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Abstract 

Vascular Consequences of Metabolic Syndrome Related Shifts in 
Cyclooxygenase Mediated Arachidonic Acid Metabolism 

 
Adam G. Goodwill 

 
The metabolic syndrome is a multi-faceted disease state in which the initial 

pathology of obesity leads to the development of a cadre of comorbidities including, but 

not limited to, atherogenic dyslipidemia, a prothrombotic state, a proinflammatory state, 

a pro-oxidant state, hypertension and type II diabetes mellitus.  The prevalence of 

obesity is drastically increasing both nationally and globally, indicating that 

understanding obesity related disease is more relevant now then ever before.  The 

metabolic syndrome has been demonstrated to result in numerous deleterious 

consequences for afflicted individuals, not the least of which is peripheral vascular 

disease.  While the study of peripheral vascular disease has been extensively 

conducted and a robust body of literature exists implicating alterations in vasomotor 

regulation as the etiology for demand:perfusion mismatches in peripheral tissues, little 

study has been conducted to determine the consequences of metabolic syndrome on 

vascular network structure and the perfusion outcomes of the alterations to that 

network. 

Our lab has previously demonstrated that with metabolic syndrome comes a 

progressive loss of microvessel density in skeletal muscle, termed rarefaction.  This 

rarefactive phenomenon has been established in other animal models as well as in 

humans, however, the mechanistic underpinnings of microvascular rarefaction still 

require significant investigation.  For this reason we set out to: 



1. Identify the significant physiologic correlates/predictors of microvascular 

rarefaction. 

2. Determine which correlates played a contributing role in the development of 

rarefaction. 

3. Better establish a time-course for the phenomenon of rarefaction in our 

experimental model; the obese Zucker rat. 

The results of these studies demonstrate that alterations to inflammatory status and 

elevated oxidant stress significantly contribute to the development of obesity related 

rarefaction.  Additionally, these two causative-agents act through intermediaries either 

shifting the balance in endogenous prostanoid production to a preferential generation of 

TxA2, or diminishing vascular nitric oxide bioavailability.  Additionally, it was discovered 

that in the obese Zucker rat, rarefaction is a biphasic process wherein the phases are 

mechanistically distinct from one another.  The initial or early phase of rarefaction is 

mediated by elevations in TxA2 production, whereas later rarefaction is mediated by 

diminished vascular nitric oxide bioavailability.  Taken together, these data indicate that 

rarefaction is a process whose origins are rooted in the very earliest development of 

metabolic syndrome.  The process itself is more mechanistically complex than initially 

anticipated and is mediated by pathologic alterations (elevated oxidant stress and 

altered inflammatory profile) which have been shown to produce additional deleterious 

effects.  These studies would indicate that a greater knowledge of the origins and 

regulation of alterations to inflammatory status and elevations in oxidative stress are 

essential in treating metabolic syndrome. 
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Chapter 1 

 

 

The Metabolic Syndrome 
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The metabolic syndrome is a term given to a constellation of comorbidities 

manifested within a single individual and owing to the initiating condition of obesity.  The 

term itself has been in common, though poorly defined, usage as early as the 1950s.  

The first appearance of the term “metabolic syndrome” in a peer reviewed journal 

indexed by PUBMED was by an Israeli group in 1972 (11).  Though they were the only 

group to publish a manuscript employing the term metabolic syndrome in that year, by 

1977, the term began to be used annually in a limited number of publications and it was 

in the early 1990s that the study of metabolic syndrome became mainstream with 

publication numbers rising from two in 1990 to 113 in 1999 with the trend continuing to a 

startling 3734 publications containing the term metabolic syndrome in 2010 (See Figure 

1).  

 This impressive growth in metabolic syndrome research directly parallels the 

growth in numbers of obese individuals here in the United States and abroad.  

According to the National Health and Nutrition Examination Surveys, approximately 

33.8% of Americans are obese (BMI >30) with a nearly equivalent percentage meeting 

the criteria for overweight (BMI >25) (4).  Sampling back to 1960 demonstrates a near 

exponential rise in the number of obese individuals starting in 1980 and continuing to 

the turn of the century (See Figure 2) (15).   Fortunately it appears that this 

phenomenonal growth in obesity is beginning to plateau, though extensive speculation 

exists attributing the plateau to ever diminishing numbers of individuals whose BMI falls 

below 25 remaining to enter into overweight or obese categories.  It is worth noting that 

while some regionality does exist with regards to the BMI of an average citizen, when 

examined by state it becomes apparent that there are no startlingly obese states 
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causing a shift in the statistics as the current distribution ranges from 21% in Colorado 

to 34% in Mississippi (1).  This trend in obesity shows no evidence of significant future 

abatement as approximately 17% of children age 2-19 are already obese (14).  It is in 

this overweight and obese population of children, adolescents and adults that you will 

find those individuals with the predisposing characteristics for development of metabolic 

syndrome and it is because of the high prevalence of obesity that approximately 34% of 

all adult Americans met the diagnostic criteria for metabolic syndrome in 2006 (3). 

A problem that metabolic syndrome research has suffered for a number of years 

is an unsatisfactory definition for the diagnostic criteria of the syndrome itself.  The 

combination in increase of incidence/prevalence of metabolic syndrome paired with the 

drastic increase in metabolic syndrome directed research efforts globally led the 

American Heart Association to set guidelines for the definition of metabolic syndrome in 

the National Cholesterol Education Program’s Adult Treatment Panel III report in 2004 

(9).   In this panel, six key components of metabolic syndrome were identified: 

abdominal obesity, atherogenic dyslipidemia, hypertension, a proinflammatory state, a 

prothrombotic state and insulin resistance with or without glucose intolerance.  It was 

further stated that abdominal obesity, clinically presented as increased waist 

circumference, was both the strongest predictor of metabolic syndrome as well as a key 

contributor to all other identified comorbidities (9).  To meet the diagnostic criteria of 

metabolic syndrome, a single individual must present with a minimum of three of the 

above listed pathologies (9). 

The metabolic syndrome can be thought of in lay-terms as an increase in the 

chance of a negative outcome subsequent to a cardiovascular event.  This is due to the 
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multifaceted complications that the metabolic syndrome presents to the vasculature 

itself (13).  Highlighted vascular deficits included within the syndrome are: increased 

vascular tone, increased incidence of atheroma formation, increased incidence of 

thrombus formation, endothelial dysfunction, vascular wall remodeling, and vascular 

network remodeling (6; 13).  The outcome of this integrated vascular system 

dysfunction with the greatest impact on quality of life is peripheral vascular disease, 

wherein perfusion cannot be appropriately regulated to match changes in metabolic 

demand (2; 5).  This results in an obese individual who becomes obese as a result of an 

imbalance in caloric homeostasis and ultimately remains obese due to an inability in 

peripheral skeletal tissues to adequately supply blood flow to reverse this imbalance (5; 

6).  In other words, people go from being obese because of a lack of appropriate 

exercise to meet their caloric intake to being unable to increase their caloric 

consumption by skeletal muscle due to inadequate perfusion. 

The work detailed within this document investigates the role of metabolic 

syndrome induced alterations in cyclooxygenase mediated arachidonic acid metabolism 

in skeletal muscle microvascular disease.  Initial investigations will demonstrate the role 

of these alterations in vasomotor dysfunction in animal models of metabolic syndrome 

but which ultimately serve as the foundational work for the investigation into the role of 

this shift in the progressive loss of microvessel density (rarefaction) demonstrated within 

the syndrome.  By the conclusion of this document, it is the author’s intention to 

demonstrate a significant role for the shift in arachidonic metabolism in causing 

microvascular rarefaction and identify prospective, potentially clinically relevant targets 

for intervention meriting future investigation. 
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Endothelial Dysfunction 

Endothelial dysfunction is generically a loss of normal physiologic function in the 

vascular endothelium with regards to barrier, anti-thrombotic character, regulatory, 

vasomotor, etc (18; 20; 23).  Of particular relevance to the metabolic syndrome are the 

vasomotor consequences of endothelial dysfunction which can be defined as a 

diminished responsiveness of the vascular endothelium to vasodilator stimuli (primarily 

mediated through NO and prostacyclin; collectively termed endothelial derived relaxing 

factors) along with exaggerated responses to constrictor stimuli (6).   This is a major 

cause of disparities in demand:perfusion matching in the peripheral tissues in metabolic 

syndrome subjects.  In addition to being a hallmark of the metabolic syndrome, 

endothelial dysfunction is one of the most extensively studied vasculopathies today.  

Particular attention is paid to the role of endothelial nitric oxide synthase (eNOS) in the 

endothelial dysfunction literature. 

As previously stated, endothelial dysfunction is defined, in part, by a diminished 

responsiveness of the vasculature to endothelium dependent vasodilator stimuli.  The 

mechanisms by which these impairments can occur are varied and not mutually 

exclusive.  They include scavenging of the endothelium derived relaxing factors 

(EDRF), diminished production of the EDRF, functional antagonism by a 

vasoconstrictive force, inability of the EDRF to reach the effector sites and decreased 

responsiveness of the vascular smooth muscle to the EDRF.  Numerous studies have 

demonstrated that individuals and experimental animals with metabolic syndrome suffer 

from endothelial dysfunction (5; 17).  Many of these studies have further demonstrated 

the role of ROS in the etiology of endothelial dysfunction in metabolic syndrome 
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subjects with additional studies demonstrating the therapeutic potential of antioxidants 

in treatment of the dysfunction (21; 25) as well obesity associated acute myocardial 

infarctions (12).  Since a major portion of this manuscript deals with the alterations in 

arachidonic acid metabolite balance, prostacyclin will be discussed in subsequent 

sections whereas a brief overview of eNOS and NO is detailed below. 

The primary function of eNOS is the conversion of L-arginine to L-citrulline, 

resulting in the release of the potent vasodilator, nitric oxide (NO), as a reaction side 

product.  While this role is well established, more recent studies of vascular pathologies 

have also had cause to focus on a phenomenon termed eNOS uncoupling.  In eNOS 

uncoupling, limiting concentrations of either L-arginine or the cofactor 

tetrahydrobiopterin (BH4) cause eNOS to demonstrate a NADPH oxidase-like activity 

resulting in the production of O2
- (16).  Depletion of BH4 does not necessarily stem from 

a metabolic inadequacy in all cases.  Studies have demonstrated that peroxynitrite can 

oxidize the essential cofactor for eNOS activity, tetrahydrobiopterin (BH4) thereby 

uncoupling eNOS (24).  In a sense this is a feedback loop as peroxynitrite is the product 

of the interaction between superoxide and NO.  Therefore, with a modest increase in 

global oxidant stress comes the potential for a positive feedback loop wherein a small 

production of peroxynitrite can in turn scavenge BH4, thereby uncoupling eNOS 

resulting in the production of superoxide which could in turn interact to produce 

additional peroxynitrite and so on.  This serves as a mechanism by which global oxidant 

stress can not only increase ROS production through secondary pathways but also 

attenuate the production of normal vaso-regulatory compounds. 
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 Additionally, since peroxynitrite is generated by the interaction of O2
- with NO, as 

previously discussed, the effect on the systemic vasculature is exaggerated by both 

scavenging the existing NO and altering the catalytic activity of eNOS blocking further 

NO production.  Peroxynitrite is not, however, alone in its ability to crosstalk and 

uncouple eNOS.  Angiostatin, high glucose, ceramide, homocysteine and hypochlorous 

acid have all been shown to promote uncoupling in cultured endothelial cells.   

Microvascular Rarefaction 

 Generically, rarefaction is a term defining any process wherein your subject or 

target of interest becomes less prevalent.  In the case of microvascular rarefaction, this 

means that the arterioles and capillaries within a tissue of interest are becoming less 

prevalent when compared between conditions.  The metabolic syndrome, demonstrates 

the process of microvessel rarefaction in skeletal muscle tissues when comparing 

between comparable lean and obese animals or humans.  The consequence of this 

rarefactive process is the inability to match tissue demand and perfusion even in 

maximally dilated vascular beds.  This was clearly demonstrated in 2003 in work by 

Frisbee et al. showing that the consequence of significant rarefaction is a true structural 

inability to match demand and perfusion resulting in a disparity with no short term 

temporal solution. 

While the fact of rarefaction is established, the mechanisms of rarefaction have 

classically been poorly understood.  In metabolic syndrome, rarefaction has been 

attributed to hypertension, dyslipidemia, insulin sensitivity, and vascular NO 

bioavailability.  Using a technique first pioneered by Greene et al., (8) we are able to 
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examine skeletal muscle microvessel density in animal models of metabolic syndrome 

rapidly and with high resolution.  In this document, we will demonstrate that the process 

of rarefaction is a multi-mechanistic continuum of problems resulting in diminished 

tissue capillarity in the skeletal muscle of metabolic syndrome animal models. 

Arachidonic Acid Metabolism 

 Arachidonic acid (AA) is stored in the membranes of nearly all known mammalian 

cells bound to membrane phospholipids.  It can be released from this stored state by 

the actions of phospholipase A, phospholipase C or phospholipase D.  As 

phospholipase A is capable of releasing AA in a single step as opposed to the multistep 

processes of phospholipases C & D, it is generally the focus of the most research 

attentions.  Subsequent to phospholipase mediated release from the plasma 

membrane, free vascular AA has 3 basic fates.  It can be reincorporated into the plasma 

membrane bound once again to membrane phospholipids, it can diffuse away in the 

bloodstream to distal locations or it can diffuse into the cytoplasmic space of the cell.  If 

AA diffuses into the cytoplasm, it is enzymatically degraded down one of three major 

enzymatic pathways: the cyclooxygenase pathway (COX), the lipoxygenase pathway 

(LOX) or the cytochrome P450 pathway (CYP450). 

 The cyclooxygenase pathway is the major enzymatic producer of a class of 

compounds known as prostanoids.  These metabolic end-products of AA metabolism 

are the result of the activity of cyclooxygenase converting AA into prostaglandin H2.  

Prostaglandin H2 itself serves as the precursor to all series 2 prostanoids including 

prostacyclins, thromboxanes and prostaglandins.  While all 3 categories of series 2 
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prostanoids have been shown to produce numerous biological effects, prostacyclin and 

thromboxane generally receive the greatest attention in the cardiovascular literature as 

there is extensive evidence indicating both classes of compounds are key regulators of 

vasomotor tone in specific physiologic and pathophysiologic conditions. Classically 

these vascular considerations of thromboxane and prostacyclin are limited to the 

vasomotor as they are a potent vasoconstrictor and vasodilator, respectively. 

 Alternative to the cyclooxygenase pathway is the 5, 12, 15 lipoxygenase 

pathway.  This family of enzymes is responsible for catalyzing the conversion of 

arachidonic acid into a family of compounds collectively referred to as the leukotrienes.  

Leukotrienes are not considered to be major regulators of vascular tone as their effects 

are more relevant in the mediation of immune responses.  Leukotriene A4 in particular 

has been implicated strongly in allergic asthma though its effects are not unique to that 

condition.  Neutrophil recruitment, direct tracheal smooth muscle contraction, 

sustainment of inflammatory responses and acute allergic actions have all been 

attributed to leukotriene dependent processes. 

 The final pathway for the enzymatic metabolism of arachidonic acid is the CYP 

450 pathway.  This pathway can be broken into two subcategories: the epoxygenase 

pathway and the ω-hydroxylase pathway.  While both pathways are controlled by the 

activity of p-type-cytochromes and act on the same precursor, the epoxygenase 

pathway generates a class of compounds known as epoxyeicostreienoic acids (EETs) 

while the ω-hydroxylase pathway is responsible for the production of 

hydroxyeicosatetraenoic acid (HETES).  While roles for both classes of compounds 

have been indicated in the regulation of vascular tone, as well as roles in inflammation 
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and oxidative stress, the studies contained herein failed to establish a role for CYP450 

metabolites of AA and as such further discussion of these pathways will not be included. 

 Alterations in AA metabolism can have direct effects on vasomotor function. 

Increases in vascular oxidant stress can lead to shifts in the metabolism of AA through 

the COX pathway independent of the direct effects of ROS on prostacyclin synthase.  

Studies performed in the obese Zucker rat demonstrate that with changes to vascular 

oxidant stress, comes a shift in the metabolism of arachidonic acid through the COX 

pathway from a predominant production of prostacyclin to a predominant production of 

thromboxane (TXA2) in response to hypoxia (7).  The net effect of this shift is a blunted 

vasodilation in response to a highly specific vasodilator stimulus.  This finding has been 

supported by additional studies which have demonstrated increased production of the 

vasoconstrictors PGH2 (19), PGF2α (22) and TXA2 (10) along with diminished 

prostacyclin production in the diabetic experimental animals.  This shift in arachidonic 

acid metabolism to the generation of greater production of vasoconstrictor stimuli serves 

to blunt the response of the endothelium to vasodilator stimuli as the vasodilator 

functions are masked by the tonic vasoconstrictive forces.  While these effects have 

been documented within the literature, this manuscript will set out to establish a role for 

alterations in AA metabolism which stretch beyond the vasomotor and show 

demonstrable, significant, deleterious effects on vascular network structure. 

Conceptual Framework for Subsequent Chapters 

 Due to the fact that the majority of remaining chapters in this document were 

originally intended as stand-alone texts, the logic linking each chapter to its predecessor 
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and successor may not be immediately apparent.  As such, we present here a 

conceptual framework in which to consider each manuscript contained within this body 

of work as a part of a greater intellectual approach to the study of vascular 

consequences of metabolic syndrome and the roles of arachidonic acid metabolites in 

these pathophysiologic processes.  Chapter 2 of this document is entitled “Increased 

Vascular Thromboxane Generation Impairs Dilation of Skeletal Muscle Arterioles of 

Obese Zucker Rats with Reduced Oxygen Tension.”  This chapter is the foundational 

work upon which the author has continued his experimental designs through the course 

of his graduate education.  It makes the initial observation that when a highly specific 

stimulus for vascular prostacyclin production, hypoxia, is employed in both lean and 

obese Zucker rats, there is a blunted dilation with obesity that is mediated exclusively by 

a shift from a predominant production of prostacyclin to a blunted prostacyclin and 

exaggerated thromboxane generation response.  Additionally, this chapter provides 

some of the initial experiments indicating a role for elevations in oxidant stress as 

mediators for elevations in thromboxane generation. 

 Chapter 3 of this document is entitled “Increased Arachidonic Acid-Induced 

Thromboxane Generation Impairs Skeletal Muscle Arteriolar Dilation with Genetic 

Dyslipidemia.  In this chapter, we leave the obese Zucker rat model and instead focus 

on two genetic variants of the C57/Bl/6J mouse with specific gene deletions of either the 

low density lipoprotein receptor or the apolipoprotein E gene resulting in an animal 

model of familial hypercholesterolemia or type III hyperlipidemia respectively.  In this 

study we demonstrate that in an animal model of hypercholesterolemia, a comorobidity 

of metabolic syndrome, AA metabolism shifts in a directionally consistent manner with 
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the more complex disease state of metabolic syndrome.  Additionally, this manuscript 

provides further evidence for elevations in ROS as a mediator of the shift in AA 

metabolites. 

 Chapter 4 of this manuscript is titled “Impact of Chronic Anticholesterol Therapy 

on Development of Microvascular Rarefaction in the Metabolic Syndrome.”  This 

chapter returns to the obese Zucker rat model investigating how statin and fibrate 

therapies affect progression of skeletal muscle microvascular rarefaction in the 

metabolic syndrome.  This paper, interestingly, demonstrates that protective effects of 

statin therapies can be conferred with regards to rarefaction, however, these effects are 

independent of plasma cholesterol levels and seem to be mediated by the pleiotropic 

effects in diminishing oxidative stress and inflammatory status.  This paper serves a 

critical role in further demonstrating that microvascular rarefaction in fully developed 

metabolic syndrome animal models strongly correlates with diminished vascular NO 

bioavailability and that protection against microvessel loss is only conferred by those 

therapeutics capable of protecting against the loss of NO bioavailability. 

 The culmination of these ongoing investigations into metabolic syndrome related 

microvascular rarefaction is presented in Chapter 5 entitled, “Temporal Progression of 

Microvascular Rarefaction in the Metabolic Syndrome; The Role of Thromboxane A2.”  

This incomplete work shows the preliminary investigations into a higher resolution, 

temporal analysis of the process of rarefaction in metabolic syndrome.  It clearly 

demonstrates a biphasic rarefactive process mediated in the early phase by elevations 

in thromboxane A2 levels and in the later phase by diminished vascular NO 

bioavailability. This chapter provides the evidence that the early alterations to COX 
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mediated AA metabolism have effects that extend beyond the vasomotor with significant 

impact on vascular network structure through the life of the animal. 

 Supplementary materials which may provide a greater appreciation for the work 

presented within this manuscript include “Differential Impact of Familial 

Hypercholesterolemia and Combined Hyperlipidemia on Vascular Wall and Network 

Remodeling in Mice” by Stapleton et al. which provides some of the foundational 

correlative data between elevation in TxA2 production and changes to vascular wall 

mechanics in hyperlipidemic mice.  Additional insight into the significance of this work 

can be found in the article entitled “Aspirin Resistance with Genetic Dyslipidemia: 

Contribution of Vascular Thromboxane Generation” by Frisbee et al. which was also 

performed in dyslipidemic mice and highlights why inhibition of COX is a poor 

therapeutic target in an animal model with a single metabolic syndrome comorbidity and 

helps to better explain why our investigations into metabolic syndrome related skeletal 

muscle microvascular rarefaction employ more selective inhibition of enzymes 

downstream from COX as opposed to general COX inhibition which may be more 

clinically employed though, plausibly, less therapeutically relevant. 
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FIGURE LEGENDS 

Figure 1.   This figure legend is directly taken, as is the figure from the associated 

citation: Age adjusted by the direct method to the year 2000 U.S. Census Bureau 

estimates, using the age groups 20-39, 40-59, and 60-74 years.  Pregnant females 

were excluded.  Overweight is defined as a body mass index (BMI) of 25 or greater but 

less than 30; obesity is a BMI greater than or equal to 30; extreme obesity is a BMI 

greater than or equal to 40. Source: CDC/NCHS, National Health Examination Survey 

cycle 1 (1960-1962); National Health and Nutrition Examination Survey (1971-1974), II 

(1976-1980), and III (1988-1994), 1999-2000, 2001-2002, 2003-2004, 2005-2006, and 

2007-2008. (15) 

 

Figure 2.   Annual usage of the term “metabolic syndrome” as determined by an 

independent search of PUBMED. 
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ABSTRACT 
This study determined if altered vascular prostacyclin (PGI2) and/or thromboxane (TxA2) 

production with reduced PO2 contributes to impaired hypoxic dilation of skeletal muscle 

resistance arterioles of obese Zucker rats (OZR) vs. lean Zucker rats (LZR).  

Mechanical responses were assessed in isolated gracilis muscle arterioles following 

reductions in PO2 under control conditions and following pharmacological interventions 

inhibiting arachidonic acid metabolism, nitric oxide synthase, and alleviating elevated 

vascular oxidant stress.  Production of arachidonic acid metabolites was assessed using 

pooled arteries from OZR and LZR in response to reduced PO2.  Hypoxic dilation, 

endothelium-dependent in both strains, was attenuated in OZR vs. LZR.  NOS inhibition 

had no significant impact on hypoxic dilation in either strain.  COX inhibition dramatically 

reduced hypoxic dilation in LZR and abolished responses in OZR.  Treating arterioles 

from OZR with PEG-SOD improved hypoxic dilation, and this improvement was entirely 

COX-dependent.  Vascular PGI2 production with reduced oxygen tension was similar 

between strains, although TxA2 production was increased in OZR; a difference that was 

attenuated by treatment of vessels from OZR with PEG-SOD.  Both blockade of 

PGH2/TxA2 receptors and inhibition of thromboxane synthase increased hypoxic dilation 

in OZR arterioles.  These results suggest that a contributing mechanism underlying 

impaired hypoxic dilation of skeletal muscle arterioles of OZR may be an increased 

vascular production of TxA2, which competes against the vasodilator influences of PGI2.  

