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Abstract

Uncertainty Quantification Through Bayesian Analysis for a Fixed Bed

Experiment of Carbon Capture Using Polyethylenimine (PEI) Solid Sorbents

Brian Logsdon

With greenhouse gas emissions becoming a major concern and topic for research over the

past decade, much effort has been supplied into the progress of reducing these emissions.

Carbon dioxide concentration has increased over past 60 years. A major source of this

emission is post combustion coal power plants. In order to reduce these emissions, many

carbon capture and storage technologies are being researched and developed. A major issue

confronting this research is investigating these technologies on multiple scales. For example,

solid sorbents experience phenomena on a quantum and macroscopic scale. Thus a bridge

must be made between these two scales.

This thesis investigates a fixed bed experiment, proposes a model for both the flow and

adsorption of CO2 & H2O, and then quantifies the uncertainty of parameter estimations

made with comparing the model to data. The model and uncertainty quantification was

implemented in a C++ tool set. The power of this tool set lies in the ability to extract more

information out of bench scale experiments than traditional optimization methods. This

leads to better predictions in modeling a larger (process) scale, better understanding of the

mathematical model used at the bench scale, and information to design better bench scale

experiments to reduce the uncertainty.

The results of this analysis with the proposed model showed the posterior predictions

covering the real data set. In other words, the posterior distribution includes a set of param-

eters that are the “true” values. Information on the certainty of each parameter estimation

was also obtained in this analysis.
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Chapter 1

Introduction

Currently a major subject of research is focused on power & energy systems. Much of this

work involves investigating and using mathematical models to obtain information about ma-

terial properties and their respective behavior when exposed to different conditions. However,

these materials must be used at an industrial scale. The extrapolation of these results from

smaller scale to the larger scale is not a straight forward process because the error is also

extrapolated. Thus more intelligent methods must be used, i.e. uncertainty quantification

through Bayesian analysis.

1.1 Objective & Contributions

The ultimate goal & objective of this work is to provide a tool set capable of providing

single point estimates, as well as uncertainty quantification, for reaction enthalpies, entropies,

activation enthalpies, pre-exponential factors, and site densities for amine solid sorbents used

in carbon capture & storage systems. As it stands now, technologies for this application face

a major time and expense challenge when dealing with the connection of modeling in this

multi-scale problem. This work will add to the CCSI tool set allowing for fixed bed reactor

data to be analyzed to learn more about amine sorbents.
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1.2 Thesis Structure

The structure of this thesis starts with the background and motivation. Overviews of global

climate change, greenhouse gases, carbon capture technologies, and multi-scale modeling

will be discussed. This will then lead into a discussion of thermo gravimetric data, its

analysis, and motivation for fixed bed reactor experiments. The next section contains the full

description and derivation of the mathematical model for the fixed bed reactor experiment,

along with the analysis methodology. Lastly the results and conclusion of this analysis and

tool set will be discussed.
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Chapter 2

Background

2.1 Global Climate Change

Global climate change due to greenhouse gases has been a major topic of concern and research

over the past couple decades. Greenhouse gases include methane, carbon monoxide, nitrous

oxide, chlorofluorocarbon, and primarily carbon dioxide. According to the United States

Environmental Protection Agency (EPA), in 2013, CO2 gas accounted for 82% of all U.S.

greenhouse gas emissions from human activities. [1] There are many ways CO2 can be emitted

into the atmosphere. Sources of these emissions include agriculture, industrial processes,

transportation, and primarily production of electricity. The EPA reports, in 2013, that

31% of all greenhouse gas emissions are caused by the burning of fossil fuels to produce

electricity. [1] These fossil fuels include coal, oil, and natural gas.

The main question surrounding this is what do these emissions result in? The final

outcome of greenhouse gas accumulation is not known. What is known is that scientific

evidence exists proving greenhouse gases are a factor in earth heating up. This, on a general

level, occurs during the interaction between the sun and earth. The sun radiates energy

to earth that is either absorbed or reflected back to space. Non-greenhouse gases do not

interfere with this process. However, greenhouse gases absorb some of the energy being
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reflected back to space. That energy or heat is then trapped within in earth’s atmosphere.

The trapped heat then leads to an overall temperature increase in earth’s climate. For this

reason, these effects are of deep concern, to ensure the planet’s stability.

2.2 Carbon Dioxide Gas Accumulation

CO2 gas accumulating in the atmosphere is obviously a concern due to the effect described

above. Due to current emissions the concentration of carbon dioxide in the atmosphere is

on the rise. Below is a figure of the carbon dioxide concentration in the atmosphere for the

past four years supplied by the National Oceanic & Atmospheric Administration (NOAA).

Figure 2.1: CO2 trend over past four years [40]
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As shown above the concentration of CO2 is on the increase globally. The EPA reports

that in 1950 the concentration was just above 300 ppm (parts per million). [1] It is clear

to see that over the past 65 years CO2 concentration in the atmosphere keeps escalating

and will continue unless adjustments are implemented. As it stands, non-fossil fuel energy

alternatives such as nuclear, biomass, solar energy, etc cannot fulfill the every growing energy

demand of today. This is due to the level of cost and risk involved with these sources. [18]

Until theses sources become more cost effective and risk is reduced, other measures need to

be taken. To combat the build up of carbon dioxide in the atmosphere, carbon capture &

storage (CCS) systems are being researched and developed.

