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Abstract 

Surrogate Reservoir Model for Generating Pressure, Saturation and Compositional 
Characteristics at the Grid-Block Level;  

SACROC field, Scurry County, Texas 

David Moreno 

Nowadays, due to advancements in data acquisition technologies in oil and gas industry more data are 
available for generating reservoir simulation models. This leads to high fidelity reservoir simulation 
models which are highly complex and computationally expensive. The conventional reservoir 
management studies require hundreds realizations of the simulation models. As S. Gencer (2007) 
described, the reservoir simulation trend is towards “more: more users, more models, more cells, more 
wells, more cases, more data and more integration” [1]. In order to enhance the reservoir model 
descriptions, more computational power would have to be designed and engineered to keep up with our 
modeling needs; hence, creating an unsustainable cyclical process. Therefore, even with the 
advancements in the computational powers, the industry cannot take advantage of the full potential of 
these full-field reservoir simulation models.  

Many studies have tried to create alternative methods in order to replicate the performance of full-field 
reservoir simulation models and at the same time decrease the cost of operation. Traditional proxy 
models, such as statistical based approaches, are examples of these studies. The degree of success, 
particularly practical aspects, for these approaches remains to be argued.  

As an alternative to traditional proxy modeling methods, the objective of this study is to investigate the 
feasibility of use of a fast intelligent approximation of the numerical simulation model. This replica will 
accurately reproduce dynamic reservoir properties of complex full-field numerical simulation models in 
matter of seconds. A Grid-based Surrogate Reservoir Model (GSRM) is developed based on data-driven 
and Artificial Intelligence techniques. This technology is able to learn from the provided examples of the 
reservoir simulation model. The robustness of this technology is validated by testing it on non-seen 
instances. Finally the trained and validated GSRM will produce the results of full-field simulation models 
accurately and in a very short time (seconds). 

This concept will be proven by building a GSRM of CO2 injection–EOR numerical model of SACROC field, 
Scurry County, Texas. The SACROC model (CMG GEM) in use was previously generated and history 
matched by the Petroleum Engineering & Analytics Research Lab - PEARL - at West Virginia University, it 
is based on a comprehensive geological study that includes 3D seismic surveys and well logs; in order to 
generate the GSRM this model is to be ran using multiple injection scenarios that will create an 
appropriate solution space so we can comprehend and grasp its behavior using artificial intelligence. 
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Objective 

The objective of this study is to assess the feasibility of using state of the art data-driven proxy models to 

effectively replicate dynamic reservoir properties of complex full field numerical models, by building and 

validating a grid block level Surrogate Reservoir Model (GSRM) of a macro-scale complex full field CO2 

injection –EOR numerical model. 
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 Introduction  

Problem Statement 

Petroleum engineering as of today, due to the contribution of several disciplines (Mechanical, Electrical, 

Chemical, Geoscientists) and a critical advancement of technology in the electronics field over the past 

decades, has augmented their petroleum reservoir descriptions in orders of magnitudes when to data 

volumes comes. An enormous amount of multidisciplinary data is acquired throughout the life of a 

reservoir.  

This process starts with exploration and continues through discovery, and is followed by delineation, 

development, production, and finally, abandonment. A realistic reservoir description, which is 

characterized by utilizing this data, is of vital importance for successful management of the reservoir. [2] 

The fundamental classification of reservoir data according to their AOR and impact on final volume of 

data, according to Satter-2006, include the following: 

 Microscopic: Microphotographs showing sand grains and pores from the cuttings or core slices 

 Macroscopic: Core data providing basic rock properties such as porosity, permeability, capillary 

pressure and relative permeability, etc. 

 Megascopic: Data from the Drainage area around the well, such as porosity, and fluid saturation 

from well logs. 

 Gigascopic: Data from the entire reservoir, such as seismic surveys, well production and Injection, 

well pressure tests. 

The collection of this data is of great importance, the processes involved in this step are as follows: 

 

Figure 1 Data collection processes in Reservoir Management. [2] 
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This data is prepared and represented via commercial geological simulators and applied in complex 

numerical simulation processes, in order to accomplish high fidelity Geological Simulation Models, more 

often having millions of cells with large quantity of data inherent within each one of these particles; the 

computers used for these type of models are multi-cluster specialized processing facilities that represent 

the associated high costs of today’s simulation industry. 

Later on, these models are upscaled/coarsened to be more manageable, this is a common practice in 

reservoir simulation for reducing the model size to improve computational efficiency. As part of the 

standard simulation workflow, engineers upscale geological models to simulation models to reduce 

requirement on computational resources. Coarsening is also an attractive approach for reduced order 

modeling. Reduced order modeling plays a crucial role in uncertainty quantification, history matching, 

optimization and other applications where a large number of simulation models need to be evaluated [3]; 

a fundamental downside to this proxy modeling method is that it compromises the non-linearity of 

reservoir dynamics. 

These final Reservoir Simulation models, often composed by millions of cells, take enormous amounts of 

CPU time and power to make single runs; the following chart is a benchmarking comparison for GOCAD 

2009 (Saudi Aramco’s in-house simulator) with the use of a HPC (High Performance Computing Facilities): 

 

Figure 2 GOCAD 2009 times for three large reservoir models in HPC facility [4]. 

Therefore Numerical simulation of petroleum reservoirs is a data-intensive and computational resources 

consuming activity, the trend in reservoir simulation is towards “more: more users, more models, more 

cells, more wells, more cases, more data and more integration” [5], for our technological advancement 

more specialized HPC’s would have to be designed and engineered in order to keep up with our simulation 

needs as an industry. 

The reliance on supercomputing facilities and parallel processing techniques (HPC-High Performance 

Computing facilities) to perform uncertainty analyses, sensitivity analyses and optimization analyses, that 

take hundreds of runs to perform using high performance simulations is impractical, since the 
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computational times exceed in all cases the physical time of the process occurring, rendering virtually 

useless the numerical models in predicting the course of events or aiding a reservoir management team 

on making “real-time or near real-time decisions” [1]. 

Under this premise, instantaneous or near instantaneous simulation results are needed in order to better 

manage reservoirs in real-life, alternative methods surface to mitigate the long processing hours and 

impracticality of simulation itself, these alternative methods are now possible due to the emergence of 

intelligent systems and new computing techniques. 

It is possible to build Surrogate Intelligent Models (SIM’s) that can mimic functionalities of complex 

simulators in real-time; conventional approaches are based in a geo-statistical focus that is extensively 

proven to be able to interpolate between simulation scenarios, but not so able to effectively extrapolate 

for further simulation scenarios, rendering forecasting capabilities useless in the conventional 

approaches.  

One such method that is used quite often is Response Surfaces, they are statistical interpolations (based 

on fitting some type of pre-determined model – linear or quadratic –) of model responses to different 

geological, geophysical and petro-physical realizations. Another method that has been used more in other 

industries is Reduced order Models. Reduced order Models are approximations of full three dimensional 

numerical simulation models that essentially approach an analytical model for tractability [6]. Both of this 

technologies had been discussed extensively and usually discarded as impractical, due to their 

dimensionality dependence problems, described often as the dimensionality curse [7] of proxy modeling 

due to the large solution space that has to be generated from, often hundreds, reservoir simulations. 

As an alternative to traditional methods, the objective of this study is to discuss and assess the feasibility 

of the application of Artificial Neural Networks (ANNs) as proxy models for reservoir simulation of full field 

complex numerical models. Fast and reliable estimation of reservoir’s behavior can be achieved by 

training ANNs to mimic the behavior and response of the reservoir model to changes in input parameters. 

These ANNs, which are called grid block level Surrogate Reservoir Models (GSRM), are prototypes of the 

full-field reservoir simulation models. An intelligent simulation of the numerical simulation that could 

effectively reproduce dynamic reservoir properties of complex full field numerical models, based on data-

driven technologies and Artificial Intelligence techniques.  The high speed of GSRM in generating results 

is an important feature that enables us to perform optimization processes more efficiently and would 

potentially bring back practicality to these types of studies in the industry.  
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This concept will be proven by building a grid block level Surrogate Reservoir Model (SRM) of a macro-

scale complex full field CO2 injection–EOR numerical model of SACROC field, Scurry county, Texas and 

validating our experiment using blind runs verification; the SACROC model (CMG GEM-Generalized 

Equation of State Model) in use was previously generated and history matched by the Petroleum 

Engineering & Analytics Research Lab - PEARL - at West Virginia University, it is based on a comprehensive 

geological study that includes 3D seismic surveys and well logs; in order to generate the GSRM this model 

is to be ran using multiple injection scenarios so we can comprehend and grasp its behavior using artificial 

intelligence. 

The GSRM development of complex CO2-EOR water alternating gas fields has never been performed; 

more information on GSRM development for other type of fields (Ex: CO2 sequestration and Storage), 

which is a recently developed technology, can be found in literature (S. H. Mohaghegh)(e. a. Mohaghegh, 

Design Optimum Frac Jobs Using Virtual Intelligence Techniques)(e. a. Mohaghegh, Development of 

Surrogate Reservoir Models (SRM) for Fast Track Analysis of Complex Reservoirs).  

This work presents a method for the construction of this grid block level Surrogate Reservoir Model 

(SRM) for complex field configurations numerical Reservoir simulation models, the methodology here is 

in the proof of concept stage, further analysis is required to improve this technique and to identify its 

strengths and limitations in more detail.  
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SACROC Unit Field Background 

The field subject of this study is the northern platform of the Scurry Area Canyon Reef Operators 

Committee (SACROC) unit, located in Scurry County, Texas. SACROC unit was formed by original operators 

and royalty owners of the Scurry County Kelly-Sneider Field operations group in January 1951, in order to 

enhance ultimate oil recovery of the reservoir and study the effects of pressure maintenance. 

The Reservoir is the Canyon Reef formation located in the Horseshoe Atoll, one of the largest subsurface 

limestone reef mounds in the world.  As shown in figure 3, The atoll is 175 miles long, stretching beneath 

western Kent and western Scurry counties before turning south under Borden and Howard. Although 

several fields produce from the Canyon Reef formation in the Horseshoe Atoll, Kelly-Snyder is the most 

prolific [9]. Its cumulative production at the beginning of 2013 was approximately 1.4 billion barrels of oil 

[10].  

 

Figure 3  SACROC unit, Canyon Reef formation reservoir map [11] 

Field History 

The Kelly-Sneider Field, discovered in 1948, is one of the major oil reservoirs in the US, having 

approximately 2.75 billion bbl. of oil originally in place. The early performance of this reservoir suggested 

that only 20% of its OOIP was recoverable due to solution gas drive characterization as its primary 

production mechanism. Once the SACROC unit was formed, a massive waterflood program was started in 

the center-line row of wells along the longitudinal axis of the reservoir. 

