21 and the main return as Figure 

6.7. The resultant explosibility triangle and the actual atmosphere status point at 

each step are determined and plotted in same as Figure 6.7. It shows that the 
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air-gas mixture is not explosive at the beginning. But as the nitrogen is injected 

and the methane keeps influx into the sealed area, the size of the explosibility 

triangle enlarges and the lower right side of the triangle moves toward the right. 

The point also moves toward the lower edge of the triangle. Initially, the air-gas 

mixture is out of the explosive triangle and can be considered as not-explosive 

but comes into it later, and, eventually, exits the explosive triangle. In summary, 

the totals of critical time for these two scenarios are about 8 and 7 hours, respec-

tively. Therefore, it can be seen that the N2 injection has great impacts on inert-

ing a mine sealed volume, and can shorten the critical time period to minimize 

the explosibility risk.  
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a) Crosscut 21 

 

b) 32213(1) main return 

Figure 6.7 Time-series plots of the explosibility triangles and the mixture points  
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7 CHAPTER 7 CONCLUSIONS 

7.1  Summary and Conclusions  

Gas explosions originated from sealed mine areas in underground present 

a serious safety threat for coal miners and also have long been a concern and 

threat to mining engineers. A good understanding and reliable prediction of the 

status of the sealed coal mine atmosphere would contribute to the safe operation 

of coal mines. The dissertation research dedicates to improve the understanding 

the status of the sealed coal mine atmosphere and also to help mining engineers 

easily analyze the behavior of a coal sealed mine volume. This research work 

leads to the following conclusions:  

 Based on the law of mass conservation and the ideal gas law, a step-wise 

dynamic mathematical model using the control volume approach to simu-

late the sealed mine atmospheric gas species changes over time has 

been developed.  

 The atmospheric air prediction model proposed in the research is capable 

of predicting nine gas species including CH4, CO, N2, C2H2, C2H4, C2H6, 

CO2, H2 and O2. An approach is based on identified the air-inflowing and 

the gas-outflowing process.  

 Various influential factors affecting the atmospheric gas species changes 

in the sealed area have been extensively investigated and analyzed. The 

investigated influential factors include: (1) Barometric pressure:  A set of 

mathematical functions are created to represent three typical barometric 
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pressure fluctuation curves for three typical U.S. coal field locations using 

mathematical curve fitting approach based on the measured local barome-

tric pressure data; (2) Coal mine seal: The impact of mine seals on the 

atmospheric air status is carefully investigated in this dissertation, and an 

equation is  proposed to characterize the effects of mine seals on the at-

mosphere in the sealed mine area considering different types of the mine 

seal and the number used; (3) Gas species:  the categories of gases 

which make up the sealed atmosphere are listed and their changing cha-

racteristics are also stated. All these influential factors have been incorpo-

rated into the mathematical model.  

 Validation study of the atmosphere prediction model in the sealed mine 

area has been conducted in a real coal mine. A good agreement between 

the calculation result from the mathematical model and the actual mea-

surement has been obtained. 

 An improved and modified Coward explosibility diagram is proposed in this 

dissertation. Five improvements have been made to the original Coward 

explosibility diagram: (1) The original Coward diagram has been expanded 

to take into account more combustible gases, which are commonly found 

during a mine fire or a coal spontaneous combustion event; (2) Flammable 

limits (general LFL and UFL) as the fundamental parameters to determine 

the mine gas explosibility has been calibrated  with the effects of environ-

mental factors, such as temperature, pressure or contained inert gases, 

based on a proposed procedure; (3) A series of equations are used to re-
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define the nose limit for each combustible gas that is good for popularizing 

the Coward method; (4) An equation to calculate the excess amount of in-

ert gas for each combustible gas is developed; (5) The concept of explosi-

bility safety factor (SF) is introduced and defined to provide supportive 

guidelines when planning and implementing a mine rescue strategy.  

 A cross-verification study has been conducted with both the original Co-

ward method and the USBM explosibility diagram method. The results 

from the verification study shows that the modified Coward method has 

better accurate judgments on mine gas explosibility than the original Co-

ward method.  

 A new software program, CIMMAS (Comprehensive and Integrated Model 

for Mine Atmospheric Status), has been developed and also has included 

all the previous research findings. CIMMAS is coded with Visual Basic 

language, which is an Object Orientation Programming (OOP) Language. 

A very user-friendly Graphical Users Interface (GUI) is created to help us-

ers to operate the software easily.   .  

 Two functional modules of CIMMAS including the atmospheric gas spe-

cies changes predication module and the explosibility analysis module is 

introduced and illustrated thoroughly and the structure of CIMMAS and its 

standard procedure are also stated.  
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7.2  Recommendations for the Future Research 

Based on the conclusions carried out in this research, the following work is 

recommended for any future studies: 

(1) Chemical reaction, such as coal oxidation, may take place in the 

seal areas. In that case, it would result in the CO or CO2 production 

or O2 depletion. In order to represent them very well, to generate 

depletion rates should be considered. It is recommended to do ex-

perimental analysis or field measurements to determine their proper 

values and integrate them into the mathematical model. 

(2) It can be seen that a lot of input parameters are needed when using 

the computer program to conduct the consulting works. Therefore, 

a summary of recommended values for different parameters with 

respect to different scenarios should be finished in the future. It can 

also be collected as a reference guide for the software program us-

ers. 

(3) Generally, a coal mine have an atmosphere monitoring system, 

some atmospheric data can be collected from such system. There-

fore, a new research direction is going to combine the computer 

software with the monitoring system. All the data can automatically 

be provided by the monitor detectors and the program outputs can 

also be calibrated timely. It is good for offering more accuracy re-

sults. 
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(4) The concept of explosibility Safety Factor (SF) is the first time to 

propose. Although the developed equations to calculate the SF 

have already considered various explosibility scenarios and also 

combined their effects into the equations, the coefficients used may 

not be very perfect to identify risk levels for all possible circums-

tances in mine reality. Therefore, it suggests that they should be 

improved in the future research once more real mine gas sample 

data are available. In addition, the experimental study is also 

another approach which is highly recommended to investigate a set 

of precise coefficients.   

(5) Coal mine seals play an important role to control the sealed mine 

atmosphere. Current mining regulations require mining companies 

to either ventilate or seal abandoned mining areas. Due to the me-

chanization production of the underground coal mining, a large ab-

andon volume becomes more and more common and that puts a 

management challenge for mine operators. On the other hand, the 

high building cost of mine seals is also another economic judgment 

for mining engineers. Therefore, ventilating or sealing an under-

ground area is a wisely selection. Mining engineers must balance 

the relationship between the ventilation capacity and the capital 

costs to effectively manage the mine abandon areas. 
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