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ABSTRACT 
 

Eagle Ford Frac Modeling: Integrating Proppant Transport with Geomechanical 

Properties for Long-Term Results in Liquids-Rich Plays 

Ahmed Yusuf 

 

Many of the techniques for hydraulically fracturing design were attempted in the liquid-
rich Eagle Ford developments. This study shows why different results were observed 
due to the variation of geomechanical stresses of the rock across a play and related 
reservoir properties. An optimum treatment for a liquids-rich objective is much different 
than that for a gas shale due primarily to the multiphase flow and higher viscosities 
encountered. 

This study presents a new treatment workflow for liquids-rich window of Eagle Ford 
Shale.  Review and integration of data from multiple sets across the play are used as 
input to a 3D hydraulic fracture simulator to model key fracture parameters which 
control production enhancement.  These results are then used within a production 
analysis and forecast, well optimization, and economic model to compare treatment 
designs with the best placement of proppant to deliver both high initial production and 
long term ultimate recoveries.   

A key focus for this workflow is to maximize proppant transport to achieve a 
continuous - optimum conductive - fracture half length.  Often, due to the complexity of 
unconventional deposition, it is difficult to maintain complete connectivity of a proppant 
pack back to the wellbore.  As a result, much of the potential of the fracture network is 
lost. Understanding the interaction of a hydraulic fracture and the rock fabric helps 
with designing this behavior to achieve the best results.  These results are used to 
determine optimum well spacing to effectively develop within a selected reservoir 
acreage. 

Currently, numerous wells exist with over two years of production history in much of 
the Eagle Ford shale formation. Results from this study are used to compare values 
from field production to demonstrate the importance of employing a diligent workflow 
in integrating reservoir and operational parameters to the fracture design. A proper 
understanding and application of hydraulic fracturing modeling is achieved using the 
methodology presented in this study. 
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Nomenclature 
 

ܽ ൌ Ellipse	major	axis 

ܣ ൌ Area, ft2. 

ܾ ൌ Ellipse	minor	axis 

ܥ ൌ Leakoff	coefficient, ft/min^1/2. 

௙஽ܥ ൌ Dimensionless	fracture	conductivity 

݀௛ ൌ Hydraulic	diameter, in 

݀௜௝ ൌ Spacing	between	discrete	fractures 

ܧ ൌ Youngᇱs	modulus, Psi. 

ᇱܧ ൌ Effective	Youngᇱs	modulus, psi. 

݂ ൌ Darcy	friction	factor 

ሻߠሺܩ ൌ Nolte	G	function, Fluid	loss	function 

݄ ൌ Fracture	height, ft. 

఍ܪ ൌ Characteristic	fracture	half െ dimension 

௣ܪ ൌ Pay	zone	height, ft 

௪ܪ ൌ Total	wellbore	height, ft 

݇ᇱ ൌ Consistency	index 

ܮ ൌ Fracture	half െ length, ft. 

݊ᇱ ൌ Flow	behavior	index 

ܰ ൌ Total	number	of	transverse	fractures 

݌ ൌ Pressure, psi 

ܲ ൌ G െ function	pressure, ISIP െ pሺtሻ 

௜݌ ൌ Reservoir	pressure, psi 

q ൌ Injection	or	flow	rate, bpm 

ݎ ൌ Radial	coordinate 

ܵ௣ ൌ Spurt	loss	coefficient	 

ݐ ൌ Time, min 

௣ݐ ൌ Pump	time, min 

ݒ ൌ velocity, ft/s 

௙ܸ ൌ Fracture	volume, bbl 
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௟ܸ ൌ Fluid	loss	volume	ሺno	spurt	lossሻ 

௦ܸ௣ ൌ Volume	loss	by	spurt 

ݓ ൌ Fracture	width, in 

௔ߙ ൌ Leakoff	area	parameter 

௅ߙ ൌ Length	propagation	parameter 

௣ߙ ൌ Pressure	parameter 

௪ߙ ൌ Width	propagation	parameter 

ߚ ൌ Propagation	parameter 

௖ߛ ൌ G	function	parameter 

Δ݌ ൌ Net	fracture	pressure, p௙ െ  ߪ

Δݔ ൌ Discrete	fracture	network	spacing, y-z plane 

Δݕ ൌ 	Discrete	fracture	network	spacing, x-z plane 

Δݖ ൌ 	Discrete	fracture	network	spacing, x-y plane 

ߟ ൌ Fracture	efficiency 

௦ߟ ൌ Efficiency	excluding	spurt	loss 

ߣ ൌ Reservoir	aspect	ratio 

ߠ ൌ Dimensionless	time, θ ൌ 	 ݐ ௣ൗݐ  

௖ߠ ൌ Dimensionless	closure	time, θ௖ ൌ
௖ݐ
௣ൗݐ  

,ߣ ߞ ൌ Integration	indices 

ζ = Dimensionless coordinate, ζ = ݔ ൗܮ  

߬ ൌ Time	of	fracture	leakoff	area	creation 

Φ ൌ Fluid	lose	fracture 

Φ௜௝ ൌ 3D	influence	factor 

߰ ൌ Dimensionless	momentum	parameter, Stiffness	multiplier 

ߪ ൌ Minimum	horizontal	stress 

ܦ ൌ Dimensionless 

ܰܨܦ ൌ Discrete	fracture	network 
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݈ ൌ Fluid loss 

݌ ൌ Pay	zone, end	of	pumping 
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݂݌ ൌ Primary	or	dominant	fracture 

m = Slope from the flow equation using material balance time (oil) 

b = Decline exponent 

 qi  = initial rate 

t = Time 
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1. Introduction 
 

The Eagle Ford Shale is a hydrocarbon producing formation located in South Texas. It 

has become extremely important due to its ability to produce high volumes of liquid-

rich hydrocarbons, producing more than other traditional shale plays.  The types of 

hydrocarbon produced vary from dry gas, condensate, and oil making it an excellent 

liquid-rich play. The direction of phase change from oil to gas in the Eagle Ford shale 

proceeds from north to south and from shallow to deep, where oil is mainly present in 

the shallowest northern section. Figure 1 shows the oil (green), volatile/condensate 

(orange) and dry gas (red) producing windows. It is one of the most active shale plays 

in US, with horizontal drilling and multistage completion activities beginning in 2009.  

The shale play extends over an area roughly 50 miles wide and 400 miles long with an 

average thickness of 250 feet.  Although it is perceived that it is composed of shale, 

the Eagle Ford shale is a hydrocarbon-bearing, Late Cretaceous formation that was 

deposited in a marine continental shelf environment. It is made up of organic-rich 

calcareous- mud rock with mineralogy varying from 40-90% carbonate minerals, 15-

30% clay, and 15-20% quartz.  The total-organic-carbon content (TOC) ranges from 2 

to 12%, thermal maturity (%Ro) is between 0.45% and 1.4%, API gravity varies 

between 28o and 62o, porosity range is 8% to12%, and pressure gradient varies 

between 0.5 and 0.8+ (psi/ft.) (Za Za Energy, 2013). The high carbonate content and 

subsequently lower clay content make the Eagle Ford more brittle and easier to 

stimulate through hydraulic fracturing. 

The foundation of Eagle Ford Rock makes this play convincingly different than other 

unconventional reservoirs such as Haynesville, Barnett, and Marcellus shale. 
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Figure 1: Eagle Ford shale play map (Energy Information Administration and Drillinginfo, Inc.) 

In order to achieve an optimal development plan, it is important to evaluate the 

reserves and resources early on. McKinney et al. (2002) stated that suboptimal 

development plans can result in potential losses of more than half in regards to the 

asset value. The permeability in the Eagle Ford shale is normally tens or hundreds 

nanodarcies and can even yield long transient-flow periods, which complicate both 

production forecasting and reserves estimation. In addition to the extremely low matrix 

permeability, there are other factors that makes forecasting production from 

hydraulically fractured horizontal wells in Eagle Ford shale highly complicated 

including:    

Multistage fracture treatments in Eagle Ford do not always generate conventional bi-

wing planar, instead they generate a desecrate fracture network (DFN) that exhibits 



3 
 

fracture fairways that are long and wide. Interaction between advancing hydraulic 

fracture and pre-existing natural fractures can generate complex fracture geometry. 

The history of drilling and completion in Eagle Ford is a relatively short period. 

Therefore, the effect of generated complex fracture geometry on production 

performance needs further studying and analysis. 

An optimum fracture treatment for a liquids-rich objective is much different than that 

for a gas shale due primarily to the multiphase flow and higher viscosities 

encountered. Therefore, many techniques for hydraulically fracturing design were 

attempted early on in the liquid-rich Eagle Ford developments. Hydraulic fracturing 

continues to be the most important mechanism to produce hydrocarbons out of Eagle 

Ford formation. Different treatment method was used in Eagle Ford whether is a 

velocity based fluid system (slick water) or viscosity based fluid system (cross link). 

After an early success of gas shale stimulation design, some operators were willing to 

use slick water, injecting at high rate, large volume water fracture treatment with very 

low proppant concentration in the various shale plays including Eagle Ford Shale.  

The goal of this treatment was to contact large surface area of the reservoir. 

Considerable horizontal wells in Eagle Ford Shale wells were completed using high 

rate large volume slick water and the outcome had mixed result. On the other hand, 

crosslink fracture treatments were implemented where higher conductivity fractures 

were needed due to presence of clay swelling, and proppant embedment problems 

that can significantly reduce fracture conductivity. This method was not successful 

some area of Eagle Ford formation due to the variation of geomechanical stresses of 

the rock across a play and reservoir properties. 

It is important to study and evaluate the regional or local characteristics of Eagle Ford 

formation before designing and implementing stimulation design. Log and core 

analysis, micro-seismic event, rock mineralogy analysis, Brinell hardness values, 

unpropped fracture conductivity, Diagnostic Fracture Injection Test (DFIT), fluid 

composition, and phase behavior can determine the guideline for selecting type of 

localized fracture treatment design.   
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1.2. Summary of Eagle Ford geology 
 

In conventional reservoirs, oil and gas form in shale rocks and then migrate 

upwards to sandstones and porous limestone where they become trapped. 

H o w e v e r ,  i n  unconventional reservoirs such as Eagle Ford, significant amount of 

oil and gas remain in the shale.  Without innovative and newer techniques, it’s very 

difficult to recover great amount of hydrocarbon from the Shale formation.  

The play was named Eagle Ford, a town in Dallas County where the shale outcrops. 

It trends across Texas from the Mexican Border in The South into East Texas, It is 

located in several counties stretching Giddings field in Brazos and Grimes counties 

down into the Maverick Basin in Maverick County [EIA]. Figure 1 shows some of 

the counties in which Eagle Ford Shale is located. 

The Eagle Ford formation is divided into two parts, an upper and a lower part of Eagle 

Ford. The upper part is characterized by interlayered light and dark gray calcareous 

mud rock deposited during a regressive interval. The lower part which has higher 

organic content is mostly dark gray mudstone deposited during a transgressive 

interval. The lower Eagle Ford Shale consists of discontinuous low-permeability 

sandstone layers which are the primary target for drilling and completion. It is 

organically rich and produces more hydrocarbons than the upper Eagle Ford, which 

can be attributed to the fact that the oxygenated environment as the depth decrease 

(Bazan, L.W., et al 2010). 

The Eagle Ford sits above the Buda Limestone and below the Austin Chalk (Parra et 

al., 2013). The Austin Chalk has been naturally fractured and hydrocarbons produced 

within it were the sourced Eagle Ford formation. The extent of the Eagle Ford 

formation and difference in its thickness and stratigraphy are in large part restricted by 

regional tectonic features. Figure 2 shows the structural and tectonic features that 

influenced the depositional extent, depth, and thickness of the productive and 

prospective regions of the Eagle Ford formation (Hertz, et al, 2011). 
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Figure 2: Structural and tectonic features (Hertz, et al, 2011) 

   

 The depth of the Eagle Ford reservoir determined the initial GOR content. Deeper 

wells to the southeast of the play have higher initial GORs and called gas window 

which produce greater share of natural gas, while the shallower wells to the northwest 

of the play have lower initial GORs called oil window and produce greater share of oil. 

In the eastern half of the play, the wells that intersect the reservoir between shallow 

and deep levels have initial GORs of 6000 cf/bbl. and called volatile/condensate 

window and producing more oil relative to gas (Condon and Dyman, 2006). The 

western half of the play includes a wider depth distribution of wells, intersecting the 

formation from deeper to a shallow depth and has initial GORs of up to 6000 cf/bbl. 

and producing more gas relative to oil. 

Figure 3 shows production across the Eagle Ford based of initial Gas-to-Oil Ratios 

(GORs). Most wells now being drilled for hydrocarbons produce a mixture of oil and 

natural gas.  Figure 1 in the Eagle Ford map defined the oil, condensate, and gas 

“windows” of the play 
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Figure 3: Initial GOR ratios of Eagle Ford wells‐January 2000 – June 2014 (EIA and drilling info Inc., September 
2014) 

 
1.3. Production and Completion Background 

 

In the fall of 2008, the discovery well was drilled in La Salle County, Texas. That first 

year, there were few wells that were permitted and drilled, and ultimately targeting the 

Eagle Ford Formation in South Texas (Drilling-Info, 2012). Today the Eagle Ford Shale 

has become one of the most drilled shale formations in the United States. Many 

operators have started investing, using both horizontal drilling and hydraulic fracturing 

techniques to reach and extract oil and gas from the shale formation. As shown in 

Figure 4, drilling permits in the Eagle Ford Shale began to drastically increase in 2010, 

which led to more than 1,000 permits being issued.  By 2014, more than 5,000 permits 

were issued during the year. 
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Figure 4: Eagle Ford drilling permits issued (Railroad Commission of Texas) 

Currently, the Eagle Ford producing well count and over 11,000 ft. drilling activity are 

increasing rapidly compared to other shale plays. In summer of 2014, the oil and gas 

production from the Eagle Ford was 1.2 million barrels per day and 5 billion cubic feet 

per day, respectively. This amounted to a total of 2 million barrels of oil equivalent 

per day. In contrast with summer 2013, gas production grew by 22%, oil by 28%, and 

the barrels of oil equivalent by 26% [2015 IHS Energy Eagle Ford Regional Play 

Assessment] Companies’ target change to infill drilling hinted the play had entered the 

adulthood phase as indicated in Figure 5.  

 

Figure 5: Life cycle of unconventional plays (IHS Energy Eagle Ford Regional Play Assessment) 



8 
 

Originally, there were over 30 fields.  However, due to field consolidations, the number 

of fields have been reduced to currently 22 as active (with 17 in active) located within 

the Railroad Commission Districts 1 thru 5 and the fields cover 26 counties. Figure 6 

presents most active counties in Eagle Ford such as Atascosa, DeWitt, Dimmit, Frio, 

Gonzales, Karnes, La Salle, Lavaca, Live oak, Mc Mullen, Webb, Wilson, and Zavala 

County. 

 

     Figure 6: Counties with Production from Eagle Ford Shale (Data Source: IHS Energy) 

Data mining study of Eagle Ford wells production and completion design were 

conducted.  Production data and multistage hydraulic fracture treatment in different 

county were gathered, leading to the development of a criteria or standard by which 

wells can be evaluated, such as all wells must have: 

 Eagle Ford play (reservoir) 

 Horizontal (hole direction) 

 Active (production status) 

 Has production/ completion data (production and treatment volume) 

Since 2010 more than 10,000 horizontal wells have been drilled and all have been 

hydraulically fractured. Statistical analysis was conducted to understand historical 
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production and completion trends. Production volume, completion types, lateral length, 

total proppant mass, and efficiency were analyzed. The highest yielding wells were 

located northeast part of Eagle Ford. Figures 7 and 8 and Table 1 show that Eagle 

Ford has sweet spot with higher initial and first year cumulative production. 

 

  Figure 7: Average First Year oil production (BBLS) quartile (Data Source: IHS Energy) 

 

Cumulative frequency map of the best and worst 25% of producing wells showed 

distinct sweet spots in Karnes, Gonzalez, and DeWitt counties. By contrast, poorer 

wells were spread throughout the play. There may be many reasons a well can 

perform poorly including reservoir properties, rock properties, and poor completion 

practices. 

Table 1 lists average initial production and first year cumulative oil and gas production 

quartile. Group A and B wells which were the best producing groups that are deeper 

than the other groups. Production and completion development were supported by 

considering geologic and reservoir trends.  Several properties increase in the 

southwest direction across the play, including depth, thickness, oil API, gas content, 

and pressure. Table 2 presents average cumulative production in first year in each 

county.  



10 
 

 

Table 1: Summary of first year production in Eagle Ford Shale (Data Source: IHS Energy) 

 

Table 2: Summary of first year production in Eagle Ford Shale by County (Data source: IHS Energy) 

 

Figure 8: Top 25% wells and Bottom 25% wells (Data Source: IHS Energy) 

 

Group  WC  Avg_1st_Year_Oil 
(BBL) 

Avg_1st_Year_Gas 
(MCF) 

Avg_IP_Oil
(BBL) 

Avg_IP_Gas 
(MCF) 

Avg_TVD
(ft.) 