These results also suggest that the elevated vascular oxidant stress inherent in the 

metabolic syndrome may contribute to the increased vascular TxA2 production and may 

blunt vascular sensitivity to PGI2.   
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INTRODUCTION 

 The metabolic syndrome represents a series of systemic pathologies that develop 

sequentially in afflicted individuals, and can include obesity, insulin resistance/type II 

diabetes mellitus, dyslipidemia and hypertension (25).  While each of these pathologies in 

isolation can increase the future risk for development of peripheral vascular disease, when 

present in combination this risk increases dramatically (24), and can lead to numerous 

profound alterations to vascular structure/function relationships (26, 27).  These vascular 

alterations can impair to tissue perfusion:demand matching and can lead to a 

compromised function (27).  An effective animal model for the metabolic syndrome in 

humans is the obese Zucker rat (OZR), a rodent model characterized by its dysfunctional 

leptin receptor gene, resulting in abrogated leptin signaling and an impaired satiety reflex 

(10).  As a result, the OZR experiences a chronic hyperphagia, and sequentially develops 

each of the systemic pathologies listed above, in addition to both pro-oxidant and pro-

inflammatory states (1, 6, 22).  Previous studies by multiple investigative groups have 

demonstrated negative vascular outcomes in OZR with development of the metabolic 

syndrome, including alterations to vascular wall mechanics (4, 13, 28, 29), impairments to 

multiple indices of dilator reactivity (9, 13, 15, 16, 33), signaling mechanisms underlying 

constrictor reactivity (17, 21, 30) and a rarefaction of microvascular networks within multiple 

tissues (7, 8, 31).  The culmination of these alterations to microvascular structure and 

function within OZR can result in profound impairments to the perfusion of tissue under an 

array of physiological and pathological conditions (8, 12, 33).   

 We have previously demonstrated that the dilator reactivity of skeletal muscle 

resistance arterioles in response to an acute reduction in oxygen tension is impaired in 
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OZR compared to LZR, and that a contributing mechanism to this impairment lies within 

the chronic elevation in vascular oxidant stress (9).   However, while this previous study did 

not implicate specific mechanisms beyond the contribution of elevated vascular oxidant 

stress, recent studies from Hester’s group have provided data which may have 

considerable bearing on not only our previous observation, but also on the integrated 

regulation of vascular reactivity in the skeletal muscle of OZR (32, 33).  Specifically, the 

dilator response of in situ spinotrapezius muscle arterioles with increased metabolic 

demand, previously determined to be a largely dependent on vascular production of 

prostacyclin (PGI2, Ref. 11), was blunted in OZR compared to LZR.  This observation may 

reflect an enhanced vascular production of thromboxane A2 (TxA2), or elevated 

vasoconstrictor response to TxA2 within OZR that is not present in lean animals (32, 33).  

Clearly, any increase in TxA2 production has the potential to compete against PGI2-

mediated responses and impair dilator reactivity to multiple vasoactive stimuli. 

 The purpose of the present study was to more fully elucidate mechanisms 

contributing to the impaired dilation of skeletal muscle arterioles of OZR in response to 

reduced PO2.  Additionally, the present study was designed to more clearly determine the 

role for elevated vascular oxidant stress in contributing to the attenuated hypoxic dilation of 

arterioles from OZR.  Specifically, the hypothesis tested by the present experiments was 

that the compromised dilator reactivity of skeletal muscle arterioles of OZR in response to 

reduced PO2 compared to responses in LZR is due to a reduction in the vascular 

production of PGI2 and an increased vascular production of TxA2 as a result of the acute 

reductions in oxygen tension.  Further, these effects on PGI2 and TxA2 production will be 
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the result of an elevation in vascular oxidant stress, altering arachidonic acid metabolism 

within arterioles of OZR.  

MATERIALS AND METHODS 

Animals: 15-17 week old male lean and obese Zucker rats (LZR and OZR, respectively) 

were used for all experiments.  Rats were fed standard chow and tap water ad libitum, and 

all protocols received prior IACUC approval.  After an overnight fast, rats were 

anesthetized with injections of sodium pentobarbital (50 mg•kg-1 i.p.), and received tracheal 

intubation to facilitate maintenance of a patent airway.  In all rats, a carotid artery and an 

external jugular vein were cannulated for determination of arterial pressure and for 

intravenous infusion of supplemental anesthetic, if necessary.  While under anesthetic, an 

aliquot of blood was drawn from the jugular vein to be used for the biochemical 

determination of plasma glucose (Freestyle; Abbott Diabetes Care, Alameda, CA), insulin 

(Linco; St. Charles, MO), and nitrotyrosine concentrations (Linco; St. Charles, MO) as well 

as a plasma lipid profile (Stanbio; Boerne, TX) from each animal.   

Preparation of Isolated Skeletal Muscle Resistance Arterioles: In anesthetized rats, 

the intramuscular continuation of the gracilis artery was identified and surgically 

removed.  Arterioles were placed in a heated chamber (37°C) that allowed the vessel 

lumen and exterior to be perfused and superfused, respectively, with physiological salt 

solution (PSS; equilibrated with 21% O2, 5% CO2; 74% N2) from separate reservoirs.  

Vessels were cannulated at both ends and were secured to inflow and outflow glass 

micropipettes connected to a reservoir perfusion system allowing intralumenal pressure 

and gas concentrations to be controlled.  Arterioles were extended to their in situ length 

and were equilibrated at 80% of the animal's mean arterial pressure (Table 1).  Vessel 
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diameter was measured using television microscopy and an on-screen video 

micrometer, and all mechanical responses of arterioles were assessed under 

pressurized conditions with no flow through the arteriolar lumen. 

 Subsequent to the initial equilibration period, the reactivity of isolated arterioles 

was assessed following challenge with reduced PO2 (ΔPO2 from ~135 mmHg [21% O2] 

– ~45 mmHg [0% O2]) under an array of physiological and pharmacological conditions 

(described below).  In an additional series of experiments, isolated arterioles were also 

challenged with increasing concentrations of the selective thromboxane A2 mimetic U-

46619 (10-12 M – 10-8 M; Biomol) and prostacyclin (PGI2•Na; 10-12 M – 10-8 M; Biomol) to 

determine the intrinsic sensitivity of microvessels to these stimuli.   

 Removal of the arteriolar endothelium was accomplished by passing an air bolus 

through the perfusate line into the isolated microvessel, the efficacy of which was 

determined from a loss of all dilator reactivity in response to application of 10-6 M 

acetylcholine.  To assess the contribution of nitric oxide production or the generation of 

metabolites via cyclooxygenase as mediators of arteriolar reactivity, isolated vessels 

were treated with the nitric oxide synthase inhibitor L-NG-nitroarginine methyl ester (L-

NAME; 10-4 M; Sigma) or the cyclooxygenase inhibitor indomethacin (INDO; 10-5 M; 

Sigma), respectively.  To antagonize vascular PGH2/TxA2 receptors, vessels were 

treated with SQ-29548 (10-5 M; Biomol), while inhibition of thromboxane synthase was 

accomplished using carboxyheptyl imidazole (CHI; 10-5 M; Biomol).  To reduce vascular 

oxidant stress, arterioles were treated with polyethylene glycol-superoxide dismutase 

(PEG-SOD; 200 U/ml; Sigma). 
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Determination of Vascular Metabolites of Arachidonic Acid:  Vascular production of 6-

keto-prostaglandin F1α (6-keto-PGF1α; the stable breakdown product of PGI2; Refs. 18, 23), 

and 11-dehydro-thromboxane B2 (11-dehydro-TxB2; the stable plasma breakdown product 

of TxA2; Ref. 5) in response to challenge with reduced oxygen tension was assessed using 

pooled conduit arteries (femoral, saphenous, iliac) from LZR and OZR.  Pooled vessels 

from each animal were incubated in microcentrifuge tubes in 1 ml of physiological salt 

solution for 30 minutes under control conditions (21% O2).  After this time, the superfusate 

was removed, stored in a new microcentrifuge tube and frozen in liquid N2, while a new 

aliquot of PSS was added to the vessels and the equilibration gas was switched to 0% O2 

for the subsequent 30 minutes.  After the second 30 minute period, this new PSS was 

transferred to a fresh tube, frozen in liquid N2 and stored at -80°C.  Metabolite release by 

the vessels was determined using commercially available EIA kits for 6-keto-PGF1α and 11-

dehydro-TxB2 (Cayman). 

Data and Statistical Analyses:  Active tone of individual arterioles at the equilibration 

pressure was calculated as (ΔD/Dmax)•100, where ΔD is the diameter increase from rest 

in response to Ca2+-free PSS, and Dmax is the maximum diameter measured at the 

equilibration pressure in Ca2+-free PSS.   

 Mechanical responses of isolated arterioles following challenge with increasing 

concentrations of thromboxane or prostacyclin were fit with the three-parameter logistic 

equation: 
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where y  represents the change in arteriolar diameter, “min” and “max” represent the 

minimum and maximum bounds, respectively, of the change in arteriolar diameter with 

increasing agonist concentration, x  is the logarithm of the agonist concentration and 

50log EC  represents the logarithm of the agonist concentration ( x ) at which the response 

( y ) is halfway between the minimum and maximum bounds.     

 Data are presented as mean±SEM.  Statistically significant differences in the 

magnitude of hypoxic dilation, vascular production of 6-keto-PGF1α and 11-dehydro-TxB2, 

and the calculated parameters describing the thromboxane or prostacyclin concentration-

response relationships were determined using analysis of variance (ANOVA).  In all cases, 

Student-Newman-Keuls post hoc test was used when appropriate and p<0.05 was taken to 

reflect statistical significance.   

RESULTS 

 Table 1 presents baseline characteristics of LZR and OZR in the present study.   At 

15-17 weeks of age, OZR demonstrated profound obesity, severe insulin resistance, and 

dyslipidemia characterized by moderate hypercholesterolemia and severe 

hypertriglyceridemia.  In addition, OZR also presented a moderate elevation in mean 

arterial pressure as compared to LZR.  Plasma levels of nitrotyrosine, a protein marker of 

chronic elevations in oxidant stress, were significantly elevated in OZR compared to LZR.  

With regard to basal vascular tone, isolated arterioles from both rat strains demonstrated a 

comparable resting active diameter, although passive diameter was reduced in OZR 

versus LZR.  However, this remodeling of the vessel wall did not translate into a difference 

in calculated active tone between the strains. 
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 Data summarizing hypoxic dilation of resistance arterioles from LZR and OZR are 

presented in Figure 1.  As shown in Panel A, arterioles from OZR exhibited a blunted 

dilator response to reduced PO2 compared to vessels from LZR.  However, arteriolar 

reactivity to reduced oxygen tension was abolished in both groups following removal of the 

vascular endothelium.  Panel B presents data describing the contribution of nitric oxide 

synthase (NOS) and cyclooxygenase (COX) products to arteriolar dilation in response to 

reduced PO2 in LZR and OZR.  While NOS inhibition has a consistently minor, albeit 

statistically insignificant, blunting of hypoxic dilation in arterioles of LZR, treatment of 

vessels with L-NAME had no discernible impact on this response in OZR.  In contrast, 

incubation of vessels with indomethacin dramatically reduced hypoxic dilation in arterioles 

from both strains.  Combined treatment with L-NAME and indomethacin abolished all 

vascular responses to reduced PO2 in both LZR and OZR.  Panel C presents the impact of 

pre-treatment of arterioles with the anti-oxidant PEG-SOD on both the magnitude of 

hypoxic dilation in these vessels and on the contributions from NOS and COX.  Treatment 

of vessels with PEG-SOD had no significant impact on either the magnitude of hypoxic 

dilation or on the contribution of NOS and COX products to this response in LZR.  In 

contrast, following incubation with PEG-SOD, arterioles from OZR exhibited an improved 

dilation in response to reduced PO2, and this enhanced reactivity was entirely dependent 

on COX metabolism. 

 Figure 2 presents data describing the production of 6-keto-PGF1α (the stable 

breakdown product of PGI2) and 11-dehydro-TxB2 (the stable breakdown product of TxA2) 

from pooled vessels of LZR and OZR in response to reduced PO2.  As shown in Panel A, 

vessels from both LZR and OZR demonstrated a significant increase in 6-keto-PGF1α 
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production in response to reduced PO2, although this increase was greater in LZR as 

compared to OZR.  In both cases, treatment of vessels with indomethacin abolished 6-

keto-PGF1α production in response to reduced oxygen tension.  With regard to the vascular 

production of TxA2, vessels from both LZR and OZR exhibited a significant increase in 11-

dehydro-TxB2 production following exposure to reduced PO2, although this level of 

production was dramatically elevated in vessels from OZR (Panel B).  In both cases, 

production of 11-dehydro-TxB2 was abolished following treatment of vessels with either 

indomethacin or CHI, suggesting that all production of TxA2 was mediated via the actions 

of thromboxane synthase distal to COX. 

 Data describing the production of 6-keto-PGF1α and 11-dehydro-TxB2 in response to 

reduced PO2 in vessels from OZR subsequent to pre-treatment with PEG-SOD are 

summarized in Figure 3.  Treatment of vessels with PEG-SOD did not alter 6-keto-

PGF1α production in vessels from OZR compared to levels in untreated vessels (Panel A).  

However, as compared to levels determined in untreated vessels, incubation of arteries 

from OZR with PEG-SOD blunted the enhanced production of 11-dehydro-TxB2 (Panel B)  

Treatment of vessels with indomethacin abolished reduced PO2-induced production of 6-

keto-PGF1α and 11-dehydro-TxB2. 

 Figure 4 presents data summarizing the dilator responses of arterioles from LZR 

and OZR in response to reduced PO2 following antagonism of either the PGH2/TxA2 

receptor with SQ-29548 or thromboxane synthase with CHI.  While neither of these 

pharmacological interventions had a consistent and significant impact on response in 

vessels from LZR, both SQ-29548 and CHI significantly increased hypoxic dilation in 

arterioles from OZR. 
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 Arteriolar reactivity in response to challenge with increasing concentrations of 

thromboxane or prostacyclin is summarized in Figure 5.  Arteriolar constriction in response 

to increasing concentrations of thromboxane was not different between LZR and OZR, and 

neither EC50 nor maximum bound were impacted in response to pre-treatment of the 

vessels with PEG-SOD (Panel A).  Further, arteriolar responses to thromboxane were 

abolished in vessels from both animal strains following incubation of the vessels with SQ-

29548 (Panel B).  With increasing concentrations of prostacyclin, arterioles from OZR 

exhibited a blunted dilator response compared to that determined in arterioles from LZR, 

and treatment of vessels with PEG-SOD significantly improved dilator reactivity to 

prostacyclin, although not to the level determined in LZR (Panel C).  EC50 was not 

significantly different between groups with regard to vascular reactivity in response to 

increasing concentrations of PGI2 (data not shown) 

DISCUSSION 

 Inherent within the development of the multi-pathology state that defines the 

metabolic syndrome is an array of alterations to vascular and microvascular structure and 

function that have the potential to profoundly impact the perfusion of tissues and organs, as 

well as the contributing mechanisms which comprise this integrated process.  Previous 

studies have clearly demonstrated that alterations to the patterns of vasodilator (8, 12) and 

vasoconstrictor (30) reactivity, as well as vessel wall remodeling (28, 29) and a reduction in 

microvessel density (7) all represent avenues through which vascular function and tissue 

perfusion can be compromised.  The purpose of the present study was to build on our 

previous observation of an impaired dilation of skeletal muscle resistance arterioles of OZR 
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in response to acute reductions in oxygen tension, and the possible contributing role of 

elevated vascular oxidant stress in this process (9). 

 Comparable to our observations in the first study, hypoxic dilation of skeletal muscle 

resistance arterioles from OZR was significantly reduced compared to that determined in 

LZR (Figure 1, Panel A).  While this response was abolished following removal of the 

endothelium in both rat strains, comparable to the complete endothelium-dependence of 

hypoxic dilation in other rodent models (14, 19, 20), our results also support previous 

observations of a strong dependence on COX products in mediating hypoxic dilation of 

these vessels (18-20).   Interestingly, in our initial study we determined a small, but 

significant role for NOS activity in mediating hypoxic dilation in arterioles from LZR.  In the 

present study this effect was not statistically significant, suggesting that it may represent a 

minor contributor to arteriolar dilation in response to reduced oxygen tension in LZR.  

However, while the magnitude of this response is relatively minor in LZR, both the results 

from the present study and our previous one (9) indicate that this is completely lost with the 

development of the metabolic syndrome in OZR.  Additionally, pre-treatment of arterioles 

from OZR with the oxidative free radical scavenger PEG-SOD to lower the elevated 

oxidant stress in these animals resulted in a significant improvement to hypoxic dilation in 

the obese rats (Figure 1, Panel C).  This improvement to hypoxic dilation was confined to 

activity involving COX only, as treatment with indomethacin abolished hypoxic dilation in 

OZR, and treatment with L-NAME was without effect. 

 Recent studies from Hester’s group suggest that functional dilation (i.e., arteriolar 

dilation in response to elevated metabolic demand) is impaired in OZR as a result of 

alterations to arachidonic acid metabolism which can result in activation of thromboxane 
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receptors causing a competing constrictor influence which acts to partially constrain dilator 

responses (32, 33).  Given that both functional dilation for in situ spintotrapezius muscle of 

LZR (11) and hypoxic dilation of skeletal muscle arterioles of LZR (9) has previously been 

shown to be strongly dependent on the vascular production of PGI2, we sought to 

determine if an alteration in arachidonic acid metabolism, resulting in an increased vascular 

production of thromboxane or a decreased production of prostacyclin may contribute to this 

impaired reactivity in arterioles of OZR.    As shown in Figure 2, arteries from OZR 

exhibited a significant increase in the production of PGI2 (estimated from measurements of 

6-keto-PGF1α) in response to reductions in oxygen tension.  While this was not as robust a 

response as that determined for arteries of LZR, it is unclear if this degree of attenuation in 

PGI2 production in OZR is sufficient to manifest itself as a blunted mechanical response.  In 

contrast, vascular production of TxA2 (estimated from measurements of 11-dehydro-TxB2), 

mildly elevated in arteries of LZR during reduced oxygen tension, was dramatically 

increased in vessels from OZR following exposure to reduced PO2.  Finally, while 

treatment of arteries from both strains with indomethacin abolished production of PGI2 and 

TxA2 in response to reduced oxygen tension, the treatment of vessels of OZR with CHI, an 

inhibitor of thromboxane synthase, severely reduced thromboxane production in vessels 

from OZR (Figure 2, Panel B).  These results suggest that reduced PO2 causes an 

increased production of TxA2 from vessels of OZR, mediated via thromboxane synthase, 

and that this may compete with the dilator influences of vascular production of PGI2.  

However, it should be emphasized that these results must be interpreted cautiously, as the 

production of metabolites of arachidonic acid was assessed using conduit arteries and not 
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resistance arterioles, while the reverse is true with regard to the study of the mechanical 

responses. 

 In order to better understand the impact of elevated vascular oxidant stress on the 

impaired dilator responses to reduced PO2 in vessels of OZR, we treated vessels with 

PEG-SOD prior to exposure to reduced PO2 and determined the levels of 6-keto-PGF1α 

and 11-dehydro-TxB2 in the incubation superfusate (Figure 3).  These data suggest that 

while oxidant stress does not play a significant role in any reduction in the vascular 

production of prostacyclin (as the addition of PEG-SOD was without effect), elevated 

vascular oxidant stress may contribute to the increased production of thromboxane by 

these vessels, as incubation with the anti-oxidant significantly reduced the levels of 11-

dehydro-TxB2 in the superfusate.  However, this effect was not complete, as the levels of 

11-dehydro-TxB2 production remained elevated in the superfusate despite the presence of 

PEG-SOD, indicating that additional factors may contribute to thromboxane production in 

vessels of OZR which are independent of the effects of acute reduction in vascular oxidant 

stress.  This observation of a role for oxidant stress in shifting arachidonic acid metabolism 

toward an increased production of thromboxane has been identified previously (2, 3, 34), 

and the results of the present study suggest that a comparable effect may be occurring in 

the vasculature of OZR, with the net result of a blunted vascular response to stimuli that 

are dependent on PGI2 production for their full manifestation. 

 To better evaluate this statement, isolated skeletal muscle resistance arterioles from 

LZR and OZR were exposed to acute reductions in oxygen tension under control 

conditions and in response to either PGH2/TxA2 receptor blockade with SQ-29548 or 

thromboxane synthase inhibition with CHI (Figure 4).  Although these pharmacological 
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challenges had no consistent impact on hypoxic dilation in arterioles from LZR, both 

interventions resulted in improved dilator reactivity in response to reduced PO2 in arterioles 

of OZR.  Taken with the previous results, these data clearly suggest that an increased 

production of TxA2 contributes to the impaired hypoxic dilation in arterioles of OZR.  

However, the data presented in Figure 4 do not allow for discrimination between increased 

vascular production of TxA2, an increased vascular sensitivity to produced TxA2, or an 

altered vascular sensitivity to produced PGI2.   

 In order to assess this final issue, isolated arterioles from both rat strains were 

challenged with increasing concentrations of thromboxane or prostacyclin (Figure 5).  

Vasoconstrictor reactivity to thromboxane was very similar between arterioles of LZR and 

OZR, and in both cases constrictor responses to thromboxane were largely independent of 

oxidant stress (i.e., no identifiable impact of treatment with PEG-SOD) and were abolished 

by blockade of the PGH2/TxA2 receptor.  These observations suggest that the vascular 

sensitivity to thromboxane is not significantly impacted by the presence of the metabolic 

syndrome.  In contrast, vascular reactivity to prostacyclin was significantly reduced in 

arterioles of OZR and this impairment was blunted following a reduction in oxidant stress 

with PEG-SOD.  Whether this impaired response to PGI2 represents oxidant radical 

degradation of prostacyclin (leading to the production of isoprostanes), altered function at 

the level of the prostacyclin receptor, the impact of elevated oxidant stress on the 

intracellular signaling cascade distal to the receptor, or a combination of these effects 

remains to be determined. 

 In summary, with the evolution of the metabolic syndrome in obese Zucker rats, the 

dilator responses of skeletal muscle resistance arterioles following acute reductions in 
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oxygen tension are significantly attenuated.  Both biochemical and pharmacological 

evidence suggests that this impaired dilator reactivity may be the result of an increase in 

vascular production of thromboxane with reduced PO2 which could represent a constrictor 

influence which competes against the dilator effects of prostacyclin (the production of 

which appears to be largely intact).  Normalizing vascular oxidant stress blunts the 

increased reduced PO2-induced production of thromboxane in vessels from OZR and also 

increases the responsiveness of arterioles of OZR to exogenously supplied prostacyclin, 

thus leading to an improvement in the mechanical response of the vessel to reduced 

oxygen tension.  The present study provides no compelling evidence that skeletal muscle 

arteriolar sensitivity to thromboxane is altered with the progression of the metabolic 

syndrome.   
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Table 1.  Baseline characteristics of LZR and OZR and for isolated arterioles in the present study.  * 

p<0.05 vs. LZR.      

 

  LZR OZR  

Mass (g) 361±7 664±9* 

MAP (mmHg) 108±4 124±4* 

[Glucose]blood (mg/dl) 102±5 184±11* 

[Insulin]plasma (ng/ml) 1.3±0.3 7.5±0.5* 

[Total Cholesterol]plasma (mg/dl) 89±9 137±11* 

[Triglycerides]plasma (mg/dl) 154±10 367±22* 

Nitrotyrosineplasma (ng/ml) 15±4 58±7* 

   

Inner Diameter – Active (μm) 104±4 102±5 

Inner Diameter – Passive (μm) 172±5 156±4* 

Active Tone (%) 39±2 35±3 
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FIGURE LEGENDS 

Figure 1.  Dilator reactivity of isolated skeletal muscle resistance arterioles of LZR and 

OZR in response to acute reductions in oxygen tension.  Data, presented as mean±SEM, 

are shown for arterioles under control conditions and following removal of the vascular 

endothelium using air bolus perfusion (Panel A), inhibition of nitric oxide synthase with L-

NAME and/or inhibition of cyclooxygenase with indomethacin (Panel B), treatment with L-

NAME and/or indomethacin following incubation of the arteriole with the anti-oxidant PEG-

SOD (Panel C).  Please see manuscript text for complete details.  * p<0.05 vs. Control 

responses in that strain; † p<0.05 vs. responses in LZR Control; ‡ p<0.05 vs. responses in 

OZR + PEG-SOD. 