Later on, in 1968, a technical committee recommended that carbon dioxide (CO2) be used to miscibly 

displace the oil in the non-water flooded portion of the reservoir and that a pattern injection program be 
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developed in this area to implement the slug process and improve ultimate oil recovery. CO2 injection 

begun at early 1972. [12] 

To predict the CO2 miscible flood performance and incremental reserves, the Engineering committee 

developed a layered calculation procedure. The model considered that the CO2 would be injected as a 

slug and would be driven through the reservoir by a trailing water flood (Water Alternating Gas method - 

WAG). [13] 

Geologic Description 

SACROC unit is located in SE section of the Horseshoe Atoll in the Midland basin of West Texas, comprises 

an area of 356 Km2, and elongated anticline with a hinge (E-W) of approximately 40 Km and limbs(N-S) of 

approximately 3-15 Km ( in its wider point).  

SACROC is a carbonate reef complex composed of great amounts of bedded bioclastic limestone and thin 

shale beds that represent the Canyon, Straw and Cysco formations of the Pennsylvanian period 

(Carboniferous Period), and the Wolfcamp Series of the lower Permian period [14]. The Cisco and Canyon 

Formation are the ones selected for most of the CO2 injection, these are mostly composed of limestone, 

minor amounts of sand , anhydrite and shale are present locally [15]. The Wolfcamp shale acts as a seal 

(confining unit) above the Canyon and Cisco Formations, this shale was studied with X-ray diffraction 

compositional analysis which determined that is mostly illite and quartz with minor carbonate, pyrite, 

feldspar [15]. Based on this mineralogical analysis and on the measured vertical permeability [16] 

suggested to be low enough to build a capillary barrier that hampers buoyancy-driven migration of CO2. 

Furthermore, their mineralogical and isotopic (oxygen and carbon) analyses suggested that the 

carbonates in the Wolfcamp Shale Formation appear to be derived from primarily diagenetic processes, 

supporting that CO2 is effectively trapped in the Cisco and Canyon Groups. [11]. 
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Figure 4.  SACROC Unit at the Horseshoe Atoll in west Texas and structural contours map of top of carbonate reef 

modified from Stafford . Contours are m scale [11]. 

 

Figure 5. A structural and stratigraphic cross-section of profile A-A’, located within the SACROC northern 

platform [14]. See Figure 4 for a location of profile A-A’. 

 

Figure 6 - Well logs representing SACROC northern Platform [11]  
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Numerical Reservoir Simulation Model (PEARL WVU) 

The initial high resolution geocelullar model describes the Cysco and Canyon formations and has a 

staggering amount of 9,450,623 blocks, its approximate size is of 13,000 ft wide and 26,000ft long. The 

top of the geocellular model describes the top configuration of the Cisco Formation, which is below 

approximately 3,600 ft depth, and the bottom of the model describes the bottom configuration of the 

Canyon Formation, which is below a depth of approximately 4,200 ft. This model encompasses a broad 

range of studies performed to the SACROC unit, such as but not limited to, core data, well-log data, 

sedimentologic and stratigraphic interpretations, analysis of seismic attributes and analysis of rock physics 

data; This initial high resolution geocellular model detailed the heterogeneity to help better understand 

the subsurface migration of CO2 injection. This model was provided by the US Department of Energy 

(DOE) and the National Energy Laboratory (NETL) under Research contract, and is used prior authorization 

of the project principal investigator, Dr. Shahab D. Mohaghegh. 

The top section of this model was selected, prepared, upscaled and history matched for this study by the 

WVU Petroleum Engineering & Analytics Research Laboratory (PEARL WVU) [6], this processes were 

performed such that natural heterogeneity depiction was preserved. This section consists of 3,138,200 

(149 x 100x 221) fine scale grid blocks; as a result of areal up scaling, each grid block was changed from 

almost 10,000 ft2 to about 14,000 ft2. 

The final reservoir model was developed using commercial reservoir simulator CMG's GEM (Generalized 

Equation of State Model); this numerical simulator is Developed by Reservoir simulation software 

powerhouse CMG (Computer Modelling Group) and is described as a multi-dimensional, finite-difference, 

isothermal compositional simulator that can simulate three-phase (oil, water, gas) and multicomponent 

fluids. 

The final reservoir model key characteristics are as follows: 

 Dimensions of 14,000 ft wide, 10,000 ft long and up to 800 ft thick. 

 Reservoir initially under saturated, WOC at 4500 ft, and initial water saturation below WOC is 

of 36%. 

 Initial Reference pressure at 4300ft depth is of 3122 psi. 

 Upper boundary is set as a no flow boundary. The eastern, western, and northern boundaries 

are treated as no-flow boundaries, because the Wolfcamp Shale Formation meets these 

boundaries. The bottom boundary is also designated as a no-flow boundary because of the 

Strawn Formation below the Cisco and Canyon Formations [6]. 
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 Since south of the reservoir is connected to the rest of its sections, a flow boundary was 

simulated by adding an area at its border that follows the same geology description trend. 

Porosity distributions used in this final model were determined from both seismic survey and wire log 

analyses. Permeability distributions were calculated from seismically calibrated porosity values using 

empirical equations derived from rock fabric classification [6].  

The following figure will illustrate the reader about the structure and distribution of Porosity and 

Permeability properties throughout the reservoir, as follows: 

 

Figure 7 - Geological model for this study (Axes scale in m) - Left: Porosity Distribution map, Right: Permeability 

distribution map [6] 

 

Figure 8 - Property distribution Histograms. Left: Porosity, Right: Permeability [6] 
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There are 127 wells in total, from which 87 are producers and 40 are water alternating gas injectors, 

production and injection rates are the main constraint of the model. The maximum bottom-hole 

pressure in the injectors is set at 5,000 psi. The wells are distributed as follows: 

 

Figure 9 - Reservoir model well distribution. 

The oil phase of this reservoir is regarded as a mixture of 11 different gas components and is summarized 

in the following table: 

Table 1 - Initial oil composition in the upscaled geocellular model (Evaluation and Design of a CO2 Miscible Flood 

Project - SACROC Unit, Kelly Snider Field, 1973) 

Oil Composition Mol Molecular Weight 

CO2 0.0032 44.01 

N2 0.0083 28.01 

C1(Methane) 0.2865 16.04 

C2(Ethane) 0.1129 30.07 

C3(Propane) 0.1239 44.10 

I-C4(I-Butane) 0.0136 58.12 

N-C4(N-Butane) 0.0646 58.12 

I-C5(I-Pentane) 0.0198 72.15 

N-C5(N-Pentane) 0.0251 72.15 

FC6(Hexane) 0.0406 86.00 

C7+(Heptanes plus) 0.3015 275.00 
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 - Literature Review 

Reservoir Engineering: CO2 –EOR (WAG)  

Reservoir Development Oil recovery techniques can be divided into three distinct phases: Primary, 

Secondary and Tertiary; Primary recovery is the first stage of hydrocarbon production, in which natural 

reservoir energy (gas drive, water drive or gravity drainage) displaces hydrocarbons from the reservoir 

into the wellbore and to the surface, during primary recovery, only a small percentage of the initial 

hydrocarbons in place are produced, typically around 10% for oil reservoirs [17]; Natural Reservoir 

pressure declines because of production, reducing the pressure difference which is the main drive of 

production at this point.  

Under those circumstances is necessary to maintain or enhance the Reservoir pressure hence 

commencing the Secondary recovery processes to improve the field productive life, injecting and external 

fluid such as water or gas into the reservoir wells located so that fluid has communication with production 

wells in order to displace oil and drive it into the production wellbore. The most common secondary 

recovery techniques are waterflooding (injection to production zone in order to create sweep effect) and 

gas injection (injected into gas cap in order to maintain pressure). This phase reaches its limits when the 

production and disposal of injecting fluid is such that is no longer economical. The successive use of 

primary recovery and secondary recovery in an oil reservoir produces about 15% to 40% of the original oil 

in place. [17] 

With much of the easy-to-produce oil already recovered from U.S fields, producers have developed and 

used different oil recovery enhancement methods using sophisticated techniques that will ultimately alter 

the original properties of oil, its purpose is not only to restore formation pressure but also to improve oil 

displacement trough out the reservoir. These techniques offer prospects for ultimately producing 30 to 

60 percent, or more, of the reservoir's original oil in place [17]; there are three major types of EOR 

operations are Chemical flooding, thermal recovery and miscible displacement (carbon dioxide [CO2] 

injection or hydrocarbon injection) , latter one being the main operation performed in the field under 

study in this work.  

During CO2-WAG EOR operations, the field is surveyed in order to calculate, according to pressure and 

temperature, the most suitable conditions in which the CO2 would be compressed and injected such that 

is miscible with residual oil present in the reservoir, the interfacial tension between this two phases 

disappear and becomes a single homogenous phase, swelling the oil and reducing its viscosity in order to 

improve the efficiency of the displacement process. CO2-WAG (Water alternating gas) processes are 

http://www.glossary.oilfield.slb.com/en/Terms/c/carbon_dioxide.aspx
http://www.glossary.oilfield.slb.com/en/Terms/h/hydrocarbon.aspx
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known to provide better sweep efficiency and reduce gas channeling from injector to producer in EOR 

CO2 flood operations [9].  

 

Figure 10- Schematic diagram of a water-alternating-gas (WAG) miscible CO2 EOR operation [18] 

Artificial Neural Networks 

Definition 

In computer science and related fields, Artificial Neural Networks (ANN’s), are computational models 

inspired by Biological Neural Networks (in particular the brain), which are capable of performing machine 

learning as well as pattern recognition, both the most prominent features in a Biological Neural Network. 

As Biological Neural Networks are composed by neurons, Artificial Neural Networks are composed by 

artificial neurons or nodes (programming elements that mimic the properties of biological neurons) that 

are interconnected or functionally related, and in similarity with the Biological architecture, are 

programmed to perform a specific function. Artificial neural networks may either be used to gain an 

understanding of biological neural networks, or to solve artificial intelligence problems without 

necessarily creating a model of a real biological system [19].  

[20] Provided a formal definition of Artificial Neural Networks (ANN’s) as follows: 

“A neural network is a massively parallel distributed processor made up of simple processing units that 

has a natural propensity for storing experiential knowledge and making it available for use, It resembles 

the brain in two respects: 
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1. Knowledge is acquired by the network from its environment through a learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired 

knowledge. “ 

Like other machine learning methods, systems that learn from data, neural networks have been used to 

solve a wide variety of tasks that are hard to solve using ordinary rule-based programming, 

including computer vision and speech recognition [21]. 

ARNN’s provide capabilities and useful properties such as: 

 Non-linearity. 

 Input-Output mapping. 

 Adaptivity. 

 Evidential Response. 

 Contextual information. 

 Fault tolerance. 

 Very-Large-Scaled integrated (VLSI) 

technology implementability. 

 Uniformity. 

 Neurobiological Analogy. 

 

An Artificial Neural Network consists of an input layer, an output layer and one or more hidden layers. A 

schematic of a generic feed forward Artificial Neural Network (ARNN’s) with one hidden layer is shown in 

figure 11. 

 

Figure 11 Schematic of a Generic feed-forward neural network with a single hidden layer. 

