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ABSTRACT

Dynamic Coloring of Graphs

Bruce Montgomery

In this dissertation, we introduce and study the idea of a dynamic coloring

of a graph, a coloring in which any multiple-degree vertex of the graph must

be adjacent to at least two color classes.

As parts of the overall research, we study (for some interesting subjects

of colorings) the corresponding subjects of dynamic colorings, we compare

the chromatic number and dynamic chromatic number, and we study some

problems unique to dynamic colorings. Also, we introduce and briefly study

a generalization of dynamic coloring.

The interesting subjects of colorings we consider are the chromatic num-

ber of important graphs, upper bounds of the chromatic number, vertex-

critical graphs, and stable graphs. For these first three subjects, we prove

theorems for dynamic colorings that are similar to important theorems known

for proper colorings, while we show no such theorems exist for stable graphs.

We make an extensive comparison of the two chromatic numbers that

includes a description of graphs for which the two chromatic numbers are

equal, that presents a class of graphs for which the per-graph differences in

the two chromatic numbers is unbounded, that shows the difference is at

most two for any K1,3-free graph, and that studies the difference for regular

graphs.

In our study of some unique problems of dynamic colorings, we character-

ize the graphs for which the dynamic chromatic number equals the number of

vertices, we characterize the graphs for which the dynamic chromatic number



equals one less than the number of vertices, we characterize the graphs for

which the deletion of some vertex causes the dynamic chromatic number to

decrease by more than one, and we obtain strong results describing graphs

for which the removal of any vertex causes the dynamic chromatic number

to increase.

Finally, we introduce and briefly study a generalization of dynamic col-

oring.
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Chapter 1

Introduction

1.1 General Idea

This dissertation proposes the idea of a dynamic coloring of a graph, which

we now motivate and define.

A graph coloring assigns distinct colors to adjacent vertices. A coloring of

the graph in which a typical vertex is adjacent to more than one color class

represents a situation in which the typical individual has a greater variety

in the types of relationships. Thus, the overall interactions would not be so

limited but more dynamic.

Hence, a dynamic coloring is defined as a proper coloring for which any

vertex of degree at least two is adjacent to more than one color class. As in

the case of graph colorings, a chromatic number for dynamic colorings may

similarly be defined.

Of course, any interesting problems of proper colorings may be reconsid-

ered for dynamic colorings–the additional condition gives a fresh perspective.

And the new condition creates significant problems that are unique for dy-

namic colorings.
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1.2 Definitions, Terminology, and Notation

In this section, the definitions, terminology, and notation used throughout

are described. Terminology especially relevant to a particular section but

not to previous sections will first be described in that section. With few

exceptions, the definitions, terminology, and notation used here is consistent

with that found in [2].

All graphs are finite and simple graphs. A graph with just one vertex is

called trivial. Any graph is assumed to be connected, although the removal

of edges or vertices may result in a graph that is not connected.

A graph is typically denoted by G with vertex set V = V (G) and edge

set E = E(G), with n denoting |V |. The neighbor set N(v) of a vertex v is

the set of vertices adjacent to v. The degree of v is denoted by d(v). The

minimum vertex degree is denoted by δ = δ(G), and the maximum vertex

degree is denoted by ∆ = ∆(G). A k-coloring of G is an assignment of k colors

1, 2, ..., k to the vertices of G. The k-coloring is proper if no two adjacent

vertices are assigned the same color. The chromatic number χ = χ(G) is the

minimum k for which G has a proper k-coloring. A coloring of G is typically

a χ-coloring of G.

A dynamic coloring is defined as a proper coloring in which any multiple-

degree vertex is adjacent to more than one color class. A dynamic coloring

is thus a map c from V to the set of colors such that

(C1) If uv ∈ E(G), then c(u) 6= c(v), and

(C2) For each vertex v ∈ V (G), |c(N(v))| ≥ min{2, d(v)}
We call the first condition, which characterizes proper colorings, the ad-

jacency condition, and we call the second condition the double-adjacency

condition. The dynamic chromatic number χd = χd(G) is the minimum k

for which G has a dynamic k-coloring. The term dynamic coloring at times

denotes a dynamic χd-coloring, which should be clear from context.
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Chapter 2

Dynamic Chromatic Number of

Particular Graphs

In this chapter, the dynamic chromatic number is obtained for complete

graphs, trees, complete bipartite graphs, and cycles.

First note the simple fact that any graph has a dynamic coloring, since

a coloring for which each vertex is colored differently satisfies the adjacency

and double-adjacency conditions, and so minimizing over a nonempty set

determines a dynamic coloring. Thus, χd(G) ≤ n for any graph G.

Since any dynamic coloring is a proper coloring, χd(G) ≥ χ(G) for any

graph G. Thus, χd(Kn) = n.

Theorem 1 Let G be a connected, nontrivial graph. Then χd(K2) = 2 and

χd(G) ≥ 3 otherwise.

Proof: If n = 2, then G = K2 and χd(K2) = 2.

Otherwise, n ≥ 3 and since G is connected, then G has a path of length

two as a subgraph. Hence, some vertex v on the path has two or more

neighbors, and in a dynamic coloring at least two of them have different colors

3



by the double-adjacency condition. Since those colors must be different from

the color assigned to v, then χd(G) ≥ 3. 2

The path of n vertices is denoted by Pn.

Theorem 2 For any tree G other than K1 or K2, χd(G) = 3.

Proof: The proof is by induction on n.

For n = 1 or 2, G = Kn and χd(Kn) = n.

For n = 3, G = P3 and χd(P3) = 3.

For a tree G of n ≥ 4 vertices, the tree G − v, where d(v) = 1, satisfies

χd(G− v) = 3 by the induction hypothesis. Given a dynamic three-coloring

c of G − v, color v the third color distinct from c(u) and c(w), where u is

the vertex adjacent to v and w is a vertex other than v adjacent to u. This

yields a dynamic three-coloring of G, and so χd(G) = 3, since χd(G) ≥ 3 by

Theorem 1. 2

The complete bipartite graph Ki,j is the bipartite graph that has V (Ki,j)

partitioned as X1 ∪ X2 with |X1| = i, |X2| = j and has each vertex in X1

adjacent to each vertex in X2.

Theorem 3 If i, j ≥ 2, then χd(Ki,j) = 4.

Proof: Since d(v) ≥ 2 for any vertex, then by the double-adjacency condi-

tion, at least two colors must be used to color X1 and X2 individually. Since

by the adjacency condition, the vertices of X1 and X2 may share no common

color, then at least 2 + 2 = 4 colors are needed in any dynamic coloring of

Ki,j. Clearly, a coloring which colors vertices of X1 from {1, 2} and vertices

of X2 from {3, 4}, and which uses all four colors, is a dynamic coloring. 2

The complete l-partite graph Ki1,...,il is defined analogously for l ≥ 3.

Since χ(Ki1,...,il) = l and the proper coloring c having c(Xj) = j is clearly a

dynamic coloring, then χd(Ki1,...,il) = l if l ≥ 3.

An n-cycle is a cycle of n vertices and is denoted by Cn.

4



Theorem 4

χd(Cn) =


5 if n = 5

3 if n = 3k, k ≥ 1

4 otherwise

Proof: Let v1v2 . . . vnv1 denote an n-cycle of Cn. Note that any three consec-

utive vertices of the cycle must be colored differently in any dynamic coloring

of Cn, since the first and third vertices are the only neighbors of the second

vertex and must be colored differently (by the double-adjacency condition)

and also differently from the second vertex.

Then χd(C3k) = 3 if k ≥ 1, since χd(G) ≥ 3 and since the coloring

1, 2, 3, . . . , 1, 2, 3, 1 of consecutive vertices is a dynamic three-coloring.

Since any three consecutive vertices must be colored differently, then

c(v1), c(v2), and c(v3) must be three different colors in a dynamic coloring

c of C5. Then c(v4) 6= c(v1), c(v2), c(v3) by the double-adjacency, double-

adjacency, and adjacency conditions, respectively. Finally, c(v5) 6= c(v1),

c(v2), c(v3), c(v4) by the adjacency, double-adjacency, double-adjacency, and

adjacency conditions, respectively. Thus, all five vertices of C5 must be col-

ored differently, and so χd(C5) = 5.

Let k ≥ 1. Suppose χd(C3k+1) = 3. Since any three consecutive vertices

must be colored differently, then, beginning with 1, 2, 3, only the coloring

1, 2, 3, 1, 2, 3, . . . , 1, 2, 3, c(v3k+1), 1 results. However, c(v3k+1) 6= 1, 2, 3 by the

adjacency, double-adjacency, and adjacency conditions, respectively. Thus,

χd(C3k+1) ≥ 4, and the coloring 1, 2, 3, 1, 2, 3,

. . . , 1, 2, 3, 4, 1 shows χd(C3k+1) = 4.

Let k ≥ 2. If χd(C3k+2) = 3, then as argued before, only the coloring

1, 2, 3, 1, 2, 3 . . . 1, 2, 3, 1, c(v3k+2), 1 may be possible. However, c(v3k+2) 6=
1, 2, 3 by the adjacency, double-adjacency, and double-adjacency conditions,

respectively. Thus, χd(C3k+2) ≥ 4, and the coloring 1, 2, 3, 1, 2, 3,

. . . , 4, 2, 1, 4, 3, 1 shows χd(C3k+2) = 4. 2
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Chapter 3

Upper Bounds

This chapter considers three of the most fundamental and important upper

bounds known for χ(G). In each case, the upper bound is a function of a

basic graph parameter. Thus, a natural question is whether an upper bound

for χd(G) exists, in terms of the same parameter, that is otherwise similar to

the upper bound for χ(G).

3.1 χd ≤ ∆ + 3

The next theorem gives an upper bound for χd(G) that corresponds to the

upper bound for χ(G) given by Brook’s theorem [1] (χ(G) ≤ ∆ + 1, with

equality holding only for complete graphs and odd cycles).

Theorem 5 For any graph G, χd(G) ≤ ∆ + 3, and equality holds only for

G = C5.

Proof: Throughout the proof, C(j) denotes a set of j colors used by a

typical coloring c of j colors (C(j) ⊃ C(i) if i < j).

Case 1: ∆ = 0. Then G is K1, and so χd(G) = ∆ + 1.

Case 2: ∆ = 1. Then G is K2, and so χd(G) = ∆ + 1.
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Case 3: ∆ = 2. Then if G is acyclic, G is a tree and so χd(G) = 3 = ∆+1.

