
Graduate Theses, Dissertations, and Problem Reports 

1999 

Forecasting electricity demand using regression and Monte Carlo Forecasting electricity demand using regression and Monte Carlo 

simulation under conditions of insufficient data simulation under conditions of insufficient data 

Kathleen Ann Cullen 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Cullen, Kathleen Ann, "Forecasting electricity demand using regression and Monte Carlo simulation under 
conditions of insufficient data" (1999). Graduate Theses, Dissertations, and Problem Reports. 974. 
https://researchrepository.wvu.edu/etd/974 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/974?utm_source=researchrepository.wvu.edu%2Fetd%2F974&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Forecasting Electricity Demand using Regression and Monte Carlo
Simulation Under Conditions of Insufficient Data

Kathleen Ann Cullen

Thesis submitted to the
College of Agriculture, Forestry, and Consumer Sciences

At West Virginia University
In partial fulfillment of the requirements for the degree of

Master of Science
In

Agriculture and Natural Resource Economics

Thomas F. Torries, Ph.D., Chair
Peter V. Schaeffer, Ph.D.
Gerard D’Souza, Ph.D.

Division of Resource Management

Morgantown, West Virginia
1999

Keywords:  Energy Forecasting, Energy Demand
Copyright 1999 Kathleen A. Cullen



Abstract

Forecasting Electricity Demand using Regression and Monte Carlo
Simulation Under Conditions of Insufficient Data

Kathleen Ann Cullen

The problem studied is that of a summer peak residential energy demand model for
Appalachian Power Company’s service area in West Virginia.  By restricting the forecast to a
region smaller than the state, serious data problems result due to insufficient data to obtain
reliable forecasts.

Regression analysis and Monte Carlo Simulation are the two methods used to forecast
energy demand.  Both methods incorporate risk into the analysis in different ways. Regression
analysis yields a measure of the reliability of the coefficients of the variables and of the
reliability of the forecast.  The resulting forecast and confidence limits of the forecast values give
an indication of the risk using regression analysis and Monte Carlo Simulation.  Monte Carlo
Simulation uses a probabilistic range of input values rather than a single discrete value, which
accounts for future uncertainty to determine the probabilistic future summer peak.
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1.0 Introduction

Energy demand forecasting is an essential activity of electricity providers.  Without an

accurate picture of the future, which may be based upon the past, over capacity or shortages in

power may result producing unexpected high costs.  An accurate forecast requires adequate data,

for without it, the results of the forecast are unreliable.  However, the data available for regional

electricity demand studies are often insufficient to meet the needs of the forecast.  This lack of

data presents a number of theoretical and practical problems.

Baum (1993) says that forecasters believe electricity will remain one of the fastest

growing energy sectors.  A large portion of the increase in demand for electricity is due to an

increase in residential demand.  With the overall increase in electricity demand in the residential

sector combined with the increased use of electricity for residential cooling during the summer

months, a summer peak residential model is needed to avoid future shortages or to determine

how much electricity is available for sale to other companies.

A model to determine residential summer peak electricity demand is normally a function

of variables that measure temperature, electricity price, the price of substitutes, such as natural

gas price, the number of customers, and economic indicators, such as income.  Such a model for

Appalachian Power Company’s service area in West Virginia is developed in this research.

Data were collected to identify and to test the importance of each independent variable

that contributes to electricity demand for the West Virginia service area of Appalachian Power

Company.  For a number of reasons, data are inadequate to easily construct a statistically

rigorous forecasting model.  Therefore, forecasting energy demand with insufficient data is

analyzed using two evaluation methods.
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A forecast model may be constructed by using either regression analysis or Monte Carlo

simulation.  Both methods arrive at similar answers, but present the data and the results

differently. Regression analysis produces only an expected value of future demand with a

corresponding standard error of the estimate that indicates the precision of the forecast.  Monte

Carlo Simulation produces a range of values for future demand based on a range of values for the

input variables.  It produces a probabilistic picture of the distribution of future demand and the

input variables in a manner that are sometimes obscured in regression analysis.  Monte Carlo

Simulation also provides a framework for decision making that easily incorporates the risk

tolerance of investors, which then yields a certainty equivalence for electricity demand.

1.1 Problem Statement

According to Bartels and Fiebig (1996), the residential sector is usually one of the main

contributors to electricity generation system peaks; the summer is no exception. The increase in

electricity demand during the summer months is related to the recent increased use of cooling

devices in West Virginia, such as air conditioning, to ward off the heat of the summer months.

Le (1983) asserts that the net system summer peak load is strongly related to the air conditioning

load that is caused by the weather effect of the summer months.  Therefore, a summer peak

residential energy demand model is needed to measure this new trend in energy demand.

A summer-peak model is needed because regional summer and winter demand in West

Virginia are quite different. A summer peak energy model predicts the energy used on the days

of greatest demand during the summer months—usually the warmest days. Forecasting peak

residential energy demand will aid power companies in determining what changes will be needed
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whether it is building new power plants or instituting conservation measures.  The forecast will

also aid in determining how much energy will be available for sale to other electric companies.

Appalachian Power Company supplies power to the southern part of West Virginia.  This

thesis develops a summer-peak residential demand model for energy usage by Appalachian

Power Company’s service area.  Considering only the southern part of West Virginia presented

serious data collection problems.  Regional data were limited, and the more abundant state-level

data were often inappropriate for use in the forecast model.

West Virginia is also developing its plan for the deregulation of the generation sector of

the electricity industry, which adds an additional element of uncertainty to forecasts.

Deregulation makes the need for accurate long-term forecasts even greater.

The forecast period considered in this paper is ten years, which is considered a long-term

forecast.  According to Kher, Sioshansi, and Sorooshian (1987), “energy is a long lead-time,

capital intensive industry, hence the avid interest in long-term forecasting and planning” (p. 133).

The analysis of the long-term summer peak energy demand model for Appalachian

Power Company’s service area in West Virginia is accomplished by using both regression

analysis and Monte Carlo Simulation.  Both methods of forecasting energy demand reach the

same goal, but the methods use different means to achieve the same goal.  Regression analysis

consists of the development of a model that studies the impact of the independent variables upon

the dependent variable.  The initial model for summer peak energy demand includes all variables

that theoretically should have an impact upon energy demand—temperature, electricity price,

price of substitutes, and economic indicators.  Those variables that have no effect upon energy

demand are identified and are omitted from future models as appropriate.
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Regression analysis yields a measure of the reliability of the coefficients of the variables

and the reliability of the forecast.  The resulting forecast and confidence limits about the forecast

values give an indication of the risk involved in using these forecasts.  However, regression

analysis presents only one view of the risk, while probabilistic analysis presents another view.