2.3 Carbon Capture & Storage

One group pursing this is the Carbon Capture Simulation Initiative (CCSI) Project. The

CCSI project began in February of 2011 and is Department of Energy (DOE) funded. This

project is a partnership among national laboratories, industry, and academic institutions

that is developing, demonstrating, and deploying state-of-the-art computational modeling

and simulation tools to accelerate the commercialization of carbon capture technologies

from discovery to pilot scale, demonstration, and ultimately widespread deployment to hun-

dreds of power plants. [36] With power plants being a crucial point of impact for greenhouse

gas, many technologies have been researched with the mission of reducing these emissions.

Technologies for this include amine scrubbing, membrane separation and cryogenic separa-

tion. [18] Figure(2.2) presents a strawman of the different technologies used in CCS.
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Figure 2.2: CO2 capture technologies strawman [18]

Next a discussion of the categories in Figure (2.2) will be discussed based on their current

progress, advantages, and disadvantages.

2.3.1 Absorption

Chemical absorption technologies consist of a gas or fluid being dissolved by another fluid.

In carbon dioxide capture, the absorbent is either a alkaline, ionic-liquid based, or blended

aqueous solvent which neutralizes CO2 gas. [51] When the CO2 gas comes in contact with the

solvent, the gas is absorbed from the gas phase into the liquid phase. This takes place in what

is called the absorber. Now having the CO2 trapped, the solvent can be heated which breaks

the solvent down into a concentrated flow of carbon dioxide. This process is completed in the

stripper. The concentrated stream of CO2 is then compressed for transportation and storage.

The left-over solvent can then be recycled back into the absorber for capture again. The

operating pressure for this method of CCS is usually around 1.0 bar. The absorber operates

around 40°C to 60°C, while the striper generally operates around 120°C to 140°C. [51] The

proposed chemistry for absorption in amine solvents is presented in Figure (2.3).
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Figure 2.3: Proposed reaction chemistry for chemical absorption in amine solvents [17]

Figure (2.3) proposes the absorption mechanism using primary and secondary alka-

nolamines in liquid based amine solvents. [17]. As shown in the figure, the majority of

carbon dioxide that has been dissolved in the solvent will form bicarbonate. For this to be

stable, two amines per mole of CO2 is required in the aqueous media. [17]

This technology has many advantages, with the first being its maturity. Chemical ab-

sorption has been commercialized for many decades, but not for CO2 capture. Another

advantage is that the technology can be added to existing power plants. [51] This will lower

cost when designs for adding CCS technologies to power plants are implemented. Lastly, the

transportation and handling of these absorbents are much easier than a solid adsorbent.

This technology also faces disadvantages as well. These solvents have a low CO2 loading

capacity. [51] This is a major disadvantage for cost purposes. With a low carbon dioxide

loading, more solvent is necessary, which adds to the price of the solvent, as well as the cost

of transportation and handling. Equipment corrosion and amine degradation are also major

concerns with this technology. Lastly the regeneration process require a large amount of

energy.
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2.3.2 Membrane Separation

Another technology for carbon capture that has been investigated is membrane separation.

The primary idea behind membrane separation is that the membrane is used to selectively

separate the gas of concern (CO2) from a mixture of gases. This technology has already been

commercialized for the removal or carbon dioxide from natural gas. [35] Silica, inorganic,

polymeric [45, 42], carbon, alumina, facilitated transport membranes [42], and more have

been investigated for this application. The two characteristics of a membrane that control

the separation are the permeability and selectivity to the gas of interest. These parameters

of the membrane are affected by the material properties of the gas, velocity of the flow,

and membrane material properties. Figure(2.4) represents a schematic for plate membrane

separation.

Figure 2.4: Schematic of membrane separation [13]

The first advantage of this technology deals with the energy cost associated with it. Heat

is not needed for regeneration like the previously discussed absorbents. Another advantage

is the simplicity of construction of this technology. No moving parts and the ability to be
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quite compact allow for relatively easy control and operation. [42] However, this technology

is plagued by crucial disadvantages. The operating temperature of these membranes must

not exceed 100°C if the membrane is organic, or the membrane will deteriorate quickly. This

requires the cooling of the flue gas, which adds complexity and cost. Also, impurities in the

flue gas extremely affect the performance of the membranes. Lastly, membranes are do not

have a high enough selectivity or permeability for CO2. This results in low capture rates

and makes this technology ineffective for CCS applications. [38]

2.3.3 Cryogenic Separation

Cryogenic separation is another method for carbon capture. This technology involves the

separation of CO2 using condensation. A major requirement of this technology is that any

impurities must be removed from the flue gas before using this process. If this is completed,

the conditions can be set in which CO2 condense, while N2 remains in the gas phase. One

method of this process was proposed by Tunier’s group. The process consists of using a

packed bed set up, in which the CO2 is de-sublimated into the packing material. Then it

is released to produce pure CO2 gas. [47]. Another method was proposed by Clodic’s group

involving the use of heat exchanger fins.CO2 is de-sublimated onto the surface of the fins,

and then it is recovered as liquid carbon dioxide at high pressures. Figure (2.5) is a process

diagram of this proposal. [9]
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Figure 2.5: Process diagram of cryogenic separation [44]

2.3.4 Adsorption

One promising technology for CO2 gas capture is adsorption. Adsorption differs from absorp-

tion because adsorption deals with the intermolecular forces between the gas and sorbent.

Instead of CO2 gas dissolving into a solvent and then binding to the amines, the gas is ad-

sorbed on the surface of the sorbent. The mechanism for adsorption can be broken down

into two types, physisorption and chemisorption.