If G contains a cycle, then G is a cycle, and so χd(G) ≤ 5 = ∆ + 3, with

equality only for G = C5.

Case 4: ∆ = 3. We show that χd(G) ≤ 5.

The proof is by induction on n. The result is clearly true if n ≤ 5, so

suppose n ≥ 6. In each case, a dynamic k-coloring c, where k ≤ 5 is the

dynamic chromatic number of the indicated graph, is extended to a dynamic

k′-coloring of the larger graph G, with k ≤ k′ ≤ 5.

Case 4A: δ = 1. Then if d(v) = 1, extend a coloring c of G−v by choosing

c(v) ∈ C(5) − {c(u), c(w)}, where u is adjacent to v, and w 6= v is adjacent

to u.

Case 4B: δ = 2. Let u and v be neighbors and d(v) = 2. Suppose

first that d(u) = 2. Suppose v is adjacent to v′ 6= u, and u is adjacent to

u′ 6= v. Let u′′ 6= u be some neighbor of u′ and v′′ 6= v be some neighbor

of v′. Extend a coloring c of G − {u, v} to a coloring of G by choosing

c(u) ∈ C(5)−{c(v′), c(u′), c(u′′)} and c(v) ∈ C(5)−{c(u), c(u′), c(v′), c(v′′)}.
Suppose next that d(u) = 3 and u is adjacent to u′

1, u
′
2, and v. If

d(u′
1) = d(u′

2) = 3, extend a coloring of G − {u, v} by choosing c(u) ∈
C(5) − {c(u′

1), c(u
′
2), c(v

′)} and c(v) ∈ C(5) − {c(u′
1), c(u), c(v′), c(v′′)}. If

d(u′
1) = 2 or d(u′

2) = 2, then extend a coloring c of G − {v′, v} by choosing

c(v) ∈ C(5)−{c(u), c(v′), c(v′′)} and c(v′) ∈ C(5)−{c(u), c(v), c(v′′), c(v′′′)},
where v′′′ 6= v′ is adjacent to v′′. This completes the δ(G) = 2 case.

Case 4C: δ(G) = ∆(G) = 3. Then extend a coloring c of G − v for any

v ∈ V by choosing c(v) ∈ C(5) − {c(u), c(w), c(x)}, where v is adjacent to

u, w, and x. This completes the ∆ = 3 case.

Case 5: ∆ ≥ 4. We show χd(G) ≤ ∆ + 2.

Let V (G) = {v1, . . . , vn}, and let Gi = G({v1, . . . , vi}). Note that any Gi

for i 6= 1 may not be connected.

We now show by induction on ∆ ≤ i ≤ n− 1 that

7



(1) Gi+1 has a (∆ + 2)-coloring if ∆ + 2 − dGi+1
(vi+1) ≥ 2, in which vi+1

can be colored with any of two or more colors if ∆ + 2− dGi+1
(vi+1) ≥ 3.

We denote as follows these various neighbor sets of vi+1 in Gi+1: those of

degree at least two in Gi as X = {x1, . . . , xk1}, those of degree one in Gi as

Y = {y1, . . . , yk2}, and those of degree zero in Gi as Z = {z1, . . . , zk3}. Let

Y ′ = {y′
1, . . . , y

′
k2
}, where y′

j is the neighbor of yj in Gi.

We shall denote ∆ + 2 − dGi+1
(vi+1) by l. Note that l ≤ |C(∆ + 2) −

(c(X)
⋃

c(Y )
⋃

c(Z))|.
Case 5A: i = ∆. Then (1) holds, since if c(vi) = σi for 1 ≤ i ≤ ∆, then

c(v∆+1) = σ∆+1 or c(v∆+1) = σ∆+2 each yield a dynamic coloring of G∆+1.

Case 5B: i ≥ ∆ + 1. Let the current coloring of Gi be denoted by c′.

Let S = {σ1, . . . , σt}, where σ1, . . . , σt are the distinct colors in c′(Y ) and

{σt+1, . . . , σm} = C(∆ + 2)− c′(X)
⋃

c′(Z)
⋃

c′(Y ′).

We obtain a new coloring c of Gi by recoloring y1, . . . , yk2 (for any other

vertex of Gi, c is identical to c′). Let c(yj) = σij such that σij 6= c′(y′
j)

and the coloring of yj with σij ensures that y′
j satisfies the double-adjacency

condition.

Case 5B1: |c′(Y ′)| ≥ 3. Then at most one color β′ from c(Y ′) is not

in c(Y ), since β ∈ c(Y ′) and β 6∈ c(Y ) implies, for each j, 1 ≤ j ≤ k2,

c(y′
j) = β or c(y′′

j ) = β for every y′′
j 6= yj adjacent to y′

j in Gi. This could

occur simultaneously for two colors β but not for three or more.

Since l ≥ 2, then there exists at least one choice to color vi+1 from

C(∆ + 2) − (c(X)
⋃

c(Y )
⋃

c(Z)
⋃{β′}) if l = 2 and at least two choices if

l ≥ 3. Each yields a dynamic coloring since, in particular, |c(NGi+1
(vi+1))| ≥

|c(Y )| ≥ |c′(Y ′)| ≥ 3 and vi+1 colored differently from any y′
j ensures that

each yj satisfies the double-adjacency condition.

Case 5B2: |c′(Y ′)| = 2. Then at most one color β1 ∈ c′(Y ′) is not in c(Y ),

or neither of the colors β1 and β2 in c′(Y ′) is in c(Y ) (which occurs when,

for each j, 1 ≤ j ≤ k2, y′
j is adjacent in Gi to only yj and y′′

j , and either

8



c′(y′
j) = β1 and c′(y′′

j ) = β2, or c′(y′
j) = β2 and c′(y′′

j ) = β1).

First consider k1 = k3 = 0. Among the four or more colors in C(∆+2)−
{β1, β2}, we use two to color the vertices in Y , so that at least two choices

remain to color vi+1.

If k1 > 0 or k3 > 0, then among the l + k2 or more colors in C(∆ + 2) −
(c(X)

⋃
c(Z)), use one not in {β1, β2} to color the vertices in Y , so that at

least two choices remain to color vi+1 if l ≥ 3 and at least one choice if l = 2.

Case 5B3: |c′(Y ′)| = 1. If |c(X)
⋃

c(Z)| ≥ 1, then, as in the last case,

use a color not in c′(Y ′) to color the vertices in Y , so that at least two choices

remain to color vi+1.

Case 5B4: |c′(Y ′)| = 0. Thus k2 = 0. Suppose k3 > 0.

If |c(X)
⋃

c(Z)| ≥ 2, then vi+1 can be colored with any of the l ≥ 2 or

more colors in C(∆+2)− (c(X)
⋃

c(Z)) to obtain a (∆+2)-coloring of Gi+1.

If |c(X)
⋃

c(Z)| = 1, then of the five colors in C(∆ + 2)− (c(X)
⋃

c(Z)),

recolor z1 with one and color vi+1 with any of the 4 other colors to obtain a

(∆ + 2)-coloring of Gi+1.

Finally, suppose k3 = 0.

If |c(X)| ≥ 2, vi+1 can be colored with any of the l ≥ 2 or more colors in

C(∆ + 2)− c(X) to obtain a (∆ + 2)-coloring of Gi+1.

If |c(X)| = 1, let {x1, . . . , xk1} = {vi1 , . . . , vik1
}, with i1 < . . . < ik1 = i.

Since vi is adjacent to vi+1, then ∆ + 2 − dGi
(vi) ≥ 3, and so by induction

we can recolor vi to obtain the |c(X)| ≥ 2 case. This completes the proof of

the ∆(G) ≥ 4 case, and thus completes the proof of χd(G) ≤ ∆(G) + 3 for

any graph G.

The bound is achieved with equality only for G = C5, since we have

shown that if ∆(G) 6= 2, χd(G) ≤ ∆ + 2, and if ∆(G) = 2, χd(G) = 5 only

for G = C5. 2

9



3.2 χd ≤ α(G)

A well-known upper bound for χ(G) in terms of the length α(G) of a longest

cycle in G is (Corollary 8.8 of [3], p. 226): χ(G) ≤ α(G). This bound holds

with equality for Kn, since χ(Kn) = n = α(Kn) for any n ≥ 3.

Theorem 6 If G has a cycle, then χd(G) ≤ α(G).

Proof: The proof is by induction on n.

The theorem is clearly true for n ≤ 3, so suppose n ≥ 4 and G has a cycle.

Let v be a terminal vertex of a longest path P in G, say P = vv1v2 . . . vs,

where s ≥ α(G)−1. Then G− v is also connected. If G− v has no cycles for

every such choice of v, then G is a cycle, and so χd(G) ≤ α(G). So, suppose

G− v has a cycle. Thus, χd(G− v) ≤ α(G− v) ≤ α(G).

Note that v may be adjacent only to vertices on P (since otherwise G has a

longer path than P ) and in particular only to vertices in A = {v1, . . . , vα(G)−1}
(since otherwise G has a cycle of length greater than α(G)). By the same

argument, NG(W ) ⊂ A for W = NG(v1)− {v, v2, . . . , vα(G)}.
Suppose c1 is a dynamic coloring of G − v of at most α(G) colors from

C(α(G)). Let c be a coloring of G defined by c(u) = c1(u) if u 6∈ W
⋃{v, v1};

c(w) = c(v) is chosen from C(α(G)) − c({v2, . . . , vα(G)−1}) for any w ∈ W ,

taken to be c(vα(G)) if one such choice; and c(v1) is chosen from C(α(G)) −
c({v, v2, . . . , vα(G)}) (nonempty because c(v) = c(vi) for some i, 2 ≤ i ≤
α(G)). Thus, at most α(G) colors are necessary to define c. Note that

c(w), c(v) 6∈ c(A) for any w ∈ W .

We now show that c is a dynamic coloring. Note that for any w ∈ W ,

A contains NG(v)
⋃

NG(w) and A contains a neighbor of x for each vertex

x ∈ NG(v)
⋃

NG(w). Thus, v and w satisfy the adjacency condition, since

c(w) = c(v) 6∈ c(A); v and w satisfy the double-adjacency condition, since v

and w are adjacent to v1 while c(v1) 6∈ c(A − {v1}) and A ⊃ NG(v), NG(w).

10



Also, any neighbor x of v or w satisfies the double-adjacency condition, since

c(w) = c(v) 6∈ c(A) and A contains a neighbor of x.