Monte Carlo Simulation is accomplished by using commercial risk analysis software.

With probabilistic analysis all possible combinations of variations of input variables and the

subsequent outcomes are considered simultaneously.  Therefore, a probabilistic range of input

values is used to determine the probabilistic future level of the summer peak.  The reason for this

use of a range of values is that the future is uncertain, and the use of a range of values rather than

a discrete single value accounts for this uncertainty.

1.2 Objectives

The goal of this thesis is to develop a summer peak residential energy demand model for

Appalachian Power Company’s service area in West Virginia using available but largely

insufficient data.  Regression analysis and Monte Carlo Simulation will be used to test the

model.  The tests are conducted to determine how insufficient data affects the forecast by

comparing the results of the regression analysis and the Monte Carlo Simulation.  Therefore, the

objectives of the thesis are:

1.) Develop a residential summer peak model applicable to Appalachian Power Company’s

service area in West Virginia.

2.) Use regression analysis to analyze the summer peak model

3.) Use Monte Carlo Simulation to analyze the summer peak model.
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4.) Compare and contrast the assumptions from the results of the regression analysis and

Monte Carlo Simulation.

1.3 Organization of Thesis

Chapter 2 discusses the history and development of energy demand forecasting,

summarizes the different types of energy forecasts, and provides a literature review of energy

forecasting models. The theoretical concepts used in the forecast, the functional forms for energy

modeling, regression analysis, probabilistic analysis, risk analysis, and the use of the consumer

price index are discussed in Chapter 3.  Chapter 4 presents the methodology for the development

of the summer peak forecast, and a description of the data variables used for the forecast.

Chapter 5 presents the results and their implications, and Chapter 6 presents the conclusions,

policy implications, and the limitations of the research.
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2.0 Background

Energy demand forecasting has developed over time from a very basic and simplistic

exercise into a complex procedure.  Numerous methods have been developed over the history of

energy forecasting.

2.1 History

The need for accurate energy forecasts began during the industrial revolution when

human and animal power were replaced with machinery and the efficient use of energy (Burns,

1984).   Prior to the 1970's, the demand for electricity was very predictable; thus energy

forecasting was a simplistic process.  Reliable forecasts were achieved using simple trend

extrapolation (see section 2.3.1).  The "7% rule" was also used to forecast energy demand.  The

“7% rule” assumed that electricity consumption doubled every ten years (Crow, Robinson, &

Squitieri, 1981).  Forecasting was not perceived to be complex, because forecasters thought that

it was immune to the laws of supply and demand (Burns, 1984).

Suddenly this dream of simplistic forecasting was shattered due to rising energy prices

resulting from the oil crisis of the 1970's, the severe recession of 1974-75, the growth of energy

conservation, the slowdown of economic growth, and the change of end uses.  These events

made energy demand forecasting much more uncertain and complex.  The volatility of energy

prices following the 1973 oil embargo and the unexpected elasticity of demand to higher prices

caught most energy forecasters off guard (Leung & Miklius, 1994).

Energy demand forecasting came into prominence during the energy crisis of the 1970’s.

During this time period, changes in the market and political turmoil brought about the need for

electricity forecasts.  “The convergence of improved economic theory, and electronic data
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processing capability in the 1970's resulted in the heyday of models that represented major steps

in understanding the complex interrelationships between energy and economic theory" (Burns,

1984, p. 1438).  The energy crisis also produced a situation where "not only was it difficult to

predict rates of long-term growth, it was difficult to tell whether there would ever be any growth"

(Crow et al., 1981, p. 2).  In other words, the situation during the 1970 energy crisis was so

uncertain that forecasters could not even forecast long-term energy demand, let alone be sure that

there could ever be any growth.

Once the oil crisis of the 1970's had begun, energy forecasting became a complex and

time-consuming process.  Energy demand is now regarded as an economic good that follows the

laws of supply and demand.  Modern energy demand forecasting requires more analysis, thought,

and informed judgement.  Modern energy forecasting differs in many ways from past methods,

because more complete data and statistics exist which give practitioners a better understanding of

the recent past (Burns, 1984).

2.2 Importance of Energy Demand Forecasting

Electricity demand forecasting is important because the future is uncertain.  Also,

electricity forecasting attempts to predict what the future electricity demand will be.  Forecasting

electricity demand helps to determine if there will be a shortage of electricity, and the need for

new power plants or the implementation of conservation measures, or an overabundance of

electricity and the need for shutting down of some of the power plants.  Thus, "over forecasting

can lead to a decade of over capacity.  Under forecasting can mean a long and explosive period

while capacity catches up with loads" (Charles River Associates, 1986, p. 1).
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Another important reason for energy demand modeling is costs.  "If forecasts are too low,

energy shortages may develop whose costs are usually a large multiple of the volume of energy

not supplied; but if forecasts are too high opportunity costs might be uselessly tied up for long

periods of time" (Labys, 1999, p. 40).  In other words, if the forecast results in a shortage of

electricity, prices would increase and the consumer would pay more for energy.  Yet, if the

forecast results in an overabundant supply, the costs associated with shutting down power plants

and other ways of decreasing supply would be passed on to the consumer.

According to Walter Labys (1999), three important reasons exist for modeling energy

demand.  The first reason is that the timely and reasonable reliable availability of energy supplies

is vital for the functioning of a modern economy.  Secondly, the expansion of energy supply

systems usually requires many years, and the third reason is that investments in such systems

generally are highly capital intensive, on average, accounting for some 30% of gross investments

in most countries.

Another important aspect of energy modeling is in the area of deregulation.  In many

states, including West Virginia, deregulation of the transmission sector of the electricity industry

is taking place.   With deregulation the future is even more uncertain as the market will decide

price and price will determine demand.  Therefore the importance of electricity demand

forecasting grows.  Electricity generators will have competition from out-of-state generators,

while existing generators in West Virginia will have expanding territories.  Thus, the lines are no

longer clearly drawn as to who services what customer.
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2.3 Methods of Energy Demand Modeling

A variety of methods exist for forecasting energy demand.  These methods represent the

path from the relatively simple methods that existed prior to the 1970’s to the complicated

models that exist today.  The various methods also account for the differences between the long

run and the short-run forecasts.