Physisorption

Physisorption is the process of the gas forming a physical bond with the sorbent. This

is a much weaker bond than chemisorption, however can be used for CO2 separation ap-

plications. Materials for this process are porous solid adsorbents. Characteristics such as

pore size, distribution, structure, and active surface structure are the key factors in ad-

sorption efficiency. Materials for this application include but are not limited to activated

carbons [11], ordered mesoporous silica [30, 10, 6], zeolites, and metal-organic frameworks
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(MOFs) [27, 50, 39, 48, 4, 3, 5, 25, 28]. A comparison of CO2 loading between these materials

is shown in Figure (2.6).

Figure 2.6: Comparison of volumetric CO2 capacity for MOFs, zeolite 13X pellets and
MAXSORB carbon powder [37]

Advantages of this technology consist of low cost, high thermal stability, and ease or

regeneration. Disadvantages include a negative affect of temperature on adsorption capacity.

Also this technology has low CO2 selectivity, which is a major drawback.
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Chemisorption

Chemisorption is the process of gas molecules coming into contact with the surface of the

sorbent and forming a chemical bond. This is a much stronger bond than the previously

discussed physical bond. In 1992, silica supported amines were first introduced for the

process of CO2 capture. [46] There are two types, ordered porosity and disordered porosity.

An example of disordered porosity can be seen silica xerogel. These structures are hard to

characterize, which make them difficult to understand. Figure(2.7) is a high resolution image

of these silica xerogel agglomerates of mesoporous particles. [22].

Figure 2.7: Typical silica xerogel agglomerates of mesoporous particles [22]

Ordered porosity structures have many advantages for scientific investigation. They are

relatively easily created, easy to characterize, and aspects of the structure can be designed

or tuned. The structure can be created in two ways. The amines can be covalently bounded

to the substrate through the reaction of an aminosilane with silanol groups on the silica

surface. [17, 26, 19, 20, 53, 29] Another synthesis process physically impregnates the amine
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into the silica. [34, 49, 15, 52, 43, 12, 14, 31, 41] Much research has been investigated into

amine impregnated silica, such as MCM-41, SBA-15, SBA-16, and more for CO2 capture.

A commonly used amine for this technology is polyethylenimine (PEI) which consists of

linear or branched primary, secondary, and tertiary amines. Figure(2.8) shows the structure

of PEI.

Figure 2.8: Polyethylenimine [8]

This technology has multiple advantages when used for this application. The first advan-

tage is that these amine sorbents possess almost a complete chemical selectivity to CO2 over

N2 gas. Another advantage is the solid amines can be utilized at high operating tempera-

tures (T>100°C), as apposed to absorption technologies. Lastly, the CO2 loading is greatly

increased in the presence of water. Flue gas already contains water vapor, which encourages

this effect in power plants.

Solid sorbents were selected to be the demonstration case for the CCSI tool set. The

amine selected for this demonstration was Polyethylenimine (PEI), which was impregnated

into the mesoporous silica. The National Energy Technology Laboratory (NETL) produced a

series of sorbents, with the best performing sorbent being named “NETL-32D”. The supports

of this structure are macroporous agglomerates of the mesoporous silica particle, and the

PEI is impregnated into these mesopores where bonds to the substrate.
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2.3.5 Multi-Scale Modeling

The challenge many technologies in development face, including solid sorbents, is that they

experience phenomena on a quantum scale as well a macroscopic scale [32].

Figure 2.9: Multiple scales of problem

Facing this challenge, it is essential for the phenomena must be explored on all scales.

In order to achieve this, models and experiments must be done at all scales, starting with

the bench scale. Understanding how the sorbent behaves on a quantum scale will allow for

a more accurate prediction of how the technology will behave when implemented at an in-

dustrial scale. This is important because process scale experiments are very costly and time

consuming, so having better predictions will save time and money. Experiments for this

tool set demonstration at the bench scale for these technologies include thermo gravimetric

analysis and fixed bed reactor experiments. Experiments at this level can provide informa-

tion for estimates about the parameters at the quantum scale. These parameters include,

but are not limited to, reaction enthalpies, entropies, activation enthalpies, and number of

adsorption sites. These estimations can then be propagated into larger scale models leading

to process scale models. By using this process, all aspects of the phenomena are captured

and models can better predict on a process scale. Then using the predictions from the pro-

cess scale models, better technologies and bench scale experiments can be designed. This

iterative process continues until the most optimal design for a carbon capture system has

been established.
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2.3.6 Bayesian Techniques

Bayesian frameworks have been used for many applications in engineering. The CCSI group

has already demonstrated the application of quantifying the uncertainty through Bayesian

analysis. [36] Matthew Realff’s group from Georgia Institute of Technology has also been

investigating and demonstrating the use of Bayesian techniques in research. They have

proposed a new method for the design of experiments (DOE) using Bayesian analysis to

obtain as much information from the experiment as possible. Using Bayesian techniques

they created a new decision oriented DOE strategy. This strategy demonstrated a significant

improval for the prediction of a process’s optimal objective function over the traditional

approach. [2]

15



Chapter 3

TGA Experiment Analysis

Thermo gravimetric analysis (TGA) has proven to be an effective bench-scale experiment

to learn about many adsorption and desorption mechanisms of many materials, as well as

other process phenomenon. The procedure for this is that a small sample is placed in a

quartz microbalance, and then the sorbent is purged by exposing it to inert gas, such as

nitrogen, at high temperatures. Next reactive gases are pumped into the chamber, causing

adsorption to happen, which is measured by the microbalance. The experimentalist can then

adjust the temperature and concentration of the reactive gas to observe how the material,

or in this case sorbent, behaves. [33]. Figure (3.1) shows a sample TGA apparatus from TA

Instruments. [21]

Figure 3.1: Q600 SDT thermo gravimetric analyzer from TA Instruments [21]
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For the CCSI tool set demonstration, NETL-32D was analyzed. A 50 mg sample was

placed in the microbalance and analyzed as it was exposed to a multi component flow of

CO2, H2O, and N2. The concentrations were kept constant per simulation with temperature

varying. Also, the overall chamber pressure was maintained at atmospheric conditions.