 

Figure 2.  Vascular production of 6-keto-PGF1α (Panel A; as an estimate of PGI2) and 11-

dehydro-TxB2 (Panel B; as an estimate of TxA2) by pooled arteries of LZR and OZR in 

response to an acute reduction in oxygen tension.  Data, presented as mean±SEM, are 

shown for arteries under control conditions, and following pharmacological inhibition of 

cyclooxygenases with indomethacin, and for 11-dehydro-TxB2, thromboxane synthase with 

CHI. * p<0.05 vs. Control (21% O2) in that strain, † p<0.05 vs. 0% O2 in that strain; ‡ 

p<0.05 vs. responses in LZR 0% O2. 

 

Figure 3.  Vascular production of 6-keto-PGF1α (Panel A; as an estimate of PGI2) and 11-

dehydro-TxB2 (Panel B; as an estimate of TxA2) by pooled arteries OZR in response to an 

acute reduction in oxygen tension.  Data, presented as mean±SEM, are shown for arteries 

under control conditions, following treatment of arteries with the anti-oxidant PEG-SOD, 
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and following pharmacological inhibition of cyclooxygenases with indomethacin. * p<0.05 

vs. responses under Control (21% O2) conditions, † p<0.05 vs. responses under 0% O2; ‡ 

p<0.05 vs. responses determined under 0% O2 conditions + PEG-SOD. 

 

Figure 4.  Dilator reactivity of isolated skeletal muscle resistance arterioles of LZR and 

OZR in response to acute reductions in oxygen tension.  Data (mean±SEM) are presented 

for each strain under control conditions, and following pharmacological inhibition of the 

PGH2/TxA2 receptor with SQ-29548 or thromboxane synthase with CHI.   * p<0.05 vs. LZR 

Control; † p<0.05 vs. OZR Control.  

 

Figure 5.  Vascular reactivity of isolated skeletal muscle resistance arterioles of LZR and 

OZR (mean±SEM) in response to increasing concentrations of thromboxane under control 

conditions and following treatment of vessels with PEG-SOD (Panel A) or SQ-29548 

(Panel B), and increasing concentrations of prostacyclin under control conditions and 

following treatment with PEG-SOD (Panel C). The term “max” represents the maximum 

bound (the maximum change) in vessel diameter in response to increasing concentration 

of either thromboxane or prostacyclin; estimated from the logistic regression equation 

described in the “Materials and Methods”.  * p<0.05 vs. Control responses within that 

strain; † p<0.05 vs. responses in LZR under Control conditions. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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CHAPTER 3 

 

INCREASED ARACHIDONIC ACID-INDUCED THROMBOXANE GENERATION 

IMPAIRS SKELETAL MUSCLE ARTERIOLAR DILATION WITH GENETIC 

DYSLIPIDEMIA  

 

 

 

Adam. G. Goodwill1,4, Phoebe A. Stapleton2,4, Milinda E. James1,4, Alexandre C. 

d’Audiffret3,4 and Jefferson C. Frisbee1,4  

 

Department of Physiology and Pharmacology1, Division of Exercise Physiology2, 

Division of Vascular and Endovascular Surgery3 and Center for Interdisciplinary 

Research in Cardiovascular Sciences4 

West Virginia University School of Medicine, Morgantown, WV 26506 

 

 

Running Head: Hypercholesterolemia and arteriolar reactivity 
 
Key Words: skeletal muscle microcirculation, endothelium-dependent dilation, vascular 
reactivity, mouse models of cardiovascular disease, hypercholesterolemia 
 
Support:  This study was supported by the American Heart Association (EIA 0740129N) 
and the National Institutes of Health (R01 DK64668). 
 
 
 
 
 
 
"This research was originally published in Microcirculation. Goodwill AG, Stapleton PA, James ME, 

d’Audiffret AC, Frisbee JC .  Increased Arachidonic Acid-Induced Thromboxane Generation Impairs 

Skeletal Muscle Arteriolar Dilation with Genetic Dyslipidemia.  Microcirculation. 2008 Oct;15(7):621-31.  

54



ABSTRACT 

Objective: To determine if arachidonic acid (AA)-induced skeletal muscle arteriolar 

dilation is altered with hypercholesterolemia in ApoE and LDLR gene deletion mice fed 

normal diet.  This study also determined contributors to altered AA-induced dilation 

between dyslipidemic mice and controls; C57/Bl/6J (C57). 

Methods: Gracilis muscle arterioles were isolated, with mechanical responses assessed 

following challenge with AA under control conditions and after elements of AA 

metabolism pathways were inhibited.  Conduit arteries from each strain were used to 

assess AA-induced production of PGI2 and TxA2. 

Results: Arterioles from ApoE and LDLR exhibited a blunted dilation to AA versus C57.  

While responses were cyclooxygenase-dependent in all strains, inhibition of 

thromboxane synthase or blockade of PGH2/TxA2 receptors improved dilation in ApoE 

and LDLR only.  AA-induced generation of PGI2 was comparable across strains, 

although TxA2 generation was increased in ApoE and LDLR.  Arteriolar reactivity to 

PGI2 and TxA2 was comparable across strains.  Treatment with TEMPOL improved 

dilation and reduced TxA2 production with AA in ApoE and LDLR.  

Conclusions: These results suggest that AA-induced arteriolar dilation is constrained in 

ApoE and LDLR via an increased production of TxA2.  While partially due to elevated 

oxidant stress, additional mechanisms contribute which are independent of acute 

alterations in oxidant tone. 
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INTRODUCTION 

 Dyslipidemia, and specifically hypercholesterolemia, has repeatedly been 

demonstrated to represent a strong predisposing risk factor for the development of 

coronary and peripheral arterial disease (1).  While this increased risk for the progression 

of vascular disease with hypercholesterolemia is most commonly associated with an 

increased predisposition for the development of atherothromboses, atherosclerotic lesions 

and plaque depositions (3, 10, 26), investigations into the impact of hypercholesterolemia 

on vascular reactivity and endothelial function, potentially as contributing mechanisms to 

vascular disease, is less clearly understood.   

 While some disparity in the prevailing literature exists (25), the general consensus is 

that the development of hypercholesterolemia is usually associated with a significant 

reduction in the bioavailability of endothelium-derived nitric oxide (5, 6, 23), with the 

relatively predictable ensuing outcome of an impaired vascular reactivity in response to 

stimuli that are considered to have a significant contribution from this signaling 

molecule/pathway (i.e., flow-mediated dilation; ref. 12).  In our recent study, we provided 

evidence suggesting that development of familial hypercholesterolemia (a genetic disorder 

resulting in exceptionally high low density lipoprotein [LDL] level, in the face of an otherwise 

relatively normal lipid profile) in the LDL receptor gene deletion mouse or type III 

hyperlipidemia (a condition wherein both LDL and plasma triglycerides are significantly 

elevated) in the apolipoprotein E gene deletion mouse, was associated with a near 

complete abolition of the bioavailability of endothelium-derived nitric oxide in response to 

imposed stimuli (22).  However, this loss of vascular nitric oxide bioavailability did not result 

in a profound reduction in dilator reactivity, as an increased generation of dilator signaling 
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molecules through 12/15 lipoxygenases emerged with evolution of the dyslipidemia (22), 

suggesting that alterations to the metabolism of arachidonic acid may be associated with 

hypercholesterolemia, and that these can have profound consequences for vascular 

function.     

 In 1996, the work of Pfister and colleagues (16, 17) strongly suggested that diet-

induced hypercholesterolemia in rabbits can lead to changes in arachidonic acid 

metabolism, mediated via lipoxyegnase are cytochrome P450 epoxygenase enzymes, 

causing profound alterations to dilator reactivity determined in isolated aortic segments.  

Additionally, Srisawat et al. (21), while providing additional evidence that diet-induced 

hypercholesterolemia results in impaired endothelium-dependent dilation in aortic rings, 

determined that chronic treatment with indomethacin improved endothelial function, and 

was associated with reductions in urinary levels of 2,3-dinor-thromboxane B2 and 8-iso-

PGF2α, a stable urinary breakdown product of thromboxane A2 and a marker of chronic 

oxidant stress, respectively.  Most recently, Pfister demonstrated that impairments to 

endothelium-dependent dilation in aortic rings of hypercholesterolemic rabbits were 

diminished in a subgroup of animals lacking a functional thromboxane receptor (15).  

These previous results suggest that a contributing mechanism underlying alterations to 

vascular reactivity under conditions of hypercholesterolemia may involve both elevated 

vascular oxidant stress and metabolism of arachidonic acid through cyclooxygenase 

pathways.  However, given recent observations in our laboratory (22) and by others (25) 

suggesting that alterations to endothelium-dependent reactivity may reflect the specific 

challenge imposed rather than a global impairment, we examined alterations to dilator 

reactivity in response to direct challenge with arachidonic acid itself, wherein the 
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bioavailability of endothelium-derived nitric oxide is not a significant contributing element to 

the net mechanical response.  Using both apolipoprotein E and LDL receptor gene deletion 

mouse models of hypercholesterolemia, the hypothesis tested in the present study was 

that arachidonic acid-induced dilator reactivity of skeletal muscle arterioles would be 

impaired in the presence of profound dyslipidemia and that this would be the result of 

alterations to either the production or vascular reactivity to metabolites of arachidonic acid 

via cyclooxygenase, owing to the presence of an elevated oxidant stress.   

MATERIALS AND METHODS 

Animals:  The present study used three strains of mice, the C57/Bl/6J (C57) as the control 

strain and the apolipoprotein E gene deletion (B6.129P2-Apoetm1Unc/J; ApoE) and low 

density lipoprotein receptor gene deletion (B6.129S7-Ldlrtm1Her/J; LDLR) mice on the 

C57/Bl/6J background.  All mice were purchased from Jackson Laboratories (Bar 

Harbor, ME) at 6 weeks of age.  The ApoE mouse manifests type III hyperlipidemia, in 

which both plasma cholesterol and triglyceride levels are elevated, although the 

elevations in LDL are not as severe as in the LDLR gene deletion mouse (19). In 

contrast, the LDLR mouse is a model of human familial hypercholesterolemia, 

manifesting a profound increase in serum LDL levels while ingesting a normal diet (11). 

 Male mice of each strain were fed standard chow and drinking water ad libitum and 

were housed in an AAALAC-accredited animal care facility at the West Virginia University 

Health Sciences Center and all protocols received prior IACUC approval.  At 20 weeks of 

age, after an overnight fast, mice were anesthetized with injections of sodium pentobarbital 

(50 mg•kg-1 i.p.), and received tracheal intubation to facilitate maintenance of a patent 

airway.  In all mice, a carotid artery was cannulated for determination of arterial pressure.  
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Blood aliquots were drawn from the jugular vein cannula for determination of glucose and 

insulin (Linco), a lipid profile (Waco), and nitrotyrosine (Oxis).   

Preparation of Isolated Skeletal Muscle Resistance Arterioles: In anesthetized 

mice, the intramuscular continuation of the right gracilis artery was removed and 

cannulated, as described previously (8).  These first order arterioles were extended to 

their approximate in situ length and were equilibrated at 80% of the animal's mean 

arterial pressure in order to approximate the in vivo intralumenal pressure experienced 

by the animal (13).  Following equilibration, arteriolar reactivity was evaluated in 

response to increasing concentrations of arachidonic acid (10-10 M – 10-6 M; Sigma).  

Additionally, in select experiments arteriolar reactivity was also evaluated in response to 

increasing concentrations of prostacyclin (PGI2; 10-10 M – 10-6 M; Biomol) or carbocyclic 

thromboxane A2 (TxA2; 10-10 M – 10-6 M; Cayman).   

 Removal of the arteriolar endothelium was accomplished by passing an air bolus 

through the perfusate line into the isolated microvessel, the efficacy of which was 

determined from a loss of all dilator reactivity in response to application of 10-6 M 

acetylcholine (8).  To assess the contribution of nitric oxide production or the generation 

of metabolites via cyclooxygenase as mediators of arteriolar reactivity, isolated vessels 

were treated with the nitric oxide synthase inhibitor L-NG-nitroarginine methyl ester (L-

NAME; 10-4 M for 45 minutes prior to agonist challenge; Sigma) or the cyclooxygenase 

antagonist indomethacin (INDO; 10-6 M for 60 minutes prior to agonist challenge; 

Sigma), respectively.  To determine the contribution of metabolites of arachidonic acid 

mediated via cytochrome P450 enzymes, vessels were treated with the suicide 

substrate inhibitor 17-octadecynoic acid (17-ODYA; 10-5 M for 60 minutes prior to 
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agonist challenge; Sigma).  Previous studies have demonstrated that 17-ODYA 

profoundly attenuates both the ω-hydroxylation (producing 20-hydroxyeicosatetraenoic 

acid; 20-HETE) and epoxygenation (producing epoxyeicosatrienoic acids; EETs) 

reactions of arachidonic acid through cytochrome P450 (24), thus preventing changes 

to vascular levels of 20-HETE or EETs as contributing mediators to endothelium-

dependent dilation.   To assess the contribution of lipoxygenase metabolites to the 

patterns of arteriolar dilation, vessels were treated with nordihydroguaiaretic acid 

(NDGA; 3×10-5 M for 45 minutes prior to agonist challenge; Biomol), a selective inhibitor 

of 12/15-lipoxygenases (20, 27).  To antagonize vascular PGH2/TxA2 receptors, vessels 

were treated with SQ-29548 (10-5 M for 30 minutes prior to agonist challenge; Biomol), 

while inhibition of thromboxane synthase was accomplished using carboxyheptyl 

imidazole (CHI; 10-5 M for 45 minutes prior to agonist challenge; Biomol).    To reduce 

vascular oxidant tone, arterioles were treated with 4-Hydroxy-2,2,6,6-

tetramethylpiperidine-1-15N-oxyl (TEMPOL; 10-4M for 60 minutes prior to agonist 

challenge, Sigma). 

Determination of Vascular Metabolites of Arachidonic Acid:  Vascular production of 6-

keto-prostaglandin F1α (6-keto-PGF1α; the stable breakdown product of PGI2; ref. 14), and 

11-dehydro-thromboxane B2 (11-dehydro-TxB2; the stable plasma breakdown product of 

TxA2; ref. 4) in response to challenge with arachidonic acid within the three mouse strains 

was assessed using pooled conduit arteries (femoral, saphenous, iliac, carotid arteries) 

from each mouse.  Vessels were incubated in microcentrifuge tubes in 1 ml of physiological 

salt solution for 30 minutes under control conditions (21% O2), after which time arachidonic 

acid (10-6 M) was added to the tube for an additional 30 minutes.  After the second 30 
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minute period, the PSS was transferred to a new tube, frozen in liquid N2 and stored at -

80°C.  Metabolite release by the vessels was determined using commercially available EIA 

kits for 6-keto-PGF1α and 11-dehydro-TxB2 (Cayman). 

Data and Statistical Analyses:  Active tone of individual arterioles at the equilibration 

pressure was calculated as (ΔD/Dmax)•100, where ΔD is the diameter increase from rest 

in response to Ca2+-free PSS, and Dmax is the maximum diameter measured at the 

equilibration pressure in Ca2+-free PSS.   

 Dilator responses of isolated arterioles following challenge with dilator agonists were 

fit with the three-parameter logistic equation: 

⎥⎦
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⎢⎣
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+
−

+= −xEDy
50log101

minmaxmin  

where y  represents the change in arteriolar diameter, “min” and “max” represent the lower 

and upper bounds, respectively, of the change in arteriolar diameter with increasing agonist 

concentration, x  is the logarithm of the agonist concentration and 50log ED  represents the 

logarithm of the agonist concentration ( x ) at which the response ( y ) is halfway between 

the lower and upper bounds.     

 Data are presented as mean±SEM.  Statistically significant differences in measured 

and calculated parameters in the present study were determined using analysis of variance 

(ANOVA).  In all cases, Student-Newman-Keuls post hoc test was used when appropriate 

and p<0.05 was taken to reflect statistical significance.   

RESULTS 

 Table 1 presents baseline characteristics of the mouse groups in the present study.  

While all mice were of similar mass at 20 weeks of age, LDLR experienced a significant 
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elevation in mean arterial pressure and fasting insulin concentration versus values in C57 

or ApoE.   Additionally, both ApoE and LDLR manifested a profound hypercholesterolemia, 

most severe in LDLR.  Further, ApoE exhibited a significant hypertriglyceridemia as well, 

while plasma triglyceride levels in LDLR were not different from that in C57.  Finally, 

plasma levels of nitrotyrosine, a marker of chronic elevations in oxidant stress, were 

significantly elevated in ApoE and LDLR as compared to C57.  With regard to basal 

vascular tone, isolated arterioles from all mouse groups demonstrated a comparable 

resting active diameter and passive (calcium-free) diameter, such that no significant 

difference in active tone was calculated between C57, ApoE and LDLR in the present 

study. 

 Data summarizing the dilator responses of skeletal muscle resistance arterioles 

from C57, ApoE and LDLR in response to challenge with increasing concentrations of 

arachidonic acid are presented in Figure 1.  Under control conditions, the reactivity of 

arterioles from ApoE and LDLR, while not significantly different from each other, both 

demonstrated a reduction in their maximum bound as compared to responses in arterioles 

from C57.  Endothelium-denudation via perfusion with an air bolus eliminated mechanical 

responses of vessels across the three strains in response to application of arachidonic 

acid. 

 The effects of pharmacological blockade of lipoxygenases and cyclooxygenases 

with NDGA and INDO, respectively, on arachidonic acid-induced vasodilation in isolated 

arterioles are summarized in Figure 2.  In arterioles from C57 (Panel A), blockade of 

lipoxygenases with NDGA had no impact on dilator responses to arachidonic acid, while 

treatment with indomethacin abolished all dilation to arachidonic acid.  Arterioles from 
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ApoE, while demonstrating a blunted overall reactivity to arachidonic acid, also 

experienced a severe reduction in dilator reactivity following cyclooxygenase inhibition with 

indomethacin (Panel B).  However, while treatment with NDGA alone did not impact 

arachidonic acid-induced dilation in vessels from ApoE, application of NDGA to vessels 

that had been treated with indomethacin eliminated the residual dilation in response to 

arachidonic acid that remained following cyclooxygenase inhibition alone.  Finally, 

arterioles from LDLR appeared to demonstrate a dilator response to arachidonic acid 

challenge that was dependent on the production of metabolites generated via both 

lipoxygenases and cyclooxygenases, as antagonists to these pathways given in isolation 

resulted in modest reductions to the compromised level of reactivity, while treatment with 

both NDGA and indomethacin abolished all arachidonic acid-induced reactivity (Panel C).  

Treatment of isolated arterioles from C57, ApoE or LDLR with either L-NAME or 17-ODYA 

did not result in either significant or consistent effects of dilator responses following 

challenge with increasing concentrations of arachidonic acid (data not shown). 

 Figure 3 presents the effects of antagonizing thromboxane A2 generation (with CHI) 

and action (with SQ-29548) on dilator responses of skeletal muscle arterioles in the 

present study.  In control animals, application of either CHI or SQ-29548 had no impact on 

arteriolar dilation in response to increasing concentrations of arachidonic acid (Panel A).  In 

contrast, arterioles from both ApoE (Panel B) and LDLR (Panel C) exhibited a significant 

improvement to their degree of arachidonic acid-induced dilation relative to untreated 

conditions following either inhibition of thromboxane synthase with CHI or blockade of the 

PGH2/TxA2 receptor (SQ-29548). 
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  Data describing the arachidonic acid-induced generation of the cyclooxygenase 

products PGI2 (estimated from levels of 6-keto-PGF1α) and TxA2 (estimated from levels of 

11-dehydro TxB2) from pooled arteries of the three mouse groups in the present study are 

summarized in Figure 4.  Following application of 10-6 M arachidonic acid, arteries from 

C57, ApoE and LDLR all demonstrated a significant increase in PGI2 release, the degree of 

which was comparable between the three mouse strains (Panel A).  In contrast, 

arachidonic acid-induced generation of TxA2, while statistically significant in arteries from 

C57, demonstrated a substantially more robust response in vessels from both ApoE and 

LDLR (Panel B).  Pre-treatment of pooled vessels with either CHI or indomethacin severely 

attenuated all arachidonic acid-induced TxA2 generation in all three strains. 

 Arteriolar reactivity in response to challenge with prostacyclin (Panel A) or 

carbocyclic thromboxane A2 (Panel B) in the three mouse groups is summarized in Figure 

5.  In response to increasing concentrations of prostacyclin, arterioles from C57 and ApoE 

demonstrated a very similar degree of dilator reactivity, although this response 

demonstrated a trend toward impairment in vessels from LDLR as compared to that in 

vessels from either other strain (Panel A).  Arterioles from all three mouse strains exhibited 

very similar patterns of constrictor reactivity in response to challenge with increasing 

concentrations of carbocyclic thromboxane A2 (Panel B). 

 Figure 6 presents the effects of treating vessels with the antioxidant TEMPOL, the 

thromboxane synthase inhibitor CHI, or both, on arteriolar responses to increasing 

concentrations of arachidonic acid.  Addition of TEMPOL did not have a significant impact 

on arteriolar diameter in vessels from any of the three mouse strains under resting 

conditions.  In arterioles from C57 (Panel A), neither treatment with TEMPOL nor CHI had 
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a significant impact on dilator reactivity to arachidonic acid.  In contrast, for arterioles from 

both ApoE (Panel B) and LDLR (Panel C), treatment with either TEMPOL or CHI 

significantly improved dilator responses to arachidonic acid, with the effects of CHI being 

stronger than that for TEMPOL.  Interestingly, in both ApoE and LDLR, combined 

treatment with CHI and TEMPOL did not have any effect on arachidonic acid-induced 

dilation beyond that determined for CHI treatment alone.  

 Figure 7 presents data describing the effects of treating arteries from C57, ApoE or 

LDLR with TEMPOL on arachidonic acid-induced thromboxane A2 production.  While 

treatment with the antioxidant had an insignificant impact on vascular thromboxane 

production in C57, incubation of vessels with TEMPOL significantly reduced the 

arachidonic acid-induced production of TxA2 in both ApoE and LDLR.  However, this 

reduction in thromboxane generation was only partial in nature, and levels of TxA2 

production in response to challenge with arachidonic acid following treatment with 

TEMPOL remained significantly increased versus that in untreated arteries from ApoE and 

LDLR.  

DISCUSSION 

 Although hypercholesterolemia represents a powerful risk factor for the 

development of peripheral artery disease (1), the effects of hypercholesterolemia on 

vascular reactivity and endothelial function is less clearly understood.  Given recent studies 

suggesting that diet-induced hypercholesterolemia can alter arachidonic acid metabolism 

and profoundly impact vascular reactivity through signaling mechanisms associated with 

the generation of thromboxane A2 (15, 18, 21), the present study determined the effects of 

genetic hypercholesterolemia on the dilator reactivity of skeletal muscle resistance 
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arterioles in response to challenge with arachidonic acid.  More specifically, the hypothesis 

tested in this study was that arachidonic acid-induced arteriolar dilation in ApoE and LDLR 

would be impaired owing to either the production of, or vascular reactivity to, metabolites of 

arachidonic acid via cyclooxygenase, and that these alterations would be associated with 

an elevated oxidant stress. 

 Contrary to our results with dilator stimuli that are more strongly dependent on the 

bioavailability of endothelium-derived nitric oxide, where reactivity was largely maintained in 

the face of a profound reduction in this parameter (22), the results presented in Figure 1 

indicate that skeletal muscle arteriolar dilation in response to increasing concentrations of 

arachidonic acid was significantly reduced in both ApoE and LDLR as compared to 

responses determined in C57.  Interestingly, the data presented in this figure also strongly 

suggest that not only is the overwhelming majority of dilator reactivity in response to 

arachidonic acid dependent on a functional endothelium in control animals, the 

impairments to arteriolar dilation with this stimulus may also originate with alterations to 

endothelial function, rather than within vascular smooth muscle.   