2.3.1 Time-Trend Method

The time-trend method determines the overall trend in historical kWh sales or kW peaks,

and develops the forecast based upon that trend known as extrapolation of historical trend.  In its

most simplistic form the method consists of plotting the data on graph paper and laying a ruler

through the points.  Prior to the 1970's time-trend was the leading method of forecasting used by

electric utilities, but today it is used mainly for short-term modeling.  Clearly, this methodology

does not recognize structural changes and is vulnerable to errors.  The advantages and

disadvantages of time trend follow (Charles River Associates, 1986, p. 59):

Advantages:

• Little skill required

• Inexpensive and quick

• Can be upgraded by adjusting data

• Useful for minor load categories

• Minimal data requirements
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Disadvantages:

• Vulnerable to changes in underlying influences

• No explicit attention to underlying influences

• No explicit audit trail for interpreting reasons for load forecasting error

2.3.2 Time-Series Method

The time-series method forecasts energy demand by the patterns and trends found in the

data.   When using a time-series method, the researcher uses statistical extrapolation of loads

based upon historical data for the loads being forecast—hourly loads, peaks, or energy sales.

Time-series is especially useful when projecting load shapes, seasonal patterns, daily or seasonal

loads, etc.  The advantages and disadvantages of this method are (Charles River Associates,

1986, p. 59):

Advantages:

• Tracks historical patterns closely:  often accurate for short term

• Low cost

• Minimal data requirements

• Provides statistical evaluation of forecast uncertainty, especially for short term

Disadvantages:

• Does not treat underlying factors explicitly

• Sources of errors difficult to interpret

• Difficult to allow for conservation or change

• Historical time-series patterns unlikely to apply to long-term load growth
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2.3.3 Expert/Informed Opinion Method

The expert/informed opinion method uses information obtained from experts in the field

rather than relying on numerical data.  This method is interesting, because it uses the knowledge

of experts or users to develop the forecast, e.g. plant managers, members of local planning and

zoning boards, developers, or other knowledgeable sources within the service area.  The

expert/informed opinion method can be used to forecast where other forecasting methods are

ineffective or to provide a check on a forecast done using another method.  It is most effective

for forecasting new technologies.  The advantages and disadvantages of this method are listed

below (Charles River Associates, 1986, p. 60):

Advantages:

• Utilizes available knowledge

• Usually low cost

• Helpful for forecasting new end uses where no historical data are available

Disadvantages:

• No consensus opinion on most loads

• No audit trail for forecast

• Informed source not always available to utility

• Opinions sometimes biased

2.3.4 Identity Method

The identity method is a very basic form of forecasting energy demand using separate

forecasts of load factor and kWh sales and definitional relationships between them.  It is simple

because no special skills are required and the forecast can be computed in a very short period of
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time.  The data required for this method are kWh sales for forecast year generated by another

model, and the load forecast for the forecast year, usually obtained from observing recent

movements in load factor and adjusted for anticipated future trends, although it may come from

another model.  This model uses the equation for the annual load factor which is sales in kWh

divided by peak in kWh times 8760 hours per year.  The formula can be rearranged to determine

peak demand.  The problem with this method is that it does not account for underlying factors.

The advantages and disadvantages of this method follow (Crow et al., 1981, p. 8):

Advantages:

• Simple

• Uses other independent forecasts

Disadvantages:

• Forecasting kWh sales and load factor may be difficult and subject to great

uncertainty.

2.3.5 End-Use Method

The end-use method determines energy demand through total kWh use from all of the

electrical appliances used in the home.  The forecast is "built from the sum of end-using

activities” (Charles River Associates, 1986, p. 27).  End-use models must include kWh

consumption data by type of equipment or process.  This method is most readily applied to the

residential sector, because the data required for this forecast include: forecast year, number of

residential customers, residential housing stock or commercial buildings, industrial process data,

major appliances, and kWh use per appliance.   The basic form of this model are simple

accounting procedures which "enumerate the end uses and add the electricity use for each end
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use for its components" (Charles River Associates, 1986, p. 20).  The problem is that in the real

world nothing is that simple and everything is a difficult process.  The advantages and

disadvantages of these models are (Charles River Associates, 1986, p. 60):

Advantages:

• Focuses on components of electricity use:  can trace true location of

forecasting error

• Good structure for incorporating load management and conservation impacts

and for analyzing marketing impacts

• Intermediate technical and computer skills required

• Easy to explain results to others

Disadvantages:

• Requires large amount of detailed data

• Data assembly costly and difficult

• Static framework:  technology must be explicitly specified

• Components (saturation rates and use per appliance) are difficult to forecast,

particularly for long-term

• Requires knowledge of end-use technologies and practices

2.3.6 Econometric Method

The econometric method determines energy demand by considering the influence of

independent variables, such as, population, employment, income, weather, appliance ownership,

and rates.  Econometric models are estimated equations that relate electricity demand to external

factors (Charles River Associates, 1986).  Where end-use models use kWh consumption data by
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type of equipment or process, econometric models use time-series data.  Econometric models are

among the most complex forms of energy forecasting.  They are used for all areas of service—

residential, industrial, and commercial.  The data required for this method of forecasting include

observations of customer income, commercial and industrial activity, electricity rates, gas and

heating oil prices, weather, and housing stock.  The advantages and disadvantages of this method

follow (Charles River Associates, 1986, p. 60):

Advantages:

• Explicitly measures effect of underlying causes of trends and patterns

• Provides statistical evaluation of forecast uncertainty

• Combines well with economic and demographic information on service

territory

• Can incorporate an end-use structure or time-series method

• Models can be readily re-estimated

Disadvantages:

• Requires skill and experience in econometrics and computer programs

• Extensive data required for detailed disaggregated model

• Costs can be relatively high

2.3.7 Hybrid Econometric and End-Use Method

The Hybrid Econometric and End-Use method is another form of energy modeling that

combines end-use structure with econometric estimation to forecast energy demand.  The data

required for this method are forecast years, the number of customers, independent variables to

estimate housing and appliance stocks, kWh use per appliance, and industrial process
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information.  Hybrid models have been developed mainly for the commercial and residential

sectors.  These models use "econometric methods to produce parameter values and input data”

(Charles River Associates, 1986, p. 41). When doing a forecast using a hybrid end-use and

econometric method, the procedure is first to develop the model specification, both for core end-

use model and for the econometric equations used to estimate input values.  The second step is

the estimation of the econometric equations.  The third step is the assembly of all data for the

end-use model, except econometric estimates.  The fourth step is the development of

econometric forecast values, which include forecasting values for the exogenous variables and

simulating the econometric equations for forecast years.  The fifth step is actually making the

forecast.  The advantages and disadvantages of this method are (Charles River Associates, 1986,

p. 60):

Advantages:

• Combines strengths of econometric and end-use methodologies

• Most comprehensive forecasting approach available

• Relatively easy to update and maintain

Disadvantages:

• Highest-cost method

• High skill and experience requirements in econometrics, computer

programming, and end-use technologies and practices

• Very large amount of data required
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2.4 Types of Energy Forecasts

Different types of energy forecasts exist due to the shifts in consumption patterns that

occur over time.  Electricity consumption varies according to the season and the time of day.