Note that B = {v, v2, . . . , vα(G)}
⋃

W contains NG(v1). Thus, v1 satisfies

the adjacency condition, since c(v1) 6∈ c(B); v1 satisfies the double-adjacency

condition, since v1 is adjacent to v and v2 but c(v) 6= c(v2). Note that

B contains, for each vertex x 6= v, w in NG(v1), a neighbor of x. Thus,

any neighbor x 6= v, w of v1 satisfies the double-adjacency condition, since

c(v1) 6∈ c(B) and B contains a neighbor of x.

Finally, since c1 is a dynamic coloring of G−v, the conditions of a dynamic

coloring for vertices other than v, v1, w, and their neighbors hold also for c.

2

The bound holds with equality for such graphs as C4, C5, and Kn for all

n ≥ 3.

A well-known upper bound for χ(G) in terms of the length l(G) of a

longest path in G is given in [3] : χ(G) ≤ l(G) + 1. The bound holds with

equality for Kn for any n ≥ 2.

As a corollary of the previous theorem, we obtain an identical upper

bound for χd(G).

Corollary 1 For any graph G, χd(G) ≤ l(G) + 1.

Proof: The result is clearly true for n = 1 and n = 2. So suppose n ≥ 3. If

G is acyclic, then G is a tree, and so χd(G) = 3 ≤ l(G)+1, since a tree has a

path of length 2 if n ≥ 3. If G contains a cycle, then since any cycle contains

a path with length one less than the cycle length, χd(G) ≤ α(G) ≤ l(G) + 1.

2

The bound holds with equality for such graphs as C4, C5, and Kn for all

n ≥ 2.
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Chapter 4

Vertex-Critical Graphs

4.1 Proper Colorings

A vertex-critical graph for proper colorings is defined to be a graph G such

that χ(G− v) < χ(G) for any vertex v of G. Graphs having much symmetry

are expected to be among the best candidates. So, it is perhaps not surprising

to find that all complete graphs and all odd cycles are vertex-critical graphs,

since χ(Kn − v) = n − 1 = χ(Kn) − 1 for any n ≥ 1 and χ(Cn − v) = 2 =

χ(Cn)− 1 for any odd n ≥ 3.

Any graph G = K2k−1 − E(C2k−1) for χ(G) = k ≥ 3 is also a vertex-

critical graph, since for k ≥ 4 the consecutive vertices of C2k−1 may be

colored as 1, 1, 2, 2, . . . , k − 1, k − 1, k in an optimal coloring of G, and the

consecutive vertices of P2k−2 of G− v = K2k−2−E(P2k−2) may be colored as

1, 1, 2, 2, . . . , k− 1, k− 1. (For k = 3, G = K5−E(C5) = C5 is an odd cycle.)

It is now shown that complete graphs and odd cycles are sufficient to

characterize the vertex-critical graphs if χ(G) = 2, 3, or n.

Theorem 7 Let G be a graph of n vertices. Then G is a vertex-critical

graph with χ(G) = 2 if and only if G = K2, G is a vertex-critical graph with

12



χ(G) = 3 if and only if G is an odd cycle, and G is a vertex-critical graph

with χ(G) = n if and only if G = Kn and n ≥ 1.

Proof: Let G be a vertex-critical graph with χ(G) = 2. Since χ(G−v) = 1,

then G−v consists of one or more isolated vertices, so that G = K1,n−1. But

χ(K1,j − v) = 1 only for v the central vertex, so that G = K1,1 = K2. Of

course, χ(K2) = 2.

Let G be a vertex-critical graph with χ(G) = 3. Thus, G has an odd

cycle C. If there exists a vertex v not on C, then since G − v contains C,

an odd cycle, then χ(G− v) 6= 2, and G would not be vertex critical. Thus,

there is no vertex not on C, i. e., G = Cn and n is odd. The converse was

previously noted.

Let G be a vertex-critical graph with χ(G) = n. Since χ(G) = n, any two

vertices are adjacent, since otherwise a pair of nonadjacent vertices could

be colored the same color different from each of the n − 2 colors used to

uniquely color each of the remaining vertices. Thus, G = Kn. The converse

was previously noted. 2

4.2 Dynamic Colorings

A graph G is defined to be a vertex-critical graph for dynamic colorings if

χd(G− v) < χd(G) for any vertex v of G.

It is also true for dynamic colorings that all complete graphs are vertex

critical. However, as is readily checked from χd(Cn), Cn is a vertex-critical

graph if and only if n is not a multiple of three, so that a significantly higher

fraction (two-thirds) of these graphs are vertex critical in the dynamic case

as compared to the proper case (one-half).

Any graph G = K2k−1 − E(C2k−1) for k = χd(G) ≥ 4 is a vertex-critical

graph for dynamic colorings, since the proper coloring specified for G and

G− v is in each case also a dynamic coloring.

13



The Petersen graph (χd(G) = 4, χ(G) = 3) is vertex critical for dynamic

colorings but not for proper colorings.

An example of a class of graphs vertex critical for dynamic colorings but

not for proper colorings is G = SKk for k = χd ≥ 4. G is a bipartite graph

with V (G) partitioned as V (G) = X
⋃

Y . Each of the

 k

2

 vertices in Y

is adjacent to a unique pair of the k vertices in X = {x1, . . . , xk}. Thus,

χd(G) ≥ k, since any two vertices in X must be colored differently, being the

only two vertices adjacent to some vertex in Y . Let c(xi) = i and, if y in

Y is adjacent to xi and xj in X, let c(y) ∈ {1, . . . , k} such that c(y) 6= i, j.

Thus, no xi is adjacent to only vertices of the same color l, since some y

in Y is adjacent to xi and xl and hence has c(y) 6= i, l. Hence, c is clearly

a dynamic coloring of G, and so χd(SKk) = k. Let xm ∈ X. Consider a

coloring c that is a 1-1 map of X − {xm} onto {1, . . . , k − 1} and for which

c(y) ∈ {1, . . . , k − 1} and c(y) 6= c(xi), c(xj) if y is adjacent to xi and xj,

c(y) 6= c(xi) if y is adjacent only to xi. Then c is a dynamic coloring of G−x.

Thus, χd(G−xm) = k−1, since any two of the k−1 vertices of X−xm must

be colored differently, being the only two vertices adjacent to some vertex in

Y . Also, χd(G − z) = k − 1, where z in Y is adjacent to xi and xj in X:

first, a coloring c is a dynamic coloring of G− z if (except for c(xi) = c(xj))

c is a 1-1 map of X onto {1, 2, . . . , k − 1} and has c(y) 6= c(xl), c(xm) if y in

Y − {z} is adjacent to xl and xm; second, at least k − 1 colors are required,

since any two vertices of X − xi must be colored differently, being the only

two vertices adjacent to some vertex in Y − {z}.
As was true for proper colorings, it is also possible to characterize the

vertex-critical graphs for dynamic colorings if χd(G) = 2, 3, or n.

Theorem 8 Let G be a graph of n vertices. Then G is a vertex-critical

graph with χd(G) = 2 if and only if G = K2, G is a vertex-critical graph with

χd(G) = 3 if and only if G = K3 or P3, and G is a vertex-critical graph with

14



χd(G) = n if and only if G = P3, C4, C5, or Kn.

Proof: Since χd(G) = 2 if and only if G = K2 and since χd(K2 − v) = 1

for each vertex v, then the first part is shown.

Clearly, for n ≤ 3, G = K3 and G = P3 are the only vertex-critical

graphs with χd(G) = 3. Let n ≥ 4 and let G be a vertex-critical graph with

χd(G) = 3. Since χd(G − v) = 2 for any vertex v, then any component of

G− v is K1 or K2. However, if some component is K1 = {u}, then d(u) = 1

and thus χd(G − u) ≥ 3, since G − u is a connected graph of at least three

vertices. So, G has minimum degree of at least two. Thus, each component

of G−v is K2 and v is adjacent to each vertex, so that G consists of triangles

with v a vertex of each triangle and otherwise no two triangles sharing a

vertex. However, any vertex u other than v is not a cut vertex of G, and so

χd(G− u) ≥ 3 and hence G is not vertex-critical.

Finally, by Theorem 17, χd(G) = n if and only if G = P3, C4, C5, or Kn,

and each has been shown to be vertex critical for dynamic colorings. 2

The vertex-critical graphs for dynamic colorings with χd(G) = 4 may be

quite difficult to characterize since already they have been shown to include

such a wide variety of graphs as Cn (n not equal to 5 and n not a multiple

of 3), K4, SK4, K9−E(C9), and the Petersen graph. However, one property

that can be proved is that δ(G) ≥ 2. ( Suppose δ(G) = 1 and let d(v) = 1.

Since χd(G − v) = 3, color v differently from its adjacent vertex u and

differently from some vertex w 6= v adjacent to u to extend a dynamic 3-

coloring of G− v and obtain a dynamic 3-coloring of G, a contradiction.)
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Chapter 5

Stable Graphs

A graph G is said to be stable for proper colorings if χ(G−v) = χ(G) for any

v, and is said to be stable for dynamic colorings if χd(G−v) = χd(G) for any

v. Thus, in either case, a stable graph is the antithesis of a vertex-critical

graph.

5.1 Proper Colorings

We first consider stable graphs for proper colorings. Some examples of stable

graphs when χ(G) = 2 are the graphs Cn if and only if n is even, and any tree

if and only if n ≥ 4 and other than K1,n−1. (Since any tree of at least two

vertices has chromatic number two, then a tree G with n ≥ 2 is not stable if

and only if for some v, all the components of G− v are single vertices, which

holds if and only if v is adjacent to all other vertices of G, i. e., G = K1,n−1.

For n = 2, 3, the only tree is K1,n−1, and for n = 1, the only tree is K1.)

Any graph G = K2k − E(C2k) is a stable graph, since the consecutive

vertices of C2k colored as 1, 1, 2, 2, . . . , k, k give a coloring of G and, for G−v =

K2k−1−E(P2k−1), the consecutive vertices of P2k−1 colored as 1, 1, 2, 2, . . . , k−
1, k − 1, k give a coloring of G− v.
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The following theorem characterizes the stable graphs having chromatic

number three.

Theorem 9 Suppose χ(G) = 3. Then G is stable if and only if no vertex is

in all odd cycles.