 While results from the present study did not demonstrate a role for either nitric oxide 

bioavailability or for metabolites of arachidonic acid mediated via cytochrome P450 

enzymes in terms of contributing to the arachidonic acid-induced dilator reactivity of 

skeletal muscle arterioles in any of the three mouse strains, activity mediated through 

cyclooxygenase (and to a lesser extent lipoxygenase) were critical.  While arteriolar dilation 

in response to arachidonic acid was mediated entirely via cyclooxygenase in vessels from 

C57, vessels from ApoE and LDLR demonstrated a dilator response that was increasingly 

a function of metabolites via both cyclooxygenase and lipoxygenase, with this effect being 
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more pronounced in LDLR than in ApoE, where the response was still predominantly 

cyclooxygenase-dependent.  However, the data presented in Figure 2 do not provide 

significant insight into the impaired dilator reactivity demonstrated in arterioles of ApoE and 

LDLR in response to challenge with arachidonic acid beyond the critical involvement of 

cyclooxygenase.  Given previous studies suggesting that the development of the 

hypercholesterolemic condition can profoundly impact arachidonic acid metabolism in 

general (7, 18), and the recent studies from both Pfister (15) and Srisawat et al. (21) that 

implicate altered behavior mediated through thromboxane generation/action as contributing 

mechanism to altered patterns of vascular reactivity with hypercholesterolemia, we treated 

vessels from ApoE and LDLR with an inhibitor of thromboxane synthase (CHI) or an 

antagonist for the PGH2/TxA2 receptor (SQ-29548).  As shown in Figure 3, while neither of 

these agents had a significant role in the dilator responses in arterioles from C57, 

application of either CHI or SQ-29548 resulted in a significant improvement in the dilator 

responses of arterioles from ApoE or LDLR in response to challenge with increasing 

concentrations of arachidonic acid.  Interestingly, the ameliorative effect was comparable 

with either pharmacological agent.  While this implicates either increased thromboxane 

generation or an increased gain/sensitivity at the vascular thromboxane receptor as 

contributing mechanisms to the impaired arachidonic acid-induced arteriolar dilation, these 

data do not provide insight into which component may be most responsible.  However, 

these data do strongly suggest that the development of a thromboxane-sensitive 

component which may act to constrain arachidonic acid-induced arteriolar dilation 

accompanies the evolution of genetic hypercholesterolemia. 
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 As both CHI and SQ-29548 elicited similar improvements to arteriolar dilation in 

response to arachidonic acid challenge in ApoE and LDLR, it was necessary to discern 

which processes contributed to the constrained dilator reactivity: 1) increasing 

thromboxane A2 production in response to arachidonic acid production, 2) increased 

vascular reactivity to produced thromboxane A2, or both.  The data presented in Figure 4 

indicate that arachidonic acid-induced generation of PGI2 (estimated from 6-keto-PGF1α 

levels) remained intact in arteries of ApoE and LDLR as compared to that determined in 

C57, an observation that is consistent with previous studies in the coronary vasculature of 

ApoE mice (9).  In contrast, arachidonic-acid induced generation of thromboxane A2 

(estimated from 11-dehydro-TxB2 levels) was significantly increased with the evolution of 

genetic hypercholesterolemia in ApoE and LDLR.  When taken together with data in Figure 

5, which suggest that the sensitivity of resistance arterioles from ApoE and LDLR in 

response to increasing concentrations of either prostacyclin or thromboxane A2 is not 

dramatically altered from that determined for C57 control mice, these data may provide 

compelling evidence that a predominant contributing mechanism underlying the 

constrained arteriolar dilation with increasing concentrations of arachidonic acid may be the 

development of an increased generation of the constrictor prostanoid thromboxane A2, 

which antagonizes the dilator effects associated with the generation of prostacyclin. 

 Given that previous studies have clearly demonstrated the critical role for elevated 

oxidant tone in the increased generation of thromboxane through cyclooxygenase in 

response to challenge with arachidonic acid (2, 28, 29), and our observations of an 

increase in the plasma levels of nitrotyrosine in the ApoE and LDLR as compared to that 

determined in C57, the data presented in Figures 6 and 7 provide some insight into the 
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potential role that elevated vascular oxidant tone may play in the increased arachidonic 

acid-induced thromboxane A2 generation with genetic dyslipidemia.  While treatment with 

TEMPOL had no impact on arachidonic acid-induced dilation or TxA2 generation in 

arterioles from C57, it significantly improved the dilator response in microvessels from both 

ApoE and LDLR and reduced the levels of TxA2 production.  However, in vessels from both 

strains, this improvement in dilator reactivity following treatment with the antioxidant was 

less pronounced than that determined following treatment with the inhibitor of thromboxane 

synthase, CHI.  Further, combined treatment with both TEMPOL and CHI did not result in 

an improvement beyond that determined with CHI treatment alone.  Additionally, while pre-

treatment of pooled vessels with TEMPOL lowered arterial thromboxane production in 

response to challenge with arachidonic acid, the levels of thromboxane production 

remained significantly elevated despite the addition of the antioxidant.  Taken together 

these results suggest that, while an enhanced arachidonic acid-induced genesis of 

thromboxane A2 via thromboxane synthase represents a strong contributor to the 

constrained dilator reactivity in skeletal muscle arterioles of ApoE and LDLR mice, the 

presence of an elevated vascular oxidant tone may represent a partial contributor to this 

shift in the metabolism of arachidonic acid.  Clearly, these results suggest that other 

parameters, independent of acute changes in vascular oxidant tone, also contribute to this 

increased generation of thromboxane A2.  Potential avenues for ongoing investigation in 

this regard can include the study of not only the effects of chronic elevations in vascular 

oxidant tone, but also the progression of a chronic state of inflammation associated with 

dyslipidemia (10, 26) and how these processes can ultimately impact pathways of 

arachidonic acid metabolism. 
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 In summary, with the development of genetic hypercholesterolemia in ApoE and 

LDLR mice, the dilator reactivity of skeletal muscle resistance arterioles in response to 

increasing concentrations of arachidonic acid is impaired.  This impairment does not 

appear to be associated with a reduction in the generation/release of, or an altered 

arteriolar reactivity to, prostacyclin.   However, with the evolution of this dyslipidemic 

condition, there appears to be an increase in the arachidonic acid-induced generation of 

the vasoconstrictor metabolite thromboxane A2.  While there does not appear to be an 

alteration to the arteriolar constrictor reactivity to thromboxane, the increased generation of 

this metabolite may compete with the dilator effects of prostacyclin, thus limiting net dilator 

reactivity in response to arachidonic acid.  Further, while an increase in vascular oxidant 

stress appears to contribute to this response, additional mechanisms which are 

independent of acute alterations to oxidant tone also contribute to this effect.    Future 

investigation will be required to discern which mechanistic alterations associated with the 

development of hypercholesterolemia contribute to the increased production of 

thromboxane A2, and what the implications of this shift in the metabolism of arachidonic 

acid are for issues such as the integrated control of tissue perfusion, tissue oxygenation 

and the protection from atherogenesis and atherothrombosis. 
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Table 1.  Baseline characteristics of mice and individual arterioles used in the present 

study.  * p<0.05 vs. C57; † p<0.05 vs. ApoE.      

 

 

 C57 ApoE  LDLR  

Mass (g) 33±2 34±2 33±2 

MAP (mmHg) 88±4 92±3 106±5*† 

[Glucose]blood (mg/dl) 84±7 103±11 115±7* 

[Insulin]plasma (ng/ml) 1.1±0.3 1.6±0.3 2.8±0.5* 

[Total Cholesterol]plasma (mg/dl) 88±9 288±17* 364±22*† 

[LDL Cholesterol]plasma (mg/dl) 49±5 260±11* 338±19*† 

[Triglycerides]plasma (mg/dl) 88±10 175±14* 116±18† 

Nitrotyrosineplasma (ng/ml) 14±5 54±11* 60±14* 

    

Inner Diameter – Active (μm) 54±4 55±5 51±4 

Inner Diameter – Passive (μm) 128±5 122±4 118±7 

Active Tone (%) 57±3 55±4 56±4 
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FIGURE LEGENDS 

Figure 1.  Data describing the dilator reactivity of isolated skeletal muscle resistance 

arterioles of C57, ApoE and LDLR mice in response to increasing concentrations of 

arachidonic acid.    Data, presented as mean±SEM, are shown for arterioles under control 

conditions and following removal of the vascular endothelium using air bolus perfusion 

(please see text for details).  n=6 animals for each strain; * p<0.05 vs. C57; † p<0.05 vs. 

control within that strain. 

 

Figure 2.  Data describing the dilator responses of isolated skeletal muscle resistance 

arterioles of C57 (Panel A), ApoE (Panel B) and LDLR (Panel C) mice in response to 

increasing concentrations of arachidonic acid.  Data, presented as mean±SEM, are shown 

for arterioles under control conditions, and following pharmacological inhibition of 

cyclooxygenases with indomethacin, lipoxygenases with NDGA or combined inhibition of 

both enzymatic pathways (please see text for details).  n=5-10 animals for each group; * 

p<0.05 vs. control conditions, † p<0.05 vs. no response. 

 

Figure 3.  Data describing the dilator responses of isolated skeletal muscle resistance 

arterioles of C57 (Panel A), ApoE (Panel B) and LDLR (Panel C) mice in response to 

increasing concentrations of arachidonic acid.  Data, presented as mean±SEM, are shown 

for arterioles under control conditions, and following pharmacological inhibition of 

PGH2/TxA2 receptors with SQ-29548 and thromboxane synthase with CHI (please see text 

for details).  n=6-7 animals for each group; * p<0.05 vs. control conditions. 

 

79



Figure 4.  Data describing the arterial production of prostacyclin (as 6-keto-PGF1α; Panel 

A) or thromboxane A2 (as 11-dehydro TxB2; Panel B) from C57, ApoE and LDLR in 

response to 10-6 M arachidonic acid.  Data, presented as mean±SEM, are shown under 

control conditions, and following pharmacological inhibition of cyclooxygenase with 

indomethacin or thromboxane synthase (with CHI), as appropriate.  n=8 animals for each 

group, with each n representing pooled arteries from an individual mouse; please see text 

for details.  * p<0.05 vs. respective control; † p<0.05 vs. C57 under that condition; ‡ vs. 

ApoE under that condition. 

 

Figure 5.  Data (mean±SEM) describing the reactivity of isolated skeletal muscle 

resistance arterioles of C57, ApoE and LDLR mice in response to increasing 

concentrations of prostacyclin (Panel A) or carbocyclic thromboxane A2 (Panel B).  n=6 

animals for each group, no significant differences were identified in the vascular reactivity 

in response to increasing concentrations of prostacyclin or thromboxane A2. 

 

Figure 6.  Data, presented as mean±SEM, describing the dilator responses of isolated 

skeletal muscle resistance arterioles of C57 (Panel A), ApoE (Panel B) and LDLR (Panel 

C) mice in response to increasing concentrations of arachidonic acid.  Data are shown for 

arterioles under control conditions, following treatment of vessels with the antioxidant 

TEMPOL, following pharmacological inhibition of thromboxane synthase with CHI, and 

following treatment with both TEMPOL and CHI.  n=8-10 animals for each group; * p<0.05 

vs. control conditions; † p<0.05 vs. treatment with TEMPOL alone. 
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Figure 7.  Data describing the arterial production of thromboxane A2 (as 11-dehydro TxB2; 

Panel B) from C57, ApoE and LDLR in response to 10-6 M arachidonic acid.  Data, 

presented as mean±SEM, are shown under control conditions, and following treatment of 

pooled arteries with the antioxidant TEMPOL (10-4 M).  n=6 animals for each group, with 

each n representing pooled arteries from an individual mouse; please see text for details.  * 

p<0.05 vs. within-strain/no arachidonic acid; † p<0.05 vs. within-strain/with arachidonic 

acid. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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ABSTRACT 

Object: The obese Zucker rat (OZR) model of the metabolic syndrome is partly 

characterized by moderate hypercholesterolemia in addition to other contributing co-

morbidities.  Previous results suggest that vascular dysfunction in OZR is associated 

with chronic reduction in vascular nitric oxide (NO) bioavailability and chronic 

inflammation, both frequently associated with hypercholesterolemia.  As such, we 

evaluated the impact of chronic cholesterol reducing therapy on the development of 

impaired skeletal muscle arteriolar reactivity and microvessel density in OZR and its 

impact on chronic inflammation and NO bioavailability.  Materials and Methods:  

Beginning at 7 weeks of age, male OZR were treated with gemfibrozil, probucol, 

atorvastatin or simvastatin (in chow) for 10 weeks.  Subsequently, plasma and vascular 

samples were collected for biochemical/molecular analyses, while arteriolar reactivity 

and microvessel network structure were assessed using established methodologies 

after 3, 6 and 10 weeks of drug therapy.  Results: All interventions were equally 

effective at reducing total cholesterol, although only the statins also blunted the 

progressive reductions to vascular NO bioavailability, evidenced by greater 

maintenance of acetylcholine-induced dilator responses, an attenuation of adrenergic 

constrictor reactivity, and an improvement in agonist-induced NO production.  

Comparably, while minimal improvements to arteriolar wall mechanics were identified 

with any of the interventions, chronic statin treatment reduced the rate of microvessel 

rarefaction in OZR.  Associated with these improvements was a striking statin-induced 

reduction in inflammation in OZR, such that numerous markers of inflammation were 

correlated with improved microvascular reactivity and density.  However, using 
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multivariate discriminant analyses, plasma RANTES, IL-10, MCP-1 and TNF-α were 

determined to be the strongest contributors to differences between groups, although 

their relative importance varied with time.  Conclusions:  While the positive impact of 

chronic statin treatment on vascular outcomes in the metabolic syndrome are 

independent of changes to total cholesterol, and are more strongly associated with 

improvements to vascular NO bioavailability and attenuated inflammation, these results 

provide both a spatial and temporal framework for targeted investigation into 

mechanistic determinants of vasculopathy in the metabolic syndrome.    
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INTRODUCTION 

 Arising from a chronic hyperphagia which originates due to non-functional leptin 

receptor gene and an impaired satiety reflex (5, 23), the obese Zucker rat (OZR) rapidly 

develops insulin resistance, hypertriglyceridemia and a moderate hypertension (43).  

Combined with the parallel creation of a pro-thrombotic, pro-oxidant and pro-inflammatory 

environment, OZR are considered to be an excellent model for the clinical condition termed 

the metabolic syndrome (47).  Associated with these systemic pathologies, we and others 

have defined numerous impairments to microvascular structure and function in OZR which 

negatively impact skeletal muscle perfusion, both under resting conditions (15, 18, 19), in 

response to elevated metabolic demand (18, 19, 50, 51), following recovery from vascular 

occlusion (15) and during hemorrhage (16).   Chronic treatment of the metabolic syndrome 

with exercise (13, 52) or of individual contributing elements through pharmacological 

intervention (10, 16, 17, 48) have resulted in improvements to microvascular outcomes, as 

well as to perfusion responses within skeletal muscle (13, 52), and have implicated 

potential mechanisms through which these improvements may be manifested.  Recently, 

results from our laboratory have suggested that the chronic reduction in vascular nitric 

oxide (NO) bioavailability that accompanies development of the metabolic syndrome in 

OZR is well correlated with the severity of the reduction in skeletal muscle microvessel 

density (16).  Ongoing studies have also suggested that while this microvascular 

rarefaction is hypertension-independent (17), exercise-based interventions that not only 

increase vascular NO bioavailability, but also blunt the severity of the chronic inflammatory 

state in OZR, may be an excellent predictor of the ability to prevent microvessel loss within 

the periphery (13). 
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 Within the metabolic syndrome in OZR is an elevation in plasma cholesterol levels 

that, while consistent, is more moderate as compared to the profound elevations 

determined for plasma triglycerides.  Given the severity of many indices of vascular 

dysfunction in OZR, the extent to which elevated plasma cholesterol contributes to these 

impairments in currently unclear.  However, treatment of hypercholesterolemia with 3-

hydroxy-3-methylglutaryl coenzyme A (HMG Co-A) reductase inhibitors (“statins”) has not 

only the well-documented impact of lowering circulating plasma LDL and total cholesterol 

levels (21, 35), but also has been identified as having the beneficial impacts of increasing 

vascular NO bioavailability (3, 34) and blunting plasma markers of chronic inflammation 

(11, 32, 35).  Notably, it has been suggested that improvements to vascular function in 

human subjects or animals afflicted with hypercholesterolemia may reflect these pleiotropic 

effects of statin therapy rather than the direct impact of anti-cholesterol therapy itself (3, 26, 

31).  However, the extent to which these reflect independent ameliorative effects or effects 

which are strongly correlated remains unclear. 

 The purpose of the present study was to determine the impact of chronic anti-

cholesterol therapy on the temporal development of impairments to microvascular reactivity 

and network structure in skeletal muscle of OZR manifesting the metabolic syndrome.  

Further, the present study also attempted to demonstrate differences in treatment 

effectiveness of more recently developed statin medications as compared to traditional 

anti-cholesterol medications that do not fall into this category.  The tested hypothesis was 

that chronic ingestion of anti-cholesterol therapies would better maintain microvascular 

structure and function in OZR, although the benefit of these effects would be due to 
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improvements in vascular NO bioavailability and chronic inflammation, rather than effects 

on plasma cholesterol per se. 

MATERIALS AND METHODS 

Animals:  Male lean (LZR) and OZR (Harlan) fed standard chow and drinking water (see 

below) ad libitum were housed at the West Virginia University Health Sciences Center and 

all protocols received prior IACUC approval.   At 6-7 weeks of age, LZR and OZR were 

divided into five groups within each strain:  

1. control (maintained on normal chow)  

2. treatment with gemfibrozil [GEM; maintained on chow containing 50 mg/kg/d 

gemfibrozil, a fibric acid derivative and PPARα agonist (24)],  

3. treatment with probucol [PRO; maintained on chow containing 100 mg/kg/d probucol, 

an agent which increases fractional rate of LDL catabolism during cholesterol 

elimination.  While probucol has moderate anti-oxidant properties, these appear to be a 

function of the LDL reducing effects of the drug rather than direct anti-oxidant effects 

(24)]. 

4. treatment with simvastatin [SIM: maintained on chow containing 20 mg/kg/d 

simvastatin, a cholesterol lowering agent via potent inhibition of HMG Co-A reductase 

(24, 53), which also possesses anti-inflammatory properties associated with improved 

NO bioavailability (12, 26, 28)].  

5. treatment with atorvastatin [ATOR; maintained on chow containing 10 mg/kg/d 

atorvastatin, a cholesterol lowering agent via potent inhibition of HMG Co-A reductase 

(24, 53), which also possesses anti-inflammatory properties associated with improved 
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NO bioavailability (4, 25)].  The primary difference between SIM and ATOR may be that 

SIM has a greater capacity to elevate HDL-C than ATOR (9, 24, 28).  

 Rats were maintained on each of these groups for 3-4 weeks, 6-7 weeks or 10-11 

weeks, at which time animals were used for experimentation (at 10, 13 and 17 weeks of 

age, respectively).  On the day of the experiment, following an 8 hour fasting period, rats 

were anesthetized with injections of sodium pentobarbital (50 mg/kg, i.p.), and received 

tracheal intubation to facilitate maintenance of a patent airway.  In all rats, a conduit artery 

was cannulated for determination of arterial pressure and for infusion of supplemental 

anesthetic and drugs, as necessary.  Blood samples were drawn from the cannula for 

determination of glucose and insulin concentrations (Linco) as well as cholesterol and 

triglyceride levels (Waco).  Plasma markers of inflammation were determined using 

commercially available ELISA systems (Luminex; Linco). 

Preparation of Isolated Skeletal Muscle Resistance Arterioles: In all rats, the 

intramuscular continuation of the right gracilis arteriole was removed and cannulated 

(19).  Within an individual group (above), vessels were divided into two sub-groups 

following an equilibration period.  Group 1 examined dilator responses, where arteriolar 

reactivity was evaluated in response to application of acetylcholine (10-10 M – 10-5 M) 

and sodium nitroprusside (10-6 M) to assess reactivity to NO from both endothelium-

dependent and independent agonists, respectively.  Subsequently, vessels were treated 

with TEMPOL (10-4 M) to assess the contribution of vascular oxidant tone to agonist-

induced dilation.  Group 2 examined constrictor reactivity, and mechanical responses 

were determined following challenge with phenylephrine (10-10 M – 10-7 M).  

Subsequently, vessels were treated with TEMPOL or L-NAME (10-4 M) to assess the 
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contribution of vascular oxidant tone and endothelium-dependent NO production to the 

adrenergic constriction.   

 In all vessels, following the completion of the above procedures, the perfusate 

and superfusate were replaced with Ca2+-free PSS and vessels were treated with 10-7 M 

phenylephrine until all tone was abolished.  At this time, intralumenal pressure within the 

vessel was altered, in 20 mmHg increments, between 0 mmHg and 160 mmHg and the 

inner and outer diameter of arterioles was determined at each pressure.  These data 

were used to calculate arteriolar wall mechanics which were used as indicators of 

structural alterations to the microvessel wall (2, 20). 

Measurement of Vascular NO Bioavailability: From a cohort of rats within the oldest 

group (17 weeks of age), the abdominal aorta was removed and vascular NO 

production was assessed using amperometric sensors (World Precision Instruments).  

Briefly, aortae were isolated, sectioned longitudinally, pinned in a silastic coated dish 

and superfused with warmed (37°C) PSS equilibrated with 95% O2 and 5% CO2.  The 

NO sensor (ISO-NOPF 100) was placed in close apposition to the endothelial surface 

and a baseline level of current was obtained.  Subsequently, increasing concentrations 

of methacholine (10-10–10-6 M) were added to the bath and the changes in current were 

determined.  To verify that responses represented NO release, these procedures were 

repeated following treatment of the aortic strip with L-NAME (10-4 M).   

Histological Determination of Microvessel Density:  At the conclusion of all muscle 

perfusion protocols, the gastrocnemius muscle from the left leg was removed, rinsed in 

PSS and fixed in 0.25% formalin.  Muscles were embedded in paraffin and cut into 5 μm 

cross sections.  Sections were incubated with Griffonia simplicifolia I lectin (Sigma), for 
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subsequent determination of microvessel density (20, 21).     

Analyses of eNOS Expression and Activity:  For determination of NOS expression, 

skeletal muscle arteries were homogenized and proteins within the homogenate were 

separated under denaturing conditions on an 8% SDS-polyacrilamide gel, after which 

proteins were transferred to a PVDF membrane and blocked.  Subsequently, blots were 

incubated with mouse anti-eNOS/NOS Type III mAb (BD Transduction Laboratories), 

washed and incubated with appropriate horseradish peroxidase conjugated secondary 

antibody.  GE Healthsciences ECL advance kits were used to visualize proteins.  

Additionally, in the oldest cohort of rats, the ascending and thoracic aorta, along with 

non-cannulated carotid, femoral, saphenous and iliac arteries were removed and frozen 

in liquid N2, for the subsequent determination of NOS activity using a commercially 

available kit (Cayman).  

Experimental Protocols:   Initially, the right gracilis muscle resistance arteriole was 

removed for the evaluation of vascular reactivity and passive mechanical characteristics of 

the vessel wall, described above.  Upon completion of these procedures, the right 

gastrocnemius muscle was removed, cleared of non-muscular tissue, and its mass was 

determined.  This muscle was then used for determination of microvessel density, as 

described above.  Finally, the contralateral gastrocnemius muscle was removed for tissue 

banking and the aortic and arterial segments were removed for assessment of NO 

bioavailability and eNOS expression/activity, described above. 

Data and Statistical Analyses:  Mechanical responses of aortic rings following challenge 

with acetylcholine or phenylephrine were fit with the three-parameter logistic equation: 
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where y  represents the change in isometric tension, “min” and “max” represent the lower 

and upper bounds, respectively, of the change in arteriolar diameter with increasing agonist 

concentration, x  is the logarithm of the agonist concentration and 50log ED  represents the 

logarithm of the agonist concentration ( x ) at which the response ( y ) is halfway between 

the lower and upper bounds.     