Energy consumption varies from season to season, because more electricity is used during the

winter and summer months when it is hotter or colder, than in the spring and fall months when

the temperatures are usually moderate.  Residential energy consumption varies from day to day

because more electricity is used during the weekdays than on weekends.   Electricity

consumption also varies from hour to hour as more electricity is used during the morning hours

when people are waking up and getting ready to start their day.  Electricity consumption then

declines during the late morning and afternoon hours when most people are at work and school.

Electricity consumption increases again during the evening hours when the work day ends and

people come home and cook dinner, watch television, and need light to see by.  Figure 1 shows

this phenomenon.
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Figure 1: Electricity Demand by Time of Day

Therefore, different forecasts are needed to fulfill the different requirements of energy

demand: seasonal demand, short-run demand, long-run demand, and peak demand.  In other

words, electricity generation must always meet demand since it is not possible to store any large

amounts.  Thus, the complexities of energy demand forecasting are apparent in the various types

of forecasts that are used to determine energy demand at various stages.

The three different sectors for which energy demand can be forecasted include the

industrial, the residential and the commercial sectors.  This thesis will focus on forecasting

residential energy demand because that is the sector under consideration in Appalachian Power

Company’s service area.  Also the residential sector is one of the main contributors to system

peak.
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2.4.1 Winter & Summer Peak Forecasts

A winter peaking forecast is one that predicts the maximum amount of power required on

one day during the winter months.  The northern United States is the area that experiences a

winter peak, because it experiences bitterly cold winters.  The following equation is an example

of a winter peak model (Le, 1983, p. 224):

Where:

PK represents winter peak load

PI represents personal income

GASP represents price index of natural gas

ELECP represents price of electricity (typical residential and commercial electric bill)

WTX represents weather factor = (RSH = CISH) + HDD

RSH represents number of residential customers with electric space heating

CISH represents number of commercial and industrial customers with electric space heating

HDD represents heating degree days of system peak day

DEC represents dummy variable for month of December

In an area that experiences a winter peak, freezing temperatures can dramatically increase

the demand for energy.  Therefore, a dependable forecast is necessary to ensure that there is

enough electricity to heat homes.

Summer is the warmest time of the year, and in the southern part of the United States it is

stifling.  The southern United States is the area that typically experiences a summer peak.  A

summer peak forecast predicts energy usage for the summer months (see Section 3.2 for an

)()()()()()( 54321 DECbWTXLnbELECPLnbGASPLnbPILnbcWPKLn +++++=



19

example of Le’s summer peak model).  A summer peak model is used to ensure that there is

enough energy to meet demand during the summer with the increasing use of cooling devices.

Summer forecasts are also used to determine how much electricity will be available for sale to

other electric companies.

Although the southern United States is the area that experiences a summer peak,

electricity consumption is increasing during the summer all across the United States with the

increased use of air conditioning.  This trend has prompted the need for a summer peak forecast

for areas of the country that never had need of one before.  Figure 2 depicts a winter and summer

peak.  The figure shows that they are opposite as to when their peak occurs.
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Figure 2: Electricity Demand for Peaking Forecasts

2.4.2 Short-Run Forecasts

Short-run forecasts are intended to be valid for only a few minutes to a few hours into the

future and are needed by electric utility operators for the purpose of scheduling and dispatching

generating units.  According to Donnelly (1987), a short-term forecast is important for “unit

commitment, economic dispatch, hydro-thermal co-ordination, load management, etc.” (p. 139).

Ackerman (1985) says that a short-run forecast plays an important role in the day-to-day
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operations of a utility, and it is typically used for optimizing system operation and scheduling of

hydro units and other peaking plants, such as gas turbines. The objective of the operators is to

minimize variable costs without jeopardizing the electric system to power failures.

Ackerman's (1985) short-term forecast can be given by the nonlinear function:

( )tttt txyfY ε,,,=

Where:

Yt represents actual system load in megawatts (expressed as integrated hourly load in the case of

the hourly predictor)

 yt represents {Yt; -∞ < T ≥ t-1}; i.e. all past observed actual system loads

xt represents {XT; -∞< T ≥ t-1}; i.e. all past observed exogenous variables

t represents time index

εt represents additive random disturbances representing all unobserved effects on the system load

The hourly short-term forecast can be represented by P.C. Gupta's (1985) model:

( ) ( ) ( ) ( )jiXjiWCjiTjiZ ,,,, ++=

Where:

Z(i, j) represents system load measure in hourly mWh at hour j and day i;

T(i, j) represents basic component of the load hour j and day i;

WC(i, j) represents weekly cycle component (day-of-the-week effect) at hour j and day i;

X(i, j) represents residual component containing the effect of weather variations at hour j and day

i

Gupta also formulated a weather model because, an hourly forecast is dependent upon the

variability of the weather.  The weather model can be represented by:
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( ) ( ) ( ) ( ) ( )iiWiSiBiY ε+++=

Where:

Y(i) represents peak load on the ith day;

B(i) represents basic load component of the peak load on the ith day;

S(i) represents weakly pattern component of the peak load on the ith day;

W(i) represents weather-sensitive component of the peak load on the ith day;

ε(i) represents random component of the peak load on the ith day.

"Strictly speaking, B(i) and S(i) should be defined as elements of the T(i, j) and WC (i, j).

However, better estimates can be expected to result if B(i) and S(i) are estimated independently

of T(i, j) and WC (i, j) respectively" (p. 45).

2.4.3 Medium-Term Forecasts

Medium-term forecasts predict future energy usage a few months to a few years into the

future, and are necessary for planning fuel procurement, scheduling unit maintenance, energy

training, and revenue assessment.  Other uses for medium-term forecasting are decisions on

capital repairs, inventory control of coal and liquid fuels, the purchase of fuel quantities and the

assessment of revenue impacts due to changes in electricity tariffs.  A medium term forecast is

similar in structure to the long-term forecast presented in the next section.

2.4.4 Long-Term Forecasts

A long-term peak load forecast is designed to be valid from five to twenty-five years into

the future.  The earliest method of long-term forecasting, prior to the 1970’s, involved trend line

extrapolation (see section 2.3.1) (Lakshminarayana, 1991).  Modern methods of long-term
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energy forecasting use sophisticated statistical based analysis as the forecasting tool. It is

important in plans for system generation and transmission and allows for planning engineers to

determine the type and size of new power installations to minimize fixed and variable costs.

When determining a long-term forecast outside factors such as governmental policy, and

development policy should be considered.