A  990  181,886  309,430 25,433 35,154  11,501

B  1669  107,701  175,711 17,089 21,277  10,274

C  2431  74,070  144,676 12,847 18,313  9,662

D  5500  32,710  192,365 6,650 27,695  8,857

County  WC  Avg_1st Y_ Oil (BBL)  Avg_1st Y_ Gas 
(MSCF) 

Avg(TVD)  1st Y_Cum_prod% WC % 

DE WITT  597  130,805  341,369  12,667  15%  6% 

KARNES  1438  97,072  129,773  11,262  11%  14% 

GONZALES  1033  85,129  105,652  10,534  10%  10% 

LIVE OAK  291  68,324  159,373  11,651  8%  3% 

MC MULLEN  1005  65,517  105,705  10,571  8%  10% 

LA SALLE  1747  62,690  122,010  8,789  7%  17% 

LAVACA  157  60,392  100,661  11,667  7%  2% 

ATASCOSA  616  55,104  43,632  9,762  6%  6% 

WILSON  138  52,053  20,934  8,508  6%  1% 

FRIO  145  48,839  53,242  7,533  6%  1% 

DIMMIT  1991  48,285  213,433  7,378  6%  19% 

ZAVALA  175  45,729  14,270  6,101  5%  2% 

WEBB  959  31,325  643,250  8,313  4%  9% 
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The information gathered from producing data in Eagle Ford such as initial production 

and first year cumulative oil and gas were compared with hydraulic fracture treatment 

data in order to determine the parameters that can drive overall productivity. 

Breakdown of treatment design in each group is illustrated in Table 3. Average lateral 

length was over 5300 ft., average injected fracture fluid was 120, 000 BBL, and 

average proppant pumped into well was 6 million pounds. 

 

 

 

 

 
Table 3: Summary of Treatment Data in Eagle Ford Shale (Data source: IHS Energy) 

 

 Finally, summary treatment design in each county is illustrated in Table 4. Average 

lateral length is over 5300 ft., average well count per county is 815 wells, average 

injected fracture fluid of 113, 000 BBL, and average proppant pumped into well was 6 

million pounds. 

County   WC  Avg_1st 
Year_Oil(BBL) 

Avg_Lat 
Len(ft.) 

Avg_Fluid 
(BBL) 

Avg_Prop 
(lbs)) 

Avg_TVD(ft
.) 

DE WITT  625  135,308  4,738 87,843 4,953,747  12,672

KARNES  1,484  98,807  4,852 101,490 5,382,335  11,251

GONZALES  1,063  85,516  4,701 99,697 5,790,168  10,532

LIVE OAK  290  73,546  4,827 79,590 4,006,895  11,648

MC MULLEN  1,034  65,769  5,594 128,182 6,397,838  10,563

LA SALLE  1,801  62,789  5,566 125,870 6,483,670  8,802

LAVACA  165  61,097  5,091 110,091 5,192,870  11,674

ATASCOSA  650  54,586  5,653 132,596 6,580,547  9,745

WILSON  138  52,609  5,598 100,415 5,267,378  8,508

FRIO  156  48,174  5,617 116,112 6,837,469  7,550

DIMMIT  2,043  47,187  5,373 133,382 5,032,718  7,378

ZAVALA  182  46,630  6,721 121,230 7,705,901  6,109

WEBB  959  31,329  5,133 137,883 5,912,277  8,313

Average  815  66,411  5,343 113,414 5,811,063  9596

 

Table 4: Summary of Treatment Data in Eagle Ford Shale by County (Data source: IHS Energy) 

 

 

Group  WC  Avg_Lat Len (ft.)) Avg_ Fluid (BBL) Avg_ Prop (lbs) 

A  990  5,334  122,630 6,698,184 

B  1,669  5,477  119,820 6,317,219 

C  2,431  5,454  120,913 6,006,244 

D  5,500  5,086  116,681 5,304,841 

Average    5337  120,011 6,081,622 
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1.4. Area of Study 
 

This study focuses on localized optimization design in Eagle Ford shale, particularly in 

La Salle County, where a cookie cutter treatment design was used.  The goal was to 

replicate the treatment design utilized in the best producing area in Eagle Ford such 

as Dewitt, Gonzales, and Karnes counties.  

La Salle County is located in south Texas and it is one of the development areas of 

the Eagle Ford Shale.  Geology varies and production includes fluctuating amounts of 

oil, gas-condensate, wet gas, and dry gas. The northern half (shallow) of the county 

produces more liquids and gas production increases as one moves towards south 

(deeper). Figure 9 shows the location of La Salle county. 

 

Figure 9: Area of Study‐ La Salle County (Drilling info) 

 Optimization of Eagle Ford stimulation techniques became the most important 

objectives for completion and production engineers over the last four years. Fracturing 

fluid systems, treatment rates, proppant types and concentration, and completion 

details such as number of stages, number of clusters, and perforation intervals in 

horizontal laterals generated large number of variables impacting production for any 

company. 

Integrating data from multiple sets across the play such as geology, rock mechanics, 

reservoir, and fluid properties data are used as input for a 3D hydraulic fracture 

simulator to model key fracture parameters which control production enhancement.  
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These results are then used with a Production analysis, Forecast and Economic 

Model to compare which treatment designs will result in the best placement of fluid 

and proppant to deliver both high initial production and long term ultimate recoveries. 

This study investigates some of the questions frequently asked in field development 

planning such as: 

1. What is the optimum hydraulic fracturing design? 

 What is the optimum fracture geometry? 

 What is optimum well spacing per section? 

2. What is the optimum hydraulic fracturing treatment to achieve target 

design?  

 What is the optimum type of fracturing fluid? 

 What is the optimum volume of fracturing fluid and proppant? 

 What is the optimum proppant transport method?  
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2. LITERATURE RESEARCH 
 

2.1. Reservoir Rock 
 

A rock is defined as a collection of one or more minerals. Minerals are the 

fundamental building blocks of all rocks. The types of minerals present in a rock effect 

its behavior, and thus, its suitability as a reservoir. The classification of rocks is based 

on their origins. There are three major rocks, Sedimentary, Igneous, and Metamorphic 

Rocks.  Figure 10 presents relative abundant of major sedimentary rock 

(Schlumberger Training Manual, 2007). 

Sedimentary rocks are formed by deposition of particles derived from igneous, 

metamorphic or other sedimentary rocks by weathering and erosion or deposition of 

marine life. These are most important for oil and gas industry Sedimentary rocks 

provide the hydrocarbon source rocks and cap rock majority of reservoir. There are 

different types of Sedimentary rock such as Sandstone, limestone, and dolomite. 

Igneous rocks are formed from molten material which is either ejected from the earth 

during volcanic activity (e.g., lava flows, and ash falls), or crystallizes from a magma  

that is injected into existing rock and cools slowly, giving rise rocks such as granites. 

Igneous rocks are of minor importance for oil exploration. Rarely, hydrocarbon is 

produced from fractured igneous rocks. A granite has no porosity or permeability of its 

own, however tectonic forces may fracture the rock. Into these fractures hydrocarbons 

can flow to create a reservoir. 

Metamorphic rocks are formed by action of temperature and/or pressure on 

sedimentary or igneous rocks that alter the character of the existing rock. The effect of 

heat and pressure is to transform the rock into a new form. In doing this it destroys all 

porosity and any hydrocarbons. Metamorphic rocks do not have hydrocarbon 

reservoirs. 
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Figure 10:  Relative abundance of major sediment rocks (Schlumberger 2007) 

 

2.2. Rock and Reservoir Properties of Eagle Ford  
 

Reservoir quality (RQ) of shale formations is largely determined by the extent to which 

solid organic material has been converted to pore space by thermal maturation. 

Completion quality (CQ) is determined by rock mechanical parameters that are 

essential to stimulate organic shale (Sayers et al 2015).  Each shale play is unique 

with respect to production mechanism and geomechanical and petrophysical 

properties. In Eagle Ford shale, success is dependent on understanding the rock and 

reservoir properties. Once these parameters are understood, it is important to improve 

well performance. 

Petrophysical and geomechanical parameters are based on core and logging 

measurements and utilized as an input for completion and reservoir modelling. It is 

vital to investigate the effect of petrophysical parameters that controls reservoir quality 

(RQ) such as effective porosity, pore pressure, and total organic content (TOC). Also 

important are the geomechanical parameters that influence completion quality (CQ) 

such as stress, natural fractures, and mineralogy (Denney, 2012).   

It’s important to understand rock mechanical properties and mineralogy as a guideline 

to determine the completion of shale reservoirs. Figure 11 shows profile of the rock 
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properties collected for well 1H in Eagle Ford, such as Young’s modulus, Poison ratio, 

and stress gradient. The behavior of the rocks affects the quality of the reservoir and 

its interaction with the fluids, which flow through them. Therefore, understanding 

reservoir rock and its effect on fluid transport properties is the key to enhance ultimate 

recovery. 

 

Figure 11: Rock mechanical Properties of Well #1 

 

2.3. Mechanical Properties of Rock 
 

Rock mechanical properties are very important for designing of hydraulic fracture 

treatment.  Each shale play is unique and treatment design method should be 

determined based on individual quality and characteristics.  Knowledge of rock 

mechanical properties is essential to understand how Eagle Ford shale wells are 

drilled and completed. The effect of various parameters on the fracture geometry and 

propagation are examined.  

2.3.1. Young’s Modulus 
 

Young’s modulus is the ratio of stress over strain. For linear-elastic deformation, 

Young’s modulus is a constant with a unique value for a particular rock and in-situ 

conditions. The module constitutes the ability of a rock to resists deformation under 

load. Therefore, it measures of rocks stiffness. As stiffness of the rock increase, the 

fracture width will decrease and the length will increase for given set of input 
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parameters as illustrated in Figure 12. The YM value of different rocks is presented in 

Table 5. (Meyers 2014). 

 

                                 Figure 12: The Effect of YM on Fracture Length (well #1 log data) 

Young’s Module is expressed in Equation-1 where: E is Young’s in psi, σ is stress 

(psi) and ɛ is strain in (psi). 
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                                                                                                             (1) 

 

 

 

 

 

 

Table 5: Ranges of Young’s Module for different rocks (Meyers & Associate 2014)  

 

 

Rock Type  Range (106 psi) 

Limestone‐Reef Breccia  1‐5 

Limestone‐Porous    2‐7 

Limestone‐Med. to Fine Grained  4‐11 

Dolomite  6‐13 

Hard Dense Sandstone  4‐7 

Medium Hard Sandstone  2‐4 

Porous unconsolidated to poorly consolidated  0.1‐2 
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2.3.2. Poisson's ratio  
 

Poisson's ratio is the ratio of transverse contraction strain to the axial strain resulting 

from an applied stress. Estimated Poisson’s ratios for rock formations are 0.25.  The 

effects of Poisson's ratio on fracture geometry and propagation characteristics is very 

limited and has a minor effect.  Poisson's ratio is used to determine in-situ stresses 

assuming rock behaves elastically and tectonic stresses are known or insignificant.  It 

can be expressed using the equation below: 

v

h


 

                                                                                                         (2) 

2.3.3. Three Principle Stresses   

 

The fracture propagations, size, orientation, and the magnitude of the pressure 

needed to generate it, are controlled by the formation’s in situ stress field. This stress 

field may be defined by three principal stresses, which are oriented perpendicular to 

each other. The magnitudes and orientations of these three principal stresses are 

determined by the tectonic regime in the area and by depth, pore pressure and rock 

properties, which regulate how stress is carried and distributed among formations 

(Bilgesu et al, 2011). In situ stresses control the orientation and propagation direction 

of hydraulic fractures. Hydraulic fractures are tensile fractures, and they open in the 

direction of least resistance stress. Stress regime is the dominant factor controlling 

direction and propagations of hydraulic fractures as illustrated in Figure 13. 

 

Figure 13: The three principal stresses 
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 The three principal stresses increase with depth. The rate of increase with depth 

defines the vertical gradient. The principal vertical stress or overburden stress, is 

caused by the weight of rock overlying a measurement point. It can be expressed as: 


H

v dHg
0

.                                                                                                   (3) 

Where v is vertical stress, g is gravitational force, H is formation depth and ρ is rock 

density. 

The fracture stress gradients are correlated with vertical and pore pressure and is 

given by Hubbert and Wilson equation as: 

pvv P '
                                                                                                 (4) 

Where Pp is the pore pressure and α is the Biot poro-elastic constant 

The minimum horizontal stress is a function of geo-mechanical parameters such as 

Young’s modulus (E) and Poison’s ratio (  ). The minimum horizontal stress can be 

determined by the following equation. 

  ppvh PP 


 



1min,                                                         (5) 

Maximum horizontal stress is related with tectonic stress in the region and can be 

determined by the summation of minimum horizontal stress and tectonic stress in the 

region. It can be determined by the following equation. 

tecthH   min,max,                                                                                           (6) 

Where σtect is the tectonic stress of the region. 
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2.3.4. Fracture Toughness  

 

The definition of fracture toughness is established from stress intensity factor, 

developed in linear elastic fracture mechanics (LEFM). Fracture toughness is a 

measure of rock resistance to fracture extension. It is proportional to the amount of 

energy that can be absorbed by the rock before propagation occurs. The basis for this 

relationship involves the assumption that pre-existing fissures exist which induce high 

stress concentrations in their proximity. These areas become points for crack initiation 

and propagation. Table 6 presents fracture toughness value for different formations 

(Meyers, 2014). 

  

              Table 6:  Fracture Toughness Ranges (Meyers & Associate 2014) 

 

2.3.5. Mineralogy 

 
Sixteen different minerals were identified in the Eagle Ford Shale that are clustered 

into four groups as presented in Table 7. Mineralogy has an important role for 

deciding the economic exploitation potential of a shale reservoir and the possibility 

of hydraulic fracturing success. Fractures are generated more easily in 

carbonate-rich shales than in clay-rich shales (Sondhi, 2011). 

 

 

 

 

Table 7: Minerals identified in the Eagle Ford Shale (Sondhi, 2011) 

  

Formation Type  psi- in1/2  

Siltstone 950-1650 

Sandstone 400-1600 

Limestone 400-950 

Shale 300-1200 

Total Clay  Total Carbonate  Total Feldspar Quartz Others

Illite  Calcite  Orthoclase  Quartz  Pyrite 

Smectite  Dolomite  Oglioclase Feldspar  Anhydrite 

Kaolinite  Siderite  Albite  Apatite 

Chlorite  Aragonite 

Mixed Clays 
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The composition of selected Well #1 is mainly calcite with very low clay content as 

illustrated in Table 8. The result of clay contents of less than 20 % with a mixed-layer 

of Illite/Smectite of 10% or less can give a guideline of how to choose the best 

hydraulic fracture design. The rock and fluid properties of shale reservoirs display 

huge variation, making it difficult to implement a similar treatment design and 

procedure on every geological formation. Unique treatment methods and procedures 

must be developed for each area. Every well in Eagle Ford must be drilled and 

hydraulically fractured in multiple stages, which requires understanding of rock 

mechanical properties and mineralogy as a guideline to complete the shale reservoir.   

NON‐CLAY FRACTION  Value (%) 

Quartz  11.3 

K‐Feldspar  0.1 

Plagioclase  2.4 

Organic Carbon (TOC)  2.8 

Apatite  1.1 

Pyrite  1.2 

Marcasite  0.3 

Calcite  63.6 

Dolomite  0.9 

TOTAL  83.7 

CLAY FRACTION  Value (%) 

Mixed‐Layer ILLITE/SMECTITE  (Includes R3)  7.1 

Illite + Mica  7.3 

Chlorite  0.0 

Kaolinite  2.0 

TOTAL  16.3 

GRAND TOTAL  100.0 

 

Table 8: Mineral composition of Well #1 

 

Parameters such as micro-seismic monitoring results, log and core data, and DFIT 

related to completion must be evaluated and analyzed with a result to implement 

changing fracture treatment to find optimum design. One of the major design 

parameters is the Brittleness index. The rock brittleness integrates both Poisson’s 

Ratio and Young’s Modulus. These two parameters are combined to reflect the rocks 

ability to fail under stress and to keep fracture open once the rock is fractured. 
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Figures 14 and 15 illustrate representation of brittleness concept. Lower the value of 

Poisson’s Ratio, the more brittle the rock as the value of Young’s Module increase. 

Higher the value of Poisson’s Ratio, the more ductile the rock as the value of Young’s 

Module decrease. Ductile rocks are not preferred choice for hydraulic fracturing due to 

sudden closure after completion of fracture treatment. However, ductile rocks make 

good seal for the reservoir rock. On the other hand, brittle rock is more naturally 

fractured and will also respond positively to hydraulic fracturing treatment. Brittleness 

index is a function of Young’s modulus and Poisson’s ratio and it is used to select 

treatment design. 

 

Figure 14: A cross plot of Young’s Module & Poisson’s Ratio showing brittleness percentage increase to the 
southwest corner of the plot (Rickman et al. 2008). 

 

 

 Figure 15: Rate, fluid, and proppant concentration selection based on brittleness and ductility. (Adopted and 
modified from Chong et al, 2010).  



23 
 

Mullen et al. (2010) recommended a fluid system based on the brittleness 

determined for the shale. Rickman et al. (2008) explained the concept of rock 

brittleness which combines both Poisson’s Ratio (rock ability to fail under stress) and 

Young’s Modulus (maintain a fracture once the rock is fractured). The brittleness of 

the Eagle Ford shale is markedly different than other shale plays. 