 

The input layer is responsible for receiving input parameters, therefore the number of input neurons 

should be equal to inputs parameters in our dataset, used for training porpoises. The output of the system 

is obtained via output layer, therefore, as in the input layer the output neurons should be the same 

quantity as outputs for our network. Hidden Neurons perform calculations and converts the input into a 

numerical internal vector, each neuron in the network is connected to other neurons in neighboring 

http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Speech_recognition
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layers. Each connection in the network has an inherent weight which will be referred as synaptic weight, 

which describes the strength of the signal that the neuron sends to another neuron. Finally the ARNN can 

be described as a function X(x,w) where x is an example of behavior of our system, and w  is a set of 

weights associated to it. Machine learning, according to these circumstances, would be the procedure of 

finding the optimum combination of w values to minimize the error over a dataset prediction. 

The basic training of an ARNN’s, called supervised learning, uses training set data (multiple examples of 

inputs and outputs of a given system) in multiple training cycles using the total error of the given data in 

comparison with output prediction of each training cycle to modify the “synaptic weights”, representing 

the “experience” of the system.  The training of the network is repeated for many examples in the set, 

until the network reaches a steady state, where there are no further significant changes in the synaptic 

weights. This is the most popular learning paradigm, which will be covered in later sections in more detail. 

Neural networks have a built-in capability to adapt their synaptic weights to changes in the surrounding 

environment. For example, a network trained to operate in a specific environment, can easily be re-

trained to deal with minor changes in the operating environmental conditions.  

A schematic of a biological neuron is shown in figure 12. 

 

Figure 12 Schematic of a biological neuron [22] 

 

As the figure shows, a Biological Neuron is connected to several other Biological neurons through its axons 

and dendrites. A synapse connects an axon to a dendrite. Given a signal, a synapse might increase (excite) 

or decrease (inhibit) electrical potential. A neuron fires when its electrical potential reaches a threshold. 

This is for the Artificial Neurons called the “activation function”. 

There are two basic types of activation functions, one continuous and one discreet, sigmoid function and 

threshold function respectively. 

A schematic of an artificial neuron is shown in figure 13. 
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Figure 13 Schematic of artificial neuron [22] 

Biological neurons are five to six orders of magnitude slower than silicon logic gates (Artificial neuron 

signal firing), however the brain makes up for its relatively slow rate of operation by having large amounts 

of neurons with massive interconnections between them. It has the capability of organizing neurons so as 

to perform certain computations many times faster than the digital computer. The following table will 

provide a comparison within the parameters of biological and artificial neural networks: 

Table 2 Parameters of biological and artificial neural networks. [22] 

 

Artificial neurons can be linear or nonlinear. A neural network, made up of an interconnection of nonlinear 

neurons, is itself nonlinear. Nonlinearity is a highly important property, especially if the underlying 

physical mechanism responsible for generation of the input signal (e.g., Reservoir Simulation) is inherently 

nonlinear [21]. 

Supervised Learning 

There are two major learning paradigms in artificial neural network training. These are Supervised and 

Unsupervised Learning.   

Supervised learning as described before, uses a training dataset (multiple examples of inputs and outputs 

of a given system) that provides the network with the desired response for each training example. This 

desired response would be the optimum action to be performed by a training set. The network synaptic 

weights are adjusted due to the generated error of each training sample, this error is calculated from the 
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difference between the desired response and the actual response of the network. These adjustments are 

performed iteratively until the network can reproduce all the outputs with reasonable accuracy. At this 

stage, the network does not need any more supervision and it becomes independent. 

 

Figure 14 Supervised learning process [22] 

These are the mechanics of how the knowledge of the environment is transferred to the network through 

training and stored in a form of synaptic weights, representing the experience of the network. The trained 

network can predict outcomes of the environment completely independently.  

The inputs presented to a network in supervised learning are a set of pairs (𝑥, 𝑦), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , where x 

is an example of the environment and pertains to the observation group X,  y is the correspondent actual 

(or simulated in this work) output that pertains to the results group Y,  and the objective is to find a 

function 𝑓: 𝑋 → 𝑌 that matches the examples of the environment with their correspondent outputs. 

Error in the output of this function is measured by calculating the Determination Coefficient (R2), 

therefore providing a measure of how well the model predicts the future outcomes for a given input data. 

For  �̂�𝑛  simulated outputs and 𝑦𝑛 observed outputs of a system, R2 is calculated using the following 

equations: 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = ∑(𝑦𝑖 − 𝑦)2 , 𝑦 =
1

𝑛
∑ 𝑦𝑖   {

𝑦𝑖 → 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡

   𝑦 → 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑛

𝑖=1

  

𝑛

𝑖

 

Equation 1 -Total sum of squares (observed output) 

 

𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = ∑(�̂�𝑖 − �̂�)
2

 , �̂� =
1

𝑛
∑ �̂�𝑖   {

�̂�𝑖 → 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡

   �̂� → 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑛

𝑖=1

  

𝑛

𝑖
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Equation 2 –Regression sum of squares (simulated output) 

 

The most general definition of R2 is: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
 ,   ( 0 ≤ 𝑅2 ≤  1) 

Equation 3 - R-square general definition 

The Determination Coefficient R2 is a relative good yardstick to measure how well an ARNN will predict 

outputs for a given new input data, accordingly to its extremes lower and upper acceptable numerical 

bounds it represents no correlation and full correlation with prediction correspondently. 

However, R2 does not provide information on whether: 

 The independent variables are the true cause of the changes in the dependent variables, 

 Omitted variable bias exists, 

 The most appropriate set of independent variables has been selected 

 There is co-linearity present in the data, or 

 The model might be improved by using transformed versions of the existing set of independent 

variables. 

Due to applicability and the constant evolution of this concepts the ARNN’s vary on their structure and 

porpoise widely, the Networks structures used in this work are established and extensively proven,  are 

as follows: General Regression Neural Networks (GRNN’s) and Backpropagation Neural Networks (BPN’s). 

This network types will be described in following sections of this work. 

General Regression Neural Networks (GRNN) 

The general regression neural network (GRNN) is a one-pass learning algorithm with a highly parallel 

structure. Is a memory based network that provides estimates of continuous variables and converges to 

the underlying function (linear or non-linear); it is shown that, even with sparse data in a multidimensional 

measurement space, the algorithm provides smooth transitions from one observed value to another. [23]  

Is a type of application of Probabilistic Neural Network, therefore its construct is based heavily in statistical 

data and not in “real machine learning”. It extracts characteristics from a training sample to come to 

knowledge about the underlying function in a one-step approach, hence its strength is not in the selection 
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of weights itself but in the function associated to its neuron. Since is a one-pass algorithm is really fast to 

generate and study, many researchers use it because of the ease of its application. 

The algorithmic form can be used for any regression problem in which an assumption of linearity is not 

justified. The weighting factors computed by the GRNN are unequal, as a modification of a basic Radial 

basis function (RBF), and based on the distances between the sample input and each member of the 

training population.  

Given the training sample (𝑋𝑛, 𝑌𝑛) and the prediction point X, The general algorithm of GRNN is the 

following for the predicted output Y: 

 

Equation 4 - General Regression Neural Network algorithm [23] 

Observations: 

 Neuron Activation Function -> exp (−
𝐷𝑖2

2𝜎2) : acts like a synaptic weight for the input. 

 Di2 -> Euclidean distance between Training sample and Point of Prediction: Measure of how 

well represented is the training sample portrayed by the point of prediction. 

 X  -> Point of prediction , Y -> Predicted point  

 Xi -> training sample ,  Yi -> output of training sample 

The GRNN limitations are the following: 

 Prediction for extreme values is not possible. 

 Depends heavily on the σ (smoothing factor) factor selection, there are various methods not 

covered in this work for the determination of this factor (Ex: Wiggle method, holdout 

method). 

 Forecast capabilities (Extrapolation) using GRNN in a multidimensional model (or even slightly 

complex one-dimensional model) is very limited. 

 Its construct is more based in statistical data of inputs than in real machine-learning. 
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Back propagation Neural Networks 

Back propagation Neural Networks (BPN’s) are often used with feed forwards networks, is used to 

calculate the most optimized synaptic weights values in order to accomplish a target function that can 

resemble as closely as possible to observed values of a training set.   

The method usually used to calculate the weight changes is the gradient descent. Training begins with an 

arbitrary set of weights. A series of computations (iterations) is done in which the calculated output is 

compared with the known values, adjusting the weights in such a way that the difference between the 

calculated values and the target function is minimized (Smith, 1993).  

This process is described by [24] as follows: 

“With each iteration the hidden layer passes information through based on values of the weights in 

memory and the output values are calculated. The output nodes are then informed of the difference 

between the actual and target values. Each output neuron determines in which direction its weights must 

be adjusted to reduce the error and propagates the information to the hidden layer, which in turn 

determines in which direction its weights must be changed. At the hidden layer level the weights are 

adjusted in such a way as to reduce the error across the full set of output neurons thus minimizing the 

error in the network. For each iteration there is thus a forward pass followed by a backward pass during 

which error information is propagated backward from the output neurons to the hidden neurons.” 

Is a normal practice to partition the Training set data (input data) for its use in the network development 

as follows: 

 80% of the data for Training purposes, 

 10% of the data for Calibration purposes, 

 10% of the data for Verification and Validation purposes. 

General consensus of opinion is that back-propagation is the best general-purpose model and probably 

the best at generalization. The following figure depicts how a general operation schematic for a Back 

propagation neural network should be: 
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Figure 15 - Schematic of a General Back propagation Neural Network [25] 

Given the training sample(𝑋𝑛, 𝑌𝑛), the prediction point (Xi) and set of initial synaptic weights (wij), the 

general basic algorithm of Backpropagation Neural Network is the following for the predicted output (Yj): 

 

𝑒𝑗 = 𝑌𝑗 ∗ (1 − 𝑌𝑖) ∗ ∑(𝑒𝑘 ∗ 𝑤𝑗𝑘
′ ) →  𝑒𝑟𝑟𝑜𝑟 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝 

𝑤𝑖𝑗 = 𝑤𝑖𝑗
′ + 𝐿𝑅 ∗ 𝑒𝑗 ∗ 𝑋𝑖 →  𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡  

Figure 16 - Backpropagation Neural Network Algorithm schematic 
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Observations: 

 wij, New weight calculated 

 w'jk, Previous weight 

 k,  sum of errors terms for each neuron 

 LR, Learning Rate 

 ej, Error term  

 Yi, Observed output 

 Yj, Calculated output 

Backpropagation Neural Networks are very flexible, suitable for pattern recognition and decision making 

problems. Training process has a high dependence to order of the training samples used. The process can 

be highly parallel, therefore cutting down processing times (Processing times include the randomization 

of input order of relatively huge amount of data needed to perform training). Is based in pure machine 

learning (gradient descent, momentum factor), doesn’t use methods that are based in statistical methods. 