Donnelly (1987) describes a typical functional form of a long term forecast as:

( )XYPPPfQ CSEE ,,,,=

Where:

QE  represents Quantity of electricity

PE represents Electricity Price

PE represents Price of substitute good

PE represents Price of complementary good

Y represents Consumer Income

X represents Other factors 
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3.0 Literature Review

The literature review section presents the various methods of energy modeling, the types

of energy modeling that exist, and the variety of methods that have been developed through the

years to determine energy demand.  The literature review shows the gap in the amount of

literature available for statistical methods of forecasting energy demand versus the probabilistic

method of forecasting energy demand.

3.1 Early Energy Demand Models

As seen in section 2.1, energy demand forecasting has grown from a relatively simplistic

procedure into a more complex one with many different factors impacting energy demand.  Early

energy demand models from the 1960’s assumed that energy was tied to output (Labys, 1999, p.

32):







=
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The equation was representative of a typical Leontief production output function—output (Q)

depends on value added (VA(K,L)), energy (E), and materials (M).  Inputs γ1, γ2, γ3 are technical

coefficients which “measure the Leontief recipe for the dollar value of any given input necessary

to produce a dollars worth of output” (Labys, 1999, p. 40).  This model is dependent entirely

upon GNP.  GNP is used as a proxy for output and energy is tied to GNP through a technically

determined coefficient (γ2).  Therefore,

E = 02GNP
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3.2 Energy Demand Models that use the Statistical Method

 Al-Garni, Zubair, and Nizami (1994) demonstrate a modern method of forecasting

energy demand for Saudi Arabia.  Al-Garni et al. use a statistical method for forecasting peak

energy demand.  A statistical summer peak model must account for temperature and other factors

affected by the warm weather.  Although the climate of West Virginia is vastly different from

that of Saudi Arabia, the study of a warm climate provides useful information as to what

variables are important for a summer peak demand model for West Virginia. Al-Garni et al.

include variables representing weather data, global solar radiation, and population.  The model is

represented by the equation:

( )PSHTEEP ,,,=

Where:

E represented the measured energy consumption,

Ep represents the predicted energy consumption,

T represents the monthly mean air temperature (°C),

H represents the monthly mean relative humidity (%),

S represents the monthly mean global solar radiation (w * H/m2 * day), and

P represents population.

Variable selection was accomplished by using a step-wise regression technique, and evaluation

of model accuracy was done by analyzing the residuals.

Leung and Miklius (1994) compare different statistical methods of energy forecasting

using Hawaii as a test case.  Leung and Miklius show the different forms that exist for statistical

forecasting.  Their study is also relevant, because it highlights what factors influence energy

demand in Hawaii’s warm climate which gives an indication of what may impact summer
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demand in West Virginia with its hot humid summers.  Since the forecast used to compare the

statistical and probabilistic forecasting methods is a summer peak forecast, this forecast will help

determine which factors are important for a West Virginia summer peak forecast.

The authors compared extrapolation based on linear (average) growth, linear exponential

smoothing, quadratic exponential smoothing, causal relationship between electricity

consumption and de facto population, causal relationship between electricity consumption and

per capita income, and the Hawaii Energy Demand Forecasting Model (HEDFM).

The final method discussed in the comparison is the Hawaii Energy Demand Forecasting

Model (HEDFM).  HEDFM is an econometric-based simulation system that was developed by

the Research and Economic Analysis Division of the Hawaii Department of Planning and

Economic Department in conjunction with the Energy Analysis Program of the University of

California Lawrence Berkeley Laboratory.  The purpose of the HEDFM is to provide detailed

forecasts for various types of fuels up to the year 2005.  The HEDFM "follows a very widely

used dynamic flow adjustment model structure to capture the lagged adjustment process of

energy demand due to (1) the existing stock of energy consuming devices that cannot be replaced

immediately, and/or (2) the unwillingness of consumers to view changes as permanent until they

have continued for some time.  The model relates consumption in a given year to price, income,

other relevant variables, and previous year's consumption” (p. 293).

The results of the comparisons of the six different types of forecasting methods show that

the quadratic exponential smoothing method produced the best results.  HEDFM performed

fairly well, but it tended to underestimate actual electricity consumption for the entire period.  A

possible explanation for these results could be attributed to the inaccurate forecasts of the

independent variables.  Linear exponential smoothing performed reasonably well also.  The
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results of the study were analyzed by comparing different “goodness of fit” criterion, the R2, the

root-mean-squared error (RMSE), mean absolute error (MAE), Theil's fifth inequality coefficient

(µ) and the turning point errors.

S.V. Le (1983) formulates a statistical model to forecast summer residential energy

demand.  Le uses the statistical method to study which factors influence summer peak residential

energy demand and then uses those results to forecast demand. Le’s model indicates what

influences residential energy demand in a climate very similar to West Virginia’s.  Unlike some

of the other models discussed which were developed for either a tropical or desert climate, Le’s

model accounts for the uniqueness of West Virginia’s economy and climate, because income and

price are included along with a temperature variable.  Le’s model is also unusual in that it

measures the use of air conditioning saturation, which suggests that residential energy demand in

the summer is tied to air conditioning use, which is based upon the temperature and technology

adaptation.

The equation developed by Le for determining residential summer peak demand is:

( ) ( ) ( ) ( ) ( )WTLnbELECPLnbGASPLnbPILnbcSPKLn 4321 ++++=

Where:

SPK represents net system summer peak load,

PI represents personal income in the service area,

GASP represents the price index of natural gas,

ELECP represents the price electricity (typical residential and commercial electric bill)

WT represents the weather factor that is composed of air conditioning  saturation multiplied by

the weighted average of cooling degree hours of peak day and three previous days

multiplied by the number of residential customers.
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Crow, Robinson, and Squitieri (1981) discuss a variation on the residential energy

demand model.  They assume that the use of electricity is a derived demand because it is not

consumed “as an end itself, but for other purposes, such as to run equipment” (p. 90).  This type

of model is in a simple linear statistical form that is represented by the equation:

SaRaCONSaCDDaHDDaINCaPGASaPELECaaKWH 987654321 ++−++++−=

Where:

PELEC represents the price of electricity,

PGAS represents the price of gas,

INC represents income level,

HDD represents heating degree days,

CDD represents cooling degree days,

R represents the number of rooms per house, and

S represents average family size

Crow et al. provide an excellent example of a linear statistical model that gives insight

into what form the model for Appalachian Power Company’s service area in West Virginia may

take. The variable representing average family size is interesting because the larger the family,

the more likely they are to use more electricity.  The problem with Crow et al.’s model is that it

is a model to forecast energy demand, therefore, it is not divided into winter and summer

forecasts.