 Data are presented as mean±SEM.  Statistically significant differences in measured 

and calculated parameters in the present study were determined using analysis of variance 

(ANOVA).  In all cases, Student-Newman-Keuls post hoc test was used when appropriate 

and p<0.05 was taken to reflect statistical significance.  For analyses of inflammatory 

markers between groups, we employed discriminant techniques to eliminate the univariate 

nature of ANOVA and issues of independent variable co-linearity which minimizes the utility 

of regression techniques.  Discriminant analyses are based on canonical correlation to 

maximize differences between a priori identified experimental groups.  Multiple variables 

are arranged into structural equations based upon their ceteris paribus ability to 

distinguish those group differences.  These stepwise analyses result in a rank ordering 

of correlation coefficients in terms of their significance for the establishment of 

differences between groups.  These produce a series of algebraic functions which 

explain the differences between group centroids in the “x” dimension (Function 1), the 

“y” dimension (Function 2).  Each function explains a specific percentage of the 

variance between the group centroids. 

RESULTS 

 Table 1 presents basic characteristics of animal groups within the present study.   

OZR were consistently heavier than LZR, and this was not impacted by the anti-cholesterol 
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therapies.   While OZR ultimately developed a moderate hypertension as compared to 

LZR, the development of the elevated blood pressure was attenuated in OZR-SIM and 

OZR-ATOR groups.  Fasting glucose was elevated in all OZR versus age matched LZR 

after 10 weeks of age, although glycemic control was improved in OZR-SIM and OZR-

ATOR groups, as the level of blood glucose was associated with reduced plasma insulin 

with increasing age.  The hypercholesterolemia in OZR was largely abolished as a result of 

the four anti-cholesterol therapies, and there was a modest blunting of the 

hypertriglyceridemia as a result of the PRO, SIM and ATOR treatments with age.  Finally, 

plasma levels of nitrotyrosine were elevated with age in OZR versus LZR, indicative of a 

chronic elevation in oxidant stress, and this difference was blunted by chronic treatment 

with probucol, simvastatin and atorvastatin.   

 The changes to skeletal muscle microvessel density with time in LZR and OZR, and 

the impact of chronic treatment with the anti-cholesterol agents are summarized in Figure 

1.  Microvessel density was not significantly impacted by the evolution of the metabolic 

syndrome at 7 weeks of age between LZR and OZR (Panel A), and as such, none of the 

pharmacological treatments impacted this relationship.  However, with increasing severity 

of the metabolic syndrome over time, the degree of microvascular rarefaction was 

increased between OZR and LZR (Panels B-D).  Chronic treatment with GEM and PRO 

had minor impacts on rarefaction in OZR, despite their effectiveness in reducing total 

cholesterol.  In contrast, chronic treatment with either SIM or ATOR was effective at 

delaying/blunting the progression of microvascular rarefaction in OZR at 10, 13 and 17 

weeks of age.   

99



 

 At both 7 (Panel A) and 10 weeks (Panel B) of age, regardless of experimental 

group, both the arteriolar incremental distensibility and the circumferential stress versus 

strain relationship (panel inset) was not different between LZR and OZR (Figure 2).  

However, in both 13 week (Panel C) and 17 week (Panel D) old OZR, the slope coefficient 

describing this parameter was significantly elevated in OZR as compared to LZR under 

control conditions.  While the anti-cholesterol therapies did not significantly impact this shift 

in the stress versus strain relationship between arterioles of LZR and OZR at 13 weeks of 

age, treatment with SIM or ATOR blunted this difference at 17 weeks of age, such that the 

slope coefficients exhibited an intermediate phenotype between that for untreated LZR and 

OZR. 

  Data describing arteriolar dilation in response to challenge with acetylcholine and 

the impact of acute treatment of vessels with TEMPOL on the upper bound of this 

relationship are summarized in Figure 3.  At 7 weeks of age, the acetylcholine-induced 

dilator reactivity of resistance arterioles from LZR and OZR was comparable, regardless of 

experimental groups (Panel A) and the impact of anti-oxidant treatment on this response 

was negligible (Panel B).  A similar situation is present at 10 weeks of age, although 

separation in the acetylcholine-induced dilation of resistance arterioles, while not 

statistically significant between LZR and OZR, is becoming apparent (Panel C).  However, 

by 13 weeks of age (Panels E and F), and even more evident at 17 weeks of age (Panels 

G and H), acetylcholine-induced dilation was significantly reduced in OZR versus LZR, and 

this separation was blunted by treatment with SIM and ATOR.  The impact of TEMPOL 

treatment on this response also began to demonstrate differences, as treatment of 

arterioles from OZR and OZR-GEM with the anti-oxidant resulted in a significant 
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improvement in the upper bound of the acetylcholine-induced response.  In all cases, 

treatment of vessels with L-NAME abolished arteriolar responses to acetylcholine, and 

arteriolar dilation in response to challenge with sodium nitroprusside was not different 

between groups (data not shown).   

 Regardless of the pharmacological intervention imposed, arterial expression of 

eNOS between LZR and OZR did not demonstrate a consistent or significant difference 

between or within the two strains.  Further, there was no evidence of a consistent or 

significant impact of age on eNOS expression between LZR and OZR (data not shown). 

 Figure 4 summarizes arterial eNOS activity and methacholine-induced NO 

production in the oldest cohort of LZR and OZR under the conditions of the present study.  

At 17 weeks of age, eNOS activity (Panel A) was not significantly different between LZR 

and OZR, and treatment with the anti-cholesterol therapies was without consistent effect.  

Additionally, methacholine-induced production of NO from arterial strips, assessed using 

amperometric sensors, was attenuated in OZR versus LZR (Panel B), although chronic 

ingestion of SIM or ATOR increased NO production in response to challenge with 

methacholine in OZR.   

 Data describing arteriolar constrictor responses in vessels from LZR and OZR 

following challenge with phenylephrine under the conditions of the present study are 

summarized in Figure 5.  At 7 (Panel A) and 10 (Panel C) weeks of age, challenge with 

increasing concentrations of phenylephrine produced similar arteriolar constrictor response 

in OZR versus LZR under control conditions, and this relationship was not impacted by any 

of the anti-cholesterol therapies.  Further, inhibition of eNOS enzymes with L-NAME had no 

impact on these responses at either 7 weeks (Panel B) or 10 weeks (Panel D) of age.  
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However, by 13 weeks of age, OZR began to exhibit an increased constrictor response to 

phenylephrine (Panel E), and this effect was even more pronounced at 17 weeks of age 

(Panel G).  This increased constrictor response was largely unaltered by chronic treatment 

with GEM or PRO at either age, although chronic treatment with SIM and ATOR blunted 

the augmentation to phenylephrine-induced constriction with age in OZR.  Acute inhibition 

of eNOS with L-NAME had no effect on the differences in phenylephrine-induced 

constriction at 13 (Panel F) and 17 (Panel H) weeks of age between LZR and OZR under 

control conditions or following chronic treatment with GEM, but attenuated the impact of 

SIM and ATOR on moderating the increased adrenergic reactivity in OZR with age.  Acute 

application of phentolamine (10-5 M) abolished all arteriolar responses to phenylephrine 

(data not shown). 

 Data describing the changes in plasma markers of inflammation across groups are 

summarized in Table 2.   As compared to marker concentration in LZR, OZR demonstrated 

significant elevations in plasma concentrations of IL-1β, IL-6, IL-10, TNF-α, RANTES, 

MCP-1 and VEGF between 7 and 17 weeks of age.  In general, GEM treatment had a 

minimal impact on these relationships in OZR, regardless of animal age, and PRO 

treatment reduced the elevation in RANTES (regulated upon activation normal T-cell 

expressed and secreted) at 17 weeks only.  In contrast, treatment of OZR with SIM or 

ATOR altered levels of all markers by 13 weeks of age, except VEGF, such that their 

plasma concentration was significantly different from that in OZR under control conditions.  

Regardless of treatment, plasma concentrations of VEGF were elevated in OZR versus 

LZR.  
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 Figure 6 summarizes data from 17 week old animals from all experimental groups 

correlating gastrocnemius muscle microvessel density with plasma total cholesterol (Panel 

A) or vascular NO bioavailability (Panel B), with values from individual animals being 

presented.  As evident from Panel A, plasma total cholesterol is a poor predictor of 

rarefaction and does not effectively explain the variability in muscle vascularity in the 

present study.  In contrast, NO bioavailability, estimated from the magnitude of the upper 

bound from the three parameter logistic equation describing the acetylcholine 

concentration-response curve for individual arterioles, was a much stronger predictor of 

muscle vascularity, as this parameter explained almost 81% of the variability in vessel 

density in the present study.   This relationship is evident at other ages as well (data not 

shown). 

 Table 3 presents the results of stepwise discriminant analysis based on 

inflammatory marker data across the experimental groups.  These analyses suggest that, 

while most measured markers of inflammation were well correlated with microvessel 

density and NO bioavailability, IL-10 and MCP-1 were consistent contributors to differences 

not only across the experimental groups, but also over time within individual groups.  In 

contrast, plasma RANTES levels became increasingly significant with time in terms of 

discriminating between groups.  Alternatively, plasma TNF-α, demonstrated an inverse 

relationship, become less significant with time, to the point where it dropped out of the 

model entirely.  These data are presented graphically in Figure 7.  Plasma levels of VEGF, 

IL-6 and IL-1β, while well correlated with microvessel density based on univariate analyses 

did not contribute to the ability to discriminate between groups, and as such are not 

presented in Table 3.   
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 The relationships between these identified markers, NO bioavailability and 

microvessel density between 17 week old LZR and OZR is presented in Figure 8.  

RANTES (Panel A), IL-10 (Panel B), MCP-1 (Panel C), and TNF-α (Panel D) all 

demonstrate a strong correlation with NO bioavailability and microvessel density across the 

animal groups.   

DISCUSSION 

 As a contributing component to the metabolic syndrome, OZR develop moderate 

hypercholesterolemia, in addition to other co-morbidities associated with this multi-

pathology state.  While previous studies have suggested that elevated plasma cholesterol 

can be associated with reduced capillary density (7, 42) and blunted angiogenic responses 

(36, 45), it is presently unclear as to the contribution of inflammatory status in terms of 

mediating these effects.  Given this, the present study was designed to chronically treat 

OZR with multiple mechanistically distinct anti-cholesterol therapies throughout the period 

in which microvessel loss is established to better distinguish the role for plasma cholesterol 

in terms of its contribution to skeletal muscle microvascular rarefaction, and the role of 

chronic inflammation in this process.   

 The most immediate observation of the current study was that treatment of OZR 

with the anti-cholesterol agents all resulted in a comparable reduction in 

hypercholesterolemia at each age, despite mechanistically divergent routes of action.  

Probucol lowers cholesterol by increasing the fractional rate of LDL catabolism in the 

metabolic pathway for cholesterol elimination from the body, and may inhibit early 

stages of cholesterol biosynthesis (24).  Gemfibrozil, a fibric acid derivative, is a PPARα 

agonist and can reduce plasma LDL through multiple routes, including cholesteryl ester 
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transfer protein activity, an increased binding affinity of LDL to its receptors, and an 

increased expression of hepatic LDL receptors (24).  Atorvastatin and simvastatin are 

HMG CoA reductase inhibitors, and as such exert their anti-cholesterol actions via an 

inhibition of this rate limiting step in cholesterol biosynthesis.  This inhibition of hepatic 

cholesterologenesis results in an increased expression of hepatic LDL receptors, and 

leads to lowered circulating cholesterol levels (24, 27).   

 Although each of these therapies was comparable in terms of efficacy in reducing 

plasma total cholesterol, considerable divergence was evident for their ability to 

ameliorate microvascular rarefaction and improve arteriolar reactivity.  From a structural 

perspective, despite reductions in total cholesterol, treatment with gemfibrozil (and to a 

lesser extent probucol) had a minimal impact on blunting microvascular rarefaction with 

age in OZR.  In contrast, chronic statin therapy lessened the severity of rarefaction, 

such that microvessel density assumed a level that, although reduced from LZR, was 

consistently improved versus untreated OZR.  This observation is intriguing in that 

recent studies have identified a biphasic, lipid-independent, effect of chronic statin 

therapy on microvessel density.  Specifically, it may be that low-dose statin therapy is 

associated with a “pro-angiogenic” environment through activation of Akt and increased 

NO bioavailability, whereas higher statin doses can cause angiostatic effects which are 

potentially mediated through a decreased protein prenylation and an inhibition of cell 

growth (4, 37, 39, 49).  With regard to mechanics of the microvessel wall in OZR, an 

ameliorative effect was also identified, as the severe reduction in wall distensibility in 

OZR was modestly attenuated as a result of chronic ingestion of atorvastatin or 

simvastatin, with lesser impacts from probucol or gemfibrozil.  These results support 
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those determined previously, as statin therapy has been effective in reducing wall 

stiffness in hypercholesterolemia (38, 40), although additional studies have suggested 

that this effect may be independent of lipid profiles (44), and may better represent the 

pleiotropic effects of statins on endothelial function or inflammatory status.   

 In our previous studies, we have provided evidence suggesting one of the main 

causative mechanisms associated with microvascular rarefaction in OZR may be a 

chronic reduction in vascular NO bioavailability (16).  The present results support this 

hypothesis, as both vascular reactivity to acetylcholine (Figure 3) and methacholine-

induced NO production (Figure 4) were improved with statin therapy in OZR.  Further, 

when data from an age cohort of animals are summarized, an index of vascular NO 

bioavailability (upper bound of the acetylcholine concentration-dilator response 

relationship) was a strong predictor of gastrocnemius muscle microvessel density 

(Figure 6).   

 The increased vascular NO bioavailability as a result of chronic atorvastatin or 

simvastatin treatment was also evident with regard to phenylephrine-induced constrictor 

reactivity.  Specifically, the increased constrictor response of arterioles of OZR (versus 

LZR) in response to adrenergic stimulation was not impacted by chronic anti-cholesterol 

therapy with gemfibrozil.  However, chronic treatment of OZR with atorvastatin, simvastatin 

or probucol blunted the upper bound of this response, although responses were still 

increased versus those in LZR.  This may have been due to an increased vascular NO 

bioavailability, as acute application of L-NAME, while having minimal impact on 

phenylephrine-induced arteriolar constriction in OZR (±gemfibrozil), increased the upper 

bound of this relationship in OZR treated with either of the other three agents.    These data 
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clearly suggest that chronic treatment with anti-cholesterol agents of the “statin” family will 

increase the vascular NO bioavailability (and reduce vascular oxidant stress) in OZR, and 

that this relationship can impact both vascular reactivity (both dilator and constrictor) and 

microvascular network structure. 

 One of the profound implications for hypercholesterolemia is the genesis of an 

elevated state of inflammation (8, 29, 30), that can be associated with evolution of 

peripheral vasculopathy (34, 41, 46).  While inherent in the treatment of 

hypercholesterolemia is a reduction of plasma cholesterol, amelioration of inflammation, 

and improved outcomes, a key observation from the present study was that although each 

treatment was effective in reducing cholesterol in OZR, there was a considerable disparity 

in terms of these other processes.  In the OZR model of the metabolic syndrome, we (13) 

and others (1, 33) have clearly demonstrated an elevated state of inflammation and that 

specific markers of inflammation can be strongly correlated with vascular outcomes 

(positively or negatively, depending on marker and outcome).  As the metabolic syndrome 

is, by definition, composed of multiple pro-inflammatory pathologies (8), changes in 

multiple markers of inflammation between groups were each significant (Table 2).  Further, 

given that indices of microvascular dysfunction were also tightly associated with animal 

group, as well as NO bioavailability and inflammatory state severity, significant correlations 

were also determined between individual markers of inflammation and specific indices of 

vascular dysfunction.   While interesting from a conceptual standpoint, these results are 

largely uninformative with respect to evaluating mechanistic bases of inflammation-induced 

vascular dysfunction in OZR.  Further, additional insight cannot effectively be gleaned from 

multivariate regression techniques, as the independent variables (i.e., markers of 
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inflammation) demonstrate a greater co-linearity amongst themselves than with an 

outcome (e.g., microvessel density). 

 As a result, we incorporated the use of discriminant analyses (Figure 7 and Table 

3), a classification technique for evaluating how multiple variables contribute to 

differences between experimental groups and one which is specifically designed for 

accurate hypothesis development.  These analyses result in a rank ordering of ceteris 

paribus correlation coefficients in terms of significance for the establishment of 

differences between groups.  The beneficial impact of discriminant analyses is that 

through a series of iterations, we are able to identify which parameters are most 

significant, and also which parameters are significant only because they operate 

through the magnitude of others.  As an example, while results from ANOVA or 

regression suggest that IL-1β or IL-6 are correlated with low NO bioavailability, they 

suffer from considerably co-linearity with other predictive markers, limiting their utility.  In 

contrast, discriminant analyses suggests that these markers may be less important than 

RANTES, MCP-1, IL-10, and TNF-α, and may not directly contribute to differences 

between LZR and OZR under control conditions and following chronic anti-cholesterol 

therapy.  These parameters identified from discriminant analyses can be used for the 

more targeted model development and future hypothesis testing.  It is important to 

emphasize that these procedures do not result in an identification of the four key 

markers contributing to vasculopathy in the metabolic syndrome.  Rather, given the 

limited data set employed in the present study, these analyses indicate how four 

markers, each of which demonstrates a strong univariate association with the vascular 

outcomes vary over time in terms of their ability to discriminate an outcome between 
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experimental groups.  With ongoing study and the inclusion of additional discriminating 

elements, the results of these procedures will change, although the ultimate goal is the 

convergence on a more stable predictive model with increasing iterations. 

 One of the interesting observations of the present study was while chronic 

treatment with the anti-cholesterol agents reduced total cholesterol in OZR to levels that 

were comparable to that in LZR, treatment with either of the two statin medications had 

the additional benefit of also reducing mean arterial pressure and improving glycemic 

control (i.e., insulin sensitivity) as well as providing a modest lowering of the 

hypertriglyceridemia in OZR.  Given that the statin medications were also the most 

effective in terms of improving microvascular outcomes in the present study, it may be 

that the combination of these associated beneficial impacts of statin therapy on the 

other contributing pathologies of the metabolic syndrome in OZR also represented 

substantial mediators of the improvement to microvascular function.   While an 

appealing possibility, the current data only allow for speculation on this hypothesis, as 

additional control experiments would be required to evaluate the role for these additional 

elements.  However, this is an area of investigation that may warrant additional 

investment.   

 In summary, while development of moderate hypercholesterolemia in OZR is 

associated with impaired microvascular function, chronic treatment of elevated 

cholesterol levels does not per se result in a significant improvement to poor outcomes.  

Rather, only anti-cholesterol treatments that improved vascular NO bioavailability and 

attenuated the chronic inflammation in OZR (statins) were successful in improving 

microvascular and perfusion outcomes, suggesting that total plasma cholesterol itself 
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may be a poor predictor of vascular outcomes in this model.  Chronic inflammation, 

when combined with vascular NO bioavailability, may be far stronger than total 

cholesterol as a predictor of vascular dysfunction, and the implementation of 

discriminant analyses for changes to the inflammatory profile may reflect a more 

informative means through which future experiments may be designed. 
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Table 1.  Characteristics of animal groups within the present study.  * p<0.05 vs. LZR; † 

p<0.05 vs. OZR. 

 Age LZR OZR OZR-GEM OZR-PRO OZR-SIM OZR-ATOR 

Mass (g) 7w 155±5 241±6* 254±8* 250±9* 247±8* 245±5* 

 10w 238±6 401±8* 398±7* 400±9* 405±8* 408±7* 

 13w 304±7 513±10* 520±10* 508±12* 506±9* 501±8* 

 17w 369±5 628±12* 630±12* 625±13* 622±12* 618±9* 

MAP (mmHg) 7w 98±4 95±5 97±5 98±6 93±5 99±4 

 10w 99±5 99±5 102±6 100±5 99±4 100±5 

 13w 102±5 112±6 115±6 112±8 102±6 104±6 

 17w 102±4 129±5* 127±5* 123±4* 118±4* 113±5*† 

Glucose (mg/dl) 7w 93±7 98±4 104±7 102±8 96±8 93±6 

 10w 96±6 103±7 105±8 104±9 101±9 105±8 

 13w 99±7 123±8* 128±8* 128±8* 128±6* 121±8* 

 17w 106±9 168±10* 170±8* 169±11* 150±7* 155±8* 

Insulin (ng/ml) 7w 1.0±0.3 3.2±0.5* 4.1±0.6* 3.6±0.7* 2.9±0.5* 3.0±0.6* 

 10w 1.1±0.2 4.9±0.7* 5.4±0.6* 6.0±0.6* 4.8±0.6* 4.3±0.5* 

 13w 1.2±0.3 7.9±0.6* 7.5±0.7* 7.8±0.8* 6.0±0.6* 5.7±0.6* 

 17w 1.2±0.2 9.0±0.8* 8.2±0.6* 9.1±0.9* 6.4±0.8*† 6.5±0.6*† 

Chol (mg/dl) 7w 80±7 98±8 95±10 95±9 91±9 94±6 

 10w 82±6 106±7* 84±8† 83±9† 83±8† 84±7† 

 13w 77±8 128±10* 87±9† 88±9† 85±9† 85±9† 

 17w 71±10 142±12* 86±9† 84±11† 82±11† 81±12† 

TG (mg/dl) 7w 101±8 175±9* 178±12* 176±10* 180±11* 176±11* 

 10w 106±7 247±11* 249±14* 255±14* 252±12* 258±14* 

 13w 124±10 341±12* 338±11* 338±13* 290±14*† 302±13*† 

 17w 140±12 360±15* 342±20* 330±14*† 320±15*† 316±16*† 

N-tyrosine (ng/ml) 7w 9±2 16±4 17±4 12±4 13±4 14±3 

 10w 11±3 25±4* 26±4* 20±3* 16±4 15±5 

 13w 12±3 49±7* 45±7* 30±6*† 24±5* 25±4*† 

 17w 12±3 61±6* 53±5* 40±5*† 29±5*† 27±5*† 
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Table 2.  Plasma markers of inflammation (pg/ml) in the present study.  * p<0.05 vs. LZR; 

† p<0.05 vs. OZR. 

 Age LZR OZR OZR-GEM OZR-PRO OZR-SIM OZR-ATOR 

IL-1β 7w 9.2±0.7 9.4±0.6 9.1±0.8 8.5±1.0 8.5±0.8 8.4±0.5 

 10w 9.4±0.6 13.4±1.8* 12.2±1.6* 12.6±1.8* 11.0±1.4* 10.8±1.1* 

 13w 9.8±0.7 18.5±2.0* 18.3±1.9* 16.8±1.7* 12.0±1.9*† 12.2±1.8*† 

 17w 10.2±0.8 23.2±2.5* 19.8±2.2* 18.5±2.0* 14.4±1.8† 15.0±2.0† 

IL-6 7w 26.2±4.8 35.5±5.1 33.8±4.6 29.8±5.3 28.0±4.5 31.1±4.4 

 10w 30.8±5.4 40.5±5.4 36.2±6.0 34.3±5.5 29.9±4.3 35.0±5.1 

 13w 36.8±5.6 68.6±6.1* 65.2±5.6* 64.6±5.8* 38.4±6.1† 40.6±4.6† 

 17w 38.6±4.6 79.8±5.7* 77.2±6.6* 71.0±6.4* 52.4±5.8† 53.9±6.1† 

IL-10 7w 14.6±2.6 24.8±4.0 22.0±4.1 16.5±3.8 15.2±3.8 14.6±3.1 

 10w 15.2±3.6 80.3±6.7* 75.3±8.0* 64.4±9.0* 51.0±6.8*† 49.5±5.8† 

 13w 16.4±3.7 116.4±10.5* 108.8±10.4* 104.3±8.9* 68.5±7.6*† 62.4±6.8*† 

 17w 18.4±3.0 124±11.5* 117.4±10.4* 114.4±12.0* 74.4±9.4*† 68.8±11.2*† 

TNF-α 7w 2.0±0.4 5.0±1.0* 5.1±0.9* 4.6±0.7* 3.9±0.7* 3.5±0.6* 

 10w 2.5±0.4 8.9±1.0* 8.4±1.1* 7.2±1.2* 5.8±0.8*† 6.3±1.1*† 

 13w 3.2±0.3 10.3±1.6* 9.8±0.9* 8.6±1.8* 5.0±1.2† 5.7±1.6† 

 17w 3.4±0.4 10.4±1.4* 10.8±1.2* 8.8±1.5* 6.2±1.4† 6.8±1.6† 

RANTES 7w 28.0±4.7 34.2±4.8 35.0±5.1 33.4±4.9 31.3±5.5 29.6±4.6 

 10w 32.2±4.6 66.6±7.9* 60.4±8.2* 53.4±5.3* 43.4±5.8† 44.2±4.7† 

 13w 36.4±4.8 120.2±10.3* 117.4±9.9* 108.8±10.9* 85.4±9.9*† 80.8±7.9*† 

 17w 40.1±5.3 187.2±14.1* 176.8±15.8* 138.4±14.8*† 97.8±14.0*† 102.8±13.6*† 

MCP-1 7w 36.6±5.8 45.0±5.9 43.8±5.2 45.6±4.9 40.4±5.1 41.2±6.0 

 10w 36.8±4.7 57.7±10.5 54.9±12.0 51.5±6.4 43.6±5.2*† 42.5±5.0* 

 13w 42.1±4.6 98.4±10.4* 95.6±10.6* 81.0±8.9* 66.4±9.4*† 62.2±6.3*† 

 17w 42.2±5.8 120.2±10.8* 118.4±12.0* 116.6±14.2* 80.4±12.1*† 77.8±11.4*† 

VEGF 7w 35.6±5.0 39.6±6.1 37.0±4.6 40.2±4.5 38.3±4.3 39.6±5.3 

 10w 41.1±5.3 55.5±4.5* 56.2±4.8* 50.2±5.3* 53.4±4.9* 55.5±4.5* 

 13w 39.2±5.3 62.9±6.7* 60.6±5.7* 58.6±6.1* 54.6±5.1* 56.9±6.4* 

 17w 38.9±4.1 68.7±5.4* 66.2±6.1* 61.8±5.8* 57.4±4.5* 58.8±4.8* 
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Table 3.  Structure matrix of results from discriminant analyses for markers of 

inflammation between animal groups in the present study.  * represents the largest 

absolute correlation between each variable and any discriminant function. 