Proof: Suppose χ(G) = 3. Then χ(G− v) = 3 for any v in V if and only

if G− v is not bipartite for any v in V if and only if G− v has an odd cycle

for any v in V if and only if no vertex v is in all odd cycles. 2

Thus, the Petersen graph (Figure 5.1) is stable by Theorem 9, since it

has chromatic number three and has two vertex-disjoint 5-cycles–the outer,

pentagon-shaped cycle and the inner, star-shaped cycle.
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Figure 5.1: Petersen Graph

The following lemma is useful in proving properties of stable graphs.
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Lemma 1 A graph G is stable if and only if for any χ(G)-coloring of G,

every color class has at least two vertices.

Proof: If some χ(G)-coloring c of G has a color class with only one vertex

v, then χ(G − v) = χ(G) − 1 as shown by the (χ(G) − 1)-coloring of c

restricted to G − v, and so G is not stable. Conversely, if G is not stable,

then χ(G− v) = χ(G) − 1 for some vertex v. Then any (χ(G) − 1)-coloring

of G− v combined with a new color for v yields a χ(G)-coloring of G having

a color class {v} with only one vertex. 2

Theorem 10 Suppose G is a stable graph with n vertices. Then χ(G) ≤
bn/2c.

Proof: By Lemma 1, for a χ(G)-coloring of G, any color class has at least

two vertices. Thus, n ≥ 2χ(G), so that χ(G) ≤ bn/2c. 2

For any k ≥ 2, we may easily construct infinitely many stable graphs G

with χ(G) = k, as shown by the following theorem.

Theorem 11 A graph G is stable if G has vertex-disjoint subgraphs H1 and

H2 with χ(H1) = χ(H2) = χ(G).

Proof: For any vertex v, χ(G − v) ≥ χ(Hi) = χ(G), where Hi does not

contain v. Hence, χ(G− v) = χ(G), i. e., G is stable. 2

Note that Theorem 11 also suffices to prove (with H1 and H2 as 5-cycles)

that the Petersen graph is stable.

Thus, Theorem 11 shows that joining two vertex-disjoint graphs of chro-

matic number k with edges (an edge possible between any pair of vertices

having different colors) always forms a stable graph G with χ(G) = k if

k ≥ 2. Hence, if the asterisk is used to denote such a joining of graphs, then

if G1 is stable, Gi+1 = Gi ∗Gi, i ≥ 1, is an infinite class of graphs with each

χ(Gi) = χ(G1).
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The converse of Theorem 11 is not true, as shown for χ(G) = 3 by the

following example. The graph G1 contains the triangle v1v2v3 (colored 1,2,3)

with v4 (colored 3) adjacent to v1 and v2, v5 (colored 1) adjacent to v2 and

v3, and v6 (colored 2) adjacent to v1 and v3 (Figure 5.2).

s s s

s s@
@

@
@

@
@

@@

@
@

@
@

@
@

@@

�
�

�
�

�
�

��

�
�

�
�

�
�

��

s@
@

@
@

@
@

@@

�
�

�
�

�
�

��

2

v6

v1 v3

v4 v2 v5

1 3

3 2 1

Figure 5.2: G1

Since no vertex is in all triangles, then G1 is stable by Theorem 9. Since

no two triangles of G1 are vertex disjoint, then the converse of Theorem 11

does not hold for G1.

5.2 Dynamic Colorings

We now consider stable graphs for dynamic colorings.

Examples of stable graphs (for χd(G) = 3) are Cn if and only if n = 3j,

j ≥ 2, and any tree (other than K1,n−1 or the tree obtained by subdividing j

edges of K1,n−1−j for any j ≤ b(n−1)/2c) if and only if n ≥ 6. (Since any tree

of at least three vertices has dynamic chromatic number three, then a tree

with n ≥ 3 is not stable if and only if for some v, G − v has no components

other than K1 and K2, i.e., if and only if G = K1,n−1 or G is obtained by
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subdividing some of the edges in K1,i. Since any tree with 3 ≤ n ≤ 5 is easily

seen to be of the excluded form, and since the only tree for n = 1, 2 is Kn,

then the assertion is true as stated.)

Any graph G = K2k − E(C2k) for k = χd(G) ≥ 3 is a stable graph, since

the proper colorings given for G and G− v are also dynamic colorings.

A stable graph with χd(G) ≥ 4, χd(G) 6= χ(G), is obtained by joining

two vertex-disjoint graphs C4 with an edge (χd(G) = 4, χ(G) = 2).

The proof of Theorem 9 uses facts of regular colorings that are not true for

dynamic colorings. Both implications of the theorem are false for dynamic

colorings: χd(G1− v5− v6) = 3 and G1− v5− v6 is stable, but v1 is in all odd

cycles; χd(G2) = 3 and no vertex is in all odd cycles, but G2 is not stable,

since χd(G2 − v) = χd(C5) = 5 (Figure 5.3).
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Figure 5.3: G2

Because a dynamic coloring of G need not be a dynamic coloring of G−v,

then the proof of Lemma 1 does not hold for dynamic colorings. In fact,

Lemma 1 and Theorem 10 (which was proved using Lemma 1) are false for

dynamic colorings, as shown by the following examples. The diamond graph

G1 − v5 − v6 and G1 − v6 are each dynamic stable graphs with the colorings

given for G1. Each coloring has the color class for the color 2 equal to {v2}.
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Also, χd(G1 − v5 − v6) = 3 > 2 = b4
2
c and χd(G1 − v6) = 3 > 2 = b5

2
c.

Examples are known of dynamic stable graphs with χd(G) ≥ 4 and having

a color class with only one vertex. But these examples satisfy χd(G) ≤ bn/2c,
and so whether χd(G) ≤ bn/2c for dynamic stable graphs with χd(G) ≥ 4

remains a topic of investigation.

Theorem 11 is also false for dynamic colorings, as shown by the graph G3

(Figure 5.4). The subgraphs H1 = G3(v1, v2, v3, v4) and H2 = G3(v5, v6, v7)

are each paths, which have 3-colorings identical to the one shown for G3.

However, χd(G3 − v1) = 4 (change the color for v3 to 4), so that G3 is not a

stable graph.
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Chapter 6

Comparison of χ and χd

A natural question to ask is how much the difference between χd(G) and

χ(G) varies, and the problem is investigated in this chapter. Graphs for

which the two chromatic numbers are identical are the subject of the first

section. The second section investigates whether the difference is bounded

for all graphs. The final two sections consider classes of graphs for which the

difference is small between any two graphs in the class.

6.1 Normal Graphs

A graph G is defined to be normal if χd(G) = χ(G).

If n is odd and a multiple of three, then Cn is normal; any other cycle is

not normal. Any complete graph is normal. The only trees that are normal

are K1 and K2.

Theorem 12 If any vertex of degree greater than one is in a triangle, then

G is normal.

Proof: If a vertex is in a triangle, then its two neighbors in the triangle

are adjacent and by the adjacency condition must be colored differently in
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any proper coloring of G. Thus, any proper coloring of G is also a dynamic

coloring of G, and so χd(G) = χ(G). 2

The condition presented in Theorem 12, while sufficient for a graph to

be normal, is not necessary. This is demonstrated by the following theorem,

in which a method used to construct triangle-free graphs ([2], Theorem 8.7,

page 129) is shown to also produce normal graphs when the initial graph is

a normal graph.

Theorem 13 For every k ≥ 1, there exists a normal, triangle-free, k-chromatic

graph.

Proof: Let Gk denote the normal, triangle-free, k-chromatic graph. Let

G1 = K1, G2 = K2, and G3 = C9.

Construct Gk+1 from Gk by adding n + 1 vertices {u1, . . . , un, v} to the

vertices {v1, . . . , vn} of Gk and by joining ui to each vertex vj to which vi is

adjacent; v is joined to each ui.

Assume a proper k-coloring of Gk is given. Then color ui the same as vi

and color v a (k + 1)st color. Then the proof that Gk+1 is triangle free and

χ(Gk+1) = k +1 is the same as the proof given in [2] when G3 = C5, since C9

is also triangle free (Gk+1 clearly has no triangles. For, since {u1, u2, . . . , un}
is an independent set in Gk+1, no triangles can contain more than one ui;

and if uivjvkui were a triangle in Gk+1, then vivjvkvi would be a triangle in

Gk, contrary to assumption. We now show that Gk+1 is (k + 1)-chromatic.

Note, first, that Gk+1 is certainly (k+1)-colorable, since any k-coloring of Gk

can be extended to a (k + 1)-coloring of Gk+1 as described above. Therefore

it remains to show Gk+1 is not k-colorable. If possible, consider a k-coloring

of Gk+1 in which, without loss of generality, v is assigned color k. Clearly, no

ui can also have color k. Now recolor each vertex vi of color k with the color

assigned to ui. This results in a (k − 1)-coloring of the k-chromatic graph

Gk. Therefore Gk+1 is indeed (k + 1)-chromatic.)
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Suppose that each vertex vi of Gk has some neighbors of different colors,

where k ≥ 3. Since the neighbors of vi are also neighbors of ui, then ui has

some neighbors of different colors in Gk+1. Since each ui is colored the same

as vi, which are not all colored the same, then v, being adjacent to each ui,

has some neighbors of different colors in Gk+1. Thus, by using a dynamic

coloring of G3 = C9, the k-coloring of Gk is guaranteed to satisfy the double-

adjacency condition for all k ≥ 3. Since χd(C9) = χ(C9), then by induction

χd(Gk) = χ(Gk) = k for k ≥ 3. 2

Theorem 14 Let n ≥ 3. If δ(G) > bn/2c, then G is normal. This bound

on δ cannot be lowered.

Proof: Suppose n ≥ 3. For any vertex v, a neighbor of v not adjacent to

another neighbor of v would be adjacent to at most n− δ(G) ≤ dn/2e − 1 <

δ(G) vertices. Thus, any two adjacent vertices are in a triangle. Hence, by

Theorem 12, G is normal.

Let Kn1,n2 denote the complete bipartite graph, defined as having vertex

set V partitioned as X1∪X2, |Xi| = ni for i = 1, 2, and having any vertex of

X1 adjacent to any vertex of X2 as its vertex adjacencies. Let G = Kbn/2c,dn/2e

for n ≥ 3. Then δ(G) = bn/2c. Since χ(G) = 2 and χd(G) ≥ 3, then G is

not normal. 2

6.2 χd − χ is Unbounded

In this section, we consider whether there exists a constant upper bound for

χd(G)− χ(G) that holds for all graphs G.

One class of graphs important in showing the difference between χd(G)

and χ(G) is the class SKk of bipartite graphs defined as follows for k ≥ 3.