Halvorsen (1978) discusses an econometric method of forecasting residential energy

demand.  According to Halvorsen, residential electricity demand can be expected to be a function

of both economic and non-economic variables.  These economic and non-economic variables

include:   the price of electricity, prices of substitutes and complements, the level of income,
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climate variables, demographic variables, and the characteristics of housing stock are all

included in the model.

Halvorsen's residential electricity demand equation is:

RTH
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Where:

QR  represents the average annual residential electricity sales per customer, in thousands

of  kWh

PR represents the average real price of residential electricity, in cents per kWh

Y represents the average real income per capital, in thousands of dollars

GR represents the average real gas price for all types of gas, in cents per therm

A represents the  index of real wholesale prices of selected electric appliances

D represents heating degree days

J represents average July temperature, in degrees Fahrenheit

U represents percentage of population living in rural areas

M represents percentage of housing units in multiunit structures

H represents average size of households

T represents time

u represents a disturbance term

Crow et al. and Halvorsen both include the concept of rural versus urban energy usage in

their model.  Crow et al. does it by including the number of rooms in a typical residence in the

model.  The large rural population in West Virginia means that many people live in homes rather

than apartments, and this variable captures this concept.  Halvorsen captures the concept by

including a variable representing the percentage of the population living in rural areas. The
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percentage of people living in rural areas is included in the model, because those living in rural

and urban areas usually have different availability of substitutes, and alternative energy sources.

Also, if a majority of the population live in rural areas, then it would be logical to assume that a

large portion of the population live in single-unit structures rather than multi-unit structures as

apartments are usually an urban phenomenon.  Those living in apartments are expected to use

less electricity than those living in large single family homes.  This variable is interesting for

West Virginia, because the majority of the population live in rural areas.

Cowing and McFadden (1984) discuss the Oak Ridge National Laboratory (ORNL)

model of residential energy demand forecasting.  The ORNL disaggregate forecast is based upon

housing and urban differences, family size differences, and income.   As discussed earlier,

interesting population and demographic differences are considered with this model.  However,

the forecast model requires data that are not available for the southern portion of West Virginia.

The ORNL model is a complex model whose purpose is to satisfy “the most pressing

requirements for regional forecasts of the impacts of heterogeneous policies” (p. 45).  The

creators of the model realized that the end-use of electricity is disaggregated consumers who use

it for appliances, and they deal with this problem by permitting some demographic segmentation.

Components of the ORNL model are outlined in Table 1.
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Table 1:  ORNL Model Components

Base-year data New equipment market shares, base year
Equipment market shares, base year
Annual average energy use, new equipment, 1970
New equipment prices, base year
Interest rate
Ratio of 1970 to 1970 usage factors
New equipment installations, base year
Fuel prices plus income, base year

Technological parameters Air conditioning-space heat load reduction ratio
New equipment technological parameter
New construction technological parameters
Retrofit technological parameters
Average equipment lifetimes
Lifetime of investments in thermal shell

Behavioral parameters Appliance market share elasticity with respect to operating coast
Usage elasticity with respect to operating cost
Interest rates for PV cost minimization
Market share equation slope coefficient
Ratio of short- to long-run usage elasticities
A market penetration rate parameter
A horizon after which life-cycle cost is minimum
Maximum saturation
Average equipment lifetimes

Exogenous forecasts New equipment prices, relative
Real prices for fuels plus income
Average size of existing housing units
Average annual energy use, new equipment, before adjustment
Thermal integrity for retrofit homes
Number of homes which are retrofit
Total number of occupied housing units
Total number of new housing units
Fractions of new homes with room – central air conditioning
Status quo new equipment energy use
Size of new housing units
Average thermal integrity, new structures

(Source :  Cowing and McFadden, p.46)

Not all of the variables listed in Table 1 above are used because some of the variables

measure the same concept, are believed to be zero, or “have common values or are obtained by a

relatively simple interpolation as part of the preprocessing of the input files” (p. 46).  The

problem with the model is that many of the variables are based upon the forecasters’ judgement,
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which leaves the forecast vulnerable to error.  Also, much of the data are difficult to obtain

because it is not available on the specific level necessary.

The design of the ORNL model is a block recursive structure.  The model has a housing

submodel which “forecasts the number of households in a region, additions to housing stocks

required to accommodate these households, and the average size of new dwellings” (p. 49).  An

appliance saturation model is also a part of the ORNL model which is an “econometrically

estimated model of equipment ownership, classified by type of equipment and fuel type, as a

function of equipment and flue prices” (p. 57).

The ORNL model accounts for changing demographics, economic conditions, and new

technologies.  Therefore, “the ORNL model is designed to forecast annual residential energy

consumption, classified by five fuel types, three dwelling types, and eight end-uses for up to

thirty years” (p. 48).

Cowing and McFadden (1984) and Koomey, Brown, Richey, Johnson, Sanstad, and

Shown (1995) discuss the Residential End-Use Energy Planning System (REEPS).  REEPS was

developed by the Electric Power Research institute and is designed to “provide end-use specific

forecasts for energy consumption at the household level” (Cowing and McFadden, p. 61) and to

“allow users to define customized models for various energy end-uses in the residential sector,

including appliances and heating , ventilation, and air conditioning (HVAC) equipment”

(Koomey et al., p. 1).   What makes the model work is a generated sample of simulated

households.  REEPS “predicts four categories of energy-related decisions:  appliance investment

decisions in new dwellings, retrofit appliance investments in existing dwellings, appliance

operating efficiencies, and annual energy consumption (Cowing and McFadden, p. 64). The most

common application of REEPS can be used to “forecast the long-term impacts of energy policies
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on a population whose characteristics change over time, reflecting projected demographic and

economic growth” (Cowing and McFadden, p. 66).

The REEPS modeling system has four steps.  The first step is to formulate a sample of

“households with information on their socioeconomic attributes, appliance holdings and

characteristics of the area in which they reside” (Cowing and McFadden, P. 64)  or as Koomey et

al. say that “the first step is “accounting for changes in stock based on equipment decay” (p. 1).

Step two is the simulated model which forecasts purchases and installations of space heating,

water heating, central air conditioners, room air conditioners, stoves, and dishwashers.  It is

divided into three categories:  1)  physically attached appliances in new housing construction, 2)

attached appliances in existing housing, and 3) other appliances.  The third step consists of

“calculating annual energy consumption by fuel type given the appliance portfolio and the

household, dwelling, and geographical characteristics” (Cowing and McFadden, p. 65).  The

fourth step is “after the appliance and energy usage decisions are simulated for the current

period, a new sample is created for the subsequent period simulation” (Cowing and McFadden,

p. 65-66).