Figure (3.2) shows a sample TGA trace of NETL-3D exposed to CO2 and H2O.

Figure 3.2: NETL-32D TGA trace

3.1 First Generation Model

In order to model this experiment, a chemical reaction system was made to describe the

adsorption and desorption of CO2 and H2O in the sorbent. This reaction system was named

the first generation model. It is comprised of three reactions. The first reaction describes CO2

gas chemisorbing into the sorbent at two free amine sites to form alkylammonium carbamate.

The second reaction represents H2O in the gas phase physisorbing into the sorbent. The last
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reaction describes the formation of bicarbonate from CO2 gas, adsorbed H2O, and one free

amine site. Below are the chemical reactions for the First Generation Model:

CO2(gas) + 2 R2NH R2NH +
2 :R2NCOO– (R1)

H2O(gas) H2O(phys) (R2)

CO2(gas) + H2O(phys) + R2NH R2NH +
2 :HCO –

3 (R3)

Using these three reactions, mass action rate expression can be formulated. Below are

these expressions, along with a table of variable descriptions.

∂x

∂t
= kc[s2pc −

xw

κc
] (3.1)

∂a

∂t
= kh[ph −

a

κh
]− kb[sapc −

bw

κb
] (3.2)

∂b

∂t
= kb[sapc −

bw

κb
] (3.3)

where:

s = 1− x− w

w = x+ b

nv

k∗ = ζ∗T exp(−∆H‡∗
RT

)

κ∗ = exp(∆S∗
R

) exp(−∆H∗
RT

)/P
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Table 3.1: First generation model variable descriptions

Variable Description

x Site fraction of carbamate formation

a Concentration of water adsorption

b Concentration of bicarbonate formation

s Site fraction of free amine

w Protonated amine site fraction

pc Partial pressure of CO2

ph Partial pressure of H2O

κ∗ Equilibrium constant of reaction “*”

k∗ Rate constant of reaction “*”

P Atmospheric pressure at sea level

3.2 TGA Experiment Modeling Results

This first generation model for CO2 and H2O adsorption has been implemented to analyze

TGA experimental data. This analysis was done in two ways. First the model was empirically

fitted to the data using a particle swarm optimizer technique. Next uncertainty quantification

was conducted by starting the Markov Chain Monte Carlo routine at the optimal solution.

Uncertainty quantification is a process in which Bayesian statistics are used to generated

a posterior probability distribution of the model parameters given the TGA data. Below

is the posterior distribution of the reaction enthalpy and entropy, and activation energy of

carbamate formation with the corresponding bivariate joint posterior distributions. While

all 13 model parameters were analyzed, only three are shown to illustrate the motivation for

fixed bed analysis.
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Figure 3.3: Uncertainty quantification of TGA experiment (∆Hc,∆Sc,∆H‡c )

Table (3.2) shows the standard deviation (σ) and mean (µ) of each parameter’s posterior.

Table 3.2: TGA posterior properties

Parameter σ µ Parameter σ µ

∆Hc( J
mol

) 2.1697× 103 −1.1750× 105 ∆H‡h( J
mol

) 6.3327× 103 5.5423× 104

∆Sc( J
mol−K ) 5.7545 −301.74 ζh 1.0282 3.4632

∆H‡c ( J
mol

) 1.9529× 104 4.0829× 104 ∆Hb( J
mol

) 1.2263× 104 −1.2250× 105

ζc 1.8592 1.9161 ∆Sb( J
mol−K ) 41.0688 −164.11

nv(molm3 ) 22.6835 1.8724× 103 ∆H‡b ( J
mol

) 1.2676× 104 1.0156× 105

∆Hh( J
mol

) 773.42 −6.6781× 104 ζb 2.2832 −1.3935

∆Sh( J
mol−K ) 2.4036 −123.42
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3.3 Conclusion

The results of this analysis yielded that the TGA experiment provided a significant amount

of information for the equilibrium parameters. This was represented by the fact that there

is a tight narrow posterior distribution for the reaction enthalpy and entropy. However,

it was discovered to have little information about the kinetic parameters of the model as

shown above in Figure (3.3). This is represented by the activation enthalpy for carbamate

formation having a very broad posterior distribution.
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Chapter 4

Fixed Bed Model Development

The conclusion of the conducted thermo gravimetric analysis provided the motivation to

investigate a different bench scale experiment that could provide more kinetic information

about these reactions. The chosen bench scale experiment to investigate and model was

the Fixed Bed Reactor experiment. The fixed bed reactor experiment is a commonly used

experiment in the study of chemical processes. The goal was to calculate better estimates

for the kinetic parameters of carbon capture process.

4.1 Fixed Bed Reactor Experiment

There are many setups for fixed bed systems. The one chosen for this demonstration was

the mini C2U housed at NETL in Morgantown, WV. The design consisted of a four inch

diameter pipe, with gas flow being driven vertically through the bed. CO2 analyzers and a

mass spectrometer were placed at the outlet.
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Figure 4.1: Image of mini C2U fixed bed reactor

When attempting to model this experiment, issues arose with modeling the adsorption

of water. Using the First Generation Model to govern this reaction proved to be unrealistic

due to the fact there is no site limitation. In order to remedy this situation, a new set of

chemical reactions were formulated. This led to the First Generation 2.0 Model.