The graph SKk has vertex set V partitioned as X
⋃

Y , where |X| = k and
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|Y | =

 k

2

. Each vertex in Y is adjacent to two vertices in X, and distinct

vertices in Y are adjacent to distinct pairs of vertices in X. Thus, d(v) = k−1

for each v ∈ X. Note that SKk may be obtained from Kk by subdividing

each edge of Kk. Then X = V (Kk) and Y is the set of vertices used to

subdivide the edges.

In a dynamic coloring of SKk, any two vertices of X must be assigned

different colors, since otherwise some vertex of Y would be adjacent to exactly

two vertices, both assigned the same color. Hence, χd(SKk) ≥ k. If X =

{x1, . . . , xk}, then the coloring c(xi) = i, c(y) ∈ {1, . . . , k} and c(y) 6= i, j

if y ∈ Y is adjacent to xi and xj, is a dynamic coloring of SKk. Thus,

χd(SKk) = k.

Thus, the difference between χd and χ is unbounded.

6.3 K1,3-Free Graphs

For k ≥ 4, SKk contains K1,3, one of the smallest and simplest graphs G for

which χd(G) and χ(G) differ, as an induced subgraph at each vertex of V .

This suggests considering K1,3-free graphs as a possible class of graphs for

which χd(G)− χ(G) is bounded.

Lemma 2 Suppose G is connected and G is K1,3-free. If χ(G) = 2, then

χd(G) ≤ 4 with χd(G) = 4 only if G is a cycle of even length not a multiple

of 3.

Proof: Suppose χ(G) = 2 and G is K1,3-free. Then ∆(G) ≤ 2, since

otherwise any vertex of degree at least 3 is contained in K3, and so χ(G) ≥ 3.

If each vertex has degree 2, then G is an even cycle, since χ(G) = 2.

Thus, χd(G) ≤ 4, and so χd(G) = 4 only if the cycle also has length not a

multiple of 3.
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Otherwise, each vertex has degree 1 or degree 2, so that G is a path.

Thus, χd(G) = 2 or χd(G) = 3. 2

The length of a cycle is the number of vertices in the cycle, and the length

of a path is one less than the number of vertices in the path.

Theorem 15 If G is K1,3-free, then χd(G) ≤ χ(G) + 2, and equality holds

if and only if G is a cycle of length 5 or of even length not a multiple of 3.

Proof: The upper bound holds as stated for any cycle Cn.

Assume henceforth that G is not a cycle.

Define an arc to be a path for which all the internal vertices have degree

two. Let l denote the maximum length of an arc in G, and let u and v typi-

cally denote the endvertices of such an arc Pu,v. Let G′ denote the subgraph

of G induced by V (G) − V (Pu,v)
⋃{u, v}. Let the neighborhood Nu of u be

the subgraph of G induced by u and its adjacent vertices in G′. Since G is

K1,3-free, then if l ≥ 3, Nu and Nv are complete, which must also hold for

l = 2 if u and v are nonadjacent.

The proof is by induction on n. The result is easily verified for n ≤ 3.

Suppose l = 1. Then G has no arcs of length at least two and hence no

vertices of degree two. Thus, any vertex of degree greater than one is in some

K3, since G is K1,3-free. Hence, any proper coloring is a dynamic coloring,

and so χd(G) = χ(G).

Suppose l = 2.

If χ(G′) = 1, then G′ consists of the disjoint vertices u and v, so that

G = Puv and χd(G) = 3 = χ(G) + 1.

Suppose χ(G′) = 2. If G′ is not connected, then its two components, if

nontrivial, could by the lemma only be paths or even cycles, which would

violate G K1,3-free (at u or v.) So, G = Pu,v. If G′ is connected, G′ is a path

or even cycle. Since G is K1,3-free, then u and v are adjacent in the path
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that is G′, and the path may have u or v as an endvertex or may extend one

or two vertices past u or v. Then χd(G) = χ(G) = 3.

Suppose χ(G′) ≥ 3. Hence, χ(G′) = χ(G).

Suppose some optimal dynamic coloring c of G′ has c(u) 6= c(v). Then

χd(G) = χd(G
′). Since l = 2, G′ is not a cycle of length greater than three,

hence also not an even cycle. Thus, χd(G) = χd(G
′) ≤ χ(G′)+1 = χ(G)+1,

so that χd(G) ≤ χ(G) + 1.

Suppose any optimal dynamic coloring c of G′ has c(u) = c(v). Since

N(u), N(v) are complete subgraphs and |N(u)| ≥ 3 or |N(v)| ≥ 3, then

|N(u)| = χd(G
′) or |N(v)| = χd(G

′), since otherwise G′ could be recolored

by recoloring u to be in c(G′) − c(N(u)) or, respectively, by recoloring v to

be in c(G′) − c(N(v)), yielding an optimal dynamic coloring c′ of G′ having

c′(u) 6= c′(v). Thus, χd(G
′) = ω(G′) and, since ω ≤ χ ≤ χd for any graph,

then χd(G
′) = χ(G′). Since χd(G) ≤ χd(G

′) + 1, then χd(G) ≤ χ(G′) + 1 =

χ(G) + 1.

Suppose l ≥ 3.

Suppose χd(G
′) ≤ 3. Since the remaining vertices of Puv may be colored

with four colors including c(G′) to extend any optimal dynamic coloring c of

G′ to a dynamic 4-coloring of G, then χd(G) ≤ 4. By Lemma 15, χ(G) = 2

when χd(G) = 4 only if G is a cycle of even length not a multiple of three.

Suppose χd(G
′) ≥ 4. Then χ(G′) = 1 is not possible, since then G =

Puv and χd(Puv) = 3. Consider χ(G′) = 2. If not connected, G′ has two

components which, by the lemma, would be incomplete graphs if nontrivial;

G = Puv if trivial. If G′ is connected and hence a path of length at least

three or a cycle of length at least four, then Nu and Nv are incomplete.

Consider χ(G′) ≥ 3. Then χ(G) = χ(G′). Also, χd(G) ≤ χd(G
′), since

any dynamic coloring c of G′ can be extended to a dynamic coloring of G by

coloring the remaining vertices of Puv with colors of c(G′) so that at most

four colors of c(G′) color Puv. If G′ is a cycle, then G′ = K3 to ensure Nu
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and Nv are complete; in this case, χd(G) = 4 and χ(G) = 3. Otherwise,

χd(G
′) ≤ χ(G′) + 1 by the induction hypothesis. Thus, χd(G) ≤ χd(G

′) ≤
χ(G′) + 1 = χ(G) + 1, and so χd(G) ≤ χ(G) + 1. 2

6.4 Regular Graphs

A graph is said to be k-regular if each vertex of G has degree k. A regular

graph is a graph that is k-regular for some k ≥ 1.

Because of this uniformity of vertex degree and the symmetry it may

cause in a graph, it is conjectured that χd(G) − χ(G) is typically small for

regular graphs. In fact, we conjecture that χd(G)−χ(G) ≤ 2 for any regular

graph.

If k > bn/2c, then δ > bn/2c, and thus χd(G)− χ(G) = 0 is Theorem 14

previously shown.

If k = 1, then G = K2, and χd(G)− χ(G) = 2− 2 = 0.

If k = 2, then G is a cycle, and χd(G) − χ(G) = 0, 1, or 2 for any cycle,

as previously shown.

If k = 3, then χd(G) ≤ 5 by Theorem 5, and so χd(G)−χ(G) ≤ 2 except

possibly when G is bipartite.

The Petersen graph is a 3-regular graph, and χd(G)− χ(G) = 4− 3 = 1.

We now investigate the case of k-regular bipartite graphs.

Theorem 16 Suppose G is a k-regular bipartite graph for k ≥ 3. If n < 2k,

then χd(G) ≤ 4.

Proof: Since G is bipartite and k-regular, then V (G) = (U,W ) and |U | =

|W | = n/2. Let m = n/2, U = {u1, . . . , um}, and W = {w1, . . . , wm}.

For any particular i, 1 ≤ i ≤ m, N(wi) is contained in

 m− k

dm/2e − k
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dm/2e-subsets S of U . Thus, there are at most m

 m− k

dm/2e − k

 dm/2e-

subsets S of U that contain at least one N(wi), 1 ≤ i ≤ m, so that there

are at most 2m

 m− k

dm/2e − k

 dm/2e-subsets S of U such that S or U − S

contains at least one N(wi).

Since 2m

 m− k

dm/2e − k

 <

 m

dm/2e

 if and only if

2m(m− k)!

bm/2c!(dm/2e − k)!
<

m!

bm/2c!dm/2e!
if and only if

2m <
m(m− 1) · · · (m− k + 1)

dm/2edm/2e(dm/2e − 1) · · · (dm/2e − k + 1)

if n < 2k, then if n < 2k, there is a dm/2e-subset S of U such that both S

and U − S contain no N(wi). Similarly, if n < 2k, there is a dm/2e-subset T

of W such that both T and W − T contain no N(ui).

Hence, if each vertex in S, U − S, T , or W − T is colored 1, 2, 3, or

4, respectively, then the double-adjacency condition is satisfied, since no wi

is adjacent only to vertices colored 1 or only to vertices colored 2 and no

ui is adjacent only to vertices colored 3 or only to vertices colored 4. The

adjacency condition is satisfied, since G is bipartite and partition sets U and

W are colored differently. 2
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Chapter 7

Graphs with χd(G) = n or n− 1

We first consider graphs for which the chromatic number equals n or n − 1,

and then consider the graphs for which the dynamic chromatic number equals

n or n− 1.

There are only two (limited) types of graphs for which the chromatic

number equals n or n− 1, which is now discussed.

If two vertices of G are nonadjacent, then they may be colored alike in

an (n− 1)-coloring of G; hence χ(G) = n only for G = Kn.

Suppose χ(G) = n − 1. Then G has no clique H = Kj of j ≥ 3 ver-

tices, since then G has a proper (not necessarily minimal) coloring c with

|c(V (H))| = 1, showing χ(G) ≤ |c(V (G))| ≤ n − 2. Also, G has no “par-

allel edges” (i. e., x1x2, y1y2 ∈ E(V (G)) and |{x1, x2, y1, y2}| = 4), since

then G has a proper (not necessarily minimal) coloring c with c(x1) = c(x2),

c(y1) = c(y2), showing χ(G) ≤ |c(V (G))| ≤ n− 2.