There are three inputs for the REEPS model.  These inputs are exogenous inputs that are

“used to forecast the general macroeconomic circumstances under which the energy-and

technology-specific projections occur (Koomey et al., p. 6).”  The input elements of the REEPS

model are shown in Table 2.
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Table 2:  REEPS Model Exogenous Inputs

Exogenous Inputs Fuel prices
Legal availability
Market availability
Household income
Household size
Income

End-use Technology Inputs Ownership
Equipment efficiency
Equipment size/capacity
Equipment UEC
Price
Vintage blocks
Min/max lifetimes

Thermal shell Inputs Heat gain/loss
Floor area
Thermal shell
Purchases
Equipment size/capacity
Equipment efficiency
Equipment UEC
Stock
Ownership
Site energy consumption

(Source:  Koomey et al., p. 6-8)

The method of decision making in the REEPS model is decision models which are used

“to forecast the effect of different decisions made in the course of owning and operating

residential appliances and HVAC equipment” (Koomey et al., p. 9).  These decision models

determine “the value of four key variables for appliances and HVAC equipment throughout the

course of the forecast:  ownership, efficiency, usage, and size/capacity” (Koomey et al., p. 9).

Neither the ORNL model nor the REEPS model are applicable for model development

for the southern part of West Virginia.  Both models are so complex that it would be difficult to

implement either one for such a small area.  Also, the data necessary for each model are not

available on a regional basis.  Therefore, the model would not be an accurate representation of

residential energy demand for southern West Virginia.
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Houthakker (1980) addresses the issue of marginal price versus average price.

Houthakker suggests that “quite apart from theoretical considerations, the marginal price differed

considerably from the average price in its behavior over time.  This divergence is presumably

related to the effect of higher fuel prices on the marginal electricity price” (p. 31).

Houthakker’s model follows:

Where:

i represents the ith state

t represents the thth year

q represents consumption in kWh per capital per year

y represents adjusted disposable income per capital (deflated by the regional CPI)

p represents the marginal price electricity (actually the mean of the marginal prices at the

beginning and end of year t, deflated by the regional CPI)

h represents heating degree days

c represents cooling degree days

z represents the average price of gas (i.e., the revenue from residential gas customers

divided by the quantity, in Btu, sold to these customers), deflated as before

µ represents the error term

Houthakker discusses the concept of marginal pricing for electric price versus average

pricing.  The marginal price is the incremental price or the price of the next unit of energy

consumed or produced.  Average prices are commonly used in energy forecasts, because the

determination of the marginal cost is difficult.
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Houthakker also used the Consumer Price Index (CPI) deflator to calculate the constant

dollar values for the income and price variables to account for changes in inflation over time.

This converted the price and income variables into constant rather than current dollar values.

Houthakker's model could be used to produce a statistical forecast for total energy

demand including both summer and winter since the cooling degree-day and heating degree-day

variables are both included.  Other than the variations mentioned above Houthakker’s model is

similar to those discussed earlier and the same discussion of the temperature and economic

variables would hold.

3.3 Energy Demand Models that use the Probabilistic Method

Sam O. Sugiyama (1992) describes the criterion used by the Bonneville Power

Administration to forecast energy use.  An aggregate econometric energy model was developed

by Bonneville to forecast monthly electricity sales for its public utility customers.  The

independent variables in the model are weather (in terms of heating and cooling degree-days),

economic activity (regional non-agricultural employment) and electric prices.  Dummy variables

were used to account for “shoulder months.”  Therefore, Bonneville Power Administration’s

model is written as:

Oth
t

DD
t

EMP
t

R
t MWMWMWMW ++=

Where:

MWEMP represents the electric energy attributable to employment,

MWDD represents electric energy attributable to degree-days

Sugiyama used probabilistic forecasting rather than the more traditional methods of

energy forecasting such as the statistical method.  The stochastic system for regression
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estimation is an alternative because this type of analysis recognizes that uncertainty exists with

regards to the data.  It is easy to calibrate detailed baseline forecasts, and the model gives the

opportunity to examine the effects of major events overall as long as they fall within the current

scenario ranges without re-running the detailed models.

Bonneville’s model has all of the traditional components of an electricity demand

model—an economic variable, a weather variable and a variable representing electricity price.

What makes it interesting is that inputs are supplied in terms of probabilistic distributions, and

the probabilistic method is used to analyze the impact of these probabilistic variables upon

energy demand which gives a measure of the risk involved in the forecasts.  This measure of risk

allows the risk involved in the project to be analyzed and considered in the forecast.  The concept

of using probabilistic analysis to forecast energy demand is a concept discussed later in this

thesis.
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4.0 Theory

This section describes the theory involved in comparing the statistical and probabilistic

methods of analysis for a long-term forecast for Appalachian Power Company’s service area in

West Virginia.  Included in the theory section are discussions of regression analysis, risk

analysis, probability and probabilistic analysis, sensitivity analysis and scenario analysis, Monte

Carlo Simulation, preference theory and certainty equivalence, forecasting, predictive versus

explanatory models, functional form, and finally the Consumer Price Index.

4.1 Theoretical Concepts Used in Investigation

Regression analysis is a means of analyzing the independent factors involved in a

particular question and determining which one(s) impact(s) the dependent variable.  Therefore,

regression analysis is used to address the question of what factor(s) impact(s) the summer peak,

and how each factor considered singularly or in combination contributes to demand. Decision

analysis can be used to determine the risk involved in the final model decided upon through

regression analysis.

Monte Carlo Simulation is a method that uses probabilistic distribution functions of the

input variables in conjunction with computer simulation to arrive at a probabilistic distribution of

the dependent variable.

Certainty equivalence is a means of setting the level of acceptable risk, whether the

decision-maker is risk seeking or risk averse.  The level of acceptable risk then allows the

decision-maker to decide upon which scenario suits their level of risk.
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4.2 Risk

The future is uncertain, and no one knows exactly what tomorrow will bring.  We do not

know how the action we take today will affect some unknown future event.  “Risk implies that a

given action has more than one possible outcome” (Palisade Corporation, 1996, p. 2-5).  If a

situation is determined to be risky, then risk must be factored into the decision process and this is

when risk analysis takes over.  Both regression analysis and Monte Carlo Simulation incorporate

risk into the analysis but the methods do so in different ways.

4.2.1 Risk Analysis

Risk analysis is a method of assessing the impacts of risk on decision situations.  It

accounts for uncertainty.  Risk is the evaluation of a situation using a known mechanism that

incorporates the probabilities of occurrence for success and failure and/or different outcomes for

the situation.  The use of quantitative approaches to incorporate risk and uncertainty into analysis

results may allow the decision-maker to be more successful in achieving the objective in the long

run.  The goal is to help the decision-maker choose a course of action, given better understanding

of the possible outcomes that could occur.   Risk is often portrayed in an analysis by the

inclusion of a probability density function about a single input or output value or as confidence

limits about a regression estimate.  The theories behind all derived probabilities and probability

density functions have common roots.