Age 7 Weeks 10 Weeks 13 Weeks 17 Weeks 

Functions 1 2 1 2 1 2 1 2 

% of Variance 81.7 12.0 96.2 2.6 97.3 3.0 98.3 1.5 

Canonical Correlation 0.907 0.636 0.975 0.581 0.988 0.746 0.964 0.405 

RANTES --- --- 0.364 0.683* 0.504 0.289 0.647* -0.760* 

IL-10 0.390 0.700* 0.531* -0.182 0.576* -0.389 0.521 0.593 

MCP-1 0.368 -0.049 0.384 0.428 0.465 0.568* 0.501 0.452 

TNF-α 0.553* -0.568 0.401 -0.173 0.244 -0.300 --- --- 
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FIGURE LEGENDS 

Figure 1.  Data (mean±SEM) microvessel density within skeletal muscle of LZR and OZR 

at 7 weeks (Panel A), 10 weeks (Panel B), 13 weeks (Panel C) and 17 weeks (Panel D) of 

age.  Microvessel density data are presented under control conditions and following 

chronic treatment of OZR with the anti-cholesterol therapies: gemfibrozil, probucol, 

simvastatin or atorvastatin.  Microvessel density was determined using fluorescence 

microscopy following labeling of microvessel with Griffonia simplicifolia I lectin (please see 

text for details).  * p<0.05 vs. LZR; † p<0.05 vs. OZR. 

 

Figure 2.  Data (mean±SEM) describing incremental distensibility and the slope (β) 

coefficients from circumferential stress versus strain relationships (inset panels) of skeletal 

muscle arterioles of LZR and OZR at 7 weeks (Panel A), 10 weeks (Panel B), 13 weeks 

(Panel C) and 17 weeks (Panel D) of age.   Arteriolar wall mechanics data are presented 

control conditions and following chronic treatment of OZR with the anti-cholesterol 

therapies: gemfibrozil, probucol, simvastatin or atorvastatin.  * p<0.05 vs. LZR; † p<0.05 

vs. OZR. 

 

Figure 3.  Data (mean±SEM) describing skeletal muscle arteriolar dilation in response to 

increasing concentrations of acetylcholine of LZR and OZR under control conditions and 

following chronic treatment of OZR with gemfibrozil, probucol, simvastatin or atorvastatin.  

Data area presented as paired panels, with the left panels summarizing the concentration-

response relationship, and the right panel presenting the contribution of oxidant stress in 

terms of impacting acetylcholine-induced dilation where the change in the upper bound of 
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this relationship is shown following treatment of the arteriole with TEMPOL.  Data are 

presented for animals at 7 weeks (Panels A/B), 10 weeks (Panels C/D), 13 weeks (Panels 

E/F) and 17 weeks (Panels G/H) of age.  * p<0.05 vs. LZR; † p<0.05 vs. OZR.    

 

Figure 4. Vascular eNOS activity (Panel A; presented as the % arginine conversion), and 

methacholine-induced NO bioavailability (Panel B; where data present the slope of the 

relationship between vascular NO production and methacholine concentration , nM/log M 

methacholine) in LZR and OZR at 17 weeks of age.  Data (presented as mean±SEM) are 

summarized for LZR and OZR under control conditions and following chronic treatment of 

OZR with gemfibrozil, probucol, simvastatin or atorvastatin.    * p<0.05 vs. LZR; † p<0.05 

vs. OZR. 

 

Figure 5.   Data (mean±SEM) describing skeletal muscle arteriolar constriction in response 

to increasing concentrations of phenylephrine in LZR and OZR under control conditions 

and following chronic treatment of OZR with gemfibrozil, probucol, simvastatin or 

atorvastatin.  Data area presented as paired panels, with the left panels summarizing the 

concentration-response relationship, and the right panel presenting the contribution of 

vascular nitric oxide production in terms of impacting phenylephrine-induced constriction 

where the change in the upper bound of this relationship is shown following treatment of 

the arteriole with L-NAME.  Data are presented for animals at 7 weeks (Panels A/B), 10 

weeks (Panels C/D), 13 weeks (Panels E/F) and 17 weeks (Panels G/H) of age.  * p<0.05 

vs. LZR; † p<0.05 vs. OZR.    
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Figure 6.  The relation between plasma total cholesterol level (Panel A), or a proxy variable 

for NO bioavailability (upper bound of the acetylcholine dose-response relationship; Panel 

B), and microvessel density from the different animals in the present study.  Each animal 

used in the study, across the experimental groups is presented in this figure.  The inset text 

presents the linear regression equation that best fits these data and the degree to which 

that equation explains the variability in the data.   

 

Figure 7.  Summary plot for the results of the discriminant analyses in the present study.   

These results provide the functions 1 and 2 (presented in Table 3) which contribute the 

majority (>90%) of the differences between the experimental groups at each age.  

Specifically, RANTES, IL-10, MCP-1 and TNF-α play the greatest role in terms of 

establishing differences between LZR (light blue), OZR (green), and OZR under the four 

treatment conditions of the present study; gemfibrozil (grey), probucol (purple), simvastatin 

(orange) and atorvastatin (red).  The centroids for each group are presented in the dark 

blue squares. 

 

Figure 8.   Relationships between the four most significant markers of inflammation 

(identified using discriminant analyses; please see text for details), vascular NO 

bioavailability, and gastrocnemius muscle microvessel density for animals in the present 

study.  Data are presented for RANTES (Panel A), IL-10 (Panel B), MCP-1 (Panel C), and 

TNF-α (Panel D), and the same color coding is used as in Figure 4; LZR (light blue), OZR 

(green), and OZR+GEM (grey), OZR+PRO (purple), OZR+SIM (orange) and OZR+ATOR 

(red).   
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Figure 2.   
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Figure 3.   
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Figure 4.  
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Figure 5.    
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Figure 6.   
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Figure 7.   
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Figure 8.    
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ABSTRACT 

The metabolic syndrome represents an integrated metabolic and cardiovascular 

disorder reflecting the development of multiple risk factors for a poor cardiovascular 

outcome, including obesity, insulin resistance, dyslipidemia, hypertension and the 

genesis of pro-inflammatory and pro-oxidant environments.  The obese Zucker rat 

(OZR) represents an excellent model of metabolic syndrome, and develops this 

condition due to chronic hyperphagia.  While impairments to vascular reactivity with 

metabolic syndrome have been well established and are partly a function of reduced 

nitric oxide bioavailability and altered arachidonic acid metabolism, we have made the 

novel and consistent observation that reductions to skeletal muscle microvascular 

density (rarefaction) also develop in parallel with reactivity alterations, and that this 

plays a key contributing role in contributing to disparities between matching metabolic 

demand to perfusion.  While our previous publications have demonstrated that the full 

extent of rarefaction is well predicted by a chronic loss of nitric oxide bioavailability, our 

most recent data strongly suggest that an early pulse of rarefaction develops very 

rapidly in the OZR model of metabolic syndrome which significantly precedes any 

demonstrable loss in NO bioavailability.  Our advanced statistical analyses have 

suggested that the strongest associated parameter with the early pulse of microvascular 

rarefaction is a shift in vascular arachidonic acid metabolism from prostacyclin (PGI2) to 

thromboxane A2 (TxA2).  Presented within this manuscript are data supporting a role for 

TxA2 elevations in early rarefaction and underlying role for elevations in oxidant stress 

and TNFα levels in the elevations in TxA2 production. 
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INTRODUCTION 

With the development and maintenance of an obese state comes the 

establishment of pro-oxidant (22; 28; 32; 40), pro-thrombotic (1; 31), and pro-

inflammatory (8; 24; 26; 35) conditions along with concurrent development of insulin 

resistance (25; 34; 43), dyslipidemia (29), and hypertension (2).  This constellation of an 

initiating pathology of obesity along with its associated co-morbidities is clinically 

classified as the “metabolic syndrome” (38).  It is estimated that as many as 50 million 

Americans (38) currently fit the requisite criteria for diagnosis of metabolic syndrome 

with those numbers steadily increasing both nationally (7) and globally (23).  While each 

individual pathology associated with metabolic syndrome is significant, their greatest 

impact on public health is that they dramatically increase the risk for developing 

peripheral vascular disease, resulting in an imbalance between skeletal muscle demand 

and adequate perfusion (12; 13; 18; 41; 42).  This imbalance in demand:perfusion 

matching leads to ischemia (15), compromised tissue function (15), diminished tissue 

viability(37) and quality of life issues (37).   

The obese Zucker rat (OZR) serves as an established model of metabolic 

syndrome, owing to a dysfunctional leptin receptor gene which results in a chronic state 

of hyperphagia.  These animals become rapidly obese and, in turn, develop insulin 

resistance, dyslipidemia and moderate hypertension along with the pro-thrombotic, pro-

inflammatory and pro-oxidant environment characteristic of their human metabolic 

syndrome counterparts.  Previous studies by multiple investigative groups have 

demonstrated negative vascular outcomes in OZRs with the development of metabolic 

syndrome, including alterations to vascular wall mechanics, impairments to multiple 
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indexes of dilator reactivity, alterations to signaling mechanisms underlying constrictor 

reactivity, and a rarefaction of microvascular networks within multiple tissues(6; 15; 18; 

19; 40; 42). The culmination of these alterations to microvascular structure and function 

within OZRs can result in profound impairments to the perfusion of tissue under an 

array of physiological and pathological conditions. 

In recent years, studies have demonstrated that alterations to arachidonic acid 

metabolism (AA) through the cyclooxygenase (COX) pathway may contribute to the 

demand:perfusion disparities seen in OZRs.  AA is stored in the cell membrane of most 

resting cells, esterified to glycerol groups of phospholipids (9).  It is released from this 

“stored” esterified state when activated phospholipases (A, C or D) catalyze hydrolysis 

of the phospholipid thereby allowing for AA desequestration (9).  Upon release, this free 

arachidonate can: be reincorporated into phospholipids, diffuse away from the cell, or 

diffuse into the cell at which time it is subject to metabolism (30).  The metabolism of 

arachidonic acid is characterized by three major pathways: Cyclooxygenase, 

Lipoxygenase and Cytochrome P450. Alterations to relative metabolism through each of 

these pathways has been demonstrated to occur in a number of disease states (3-5; 

33).  Recent studies have demonstrated a shift in the balance of TxA2 and PGI2 

produced downstream from COX with a predomination of TxA2 production resulting in 

attenuated dilator responses as the constrictor prostanoid TxA2 blunts the response of 

the typically predominant COX dilator prostanoid, PGI2 (20; 36; 36; 40).   

In addition to the above mentioned vasomotor dysfunction found in metabolic 

syndrome, there are significant vascular network remodeling components in the skeletal 

muscles of metabolic syndrome individuals and OZRs.  There is a well documented and 
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progressive loss of tissue capillarity in metabolic syndrome subjects termed rarefaction 

(21; 27; 39).  This rarefaction process while well documented, is only poorly understood.  

Recent work from this lab has attributed much of the rarefactive process to diminished 

NO bioavailability as therapeutics which spared NO were also able to maintain tissue 

microvessel density (10; 11; 16).  This study re-examines those earlier findings which 

focused on tissue microvessel density during a single timepoint and attempts to 

establish the progression of rarefaction as it parallels development of the metabolic 

syndrome.  Rather than wait for the classically employed 17-week age range wherein 

OZRs are showing all major symptoms of the metabolic syndrome, this study begins at 

7 weeks of age where metabolic syndrome symptoms are intermediate at best.  The 

novel observation of this work is that our understanding of rarefaction is not inaccurate 

though it is incomplete.  There does, indeed, appear to be a NO mediated phase of 

rarefaction but only subsequent to an early and mechanistically distinct rarefactive 

process mediated by the obesity associated shift in prostanoid production through the 

COX pathway. 

The purpose of the present study was to identify key contributors to the process 

of obesity related skeletal muscle microvascular rarefaction in an established animal 

model of the metabolic syndrome.  Based on the existing data set, the hypothesis to be 

tested was that metabolic syndrome mediated rarefaction is a linear process regulated 

by a single major mechanism. This somewhat implausible hypothese was rapidly 

disproven as studies demonstrated that the process of rarefaction is far more complex.  

Rarefaction in metabolic syndrome is neither linear nor mediated by a single 

mechanism.  The system is regulated by multiple, temporally and mechanistically 
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distinct mechanisms with an early rarefactive pulse mediated by shifts in prostanoid 

production and a later pulse mediated by diminished NO bioavailability. 

MATERIALS AND METHODS: 

Animals:  Male LZRs and OZRs (6-20 wks old, as indicated; 17 weeks old if not 

otherwise indicated) were used for all experiments. Rats were fed standard chow and 

tap water ad libitum.  After an overnight fast, rats were anesthetized with injections of 

pentobarbital sodium (50 mg/kg ip) and received tracheal intubation to facilitate 

maintenance of a patent airway. In all rats, a carotid artery and an external jugular vein 

were cannulated for the determination of arterial pressure and for the intravenous 

infusion of supplemental anesthetic, if necessary. Blood was drawn from the jugular 

vein to be used for the biochemical determination of plasma glucose (Freestyle, Abbott 

Diabetes Care, Alameda, CA), insulin (Millipore, St. Charles, MO), and measurements 

for TNFα (Millipore, St. Charles MO) as well as a plasma lipid profile (Stanbio, Boerne, 

TX) and nitrotyrosine (Oxis, Foster City, CA) from each animal.  Chronic TNFα inhibition 

was accomplished in a subset of these animals through daily i.p. injection of the TNFα 

inhibitor pentoxifylline [30mg/kg/day].  In additional subsets of animals oxidant 

scavenging was achieved through the use of the membrane permeable superoxide 

dismutase mimetic 1-Oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL) [10
-3

M in 

drinking water].  In all animals, water consumption was monitored daily to assure that 

dosing was within expected parameters. 

Histological Determination of Microvessel Density: With the rat under anesthesia, 

the right gastrocnemius muscle was removed, rinsed in PSS, and lightly fixed in 1% 

formalin. Muscles were then embedded in paraffin and cut into 5-μm cross sections, and 
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stained for Griffonia simplicifolia I lectin (Sigma). From each gastrocnemius muscle, six 

randomly selected individual cross sections were used for analysis, with six randomly 

selected regions within an individual cross section chosen for study. Each region of 

study had an area of ~1.47 X 10
5
 μm

2
. After staining, sections were rinsed three times 

in PSS and mounted on microscope slides with a water-soluble mounting medium (SP, 

ACCU-MOUNT 280, Baxter). With the use of epifluorescence microscopy, localization 

of lectin stained microvessels was performed with a Nikon Eclipse 80i upright 

microscope with a X20 objective lens (Plan Fluo phase, numerical aperture 0.5). 

Excitation was provided by a 75-W xenon arc lamp through a Lambda 10-2 optical filter 

changer (Sutter Instruments; Novato, CA) controlling a 595-nm excitation filter and 615-

nm emission filter. The microscope is coupled to a cooled charge-coupled device 

camera (Photometrics CoolSNAP ES). 

Determination of Vascular TxA
2
 Production: Vascular production of 11-dehydro-

thromboxane B
2
 [the stable plasma breakdown product of TxA

2
] was assessed using 

pooled conduit arteries (femoral, saphenous, and iliac arteries) from LZRs and OZRs 

(treated & control).  Pooled vessels from each animal were incubated in microcentrifuge 

tubes in 1 ml PSS for 30 min under control conditions (21% O
2
) at room temperature 

and stimulated with an addition of exogenous arachidonic acid (10
-5

 M). After the 30-min 

period, this PSS was transferred to a fresh tube, frozen in liquid N
2
, and stored at -80°C. 

Metabolite release by the vessels was determined using commercially available EIA kits 

for 11-dehydro-TxB
2
 (Cayman Chemicals). 
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Determination of Vascular Nitric Oxide Bioavailability: From each animal, the 

abdominal aorta was removed and vascular NO production was assessed using 

amperometric sensors (World Precision Instruments). Briefly, aortae were isolated, 

sectioned longitudinally, pinned in a silastic coated dish, and superfused with warmed 

(37◦C) PSS equilibrated with 95% O2 and 5% CO2. The NO sensor (ISO-NOPF 100) 

was placed in close apposition to the endothelial surface and a baseline level of current 

was obtained. Subsequently, increasing concentrations of methacholine (10
−10

–10
−6

 M) 

were added to the bath and the changes in current were determined. To verify that the 

recorded data represented endothelium-dependent NO release, responses were 

reevaluated following acute treatment of the aortae with L-NAME (10
−4 

M). 

Statistical Analyses: As this work is preliminary, each group contains 3-4 animals.  As 

such, the study is too insufficiently powered to provide statistical analyses at this time.  

Ongoing work will, ultimately, provide greater power allowing for the employment of 

appropriate statistical methods.  The notable exception to this occurs in Table 1 which 

draws on a more robust data set allowing for animal groups of 8. 

RESULTS 

 Baseline characteristics of lean and obese Zucker rats are presented in Table 1.  

The OZR shows significantly increased mass as early as 6 weeks of age, when 

compared to age matched lean counterparts, with the disparity in lean vs. obese mass 

only becoming more pronounced with time.  Additionally, by 6 weeks of age, obese 

Zucker rats clearly demonstrate hyperinsulemia as well as hypertriglyceridemia.  By 12 

weeks of age, the obese Zucker rat additionally manifests hyperglycemia with 

demonstrable hypercholesterolemia finally manifesting at 17 weeks of age.  
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 Owing to the fact that the obese Zucker rat demonstrates all measured metrics of 

metabolic syndrome employed in this study by 17 weeks of age, initial measures of the 

effects of metabolic syndrome on tissue capillarity were performed within this age 

window.  Results of these analyses are demonstrated in Figure 1A which clearly 

demonstrates a nearly 30% loss of microvessel density (rarefaction) when comparing 

the gastrocnemius muscle microvessel density in 17 week old lean and obese Zucker 

rats.  Acknowledging that the metabolic syndrome is a process that develops over time 

in the Zucker rat and supported by the evidence shown in Table 1, further analyses of 

the temporal effects of metabolic syndrome on skeletal muscle microvessel density 

were performed from 7 to 20 weeks of age in approximately 3 week iterations.  The 

results of these analyses, summarized in Figure 1B, demonstrate that at 7 weeks of 

age, obese Zucker rats maintain normal tissue capillarity despite the elevated mass, 

plasma insulin and triglyceride levels demonstrated in Table 1.  However, given time, 

these rats undergo a biphasic rarefactive process wherein there is an early period of 

rarefaction from 7 to 10 weeks of age constituting an approximate 15% loss of 

microvessel density in the gastrocnemius muscle.  This early rarefaction is followed by a 

plateau from 10-13 weeks of age wherein there is no apparent loss of microvessel 

density.  Subsequent to the rarefactive plateau is a late phase of rarefaction 

accountable for the remaining 15% loss of microvessel density.  Analyses to 20 weeks 

of age and beyond (data not shown) demonstrate that this capillarity remains relatively 

constant through the remainder of the animal’s life. 

 Previous studies from this laboratory have demonstrated an inverse relationship 

between vascular NO bioavailability and skeletal muscle microvessel density in the 
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Zucker rat (17; 18).  Since these studies were performed in the 17 week age with no 

attention to the temporal contribution, and owing to the data in Figure 1B demonstrating 

a biphasic phenomenon, vascular NO bioavailability was assayed across the 7 to 20 

week age time-course of the study.  Figure 2A clearly demonstrates significant 

impairment to vascular NO bioavailability beginning at 13 weeks of age with more 

pronounced impairment at later time-points.  This coincides well with late rarefaction, 

while removing NO bioavailability as a likely causative agent in early rarefaction.  Based 

on previous work in this lab which demonstrated impairments in COX mediated 

prostanoid balances in the obese Zucker rat, favoring a production of TxA2 over 

prostacyclin (19), stimulated vascular production of TxA2 was measured in all time 

points.  Figure 2B, which summarizes the results of these analyses, demonstrates that 

vascular production of 11-dehydro-thromboxane-B2, the stable breakdown product of 

TxA2 is drastically elevated across the period of early rarefaction and remains so 

through 20 weeks of age. 

 Determination of a mechanistic linkage between elevations in TxA2 production 

and early rarefaction was accomplished by competitively antagonizing the TxA2 

receptor, TP, with the compound SQ-29548.  Figure 3A shows the results of this study 

wherein early rarefaction was abolished in obese Zucker rats via treatment with SQ-

29548 with no apparent non-specific effects of the compound on lean control animals.  

Figure 3B shows the results of an early withdrawal study where animals received SQ-

29548 from 6 to 13 weeks of age, however, at 13 weeks of age treatment was 

discontinued.  The results of this portion of the study demonstrate that rarefaction 

begins anew immediately following discontinuation of TP receptor antagonism. 
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 Figure 4 summarizes the data related to determining the mechanistic 

underpinnings of obesity associated elevations in TxA2.  Figures 4A and 4B 

demonstrate drastic elevations in systemic oxidant stress and plasma TNFα 

concentrations, respectively, with increasing duration of the metabolic syndrome.  In 

both the case of oxidant stress and inflammation, elevations occur early and levels of 

both nitrotyrosine and TNFα remain elevated through the time-course in untreated 

obese Zucker rats.  Elevations in oxidant stress were diminished via treatment with the 

membrane permeable superoxide dismutase mimetic TEMPOL while production of 

TNFα was inhibited through the use of pentoxifylline.  The effects of these inhibitions on 

stimulated vascular TxA2 production is summarized in Figure 4 panels C and D.  

Chronic diminishment of superoxide levels resulted in an intermediate production of 

TxA2 across the time-course.  This same effect was seen in the case of TNFα synthesis 

inhibition where chronic pentoxifylline treatment was able to maintain intermediate 

levels of TxA2.  The phenotypic consequences of chronic inhibition of oxidant stress 

mechanisms or TNFα mediated inflammatory mechanisms are summarized in Figure 4 

panels E and F. Panel E demonstrates that chronic inhibition of superoxide mediated 

effects is sufficient to blunt but not abolish the rarefactive process demonstrated with 

continued duration of metabolic syndrome in obese Zucker rats.  In contrast, Panel F 

demonstrates that inhibition of the inflammatory mediator TNFα with pentoxifylline is 

sufficient to abolish rarefaction in obese Zucker rats through 17 weeks of age. 