The application of brittleness index as a general guideline to fracture treatment 

design and helps to select design variables such as the type of fracture treatment 

which produces the desired complex fracture geometry based on the fracture 

intensity. 

 

2.4. Eagle Ford Shale Hydraulic Fracturing Treatment Techniques 

 
The objective of unconventional stimulation technologies is to increase the rate of 

oil/gas flow from the reservoir to the wellbore. It’s utilized for conditions where the 

natural reservoir flow characteristics are not favorable and need to be improved for oil 

and gas recovery. Unconventional reservoir stimulation techniques require 

integrating design into reservoir fluids and rock properties. Each job must be 

designed for the target formation and its special characteristics such as pay 

thickness, reservoir fluids, lithology, rock stress and other characteristics to optimize 

development of a complex Discrete Fracture Network ( D F N ) . There are several 

t ypes  of commonly used fracturing well stimulation methods such as hydraulic 

fracturing, acid fracturing, and matrix acidizing. 

 

Each shale play has unique properties that need to be considered when selecting 

fracture treatment design, fluid and proppant types and volumes. Eagle Ford Shale 

presents a great variability, and for this reason no single technique for hydraulic 

fracturing has universally worked. The composition of fracturing fluids must be altered 

to meet specific reservoir and operational conditions.  To modify fluid behavior, 

fracturing fluid additives need to be utilized such as, buffers, bactericides, clay 

stabilizers, fluid loss additives, friction reducers, temperature stabilizers, surfactants, and 

non-emulsifiers agents. There are different types of fracture treatments such as: 

1. Surface area fracture treatment (water frac) 
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2. Conductivity fracture treatment (cross-link frac) 

3. Hybrid fracture treatment 

Additional knowledge of local properties will help the selection criteria for choosing the 

optimum treatment. 

2.4.1. Surface Area Fracture Treatment 

 
Large volume of low viscosity slick-water fluid is pumped with small quantities of 

proppant. The majority of proppant used in such treatment is either 40/70 mesh or 100 

mesh size. The idea is to contact as much surface area as possible and create 

discrete fracture network (DFN) or complex network, improving reservoir-to-wellbore 

connectivity. Barree, et al. (2011) investigated slick water hydraulic fracturing. It is 

suited for complex reservoirs with high Young’s Modules, low stress anisotropy, brittle 

and naturally fractured, and tolerant of large volumes of water. Table 9 presents a 

typical surface area fracture treatment design. 

In unconventional reservoirs such as Barnet shale, there is a direct correlation 

between treatment size, DFN size, shape, and production response. Increasing 

treatment size, DFN size and complexity results in increase of stimulated reservoir 

volume. The main reason such treatments has been successful is due to permeability 

of the generated fractures with significantly higher than matrix permeability. Fracture 

permeability is a function of width (ft.) (Craft et al. 1991) and increasing the treatment 

size will increase the width of the fracture. 

The disadvantage is the inherently poor proppant carrier characteristics of slick water, 

requiring high pump rates to achieve flow velocity necessary to overcome the 

tendency of proppant to settle. Additionally, narrow fracture widths and large quantities 

of water usage are expected.   
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Table 9: Surface Area –Type of Fracture Treatment Design (Barree, et al. 2011) 

 

2.4.2. Conductivity Fracture Treatment 
 

This is a common type of fracture treatment with higher concentrations of large mesh 

proppant placed with a cross link fluid system to overcome embedment and multiphase 

flow issue. Selection criteria of such treatments include the softer, more ductile 

reservoirs with higher stress anisotropy where planer type fracture is expected 

(Barree, et al. 2011). Table 10 presents a typical conductivity type treatment design.  

 Cross-linked fluids have proven to be highly effective in both low and high permeability 

formations. They offer good proppant transport, a stable fluid rheology at temperatures 

as high as 300°F, low fluid loss and good cleanup properties. 
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Table 10: Conductivity–Type of Fracture Treatment Design (Barree, et al. 2011) 

 

 

2.4.3. Hybrid Fracture Treatment 
 

This treatment is a combination of surface area and conductivity treatment. High rate, 

low viscosity fluid (water) pad, friction reducers and breakers followed by high 

viscosity cross-linked fluid with continuous increasing proppant concentration stages 

are used. This type of treatment becomes more interesting in shale plays due to 

higher regained permeability than conductivity fracture treatment. Table 11 is a typical 

hybrid type treatment design. 
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    Table 11: Hybrid–Type of Fracture Treatment Design (Barree, et al. 2011) 

  

2.5. Assessment of Eagle Ford Shale Reservoir Properties 
 

In recent years, significant progress has been made in understanding geological, 

petro-physical, rock and fluid characterization of unconventional plays, as well as their 

impact on production. Shale reservoir performance is controlled by many of the same 

essential parameters as the conventional reservoir. 

Like conventional reservoir, EF production of oil from organic shale reservoirs is a 

function of porosity, hydrocarbon saturation, pore pressure, matrix permeability, 

volume of hydraulic fracture and fracture conductivity. Fracture geometry, porosity, 

saturations and initial pressure dominate initial production rates. Matrix permeability 

becomes increasingly important in maintaining productivity in later stages in the life of 

the well. Further complexity includes predicting completion effectiveness which 

requires understanding of key parameters such as created fracture geometry, 

conductivity, proppant transport and placement. Additional challenge is understanding 

fluid composition and phase behavior which have strong effects on rate and recovery.  
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Eagle Ford shale development has increasingly focused on liquid rich area in recent 

years, due to relatively low natural gas prices.  In order to economically explore, 

appraise, develop and produce liquid rich shale reservoir, it’s important to understand 

their key characteristics. 

Eagle Ford formation depth ranges from 2,500 ft. to 14,000 ft., the thickness ranges 

from 50 ft. to more than 300 ft., the pressure gradients are between 0.4 and 0.8 psi/ft., 

and TOC ranges from 2% to 9%. Some area of EF core data analysis shows that the 

gas saturation is very high and permeability varies between 1 nD to 800 nD (Stegent 

et al., 2010). 

A petro-physical analysis was conducted on Eagle Ford offset wells to evaluate 

reservoir characteristic and their potential in upper and lower Eagle Ford (organic). 

Figure 16, 17, and Table 12 show offset well data of the petro-physical analysis which 

characterizes the effective porosity, permeability, thickness, organic content, and 

estimates of net to illustrate cutoff for water saturation, permeability, resistivity, 

porosity, etc. 

 

Figure 16: Seven offset wells Reservoir thickness (ft.), Upper & Lower (Organic) Eagle Ford 
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Figure 17: Seven offset wells TOC (%.), Upper & Lower (Organic) Eagle Ford 

The Eagle Ford shows a clear-cut thickening in the Maverick Basin (Driskill, et al 

2012). Figure 18 summarizes reservoir properties obtained from log data and it 

indicates a strong relationship between density and total organic carbons (TOC). Also 

reservoir properties were collected from wells with density logs in Maverick Basin. The 

density was used to determine porosity curves as well as hydrocarbon saturation 

using the density based GRI process. 

 

Figure 18: Seven offset wells Porosity (%), Upper & Lower (Organic) Eagle Ford 

 



30 
 

         

Table 12: Eagle Ford offset well Core Data  

Due to low porosity, shales typically have low net hydrocarbon pore thickness and 

resource density. Low matrix permeability limits productivity and drainage area as well 

as economic rates and recoveries. These geological constrains are countered with 

hydraulic fracturing, which is critical to achieving larger drainage area and economic 

rates and recovery. Liquids rich unconventional plays are also significantly impacted 

by large pressure gradients in the near wellbore area and by variations in rock and 

fluid properties. Figure 19 shows well logs illustrating degree of correlation within the 

lower Eagle Ford where track 1 is the Formation, track 2 is Gamma ray, track 3 Deep 

resistivity, track 4 Neutron porosity (green) and Density (red). 

 

Figure 19: Well Log Data from Eagle Ford Shale (Driskill, et al 2012)  

 

Parameter Average Values

GRI Matrix Permeability (md) 5.40172E-05
GRI Matrix Permeability - Absolute (md) 0.000918966
GRI Bulk Density (gm/cm^3) 2.469957746
GRI Grain Density (gm/cm^3) 2.643619718
GRI Total Porosity (percent) 8.22943662
GRI Gas Filled Porosity (percent) 3.868241507
GRI Saturations - Sg (percent) 46.13492958
GRI Saturations - So (percent Vp) 27.16887324
GRI Saturations - Sw (percent) 26.69619718
GRI Saturations - OBM Filtrate (percent) 5.846338028
GRI Saturations Total 100
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2.6. Fluid Behavior in the Eagle Ford Shale. 
 

Eagle Ford Shale display a wide range variation of maturity. Fluid maturity is a 

function of time and temperature and it’s strongly related to depth as Kerogen 

changes from oil to dry gas. In Eagle Ford, Wan, el at (2013) investigated the oil 

window and observed it in the up dip, shallow part of the play toward the north-west, 

and dry gas is found in the south eastern, deeper portion of the play. Local variations 

can be driven by underlying deep structure and heat transport. 

 As illustrated in Figure 20, fluid type within the Eagle Ford differ from oil to volatile oil 

to condensate to wet gas and finally to dry gas. Due to the burial history, there can be 

huge well to well differences around this trend.  

 

 

Figure 20:  Maturity variation within the Eagle Ford (Wan, el at 2013) 

Detailed examination of all available production data for Eagle Ford provides better 

understanding of the effect of liquid content on production. Also maturity of the fluid 

system need to be addressed as this has major implication on reservoir development. 

Hydrocarbon generation fundamentals can help to understand the reserve, 

productivity, and drive mechanism related with different fluid systems. 

Figure 21 provides overview of the different products exist with different shale plays 

from black oil to dry gas and their impact on reservoir characteristics.  These effects 

originate from two major factors, namely, degree of organic matter development and 
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application related fluid production. The amount of organic-derived porosity and 

permeability have a strong effect nearly every key component of storage and flow 

capacity. Due to immaturity, there is less organic-derived porosity and permeability, 

therefore, some form of permeability enhancement such as hydraulic fracturing to 

produce commercial production rate is needed. 

 

                  Figure 21: Hydrocarbon Generation Fundamentals and recovery Impact (Wan, el at 2013) 

 

Bottom hole and surface fluid samples may not be good models of in-situ reservoir 

fluid, which can be attributed to the long transient flow time in low permeability 

shale reservoirs. However, the most common method for PVT analysis is still 

t o  collect produced gas and liquid samples at the surface and recombine them 

in a laboratory (Whitson and Sunjerga, 2012). Table 13 and 14 illustrate molar 

composition of synthetic oil and condensed data. Orangi et al. (2011) produced a 

set of synthetic Eagle Ford fluids by recombining typical stock tank oil and gas 

compositions. Available data for their study were stock tank oil API gravity, Gas-

Oil Ratio (GOR), Condensate-Gas Ratio (CGR), reservoir temperature, and 

reservoir pressure. Orangi et al. (2011) modified the recombined compositions 

to yield reservoir fluids with different GOR values of 500, 1000, and 2000 

SCF/STB, and different CGR values of 30, 100, 150, and 200 STB/MMSCF. 
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Tables 13 and 14 highlight recombined compositions for oil and gas-condensate 

fluids with different GOR/CGR values developed by Orangi et al. (2011), based 

on the Peng and Robinson (1976) equation of state. 

 

Table 13: Molar composition of synthetic Eagle Ford oil (Orangi et al. 2011) 

 

Table 14: Molar composition of synthetic Eagle Ford gas condensates (Orangi et al. 2011) 
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A black oil simulator can be utilized in the Eagle Ford oil window,  w i t h  initial 

reservoir pressure being well above the bubble point pressure. Therefore, reservoir 

fluid exists as undersaturated (single phase). It is known that u sing a black oil model 

can decrease simulation time and calculations. Table 15 outlines the black oil PVT 

properties for the Eagle Ford Shale in the oil window used by Chaudhary et al. (2011). 

Reservoir temperature, oF 255 

Bubble point pressure for oil, psi 2398 

Solution gas oil ratio, SCF/STB 650 

o 
Oil API gravity 42 

Under-saturated oil compressibility, psi-1
 1×10-5

 

Gas specific gravity 0.8 

 

Table 15: Black oil PVT properties for the Eagle Ford oil window (Chaudhary et al. 2011). 
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2.7. Eagle Ford Shale Reservoir Modeling  
 

Modeling is performed at early stages of field development to estimate parameters such 

as treatment efficiency, fracture geometry, optimum well spacing, and secondary 

recovery at later stages. The reservoir characterization is required to define reservoir 

properties such as porosity and permeability for each grid block in a reservoir simulation 

model. It also requires description of the reservoir's rock and fluid properties, validation 

of completion and production history, and extensive history matching to validate and 

modify this input data. When history matching is complete, numerous predictions of field 

and well performance characteristics are calculated for various development scenarios. 

In general, there are two modeling solutions, analytical and numerical modeling. The 

analytical methods provide exact solutions to simplified problems, while numerical 

methods yield approximate solutions to the exact problems. One consequence of this is 

that the level of detail and time required to define a numerical model is more than its 

equivalent analytical model. 

 

2.8. Hydraulic Fracture Modeling 
 

Three-dimensional planar fracture model initiate propagation in both horizontal and 

vertical fracture with large length to height aspect ratios. This model produces the most 

realistic geometries and can be applied for generating discrete fracture network (DFN). 

The model assumes a bounded geometry at the leading edge (perimeter) as illustrated 

in Figure 22 (Meyers 2014).   

 

Figure 22: Three‐Dimensional Fracture Geometry (Meyers & Associate 2014) 
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Conventional fracture treatment provides bi-wing fractures because it requires less 

energy. But the existing of low stress anisotropy and natural fractures in shale 

formations provide geo-mechanical conditions that cause hydraulically induced discrete 

fractures to start and propagate as both horizontal and vertical fractures in three 

principle planes (Meyers, et al 2011). The micro-seismic measurement data gathered 

during fracture treatment can be very helpful as a diagnostic element to calibrate 

fracture model forming the Discrete Fracture Network (DFN) geometry including areal 

extend, fracture length, fracture height and fracture width.  Multiple fractures could be 

initiated from the wellbore. Each fracture could propagate from the wellbore originating 

from set of perforations and one main fracture (Dominant or Primary Fracture) may be 

extended from the wellbore and secondary fracture may split off, forming a fracture 

spray. Table 16 presents the characteristics of a discrete fracture network (DFN) 

(Meyers 2014). 

 

 

 

Table 16: The Characteristics of discrete fracture network (DFN) (Meyers & Associate 2014) 

 

The propagation of hydraulic fractures is assumed to be controlled by: 

 The reservoir in situ effective stress, defined by the total stress tensor and 

reservoir pressure.  

 The rock matrix strength, deformability, heterogeneity and anisotropy.  

  The geometry and mechanical and flow properties of the natural fracture system.  

 The configuration and operation of the hydraulic injection process. 

 

The fundamental first-order discrete fracture network (DFN) equations of mass 

and momentum conservation are based on a similar solution methodology. The 

Name Fracture Plane Aperture Opening Along 

Major Vertical Fractures x-z  3ߪ    Minor Axis 

Minor Vertical Fractures y-z 2ߪ    Major Axis 

Horizontal Fractures x-y 1ߪ    Vertical Axis 
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formulation utilizes a pseudo three-dimensional ellipsoidal approach. The major 

assumptions are: 

1. The primary fracture or dominant fracture is in x-z plane and propagates 

perpendicular to the minimum horizontal stress, σ3. The y-z and x-y plane 

fractures propagate perpendicular to σ2 & σ3. 

2. DFN may have secondary fractures in all three principles planes, 

3. Fractures will only propagate in the y-z and x-y planes if the fracture pressure is 

greater than minimum horizontal stress in that plane. 

4. The initial conditions with existing natural fractures in the formation can initiate 

multiple hydraulic fractures. 

5. Fractures in the x-z plane (other than the dominant fracture) are not generated 

unless a fracture network in the y-z plane is established for the fracture to 

propagate (i.e., in the DFN the fractures must be connected.). These 

assumptions are not applicable for multiple or cluster type fractures which may 

be disjointed  

6. The numerical solution is based on ellipsoidal type of equations. The 

fracture stimulated reservoir volume is ellipsoidal as well as the geometric 

distributions. The width and height profiles are however calculated from 

the governing p3D pressure-width-height relationships. 

7. Fracture interaction for stiffness and fluid loss is considered. 

8. The fracture height at the joints in the x-z, and y-z planes are assumed to 

be the same. This summation is true for 2-D and penny shape fractures 

but may not be for well contained fractures. This assumption will not have 

a great effect on the solution unless there is a considerable fracture 

volume and/or fluid loss in the regions of high confining stress contrast at 

the upper and lower fracture height extensions. 

9. The fracture network extension (with the exception of the dominant 

fracture) can be limited to a finite fracture extent in each plane. 

The fracture network model is based on a similar methodology  presented by Warren 

and Root (1963) for dual porosity natural fracture reservoir (Meyers, et al 2011). Figure 

23 represents the concept of a hetrogeneous porous media. The fracture network model 
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assumes dominant (primary) and secondary fractues can be initiated and propogated 

discreatly in pronciple planes provided conditions listed above are achieved. 