Thus, G has no cliques of three or more vertices and G has no parallel

edges. Hence, G has no edges (impossible, since then G = Kn) or all the

edges of G have a common vertex v but otherwise any pair of edges in G is

nonadjacent (i. e., the subgraph of edges in G is K1,j for some j ≥ 1, yet

j ≤ n − 2 for v to not be an isolated vertex in the connected graph G). So,
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G = Kn − E(K1,j) = Kn − vu1 − . . . − vuj for any 1 ≤ j ≤ n − 2, and the

(n− 1)-colorings of G are the colorings ci, 1 ≤ i ≤ j, with ci(v) = ci(ui) and

otherwise ci(x) 6= ci(y) if x 6= y, i. e., {v, ui} is the only color class of ci of

two or more vertices.

We now investigate the graphs for which the dynamic chromatic number

equals n or n−1, and see that this set of graphs contains those just obtained

but is more extensive and complex.

For what graphs must a different color be assigned to each vertex in a

minimal coloring? If n ≥ 2, then G ⊂ Kn − e for an edge e implies χ(G) ≤
χ(Kn − e) = n − 1. But such reasoning is not valid for dynamic colorings,

since H ⊂ G does not imply χd(H) ≤ χd(G) (for example, χd(C5) = 5 > 4 =

χd(G) if G consists of C5 and an additional vertex adjacent to one vertex of

C5).

Lemma 3 Suppose χd(G) = n. Then if u and v are not neighbors, u and v

are the only neighbors of some vertex x (i.e., u 6∈ N(v) implies N(x) = {u, v}
for some x 6= u, v).

Proof: Since u and v are nonadjacent vertices, an (n − 1)-coloring of G in

which only u and v receive the same color must satisfy both the adjacency

and double-adjacency conditions unless the double-adjacency condition is not

satisfied for some vertex x adjacent to u and v. 2

We denote the path of n vertices by Pn.

Theorem 17 The dynamic chromatic number χd(G) = n if and only if G =

P3, C4, C5, or Kn.

Proof: The theorem is clearly true for n ≤ 3, and the specified graphs satisfy

χd(G) = n for any n.

Suppose n ≥ 4 and χd(G) = n. If G 6= Kn, suppose u1 and u2 are not

neighbors. Hence, by Lemma 3, N(v1) = {u1, u2} for some v1 6= u1, u2. Since
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n ≥ 4, then v1 6∈ N(v2) for some vertex v2 6= u1, u2, v1. Hence, by Lemma 3,

N(w) = {v1, v2} for some w 6= v1, v2. Since N(v1) = {u1, u2}, then w = u1 or

w = u2, say w = u2 (without loss of generality), which gives N(u2) = {v1, v2}
If u1v2 ∈ E(G), then if n = 4, all possible edges of the graph have been

determined, so that G = u1v1u2v2u1 = C4. If n > 4, then since N(v1) =

{u1, u2}, v1 6∈ N(x) for any x 6= u1, u2, v2. Hence, by Lemma 3, N(y) =

{v1, x} for some y 6= v1, x. Since N(v1) = {u1, u2}, then y = u1 or y = u2,

which is impossible since v2 ∈ N(u1) and v2 ∈ N(u2) (but x 6= v2).

If u1v2 6∈ E(G), then N(z) = {u1, v2} for some z 6= u1, v2 . Also, z 6=
v1, u2, since v1u2 ∈ E(G). If n = 5, then all possible edges have been

determined, so that G = u1v1u2v2zu1 = C5. If n ≥ 6, then since N(v1) =

{u1, u2}, v1 6∈ N(x) for any x 6= u1, u2, v2, z. Hence, by Lemma 3, N(y) =

{v1, x} for some y 6= v1, x. Since N(v1) = {u1, u2}, then y = u1 or y = u2,

which is impossible, since z ∈ N(u1) but z 6= v1, x, and since v2 ∈ N(u2) but

v2 6= v1, x. 2

Now consider the case χd(G) = n − 1. Two lemmas are useful. The

first follows directly from a result in [4] showing that the upper bound of

χd(G) ≤ ∆ + 2 (if G 6= C5) in Theorem 5 is achieved with equality only for

certain cycles.

Lemma 4 If ∆ = 2, then χd(G) ≤ 5; if ∆ ≥ 3, then χd(G) ≤ ∆ + 1.

Lemma 5 Suppose χd(G) = n − 1. Then G = P4 if ∆ = 2, and ∆ ≥ n − 2

if ∆ ≥ 3.

Proof: By Lemma 4, χd(G) ≤ 5 if ∆ = 2, so that if χd(G) = n − 1, then

n ≤ 6. The only graph satisfying these conditions is P4. 2

Theorem 18 The dynamic chromatic number χd(G) = n − 1 if and only if

G is one of the following graphs: P4; Kn−E(K1,j), 1 ≤ j ≤ n−2, for n ≥ 4;

Kn−1 − xy, n ≥ 6, and an additional vertex adjacent only to x and y; or the

four graphs shown in Figure 7.1.
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Proof: If ∆ = 1, then G = K2 but χd(K2) = 2.

If ∆ = 2, then by Lemma 5, G = P4 if χd(G) = n − 1. Also, χd(P4) =

3 = n− 1.

If ∆ ≥ 3, then by Lemma 5, ∆ ≥ n− 2.

Suppose ∆ = n − 1. For n ≤ 3, no graphs satisfy χd(G) = n − 1. Let

n ≥ 4 and let d(v) = n − 1. Then any proper coloring is easily seen to be a

dynamic coloring if χd(G) = n − 1. First, note that v satisfies the double-

adjacency condition since G 6= K1,n−1. If d(x) ≥ 2 and x 6= v, then xy ∈ E

for some y 6= v implies xyvx is in G, so that x satisfies the double-adjacency

condition.

Hence, if ∆ = n− 1, then since χd(G) = χ(G) for n ≥ 4, then the graphs

that satisfy χd(G) = n − 1 are the graphs that satisfy χ(G) = n − 1, i. e.,

G = Kn − E(K1,j) for some j, where 1 ≤ j ≤ n− 2.

Suppose ∆ = n − 2. For n ≤ 4, the only graph G with χd(G) = n − 1 is

G = P4. So suppose n ≥ 5. Let d(v) = n − 2 and let v′ be the only vertex

not adjacent to v.

Since d(v′) ≥ 1, then there is a vertex x adjacent to v′ that, since ∆ =

n−2, is not adjacent to some vertex y 6= v′, v. Thus, a coloring of G with v, v′

colored alike, x, y colored alike, and otherwise with vertices colored distinctly,

is a dynamic coloring of n− 2 colors unless some vertex u is adjacent only to

x and y (or some vertex u′ is adjacent only to v and v′). Then u = v′, since

any u 6= v, v′ is adjacent also to v. Since v′ is the only possibility for such a

vertex u, then x, y is the only such nonadjacent pair of vertices, so that G

consists of Kn−1 − xy and a final vertex u = v′, which is adjacent precisely

to x and y.

Suppose some vertex u′ is adjacent only to v and v′. Consider first n = 5.

Then the remaining two vertices, w and w′, are both adjacent to v; vertices

u′, v, and v′ must be colored differently.

If v′ is not adjacent to w and w′, then c(w) = c(u′) and c(w′) = c(v′)
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describes a 3-coloring of G.

If v′ is adjacent to at least one of w and w′, then whichever of w and w′

is adjacent to v′ cannot be colored c(v) or c(v′), and cannot be colored c(u′)

if it alone is adjacent; also, both w and w′ cannot be colored c(u′) if both

are adjacent to v′. So, one of w, w′ must be colored distinctly from u′, v,

and v′; coloring the other the same as u′ describes a 4-coloring of G. Thus,

χd(G) = 4 for these four graphs with n = 5 (Figure 7.1).
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Figure 7.1: χd(G) = n− 1 for n = 5

Consider n ≥ 6. We wish to show that G(V − u′) = Kn−1 − vv′, where u′

is adjacent only to v and v′. Suppose G(V −u′) 6= Kn−1−vv′. Thus, since v is

adjacent to every vertex except v′, we can suppose G(V−{u′, v}) 6= Kn−2, and

consider for U = V−{u′, v, v′} the two cases G(U) = Kn−3 and G(U) 6= Kn−3.
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In each case that follows, the coloring describes an (n − 2)-dynamic col-

oring of G. All other vertices are colored distinctly.

Suppose G(U) = Kn−3. Since v′ is not adjacent to some w ∈ U , then

color w the same as v′ and color another vertex, which is not adjacent to v′

or is not the only vertex adjacent to v′, the same color as u′.

Suppose G(U) 6= Kn−3. If v′ is adjacent to no vertex in U or more than

one vertex in U , color two of the nonadjacent vertices in U the same but

differently from u′, v, and v′; also color another vertex in U the same as u′.

If v′ is adjacent to exactly one vertex w in U, color w differently from

u′, v, and v′; if w is not adjacent to some w′ in U , then color w′ the same

as w and color another vertex the same as u′, otherwise color a nonadjacent

pair of vertices the same as u′. 2
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Chapter 8

χd(G− v) = χd(G) − 2

For any graph G, χ(G− v) ≥ χ(G)− 1 for any vertex v of G, since otherwise

a (χ(G)− 2)-coloring of G− v with an additional color to color v would give

a (χ(G)− 1)-coloring of G.

However, for G = C5 or G = P3, χd(G − v) = χd(G) − 2 for at least one

vertex v of G. Thus, it is of interest to know what is the maximum possible

decrease in the dynamic chromatic number that can occur with the removal

of a vertex, and to know the graphs for which the maximum decrease can

occur. These questions are answered completely by the following theorem.

Theorem 19 For any graph G, χd(G− v) ≥ χd(G)− 2 for any vertex. The

only graphs for which χd(G − v) = χd(G) − 2 for at least one vertex are

K1,n−1, n ≥ 3, and C5.

Proof: Let c1 be an optimal dynamic coloring of G−v from {1, 2, . . . ,m},
where m = χd(G − v). Let c2(v) = m + 1 and c2(x) = c1(x) if x 6= v. This

yields a dynamic coloring c2 of G unless d(v) ≥ 2 and c1(u) is the same for

all u in N(v). In that case, c2 is defined as before except c2(u1) = m + 2 for

one vertex u1 in N(v) to obtain a dynamic coloring c2 of G of m + 2 colors.

Thus, χd(G) ≤ m + 2 = χd(G− v) + 2.
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Now an argument is begun to characterize the graphs G for which

χd(G− v) = χd(G)− 2 for some vertex v of G.