DISCUSSION 
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 With the development of metabolic syndrome comes the inevitable loss of ability 

to match demand and perfusion in peripheral tissues (12; 14).  Numerous investigations 

have demonstrated that alterations to vasomotor function significantly contribute to the 

inability to properly regulate perfusion into these tissues.  However, even when the 

influences of vasomotor alterations are systematically removed, perfusion levels still 

remain impaired with increasing metabolic demand (10) .  This impairment is attributed 

to a bulk loss of microvessels/capillaries in these peripheral tissues, a process termed 

rarefaction.   

 Despite the phenomenon of rarefaction being clinically and experimentally well 

established, the mechanistic underpinnings of the process are poorly understood.  

Previous work has demonstrated that capillary losses parallel loss in nitric oxide 

bioavailability and with experimental evidence to support the rationale that the loss in 

tissue capillarity is a direct result of diminished NO bioavailability (11; 18).  These 

previous studies have provided tremendous insight into the mechanisms leading to 

rarefaction and resulting in perfusion demand disparities but have suffered from the lack 

of an adequate temporal component. 

 As Table 1 in this study demonstrates, the development of metabolic syndrome 

occurs along a temporal continuum with some aspects preceding others by necessity.  

For instance, obese Zucker rats manifest demonstrable hyperinsulemia as early as 6 

weeks of age.  This hyperinsulemia must, by necessity precede any notion of the animal 

being a model of type II diabetes as glycemic control remains unimpaired until 12 weeks 

of age.  By logical extension, the fact that the animal suffers from fewer comorbities 

than those found at later time-points in the disease could have significant impact on the 
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effects of the metabolic syndrome on skeletal muscle microvessel density.  Though this 

distinction seems trivial in an animal that is able to fully manifest a metabolic syndrome 

phenotype by 17 weeks of age, the implications in humans are far more significant as 

development of metabolic syndrome is a much more gradual process typically taking 

years or even decades to fully manifest. 

 The most obvious and significant finding of this study is found in Figure 1 panel B 

which highlights the biphasic nature of obesity related microvascular rarefaction.  Prior 

to the onset of a type II diabetic phenotype, in the 7-10 week age window, a rarefactive 

pulse constituting ~50% of the total microvessel loss occurs.  It is not until 13 weeks of 

age that a second rarefactive pulse occurs resulting in all remaining rarefaction.  As this 

window is subsequent to the development of diabetes at approximately 12 weeks of 

age, the second rarefaction highlights the notion that as the pathologies evolve so do 

the consequences of those pathologies.  An admitted limitation of this study is the lack 

of attempt to correct the diabetes in these animals to determine its contributions to later 

rarefaction.  What does become evident even in these early figures, however, is that 

microvascular rarefaction in the metabolic syndrome is not the simple linear process 

that it is often portrayed to be. 

 The logical extension of a biphasic process is that each phase may be mediated 

through distinct processes.  Data supporting this hypothesis are presented in Figure 2 

which shows that the loss of NO bioavailability occurs in obese Zucker rats subsequent 

to the early rarefactive period precluding the possibility of NO reductions being a 

causative agent in the early microvessel loss.  Building on data from previous studies 

which demonstrated a shift in vascular prostanoid production with obesity, Figure 2 
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panel B presents the possibility of elevations in TxA2 as a causative factor in early 

rarefaction.  This correlative data are then further extended to demonstrate causality as 

antagonism of the TxA2 signaling pathway results in total ablation of early rarefaction 

(Figure 3).  Perhaps more interesting was the discovery that when antagonism of the 

TxA2 pathway was discontinued, rarefaction was renewed but blunted as indicated by 

the diminished slope of rarefaction in 13-17 week window.  While further studies are 

required to determine what mediates this post-therapeutic rarefaction, the 13-17 week 

blunting would strongly indicate that early TxA2 elevations are either necessary for later 

rarefaction and have some sort of causative relationship to NO bioavailability reductions 

or the TxA2 elevations somehow exacerbate the effects of NO bioavailability reductions 

enhancing the consequence of those reductions with regards to rarefaction.  Whatever 

the case may be, the evidence provided by these data indicates that while the two 

phases of rarefaction are mechanistically distinct, they may also be interconnected. 

 The final figures of this study attempt to demonstrate the cause of these 

elevations in TxA2 production with obesity.  A significant consequence early in the 

metabolic syndrome is the development of a pro-inflammatory and pro-oxidant 

environment. As increased oxidative stress and inflammation is able to activate 

numerous signaling pathways, they serve as logical targets of investigation for changes 

in the production of essentially any vascular metabolite.  Additionally, work from our lab 

and others has implicated elevations in superoxide and TNFa, specifically, in alterations 

to TxA2 production.  Figure 4 clearly demonstrates that both superoxide and TNFa 

elevations contribute to elevations in vascular TxA2 levels with the phenotypic 

consequence of enhanced rarefaction.   
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 Taken together, these data demonstrate that metabolic syndrome related 

microvascular rarefaction is a biphasic process in which each phase is both temporally 

and mechanistically distinct.  Early rarefaction is mediated by elevations in vascular 

TxA2 levels whereas late rarefaction is mediated by diminished vascular NO 

bioavailability.  Preliminary evidence would indicate that the later phase of rarefaction is 

at least partially enhanced, if not totally dependent, on early rarefactive processes.  

Additionally, these early TxA2 mediated rarefactive processes are the result of 

elevations in systemic oxidant stress and systemic inflammation.  Taken together these 

data highlight the TxA2 pathway as a target for potential future investigations into 

therapeutic treatments for metabolic syndrome related skeletal muscle microvascular 

rarefaction.  Additionally this study supports the idea of prophylactic treatment of 

metabolic syndrome subjects with anti-inflammatory and anti-oxidant drugs as this study 

provides another example of an instance where pathophysiologic elevations in either of 

those two systems is deleterious to cardiovascular outcome. 
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Table 1 
 

6 Weeks 9 Weeks 12 Weeks 15-17 Weeks 20 Weeks
Mass (g) 142+8 202+10 270+11 364+12 385+13
Mean Arterial Pressure (mmHg) 89+4 105+4 101+5 105+4 109+6
[Glucose]blood (mg/dl) 106+14 111+10 106+14 121+13 125+14

[Insulin]plasma (ng/ml) 1.4+0.4 1.2+1.1 1.0+0.5 1.5+0.6 1.4+1.0

[Triglycerides]plasma (mg/dl) 76+9 81+13 81+12 88+11 91+15

[Cholesterol]plasma (mg/dl) 67+8 69+8 71+11 74+8 84+11

6 Weeks 9 Weeks 12 Weeks 15-17 Weeks 20 Weeks
Mass (g) 184+10* 288+15* 401+14* 602+15* 680+16*
Mean Arterial Pressure (mmHg) 88+5 110+5 118+4* 128+6* 129+5*
[Glucose]blood (mg/dl) 102+12 130+18 168+16* 184+18* 188+14*

[Insulin]plasma (ng/ml) 2.5+0.4* 6.9+1.1* 8.6+2.0* 9.4+1.4* 10.4+1.9*

[Triglycerides]plasma (mg/dl) 122+16* 168+14* 167+15* 309+15* 384+16*

[Cholesterol]plasma (mg/dl) 74+10 85+10 107+13 128+12* 136+12*

Lean Zucker Rats

Obese Zucker Rats
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FIGURE LEGENDS 

Figure 1. Microvessel density in the gastrocnemius muscle of 17 week old (Panel A) or 

temporally progressing (Panel B) lean and obese Zucker rats.  Data are presented as 

mean + SEM.  

Figure 2. Stimulated vascular NO bioavailability (Panel A) or stimulated vascular 

thromboxane B2 production (Panel B) measured with amperometric sensors or via 

ELISA, respectively, as assayed in pooled conduit arteries.  Data are presented as 

mean + SEM. 

Figure 3. Panel A shows microvessel density in the gastrocnemius muscles of lean and 

obese Zucker rats receiving SQ-29548 therapies or left as untreated controls from 7-13 

weeks of age.  Panel B demonstrates gastrocnemius muscle microvessel density in 

animals receiving the same treatment as in Panel A, with discontinuation of therapy at 

13 weeks but measurement of density continuing to 20 weeks. 

Figure 4.  Figure 4 displays the elevations in oxidant stress as indicated by plasma 

nitrotyrosine levels (Panel A) along with effects of anti-ROS therapies on stimulated 

thromboxane production (Panel C) and ultimate consequence on microvessel density 

(Panel E).  Elevations in TNFα levels are highlighted in Panel B with the effects of anti-

TNFα therapies on TxB2 (Panel D) levels and microvessel density (Panel F) shown in 

subsequent panels.  
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Figure 2 
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Figure 3 
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Figure 4 
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 The purpose of the studies presented within this work was to demonstrate the 

global systemic consequences of alterations to AA metabolism on both the vasomotor 

function and vascular network structure within the skeletal muscle of a well-established 

rodent model of the metabolic syndrome.  We first sought to demonstrate that the 

alterations to AA metabolism, specifically through the cyclooxygenase pathway, do 

occur and that these alterations have significant consequences on the regulation of 

skeletal muscle vascular tone.  This was accomplished by employing a clean stimulus 

for the production of prostacyclin, a COX pathway end-product, in both obese Zucker 

rats and their age matched lean counterparts.  This study, which is presented in chapter 

2 of this document, was able to demonstrate a blunted hypoxic dilation which was 

mediated exclusively by modest reductions in prostacyclin production and impressive 

increases in the production of the vasoconstrictor thromboxane A2 within the vascular 

endothelium.  Further evidence within the same study was able to identify elevations in 

vascular superoxide levels as a causative factor in the shift from a predominant 

prostacyclin production induced vasodilation to a blunted vasodilation stemming from 

pathophysiologic overproduction of thromboxane A2.  This phenomenon could be 

blunted through treatment with a pegylated form of superoxide dismutase which 

returned production of thromboxane A2 to a more physiologic level while having no 

effects on prostacyclin production.  Interestingly, while the effects of enhanced 

superoxide levels on prostacyclin production were non-existent, PEG-SOD treatment 

was sufficient to largely restore a documented diminished sensitivity of the vessel to 

prostacyclin to normal levels.  Taken together, these data provided the foundational 

work for investigations into metabolic syndrome related alterations in COX mediated AA 
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metabolism as well as the underlying role of superoxide in this imbalance between 

prostacyclin and thromboxane. 

 Building on this previous work, investigations were performed in murine models 

of dyslipidemia, the LDLR knockout mouse and the ApoE knockout mouse.  These 

animals manifest only a single comorbidity of the metabolic syndrome but were 

interesting as work presented in “Differential Impact of Familial Hypercholesterolemia 

and Combined Hyperlipidemia on Vascular Wall and Network Remodeling in Mice” by 

Stapleton et al. provided correlative data between alterations in vascular wall 

mechanical responses and elevations in thromboxane A2 in these particular animal 

models.  This provided us with the idea that perhaps the dyslipidemia demonstrated in 

metabolic syndrome, in some way led to the elevations in TxA2 and in turn the 

vasomotor consequences that had been demonstrated in fully vested animal models of 

the metabolic syndrome, as detailed in Chapter 2.  This provided the impetus for the 

investigations detailed in Chapter 3, wherein similar alterations to AA metabolism as 

those found in the Zucker rat are demonstrated with a recapitulation of the significance 

of enhanced ROS levels as a mediator of these alterations.  Further, this manuscript 

demonstrated the relative insignificance of lipoxygenase and cytochrome p450 

pathways in the observed vasculopathies as treatments with inhibitors of each pathway 

showed no effects on system responses.   

 Based on this compelling evidence in dyslipidemic mice, and in accordance with 

documented vasoprotective effects of chronic statin therapies in humans and animal 

models, we next set out to determine whether chronic reductions in circulating 

cholesterol levels would be able to restore normal metabolism of AA via COX and, in 
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turn, confer a protective effect on the vasculature with regards to vasomotor function.  

This body of work is summarized in Chapter 4 and clearly demonstrates the ability of 

statin therapies to protect against metabolic syndrome related vasculopathies 

regardless of whether those vasculopathies were vasomotor, wall mechanical or 

network structural in nature.  The most significant result of this study was the 

demonstration that this protection occurs independent of any effects of the therapeutic 

regimen on cholesterol levels.  This was conveyed by treating animals with either statins 

(HMG-CoA reductase inhibitors) thereby diminishing the biosynthesis of cholesterol or 

fibrates whose effects increase the fractional clearance of LDL while also diminishing 

absorption of LDL by the LDL-receptor.  Table 1 within chapter 4 illustrates the ability of 

all therapeutics to significantly lower plasma cholesterol levels in treated animals.  

However, both the fibrates gemfibrozil and probucol failed to significantly protect against 

any of the previously mentioned categories of vasculopathy as evidenced by negligible 

impact of either of these therapies in any of the subsequent figures which assayed 

acetylcholine mediated dilator responses, gastrocnemius muscle microvessel density 

and arteriolar incremental distensibility.  The key finding of this study was that only 

those therapeutics that were capable of protecting against a loss of vascular NO 

bioavailability were capable of conferring vasoprotective effects and these effects in 

turn, appeared to be mediated by the drugs ability to attenuate chronic inflammatory 

responses.   

 We next undertook a more thorough examination of the process of microvascular 

rarefaction in the metabolic syndrome.  The details of Chapter 4, along with previous 

work, strongly indicated that microvascular rarefaction is mediated by the loss of 
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vascular NO bioavailability and that those therapies capable of protecting against the 

loss of NO bioavailability had the predictable outcome of protecting against skeletal 

muscle microvascular rarefaction.  It is in the experiments detailed in Chapter 5, where 

we first set out to determine the time-course of microvascular rarefaction.  The initial, 

unexpected result of this study is shown in Figure 1B of Chapter 5 which clearly 

demonstrates a biphasic rarefactive process ongoing in these animals.  The initial 

hypothesis upon which this work was operating was that, microvascular rarefaction is a 

linear process beginning in pre-metabolic syndrome animals with normal microvessel 

density and progressing in a linear fashion through the time-course of the disease until 

such time as minimum viable tissue capillarity is achieved.  The identification of a 

biphasic nature to the rarefaction immediately precluded this hypothesis from 

succeeding to be proven and additionally provided cause to re-evaluate the hypothesis 

that microvascular rarefaction is mediated by loss of vascular NO bioavailability.  It is 

plausible that if a process demonstrates two temporally distinct phases, those phases 

may well be mechanistically independent as well. 

 Investigations into the mechanistic underpinnings of early rarefaction, 

immediately ruled out reductions in NO bioavailability as a mediator of microvessel loss, 

as stimulated vascular production of NO is indistinguishable during the time period of 

early rarefaction when comparing age matched lean and obese Zucker rats.  However, 

late phase microvascular rarefaction demonstrated a strong and inverse relationship to 

vascular NO bioavailability which, when taken with the previous data, still indicates that 

the later phase of rarefaction is mediated by NO loss.  Based on the previously 

established information of Chapters 2-4, there was sufficient evidence to indicate the 
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possibility that altered inflammatory status and elevations in systemic oxidant stress 

could be impacting COX mediated metabolism and that this alteration could have 

effects on rarefaction.  The data outlined in Chapter 5 demonstrate that there are 

alterations to AA metabolism that occur early in the development of the OZR, resulting 

in drastic elevations in TxA2 during the period of early microvascular rarefaction.  

Further, when the effects of these elevations are blocked by antagonism of the TxA2 

cognate receptor TP by treatment with the competitive antagonist, SQ-29548, there is a 

complete abolition of early microvascular rarefaction.  This effect on early rarefaction 

can be blunted through alternative pathways, as demonstrated by treatment with the 

anti-TNFa synthesis compound pentoxifylline or treatment with the oxidant scavenger 

TEMPOL.  Both therapeutics were capable of drastically diminishing elevations in TxA2 

and, by extension, early rarefaction.  Finally, this study demonstrated the effects of early 

withdrawl from the compound wherein animals were treated through the entire phase of 

early rarefaction with the TP receptor antagonist SQ-29548 but then removed from 

treatment in a fashion temporally consistent with the end of early rarefaction.  What was 

demonstrated was that although rarefaction began anew, this delayed rarefactive 

process was diminished in intensity from the anticipated 15% rarefaction that generally 

occurs with late phase rarefaction to approximately a 6% loss of total microvessel 

density.   

 What requires the greatest scrutiny for future investigation is what mediated that 

pulse of late rarefaction during the early withdrawl study.  Whether this late phase 

rarefaction was still a NO mediated process or whether it was just a delayed TxA2 

mediated rarefaction has yet to be determined.  Additionally, regardless of the 
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mechanism by which the delayed rarefaction occurred, there was a significant blunting 

of microvessel loss.  This speaks to interplay between early and late rarefaction.  It’s 

possible that the early loss of microvessels through the thromboxane mediated process 

in some way primes the system for the later loss.  Alternatively, it’s additionally possible 

that TxA2 elevations in some way sensitize the system to a greater need of NO for 

maintenance of microvessel density, essentially altering the gain of the system with 

regards to NO sensitivity and microvessel sparing.  Regardless of the mechanism, 

interplay is apparent as there are obvious effects of blocking early rarefaction on 

subsequent later microvessel loss. 

 The supplementary document mentioned in the introduction of this dissertation, 

“Aspirin Resistance with Genetic Dyslipidemia: Contribution of Vascular Thromboxane 

Generation” by Frisbee et al. serves as a cautionary to target selection.  Aspirin therapy 

is one of the most commonly prescribed prophylaxes in the world today (5).  Numerous 

studies have demonstrated the ability to increase the likelihood of survivability of major 

cardiac events in those individuals on a chronic, low-dose, aspirin regimen (2-6).  

Aspirin serves in this capacity through its ability as a COX-2 inhibitor, decreasing TxA2 

production by platelets and diminishing platelet aggregation with the result of reducing 

chance of thrombus formation (2).  Based on this work, COX-2 selective drugs have 

been developed for the purpose of prophylaxis primarily in individuals with some form of 

chronic inflammatory disease.  What has received significant media attention is the 

voluntary recall of the selective COX-2 inhibitor Vioxx which was found to significantly 

increase the probability of negative outcomes from a major cardiovascular event.  To 

many, this finding was unsurprising since you lose the contributions of prostacyclin, 
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prostaglandins and thromboxane in the regulation of vascular tone through this highly 

upstream inhibition.  Where Appendix II serves as a cautionary is in its demonstration of 

dyslipidemic mice to lose sensitivity to chronic aspirin therapies.  Essentially, after any 

significant period of time with profound dyslipidemia, in mice, the prophylaxis with 

Aspirin loses any therapeutic value.  While studies have to be performed in a fully 

vested model of metabolic syndrome, logical extension is that since these animals 

demonstrate similarly profound dyslipidemia, a similar resistant phenotype will emerge.  

Additionally, since the vasomotor and network consequences of COX metabolites 

seems to stem from an imbalance in their production as opposed to a uniform 

overproduction of all COX metabolites, more selective downstream targets will logically 

have greater therapeutic potential. 

 Conjecture based on the data presented within this work leads to the following 

conclusions.  There are significant consequences to the peripheral vasculature resulting 

from an imbalance of COX metabolites with moderately diminished prostacyclin 

production and sensitivity coupled with drastically elevated TxA2 production resulting in 

enhanced vascular tone, blunted dilator responses, increased vessel wall stiffness and 

profound microvascular rarefaction.  Evidence from clinical trials indicates that the 

adverse effects of chronic COX inhibition severely outweigh therapeutic potential.  

Additionally, animal models of dyslipidemia whose lipid levels mimic those found in 

metabolic syndrome models demonstrate the very real potential of chronic COX 

therapies being ineffectual with time as a resistant phenotype emerges.  Metabolic 

syndrome individuals require a better therapeutic target for therapies to disrupt these 

COX mediated effects.  In the short term, the answers would seem to come from 
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antagonism of the TxA2 dependent pathways which have been shown to protect against 

rarefaction and blunted dilator responses in animal models of metabolic syndrome. 

 While the above mentioned therapies show promise for the short-term, where 

they fail is in a mechanistic understanding of the cause of alterations in COX metabolite 

balance.  Inhibition of the TxA2 pathway still does improve the production of 

prostacyclin.  While a more physiologic ratio of TxA2 to prostacyclin may be achievable 

simply through TxA2 pathway antagonism, this doesn’t correct the diminished sensitivity 

of the system to prostacyclin.  Chronic anti-oxidant therapies demonstrate the ability to 

confer partial protection against rarefaction along with partial restoration of normal 

vasomotor responses while also returning sensitivity of the system to prostacyclin.  This 

combined with similar effects of anti-inflammatory drugs would indicate that while the 

processes of vascular dysfunction are resulting from alterations to COX metabolite 

balances, the origin of the problem is not in AA metabolism but rather the effects of 

chronic inflammation and elevations in oxidant stress on the system.  Further studies 

are required to determine the origins of this inflammation and oxidant stress to begin to 

truly treat the root of a problem that appears to extend significantly beyond AA 

metabolism. 

 Additionally, future studies need to redouble their efforts on the understanding of 

metabolic syndrome related skeletal muscle microvascular rarefaction.  Work by Frisbee 

et al. has demonstrated that in the obese Zucker rat, when allowed to reach fully 

established metabolic syndrome symptomology, even a fully dilated vascular bed is 

incapable of matching perfusion with increased metabolic demand resulting in more 

rapid rates of fatigue and reduced maximal muscle tension development (1).  This 
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inability to match metabolic demand with perfusion is a hallmark of metabolic syndrome 

and is too readily attributed to the complex interplay of vasomotor regulators.  While 

there is no doubt that the dysregulation of the vasomotor plays a significant role in 

demand:perfusion impairment, the ability to adequately repair a complex system such 

as regulation of vascular tone will require extensive further studies.  On the contrary, 

making sure there is adequate tissue capillarity to maintain bulk flow though may be a 

much more correctable problem.  Rarefaction itself has largely been ignored owing to 

the fact that tissues work with a surplus capillarity and even when working with a deficit, 

the ability to regulate tone allows a tissue to maintain adequate perfusion much more 

readily than if vessels were passive.  This fails to take into account that with each 

capillary lost, the error term for proper vasomotor regulation must become 

proportionately smaller to maintain normal flow.  The caveat being that if tissue 

capillarity can be spared, this error term can afford to remain much larger.  Taken 

together these data suggest that further investigations into understanding the underlying 

mechanisms resulting in elevations in oxidant stress and inflammatory status are 

essential to understanding the true cause of obesity related vascular disease and that it 

is only through an understanding of the origins of these problems that a true therapeutic 

regimen against these multi-faceted vasculopathies can be developed.  
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Adam Goodwill 
3132 Health Sciences North 
Morgantown, WV 26506 
Phone: (304) 293-4199 
Email: agoodwill@hsc.wvu.edu 
 
EDUCATION 
Undergraduate 
  - Clarion University of Pennsylvania 1998-2003 

B.S. in Molecular Biology/Biotechnology, B.S. in Biology, Minor in Chemistry 
        
Graduate 
  - West Virginia University 2006-2011 

Integrated Biomedical Sciences PhD Program, Physiology & Pharmacology PhD 
Program 

          
COURSEWORK 
Undergraduate 

− Analytical Chemistry/lab 
− Anatomy and Physiology I/lab 
− Applications of Microcomputers 
− Biochemistry/lab 
− Calculus and Analytical 

Geometry 
− Cell Biology/lab 
− Cell Physiology/lab 
− Chemical Information & Safety 
− Computer Information Processing 
− Elementary & Applied Statistics 
− General Microbiology/lab 

− Genetics/lab 
− Immunology/Lab 
− Inorganic Chemistry/lab 
− Mammalian Cell and Tissue 

Culture/lab 
− Microbial Genetics/lab 
− Molecular Biology/lab 
− Organic Chemistry I &II/labs 
− Pathogenic Microbiology/lab 
− Physical Chemistry/lab 
− Undergraduate Seminar in 

Biology I & II 
− Vertebrate Embryology/Lab 

Graduate 
− Biostatistics 
− Cardiovascular and Respiratory 

Biology 
− Cell Structure and Metabolism 
− Current Topics in Biochemistry 
− Fundamentals of Integrated 

Systems 
− Grad Physiology/Pharmacology 1 
− Graduate Colloquium 

− Immunology II 
− Microbial Pathogenesis 
− Molecular Genetics 
− Physiology Literature 
− Proteins and Proteomics 
− Physiology of Inflammation 
− Scientific Writing 
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RELEVANT EMPLOYMENT 
 

April 2006-August 2006 Research Assistant I, Jefferson Frisbee’s Lab, W.V.U. 
 In this position I served as one of two laboratory technicians in a lab studying 

the effects of obesity on the microcirculation.  Specifically, I performed the 
experiments deemed to be molecular.  These experiments, by and large, 
consisted of western blots, gelatin zymography and operation of the Luminex 
200 system.  Additionally, I aided in interpreting the data generated by the 
Luminex system. 