Vertical fractures can be initiated in the x-z plane (major axis) and y-z planes (minor 

axis), and horizontal fracture can propogate in the x-y plane (vertical axis). 

 

 

Figure 23: Warren and Root (1963) Idealization of the heterogeneous porous media (Meyers, et al 2011). 

The modeling for DFN growth is based on numerical solution for the equations 

satisfying continuity, mass conservation, constitutive relationship and momentum 

equations. Appendix A shows the basic equations for the discrete fracture network 

(DFN) model. 

2.8.1. Proppant Distribution 

 
Proppant distribution in a DFN is very complicated and naturally difficult to solve. There 

are three different scenarios for proppant distribution and transportation (Cipolla et al. 

2004). Figure 24 illustrates the three different scenarios for proppant transportation. 

1. “The proppant is evenly distributed throughout the complex fracture system.” 
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2. “The proppant is concentrated in a dominant planar fracture with un-propped 

complex fracture system accepting fluid only.” 

3. “The proppant settle and forms pillars that are evenly distributed within the 

complex fracture system.” 

 

Figure 24: Proppant transport scenarios (Cipolla et al. 2008) 

The dominant fracture efficiency is used to determine proppant transport and 

distribution. The flux is also slightly different in the primary fracture depending on the 

proppant distribution option and will therefore give slight deviations in the numerical 

solution. To simplify the theory while preserving the limiting solutions, assumptions for 

proppant distribution styles are 

 Uniform,  

 Primary Fracture (Dominant)  

 User specified 
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2.8.2. Uniform Proppant Distribution 
 

The Uniform Proppant Distribution option assumes that the proppant can be transported 

uniformly (i.e., concentrating only due to fluid loss not flow dispersion in the secondary 

fractures or bridging at DFN interfaces.) throughout the DFN. It is transported into 

dominant fracture as a slurry.   

2.8.3. Dominant Fracture Proppant Distribution 
 

The Dominant Fracture Proppant Distribution option assumes that all the proppant 

remains in the primary fracture and no proppant enters the secondary DFN. 

Consequently, the secondary fractures act primarily as fluid loss conduits from the 

primary fracture 

2.8.4. User Specified Proppant Distribution 
 

The User Specified Proppant Distribution option allows the user to specify the minimum 

proppant allocation that remains in the primary fracture with the remaining proppant 

entering the secondary DFN. Discrete fracture network (DFN) proppant distribution 

basic equations are shown in Appendix A.  

 

2.9. Analytical Modeling analysis 

Modeling is the process of history matching pressure and rate transient data based on a 

mathematical model. It is vital to evaluate the pressure and rate transient data before 

modeling because it defines probable reservoir configurations and provides good 

estimates of reservoir parameters. Models provide not unique solutions (different model 

types can match the same set of data), and as a result, it is recommended to choice 

appropriate model type. Parameter values obtained during the analysis step provide a 

good starting point for an appropriately chosen model type. Seeking history match, 

parameters can then be optimized by automatic parameter estimation. Before using the 

automatic parameter estimation method, corrupted parts should be cleaned from the data 

set to prevent the attempt to match with invalid points. (Anderson, et al 2014). 
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Material balance time is a present analysis method used by the industry. Since material 

balance time is actually boundary-dominated flow superposition time, these analyses 

may appear to show boundary-dominated flow even when the reservoir is still exhibiting 

transient flow. The production data is analyzed using a plot and a linear flow appears as 

a straight line trend. Since the basic assumption is the infinite conductivity in the 

fracture, finite conductivity manifests as a positive intercept on the plot. The equations 

presented are based on the assumption of a constant flowing pressure at the well. This 

is a reasonable simplification for tight gas and shale production, in which wells are 

typically produced under high drawdown. 

The flow regimes stay longer periods of time and that is a major challenge for analyzing 

shale reservoirs. It’s very difficult to predict recoverable resources along with reservoir 

properties such as fracture length, fracture conductivity, permeability, and drainage area. 

Figure 25 is an example of a specialized plot of a normalized pressure (y-axis) versus 

square root of time (x-axis). This plot can be used to determine the slope from the linear 

portion of Figure 25. From the slope of the equation, fracture half-length and permeability 

are determined as a single product. To determine either one explicitly, the other 

parameter must be known. The slope is inversely proportional to stimulated reservoir 

volume (ASRV), flow capacity of well ( ܭ√ܣ), fracture half length, and effective half length 

 .( ݇√௙ݔ )

Figure 25: Oil Material Balance Square Root Time (d1/2) 
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Followings are the parameters determined from the slope: 

݀݉) flow capacity =    ܭ√ܣ
భ
మ݂ݐଶ) 

݀݉) = flow capacity	௙√݇ݔ
భ
మ݂ݐ) 

ASRV = Stimulated reservoir Area (acres) 

2.9.1. Horizontal Multi-stage Enhanced Fracture Model 

Horizontal drilling with multistage hydraulic fractures become the common way to 

produce hydrocarbons from shale reservoirs. Due to fractures created based on 

geomechanical conditions, it does not always result in bi-wing fractures but also 

secondary fractures or branches. For modelling purposes, secondary fractures can be 

represented by a high permeability region near each stage, while the bulk of space 

between the stages remains un-stimulated as illustrated in Figure 26.  This model is a 

rectangular reservoir model consisting of a non-contributing horizontal well and 

transverse fractures. This model assumes that all the fractures are uniformly spaced 

with equal half-fracture length. (The reservoir can extend beyond the fracture tips.) This 

model has an improved effective permeability region around each fracture, and the 

distance from the fracture to the permeability boundary (XI) can be estimated. 

This model takes the following linear flow regimes into account (Stalgorova, et al 2012). 

 within the fracture (at very early time) 

 within the stimulated region towards the fractures 

 within the non-stimulated regions towards the stimulated region 

 within the non-stimulated region towards the wellbore 
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Figure 26: Enhanced Hydraulic fracture model (Stalgorova, et al 2012). 

 

2.10. Numerical Model Analysis   

The assumption of the analytical model for production data analysis is single-phase flow 

in the reservoir. In order to perform multiple flowing phases, the model must be able to 

handle changing fluid saturations and relative permeability functions. Since these 

phenomena are highly non-linear, analytical solutions are very difficult to obtain and 

use. Thus, numerical models are generally used to provide solutions for the multiphase 

flow problem.  The model can be created with fewer simplifying assumptions than 

analytical model. Multiphase behavior and the change of rock and fluid properties with 

pressure can be incorporated exactly 

The model solves the nonlinear partial-differential equations (PDEs) describing fluid flow 

through porous media with numerical methods. Method uses the process of discretizing 

the PDEs into algebraic equations, and solving those algebraic equations to obtain the 

solutions. These solutions that represent the reservoir behavior are the values of 

pressure and phase saturation at discrete points in the reservoir and at discrete times. 

The advantage of the numerical method approach is that the reservoir heterogeneity, 

mass transfer between phases, and forces / mechanisms responsible for flow can be 

taken into consideration adequately. Multiphase flow, capillary and gravity forces, 

spatial variations of rock properties, fluid properties, and relative permeability 

characteristics can be represented accurately in a numerical model.  
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2.10.1. Reservoir Description 

 
The purpose of gridding reservoir simulation is to convert geological model into discrete 

system on which fluid flow equations can be solved. Numerical reservoir description 

starts with the definition of the grid. The reservoir may contain more layers and 

possible faults. The following are some criteria for selecting grid block size: 

 Capable to identify saturations and pressures at specific locations and times. 

 Adequately represent the geometry/geology and physical properties of the 

reservoir. 

 Sufficient to describe the dynamics of pressure, fluid flow, and well behavior. 

 Accurately model the reservoir fluid mechanics and comparable mathematics 

odd simulator. 

Two types of non-radial grid geometries are accepted as industry standards – 

rectangular Cartesian geometry (RCG) and non-rectangular corner point geometry 

(CPG). (CMG modeling group, 2015). Figure 27 shows Cartesian grid blocks and 

spacing.  Standard Cartesian grids are the most common gridding schemes because 

they are the easiest to implement. Grids can be created from structural maps. Number 

of grids and grid properties describe the volume of a reservoir and we need to specify: 

 Number of grid blocks for each direction (i,j or x,y) 

 Number of layers (k or z) 

 Grid spacing (grid block width) 

 Properties of all grid or layers (porosity, permeability, thickness and etc.) 

 

 

Figure 27: Cartesian grid represented by grid blocs and spacing (CMG, Imex 2015) 
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2.10.2. Relative Permeability Model 

 
Unconventional reservoirs are economically attractive but operationally difficult. Fluid, 

rock, and rock-fluid properties are critical for optimal reservoir development. Rock-fluid 

properties make fluid flow characterization a challenging task. Rock-type based 

compaction, PVT behavior such as decreased oil bubble point pressure and the 

resultant viscosity, GOR behavior, interfacial tension, capillary pressure, and relative 

permeability greatly impact the initial flow rates and ultimate recovery. 

The relative permeability values for unconventional reservoirs are difficult to obtain. 

They cannot be accurately measure due to difficulties in obtaining a representative 

sample from the reservoir. The only practical method to obtain the realistic values is 

by history matching the production history. Absolute permeability and relative 

permeability are two of the most important flow properties that affect hydrocarbon 

production rates. Absolute permeability is a property of the porous medium and is a 

measure of the capacity of the medium to transmit fluids. In multiphase flow in porous 

media, the relative permeability of each phase at a specific saturation is the ratio of the 

effective permeability of the phase to the absolute permeability.  Figure 28 shows a 

typical relative permeability curve. Relative permeability of each phase is defined by the 

following equation:  

  
               Figure 28: Relative permeability curve (CMG, Imex 2015) 
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Where, 

kro = relative permeability to oil  

krg = relative permeability to gas 

krw = relative permeability to water  

k  = absolute permeability 

ko = effective permeability to oil for a given oil saturation 

kg = effective permeability to gas for a given gas saturation  

kw = effective permeability to water at some given water 

 

 

2.11. Previous Work Done With Eagle Ford Shale  
 

Stegent et. al (2010) study shows that cores of the Eagle Ford reservoir rock had  

low YM and high clay content. This indicates that the rock is relatively soft and 

prone to proppant embedment as illustrated in Figure 29. The softer, more ductile 

rock potentially can have more stress anisotropy (the difference between the 

maximum and minimum horizontal rock stress which allows for more planar-type 

fracture). Higher concentrations of larger- mesh proppant placed with a hybrid fluid 

system provides the conductivity to overcome embedment and multiphase flow. 

Their study also shows that Eagle Ford cores may not have a lot of visible natural 

fractures, meaning a balance of net pressure may be required to maintain small 
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fracture offsets along weak bedding planes and fissures during stimulation. A 

proper design rate and fluid viscosity is required to create primary fractures at the 

well bore and create the necessary fracture width while remaining in the pay 

interval. After detailed analysis and observation, Stegent et. al. (2010) concluded 

that: 

 Hybrid treatment out performed slick water fracture treatment in the EF 

shale in the area of high liquid production. 

 Lower injection rate between 35 and 50 bbl./min were sufficient to 

effectively stimulate EF shale with hybrid fluid and engineering design. 

 Higher production occurrences correlate to higher conductive fracture that 

utilize higher concentrations of larger mash proppants, especially in high 

liquid production reservoirs. 

  Fracture conductivity is important to sustain production when multiphase 

hydrocarbon flow is expected. 

 Higher proppant concentration with 20/40 mesh size proppant can be 

placed in the EF formation with proper perforation scheme and a proper 

fracturing fluid design.  

 

 

Figure 29: Proppant embedment simulation for various YM vs. closure stress (Cipolla et al. 2008) 
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Bazan et. al. (2010) presented the challenges required for a hydraulic fracture model 

and treatment design tailored specifically to the EF shale. Rock and fluid properties 

such as Young’s modulus, stress, pressure dependent leak off, and complex fracture 

propagation limit confidence in traditional fracture models and can result early job 

termination and less than optimal fracture treatment. 

Fracture length, fracture conductivity, cluster spacing, multi-stage completions along the 

horizontal wellbore are mixed to provide the effect of improved hydraulic fracture 

design. Utilizing DFN for hydraulic fracture design in EF shale helps to model complex 

fracture behaviors that may improve the fracture geometry predictions.    

After detailed analysis regarding DFN modeling in EF,  Bazan et. al (2010) concluded 

that: 

 DFN modeling is one option to improve a stimulation program for enhanced 

hydrocarbon production. Completion technologies, such as microseismic analysis 

are useful for calibration process for DFN fracture model. 

  Increasing fracture geometry can enhance well productivity in EF. Production 

forecast results for different proppant types indicate a significant potential for 

increasing productivity for EF well by using higher quality proppant. 

 Integrating DFN modeling, microseismic monitoring, production history matching, 

and radioactive logs with improved fracture conductivity can improve well 

performance. 

Robin et al. (2014) conducted a study of perforation cluster contribution variation in 

several shale plays including EF. The main objective was to improve initial flow capacity 

of the well by increasing number of perforation clusters. The study also determined 

optimum horizontal logging program needed to characterize the rock and grouping rock 

with similar properties into fracture stages and the position of perforation clusters within 

those stages to minimize over all stress differential between different set of perforation 

clusters.  The results show the concept of reservoir quality (RQ) and completion quality 

(CQ). Reservoir quality is defined as the petrophysical parameters of organic shale that 

makes it a viable candidate for development. 
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2.12. Eagle Ford Shale Treatment Design Procedure 
 

The heterogeneity of shales makes well treatment more difficult without understanding 

reservoir and rock properties. Hydraulic fracturing treatment design required specific 

understanding of reservoir and rock properties. 

The rock and fluid properties of shale reservoirs display huge variation, making it 

difficult to implement the similar treatment design and procedures on every 

geological formation. Every well in a shale play must be drilled and hydraulically 

fractured in multiple stages. Therefore, unique treatment methods, and procedures must 

be developed for each area. Figure 30 shows treatment design procedure based on 

rock properties such as rock brittleness. 

Figure 30: Hydraulic Fracture treatment design procedure based rock brittleness 

Formation evaluation data can help to develop required procedure by relating the key 

hydraulic fracturing design parameters with productivity and ultimate recovery. 

Following is the summary of unconventional reservoir treatment design procedure. 
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1. Determine required rock and reservoir properties. 

2. Analyze and select required rock and reservoir properties. 

3. Populate selected rock and reservoir data onto fracture simulator 

4. Set completion parameters such as perforations, number of cluster and spacing. 

5. Calibrate fracture simulator with micro seismic data. 

6. Insert anisotropy stress value into fracture simulator.  

7. Select fluid system based on rock and reservoir properties. 

8.  Implement selected treatment design including fluid volume, proppant volume 

and concentration, pump rate, and required additives. 

9. Input created fracture properties into reservoir simulator. 

10. Analyze simulated production data and history match with field data. 

11. Conduct parametric study of fracture properties and its relation to productivity. 

12. Select the optimum treatment design and implement it. 

13. To maximize reserve booking, conduct well spacing modeling and determine 

related economics.  
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3. Objective and Methodology  
 

3.1. Objectives  
 

In Eagle Ford reservoirs, the success of any prospective project is driven by stimulation 

design. Total well costs are dominated by the cost of hydraulic fracturing, often 

representing as much as 60% of the total well cost. This, as a result, requires the 

operator to select the best completion method that can ultimately improve hydrocarbon 

recovery.  

This research is based on the development of Eagle Ford Formation. The focus of the 

proposed study is to optimize the exploitation of assets in LaSalle County, Texas.  

The objectives of the study is to evaluate and make recommendations to optimize 

and improve the effectiveness of the fracturing treatments, effectiveness of the 

completions, well spacing, and production response. In summary, the objective of this 

study are: 

1. Review and evaluate first generation treatment design: To set up workflow of 

completion optimization and to develop a base model for Discrete Fracture 

Network (DFN) model and simulating production performance of a producing 

horizontal well in Eagle Ford Shale. 

2. Perform parametric studies: Conduct sensitivity analysis to investigate the effect 

of rock properties and fracturing fluid have on fracture geometry, conductivity, 

and ultimate EUR. 

3. Develop a second generation treatment design by investigating the impact of 

modified hydraulic fracturing treatment design on properties of hydraulic fracture 

and ultimate recovery. 

4. Investigate the effect of down spacing on ultimate recovery and net present value 

(NPV). 
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3.2. Methodology 
 

The production response i s  reviewed for a  se lec ted  well to verify the impact of 

hydraulic fracturing modeling results. T h e  g o a l  i s  to evaluate the most effective 

completion method and stimulation design in relation to the optimal well productivity 

and spacing. Equations used for this research are presented in Appendices A and B. 

Available data are integrated for the purpose of understanding the effect of various 

treatment, completion and reservoir parameters relative to the desired study 

objectives. The data includes but not limited to well logs, cores, micro seismic survey 

results, DFIT data, completion data, stimulation data, and individual well production 

data. Additionally, commercial reservoir, fracturing, and economic & decline curve 

simulators (CMG, Mshale, HIS, and PHDWin) are used in this study. In the 

implementation of the methodology, the followings task were completed: 

 3D fracture simulator (Baker Hughes / Mshale): A DFN simulator was used to 

provide a systematic approach for analyzing, designing, and optimizing multi 

stage hydraulic fracture in a horizontal well in Eagle Ford. Field treatment data, 

rock properties calibrated with microseismic data were used as inputs for this 

tool. 