Note that, as shown above, if d(v) = 1 or not all vertices of N(v) are

colored the same by some optimal dynamic coloring of G−v, then χd(G−v) ≥
χd(G) − 1. Thus, we assume henceforth that d(v) ≥ 2 and that c1(u) = 1

for all u in N(v) for any optimal dynamic coloring c1 of G− v. This implies

that no two vertices of N(v) are adjacent, which is also assumed henceforth.

If d(u) = 1 for each u in N(v), then G = K1,n−1, n ≥ 3, which satisfies

χd(G− v) = χd(G)− 2.

If d(u) = 1 for some but not all u in N(v), then a coloring c1 of G − v

with c1(u) = c1(w) for any u in N(v) with d(u) = 1, where w 6= v is a vertex

adjacent to some u1 in N(v) with d(u1) ≥ 2, has not all vertices in N(v)

colored the same.

If d(u) ≥ 3 for all u in N(v), then since c1(u) = 1 for all u in N(v), then

an (m + 1)-coloring c2 of G is given by specifying for one vertex u1 in N(v)

that c2(u1) = m + 1, c2(v) = 2, and c2(z) = c1(z) otherwise.

So assume henceforth that d(u) ≥ 2 for all u in N(v) and d(u) = 2 for

some u in N(v). Let U = {u ∈ N(v) : d(u) = 2} = {ui : 1 ≤ i ≤ |U |} and

let U ′ = {u ∈ N(v) : d(u) ≥ 3}. Let wi be the vertex adjacent to ui in G− v

and let W = {wi : 1 ≤ i ≤ |U |} (wi = wj if i 6= j is not precluded).

Consider the following condition (to be referenced throughout the remain-

der of the proof):

There exists x, not in U,U ′, W , and adjacent to some wi in W (*)

If (*) holds, then some wi is adjacent to some vertex x not colored 1,

say colored b 6= 1. For one such i, let c2(x) = m + 1, c2(ui) = b for one ui

adjacent to wi, c2(v) = m + 1, and c2(z) = c1(z) otherwise. Then c2 is an

(m + 1)-coloring of G. Thus, if (*) holds, χd(G− v) ≥ χd(G)− 1.

Since G is connected, then G − v is connected (otherwise, there exists

an m-coloring c1 of G − v such that c1(u) = 2 for all u in N(v) in one
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component and c1(u) = 1 for all u in N(v) in all other components). Let l

be the minimum of all the lengths (number of edges) of shortest nontrivial

paths in G− v from vertices in U to vertices in N(v). Thus, l ≥ 2.

If l = 2, then there exists a path uiwiu for some u in N(v). Thus, by the

double-adjacency condition, wi is adjacent to some vertex y 6= ui, u satisfying

c1(y) 6= 1. Recoloring ui as c1(y) gives a new m-coloring of G − v with not

all vertices in N(v) colored the same.

If l ≥ 4, then (*) is satisfied. So, suppose finally that l = 3.

If |U ′| ≥ 1, then a shortest path in G − v from U to U ′ begins uiwix for

some ui in U and some x not in U,U ′, W . Thus, x satisfies (*).

So, suppose U ′ is empty, and suppose, since d(v) ≥ 2, that |U | ≥ 2. Then,

since l = 3, (*) is not satisfied only if each vertex of G − v − U is adjacent

to precisely one vertex of U , which we henceforth assume.

If |U | = 2, then l = 3 implies that G − v = P3. Then G = C5, for which

χd(G− v) = χd(G)− 2.

If |U | ≥ 3, then if some d(wi) = 2, note that since G−v−ui is connected,

then wi is adjacent only to ui and to some wj in W with d(wj) ≥ 3. Thus,

let c2(ui) = c1(wi), c2(wi) = 1, c2(v) = m + 1, and c2(z) = c1(z), otherwise,

yielding an (m + 1)-coloring c2 of G. If d(wi) ≥ 3 for all wi in W , then the

coloring c2 will suffice for any choice of i. 2
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Chapter 9

Gainer Graphs

For any graph G, χ(G− v) ≤ χ(G), since any coloring of G is also a coloring

of G − v. However, there exist graphs G, which we shall call gainer graphs,

for which χd(G − v) > χd(G) holds for at least one vertex v of G, called a

gainer vertex. For example, consider a graph G1 that consists of a 5-cycle

C = v1v2v3v4v5v1 and a vertex v6 adjacent only to v1 and v2 (Figure 9.1).
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Figure 9.1: G1

A dynamic coloring of G1 is obtained by coloring C as 1,2,1,3,2,1 and

coloring v6 as 3. Thus, χd(G) = 3 and, since G1 − v is C5, χd(G1 − v) = 5.
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It has been previously shown that for any graph G, χd(G−v) ≥ χd(G)−2,

i. e., the removal of a vertex can cause the dynamic chromatic number to

decrease by at most two. Thus, we first ask whether, for some positive integer

k such as 2, χd(G− v) ≤ χd(G) + k holds for all graphs G and all vertices of

G or, instead, whether for any given positive integer k, there exists a graph

G such that χd(G− v) ≥ χd(G) + k for some vertex v of G.

The following example shows that no constant upper bound k indepen-

dent of the graph can be placed on the increase in dynamic chromatic number

when a vertex is removed from the graph.

Let G consist of the bipartite graph SKl = (X, Y ), l = |X| ≥ 4, for which

any pair of vertices in X has a unique vertex in Y adjacent precisely to those

two vertices (described in Section 4.2), with another vertex v adjacent to all

the vertices in Y (which are the vertices of degree two of SKl). Assign a

color of 4 to v, a color of 3 to each vertex xi, 1 ≤ i ≤ l, of X, and a color of

((i + j) mod2)+1 to y in Y if y is adjacent to xi and xj. Figure 9.2 shows

this graph and coloring for l = 4.
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Figure 9.2: G for l = 4

The coloring is dynamic, so that χd(G) ≤ 4. Since χd(G−v) = χd(SKl) =
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l, then χd(G− v) ≥ χd(G) + k when l = k + 4.

Although no constant upper bound independent of the graph may be

placed on χd(G−v)−χd(G) for all graphs, the following theorem shows that

an upper bound exists in terms of common graph parameters.

Theorem 20 For any graph G and any vertex v of G,

χd(G− v) ≤ χd(G) + t(v),

where t(v) is the number of neighbors of v of degree at least 3. Thus,

χd(G− v) ≤ χd(G) + d(v) ≤ χd(G) + ∆.

Proof: Any dynamic coloring c of G of χd(G) colors will be a dynamic

coloring of G−v except that some of the t(v) neighbors u of v having degree at

least three in G may not satisfy the double-adjacency condition. To remedy

this, use at most t(v) new colors in a coloring of G − v that recolors (in the

coloring c induced on G − v) a neighbor of each u a new color. Since any

new color is used only once, then the double-adjacency condition, as well as

the adjacency condition, now holds for all vertices in a coloring of G − v of

at most χd(G) + t(v) colors. 2

The graph G obtained from SKl does not satisfy with equality the upper

bound stated in the theorem since χd(G−v) = χd(G)+l−4 and t(v) =

(
l
2

)
.

The graph G1 is an example of a graph that satisfies with equality the upper

bound for t(v) = d(v) = 2.

For each of the two examples of gainer graphs, only one vertex of the

graph is a gainer vertex. The following theorem determines whether graphs

exist for which every vertex is a gainer vertex.

Theorem 21 A graph exists for which all vertices are gainer vertices. Such

graphs do not exist if χd > 4.

Proof: The case for n ≤ 3 is clear, so let n ≥ 4 and suppose all vertices of

a graph G are gainer vertices. Let c be a dynamic coloring of G. Since any v
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is a gainer vertex, then any v is adjacent to some u such that d(u) ≥ 3 and

all x 6= v in N(u) have the same color c(x) 6= c(v). Let any such pair u, v

be an arc (v, u) in the partially directed graph Gp (denoted (v, u) ∈ A(Gp)),

which also has xy ∈ E(Gp) if xy ∈ E(G) and (x, y), (y, x) 6∈ A(G), and has

V (Gp) = V (G).

Since any v is a gainer vertex, then for any v, (v, u) ∈ A(Gp) for at least

one u. Thus,
∑

V (Gp) d+(v) ≥ n.

A vertex u cannot have more than one incoming arc, since if (v, u),

(w, u) ∈ A(Gp), then since (v, u) ∈ A(Gp) and w ∈ N(u), then c(w) =

c(x) for all x 6= v in N(u), a contradiction of (w, u) ∈ A(Gp). Thus,∑
V (Gp) d−(v) ≤ n.

Since
∑

V (Gp) d−(v) = |A(Gp)| =
∑

V (Gp) d+(v), then
∑

V (Gp) d−(v) = n =∑
V (Gp) d+(v). Thus, every vertex has precisely one incoming arc and precisely

one outgoing arc, so that the arcs and vertices of Gp form one or more vertex-

disjoint directed cycles.

Suppose χd(G) ≥ 5. Let C = v1v2 . . . vkv1 be one of the vertex-disjoint

cycles. The only vertex of G− vi that may not satisfy the double-adjacency

condition is vi+1 (addition for indices is mod k). Recolor vi+2 to be different

from c(vi+1), different from c(v) for any v ∈ N(vi+1)− {vi+2}, different from

c(v) for any v ∈ N(vi+2)− {vi+1} and, if |C| ≥ 4, different from c(v) for any

v ∈ N(vi+3)−{vi+2}. For each of the last three cases, c(v) is the same for all

v in the specified set. This coloring is easily seen to be a dynamic coloring

of G − vi, and since χd(G) ≥ 5, a color does exist to recolor vi+2 among

the χd(G) colors that were used to color G. Thus, χd(G − vi) ≤ χd(G), a

contradiction of vi being a gainer vertex of G.

Consider the graph G that consists of two vertex-disjoint three-cycles and

three additional nonadjacent edges joining pairs of vertices in different cycles.

Then χd(G) = 3 and it is easily seen that any vertex of G is a gainer vertex.

2
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Chapter 10

A Generalization of Dynamic

Coloring

The concept of dynamic coloring may be generalized to r-dynamic coloring

by generalizing the double-adjacency condition in the appropriate fashion.

An r-dynamic coloring of a graph G is thus a map c from V to the set of

colors such that

(C1) If uv ∈ E(G), then c(u) 6= c(v), and

(C2) For each vertex v ∈ V (G), |c(N(v))| ≥ min{r, d(v)}
The second condition is called the multiple-adjacency condition.