 
July 2004-April 2006 Research Assistant I, Thomas Elliott’s Lab, W.V.U. 
 In this position I served as the laboratory manager and sole research 

assistant for a lab studying the role of a specific stress factor, RpoS, in the 
gene regulation of the organism Salmonella typhimurium.  During my time 
there, I was in charge of all ordering and record keeping.  Additionally I 
generated several databases to search our extensive collection of custom 
oligos and strains.  I also conducted experiments for the lab utilizing, 
primarily, my molecular biology and cell biology experience. 

 
BRIEF OVERVIEW OF CURRENT RESEARCH 
 
My work focuses on changes to both vascular network structure and vasomotor 
responses as a result of attainment and maintenance of a profoundly obese state.  This 
state of obesity, along with the accompanying constellation of comorbidities 
(atherogenic dyslipidemia, prothrombotic environment, pro-oxidant environment, 
hypertrigylceridemia, hyperlipidemia, insulin resistance, hypertension, etc.) causes 
complex changes to the vasculature of afflicted animals and individuals.  My current 
research tries to define the relationships between changes to the inflammatory profile, 
oxidant environment, vascular metabolism of arachidonic acid & the ultimate 
consequent alterations to structure, function and perfusion-control within peripheral 
vascular networks. 
 
BOOK CHAPTERS AND REVIEWS 
 

1. P.A. Stapleton, A.G. Goodwill, M.E. James, R.W. Brock and J.C. Frisbee. 
“Interventional Strategies In Hypercholesterolemia” The Journal of Inflammation 
(Lond). 2010 Nov 18;7(1):54. [Epub ahead of print] PMID: 21087503 

2. A.G. Goodwill and J.C. Frisbee.  “Oxidant Stress and Skeletal Muscle 
Microvasculopathy in the Metabolic Syndrome”  Humana Press/Springer Science 
Inc.; for “Oxidative Stress in Applied Basic Science and Clinical Research” [In 
Preparation]. 

3. P.A. Stapleton, M.E. James, A.G. Goodwill, J.C. Frisbee.  Obesity and Vascular 
Dysfunction.   Pathophysiology. 2008 Aug;15(2):79-89. [Epub 2008 Jun 20]. 
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PEER REVIEWED PUBLICATIONS 
 

1. J.T. Butcher, A.G. Goodwill, J.C. Frisbee. The Ex-Vivo Isolated Microvessel 
Preparation as a Method of Investigation into Skeletal Muscle Perfusion. The 
Journal of Visualized Experiments. [In Press] 

2. J.C. Frisbee, F. Wu, A.G. Goodwill, J.T. Butcher, and D.A. Beard. Spatial  
Heterogeneity in Skeletal Muscle Microvascular Perfusion Distribution is 
Increased in the Metabolic Syndrome. Am J Physiol Regul Integr Comp Physiol 
2011 Oct;301(4):R975-86. Epub 2011 Jul 20. PMID: 21775645 

3. J.C. Frisbee, A.G. Goodwill, J.T. Butcher, and I.M. Olfert. Divergence Between 
Arterial Perfusion and Fatigue Resistance in Skeletal Muscle in the Metabolic 
Syndrome. Exp Physiol. 2011 Mar;96(3):369-83. Epub 2010 Dec 1. 
PMID:21123363 

4. S.J. Frisbee, C.B. Chambers, J.C. Frisbee, A.G. Goodwill, and R.J. Crout. Self-
Reported Dental Hygiene, Obesity, and Systemic Inflammation in a Pediatric 
Rural Community Cohort. BMC Oral Health 2010 Sep 18;10(1):21. PMID: 
20849640 

5. J. C. Frisbee, A.G. Goodwill, P.A Stapleton, S.J. Frisbee, and A.C. d'Audiffret. 
Aspirin Resistance with Genetic Dyslipidemia: Contribution of Vascular 
Thromboxane Generation. Physiologic Genomics.  2010 Jun 8. [Epub ahead of 
print] 
PMID: 20530721  

6. S.J. Frisbee, C.B. Chambers, J.C. Frisbee, A.G. Goodwill and R.J. Crout. 
Association Between Dental Hygiene, Cardiovascular Disease Risk, and 
Systemic Inflammation in Rural Adults. J Dent Hyg. 2010;84(4):177-84. [Epub 
2010 Nov 1]. PMID: 21047463  

7. A.C. d’Audiffret, S.J. Frisbee, P.A. Stapleton,  A.G. Goodwill, M.E. James, E. 
Isingrini and J.C. Frisbee. Depressive Behavior and Vascular Dysfunction: A Link 
Between Clinical Depression AND Vascular Disease?. The Journal of Applied 
Physiology. 2010 Feb 18. [Epub ahead of print]. PMID: 20167667 

8. T.R. Nurkiewicz, D.W. Porter, A.F. Hubbs, S. Stone, A.M. Moseley, J.L. 
Cumpston, A.G. Goodwill, S.J. Frisbee, P.L. Perrotta, R.W. Brock, J.C. Frisbee, 
M.A. Boegehold, D.G. Frazer, B.T. Chen and V. Castranova.  Pulmonary 
Particulate Matter and Systemic Microvascular Dysfunction. Health Effects 
Institute [In Review], 2009. 

9. A.G. Goodwill, S.J. Frisbee, P.A. Stapleton, M.E. James and J.C. Frisbee.  
Impact of Chronic Anti-Cholesterol Therapy on Development of Microvascular 
Rarefaction in the Metabolic Syndrome.  Microcirculation. 2009 Nov;16(8):667-
84. PMID: 19905967 

10. J.B. Samora, A.G. Goodwill, J.C. Frisbee, M.A. Boegehold. Growth-Dependant 
Changes in the Contribution of Carbon Monoxide to Artertiolar Function. Journal 
of Vascular Research. 2010;47(1):23-34. [Epub 2009 Aug 6]. PMID: 19672105 

11. A.G. Goodwill, P.A. Stapleton, M.E. James, J.C. Frisbee. Increased Arachidonic 
Acid-Induced Thromboxane Generation Impairs Skeletal Muscle Arteriolar 
Dilation with Genetic Dyslipidemia. Microcirculation. 2008 Oct;15(7):621-31. 
PMID: 18720229 
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12. A.G. Goodwill, M.E. James, J.C. Frisbee. Increased vascular thromboxane 
generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with 
reduced oxygen tension. Am J Physiol Heart Circ Physiol. 2008 
Oct;295(4):H1522-8. Epub 2008 Aug 8. PMID: 18689495 

13. P.A. Stapleton, A.G. Goodwill, M.E. James, J.C. Frisbee. Altered Mechanisms 
of Endothelium-Dependent Dilation in Skeletal Muscle Arterioles with Genetic 
Hypercholesterolemia. Am J Physiol Regul Integr Comp Physiol. 2007 
Sep;293(3):R1110-9. PMID: 17626122 

14. Amy M. Jones, Adam Goodwill and T. Elliott. Limited Role for the DsrA and 
RprA Regulatory RNAs in rpoS Regulation in Salmonella enterica. J Bacteriol. 
2006 Jul;188(14):5077-88. PMID: 16816180 

 
CONFERENCE PRESENTATIONS 
 

1. Invited Lecture: Tumor necrosis factor alpha contributes to vascular dysfunction 
and skeletal muscle microvascular rarefaction in the obese Zucker rat. A.G. 
Goodwill, J.T. Butcher, J.C. Frisbee. Experimental Biology 2011/Microcirculatory 
Society President’s Symposium II, Washington D.C., District of Columbia, United 
States, 2011-04; Abstract 636.16 

2. Poster: Temporal progression of microvascular rarefaction in the metabolic 
syndrome.  A.G. Goodwill, J.C. Frisbee. Experimental Biology 2011, 
Washington D.C., District of Columbia, United States, 2011-04; Abstract 636.17 

3. Poster: Differential impact of myogenic activation on dilator responses in cerebral 
and skeletal muscle resistance arterioles of obese Zucker rats.  J.T. Butcher, 
A.G. Goodwill, J.C. Frisbee. Experimental Biology 2011, Washington D.C., 
District of Columbia, United States, 2011-04; Abstract 816.9 

4. Poster: Divergence between arterial perfusion and fatigue resistance in skeletal 
muscle in the metabolic syndrome.  J. C. Frisbee, A.G. Goodwill, J.T. Butcher, 
I.M. Olfert. Experimental Biology 2011, Washington D.C., District of Columbia, 
United States, 2011-04; Abstract 1023.7 

5. Poster: Effect of remote ischemic preconditioning on hepatic parenchymal and 
microvascular damage in obesity.  H.A. O'Leary, A. Kothur, S.B. Fournier, A.G. 
Goodwill, J.C. Frisbee, R.W. Brock. Experimental Biology 2011, Washington 
D.C., District of Columbia, United States, 2011-04; Abstract 1117.9 

6. Poster: Alterations in hepatic tumor cell colonization during obesity.  H.A. 
O'Leary, A. Kothur, A.G. Goodwill, J.C. Frisbee, R.W. Brock. Experimental 
Biology 2011, Washington D.C., District of Columbia, United States, 2011-04; 
Abstract 639.2 

7. Poster: Tumor necrosis factor alpha contributes to vascular dysfunction and 
skeletal muscle microvascular rarefaction in the obese Zucker rat. A.G. 
Goodwill, J.T. Butcher, J.C. Frisbee. Experimental Biology 2011, Washington 
D.C., District of Columbia, United States, 2011-04; Abstract 636.16 
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8. Poster: Obesity-induced increased vascular thromboxane A2 Generation: An 
initiating stimulus for microvascular rarefaction? A.G. Goodwill, P.A. Stapleton, 
S.J. Frisbee, and J.C. Frisbee. World Congress for Microcirculation 2010, Paris 
France. 2010-09 

9. Poster: Aspirin resistance with genetic dyslipidemia: Contribution of vascular 
thromboxane generation. J.C. Frisbee, A.G. Goodwill, P.A. Stapleton, S.J. 
Frisbee, and A.C. d’Audiffret. World Congress for Microcirculation 2010, Paris, 
France. 2010-09 

10. Poster: Increased vascular generation of thromboxane A2: An initiating condition 
for microvascular rarefaction in obese Zucker rats? A.G. Goodwill, P.A. 
Stapleton, S.J. Frisbee, M.E. James and J.C. Frisbee. Experimental Biology 
2010, Anaheim, California, United States. 2010-04; Abstract 774.19 

11. Poster: Insulin resistance-independent impairments to arterial endothelial 
function with depressive symptoms in mice.  J.A.L. Beckett, M.E. James, P.A. 
Stapleton, A.G. Goodwill, A.C. d’Audiffret and J.C. Frisbee. Experimental 
Biology 2010, Anaheim, California, United States. 2010-04; Abstract 1044.3 

12. Poster: Impaired arteriolar dilation in a mouse model of familial 
hypercholesterolemia and anti-cholesterol therapy. P.A. Stapleton, A.G. 
Goodwill, M.R. Morrisette, M.E. James and J.C. Frisbee.  Experimental Biology 
2010, Anaheim, California, United States. 2010-04; Abstract 593.5 

13. Invited Lecture: Correlations between peripheral vascular function, inflammation 
and depression in human subjects.  P.A. Stapleton, A.C. d'Audiffret, S.J. Frisbee, 
A.G. Goodwill, M.E. James, and J.C. Frisbee.  Experimental Biology 2009, New 
Orleans, Louisiana, United States. 2009-04; Abstract 23:795.3. 

14. Poster: Vascular thromboxane generation restrains arteriolar hypoxic dilation in 
skeletal muscle of OZRs. A.G. Goodwill, J.M. Hollander, R.W. Brock, M.E. 
James and J.C. Frisbee. Experimental Biology 2009, New Orleans, Louisiana, 
United States. 2009-04; Abstract 23:767.9. 

15. Poster: AA-induced TxA2 generation impairs skeletal muscle arteriolar dilation 
with genetic dyslipidemia. A.G. Goodwill, P.A. Stapleton, M.E. James, A.C. 
d’Audiffret and J.C. Frisbee. Experimental Biology 2009, New Orleans, 
Louisiana, United States. 2009-04; Abstract 23:766.3. 

16. Poster: Development of a predictive model for negative microvascular outcomes 
in the metabolic syndrome. J.C. Frisbee, A.G. Goodwill, M.E. James, R.W. 
Brock, J.M. Hollander and S.J. Frisbee. Experimental Biology 2009, New 
Orleans, Louisiana, United States. 2009-04; Abstract 23:594.11. 

17. Poster: Mechanistic links between the lung and the systemic microcirculation 
after nanoparticle exposure. T.R. Nurkiewicz, M. Donlin, A.F. Hubbs, A.G. 
Goodwill, J.C. Frisbee, B.T. Chen, D.G. Frazer and V. Castranova. Society of 
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Toxicology, Baltimore, Maryland, United States. Toxicological Sciences, March 
108 (1-S), 1353, 2009. 

18. Poster: Diesel exhaust exposure alters microvascular blood flow and wall shear 
rate. K.L. Sites, A.G. Goodwill, J.C. Frisbee and T.R. Nurkiewicz. Society of 
Toxicology, Baltimore, Maryland, United States. March 108 (1-S), 200, 2009. 

19. Invited Lecture: Metabolic Syndrome and Microvascular Rarefaction: 
Contributions from Nitric Oxide and Inflammation. J.C. Frisbee, A.G. Goodwill, 
P.A. Stapleton, M.E. James, R.W. Bryner, and S.J. Frisbee. The 25th 
Conference of the European Society for Microcirculation; Integrating Vascular 
Biology and Medicine, Budapest, Hungary. 2008-08 

20. Invited Lecture: Microvascular Adaptations to Obesity and the Metabolic 
Syndrome. J. Frisbee, A.G. Goodwill, M. James, R. Bryner, S. Frisbee. 2008 
APS Intersociety Meeting: The Integrative Biology of Exercise V, Hilton Head, 
South Carolina, United States. 2008-08 

21. Invited Lecture: The Metabolic Syndrome and Microvascular Rarefaction: 
Integrated Model for NO Bioavailability. J.C. Frisbee, A.G. Goodwill, P.A. 
Stapleton, M.E. James, R.W. Bryner, S.J. Frisbee European Society for 
Microcirculation Annual Meeting 2008, Budapest, Hungary. 2008-08 

22. Poster: Dental Habits Related to Adult Cardiovascular Disease and Systemic 
Inflammation. S.J. Frisbee, C.B. Chambers, J.C. Frisbee, A.G. Goodwill, R.J. 
Crout. The International Association for Dental Research (IADR) 37th Annual 
Meeting & Exhibition, Dallas, Texas, United States. 2008-04 

23. Poster: Dental health, cardiovascular disease risk and systemic inflammation in 
children. C.B. Chambers, S.J. Frisbee, J.C. Frisbee, A.G. Goodwill and R.J. 
Crout. The International Association for Dental Research (IADR) 37th Annual 
Meeting & Exhibition, Dallas, Texas, United States. 2008-04 

24. Poster: Arachidonic acid-induced vascular thromboxane generation in mouse 
models of atherothrombotic vascular disease. J.C. Frisbee, M.E. James, A.G. 
Goodwill and C. Khamare. 2007-05  

25. Poster: Influences of age and gender on cardiovascular disease risk factor 
associated inflammation. S.J. Frisbee, A.G. Goodwill, J.M. Delp and J.C. 
Frisbee. American Heart Association, Epidemiology Council Meeting, 2007, 
Orlando, Florida, United States. 2007-02 

26. Poster: Altered Patterns of Inflammatory Marker Expression in Plasma of Obese 
vs. Dyslipidemic Humans. S.J. Frisbee, A.G. Goodwill, M. Boegehold, W.A. 
Neal, J.C. Frisbee. North American Association for the study of obesity (NAASO) 
Annual Scientific Meeting, Boston, Massachusetts, United States. 2006-10 

27. Invited Lecture: Inflammation, NO bioavailability and the metabolic syndrome: 
interactions leading to rarefaction. J.C. Frisbee, A.G. Goodwill and S.J. Frisbee. 
Workshop on Mathematical Modeling of Microcirculation; Mathematical 
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Biosciences Institute at Ohio State University, Columbus, Ohio, United States. 
2006-10 

28. Poster: Low Vascular NO Bioavailability-Induced Microvascular Rarefaction is not 
Associated with Angiostatin. J.C. Frisbee, M.E. James, J. Balch Samora, A.G. 
Goodwill, B. Chelladurai and D.P. Basile. Arteriosclerosis, Thrombosis and 
Vascular Biology 2006 Scientific Sessions, Washington D.C., District of 
Columbia, United States. 2006-04 

29. Lecture: Regulation of RpoS in enteric bacteria. Hirsch, M., A.M. Jones, A. 
Goodwill & T. Elliott. The Seventh Analytical Genetics Meeting, San Diego, 
California, United States. 2005-10 

30. Lecture: Production of Green Sheen Differs Depending Upon Atmospheric 
Conditions and Medium Formulations. Adam G. Goodwill, Heather A. O'Leary, 
Amanda M. Hartle, Kate H. Eggleton, and Douglas M. Smith. 2003-04 

31. Poster: Identification of the Green Sheen Gene In Uropathogenic E. coli. 
Essandoh, Eugene, Leonard Kotevski, Heather O’Leary, Adam Goodwill, Carrie 
Martz, Josh Yeykal, Rebhecca Parisi, Kate Eggleton, Douglas M. Smith. 
Commonwealth of Pennsylvania University Biologists 34th Annual Meeting, 
Shippensburg, Pennsylvania, United States. 2003-04 

32. Poster: Production of Green Sheen Differs Depending on Atmospheric 
Conditions and EMB Medium Formulations. Adam G. Goodwill, Heather A. 
O'Leary, Douglas M. Smith, Ph.D. 2002 Annual meeting of the Allegheny Branch 
of the American Society for Microbiology, Clarion, Pennsylvania, United States. 
2002-10 

33. Poster: Production Of Green Sheen Differs Depending Upon Atmospheric 
Conditions and Medium Formulations. Goodwill, A.G., H. A. O’Leary, A. M. 
Hartle, K. H. Eggleton and D. M. Smith. Commonwealth of Pennsylvania 
University Biologists 33rd Annual Meeting, Lock Haven, Pennsylvania, United 
States. 2002-04 

INSTITUTIONAL PRESENTATIONS 
 

1. Lecture: Microvascular Rarefaction in the Metabolic Syndrome: Goodwill A.G. 
The Department of Physiology & Pharmacology Julie Betschard Symposium 
2011-05 

2. Invited Lecture: Temporal Progression of Microvascular Rarefaction in the 
Metabolic Syndrome: Goodwill A.G. The West Virginia University 2011 E.J. Van 
Liere Memorial Convocation and Research Day. 2011-03 

3. Lecture: Temporal Progression of Microvascular Rarefaction in the Metabolic 
Syndrome: Goodwill A.G. The Department of Physiology and Pharmacology 
required annual seminar. 2011-02. 
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4. Invited Lecture:  Microvascular Rarefaction in the Obese Zucker Rat: Goodwill 
A.G. The West Virginia University School of Pharmacy Research Day. 2010-10. 

5. Lecture: Increased Vascular Generation of Thromboxane A2: An Initiating 
Condition For Microvascular Rarefaction in Obese Zucker Rats? Goodwill A.G. 
The Department of Physiology & Pharmacology Julie Betschard Symposium. 
2010-05 

6. Lecture: Aspirin Resistance with Genetic Dyslipidemia: Contribution of Vascular 
Thromboxane Generation.  Goodwill A.G. The Department of Physiology and 
Pharmacology required annual seminar. 2010-04 

7. Lecture: Vascular Consequences of Obesity Induced Alterations to Arachidonic 
Acid Metabolism in Obese Zucker Rats. Goodwill A.G. The West Virginia 
University Center for Cardiovascular and Respiratory Sciences monthly work in 
progress meeting. 2009-12 

8. Lecture: Impact of Chronic Anti-Cholesterol Therapy on Development of 
Microvascular Rarefaction in the Metabolic Syndrome. Goodwill A.G. The 
Department of Physiology and Pharmacology required annual seminar. 2009-09 

9. Lecture: Increased Vascular Thromboxane Generation Restrains Arteriolar 
Dilation to Hypoxia in Obese Zucker Rats. Goodwill A.G. The Department of 
Physiology & Pharmacology Julie Betschard Symposium. 2009-05 

10. Poster: Elevated Vascular Thromboxane Generation Impairs Dilation of OZR 
Arterioles with Reduced O2 Tension. Goodwill A.G. The West Virginia University 
2009 E.J. Van Liere Memorial Convocation and Research Day.2009-04 

11. Lecture: Arachidonic Acid-Induced TxA2 Generation Impairs Arteriolar Dilation 
with Genetic Dyslipidemia. Goodwill A.G.. The Department of Physiology & 
Pharmacology Julie Betschard Symposium. 2008-05 

12. Lecture: Increased Arachidonic Acid-Induced Thromboxane Generation Impairs 
Skeletal Muscle Arteriolar Dilation with Genetic Dyslipidemia. Goodwill A.G. The 
Department of Physiology and Pharmacology required annual seminar. 2008-04 

TEACHING EXPERIENCE 
 

− Special Topics in Physiology; West Virginia University   2009 
• I facilitated a study group in which specific topics including cardiovascular, 

respiratory, and renal physiology were expanded from the perspective of 
clinical relevance. This course, designed for medical students, sought to 
integrate clinical case studies with the basic biomedical sciences required 
to understand the processes of the pathologies presented within those 
studies.  This course was facilitated by 3 separate instructors. 
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− Cardiovascular Physiology Study Session; West Virginia University 2008-2009 
• Facilitated a 3 to 5 hour per week study group to aid select pharmacy 

professional students in increasing their understanding of cardiovascular 
physiology. I was asked to facilitate this tutoring group by the Pharmacy 
department.  This was only offered during the cardiovascular modules of 
their normal coursework each year. 

− Genetics Study Session; Clarion University    2002-2003 
• Co-taught a supplementary course designed to complement didactic 

materials for the genetics course which was required for all 
undergraduates in a biology discipline at Clarion University. This course 
reinforced concepts taught within the undergraduate genetics curriculum. 

 
INSTITUTIONAL SERVICE 
 

1. Graduate Student Representative, West Virginia University Vice President for 
Research and Development Search Committee; 2011 

2. Student Member, West Virginia University Vice President for Health Sciences 
Research and Graduate Education Search Committee; 2010 

 
SERVICE TO SCIENTIFIC SOCIETIES 
 

1. Microcirculatory Society Young Investigator Symposium Co-Chair. Experimental 
Biology, Washington D.C., District of Columbia, United States.  2011-04 

AWARDS & FELLOWSHIPS 
 

1. Runner up, Best Oral Presentation, Julie Betschart Symposium W.V.U. Dept of 
Physiology and Pharmacology  

2011 
2. Runner up, American Society for Pharmacology and Experimental Therapeutics 

Cardiovascular Section Graduate Student Best Abstract Award   
          2011 

3. Society for Experimental Biology and Medicine, Burton E. Sobel Award for 
Excellence in Cardiovascular Research 

2011 
4. American Society for Pharmacology and Experimental Therapeutics Graduate 

Student Travel Award; Experimental Biology 
2011 

5. Runner up, Best Oral Presentation The West Virginia University E.J. Van Liere 
Memorial Convocation/ 

2011 
6. Best Oral Presentation, Julie Betschart Symposium W.V.U. Dept of Physiology 

and Pharmacology          
2010 
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7. ORAU-Fellowship for 60th Annual Lindau Meeting of Nobel Laureates in 
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