Reservoir Simulation 

In this section we will briefly discuss the governing equations for a water-oil flow numerical reservoir 

simulator that doesn’t account for compositional flow nor thermal considerations. [26] 

Oil-Water Flow Equations 

Consider incompressible oil-water flow with no mass transfer between phases when capillary pressure 

effects are ignored. Mass balance equation can be expressed as: 

𝜙 
𝜕𝑆𝑗

𝜕𝑡
+ ∇. 𝑼𝑗 = 𝑞𝑗  , 

 𝑗 , phase (j=0 for oil and w for water) 

 𝜙 , porosity 

 𝑆𝑗 , Saturation phase of j 

 𝑈𝑗  , phase Darcy velocity 

 𝑞𝑗 , source term 

The phase velocity is related to the pressure gradient through Darcy’s law: 

𝑈𝑗 = − 
𝜌𝑗𝑘𝑟𝑗

𝜇𝑗
𝒌. ∇𝜑𝑗  ,       𝜑𝑗 =

𝑝

𝜌𝑗
− 𝑔𝐷 
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 𝑝 , pressure 

 𝐷 , depth 

 𝑔 , gravitational acceleration 

 𝜌𝑗  ,  phase density 

 𝜇𝑗  , phase viscosity 

 𝑘𝑟𝑗 , relative permeability to the phase 𝑗  

 𝒌 , absolute permeability 

 ∇𝜑𝑗, phase potential 

Applying a standard finite volume discretization, the system can be written as: 

𝐓n+1𝐗n+1 + 𝐃(𝐗n+1 − 𝐗n) + 𝐐n+1 = 𝐑n+1 ,     𝐅n+1 = 𝐓n+1𝐗n+1  

 n, time level variable 

 F, flow term 

 X, designates the vector primary unknowns (pressure and saturation in each grid block) 

 T, transmissibility matrix 

 D, Accumulation matrix 

 Q, source/sink terms 

 R, Residual Vector  

This system is not linear and has to be solved using Newton’s method as follows: 

𝐉𝛅 = −𝐑 

 J , designates a Jacobian matrix 

 𝛅, represents the solution update; i.e. 𝐗n+1,k+1 = 𝐗n+1,k , where k designates the iteration level.  

Other methods for non-linear solving problems that are worth mentioning are Gauss-seidel method, 

Point-over successive relaxation method (PSOR) and Linear-over successive relaxation method (LSOR). 

Computational tasks in a Commercial reservoir simulation can be divided into a few main categories, and 

they take different CPU processing times percentage according to their size and node/processor 

configuration, as described in the following figure for GigaPOWERS (Saudi Aramco in-house Simulation 

Software): 
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Figure 17 - CPU time consumption of each process in a reservoir simulator [4] 

Proxy Reservoir models at grid block level 

Proxy Reservoir models are accurate depictions of Reservoir simulations, their objective is to provide fast 

approximated solutions that substitutes large numerical simulation models in order to assist managerial 

decisions on a timely manner. 

Most commonly used proxy models in the industry are Response surfaces (Approximates the problem 

using statistical techniques) and Reduced Order Models (ROM)(Approximates the solution space of the 

problem using different techniques), these simplifications can only provide, at best, limited responses at 

well locations [27], limiting the Reservoir Engineer to the scenarios contemplated within the solution 

space, reproducing probable outputs that will ultimately run useless for a managerial decision unless 

expanding of solution space takes place. [8].  

The term “Proxy” means “to act on behalf of another”. 

Reduced Order Models (ROM) are a type of proxy models that reproduces the Reservoir simulation into a 

lower dimensional space, giving us a solution within a grossly approximated solution space. Using multiple 

mathematical approaches (Radial Basis Function NN’s, Proper Orthogonal Decomposition-POD, and 

interpolation methods) researchers are successful in “reducing” models and obtaining good results, within 
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their solution space,  while using hundreds of reservoir simulation results, running useless this type of 

analysis due to the complexity of their structure and application. 

Grid Surrogate Reservoir Model (GSRM) 

Grid Surrogate Reservoir models (SRM) are a type of proxy model that based on Artificial Intelligence 

technology and data mining techniques can learn, accurately replicate and expand our knowledge of a 

reservoir using a commercial Reservoir compositional numerical simulator (CMG-GEM) to generate a vast 

dataset that gives neural networks enough knowledge over its different scenarios outputs (experimental 

design) for this purpose. 

Necessity of SRM’s resides in the fact that massive potentials of existing numerical reservoir simulation 

models go unrealized because of the long CPU times needed to make single runs, as of the complicated 

partial differential equations involved and the computational fluid dynamics large quantities of data.  

In order to perform history matching processes, optimization or quantification of uncertainties  in a 

numerical reservoir model (analyses that require large number of simulation runs to perform) idle time 

between scenarios statement – study – result processes increases exponentially for every simulation run 

performed, henceforth making impractical the managerial decisions over an asset because of the 

timeframe in which they are proposed. 

SRM’s gives us the would-be response of the numerical reservoir simulator nor in days or hours, but in 

seconds, because of the simplicity of the resultant mathematical functions associated with them, that are 

manufactured via highly parallel processes that establish a target function based on real data inputs to 

sculpt a build-to-perform model, a tuned Neural Network. 

While hundreds of simulations are required to build other Reservoir proxy models approaches, a GSRM 

requires only a small amount of simulation runs due to a unique an innovative method of data sampling 

for the generation of required spatio-temporal database.  

SRM at grid block level and well level has been applied numerous times with outperforming results each 

time, we can safely conclude that the efficiency of this technology has been proven for different cases and 

scenarios. [1] [27] [28] 

The uniqueness of this study is that a GSRM development for a Water Alternating Gas (WAG) CO2-EOR 

field multi-compositional Reservoir Simulation Model (CMG GEM), one of the most complex type of 

simulation in the industry, has not been done before. 
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 – Methodology 

General methodology 

In this chapter, the methodology of this work is presented in detail. The objective of this work, as 

mentioned earlier, is to assess the feasibility of using state of the art data-driven proxy models to 

effectively replicate dynamic reservoir properties of complex full field numerical models, by building and 

validating a grid block level Surrogate Reservoir Model (SRM) of a macro-scale complex full field CO2 

injection –EOR numerical model. The methodology presented in this study is detailed in the following 

figure: 

 

Figure 18 - General Methodology Flowchart 
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The dynamic reservoir properties to replicate field wide using the Surrogate Reservoir Model are the 

following: 

 Pressure (PRESS) 

 Oil Saturation (SO) 

 Water Saturation (SW) 

 Global CO2 mole fraction (CO2) 

The timeframe chosen for this study is of 5 years, 2006 to 2010; since we cannot access the source code 

of the Numerical simulator (CMG GEM) in order to convert its outputs from Data in a convoluted Non-

human readable data format, Yearly datasets will be deconvoluted, extracted and organized from 

simulator outputs for each scenario stipulated, on the latter we will be performing various analyses and 

performing data mining techniques in order to obtain “not apparent data” that will be useful in revealing 

hidden patterns to the Neural Network architecture design. Later on, these Neural Networks will be 

studied in a standalone fashion to determine their individual quality, then concatenated in a Cascading 

feed-forward design in order to obtain a fully-fledged Grid based Surrogate model (GSRM) for the former 

Numerical Reservoir model. 

Analyses will be performed on the GSRM generated in order to assess the feasibility of use of this 

technology for the optimization of CO2-EOR WAG processes in a full complex field Numerical Simulator. 

Commercial and Non-Commercial Software employed 

For the different stages of this study we will be using multiple software’s, described as follows: 

 Computer Modeling Group (CMG), General Equation of State Model (GEM), Commercial 

Numerical Simulator software. 

 Intelligent Solutions Inc. (ISI), Intelligent Data Evaluation & Analysis (IDEA), Neural Network 

Developer and Data analysis software. 

 Microsoft EXCEL 2013, Spreadsheet software. 

 Python ver2.7, Programming language. 

 Microsoft Visual Basic 6, Programming language. 
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Experimental design of CMG simulator Scenarios 

In order to generate a solution space that would allow the GSRM to generate sufficient response for the 

reservoir model under study, we generated a set of 17 CMG simulation runs, 13 of this simulation results 

were used to build a spatio-temporal dataset that would in further steps be used for training purposes, 

and 4 of this simulation runs were used for verification purposes, that is, for comparison of the output of 

the CMG simulation runs vs. the GSRM runs under the same scenario defined by its independent and 

dependent variables. This process is called blind verification process. 

The independent variables taken in consideration for the experimental design and their correspondent 

ranges are: 

Table 3 - Independent Variables (Scenario Experimental Design). 

Variable Range of values 

Gas Injection rate (GV) 10 – 80 (MMscf /day) 

Gas injection Time (GT) 6-24 months 

Water injection rate (WV) 10-50 (Mbbl/day) 

Water injection times (WT) 6-24 months 

 

The dependent variables taken in consideration for the experimental design and their correspondent 

ranges are: 

Table 4 - Dependent Variables (Scenario Experimental Design) 

Variable Description Range of values 

Water slug Volume (WSV) Injected Slug of water volume               

(WV*WT) 

0.1-2% reservoir pore volume 

Gas slug Volume (GSV) Injected Slug of gas volume               

(GV*GT) 

0.1-2% reservoir pore volume 

Water alternating Gas Water/Co2 injection ratios at 

reservoir conditions (WV/GV) 

0.5 - 4 
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The selection or sampling of this multidimensional space must be done in a methodical fashion, ensuring 

that every parameter (independent or dependent) is statistically well represented in order to ensure that 

the solution space generated for the GSRM will comprehensively portray the CMG simulations responses 

in fewer experiments. 

To perform this sampling we chose the Latin Hypercube sampling method, this is the generalization of the 

Latin square method (Euler method) to an arbitrary number of dimensions, whereby each scenario 

selected is the only in every multidimensional axis-aligned hyperplane that contains it, ensuring this way 

that our solution space will contain an unique probable answer for each type of response under the 

parameters drawn. The scenarios designed are as follows: 

Table 5 - Scenario Design 

Scenarios GV 
(MMscf/
day) 

GT 
(months) 

GSV 
(MMscf) 

WV 
(Mbbl/day) 

WT 
(months) 

WSV 
(Mbbl) 

Ratio WAG Use 

1 9.883721 12 118.6047 50 24 1200 10.11765 4 Training 

2 13.17829 8 105.4264 40 20 800 7.588235 3 Training 

3 10.87209 6 65.23256 30 11 330 5.058824 2 Training 

4 13.34302 24 320.2326 45 18 810 2.529412 1 Training 

5 14.37632 22 316.2791 25 16 400 1.264706 0.5 Training 

6 10 6 60 10 8 80 1.333333 0.527132 Training 

7 70 13 910 50 24 1200 1.318681 0.521339 Training 

8 30 7 210 30 22 660 3.142857 1.242525 Training 

9 50 14 700 42 23 966 1.38 0.545581 Training 

10 80 6 480 45 24 1080 2.25 0.889535 Training 

11 23 8.0358 184.8234 49.116 19.1418 940.16
86 

5.086849 2.01108 Training 

12 80 24 1920 0 0 0 - - Training 

13 0 0 0 50 24 1200 - - Training 

14 11.18272 10 111.8272 45 22 990 8.852941 3.5 Blind 

15 11.06977 7 77.48837 35 14 490 6.323529 2.5 Blind 

16 9.883721 8 79.06977 50 6 300 3.794118 1.5 Blind 

17 30 16 480 50 14 700 1.458333 0.57655 Blind 

 

The total field volumes of Water/CO2 were divided amongst the water alternating gas injector wells, and 

taking in consideration each well rate constraint, pressure constraint and history of injection until 2002, 

we were able to assign a suitable rate for each one of them in each scenario. 
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Data Deconvolution and Extraction 

Deconvolution is an algorithm-based process used to reverse the effects of convolution on recorded data 

from the numerical simulator step-based operations outputs; due to the nature of this data and its large 

size (5GB per case-> approx. 200GB total) a Console Application was developed on Python language in 

order to achieve in an efficient manner the Deconvolution, Extraction and storage of this data in a friendly 

format set of large matrixes designed to provide quick quality checking characteristics. 