4.2 First Generation 2.0 Model

The First Generation 2.0 Model is very similar to the original model, however this model

accounts for the fact that water is site limited. The actual sites for this physisorption

are unknown and are represented as water adsorption sites. Three reactions occur, just as

before. First, CO2 gas chemisorbs onto two free amine site to form carbamate. Next H2O

gas physisorbs into the sorbent at a free water adsorption site. Lastly, a physisorbed H2O

molecule and CO2 gas react to form bicarbonate. This model assumes that the kinetics of

each reaction are dominated by a single, ideally behaved chemical reaction.
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CO2(gas) + 2 R2NH R2NH +
2 :R2NCOO– (R1)

H2O(gas) + Sh H2O(phys) (R2)

CO2(gas) + H2O(phys) + R2NH R2NH +
2 :HCO –

3 + Sh (R3)

In order to simulate the adsorption of CO2 and H2O, three mass-action rate expressions

can be derived. Below are the three rate expressions for the reactions mention above, along

with a table of variable descriptions.

∂x

∂t
= kc[s2pc −

x2

κc
] (4.1)

∂a

∂t
= kh[ph(1− a)− a

κh
]− kb[sapc −

b(1− a)
κb

] (4.2)

∂b

∂t
= kb[sapc −

b(1− a)
κb

] (4.3)

where:

s = 1− 2x− b

k∗ = ζ∗T exp(−∆H‡∗
RT

)

κ∗ = exp(∆S∗
R

) exp(−∆H∗
RT

)/P
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Table 4.1: First generation 2.0 model variable descriptions

Variable Description

x Site fraction of carbamate formation

a Site fraction of water adsorption

b Site fraction of bicarbonate formation

s Site fraction of free amine

pc Partial pressure of CO2

ph Partial pressure of H2O

κ∗ Equilibrium constant of reaction “*”

k∗ Rate constant of reaction “*”

P Atmospheric pressure at sea level

4.3 Fixed Bed Gas Flow Model

Now that the chemical model has been established, it must be combined with a flow model to

simulate the full fixed bed experiment. To create this flow model, Darcy’s Law in 1-dimension

was used to govern the flow of gas through a porous media. Below is the representation of

this law, with Q representing the flux of gas, A being the cross sectional area of the bed,
∂P
∂x

denoting the driving force of pressure drop, and M is the mobility of gas through the

porous structure. The mobility parameter is an empirical constant that takes into account

the system’s physical properties such as the structure of media, viscosity of the gas, etc.

Q = −MA
∂P

∂x
(4.4)

This expression needs to be modified as there are multiple gases flowing through the

bed (CO2, H2O, N2) to reflect the flow of just one particular gas. The following expression

governs the flow of gasi through a control volume. Where ni is the number of moles of gasi
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and n is the total number of moles of gas in the control volume.

Qi = −MA(ni
n

)∂P
∂x

(4.5)

Using Equation (4.5) to governs the flux of a single species in a multi-component flow,

two conservation of mass expressions can be written. The first equation represents the

conservation of CO2 molecules.

∂nc
∂t

= −MA(nc
n

)∇2P − rc (4.6)

In equation (4.6) rc is the sink rate of CO2 gas in the flow due to adsorption. This can be

calculated from the rate expressions for carbamate and bicarbonate by simply multiplying

them by the number of active amines sites per volume(nv) and the volume of the sorbent(Vs)

in the control volume.

rc = nvVs(
∂x

∂t
+ ∂b

∂t
) (4.7)

The second equation is the conservation of H2O molecules.

∂nh
∂t

= −MA(nh
n

)∇2P − rh (4.8)

Equation (4.8) rh represents the sink rate of H2O gas in the flow due to adsorption.

This is very similar to the expression for rc, except instead of multiplying by nv, the rate of

water adsorption must be multiplied by nh (number of water adsorption sites). Below is this

expression.

rh = nhVs(kh[ph(1− a)− a

κh
]) (4.9)

Lastly the assumption of incompressible flow was made. This provided a conservation of

mass expression for the entire flow through the bed, equation (4.10).
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0 = −MA∇2P − rc − rh (4.10)

Now that the six nonlinear ODE’s have been formulated for each control volume (Equa-

tions (4.1),(4.2),(4.3),(4.6),(4.8),(4.10)), a discretization and solution method must be for-

mulated.

4.4 Numerical Discretization and Solution

Now that the governing equations have been established, a methodology for solving this

system of equations must be created. There are six equations with a total of six field

variables per control volume.

Table 4.2: Model field variables

Variable Description

x Site fraction of carbamate formation

a Site fraction of water adsorption

b Site fraction of bicarbonate formation

nc Number of CO2 moles in gas

nh Number of H2O moles in gas

P Total pressure of gas

For the three equations dealing with gas flow, a finite volume scheme was implemented.

This provided for a solution in the length domain of the problem. Figure (4.2) is an illus-

tration of this method.
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Figure 4.2: Finite volume illustration

Not only does space need to be discretized, but time does as well. The discretization

chosen for time was a Crank-Nicholson scheme. Crank-Nicholson is 2nd order accurate and

has proven to be quite stable for many applications. Equation (4.11) represents the Crank-

Nicholson scheme and Figure (4.3) shows the discretization in space and time.

un+1
j − unj
k

= 1
2(
un+1
j+1 − 2un+1

j + un+1
j−1

h
+
unj+1 − 2unj + unj−1

h
) (4.11)

Figure 4.3: Sketch of Crank-Nicholson scheme

Using the above methods for discretization, a system of nonlinear equations was created.