 Analytical Reservoir Simulator (IHS Harmony/ Rate Transient Analysis): An 

analytical reservoir model was used to generate type curves, estimate reservoir 

characteristics, and evaluate single phase analytical model utilizing history 

matching based on pressure and rate transient data. 

 Numerical Reservoir simulator (CMG). A numerical model was used to model 

hydraulically fractured horizontal well with a Nano-Darcy formation to optimize 

fracture geometry and spacing and to increase production, EUR and NPV. It was 

also used to obtain history matches and production forecasts to improve oil 

recovery. 

 Economic Simulator (PHDWin). A simulator with economic evaluation features 

was used to estimate an accurate economic data to justify projects, development 

plan, budgets, reserve report, and assess price or ownership changes. It 

provided comprehensive property and data management, production and reserve 
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forecasting (using decline curves or other methods), and economic evaluations 

for field development.  

3.2.1 First Generation Stimulation Treatment Design (Base Model)  
 

 Limited production and stimulation data were available in the area.  Therefore, the best 

option was to either emulate other completion design or come up with a cookie-cutter 

design. The first stimulation design was based on a working knowledge of the 

northeastern part of Eagle Ford such as DeWitt, Gonzales, and Karnes County. The 

foundation of this stimulation design uses the following assumptions. 

1. Reservoir rock is softer, more ductile, and potentially higher in stress 

anisotropy. Therefore, planer type fractures were expected. 

2. Clay swelling and proppant embedment were considered. Therefore, larger 

mesh, higher concentration of proppant placement, which increases the cross-

link fluid ratio. This improves near wellbore conductivity and overcomes 

multiphase flow and proppant embedment. 

3.  Conductivity type fracture treatment was selected as a stimulation choice   

where more viscous fluid, more proppant, and high proppant concentration is 

pumped into formation to obtain higher conductivity.   

 

The horizontal well in Eagle Ford Shale was drilled transverse (perpendicular) to the 

expected fracture azimuth in the targeted Eagle Ford Organic Shale formation. The well 

was drilled using oil base mud across the lateral and completed with plug and perks 

system. The summary of casing design is presented in Table 17. The average lateral 

length is 5000 ft. with an average TVD of 7582 ft.  A total of 15 stages at approximately 

300 ft stage length of hydraulic fracture treatment were successfully stimulated and 

mapped. Each stage had 9 to 10 perforation clusters that were 1ft wide and 5 shots per 

foot. There were 50 perforations per stage, fired at an average rate of 93 bpm, equaling 

1.86 bpm per perforation, which is considered sufficient. 

 

 



54 
 

 

Table 17: Summary of Well 1 Casing Design 

 Treatment volumes for PRC-P 380,000 lbm per stage was pumped. The load to 

recover was relatively consistent for treatment, and averaged approximately 5890 bbl. 

per stage. Total Injected clean fluid was 88,000 barrels with a total proppant mass of 

5,700,000 pound. An average pump rate of 93 Bpm and average treatment pressure of 

8,116 psi was recorded. High ratio of crosslink fluid with high proppant concentration 

was pumped to achieve high conductivity in near wellbore to lower risk of proppant 

embedment. A summary of first generation stimulation design volumes of well 1 is 

presented in Table 18. 

 

Table 18: Summary of Well 1 Stimulation Design 

Well 1 was successfully stimulated and mapped. Hydraulic Fracture Monitoring with 

Micro-Seismic examines and analyses the patterns of fluid movement, fracture 

development, connectivity, compaction and whether the fracture and proppant are 

staying in pay zone or moving out of pay zone. These important observations allow the 

processing of stimulation treatment plan, and provide critical understanding for long-

Parameter  Generation 1_Value 

Total Liquid Volume (BBLS)  85,590 

Injection Rate (BPM)  93 

PAD Ratio %  25 

XLK Ratio %  69 

100Mesh      (IBM)  0 

30/50 (IBM)  5,700,000  

Max proppant conc. (ppg)  5 

Total Proppant (IBM)  5,700,000 

Fluid System  Crosslink Fluid 
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term improvements for well spacing, well design, completion design, and production 

optimization. The objective of the fracture mapping was: 

1. Estimate vertical coverage of the stimulated Eagle Ford formation. 

2. Estimate degree of complexity for created fractures or fracture network. 

3. Determine interaction between created fractures/stages or existing possible 

vaulting. 

4. Estimate possible relationship between selected pump rate and fracture height 

growth.   

5. Measure created fracture geometry (height, width, and length) and azimuth.  

6. Provide direct guidance that could be used to develop future completion design. 

Micro-seismic fracture mapping results for the Well 1 are summarized in Figure 31.  

The spatial mapping of micro-seism is presented graphically in Figure 32. 

 

 

Figure 31: Well # 1 Micro‐Seismic Fracture Geometry for all Stage 
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Measurements of fracture half-length on well 1 ranges from 250 to 600 ft. with average 

half-length of approximately 400 ft. A fracture network width ranges from 300 to 620 ft. 

with an average width of 394 ft. indicating some overlap between stages. The overall 

degree of complexity for outcome is moderate to high.  The Aspect Ratio is defined as 

the fracture network width to fracture length (2*Xf). Calculated Aspect Ratio ranges from 

0.25 to 0.80 with an average Aspect ratio ofs approximately 0.5. Fracture network with 

an aspect ratio of 0.5 describes a fracture network width extension that is half of a 

fracture length. Fracture height for lateral is fairly constant, with an average height of 

approximately 245 ft. The majority of events are well-contained in the Upper Eagle Ford 

and the lower organic portion of the Eagle Ford, but there is some upward growth into 

the overlying Austin Chalk. There is also some downward growth into the underlying 

Buda. Proppant was likely well distributed vertically due to the use of viscous fluid and 

Stokes’ law. 

 

Figure 32: Well # 1 Lateral side view for all Stage 

Figure 33 presents workflow of completion optimization. One of the most challenging 

steps in optimizing unconventional reservoir is data gathering, validation, and proper 
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use of other diagnostic tools. It is vital to integrate as many as possible different 

parameters in order to increase the confidence and accuracy of both fracture and 

reservoir simulator. 

 

 
Figure 33: Completion Optimization Workflow 

 

Conventional fracture treatment provides bi-wing fractures since it requires less energy. 

The presence of low stress anisotropy and natural fractures in shale formations provide 

geo-mechanical conditions that causes hydraulically induced discrete fractures to start 

and propagate in both horizontal and vertical fractures in three principle planes (Meyers,  

et al 2011). Generated DFN consists primary fracture (which contributes more than 90% 

of production) and secondary fractures (which may or may not be connected into 

primary fracture)    

Modeling DFN requires input of the confining stress contrast in the y-z and x-y planes 

(minimum & maximum stress) or DFN aspect ratio from micro-seismic mapping data.  

Based on micro-seismic data, DFN numerical simulation setup has a user specified 

aspect ratio of 0.5 and assumed saturated or infinite extent DFN system with numerical 

simulation of continuum theory. DFN fracture model setup is presented in Table 16. The 

stiffness interaction was modeled with empirical mechanical option. The fracture 

spacing in the primary x-z and secondary y-z planes are assumed to be equal to the 

spacing between clusters. First generation treatment design was implemented as 

illustrated in Table 18. The geometry of hydraulic fractures is assumed to be controlled 

by: 

 The in situ effective stress, defined by the total stress and reservoir pressure. 
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 The rock matrix strength, formation heterogeneity and stress anisotropy. 

 The properties of the natural fracture system. 

 The fracture fluid system and volumes. 

Finally, surface treatment pressure was predicted to match measured ISIP value to 

improve confidence of the model. Figure 34 presents the surface pressure match.  

 

Figure 34: Surface Pressure Matching (ISIP Matching) 

 

After successful fracture modelling, fracture properties were applied as input to reservoir 

simulator and analytical and numerical modelling were conducted.  Rate Transient 

Analysis (RTA) was utilized to characterize reservoir and completion parameters.  As 

shown in Figure 35, Enhanced Fracture Region analytical model introduced by 

Stalgorova and Mattar (2012) was utilized using production rate and flowing pressure. 

This model can demonstrate a fair physical illustration of fluid flow into multiple 

transverse fractures and the related improved performance of effective permeability 

region around each fracture. The respond of the system is typically production rates and 

flowing bottom hole pressures and results in the creation of appropriate reservoir 

description. Parameter values obtained during the analysis provide a starting point for 
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model type and the distance from fracture to permeability boundary.  Analytical model 

equations are presented in Appendix B. 

Reservoir characterization and initial interpretation recorded by identification of the early 

transient linear flow regime as well as by time of transition to boundary or apparent 

boundary dominated flow ( telf ). Moreover, the approach of this model requires defining 

volumetric parameters such as formation thickness collected from log data and reservoir 

fluid properties obtained from the laboratory. Completion parameters from hydraulic 

fracture model, such as number of stages (nf), initial reservoir pressure, lateral length ( 

Le ), and  drainage width ( Ye ), which are basis of well spacing and were all inputs to the 

model.  

Applied fracture parameters are based on the assumption of equally spaced stages, 

uniform transverse fractures along the lateral length of the well. The base model which 

is a single phase was used to simulate 50 years of oil production profile. 

 

                                    Figure 35: Analytical Enhanced Fracture Region 

The completion and reservoir fluid properties of well # 1 are presented in Table 19.  

Reservoir fluid data provided the saturation pressure and character of the reservoir fluid. 

A bubble point was observed at 2404 psi and 224 °F and the initial reservoir pressure 

(5000 psi) is higher than the observed bubble point pressure. Therefore, the reservoir 

fluid exists as an under saturated (single-phase) oil at static reservoir conditions. 
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Table 19: Analytical Model Input Parameters 

Estimated fracture properties obtained from fracture simulator were applied as input for 

reservoir simulator and conducted numerical modelling. These properties include 

laboratory PVT data and model input parameters such as estimated effective half 

length, propped width, and fracture permeability as shown in Table 20.  

 

 

Table 20: Well # 1 Reservoir Input parameters  

 

T h e  simulation of a proper reservoir model was setup with Cartesian grid geometry. A 

planar, single porosity model for a horizontal well is used in this study.  The planar 

model was fixed at 100 acres with mult i  stage hydraul ic fracture using 15 

stages spaced at 300 ft. per stage. The gridding of the model was done explicitly (not 

deploying dual porosity model) to sidestep the difficulty of having to calculate the shape 

factor. Four geological layers was employed in the model with 5200 ft. length and 870 

feet width. Additionally, the horizontal lateral drilled was 5000 ft. and hydraulic fractures 

Parameter  Value  Unit 

Initial Reservoir Pressure  5000  (psi) 

Bubble Point Pressure  2404  (psi) 

Reservoir Temperature  246  (°F) 

Oil API  38.65  (°API) 

Oil Specific Gravity  0.71   

Solution Gas‐Oil Ratio  671  (scf/STB) 

Reservoir Temperature  224  (°F) 

Equivalent Reservoir Viscosity  0.59  (cp) 

Pay Zone Thickness  232  (ft.) 

Number of Stages  15   

Lateral Length (Le)  5000  (ft.) 

Layer  Top, ft.  Thickness, ft. , fraction  Sw, fraction  k, md

1  7424  35 0.0308 0.0411  0.000342

2  7460  82 0.0376 0.1829  0.000148

3  7543  94 0.0589 0.0749  0.000775

4  7638  21 0.0322 0.1089  0.000195

Total/ Average   232 0.0399 0.102  0.000365



61 
 

were placed in layer 3. Reservoir and model input parameters are presented in Table 

21.  

 

 

Table 21: Numerical Model Input parameters 

 

The objective of this section was to perform single-well analysis of Eagle Ford Shale. 

The goal was to build base case and to match the performance of the Eagle Ford well 

for understanding the reservoir and rock properties of this well and improve the 

completion and stimulation design.   

Petro-physics study indicates an average permeability of 365 nanodarcy (nD) over 

formation pay interval of 232 ft. which included both the upper and lower Eagle Ford 

 Despite broadly known as shale, the Eagle Ford formation is actually composed of 

organic rich calcareous mudstone and chalks that were deposited in the upper and 

lower Eagle Ford. Figure 36 shows the petrophysical log data where the lower Eagle 

Ford is organically rich and produces more hydrocarbons than the upper Eagle Ford 

due to oxygenated environment as depth decrease (Bazan, L.W., et al 2010).  

Reservoir Parameters 

Initial reservoir pressure, psia  5000 

Bottom hole pressure Pwf, psia  500 

Depth, ft.  7450 

Thickness, ft.  232 

Bubble Point Pressure, psia  2404 

Oil API  38.65 

Oil Specific Gravity  0.71 

Solution Gas‐Oil Ratio, scf/STB  671 

Reservoir Temperature, °F  224 

Equivalent Reservoir Viscosity, cp  0.59 

Drainage Area, Acre  100 

Hydraulic Fracture Properties  

Estimated Effective Fracture Half length, ft.  206 

Estimated propped width, ft.  0.008 

Estimated fracture permeability, md  3800 

Anticipated stimulation goal  Conductivity facture 
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Figure 36: Well #1 Petro‐physical data 

 

 

3.2.2 Parametric Studies  
 

Parametric studies were conducted to illustrate the effects of various parameters on the 

discrete fracture network.  Sensitivity model uses a micro seismic data to effectively and 

qualitatively calibrate the fracture model.  This utilized geology, drilling survey, well log 

data, fracture treatment data, and a deterministic analysis of the micro seismic 

measurements result. 

The model was setup to conduct a sensitivity study of fracture geometry. A constant 

slurry volume of 12, 200 bbl. /stage was injected with different aspect ratio of Eagle 
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Ford shale formation. The purpose was to study the effect of stress anisotropy on 

fracture geometry and proppant transport, which is the main driving force of well 

productivity. 

The results of fracture simulation (output) were used to set up reservoir simulator 

(input).   

The main area on parametric sensitivities study was focused on the effects of rock and 

reservoir properties such as:   

1. The effect of fluid volume and proppant concentration on dominant fracture. 

2. The effect of stress anisotropy or aspect ratio from microseismic on dominant 

fracture. 

3. The effect of stress anisotropy or aspect ratio from microseismic on fracture 

conductivity. 

4. The effect of dominant fracture on productivity and EUR. 

5. The effect of conductivity on productivity and EUR. 

The result of the study was used to enhance both the completion and the fracture 

treatment. The key of this study was to clearly understand the different aspects of 

fracturing treatment such as – separating between propped and un-propped fracture 

length, fracture growth and geometry, fracture overlap between stages and wells, stress 

anisotropy effects, and treatment efficiency. This was accomplished by an approximate 

comparison of micro seismic events with 3D fracture simulation model. 

 

3.2.3 Second Generation Stimulation Design: Optimization 
 

The foundation of base case treatment design was the concept that hydraulic 

fracturing requires high viscosity to create a considerable flow path, which was needed 

for loading higher proppant concentrations with the achievement of optimum fracture 

conductivity in near wellbore.  Moderate fracture complexity, which was due to the 

interaction of the hydraulic fracture with natural fracture and formation properties, was 

then subsequently observed. The flexibility of having the option to either control or 
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exploit this complexity had a significant impact on fracture design and thus well 

performance.  

In order to improve completion efficiency and increase the well productivity, a second 

generation treatment was designed. Optimized stimulation treatment design (2nd 

generation) was based on the results of parametric studies and was also based on the 

observations of well #1 micro-seismic evaluation of fracture mapping. The results 

highlighted how fracture complexity can be maximized using low viscosity fluids. Hybrid 

fracturing fluid system was chosen for the second generation (optimizing design 

treatment) and compared with first generation (base model) as listed in Table 22 with 

values for colored parameters showing modifications or changes. Low viscosity hybrid 

fluids generated fractures of minor width and therefore had greater fracture lengths. This 

practically increases the complexity of the created fracture network with better reservoir 

to wellbore connectivity. 

Parameter  Generation 1_Value Generation 2_Value

Total Liquid Volume (BBLS)  85,590 180,000

Injection Rate (BPM)  93 90

PAD Ratio %  25 44

XLK Ratio %  69 33

100 Mesh Ratio %  26

40/70 Mesh (IBM)  3,429,750

30/50 (IBM)  5,700,000 ‐ 

Max proppant conc. (ppg) 5 2.5

Total Proppant (IBM)  5,700,000 4,210,485

# of Stage  15 15

Fluid system  Crosslink fluid Hybrid fluid 

 

Table 22: Comparison of First and Second generation treatment designs 

 Once this hydraulic control was established, application of hybrid fluid system was 

expected to yield outstanding results in Eagle Ford formations by producing intersecting 

secondary fracture cracks. The basis of application of second generation treatment 

design was to hydraulically initiate a high pad fluid volume including 100 mesh which 

effectively reduces leakoff through any intersecting fractures in the formation. The 100 

mesh does not restrict fluid travel down the primary fracture, and thus allows the 

subsequent fracturing fluid to extend the principal fracture to the desired distance into 

the reservoir. Low proppant concentrations were utilized to improve the effect of 
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proppant distribution on fracture performance when fracture growth was complex, 

assuming proppant was either concentrated in a primary propped fracture or evenly 

distributed in a fracture network. 