CMG’s GEM software keywords involved are the following, 

 For dynamic properties: 

 CO2: Represents Global CO2 mole fraction per block. 

 PRESS ALL: Represents Pressure in psi per block. 

 SO: Represents Oil Saturation in percentage (%) per block. 

 SW: Represents Water Saturation in percentage (%) per block. 

For static properties: 

 X-dist: Represents the distance of model origin to center of the block in X axis for non-orthogonal 

grid. 

 Y-dist: Represents the distance of model origin to center of the block in Y axis for non-orthogonal 

grid. 

 PERM: Represents the permeability in md per block. 

 PORO: Represents the effective porosity in % per block. 

For well and field production: 

 d-PRO CO2, d-PRO WAT, d-PRO OIL: Represents field wide production data for different 

components. 

 d-INJ CO2, d-INJ WAT: Represents field wide injection data for different components. 

 PRO CO2, PRO WAT, PRO OIL: Represents individual well production data for different 

components. 

 INJ CO2, INJ WAT: Represents individual well injection data for different components. 
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Numerical Simulator output *.INC files are of the following characteristics: 

 

Figure 19 - *.INC CMG output simulator example (Screenshot) 

Data obtained after deconvoluted and extracted *.NPY (Numeric Python Compressed Binary file) and 

*.XLSX (MS-EXCEL 2013 file) files are of the following characteristics: 

 

Figure 20 - *.XLSX / *.NPY Python Console output example (Screenshot) 

 The 17 base Datasets generated (28 features extracted for 3,600,000 blocks) are spatio-temporal 

datasets, meaning that they represent in a block per block basis all the features extracted in a dynamic 

(time-dependent) fashion. These datasets will serve different purposes in the whole process, described as 

following: 
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 13 datasets (Scenarios: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) will be used for training and 

verification purposes. 

 4 datasets (Scenarios: 14, 15, 16, 23) will be used solely for blind run verification purposes. 

The Console Application for deconvolution, extraction and organization of data from CMG output 

simulator files source code will be released for public usage and is provided for readers study in Appendix 

section A. 
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Dataset Management  

Data extracted was conformed into matrixes of large quantity of items, in this section we will explain the 

base datasets transformation into analyzed, tuned and manageable final datasets that will definitively 

provide us with sufficient information to build a Grid Based Surrogate Reservoir Model; the 

transformation evolution trough the different processes performed is as follows:  

 

Figure 21 – Dataset matrixes transformations trough the data management process. 

This process is going to be explained to detail in the following sub-sections of this work.    

Model Initial features 

The initial features extracted from Simulator output data are the following: 

 

Table 6 - Initial Features extracted from Simulator extracted Data. 

Base 

dataset

•34 features X 3,600,000 blocks

Lumped 

dataset

•34 features X 55,000 blocks

Data mining

dataset

•357 features X 55,000 blocks

Initial Features Definition Initial Features Definition

case # of Scenario from were the data is extracted PERM Represents the permeability per block.(md)

I I index for block PORO Represents the effective porosity per block.(%)

J j index for block CO2
Represents Global CO2 mole fraction per block. 

(%) per time step (Year1-Year5)

K k index for block PRESS
Represents Pressure per block (psi)                                       

per time step (Year1-Year5).

X
Euclidian Distance of model origin to center of 

the block in X axis for non-orthogonal grid. (ft)
SO

Represents Oil Saturation in percentage (%) per 

block per time step (Year1-Year5).

Y
Euclidian Distance of model origin to center of 

the block in Y axis for non-orthogonal grid. (ft)
SW

Represents Water Saturation in percentage (%) 

per block per time step (Year1-Year5).

Grid Top

Euclidian Distance of model origin to Average 

of top corners (4) in Z axis for non-orthogonal 

grid. (ft)
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Additional secondary features were generated from initial extraction features cross-validation with pre-

defined structure of the Reservoir simulation model, described as following: 

 

Table 7 - Secondary Features Generated from Simulator extracted Data. 

The base datasets have a total 34 features x 3,600,000 blocks matrix dimension, quality checking 

procedures were performed with initial raw data in order to assure no errors existed in the deconvolution 

and extraction process. Statistical analyses were performed in order to insure non erratic behavior of data 

and correlation of variables and features.  

Layer Lumping 

Layer lumping process was applied to the massive datasets generated because of the number of blocks 

present could not be handled by the available software (ISI-IDEA) in order to ensure proper processing 

and management of data. 

As described in Chapter 1 of this work under Numerical Reservoir Model description section, the Reservoir 

numerical model estimates 36 layers for the Reservoir and 100x110 blocks per layer in i and j direction 

respectively; The selection of lumped layers was designed in concordance with the predominating layer 

structure present in the Numerical reservoir model for 5 different layer intervals, described as the 

following: 

 Layer 1: Layer 1 to Layer 15. 

 Layer 2: Layer 16 to Layer 20. 

 Layer 3: Layer 21 to Layer 28. 

 Layer 4: Layer 29 to Layer 32. 

 Layer 5: Layer 33 to Layer 36. 

The lumping process was designed such that different properties were properly averaged using distinct 

methods according to their nature, described as follows: 
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Table 8 - Averaging methods used for different features in Layer Lumping process. 

The Layer Lumped datasets generated are of 34 features x 55,000 blocks; quality checking procedures 

were performed with initial raw data and random sampled data in order to assure no errors existed in the 

layer lumping calculation process. Statistical analyses were performed in order to insure non erratic 

behavior of data and correlation of variables and features.  

Data Mining 

Data Mining is the computational process of discerning arrangements and patterns inherent to large 

datasets involving methods such as intersection of different databases, cluster analysis based in spatial 

properties, anomaly data detection (outliers) and association rule mining (dependency determination). 

As defined by Wikipedia (Online Encyclopedia): “The overall goal of the data mining process is to extract 

information from a data set and transform it into an understandable structure for further use”. 

In order to generate “not apparent Data” that will be useful in revealing hidden patterns within the data 

and fully grasp the complexity and heterogeneity of the field under study in the Neural Network 

architecture design process, we introduced the following databases to intersect the base datasets: 

 Well Location, Production and Operational Constraints database. 

 Field Production database. 

 

 

 

 

 

Feature
Normal 

Average

Weighted 

Harmonic 

Mean

Weighted 

Arithmetic 

Mean

I x

J x

K x

X x

Y x

Grid Thickness x

Permeability x

Porosity

CO2 x

Pressure x

SO x

SW x
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This intersection generated the following features: 

 

Table 9 - Intersection with Well databases Features generated description. 

In order to generate features from a proper cluster analysis based in spatial properties, we generated 

definitions of a block based tier system composed of 8 tiers, averaging properties for each group of block 

for each tier; Based on each block i, j, k indexes, the description of each tier is as follows: 

 Tier 1: Average of Immediate adjacent blocks in same layer. 

 Tier 2: Immediate inferior layer block. 

 Tier 3: Immediate superior layer block. 

 Tier 4: Average of Immediate non-adjacent blocks in same layer. 

 Tier 5: Average of Immediate adjacent and non-adjacent blocks in inferior layer 

 Tier 6: Average of Immediate adjacent and non-adjacent blocks in superior layer 

 Tier 7: Average of Tier 1, Tier 2, Tier 3 values 

 Tier 8: Average of Tier 4, Tier 5, Tier 6 values 

 

 

 

Intersection Features Definition Intersection Features Definition

p1,p2,p3

First, Second and Third closest production well 

unique identifier for each block based on 

Euclidian distance.

q w1, qw2, q w3

First, Second and Third closest Rate Constraint 

for Water injection wells based on Euclidian 

distance for each block.(Bbls/day)

g1,g2,g3

First, Second and Third closest CO2 injection 

well unique identifier for each block based on 

Euclidian distance.

P block, G block, W 

block

Boolean (1/0) values for each block in wether 

they represent a production, CO2 injection or 

water injection well

w1,w2,w3

First, Second and Third closest water injection 

well unique identifier for each block based on 

Euclidian distance.

Well Cumulative 

production of CO2, 

Water and Oil. 

SIMULATOR BASED

For the First, Second and Third production wells, 

the cumulative in a time step based fashion of 

component produced. (Scf, Bbls)

dp1,dp2,dp3
First, Second and Third closest Euclidian 

distance to production well for each block.(Ft)

Well Cumulative 

injection of CO2 and 

Water.                         

SIMULATOR BASED

For the First, Second and Third injection wells, 

the cumulative in a time step based fashion of 

component injected.(Scf,Bbls)

dg1,dg2,dg3

First, Second and Third closest Euclidian 

distance to CO2 injection well for each 

block.(Ft)

Field cumulative 

(FieldCum) production 

of CO2, Water and Oil.                    

SIMULATOR BASED

For the Field, cumulative production of 

component produced (Scf, Bbls).

dw1,dw2,dw3

First, Second and Third closest Euclidian 

distance to Water injection well for each 

block.(Ft)

Field cumulative 

(FieldCum) injection of 

CO2 and Water.                  

SIMULATOR BASED

For the Field, cumulative production of 

component injected (Scf, Bbls).

bhp p1, bhp p2, bhp p3

First, Second and Third closest bottomohole 

pressure Constraint for production wells based 

on Euclidian distance for each block.(PSI)

Well Cumulative 

injection of CO2 and 

Water.         

CONSTRAINT BASED

For the First, Second and Third injection wells, 

the MAXIMUM cumulative possible in a time 

step based fashion of component 

injected.(Scf,Bbls)

q g1, q g2, q g3

First, Second and Third closest Rate Constraint 

for CO2 injection wells based on Euclidian 

distance for each block.(SCF/day)

Field cumulative 

(FieldCum) injection of 

CO2 and Water.           

CONSTRAINT BASED

For the Field, MAXIMUM cumulative production 

of component injected (Scf, Bbls).
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The following figure will illustrate this definitions: 

 

Figure 22 - Tier system definition 

This tier design generated 8 new features per dynamic and static property per time step studied (160 total 

new features), giving our models a proper spatial analysis and placement in order to better understand 

the distribution of such properties throughout the field. 

The data mined datasets generated are of 357 features x 55,000 blocks; quality checking procedures were 

performed with initial raw data and random sampled data, in order to assure no errors existed in the 

database intersection and tiering system calculation process. Statistical analyses were performed in order 

to insure non erratic behavior of data and correlation of variables and features.  
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Neural Network Architecture Design and GSRM development 

Neural Networks have the capability of performing Machine learning, as explained in former chapters, 

they read each block of the simulation as a different case to learn and try to replicate, consequently, a 

single scenario dataset contains 357 features for 55,000 cases of study in neural network terms. 