To solve this system, Newton’s Method was employed. Newton’s method starts with initial

guess and calculates a search direction. Below shows the matrix expression for finding the

next guess, which requires the Jacobian and function to be evaluated at the initial guess.
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

xk+1
1

xk+1
2

. . .

xk+1
n


=



xk1

xk2

. . .

xkn


+



∂f1(xk)
∂x1

. . . ∂f1(xk)
∂xn

. . . . . .

. . . . . .

∂fn(xk)
∂x1

. . . ∂fn(xk)
∂xn



−1 

f1(xk)

f2(xk)

. . .

fn(xk)



The Jacobian for this problem was found to be a non-symmetric matrix. Due to the nature

of this matrix, a generalized minimal residual method (GMRES) was used to solve for the

search direction. This was supplied by the EIGEN C++ Library. Once the search direction

was found, Armijo’s rule was applied. This allowed the residual tolerance to increase by

a small amount to help get the model out of a rough spot in the solution space. Once

convergence was met, the time step advanced and the model was solved again.
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Chapter 5

Parameter Estimation Methodology

Now that a mathematic model for this experiment has been created and coded, analysis

using genetic algorithms can be performed. These genetic algorithms are used to estimate

the parameters associated with the model discussed earlier. The 15 model parameters are

listed and detailed in Table (5.1).
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Table 5.1: Model parameters

Parameter Description

∆Hc Reaction enthalpy of carbamate formation (J/mol)

∆Sc Reaction entropy of carbamate formation (J/mol-K)

∆H‡c Activation enthalpy of carbamate formation (J/mol)

ζc Pre-exponential factor of carbamate formation

nv Total number of active amine sites(mol/m3)

∆Hh Reaction enthalpy of water physisorbtion (J/mol)

∆Sh Reaction entropy of water physisorbtion (J/mol-K)

∆H‡h Activation enthalpy of water physisorbtion (J/mol)

ζh Pre-exponential factor of water physisorbtion

nh Total number of water absorption sites(mol/m3)

∆Hb Reaction enthalpy of bicarbonate formation (J/mol)

∆Sb Reaction entropy of bicarbonate formation (J/mol-K)

∆H‡b Activation enthalpy of bicarbonate formation (J/mol)

ζb Pre-exponential factor of bicarbonate formation

M Porous media parameter

In this tool set, two types of genetic algorithms are available. First is a particle swarm

optimizer, which provides the best fixed point estimate. The other is uncertainty quantifi-

cation through Bayesian analysis, which provides an qualitative sense of the uncertainty of

these estimates and describes the information available in the data set.

5.1 Particle Swarm Optimizer

The first genetic algorithm applied to this model was a particle swarm optimizer (PSO). This

method searches the parameter space and “swarms” to the most optimal parameter set [23].
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This method has proved to be a efficient method to find a fixed point estimate for the model

parameters. At initialization, “agents”(individual with a set of parameters) are randomly

spread out across the parameter space. Once initialized, each agent’s fitness to the data is

evaluated. Given that each agent evaluation is independent from the other, parallelization

can be taken advantage of. Thus using cluster computing techniques, a significant number of

agents can be added to the search without sacrificing speed. Once all agents are evaluated,

they move towards their best neighbor agent, however the agent will, on a random basis,

move in the wrong direction. This “randomness” is implemented in the routine on purpose.

The purpose of this method is to enhance exploration of the parameter space by forcing

agents to not always take the direct route to the optimum. This reduces the chance of

converging on a local optimum.

While this analysis of a model provides a quick estimate for the desired parameters, it

is just a fixed point estimate. There is no guarantee that the complete parameter space

was searched. Also, there is no level of uncertainty associated with this estimation. The

major effect of this is felt when the results are scaled to a process model because the error

propagates with it. This drawback provided the motivation for developing a technique of

quantifying the uncertainty of these parameter estimations.

5.2 Uncertainty Quantification Methodology

Statistics can be primarily broken down into two categories, frequentest & Bayesian. Fre-

quentest is generally what most people reference when discussing statistics. However Bayesian

statistics is a completely different perspective, and using a Bayesian framework can be more

informative in parameter estimation. This framework treats the data as fixed and the model

parameters as random variables. Bayes Theorem provides the calculation of the probability

of obtaining the model parameters (θ), when observing data (Y ).
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P (θ|Y ) = P (Y |θ)P (θ)∫
θ′ P (Y |θ′)P (θ′)dθ′ (5.1)

P(θ|Y ) is the posterior distribution of the parameters. P(θ) is the prior distribution of

the model parameters. P(Y |θ) is named the likelihood, which is probability of observing

the data (Y ) given model parameters (θ). The denominator is simply the probability of

observing data (Y ) integrated over all possibilities of model parameters θ. Bayes Theorem is

the framework in which the uncertainty quantification process is built from, with the goal of

providing an estimation (posterior distribution) of unknown parameters (θ), by comparing

the model results given θ with the data (Y ).

The statistical model presented by Kennedy & O’Hagan, excluding discrepancy terms,

leads to the posterior distribution being comprised of two parts (likelihood & observational

error). [24] Equation (5.2) expresses this statistical model with M(θ) being the model results

given parameters θ and observational error given input ψ.