 

3.2.4 Well spacing  
. 

The Eagle Ford shale play was in a full-field development phase after six years of 

appraisal and delineation. This very often involves drilling multiple horizontal wells per 

section.  

The objective of this task was to present sensitivity studies by varying propped fracture 

length and formation drainage area as a function of well spacing. Effective fracture 

geometry can be achieved with optimum treatment design.  

Schematic diagram of typical horizontal wellbore model is shown in Figure 37. Fracture 

length or distance between the wells has a major effect on EUR. Applied reservoir 

properties were averaged value based on log and core data. A total section drainage 

area of 640 acres was chosen and kept constant during this study. 

Group of wells with different well spacing were created for testing and the effect of down 

spacing are illustrated in Table 23. The wells were divided in 5 groups per section with 

group one for eight wells and increasing to 32 wells for group five. All groups were 

completed with a similar fluid system.  

 

Group  # of Wells per Section  Distance between Wells  Distance from Sides  Area 
1  8  660 330  80

2  10  528 264  64

3  13  406 203  49

4  16  330 165  40

5  32  165 82  20

 

Table 23: Different scenario of number of wells per section 
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Figure 37: Drainage arrangement 

The decision on how to develop the Eagle Ford shale depends on the interpretation of 

fracture generation, fracture propagation, proppant distance, fluid distance, and fracture 

geometry, which are critical for proper well spacing and draining the resource in place 

with each well or section. Failure to maximize stimulated area will result with portions of 

hydrocarbon left in a given well or section. 

Down-spacing will increase well density and improve productivity from un-propped 

region of the Eagle Ford formation where most of the productivity originates from 

stimulated region. It is essential to determine the point where higher well density hardly 

improves production without adding necessary and incremental increase in combined 

volume to offset additional drilling and operating costs. 

Oil prices are more volatile than before. Increased U.S. domestic oil production sent 

prices lower than anyone imagined. The U.S. Energy Information Administration (EIA) 

forecasts that WTI will average $38 a barrel in 2016. That's significantly lower than 

December's forecast of $50.89 a barrel. Supply has outstripped demand, making any 

predictions highly uncertain. Nevertheless, the EIA has bravely predicted that different 

future prices as shown in Table 24. This values was an average and utilized future 

development decisions especially well spacing.  

Also, oil price sensitivity to well spacing were evaluated. Simulation of economic 

forecast were conducted with different set of constant prices for the life of the well ($80, 

$60, $40, and $20). 
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Year  2016  2017  2018  2019 

Brent (US$/b)  43  60  74  73 

Opec reference price (US$/b)  41  58  71  70 

WTI (US$/b)  42  59  71  71 

Average  42  59  72  70 

 

Table 24: EIA Crude Oil Prices future forecast 

The analysis in this section includes the variation of economic parameters to determine 

the effect of oil price and discount rate upon the optimum well spacing. Cash flow and 

net present value (NPV) profiles were evaluated for economic viability of well spacing.  

Present cash flow and net presented value (NPV) profiles conducted in this study 

evaluated the economic visibility of well spacing. The values considered for investment 

and expenses to drill, complete, fracture, and operate a well are shown in Table 25.  

The economic well spacing approach was based on Net Present Value (NPV) and 

Discount Return on Investment (DROI) value.  

Parameter  Price Deck 

Drilling Cost/Well ($MM)  2.30 

Completion Cost/Well ($ MM)  2.65 

Pump Cost/Well ($ MM)  0.24 

P&A Cost/Well ($ MM)  0.05 

Fixed Opex ($/month/well)  13,800 

Oil Variable Opex ($/bbl.)  3.47 

Water Variable Opex ($/bbl.)  2.99 

Working Interest  10% 

Revenue Interest   7.424% 

 

Table 25: Economic Data 
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4. Result and Discussion  
 

The results of hydraulic fracturing modeling and reservoir simulation studies as well as 

the interpretation outcome of different treatment designs in Eagle Ford shale are 

presented in this section. 

4.1. Base Model Stimulation Treatment Design (First Generation Treatment 

Design) 
 

Initial treatment design was based on a working knowledge of the northeastern part of 

Eagle Ford where best producing wells are located.  The goal was to setup workflow of 

stimulation optimization and develop base model for fracture and reservoir simulators 

and generate production profile of analytical and numerical models. 

The main objective of this study was to generate conductivity type fracture treatment 

where more viscous fluid, more proppant, and proppant concentration is injected into 

formation to obtain higher conductivity (Barree, et al (2011)). 

 

4.1.1. Impact of Fluid System and Proppant on Fracture Properties 
 

A horizontal well in Eagle Ford Shale was drilled using an average lateral length of 5000 

ft. with an average TVD of 7582 ft. Total injected clean volume was 88,000 barrels with 

total proppant mass of 5,700,000 pounds at an average pump rate of 93 bpm.  A total of 

15 stages of hydraulic fracture treatment were successfully stimulated. Pad fluid volume 

was allocated to 25% of total fluid volume, which was first part of treatment fluid to 

breakdown and initiate fracture. It allowed fluid to produce sufficient penetration and 

generated required geometry. To overcome proppant embedment and multiphase flow, 

crosslinked fluid volume used was almost 70% of total fluid volume. This high viscous 

fluid system with higher concentration of large proppant mesh was placed into 

formation. Increasing viscous fluid reduced fracture complexity in near wellbore and far-

field as illustrated in Figure 38. It is more difficult for high viscosity fluid to penetrate and 
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intersect natural fracture or fissures. Additionally, reduction of penetration distance or 

effective length will diminish required stimulated area.  

 

Figure 38: Length profile for primary fracture 

 

Table 26 summarizes results for stimulation of Well #1 and also compares micro 

seismic mapping results. Fracture half-length of 318 ft. was created as shown in Figure 

39. This distance indicates how far fracturing fluid reached in the formation. Propped 

length was recorded as 237 ft. and estimated effective half-length was 208 ft.  

 

Table 26: Base Model Results for Hydraulic Fracturing Properties 

 

Parameter  Primary Fracture  Unit 

Fracture Half Length ‐ Created  318  (ft.) 

Fracture Half Length ‐ Propped  237  (ft.) 

Effective Half Length‐(NW)  208  (ft.) 

Fracture Height  230  (ft.) 

Drainage Area  100  (Acre) 

Stimulated Area   47  (Acre) 

Avg. Fracture Permeability  3200  (md) 

Micro‐seismic Monitoring Result 

Parameter  Primary Fracture  Unit 

Average Fracture Half Length  400  (ft.) 

Average Fracture Height  245  (ft.) 

Estimated Stimulated Area  92  (Acre) 
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There was a direct correlation between rock mechanical properties, fracturing fluid 

system, and hydraulic fracture properties such as fracture geometry and fracture 

conductivity. Well # 1 was expected to produce liquid hydrocarbons and higher 

concentrations of larger-mesh (30/50) proppant were used to achieve the required 

fracture conductivity. High fracture conductivity was a function of proppant mesh size 

and concentration. 

 

Figure 39: Primary Fracture proppant transport 

Figure 40 shows simulated fracture network width of Well #1 calibrated with micro 

seismic data. The results of micro seismic monitoring recorded a measured average 

half-length of 400 ft. and an average fracture network width of 394 ft.The Aspect Ratio is 

defined as the fracture network width to fracture length (2*xf) and the calculated average 

Aspect ratio was approximately 0.5. This result indicates formation is more brittle than 

ductile. 
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Figure 40: simulated fracture network width 

Micro-seismic monitoring result implies that we are effectively stimulating and contained 

with the Eagle Ford without fracturing into the Austin Chalk and Buda intervals. Eagle 

Ford is currently spaced for 100 acres per well, fracture modeling, and micro-seismic 

result illustrated the apparent drainage area was not fully stimulated. 

 

4.1.2. Analytical Model Approach 

  
After successful fracture modelling, Rate Transient Analysis (RTA) was used to 

characterize reservoir and completion parameters. Enhanced Fracture Region analytical 

model introduced by Stalgorova and Mattar (2012) was utilized for the first generation 

well 1# with more than one year of production and pressure history.  

Parameters such as formation thickness collected from log data and reservoir fluid 

properties obtained from the laboratory was utilized. In addition, completion parameters 

from hydraulic fracture model, such as number of stages (nf), initial reservoir pressure, 

lateral length (Le), and drainage width (Ye), which are bases of well spacing were 

inputted to the model. The model was based on the assumption of equally spaced 15 

stages and uniform transverse fractures along the lateral length of the well. Reservoir 

characterization and initial interpretation was influenced by the identification of early 

transient linear flow regime as well as a time of transition to boundary or apparent 
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boundary dominated flow ( telf ) highlighted by the dashed vertical green line in Figure 

41. 

Figure 41 highlights transient linear flow characterized by straight line on superposition 

time plot where transition time was presented. As recommended by Liang et al (2011), 

time function used in this plot was material balance time (tc). The position of the telf line, 

in addition to the linear flow straight-line that precedes it, were derived from the 

analyst’s unique interpretation. Calculated parameters such as stimulated reservoir 

volume, dimensionless fracture conductivity had a direct correlation in the interpretation 

of the linear flow straight-line and telf . Fracture parameters were based on the 

assumption of equally spaced stages and uniform transverse fractures along the lateral 

length of the well. 

 

Figure 41: Oil Material Balance Square Root Time (d1/2) 

To justify the interpretation, adjusted parameters such as inner zone permeability 	

ሺ݇	ଵሻ and outer zone permeability ሺ݇	ଶሻ were estimated and analytical model matching was 

applied resulting with 6% of average error as shown in Figure 42. Matched parameters 

generated by fracture model was utilized in future EUR forcasts. 
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Figure 42: Base Model Analytical Pressure match 

After caliberation of analytical model, base model was used to simulate for 50 years of oil 

production profile. The forecasted cumulative oil was 467 MBBL while maintaining the 

constant bottom hole pressure as shown in Figure 43. Table 27 lists analytical model 

matched values and their comparison with fracture simulator results. 

Parameter  Frac Simulator  Analytical Model  Units 

Fracture Permeability  3200  2850  md‐ft. 

Matrix Permeability  550  540  nD 

Drainage Area  100  100  Acres 

Stimulated Area  47  51  Acres 

Half Length  237  257  ft. 

Stages  15  15 

Lateral Length  5000  5000  ft. 

EUR (Oil)  467  Mstb 

  

Table 27: Summary of fracture treatment design and reservoir properties 
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Figure 43: Base model for oil production forecasting 

 

4.1.3. Numerical Model Approach 
 

After successful fracture modelling, fracture properties were used as input to reservoir 

simulator. Numerical simulation was employed to validate the matched results of 

hydraulic fracture properties. A single porosity model was developed with a horizontal 

well containig 15 fracture stages.  

To improve the predictions from simulation model, the base model was fine tuned to 

match the measured (historical) production results. The measured data used in the 

match were the produced oil and gas of Well #1. Selected matching parameters were 

properties (porosity and permeability) of layers 1 through 4 and created hydraulic 

fracture properties including fracture half length, fracture permeability, and fracture 

width. Matching was successfully completed with an average error of 7%. 

To overcome proppant embedment and generate multiphase flow path, required 

conductivity was achieved by sacrificing formation penetration and ultimately reducing 

stimulated area.  The best match result was recorded and matching parameters are 

reported in Table 28. 
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Table 28: History match parameters (First generation) 

Matched results presented in Figures 44 and 45 were used for future production 

forecasting. Forecasted cumulative productions were 633 MBBL of oil and 529 MMcf of 

gas in 50 years. Table 29 summarizes the result of fracture treatment design and 

reservoir simulations. 

 

Figure 44: Base case Cumulative Oil Forecast and history Match 

Parameter   Value  Unit 

Perm_L1  339  nD 

Perm_L2  140  nD 

Perm_L3  882  nD 

Perm_L4  308  nD 

Por_L1  3.02  % 

Por_L2  4.67  % 

Por_L3  4.67  % 

Por_L4  4.01  % 

Prim_frac_width  0.00882  (ft.) 

Frac_Half_length  236.925  (ft.) 

Prim_frac_perm  4322.5  (mD) 

EUR Oil (50 years)   457  (MBBL) 

EUR Gas (50 years)   369  (MMcf) 
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Figure 45: Base Case Cumulative Gas Forecast and history Match  

 

 

Table 29: Summary of the results of fracture treatment design and reservoir properties 

 

Parameter  Frac Simulator  Analytical Model  Numerical Model  Units 

Fracture Permeability  3200  2850  4142  md 

Matrix Permeability  550  626  370  nD 

Drainage Area  100  100  100  Acres 

Stimulated Area  47  51  54  Acres 

Half Length  237  226  237  ft. 

Stages  15  15  15 

Lateral Length  5000  5000  5000  ft. 

EUR (Oil)  467  633  MBBL 

EUR (Gas)  529  MMcf 
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At the completion of study and analysis of hydraulic fracturing, analytical approach, and 

numerical approach modeling, it was determined that there was a need to prioritize the 

most important parameters such as the stimulated area. It was desirable to conduct a 

parametric study or sensitivity analysis to improve overall completion design and 

improve ultimate recovery and find answers to the following questions:   

1. What is the optimum fracture design that can increase the contact between 

reservoir and wellbore? 

2. What is optimum fluid and proppant type?  

3. What are the optimum fluid volume, proppant volumes and concentrations? 

4.  What is the optimum drainage area per well / or how many wells per section (640 

acre) is needed? 

 

4.2. Parametric Study 
 

In this section, a comprehensive reservoir simulation model used to study the impact of 

hydraulic fracturing parameters and it’s impact on production performance of an Eagle 

Ford Shale are presented. The purpose of this study was to improve first generation 

treatment design by quantifying the influence of hydraulic fracture parameters (fracture 

length, fracture permeability, and propped width) and reservoir parameters (porosity and 

matric permeability). 

 

4.2.1. Hydraulic Fracture Treatment Design 

 
 The purpose of this task was to study the effect of stress anisotropy or aspect ratio on 

formation of fracture geometry and proppant transport. The results showed the 

relationship between treatment size, formation properties, network size, and production 

response. Figures 46 through 48 show the relationship between treatment volume, rock 

properties and fracture geometry. Also observed were the fracture network size and 

complexity increase and the stimulated reservoir volume increases. Fluid volume was 

the driving force in generating fracture geometry.  
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Figure 46: Relationship between treatment volume and fracture geometry 

 

 

Figure 47: Effect of Aspect ratio on fracture length 
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Figure 48: Discrete Fracture Network with different Aspect ratio 

The model was setup for sensitivity study of fracture geometry and a constant slurry 

volume of 12200 bbl. was injected with different aspect ratio of Eagle Ford shale 

formation. 

Table 30 shows the negative impact of increasing aspect ratio on fracture efficiency and 

length and the positive impact on stimulated reservoir volume. Additionally, Table 30 

illustrates the relationship between aspect ratio and properties of hydraulic fracture. 

Therefore, understanding rock properties can help to select the optimum fluid volume to 

create desire fracture length.  

 

Table 30: Impact of aspect ratio on fracture properties 

 

 DFN Aspect Ratio (injected volume of 1220 bbl.)  10 20 30  40  50

Fracture Efficiency, %  0.658 0.635 0.621  0.613  0.616

Length, ft.  1848 1364 1133  993  886

Frac Height ‐ Avg, ft.  189.22 186.44 185.24  184.1  183.03

Primary Frac Area, 105 (ft²)  3.50 2.54 2.10  1.83  1.62

Max. Frac Width, in.  0.4162 0.3918 0.3773  0.3686  0.3753

Avg. Wellbore Width, in  0.3117 0.2957 0.2858  0.2803  0.2865

Avg. Hydraulic Frac Width, in.  0.23655 0.22607 0.21999  0.21695  0.22302

DFN Area, 106 (ft²)  2.57 2.61 2.64  2.66  2.69

DFN SRV, 106 (ft³)  9.04 9.70 9.98  10.16  10.10
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The connection between reservoir and wellbore with different proppant distributions 

were investigated. A sensitivity analysis was conducted and the required portion of fluid 

volumes to generate fracture length and other portions to transport proppant into the 

created fracture was studied. Figure 49 illustrates the relationship between injected pad 

volume and generated proppant half length. 

 

 

Figure 49: Sensitivity analysis for PAD volume selection 

 

This study also investigates required conductivity in DFN, including the effect of fracture 

fluid viscosity on fracture complexity and proppant distribution in complex fractures. 

Figure 50 shows increasing fracture complexity will result with greater loss of 

conductivity and diminishes the effect of fracture conductivity on productivity. The 

conductive fracture half-length was much shorter than estimated based on micro 

seismic records or generated from fracture model.  
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Figure 50: Effect of Aspect ratio on Fracture conductivity 

 

4.2.2. Reservoir Simulation 
 

A base model was prepared and used to evaluate sensitivity of hydraulic fracture 

parameters and predict its production for 30 years. The horizontal well had 15 stages 

with total lateral length of 5000 ft. To evaluate the impact of properties of hydraulic 

fracture and reservoir parameters on well production performance, sensitivity analysis 

were performed on some key parameters, including porosity, matrix permeability, 

fracture permeability, and effective half length. Sensitivity analysis can help to focus on 

inputs whose uncertainties have an impact on the model output, which allows reducing 

the complexity of the model.   