Data was analyzed and structured into large spatio-temporal datasets with an important quantity of 

features available to be considered into our inputs selection for Neural Network Architecture design and 

training, this said, not all the inputs generated are going to be useful in “teaching” the machine about the 

behavior of this Reservoir. 

Data will be unified, methodically sampled, timely parsed thus conforming Training spatio-temporal 

datasets for our neural networks in order to achieve the goals outlined, this reduction takes place granted 

that the computing powers and the tools used for this Research have data management limitations such 

that our Training spatio-temporal datasets have to be limited to a maximum frame of 32,000 cases of 

study; Consequence of this computing power and tools data management limitations the actual final 

Training spatio-temporal dataset will be only 22.34% of the total data available for all the cases of study. 

Is a normal practice to randomly partition the Training spatio-temporal dataset (input data) for its use in 

the network development, as follows: 

 80% of the data for Training purposes, 

 10% of the data for Calibration purposes, 

 10% of the data for Verification and Validation purposes. 

Once this data is sampled, inputs are selected and data is partitioned for different purposes in behalf of 

better understatements of the neural network and its grasp with the behavior of the reservoir; a Cascading 

design is going to be generated in order to create Neural Network models that will be trained and later 

deployed, thus conforming a Grid Based Surrogate Reservoir Model. 

This process is going to be explained to detail in the following sub-sections of this work.    

Data Sampling 

Data sampling is the process were we select the data within spatio-temporal datasets, previously 

generated for each case of study, as aforementioned the product Sampled Training spatio-temporal 

dataset will only represent approximately 22% of the whole available data pool.  

Three data sampling methods were developed and selected for this study, described as follows: 
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 Method A: 10% of data was selected from well locations, 90% of data was randomly selected from 

whole data pool. 

 Method B: The data was ranked according to their pressure values (high pressure to low pressure) 

and  Probability Distribution function (PDF) of the data was studied, data was then divided in 

uneven pressure ranges in order to acquire for the selected bin-ranges approximately the same 

% of total data present (20% of data for each bin). 

 Method C: The data was ranked according to their pressure values (high pressure to low pressure) 

and Probability Distribution function (PDF) of the data was studied, data was then divided in even 

pressure ranges (450 psi difference) in order to acquire for the selected bin-ranges the data 

available. 

The following figure will explain the main differences of the sampling methods here explained, as follows:

 

Figure 23 - Sampling methods comparison. 

The data was sampled for the different methods and studied using multiple General Regression neural 

networks (GRNN) analyses, using a basic input selection, in order to estimate their potential to generate 

good Backpropagation models. Once this analyses are performed the best sampling method (under these 

circumstances) is selected and employed to generate all the Training spatio-temporal datasets. 

Once the Training spatio-temporal datasets are generated, they will be parsed for the time steps within 

the time frame of this study (2006 to 2010) adding the features for the past time step in each of them, 

hence generating 5 different Training datasets with dimensions of 141 features for 32,000 blocks (cases). 
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Input Selection and Neural Network Training 

The features in the Training spatio-temporal Datasets are classified into 8 main categories, described as 

follows: 

 

Figure 24 - Input classification for Neural Network Architecture design. 

Multiple Group of Inputs are selected in order to strategy the best output architecture possible for the 

Neural Network design, these data is imported into the SRM Software for preprocessing, inputs/outputs 

are selected for each property to replicate and a proprietary technique known as “KPI Performance 

Analysis” is used to analyze the data an rank the input parameters based on their level of influence for 

the specified output. 

 

Figure 25 - KPI performance Analysis Screenshot and Neural Net design (ISI-IDEA 2013). 

The input selection criteria is the aided by the “KPI Performance Analysis”, giving us a hint of whether 

parameters should be included or discarded from the study. The vast majority of inputs are discarded and 

N# of Features Description N# of Features Description

GROUP ID 5
Contains the unique ID # 

features for each case.

GROUP : FIELD DATA (Simulator 

Data Generated) 2
Contains the Cumulative 

production and injection of 

the whole field, based in 

simulator results.

GROUP: CONSTRAINT 38 Contains the constraint 

parameters for each case.

GROUP: WELL DATA (Simulator 

Data Generated) 2

Contains the Cumulative 

production and injection 

based on the first to third 

closest well per condition, 

based in simulator results.

GROUP: STATICS 18
Contains the values of 

Permeability and Porosity 

(and its tiers) for each 

block.

GROUP : FIELD DATA 

(Constraint Generated) 2
Contains the Cumulative 

production and injection of 

the whole field, based in 

constraint data.

GROUP: DYNAMICS 72

Contains the dynamic 

values of Pressure, Global 

Co2 mole fraction, Water 

saturation and Oil 

saturation for timestep.

GROUP: WELL DATA (Constraint 

Generated) 2

Contains the Cumulative 

production and injection 

based on the first to third 

closest well per condition, 

based in constraint data.
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the top performing inputs that make more sense are selected. (Based on Reservoir Engineering 

Knowledge)  

The training of the Neural Network models then is commenced and continues until either maximum 

specified number of iterations has been reached or the estimation error has reached the allowable error. 

  

Figure 26 - Neural Network Training Screenshot and Live results analysis (ISI-IDEA 2013). 
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Cascading Design 

Cascading is the arrangement of the Neural Networks input selection in order to emulate a feed forward 

succession of data, thus creating a Grid Based Surrogate reservoir model that would only need initial 

inputs to replicate responses for pre-defined time steps. 

The cascading design generated for this study is as follows: 

 

Figure 27 - Cascading Design. 

The initial input data is the dynamic properties and constraint features for the former time step (t-1), 

these will be input for the pressure model of time step (t), its output will be input for the oil saturation 

model of time step (t), its output will be input for the water saturation model of time step (t), its output 

will be input for the Global CO2 mole fraction model of time step (t) and finally all this outputs are 

gathered and organized once more as inputs for model in the future time step (t+1). This process is 

repeated until we reach model pertaining to Year 2010 output, since we reached our final prediction time 

step.   

There are 20 models in total to be cascaded, 4 per year, one for each dynamic property to replicate; the 

runtime of this application is estimated to be around 20-30 minutes, this because of the intensive data 

management that is taking place in each step in order to arrange inputs and export outputs pertaining to 

every stage of the process. 
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  - Results and Discussion 

In this section we will present the results of the applied Grid Based Surrogate model (GSRM); these are 

portrayed and analyzed in an attempt to measure the feasibility of use of this technology in the proxy 

modeling of CO2 flooding Enhanced oil recovery fields that use Water alternating Gas (WAG) Techniques. 

Initially, results for the different methodology stages will be presented and analyzed, in order to set the 

sufficient frame to present the final results for Verification and Validation of the models using Training 

inputs and Blind inputs, this will ultimately lead us to the study of the error probability distribution 

function (PDF) of each property set of models and of the GSRM in general, thus giving us the appropriate 

tools to determine a conclusion that will ultimately define this study. 

Initial input selection contemplated Constraint based and Simulator output based data for Well and Field 

features in training spatio-temporal datasets; although Simulator output based data performed 

significantly better than Constraint based data, in the Key performance analysis and in our r-square values 

for each model, these features had to be discarded due to the cascading design chosen for this work and 

the maximum amount of models (NN’s) to be generated. Thereupon our final input selection for the GSRM 

design proposed, is as follows:  

 

Figure 28 - Final input selection. 

All PRESS models Features All SO models Features All SW models Features All CO2 models Features

case case case case

patch patch patch patch

I I I I

J J J J

K K K K

X X X X

Y Y Y Y

Grid Top Grid Top Grid Top Grid Top

Wblock Wblock Wblock Wblock

dp1 dp1 dp1 dp1

dp2 dp2 dp2 dp2

dg1 dg1 dg1 dg1

dg2 dg2 dg2 dg2

dw1 dw1 dw1 dw1

dw2 dw2 dw2 dw2

bhpp1 bhpp1 bhpp1 bhpp1

bhpp2 bhpp2 bhpp2 bhpp2

qg1 qg1 qg1 qg1

qg2 qg2 qg2 qg2

qw1 qw1 qw1 qw1

qw2 qw2 qw2 qw2

GROUP: 

STATICS
PERM

GROUP: 

STATICS
PERM

GROUP: 

STATICS
PERM

GROUP: 

STATICS
PERM

PRESS (t-1) SO (t-1) SW (t-1) CO2 (t-1)

PRESS (t-1) T1 SO (t-1) T1 SW (t-1) T1 CO2 (t-1) T1

PRESS (t-1) t SO (t-1) t SW (t-1) t CO2 (t-1) T4

PRESS (t-1) T7 SO (t-1) T7 SW (t-1) T7 CO2 (t-1) T7

g1 CumMax (t-1) PRESS (t) PRESS (t) PRESS (t)

g1 CumMax (t) PRESS (t) T1 PRESS (t) T1 PRESS (t) T1

w1 CumMax (t-1) PRESS (t) t PRESS (t) t PRESS (t) t

w1 CumMax (t) PRESS (t) T7 PRESS (t) T7 PRESS (t) T7

Field CumMax Gas (t-1) g1 CumMax (t-1) SO (t) SO (t)

Field CumMax Gas (t) g1 CumMax (t) SO (t) T1 SO (t) T1

Field CumMax Wat (t-1) w1 CumMax (t-1) SO (t) t SO (t) t

Field CumMax Wat (t) w1 CumMax (t) SO (t) T7 SO (t) T7

Field CumMax Gas (t-1) g1 CumMax (t-1) SW (t)

Field CumMax Gas (t) g1 CumMax (t) SW (t) T1

Field CumMax Wat (t-1) w1 CumMax (t-1) SW (t) t

Field CumMax Wat (t) w1 CumMax (t) SW (t) T7

Field CumMax Gas (t-1) g1 CumMax (t-1)

Field CumMax Gas (t) g1 CumMax (t)

Field CumMax Wat (t-1) w1 CumMax (t-1)

Field CumMax Wat (t) w1 CumMax (t)

Field CumMax Gas (t-1)

Field CumMax Gas (t)

Field CumMax Wat (t-1)

Field CumMax Wat (t)

GROUP: 

DYNAMICS 

GROUP ID

GROUP: 

CONSTRAINT

GROUP: WELL 

DATA 

(Constraint 

Generated)
GROUP : FIELD 

DATA 

(Constraint 

Generated)

GROUP ID

GROUP: 

CONSTRAINT

GROUP: WELL 

DATA 

(Constraint 

Generated)
GROUP : FIELD 

DATA 

(Constraint 

Generated)

GROUP: 

DYNAMICS 

GROUP ID

GROUP: 

CONSTRAINT

GROUP: WELL 

DATA 

(Constraint 

Generated)
GROUP : FIELD 

DATA 

(Constraint 

Generated)

GROUP: 

DYNAMICS 

GROUP ID

GROUP: 

CONSTRAINT

GROUP: 

DYNAMICS 

GROUP: WELL 

DATA 

(Constraint 

Generated)
GROUP : FIELD 

DATA 

(Constraint 

Generated)
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This input selection ensures that cascading takes place during our GSRM execution by feeding forward the 

outputs of each model as inputs of the following one. This input selection design was used to train NN’s 

for approximately 4000 epochs (learning cycle) using 32,000 cases with features ranging from 25 to 37, 

depending on the property to be modeled. 