Y = M(θ) + ε(ψ) (5.2)

Now applying Bayes theorem, the posterior distribution is formulated:

Ω(θ, ψ|Y ) ∝ L(Y |θ, ψ)π(θ, ψ) (5.3)

π(θ, ψ) denotes the priors for both model parameters and the observational error. For the

model parameters, a bounded uniform distribution was used. These prior distributions must

be bounded because these parameters have physical limitations. The prior used for ψ was

an inverse gamma distribution that enabled the use of Gibbs sampling. L(Y |θ, ψ) represents

the likelihood. The calculation of the likelihood considers four variables. The first two are

the inputs of model parameters(θ) with model inputs M and observational error (ψ). The

other two are the realistic data Y and the number of data sample points n. Thus:
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L(θ, ψ) = (2π)−n/2(ψ)−n/2 exp{−1
2ψ [(Y −M(θ))′(Y −M(θ))]} (5.4)

Now having these terms formulated, a Markov Chain Monte Carlo (MCMC) [7, 16]

routine can be constructed. The MCMC starts with initial point in the parameter space.

This starting point is either chosen by a guess or one can use the results of the PSO. An

initial likelihood and ψ are calculated from this spot in the parameter space. This is the

start of the Markov chain. From here, parameters are proposed one at a time by drawing

a proposal from the prior distribution. After each proposal, the model is evaluated and the

likelihood is calculated. If the likelihood (LP ) is greater than or equal to the likelihood of

the last accepted proposal (LA), the proposed parameter value is automatically accepted

into the posterior. However if this likelihood is less, it is passed to a secondary criterion

for acceptance. If the quotient of (LP ) divided by (LA) is greater than a random number

drawn on the interval [0,1], then the proposal is accepted into the posterior. Equation (5.5)

represents this criteria.

IF : LP
LA
≥ rand[0, 1]→ Accept (5.5)

If the proposal is accepted, the prior distribution for that parameter is then centered at

the proposed value. Thus since the priors for θ are bounded normal distributions, the

mean of the distribution shifts to the last accepted value. After a proposal has either

been accepted or denied, Gibbs sampling is preformed on the observational error’s prior,

as discussed previously.

This procedure continues in a loop until the desired number of MCMC steps are com-

pleted. The uncertainty quantification process is complete once two conditions are satisfied.

First condition for completion is that “burn in” is achieved. Burn in refers to the beginning

of the process when each parameter travels from its initial starting point to its optimal area.

Figure (5.1) illustrates the burn in processes.
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Figure 5.1: Illustration of burn in

Once each parameter has burned in, a batch means test must be performed on the

posterior to ensure convergence. Batch means test divides the posterior into “batches” or

groups and then calculates the mean of each groups. Then these means are then compared

to check for convergence. This make sure the posterior distribution has converged.

Finally, the result will be the posterior distribution for all model parameters. This

distribution contains considerable information about the model, technology, and experiment.

First off if the distribution is very narrow or tight for a parameter, there is a lot of confidence

with this estimation. However if the posterior is very broad, then there is a good deal of

uncertainty associated with this parameter. This provides information for better experiments

to be designed. Also as these results are extrapolated to a larger scale model, there is

an idea of the uncertainty that is attached to that extrapolation. The posterior will also

contain information about the relationship of parameters with each other, for example if two

parameters are correlated. Lastly using the resultant posterior and mathematical model, the

predictions will cover the real data, meaning that the “real parameters” are contained in the

posterior.
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Chapter 6

Results and Discussion

6.1 Introduction

Using the methodology discussed in previous chapters, uncertainty quantification was per-

formed on a test case for the fixed bed model.

6.2 Data Generation

Due to a lack of available experimental data for this experiment, data was generated using

the model with chosen “real” parameters. The data set generated used 20% CO2 and 9%

H2O, and the bed was maintained at 298 K. Once the data set was generated, white noise

was added to the data in order to simulate the noise and error in actual experiment. The

values used to create this data set located in the Table (6.1). These are the “real” values for

the parameters.
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Table 6.1: Parameters for data set

Parameter Value Parameter Value Parameter Value

∆Hc −115.8( kJ
mol

) ∆Hh −67.25( kJ
mol

) ∆Hb −110.1( kJ
mol

)

∆Sc −298.3( J
mol−K ) ∆Sh −124.9( J

mol−K ) ∆Sb −162.96( J
mol−K )

∆H‡c 54.28( kJ
mol

) ∆H‡h 59.60( kJ
mol

) ∆H‡b 106.3( kJ
mol

)

ζc 0.869422(N/A) ζh 2.00(N/A) ζb 1.89(N/A)

nv 1882.68(mol
m3 ) nh 2382.68(mol

m3 ) M 1.39× 10−4

Below are the figures of the simulated data set (Pressure Drop, CO2%, H2O%) along with

the added white noise.
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Figure 6.1: Generated experimental data sets
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6.3 Fixed Bed Posterior

The results for the fixed bed posterior will now be discussed. First the priors used for this

analysis will be presented. Then the posterior results will be discussed. There are two types

of results that were obtained from this analysis. The first is the comparison of the posterior

predictions with the reality data. The second is the posterior distribution for the model

parameters.

6.3.1 Parameter Priors

Uniform normal distributions were used for the priors of parameters θ. Table (6.2) shows

standard deviation of each prior.

Table 6.2: Parameter priors

Parameter σ Parameter σ Parameter σ

∆Hc 1500( J
mol

) ∆Hh 2000( J
mol

) ∆Hb 28000( J
mol

)

∆Sc 40( J
mol−K ) ∆Sh 25( J

mol−K ) ∆Sb 210( J
mol−K )

∆H‡c 800( J
mol

) ∆H‡h 2000( J
mol

) ∆H‡b 28000( J
mol

)

ζc .025(N/A) ζh .07(N/A) ζb 5.1(N/A)

nv 15(mol
m3 ) nh 15(mol

m3 ) M 2.5× 10−6

6.3.2 Reality Coverage

An important result is to ensure that the model predictions of the posterior cover the real

data. For the fixed bed model, there are three sets of real data that are compared to per

experiment. The first is the pressure drop across the bed. This pressure drop curve provides

information on the mobility parameter as well as the adsorption parameters.
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Figure 6.2: Posterior model pressure drop predictions

As shown, the model predictions cover the pressure drop curve. The second data set

is the CO2% at the outlet. This breakthrough curve contains much information about the

carbamate and bicarbonate reactions.