Sobol sensitivity analysis used to determine how sensitive particular parameters and 

their effect in ultimate recovery (EUR). As illustrated in Figures 51 through 54, fracture 

half-length was the only parameter which had major effect on cumulative oil and gas 

production. 
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Fracture half-length had an 81% effect on cumulative oil and 84% on cumulative gas, 

followed by porosity of layer 3 which was considered as organic portion of formation 

imposing the second highest impact on well performance. Other parameters such as 

fracture permeability, width, matrix permeability, and porosity had minimum effects on 

EUR.  

 

Figure 51: Relationship between Fracture Half‐length and Cumulative Oil 
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Figure 52: Relationship between Fracture Permeability and Cumulative Oil 

 

Figure 53: Sensitivity analysis of Cumulative Oil 



84 
 

 

Figure 54: Sensitivity analysis of Cumulative Gas 

 

To assess the impact of properties of hydraulic fracture such as fracture half-length and 

permeability, sensitivity runs were performed with following assumptions.  

 The fracture half-length ranging from 200 ft. to 300 ft. with constant fracture 

permeability of 3800 md. 

 Fracture permeability ranging 2000 md to 4000 md with constant half-length of 

250 ft. 

Sensitivity runs and their results are presented in Table 31. The results are also 

presented in Figures 55 and 56 indicating that the fracture half-length had the biggest 

impact on well performance. Increasing half-length from 200 ft. to 250 ft. provides 

additional 76 MBBL of oil and increasing from 250 ft. to 300 ft. produces extra 137 

MBBL of oil. 
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Table 31: Summary of result of sensitivity analysis 

 

Figure 55: Effect on Fracture Half‐length on Oil EUR 

Effect on fracture half‐length on EUR

Run #  Half Length (ft.)  Frac‐Perm (md) Oil EUR (MBBL) Gas EUR 

1  200  3800 407 330 

2  250  3800 483 379 

3  300  3800 545 458 

Effect on fracture permeability on EUR

1  250  2000 471 373 

2  250  3000 479 390 

3  250  4000 484 399 
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Figure 56: Effect on Fracture Half‐length on Gas EUR 

 

The fracture permeability had the lowest and insignificant impact on well performance 

as illustrated in Figures 57 and 58. Increase in fracture permeability from 2000 md to 

4000 required high viscous fluid and high proppant concentration and resulted with an 

average oil production increase of 20 MBBL. 
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Figure 57: Effect on Fracture Permeability on Cumulative Oil 

 

 

Figure 58: Effect on Fracture Permeability on Cumulative Gas 
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4.3. Second Generation Stimulation Treatment Design (Optimization) 
 

The first generation treatment design was based on the production of best yielding wells 

in Eagle Ford. The outcome of a fracture treatment depends on the Brindell hardness 

number (BHN NO.) Values of this property based on core test results from various shale 

reservoirs (Stegent, et al (2010)) are shown in Figure 59. Eagle Ford has a low BHN 

which indicates that the rock is relatively soft or more ductile and also prone to proppant 

embedment. To overcome this, a conductivity design option was implemented. The 

basis of this treatment design was the concept that hydraulic fracturing requires high 

viscosity to create a considerable flow path, followed by a loading with higher proppant 

concentration to achieve optimum fracture conductivity in near wellbore. Fracture 

complexity is typically reduced when fluid viscosity is increased. Also, penetration 

distance or length significantly reduces as viscosity increases. As a result of this 

approach production respond of first treatment design was less than expected.  

 

Figure 59: Brindell hardness number of various shale reservoir in North America 

Treatment design can vary from area to area due to the varying geomechanical 

properties observed across the Eagle Ford. After detailed analysis of parametric study 
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presented earlier with based local rock and fluid properties, a new treatment was 

designed (2nd generation). 

Second generation stimulation treatment was based on local rock properties of well #1 

and its offsite well, including micro-seismic fracture mapping data and Brindell hardness 

values.  Figure 60 shows that the formation in study area is more brittle with YM of 4.5 x 

10E6 psi. This means that there is no risk of proppant embedment.  As a result, hybrid 

fracturing fluid system was chosen for second generation treatment design. High fluid 

volume with low viscosity hybrid fluid system generates fractures of minor width and 

therefore had greater fracture length, practically increasing the complexity of the created 

fracture network for a better reservoir-to-wellbore connectivity.  Moderate fracture 

complexity was expected due to the interaction of the hydraulic fracture with natural 

fracture based on observed formation properties. Options to control or exploit this 

complexity can have a significant impact on fracture design and well performance.  

 

Figure 60: Well #1 and adjacent well Brindell hardness value 

Application of hybrid fluid system provides outstanding results in Eagle Ford formations 

with intersecting secondary fracture cracks which are encountered once this hydraulic 

control is established. 
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4.3.1. Impact of Fluid system and Proppant into Fracture Properties 

 
The application of second generation was hydraulically initiated into the formation with a 

high pad fluid volume to create a large surface area based on parametric study values 

shown in Figure 49. The treatment design included a ramp of fine-grained, low density 

proppant (100 mesh) and high rates early in the stage to achieve secondary and far-

field proppant placement. Towards the end of the stage, low medium density (40/70) 

proppants were pumped to fill the primary fracture up to the perforations. Improved 

initial and long-term recoveries were achieved by expanding fracture surface area while 

also maintaining fracture connectivity. 

It was observed that the grain of larger mesh proppants such as 30/50 and 20/40 mesh 

was difficult to transport beyond the primary fracture. High density proppant cannot 

transport sand properly in the primary fracture because it requires a higher viscosity 

fluid system that significantly reduces fracture surface area.  Therefore, smaller mesh 

size proppants such as 100 mesh and 40/70 were selected for second generation 

treatment design. These proppants can pass through the complex fracture network into 

the secondary fractures, while simultaneously propping the primary fracture. Figures 61 

and 62 present relationship between proppant transport, conductivity and formation 

penetration for both designs. 100 mesh effectively reduced leak-off through any 

intersecting fractures. It did not restrict fluid travel down the primary fracture, and thus 

allowed the subsequent fracturing fluid to extend to the principal fracture with desired 

distance into the reservoir. 

In addition, low proppant concentration was utilized to improve the effect on proppant 

distribution on primary and secondary fractures with the assumption that proppant was 

either concentrated in a primary propped fracture or evenly distributed in a fracture 

network. After effective proppant transport, expected range of un-propped fracture was 

reduced. 
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Figure 61: Effect of Fluid Viscosity on Penetration and conductivity 

 

Figure 62: Effect of proppant concentration on proppant transport and penetration 
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Table 32 summarizes and compares first and second generation simulation results. 

Injected fluid was increased as a result of expanding surface area. Lower proppant 

concentration and smaller mesh size was utilized with reduced conductivity and 

increased connectivity and proppant distribution. A fracture half-length of 575 ft. was 

created and propped length was recorded at 395 ft. with estimated effective half-length 

of 320 ft. This was a value close to near wellbore (NW) conductive half-length or 

contributing length.  

Parameter  First Generation   Second Generation   Unit 

Result of Hydraulic Fracture Modeling 

Fracture Half Length ‐ Created  318  575  (ft.) 
Fracture Half Length ‐ Propped  237  395  (ft.) 
Effective Half Length‐(NW)  208  320  (ft.) 
Fracture Permeability  4142 2000  (md)

Fracture Height  230  225  (ft.) 
Drainage Area  100  100  (Acre) 
Matrix Permeability  370 370 (nD)

Stages  15 15  

Lateral Length  5000  5000  (ft.) 
Stimulated Area  47  73  (Acre) 

History Match Parameters and Cumulative Production Forecast 
Lateral Length  5000 5000  (ft.) 

Avg. Fracture Permeability  3200  1800  (md) 
Half Length  237 347 (ft.) 
Stimulated Area  54   80  (Acre)

EUR (Oil)  633 855 (MBBL)

EUR (Gas  529 735 (MMcf)

 

Table 32: First and Second Generation Hydraulic Fracture Properties and production forecast 

After successful fracture modelling, fracture properties were applied as input to reservoir 

simulator. In the next step, simulated production was matched with second generation 

well’s historical production data. Selected matching parameters were porosity and 

permeability of layer 1 through layer 4, hydraulic fracture properties including fracture 

half length, fracture permeability, and fracture width. Matching was successfully 

completed with an average error of 6.8%. The results indicated that the cumulative oil 

was increased by 26% compared to first generation design, with a cumulative gas 

increase of 28%. Stimulated surface area was increased by 32%. The production 
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forecast profiles are presented in Figures 63 and 64. Figures 65 and 66 show the 

expected increase in cumulative oil and gas production at the end of 50 years when the 

new second generation design is used.  

 

Figure 63: Second generation cumulative oil and history match 

 

Figure 64: Second generation cumulative gas and history match 
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Figure 65: Cumulative gas production with First and Second generation designs 

 

 

Figure 66: Cumulative oil production with First and Second generation designs 
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4.3.2. Eagle Ford Field Data Analysis 
 

A number of horizontal wells were drilled in the targeted Eagle Ford organic shale 

formation. The average lateral length was 4400 ft., with an average of 16 stages at 280 

ft. stage spacing. Hydraulic fracturing treatment was successfully completed. Each 

stage had 6 to 9 perforation clusters that are 1 ft. wide and 5 shoot per foot. There were 

42 to 50 perforation per stage fired at an average rate of 80 bpm.  

Two different design procedures were conducted in 10 Eagle Ford wells. Each 

procedure was designed for a specif ic object ive for the target formation and its 

special rock characteristics such as pay thickness, reservoir fluids, lithology, rock 

stress and other characteristics to optimize development of unconventional reservoir. 

First treatment design implemented a crosslink fluid system with high proppant 

concentration in order to provide sufficient conductivity into primary fracture and to lower 

proppant embedment. Second treatment design was utilized with a hybrid fluid system, 

high fluid volume, lower proppant concentration, and higher 100 mesh volume in order 

to generate large surface area and to connect natural and induced fractured in the near 

and far field. Table 33 presents completion parameters of first and second generation 

treatment designs. 

The first generation treatment schedule was pumped with a more aggressive proppant 

ramp to help generate conductivity, knowing that the location was a liquid-rich 

condensate area, and that multiphase flow would require greater conductivity to 

adequately and effectively drain the reservoir. Table 34 below shows the summary of 

the first generation treatment design. The job consisted of 10 lb. of linear gel followed by 

linear Pad, with main proppant stages ranging from 0.5 ppa to 5 ppa. The plug-and-perf 

completion was used. Each stage consisted of 285,000 lbs total prop (28,000 lb of 100 

mesh and 256,000 lb of 30/50 resin coated sand).  2% KCL substitute treated water was 

applied to all stages ranging from 0.5 ppa to 5 ppa, crosslink fluid system. 
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Well #  #Stages  Lateral (ft.)  Stage Spacing Fluid (bbl.) Prop (Ibm)  % 100 mesh

First Generation Treatment Design

1  20  5,853  293 111,000 5,760,000  9%

2  15  4,119  275 88,995 4,509,000  9%

3  15  4,152  277 88,005 3,534,000  10%

4  12  3,192  266 69,000 3,570,000  8%

5  15  4,250  283 90,000 4,549,005  9%

Second Generation Treatment Design

6  14  4,131  295 121,996 4,913,006  25%

7  13  3,686  284 118,001 3,872,999  26%

8  19  5,334  281 172,007 6,295,004  26%

9  18  5,033  280 169,002 5,448,996  26%

10  15  4,094  273 121,995 4,905,000  25%

Table 33: Generation One and Two Completion Designs 

 

Table 34: Generation One Pump Schedule 
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The second generation job design consisted of sweep stage with 10 lb. of linear gel 

followed by linear Pad and main proppant stages ranging from 0.25 PPA to 3 PPA. The 

“plug-and-perf” completion was used. An average proppant per stage consisted of 

318,000 lbs total prop (80,000 lb. of 100 mesh and 238,000 lb of 40/70 resin coated 

sand). All staged with 0.5 ppa to 3 ppa, and a hybrid system with 2% KCL substitute 

treated water. The pump schedule was designed to create a large surface area. Large 

volume of water was injected with smaller proppant concentration to enhance efficiency 

of primary fracture and far field conductivity.  Table 35 shows the summary of the pump 

schedule for second generation treatment design. 

 

 

Table 35: Generation Two Pump Schedule 
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4.3.3. Completion and Production Analysis 

 
It is recognized that shale reservoir production is driven by a number of factors such as 

geology, petrophysics, geomechanics, completion, landing and placement of laterals. 

This study focused on the preliminary effect on completions, particularly in a hydraulic 

fracturing treatment. Completion strategy was divided in two treatment designs. Staging 

and perforating a job was done to accommodate variations of stress and minerology 

along a lateral. Table 36 shows normalized treatment fluid and proppant volume used in 

hydraulic fracture treatments per stage. Average fluid volume per stage varied from 

5,550 to 9389 bbl. Average total proppant per stage ranged from 230,600 to 350,929 

Ibm and average 100 mesh ratio per stage ranged from 9% to 26%. Lateral length from 

the deepest perforation hole to the shallowest one in a well was analyzed. The value 

ranged between 3192 ft. to 5853 ft. 

Well  #  Lateral Length (ft.)  BBL/ stg  Ibm/ stg  % 100 mesh  300 Day (BBL/ stg) 

First Generation Treatment Design 

1  5,853  5,550  288,000  9%  2,844 

2  4,119  5,933  300,600  9%  2,553 

3  4,152  5,867  235,600  10%  1,627 

4  3,192  5,750  297,500  9%  2,900 

5  4,250  6,000  303,267  9%  2,681 

Second Generation Treatment Design 

6  4,131  8,714  350,929  25%  6,193 

7  3,686  9,077  297,923  26%  3,923 

8  5,334  9,053  331,316  26%  4,059 

9  5,033  9,389  302,722  26%  4,299 

10  4,094  8,133  327,000  25%  3,481 

 

Table 36: Normalized Completion Data 

Cumulative oil production of 10 producing wells were gathered and compared with 

treatment design data in order to show the parameters that help or hinder optimization 

of the completion process. A more rigorous approach was conducted in examining 

relationship between numerous treatment parameters and production. Total of 10 wells 

(5 wells with 1st generation design and 5 wells with 2nd generation design) with 

completion parameters including but not limited to lateral length, fluid and proppant 
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volumes were analyzed. As illustrated in Figures 67 through 69, well performance was 

influenced by treatment fluid volume.  

It is observed that second generation wells produced higher cumulative oil, due to the 

fact that it was pumped with a higher fluid volume. Examining the same figure gives us 

a basic understanding that proppant volume had little influence in well performance. 

 

Figure 67: Effect on fluid and proppant volume into Cumulative Oil 
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Figure 68: First Generation and Second Generation Production comparison 

It was also observed that the total proppant volume may not influence well productivity 

but increasing ratio of 100 mesh will have a positive effect on well performance. Figure 

69 shows the best producing well was injected with the highest ratio of 100 mesh. In 

addition to identifying high fluid volume and high ratio of 100 mesh, a hybrid fluid system 

with a low concentration proppant and 40/70 mesh was utilized among best producing 

wells or second generation treatment design and results are presented in Figure 67.   

40/70 mesh proppant (0.0124 mean diameter) was expected to prop into primary 

fracture which had a width of approximately 0.12 in. It was harder to place proppant into 

secondary fracture due to the risk of screen-out. Placement of smaller 100 mesh (0.006 

in mean diameter) proppant into the secondary and natural fractures was achievable. 

The ability to transport 100 mesh in slick water fluid was easier than 40/70. Therefore, 

making 100 mesh the best solution to prop secondary fracture.   
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Figure 69: Effect of 100 mesh ratio in cumulative oil production 

The objective of this secondary treatment design was to maximize liquid production by 

improving surface area and proppant placement in the secondary fracture. It was 

observed that late time productivity in the second generation was higher than in the first 

generation because design was more effectively connected to the secondary fractures 

and natural fracture to the wellbore. Table 37 shows production volumes of each well 

after 180 days. Second generation wells produced 11 bbl. /stages on average and fist 

generation produced 6 bbl. /stage on average. Figure 70 compares average cumulative 

oil production between first and second generation treatment designs. Detailed 

examinations of Eagle Ford completion were conducted to identify parameters that 

influence well performance and they are outlined below. 
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Table 37: After 180 days First Generation and Second Generation Production comparison 

 

Figure 70: First and Second generation average cumulative oil (bbl. /stage) comparison 

Work flow compared individual completion parameters to production, with the main goal 

of identifying trends. A more rigorous approach was conducted to examine the 

relationship between numerous completion parameters and hydrocarbon production. 

Two treatment procedures were examined for a total of 10 wells with completion 

parameters including but not limited to lateral length and fluid and proppant volumes. 

Time (Days)  Well # 1_bbl/stg  Well # 2_bbl/stg Well # 3_bbl/stg Well # 4_bbl/stg  Well # 5_bbl/stg

First Generation Treatment Design

180  8  8 6 14  10

210  6  7 3 8  9

240  6  6 3 6  8

270  8  5 2 6  5

300  5  4 2 5  5

330  6  3 1 5  5

Second Generation Treatment Design

180  19  14  15  11  9 

210  16  13  17  11  7 

240  13  12  9  12  10 

270  13  8  11  12  8 

300  15  5  10  7  6 

330  16  5  10  6  5 
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Examining provided a basic understanding about the trend: well performance was 

influenced by numerous interrelated completion parameters. The highest producing 

wells had the following characteristics for their treatment design: 

1. Usage of high fluid volume: 

 The objective was to increase surface area and to connect reservoir into 

wellbore. 