Aforementioned, determination coefficient R2 is a relative good yardstick to measure how well the NN 

will predict outputs for a given new data; The R2 coefficients of the Neural Networks (models) generated 

for each property, for each time step, are the following: 

 

Table 10 - R2 coefficient of all NN's generated. 

This R2 coefficients obtained, were the best coefficients that could be obtained for each property modeled 

with our past input selection and data available, the low R2 coefficient for pressure model in Year 4 (2009) 

suggests that improvement could take place. In further chapters we will give recommendations for future 

researchers. 

The generated models were concatenated using the past mentioned cascading design, the Best Training 

Verification Case prediction distribution maps for the first and last year of simulation and correspondent 

histograms are as follows: 

 

 

 

 

 

 

 

 

 

PRESS SO SW CO2

Year 1 0.84 0.99 0.99 0.99

Year 2 0.91 0.99 0.99 1

Year 3 0.81 0.99 0.99 0.99

Year 4 0.46 0.99 0.99 1

Year 5 0.82 0.99 0.99 0.99
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 For Year 1 (2006): 

  

  

Figure 29 - Best Training case prediction, Pressure Model, Year 1 (2006). 
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Figure 30 - Best Training case prediction, SO Model, Year 1 (2006). 
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Figure 31 - Best Training case prediction, SW Model, Year 1 (2006). 
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Figure 32 - Best Training case prediction, CO2 Model, Year 1 (2006). 
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 For Year 5 (2010): 

 

 Figure 33 - Best Training case prediction, Pressure Model, Year 5 (2010). 
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Figure 34 - Best Training case prediction, SO Model, Year 5 (2010). 
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Figure 35 - Best Training case prediction, SW Model, Year 5 (2010). 
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Figure 36 - Best Training case prediction, CO2 Model, Year 5 (2010). 
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The Worst Training Verification Case prediction distribution maps for the first and last year of simulation 

and correspondent histograms are as follows: 

 

  

Figure 37 - Worst Training case prediction, Pressure Model, Year 1 (2006). 
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Figure 38 - Worst Training case prediction, SO Model, Year 1 (2006). 
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Figure 39 - Worst Training case prediction, SW Model, Year 1 (2006). 
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Figure 40 - Worst Training case prediction, CO2 Model, Year 1 (2006). 
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 For Year 5 (2010): 

  

Figure 41 - Worst Training case prediction, Pressure Model, Year 5 (2010). 
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Figure 42 - Worst Training case prediction, SO Model, Year 5 (2010). 
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Figure 43 - Worst Training case prediction, SW Model, Year 5 (2010). 
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Figure 44 - Worst Training case prediction, CO2 Model, Year 5 (2010). 
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The Best blind Validation prediction distribution maps for each year and correspondent histograms are as 

follows: 

  

Figure 45 - Best Blind case prediction, Pressure Model, Year 1 (2006). 
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Figure 46 - Best Blind case prediction, SO Model, Year 1 (2006). 
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Figure 47 - Best Blind case prediction, SW Model, Year 1 (2006). 
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Figure 48 - Best Blind case prediction, CO2 Model, Year 1 (2006). 
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 For Year 5 (2010): 

  

Figure 49 - Best Blind case prediction, Pressure Model, Year 5 (2010). 
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Figure 50 - Best Blind case prediction, SO Model, Year 5 (2010). 
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Figure 51 - Best Blind case prediction, SW Model, Year 5 (2010). 
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Figure 52 - Best Blind case prediction, CO2 Model, Year 5 (2010). 
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The Worst blind Validation prediction distribution maps for the first and last year of simulation and 

correspondent histograms are as follows: 

  

Figure 53 - Worst Blind case prediction, Pressure Model, Year 1 (2006). 
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Figure 54 - Worst Blind case prediction, SO Model, Year 1 (2006). 
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Figure 55 - Worst Blind case prediction, SW Model, Year 1 (2006). 
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Figure 56 - Worst Blind case prediction, CO2 Model, Year 1 (2006). 
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 For Year 5 (2010): 

  

Figure 57 - Worst Blind case prediction, Pressure Model, Year 5 (2010). 
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Figure 58 - Worst Blind case prediction, SO Model, Year 5 (2010). 
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Figure 59 - Worst Blind case prediction, SW Model, Year 5 (2010). 
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Figure 60 - Worst Blind case prediction, CO2 Model, Year 5 (2010). 
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As we can observe in this plots, the critical error points in the error maps correspond to the injection wells 

location blocks, those that produce the highest change in their properties during injection periods; as the 

GSRM tends to normalize the results within closest points in the distribution during the training calibration 

process, is almost impossible to grasp these changes without further data treatment. 

We can observe a good correlation of simulator results and GSRM results for almost every year of 

simulation, error histogram data, for both training verification and blind validation processes, indicates 

that the larger percent of data is present within acceptable thresholds of error (<=10%), thus providing 

a good prediction of the reservoir model in general. 

The following figure will provide Probability Error histograms; the population of this study contains all the 

active reservoir block error prediction calculations values for each property in each time step: 

 

Figure 61  – GSRM all cases output: Error Histogram 

This analysis depicts the Probability density function of the error produced by the GSRM model; after 

analyzing these charts we can infer that the GSRM predicts in a very accurate fashion (error<10%) the 

CMG numerical model outputs. 
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The Error probability distribution is an important method that measures the quality of the data obtained 

via GSRM model, uncertainty assessment for the possible outputs of this surrogate model are as follows: 

 

 

Table 11 - GSRM all cases output: Statistics analysis & Uncertainty Assessment summary (P10, P50, and P90) 

Uncertainty Assessment of the output data interpretation is as follows: 

 For pressure models deployment and application:  

o 90% of chance having an average error<=5.76 % for prediction results. 

o 50% of chance having an average error<=1.77 % for prediction results. 

o 10% of chance having an average error of 0 % for prediction results. 

 For Oil Saturation (SO) models deployment and application:  

o 90% of chance having an average error<=2.97 % for prediction results. 

o 50% of chance having an average error<=0.47 % for prediction results. 

o 10% of chance having an average error of 0 % for prediction results. 

 For pressure models deployment and application:  

o 90% of chance having an average error<=2.99 % for prediction results. 

o 50% of chance having an average error<=0.44 % for prediction results. 

o 10% of chance having an average error of 0 % for prediction results. 

 For pressure models deployment and application:  

o 90% of chance having an average error<= 4.61 % for prediction results. 

o 50% of chance having an average error<= 0.53 % for prediction results. 

o 10% of chance having an average error of 0 % for prediction results. 

P So Sw CO2 Average

min 0% 0% 0% 0% 0%

P10 0% 0% 0% 0% 0%

P50 1.77% 0.47% 0.44% 0.53% 1%

P90 5.76% 2.97% 2.99% 4.61% 4%

max 31% 60% 30% 75% 49%
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The following figure will assess the efficiency of the GSRM in runtime terms, as follows: 

 

 

Figure 62 - GSRM vs. Numerical simulator: Frame Runtime 

As the former figure depicts, there is a runtime reduction of approximately 98%, from 18.4 hours runtime 

to 27 min per run, this means that during a single scenario run for the CMG numerical simulator we can 

perform approximately 43 scenario runs using the GSRM generated. 

All the results generated by this study will be present in the Appendix section B of this work. 

CMG GEM GSRM (Python + VB6)

Hours 18.4 0.43
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Concluding Remarks 

The major conclusions of this work can be summarized as follows: 

 A novel Grid block level Surrogate Reservoir Model (GSRM) to replicate dynamic responses from a 

macro-scale complex full field CO2 injection –EOR numerical model was generated and validated; as 

portrayed in the results section of this study, the accurate results and the short runtime of this GSRM 

in replicating the numerical simulator outputs (From training and blind scenarios) makes this 

technology suitable and practical for the industry complex model proxy simulation needs. 

 GSRM predictive quality is highly dependable in data mining methods involved in the Training dataset 

generation process, therefore dataset generation is the most critical step for success in any GSRM 

generation study. 

 Artificial Intelligence based generated models, such as GSRM, are objective-defined proxy models not 

suitable to use in another type of study that is not contemplated in their solution space and training 

inputs selection, that said, the GSRM model generated in this study would be a good tool to study the 

WAG field design effect on dynamic responses of the reservoir but not a good tool to study different 

geological reservoir realizations effect on dynamic responses. 

 In the making of this GSRM, software applications were generated to deconvolute and extract data 

from CMG numerical simulator software outputs, this applications will be useful for future WVU 

researchers in the area of Reservoir simulation and proxy modeling. 

 The GSRM generated large amounts of data of this SACROC Reservoir simulation model (200GB+), this 

data will be useful for future WVU researchers in the area of proxy modeling. 
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Recommendations and Future Work 

The recommendations for future researchers are as follows: 

 Runtime of GSRM is significantly lower than from CMG numerical simulator (about 98% faster), this 

runtime is mostly for the massive data arrangement routines (coded in Python language); Runtime 

could be critically improved by using other programming languages that are native to the user 

operating system (such as VB.NET in Windows 7). 

 In order to evolve the GSRM generated into not only a tool that could investigate the effects of WAG 

field design effects on Reservoir models dynamic responses but a tool that could analyze dynamic 

responses given simulator dynamic rates, is necessary to include well and field data from simulation 

rates enhancing the actual inputs that only consider constraint based well and field data. 

 In order to enhance the GSRM accuracy is necessary to investigate further input combinations 

selections and sampling methods, since this are the most critical steps in obtaining accurate results. 
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Appendix section A – Console Application Source Code 
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Appendix B – GSRM output results. 