The minimum k for which G has an r-dynamic k-coloring is the r-dynamic

chromatic number χr(G). Thus, χd(G), as denoted previously, is identical to

what is now denoted as χ2(G).

From (C1) and (C2), it immediately follows that χr(G) ≥min{r, ∆}+ 1.

Since any r-dynamic coloring of G is a t-dynamic coloring of G if r > t ≥
1, then χr(G) ≥ χt(G) if r > t ≥ 1 for any graph G.

Thus, it is easily deduced that χr(Kn) = n for any r ≥ 2 and that for

any particular n ≥ 3, the chromatic number of Cn is the same for all r ≥ 2.

Theorem 22 If r ≥ 2, then
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χr(Cn) =


5 if n = 5

3 if n = 3k, k ≥ 1

4 otherwise

Proof: For any r ≥ 2, χr(Cn) ≥ χ2(Cn), and these values for r = 2 and

each n (as stated and proved in Theorem 4) are as given above. Since in each

case the proof of Theorem 4 gives a coloring of the cycle having the indicated

number of colors and this coloring is an r-dynamic coloring for any r ≥ 2,

then the same values are obtained for χr(Cn) for any r ≥ 2. 2

For the case of trees, a more general result holds than the one previously

obtained for r = 2.

Theorem 23 For any tree, χr(G) = min{∆, r}+ 1.

Proof: The proof is by induction on n.

The result is clearly true for n = 1 or n = 2.

Let G be a tree of n ≥ 3 vertices and let v be a vertex of degree one,

adjacent to some vertex u. By the induction hypothesis, the tree G−v has a

coloring c of χr(G− v) colors. A coloring for G is now obtained by choosing

an appropriate color for v to extend the coloring.

Suppose first that ∆(G) ≤ r. Choose a color for v that is different

from c(u) and the at most min{dG(u) − 1, ∆(G − v)} colors of the other

neighbors of u. If dG(u) ≤ ∆(G) = ∆(G − v), this gives a coloring of G of

χr(G−v) = ∆(G−v)+1 = ∆(G)+1 colors; if dG(u) = ∆(G) = ∆(G−v)+1,

this gives a coloring of G of χr(G−v)+1 = ∆(G−v)+2 = ∆(G)+1 colors.

Thus, a coloring of ∆(G)+1 colors has been obtained, which is minimal and

satisfies the theorem, since χr(G) ≥ min{r, ∆(G)} + 1 = ∆(G) + 1 in this

case.

Suppose finally that ∆(G) ≥ r+1. Then ∆(G−v) ≥ r and so χr(G−v) =

r + 1 by the induction hypothesis. Choose a color for v different from c(u)
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and the at most min{r, dG−v(u)}− 1 ≤ r− 1 colors of the other neighbors of

u to obtain a coloring of G of r + 1 colors, which is minimal and satisfies the

theorem since χr(G) ≥ min{r, ∆(G)}+ 1 = r + 1 in this case. 2

Theorem 24 If k ≥ r + 1, then χr(Ki1,...,ik) = k if each ij ≥ 1.

Proof: The unique proper coloring of Ki1,...,ik of k colors is also an r-

dynamic coloring and thus χr(Ki1,...,ik) = χ(Ki1,...,ik) = k. 2

A graph G is defined to be r-normal if χr(G) = χ(G).

Any cycle Cn, where n is odd and a multiple of three, is r-normal for any

r ≥ 2. All other cycles are not r-normal for any r ≥ 2. Any complete graph

is r-normal for any r ≥ 2. The only trees that are r-normal for at least one

value of r are K1 and K2.

Theorem 25 If any vertex v of a graph G is contained in Kk for some

k ≥min{r, d(v)}+ 1, then G is r-normal.

Proof: For any proper coloring c of G, |c(N(v))| ≥ min{r, d(v)} by the

adjacency condition. Thus, c satisfies the multiple-adjacency condition and

hence is also an r-dynamic coloring. Thus, χr(G) = χ(G) and so G is r-

normal. 2

As was shown for r = 2 in Theorem 14, if δ(G) is sufficiently large, then

G is r-normal.

Theorem 26 If δ ≥ b(r− 1)n/rc+1, then χr(G) = χ(G). The lower bound

on δ is the best possible.

Proof: It suffices by Theorem 25 to show that any vertex is contained in

a complete subgraph of r + 1 vertices. Suppose δ ≥ b(r − 1)n/rc+ 1.

For any vertex v1, there exists a vertex v2 not in the set Sv1 of vertices

nonadjacent to v1, and in general there exists a vertex vt not in the set
⋃t−1

1 Svi
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(so that each vi in {v1, . . . , vt} is adjacent to any other vertex in {v1, . . . , vt})
if
∑t−1

1 |Svi
| < n. Since |Svi

| ≤ n − (b(r − 1)n/rc + 1) = bn/rc − 1, then∑r
1 |Svi

| ≤ r(bn/rc − 1) < n.

If n ≥ r + 2, then G = Ki1,...,ir , where i1, . . . , ij = bn/rc, ij+1, . . . , ir =

dn/re and j = dn/rer − n, has δ(G) = b(r − 1)n/rc. Also, χr(G) ≥ r + 1

since, otherwise, χr(G) = χ(G) = r and since G is colored uniquely with r

color classes, then |c(N(v))| = r−1 < min{r, d(v)} for any v, a contradiction.

2

We now consider the problem, treated previously for r = 2, of what

graphs G satisfy χr(G) = n if r ≥ 2.

Theorem 27 For any r ≥ 2, χr(G) = n if and only if any two nonadjacent

vertices of G are adjacent to a vertex of degree at most r.

Proof: Suppose χr(G) = n. If the stated condition is not satisfied for

vertices u and w, then a coloring c of G of n−1 colors in which only u and w

are colored the same clearly satisfies the adjacency condition; c also satisfies

the multiple-adjacency condition, since for any v not adjacent to both u and

w, |c(N(v))| = |N(v)| = d(v) ≥ min{r, d(v)}, and for any v adjacent to both

u and w, d(v) > r, and so |c(N(v))| = |N(v)| − 1 = d(v) − 1 ≥min{r, d(v)}.
Thus, χr(G) ≤ n− 1, a contradiction.

Suppose the stated condition holds but χr(G) ≤ n − 1. Then some r-

dynamic coloring c of G of χr(G) colors has c(u) = c(w) for two nonadjacent

vertices u and w. Thus, u and w are adjacent to some vertex v such that

d(v) ≤ r. Hence, d(v) > |c(N(v))| ≥min{r, d(v)} = d(v), a contradiction. 2

Theorem 27 can be useful for specifying particular graphs satisfying χr(G) =

n for r ≥ 2. For example, P3, C4, C5, and Kn are immediately seen to satisfy

the condition of Theorem 27. Hence, they each satisfy χr(G) = n for r ≥ 2;

this also follows from Theorem 18 and the fact χr(G) ≥ χ2(G) if r ≥ 3.
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Since for all graphs of n = 4 vertices other than P4, any pair of vertices

has a common neighbor (of degree at most ∆(G) ≤ n−1 = 3), then precisely

all five graphs of four vertices other than P4 satisfy χr(G) = n for r ≥ 3.

Similarly, for n = 5 and r ≥ 4, the only graphs not satisfying χr(G) =

n are precisely those in which some nonadjacent vertices have no common

vertices, i. e., K3 with an end of P3 adjoined, C4 with an end of P2 adjoined,

C4 + e with an end of P2 adjoined to a low-degree vertex, and any tree other

than K1,4.

Theorem 27 allows us to deduce that the only trees satisfying χr(G) = n

are K1,n−1 for n ≤ r + 1, and to deduce that χr(Kn − e) = n if and only if

n ≤ r + 1.
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Summary

The number of colors in a minimal dynamic coloring is called the dynamic

chromatic number.

One topic of interest was the value of the dynamic chromatic number for

important graphs, which was investigated in Chapter 2.

For any of the important theorems involving the chromatic number, a

natural question is whether similar theorems exist for the dynamic chromatic

number. This was addressed in four different areas by Chapters 3-5. Chapter

3 presented three upper bounds on the dynamic chromatic number that are

each quite similar to the corresponding upper bound on chromatic number.

Chapter 4 presented results characterizing dynamic vertex-critical graphs

for particular values of dynamic chromatic number, and these are similar

to results for vertex-critical graphs. Chapter 5 showed that the important

theorems for stable graphs for the case of proper colorings do not hold for

the case of dynamic colorings.

The difference between the dynamic chromatic number and the chromatic

number of graphs is of interest, especially identifying classes of graphs for

which the difference is small and identifying whether the difference is bounded

for all graphs. Chapter 6 addressed these topics.

The idea of a dynamic coloring is sufficiently different to introduce inter-

esting new topics of graph coloring. Three such new topics were addressed

in the next three chapters. Chapter 7 showed that the process of specify-
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ing graphs for which the dynamic chromatic number equals the number of

vertices (or one less) is much more complex than for the non-dynamic case.

Chapter 8 obtained a characterization of the graphs whose dynamic chro-

matic number decreases by two with the removal of a vertex. Chapter 9

investigated graphs for which the removal of any vertex causes the dynamic

chromatic number to increase.

Chapter 10 introduced a generalization of dynamic coloring. Some of the

topics that have been investigated for dynamic coloring in previous chapters

were investigated in this chapter for the more general case.

49



Recommendations

Three upper bounds on the dynamic chromatic number were proved in Chap-

ter 3. Additional upper bounds should be investigated, such as an upper

bound on the dynamic chromatic number in terms of the number of edges

and an upper bound on the sum of the dynamic chromatic number and the

dynamic chromatic number of the complement.

The vertex-critical graphs for dynamic chromatic number less than three

or equal to the graph order were completely specified in Chapter 4. De-

scribing the vertex-critical graphs for other dynamic chromatic numbers is

recommended.

The difference between the dynamic chromatic number and chromatic

number was shown in Chapter 6 to be small for certain regular bipartite

graphs, and the case for any regular graph is recommended for investigation.

Gainer graphs were shown in Chapter 9 to exist for dynamic chromatic

number equal to three and not to exist for dynamic chromatic number greater

than four. The case for dynamic chromatic number equal to four is recom-

mended for investigation.

The r-dynamic colorings were introduced and briefly investigated in Chap-

ter 10, and additional investigation is recommended, especially in the areas

studied for dynamic colorings.
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