Figure 6.3: Posterior model CO2% outlet predictions
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As shown, the model predictions cover the breakthrough curve of CO2. The next figure is

zoomed in on the main area of interest. This shows the posterior predictions covering both

sides of the curve, meaning that the real values are contained in the posterior.

Figure 6.4: Posterior model CO2% outlet predictions zoomed in

The last data set is the H2O% outlet breakthrough curve. This provides information

about water adsorption and bicarbonate formation as well. Figure (6.5) shows the results of

the posterior model predictions for the H2O% Outlet breakthrough curve.
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Figure 6.5: Posterior model H2O% outlet predictions

There is adequate coverage here as well. To illustrate this better, Figure (6.6) is zoomed

in on the most important section of the curve. This shows the posterior predictions covering

both sides of the curve, meaning that the real values are contained in the posterior.

Figure 6.6: Posterior model H2O% outlet predictions zoomed in
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The five previous plots show that the posterior distribution for the analysis done does

contain the real values for these parameters. They are contained in this posterior. Now the

posterior its self will be examined.
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6.3.3 Parameter Analysis

Carbamate

Below is a figure of the posterior distributions for the carbamate parameters. The real

parameter value is marked with a red “o” in the posterior of each parameter posterior.

Figure 6.7: Posterior distributions for carbamate formation

Figure (6.7) shows that a very tight distribution for the rate constant was observed.

However the posterior for the equilibrium constant is very broad, which means there is a lot

of uncertainty for these equilibrium parameters.
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Water

Figure(6.8) shows the posterior distributions for the equilibrium and rate constants for water

physisorption. The real parameter value is marked with a red “o” in the posterior of each

parameter posterior.

Figure 6.8: Posterior distributions for water adsorption

As shown above, there is a good amount of certainty with the estimations for the water

adsorption parameters. Decent certainty in the equilibrium constant was observed, while

excellent certainty was found in the rate constant estimation.
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Bicarbonate

Figure(6.9) is the posterior distributions for the equilibrium and rate constants for bicarbon-

ate formation. The real parameter value is marked with a red “o” in the posterior of each

parameter posterior.

Figure 6.9: Posterior distributions for bicarbonate formation

As shown above, there is much uncertainty associated with the bicarbonate parameters.

This was also found in the TGA analysis.
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Adsorption Site Densities

Figure(6.10) is the posterior distributions for the two site density parameters. The real

parameter value is marked with a red “o” in the posterior of each parameter posterior.

Figure 6.10: Posterior distributions for site densities

As shown above, the site densities have tight posterior distributions. This means there

is a lot of certainty associated with these estimations.
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Mobility

Figure(6.11) is the posterior distributions for the mobility parameter, with the real value

represented with a red “o”.

Figure 6.11: Posterior distributions for the mobility parameter

For the mobility parameter, it was found to have a very narrow posterior. Also, the

posterior is completely centered around the true value used to create the data set.
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Table (6.3) contains the site densities, mobility, equilibrium, and rate constants used to

create the generated data. These are the “real” values for the data set.

Table 6.3: Real values for equilibrium and rate constants of data

Parameter Value Parameter Value Parameter Value

log10(κc) −.2892 log10(κh) .2582 log10(κb) 5.7813

log10(kc) −6.1711 log10(kh) −5.9731 log10(kb) −14.2691

nv 1882.68(mol
m3 ) nh 2382.68(mol

m3 ) M 1.39× 10−4

Table (6.4) shows the standard deviation (σ) and mean (µ) of each parameter’s posterior.

Table 6.4: Fixed bed posterior properties

Parameter σ µ Parameter σ µ

log10(κc) 2.5323 2.3149 log10(kc) .0104 −6.1832

log10(κh) .9348 −2.3069 log10(kh) .0166 −5.9697

log10(κb) 5.9911 1.1725 log10(kb) 5.0216 −10.7488

nv(molm3 ) 6.2706 1882.6 nh(molm3 ) 51.7315 2485.1

M 1.0043× 10−6 1.3895× 10−4

Table (6.5) shows the convergence confidence results for the posterior distribution from

the batch means test.

Table 6.5: Fixed bed posterior convergence confidence

Parameter Confidence Parameter Confidence

log10(κc) ±7.5% log10(kc) ±0.01%

log10(κh) ±7.45% log10(kh) ±0.02%

log10(κb) ±19.73% log10(kb) ±1.52%

nv(molm3 ) ±0.02% nh(molm3 ) ±0.24%

M ±0.03%
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Chapter 7

Conclusions & Accomplishments

From the results in Chapter 6, a few conclusions can be drawn from this work. The ultimate

goal of this work was completed and demonstrated. The CCSI tool set for multi scale model-

ing was expanded to include analysis of the fixed bed reactor experiment for both parameter

estimation and uncertainty quantification. The demonstration showed that when analyzing

a generated data set, the posterior distribution covers the reality as well as quantifying the

uncertainty with the estimations. Another conclusion is that fixed bed reactors contain more

kinetic information. More certainty was found for kinetic parameters associated with ad-

sorption reactions. Lastly, different experiments can be conducted to obtain more certainty,

such as changing the ratio of CO2 & H2O or by varying the temperature of the gas.
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