 

Figure 63- GSRM Results, CO2, year-case: 2006-1 
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Figure 64- GSRM Results, PRESS, year-case: 2006-1 
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Figure 65- GSRM Results, SO, year-case: 2006-1 
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Figure 66- GSRM Results, SW, year-case: 2006-1 
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Figure 67- GSRM Results, CO2, year-case: 2007-1 
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Figure 68- GSRM Results, PRESS, year-case: 2007-1 
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Figure 69- GSRM Results, SO, year-case: 2007-1 
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Figure 70- GSRM Results, SW, year-case: 2007-1 
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Figure 71- GSRM Results, CO2, year-case: 2008-1 
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Figure 72- GSRM Results, PRESS, year-case: 2008-1 
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Figure 73- GSRM Results, SO, year-case: 2008-1 
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Figure 74- GSRM Results, SW, year-case: 2008-1 
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Figure 75- GSRM Results, CO2, year-case: 2009-1 
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Figure 76- GSRM Results, PRESS, year-case: 2009-1 
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Figure 77- GSRM Results, SO, year-case: 2009-1 
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Figure 78- GSRM Results, SW, year-case: 2009-1 
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Figure 79- GSRM Results, CO2, year-case: 2010-1 
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Figure 80- GSRM Results, PRESS, year-case: 2010-1 
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Figure 81- GSRM Results, SO, year-case: 2010-1 
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Figure 82- GSRM Results, SW, year-case: 2010-1 
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Figure 83- GSRM Results, CO2, year-case: 2006-2 
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Figure 84- GSRM Results, PRESS, year-case: 2006-2 
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Figure 85- GSRM Results, SO, year-case: 2006-2 
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Figure 86- GSRM Results, SW, year-case: 2006-2 



118 
 

 

Figure 87- GSRM Results, CO2, year-case: 2007-2 
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Figure 88- GSRM Results, PRESS, year-case: 2007-2 
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Figure 89- GSRM Results, SO, year-case: 2007-2 
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Figure 90- GSRM Results, SW, year-case: 2007-2 
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Figure 91- GSRM Results, CO2, year-case: 2008-2 
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Figure 92- GSRM Results, PRESS, year-case: 2008-2 
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Figure 93- GSRM Results, SO, year-case: 2008-2 
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Figure 94- GSRM Results, SW, year-case: 2008-2 
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Figure 95- GSRM Results, CO2, year-case: 2009-2 
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Figure 96- GSRM Results, PRESS, year-case: 2009-2 
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Figure 97- GSRM Results, SO, year-case: 2009-2 
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Figure 98- GSRM Results, SW, year-case: 2009-2 
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Figure 99- GSRM Results, CO2, year-case: 2010-2 
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Figure 100- GSRM Results, PRESS, year-case: 2010-2 



132 
 

 

Figure 101- GSRM Results, SO, year-case: 2010-2 
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Figure 102- GSRM Results, SW, year-case: 2010-2 



134 
 

 

Figure 103- GSRM Results, CO2, year-case: 2006-3 
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Figure 104- GSRM Results, PRESS, year-case: 2006-3 
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Figure 105- GSRM Results, SO, year-case: 2006-3 
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Figure 106- GSRM Results, SW, year-case: 2006-3 
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Figure 107- GSRM Results, CO2, year-case: 2007-3 
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Figure 108- GSRM Results, PRESS, year-case: 2007-3 
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Figure 109- GSRM Results, SO, year-case: 2007-3 
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Figure 110- GSRM Results, SW, year-case: 2007-3 
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Figure 111- GSRM Results, CO2, year-case: 2008-3 
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Figure 112- GSRM Results, PRESS, year-case: 2008-3 
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Figure 113- GSRM Results, SO, year-case: 2008-3 
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Figure 114- GSRM Results, SW, year-case: 2008-3 
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Figure 115- GSRM Results, CO2, year-case: 2009-3 
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Figure 116- GSRM Results, PRESS, year-case: 2009-3 
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Figure 117- GSRM Results, SO, year-case: 2009-3 
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Figure 118- GSRM Results, SW, year-case: 2009-3 
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Figure 119- GSRM Results, CO2, year-case: 2010-3 
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Figure 120- GSRM Results, PRESS, year-case: 2010-3 
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Figure 121- GSRM Results, SO, year-case: 2010-3 
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Figure 122- GSRM Results, SW, year-case: 2010-3 



154 
 

 

Figure 123- GSRM Results, CO2, year-case: 2006-4 
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Figure 124- GSRM Results, PRESS, year-case: 2006-4 
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Figure 125- GSRM Results, SO, year-case: 2006-4 
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Figure 126- GSRM Results, SW, year-case: 2006-4 
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Figure 127- GSRM Results, CO2, year-case: 2007-4 
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Figure 128- GSRM Results, PRESS, year-case: 2007-4 
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Figure 129- GSRM Results, SO, year-case: 2007-4 
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Figure 130- GSRM Results, SW, year-case: 2007-4 
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Figure 131- GSRM Results, CO2, year-case: 2008-4 
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Figure 132- GSRM Results, PRESS, year-case: 2008-4 
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Figure 133- GSRM Results, SO, year-case: 2008-4 
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Figure 134- GSRM Results, SW, year-case: 2008-4 
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Figure 135- GSRM Results, CO2, year-case: 2009-4 
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Figure 136- GSRM Results, PRESS, year-case: 2009-4 
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Figure 137- GSRM Results, SO, year-case: 2009-4 
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Figure 138- GSRM Results, SW, year-case: 2009-4 
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Figure 139- GSRM Results, CO2, year-case: 2010-4 
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Figure 140- GSRM Results, PRESS, year-case: 2010-4 
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Figure 141- GSRM Results, SO, year-case: 2010-4 
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Figure 142- GSRM Results, SW, year-case: 2010-4 
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Figure 143- GSRM Results, CO2, year-case: 2006-5 



175 
 

 

Figure 144- GSRM Results, PRESS, year-case: 2006-5 
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Figure 145- GSRM Results, SO, year-case: 2006-5 
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Figure 146- GSRM Results, SW, year-case: 2006-5 



178 
 

 

Figure 147- GSRM Results, CO2, year-case: 2007-5 
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Figure 148- GSRM Results, PRESS, year-case: 2007-5 
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Figure 149- GSRM Results, SO, year-case: 2007-5 
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Figure 150- GSRM Results, SW, year-case: 2007-5 
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Figure 151- GSRM Results, CO2, year-case: 2008-5 



183 
 

 

Figure 152- GSRM Results, PRESS, year-case: 2008-5 



184 
 

 

Figure 153- GSRM Results, SO, year-case: 2008-5 
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Figure 154- GSRM Results, SW, year-case: 2008-5 
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Figure 155- GSRM Results, CO2, year-case: 2009-5 
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Figure 156- GSRM Results, PRESS, year-case: 2009-5 
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Figure 157- GSRM Results, SO, year-case: 2009-5 
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Figure 158- GSRM Results, SW, year-case: 2009-5 
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Figure 159- GSRM Results, CO2, year-case: 2010-5 
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Figure 160- GSRM Results, PRESS, year-case: 2010-5 
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Figure 161- GSRM Results, SO, year-case: 2010-5 
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Figure 162- GSRM Results, SW, year-case: 2010-5 
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Figure 163- GSRM Results, CO2, year-case: 2006-6 
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Figure 164- GSRM Results, PRESS, year-case: 2006-6 
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Figure 165- GSRM Results, SO, year-case: 2006-6 
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Figure 166- GSRM Results, SW, year-case: 2006-6 
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Figure 167- GSRM Results, CO2, year-case: 2007-6 



199 
 

 

Figure 168- GSRM Results, PRESS, year-case: 2007-6 
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Figure 169- GSRM Results, SO, year-case: 2007-6 
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Figure 170- GSRM Results, SW, year-case: 2007-6 
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Figure 171- GSRM Results, CO2, year-case: 2008-6 
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Figure 172- GSRM Results, PRESS, year-case: 2008-6 
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Figure 173- GSRM Results, SO, year-case: 2008-6 
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Figure 174- GSRM Results, SW, year-case: 2008-6 
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Figure 175- GSRM Results, CO2, year-case: 2009-6 
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Figure 176- GSRM Results, PRESS, year-case: 2009-6 
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Figure 177- GSRM Results, SO, year-case: 2009-6 
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Figure 178- GSRM Results, SW, year-case: 2009-6 
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Figure 179- GSRM Results, CO2, year-case: 2010-6 
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Figure 180- GSRM Results, PRESS, year-case: 2010-6 
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Figure 181- GSRM Results, SO, year-case: 2010-6 
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Figure 182- GSRM Results, SW, year-case: 2010-6 
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Figure 183- GSRM Results, CO2, year-case: 2006-7 



215 
 

 

Figure 184- GSRM Results, PRESS, year-case: 2006-7 
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Figure 185- GSRM Results, SO, year-case: 2006-7 



217 
 

 

Figure 186- GSRM Results, SW, year-case: 2006-7 
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Figure 187- GSRM Results, CO2, year-case: 2007-7 
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Figure 188- GSRM Results, PRESS, year-case: 2007-7 
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Figure 189- GSRM Results, SO, year-case: 2007-7 
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Figure 190- GSRM Results, SW, year-case: 2007-7 
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Figure 191- GSRM Results, CO2, year-case: 2008-7 
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Figure 192- GSRM Results, PRESS, year-case: 2008-7 
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Figure 193- GSRM Results, SO, year-case: 2008-7 
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Figure 194- GSRM Results, SW, year-case: 2008-7 
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Figure 195- GSRM Results, CO2, year-case: 2009-7 
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Figure 196- GSRM Results, PRESS, year-case: 2009-7 
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Figure 197- GSRM Results, SO, year-case: 2009-7 
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Figure 198- GSRM Results, SW, year-case: 2009-7 
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Figure 199- GSRM Results, CO2, year-case: 2010-7 
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Figure 200- GSRM Results, PRESS, year-case: 2010-7 
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Figure 201- GSRM Results, SO, year-case: 2010-7 
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Figure 202- GSRM Results, SW, year-case: 2010-7 
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Figure 203- GSRM Results, CO2, year-case: 2006-8 
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Figure 204- GSRM Results, PRESS, year-case: 2006-8 
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Figure 205- GSRM Results, SO, year-case: 2006-8 
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Figure 206- GSRM Results, SW, year-case: 2006-8 
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Figure 207- GSRM Results, CO2, year-case: 2007-8 
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Figure 208- GSRM Results, PRESS, year-case: 2007-8 
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Figure 209- GSRM Results, SO, year-case: 2007-8 
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Figure 210- GSRM Results, SW, year-case: 2007-8 
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Figure 211- GSRM Results, CO2, year-case: 2008-8 
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Figure 212- GSRM Results, PRESS, year-case: 2008-8 
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Figure 213- GSRM Results, SO, year-case: 2008-8 
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Figure 214- GSRM Results, SW, year-case: 2008-8 
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Figure 215- GSRM Results, CO2, year-case: 2009-8 
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Figure 216- GSRM Results, PRESS, year-case: 2009-8 
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Figure 217- GSRM Results, SO, year-case: 2009-8 
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Figure 218- GSRM Results, SW, year-case: 2009-8 
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Figure 219- GSRM Results, CO2, year-case: 2010-8 
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Figure 220- GSRM Results, PRESS, year-case: 2010-8 
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Figure 221- GSRM Results, SO, year-case: 2010-8 
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Figure 222- GSRM Results, SW, year-case: 2010-8 
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Figure 223- GSRM Results, CO2, year-case: 2006-9 
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Figure 224- GSRM Results, PRESS, year-case: 2006-9 
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Figure 225- GSRM Results, SO, year-case: 2006-9 
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Figure 226- GSRM Results, SW, year-case: 2006-9 
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Figure 227- GSRM Results, CO2, year-case: 2007-9 
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Figure 263- GSRM Results, CO2, year-case: 2006-11 



295 
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Figure 270- GSRM Results, SW, year-case: 2007-11 



302 
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Figure 281- GSRM Results, SO, year-case: 2010-11 



313 
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Figure 302- GSRM Results, SW, year-case: 2010-12 



334 
 

 

Figure 303- GSRM Results, CO2, year-case: 2006-13 



335 
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Figure 328- GSRM Results, PRESS, year-case: 2007-14 



360 
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Figure 331- GSRM Results, CO2, year-case: 2008-14 



363 
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Figure 337- GSRM Results, SO, year-case: 2009-14 



369 
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Figure 349- GSRM Results, SO, year-case: 2007-15 



381 
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Figure 354- GSRM Results, SW, year-case: 2008-15 



386 
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