2. Moderate percentage of 100 mesh sand 

 Can be transport out into fracture and prop open natural fractures to retain 

production contribution during depletion. 

 A size of 100 mesh proppant was more likely to enter and prop open 

natural fractures. 

3. Low average proppant concentration 

 Helped proppant distribution into primary fracture and enlarged field 

fractures. 

 

Understanding relationship between rock properties, reservoir fluid, and fracturing fluid 

helped to achieve optimum design in localized stimulation treatment in Eagle ford. This 

approach can be a used in other parts of Eagle Ford particularly in oil and condensate 

window, where the rock is more brittle with higher YM, lower stress anisotropy, and low 

clay content. To fully apply this approach successfully in the neighboring counties such 

as Dimmit County, local rock and fluid property evaluations must be conducted. 

 

4.4. Optimum Well Spacing 
 

 A development plan was selected to drill at least 6 horizontal wells in a section. On an 

average basis, 100 acre per well was used with one section equivalent to 640 acres. A 

total drainage area of 640 acres was kept constant throughout the duration of the study.  

Down-spacing increases well density to improve productivity from the unpropped region 

of the Eagle Ford formation. It was observed that most of the productivity originated 

from the stimulated region. Based on the numerical model, the stimulated area in the 
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base case (Generation #1) was estimated to be 54 acres and the optimized case 

(Generation #2) was estimated to be 80 acres. This indicated that there may still be 

hydrocarbons left in the section. The solution to this problem is that the wells should be 

spaced close enough to increase the total stimulated area and to drain entire section 

within a reasonable time frame. On the other hand, it is important to minimize the 

possibility of fracture interference by offset wells or overlapping drainage area of an 

adjacent well.  

 Fracture and reservoir simulation were performed for each case consisted of 80, 64, 

49, 40, and 20 acres. All the cases were completed with a similar fluid system. 

Production profile for each case and number of wells per section were normalized to 

well type. After performing numerical modeling, total production was plotted against 

number of wells per section, which are illustrated in Figure 71. It’s observed that there 

was a direct correlation between increasing numbers of wells per section and total 

productivity. 

 

Figure 71: Number of wells per section vs cumulative oil production 
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4.4.1. Effect of Fixed Price on Well Spacing 
 

The price of oil fluctuates and the historic monthly trend is shown in Figure 72 for West 

Texas Intermediate (WTI) and Brent oil between 2006 and 2016. The minimum and 

maximum oil prices during this time interval was $31 per bbl and $133 per bbl, 

respectively. In order to understand the impact of oil price variation on the simulation 

treatment of Eagle Ford Shale, an economic study was conducted. Further, this 

investigation is designed to provide information regarding the total simulated reservoir 

volume for each case and it’s associated cost. Crude oil price forecast by EIA was used 

in the economic analysis for net present value (NPV) determinations. Runs were 

conducted with a constant revoir volume but with different well spacing desings. Five 

well spacing options used in the model study was considered for the economic 

evaluation. Based on oil price estimates of 42, 59 and 72 $/bbls for the first three years 

and $71/bbl for the remainder of the time, the net present values (NPV) were 

determined for five well spacing options. Results show that all spacing designs yield a 

positive NPV and the maximum NPV was when a 40-acre spacing (with 16 wells per 

section) was used. Table 38 shows that the optimum NPV and net oil (EUR) increased 

more than 40% when the well spacing is reduced from 80 to 40 acres. 
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Figure 72: Historic Oil price from 2006 to 2016 

 

Spacing         wells Net Reserves Future Net Revenue  
  Number of wells  Oil  Total  Present Worth at 10% 

(Acre) (well/section) (MBBL) (M$) (M$) 
20 32 831 33,375 10,788 
40 16 584 32,777 17,184 
49 13 529 29,443 15,349 
64 10 470 26,204 13,676 
80 8 411 22,985 12,007 

EIU Oil Prices Forecast 
Year  2016 2017 2018 2019 

Oil (US$/b)  42 59 72 71 
 

Table 38: Results of optimum well spacing with EIA future oil price forecast 

A second set of economic analysis was conducted using a reduction of 20% in the oil 

prices of the first analysis. Results are shown in Table 39 for the second analysis. All 
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cases yielded positive NPV values with 40 acre well spacing design as the maximum. 

However, there was approximately 25% less NPV compared to the first study as a result 

of reduced prices. 

Spacing         wells Net Reserves Future Net Revenue  
  Number of wells  Oil  Total  Present Worth at 10% 

(Acre) (well/section) (MBBL) (M$) (M$) 
20 32 831  23,416 5,605 
40 16 584 25,915 13,562 
49 13  529 23,235 12,072 
64 10  470 20,690 10,765 
80 8  411 18,157 9,459 

EIU Oil Prices Forecast
Year  2016 2017 2018 2019 

Oil (US$/b)  34 47 58 57 

 

Table 39: Results of optimum well spacing with reduced EIA future oil price forecast 

In the final analysis, runs were conducted with four different constant oil prices of $20, 

$40, $60 and $80 per barrel were used with the same five well designs as the first and 

second economic analysis. The results are presented in Table 40. When the four 

different oil prices and five different well spacing were considered, only one case with a 

$20 per barrel oil price and 20 acre well spacing, had a negative NPV. For all oil prices 

used for this analysis, 40 acres spacing had the maximum NPV. Thus, the wells can be 

placed closer together by 40 acres per section (16 wells) to accelerate production and 

to ultimately increase net revenue. 

Spacing Wells Net reserve  Oil Prices 
(Acre) (wells/section) Net Oil (MBbls) $80 $60 $40 $20 

Present Worth at 10% 

  20 ACRES 32 832 19,531 10,758 1,984 -6,789 
  40 ACRES 16 585 24,118 17,767 11,416 5,064 
  49 ACRES 13 529 21,623 15,877 10,131 4,385 
  64 ACRES 10 470 19,248 14,145 9,041 3,938 
  80 ACRES 8 412 16,886 12,417 7,949 3,481 

 

Table 40: Effect on oil price for well spacing 
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5. Conclusion 
 

This study evaluated existing fracture treatment design and presented a new treatment 

procedure and workflow for liquids-rich window of the Eagle Ford Shale. Based on the 

result, the following conclusions are presented: 

1. Eagle Ford Shale presents a great variability and a single technique or procedure 

for hydraulic fracturing that is universally adaptable is not used.  

2.  Each fracture treatment job must be designed for the target formation with 

special attributes to properties such as pay thickness, reservoir fluids, 

lithology, rock stress and other characteristics.  

3. Methodology used in this study can be applied to other areas of Eagle Ford shale 

stimulation design. 

4. Integrating local reservoir properties from DFITT, micro seismic, minerology, log, 

core data, production, and economic into hydraulic fracture treatment design can 

improve productivity of hydrocarbons and increases NPV.  

5. The risk of clay swelling and proppant embedment can be neglected for more 

brittle (high YM) formations.  

6. Hybrid stimulation treatment design provides optimum fracture geometry and 

increases contact between reservoirs and wellbore, while maintaining required 

conductivity for enhancing productivity. 

7. Increased injection volume is essential to increase fracture length and surface 

area in order to sustain production in a Nano Darcy formation. 

8. Lower mesh and lower concentration proppant placement can be conducted to 

stimulate and reach productive zones further away from the wellbore. 

9. Use of 40/70 mesh proppant (0.0124-in. mean diameter) makes it relatively easy 

to place it into primary fracture. The ability to transport and distribute 100 mesh 

proppant in a clean fluid is easier than 40/70 mesh and 30/50 mesh proppant. 

10. Using a 100 mesh sand is the most attractive solution to prop secondary 

fractures. 
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11. Microseismic data together with fracture and reservoir modeling indicates that 

only about 50% of available drainage area is simulated using a conventional 

design. 

12. Down spacing should be considered to increase productivity per section. More 

wells per section results in higher EUR values.  

13. Economics of the fracture operation dictates the number of required wells per 

section for Eagle Ford Shale. For the cases studied, 40 acre spacing yields the 

maximum NPV. 
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Appendix A: A Discrete Fracture Network Model 
 

The discrete fracture network (DFN) design discussed in section 2.8 uses a set of 

equations that satisfy continuity, mass conservation, constitutive relationship and 

momentum equations. This appendix lists the main equations used in DFN growth 

modeling including stimulated reservoir volume and proppant transport distribution. All 

equations below are documented in Meyers Fracture Simulators User’s Guide, Eleventh 

Edition, 2014.  

Mass Conservation 

The mass conservation equations state that the injected fluid volume minus the leak-off 

loss and spurt loss must equal the fracture volume as shown in the equation below: 

 

The leak-off loss and spurt loss for N discrete fractures can be calculated using the 

following relationship: 

 

Where the fluid loss γL multiplier and the total discrete fracture area can be calculated 

with the following expression: 

 

 

The DFN geometric properties such as length, width, volume and area can be estimated 

based on the following equations: 
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The stimulated reservoir volume is defined as: 

ௌܸோ ൌ න ݄
஺

ሺߦሻ݀ߦ ൌ  ത݄ܾߙߨ

The major or dominant fracture half-length (x direction) is a network extension in the y-

direction or minor axis (b). The stimulated projected area is the area in the x-y plane as 

observed in the z-direction (note: ܾܽߨ ൌ  is the ellipsoidal DFN aspect ߣ ଶ whereܽߣߨ

ratio). 

Continuity equation with flow rate Interaction  

The fracture flow rate for ith discrete fracture is given by the following equation: 

 

DFN Momentum equations 

The fluid loss in terms of Darcy friction factor based on the cross-sectional average 

velocity can be calculated as follows: 
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The proppant distribution allocation is defined as:  

߯௣ ൌ
௙ܯ

஽ிேܯ
൘ ൌ

௙ܯ
௧ܯ
൘  

 

Where ܯ௙ is the mass of proppant the primary fracture and ܯ௧ is the total proppant 

mass injected (or mass in DFN system). 

The proppant distribution allocation for a uniform distribution is:  

߯௣ ൌ
௙ܯ

஽ிேܯ
൘ ≅ ௙ܸ

஽ܸிே
൘        

DFN system efficiency ሺߟ஽ிேሻ is a representative value that can be used throughout the 
fracture network for proppant transport and proppant concentration in the fracture 
network and dominant fracture. 

 

      The proppant distribution allocation for a uniform distribution is: 

߯௣ ൌ
௙ܯ

஽ிேܯ
൘ ≅ ௙ܸ

஽ܸிே
൘  

 

      The uniform proppant distribution efficiency is calculated with the following equation: 

஽ிேߟ ൌ ஽ܸிே

׬ ሺ߬ሻ݀߬ݍ
௧
଴

൘  

 

     Dominant Fracture Proppant Distribution 

The Dominant Fracture Proppant Distribution option assumes that all the proppant 

remains in the primary fracture and no proppant enters the secondary DFN. 

The proppant distribution allocation for all the proppant in the primary or dominant 

fracture is defined by: 

߯௣ ൌ
௙ܯ

஽ிேܯ
൘ ൌ

௙ܯ
௧ܯ
൘ ൌ 1 
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The dominant fracture efficiency, ߟ, for all proppant remaining in the primary fracture is 

given as: 

 

ߟ ൌ ௙ܸ

׬ ሺ߬ሻ݀߬ݍ ൌ 		 ஽ிேߟ ∙
௙ܸ

஽ܸிே
൘௧

଴
൙  

User Specified Proppant Distribution 

The User Specified Proppant Distribution option allows the user to specify the minimum 

proppant allocation that remains in the primary fracture. The minimum allocation will be 

set to the primary fracture to DFN volume ratio as: 

߯௣|௠௜௡ ൒
௙ܸ

஽ܸிே
൘  

The proppant distribution allocation is defined with the following: 

߯௣ ൌ
௙ܯ

஽ிேܯ
൘ ൌ

௙ܯ
௧ܯ
൘  

The mass in the secondary fractures, ܯ௦, is given as: 

௦ܯ ൌ ௧ܯ െܯ௙ ൌ ௧൫1ܯ െ ߯௣൯ 

The average slurry concentration in the primary fracture and secondary network system 

is defined with: 

ܿ௙̅ ൌ
௙ܯ

௙ܸ
൘ ൌ

߯௣ܯ௧

௙ܸ
൘  

      And  

 

ܿ௦̅ ൌ
௦ܯ

௦ܸ
ൗ ൌ

ሺ1 െ ߯௣ሻܯ௧
ሺ ஽ܸிே െ ௙ܸሻ
൘  
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Appendix B: Analytical Method 
 

Equations presented are based on the assumption of a constant flowing pressure at the well. 

This is a reasonable simplification for tight gas and shale production, in which wells are typically 

produced under high drawdown. [IHS-Fekete Software Manual, 2016] 

Based on the straight-line behavior of the square root time plot, the simplest form of the linear 

flow equation is: 

 

1
ݍ
ൌ ݐ√݉ ൅ ܾᇱ 

The intercept captures a number of near well effects such as skin and finite fracture 

conductivity, and the slope is given by: 

For oil:                                              ݉ ൌ ଷଵ.ଷ஻

௛௫೑√௞
ට

ఓ

థ஼೟
∗ ଵ

௣೔ି௣ೢ೑
 

 

For gas:                                       ݉ ൌ ଷଵହ.ସ	்

௛ට൫థఓ೒஼೟൯೔

∗ ଵ

௣೛೔ି௣೛ೢ೑
∗ ଵ

௫೑√௞
 

From the slope fracture half-length and permeability are determined as a single product. 

To determine either explicitly, the other parameter must be known. 

The intercept of the line determined the skin and Fracture conductivity: 

 

For oil:  ݏᇱ ൌ
௕ᇲ൫௣೔ି௣ೢ೑൯௞൫ଶ௫೑൯

ଵସଵ.ଶ	஻	ఓ
ᇱ஼஽ܨ																			 ൌ

ଵସଵ.ଶ	஻	ఓ

௕ᇲ൫௣೔ି௣ೢ೑൯௞	௛	௡೑
∗ ቆ1 ൅ ௛

௫೑
ቀ݈݊ ቀ ௛

ଶ	௥ೢ
ቁ െ గ

ଶ
ቁቇ 

For gas:               ݏᇱ ൌ
௕ᇲ൫௣೛೔ି௣೛ೢ೑൯௞൫ଶ௫೑൯

ଵ.ସଵ଻∗	ଵ଴ల	்
ᇱ஼஽ܨ					  				 ൌ

ଵ.ସଵ଻∗ଵ଴ల	்

௕ᇲ൫௣೛೔ି௣೛ೢ೑൯௞	௛	௡೑
∗ ቆ1 ൅

௛

௫೑
ቀ݈݊ ቀ

௛

ଶ௥ೢ
ቁ െ

గ

ଶ
ቁቇ 
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The distance of investigation can be obtained from the following equation (With Reservoir 

geometry) 

 

                                            
௒೐
ଶ
ൌ 0.159ට

௞	௧೐೗೑
ሺథఓ௖೟ሻ೔

       

The permeability is tied into the (xf√k) term and reservoir width is related to the drainage area 

(A); however, both of these are related to fracture half-length (xf). Using the definition of 

drainage area (A = 2 * xf * Ye). 

 

xf√k can be determined by using following equations: 

 

For oil:                                                                               ݔ௙√݇ ൌ
ଷଵ.ଷ஻

௠௛
ݔ ଵ

௣೔ି௣ೢ೑
ටݔ

ఓ

ఝ௖೟
 

 

For gas:                                                                          ݔ௙√݇ ൌ ௖݂௣
ଷଵହ.ସ்

௠௛൫௣೛೔ି௣೛ೢ೑൯
ට

ଵ

ሺథఓ௖೟ሻ೔
 

 

The duration of linear flow (and hence the beginning of boundary-dominated flow) is 
determined using the following equation: 

For oil:                                                         ݐ௘௟௙ ൌ ൤
஺௛ሺఝ௖೟ሻ௠൫௣೔ି௣ೢ೑൯

ଵଽ.ଽ஻
൨
ଶ

 

 

For gas:                                                              ݐ௘௟௙ ൌ ൤
஺௛ሺఝ஼೟ሻ೔	௠൫௣೛೔ି௣೛ೢ೑൯

ଶ଴଴.଺்
൨
ଶ
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Boundary-Dominated Flow 

 

Given the geometry of the reservoir considered, linear flow is followed directly by boundary-

dominated flow. In the interest of keeping the method simple and practical, the hyperbolic 

decline method is used. Hyperbolic decline is defined in the following equation. 

 

ݍ  ൌ ௤೔

ሾଵା௕	௔೔௧ሿ
భ
್ൗ
 

 

Since the hyperbolic decline forecast starts at the end of linear flow, the flow rate, the decline 

rate, and time will be with respect to time at the end of linear flow (telf). The decline exponent (b) 

is selected to be between 0 and 0.5. 

 

 

ݍ ൌ
௘௟௙ݍ

ൣ1 ൅ ܾ	ܽ௘௟௙൫ݐ െ ௘௟௙൯൧ݐ
ଵ
௕ൗ
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