4.2.2 Probability

Probabilistic analysis is based on the concept of probability.  An example of probability

as described by Howard (1968) is:  “Let A be an event and S be the state of information on
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which the probability of the occurrence of A is to be assigned.  Then {A/S} is the symbol for the

probability of A given S.  If x is the random variable, then the probability density or mass

function of x assigned on the basis of S is {x/S}” (p. 212).

Probability analysis is a method of determining how much risk is involved in selecting a

particular scenario. Probabilistic analysis is the study of the uncertainty of events. “The

distribution and relative possibilities of values are assigned to a given variable will remain

characteristic of that value if factors affecting the variable will remain constant” (Stermole and

Stermole, 1993, p. 250).

There are five steps that should be followed when doing probabilistic analysis:

1. Develop a model by defining the problem or situation in a spreadsheet

program.  In other words, develop the forecast model in the spreadsheet

program.

2. Identify uncertainty in variables in the spreadsheet worksheet and

specifying the possible values of these variables with probability

distributions and identifying the uncertain worksheet results that are

unwanted and change them for each range of values.

3. Estimate the possible correlation among the input variables and make the

appropriate entries in the probabilistic program.

4. Analyze the model using simulation to determine the range and

probabilities of all possible outcomes for the results of the worksheet.

5. Describe the risk involved in the decision and then make a decision based

on the results and personal preferences.
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Sensitivity analysis, scenario analysis, and Monte Carlo simulation are all methods of risk

analysis.  Each has its own impact upon the analysis.

4.2.3 Determining Probabilities

Three methods exist for determining probabilities:  the classical method, the relative

frequency method, and the subjective method.  Regardless of the method used there are two

basic requirements that must be met: (Anderson, 1978, p. 26)

1) The probability values assigned to each sample point must be between 0

and 1.  That is, if we let Ei indicate the sample point and P(Ei) indicate the

probability of the sample point, we must have

0≤P(Ei) ≤ 1, for all i

2) The sum of all the sample point probabilities must be 1.  For example, if a

sample space has k sample points we have

P(E1)+P(E2)+……….+P(Ek) =

The classical method is used when two outcomes are equally likely to occur, in other words a

fifty-fifty chance of occurring.  An example of the classical method is a coin toss – it has a fifty-

fifty chance of being heads or of being tails.

The relative frequency method is a method of determining probabilities.  It is used when

the two possible outcomes do not have an equal possibility of occurring.  An example of the

relative frequency method is to “suppose that in a test market evaluation of the product 400

potential customers were actually contacted:  100 actually purchased the product, while 300 did
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not” (Anderson, 1978, p. 27).  The way of determining the probability is by dividing 100 by 400

or 25% of those surveyed actually purchased the product while 75% did not.

The subjective method is used when the “experimental outcomes are not equally likely

and where experimental or historical relative frequency data are unavailable” (Anderson, 1978,

p. 28).  In other words, the probabilities are based upon the knowledge of the past history and

one’s own personal knowledge of the event.  An example is a sports team.  When determining

the probability the team will win one must delve into their knowledge of the team’s players,

injuries, coaching, etc. and compare it to what is known of their opponent and then make a

judgement as to the probability that the team will win.  But Anderson says that “after considering

all available information, you must specify a probability value that expresses your degree of

belief that the team will win its next game” (Anderson, 1978, p. 28).

4.3 Regression Analysis

Regression analysis is a statistical tool that compares the relationship between two or

more variables.   It is the identification of a relationship between a dependent variable and one or

more independent variables.  Regression analysis measures how much of the movement in the

dependent variable is explained by the independent variables.  “Econometricians use regression

analysis to make quantitative estimates of economic relationships that previously have been

completely theoretical in nature” (Studenmund, 1992, p. 5).  It is a statistical tool that attempts to

explain changes in the dependent variable as a function of the independent variable(s) through

the “quantification of a single equation” (Studenmund, 1992, p. 5)

Definitions of some of the regression statistics used to observe the outcome follow:
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• Population is the group from which the sample is being drawn, while the sample

comes from the population.  According to Studenmund (1992) when the sample

size nears the population size, the unbiased estimate coefficient nears the value of

the true population.

• Mean is the sample average.  “The mean is the most common measure for the

center or location of data on an economic variable” (Griffiths, Hill, and Judge,

1992, p. 22).  The mean is represented by the equation:

Where:  T represents the number of observations

• Regression Coefficients measures the contribution of the independent variable to

the prediction.  Each coefficient multiplies the corresponding variable in forming

the best prediction of the dependent variable.  The C or constant coefficient is the

base level of the prediction when all other independent variables are zero.

• Regression Estimation is a statistically estimated curve or function in which a

dependent variable, such as sales or peak loads, is explained given the values of

the independent variables, such as the electricity price, temperature, and income.

• Least Squares is an estimations criterion (“estimation”) used in regression

analysis, which minimizes the sum of squared deviations between the actual

observation and the regression.  Least squares, when properly applied yields

unbiased estimates of minimum variance.
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• Residuals are the difference between the actual and fitted values of the dependent

variable.  “They give an indication of the likely errors that the regression would

make in a forecasting application” (Quantitative Micro Software, 1995, p. 162).

To obtain the residuals, the estimated values are subtracted from the actual values.

The smaller the residual, the better the fit and the closer the y hats will be to the

ys.  A residual is a real-world value that is calculated for each observation every

time a regression is run.

fyyu −=

Where:

yf represents the fitted values.  Fitted values are the predicted values from a

regression computed by applying the regression coefficients to the independent

variables.  The fitted values are represented by the equation:

b is the least squares coefficient and is represented by the equation:

y represents the dependent variable

• Standard Errors measure the statistical reliability of the regression coefficients

where the larger the standard error, the more statistical noise effects the

coefficient.  It measures the strength of the residuals.  “About two-thirds of the

residuals will lie in a range from minus one standard error to plus one standard

error, and 95% of the residuals will be in a range from minus two to plus two

by f Χ=

( ) yb Χ′ΧΧ′= −1
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standard errors”(Quantitative Micro Software, 1995, p. 160).  The standard error

is represented by the equation:

uu
kT

s ′
−

= 1

Where:

T represents the number of observations

k represents the number of coefficients

u represents the residuals

• Sample Variance is a measure of dispersion.  In other words, it shows how the

sample data varies around the mean.  It is represented by the equation:

Where:

x represents the variable

T represents the observations on the economic variable x

x bar is the sample mean

In other words, the sample variance is “the average squared distance between xt,

the observed values of x and the sample arithmetic sample mean x bar” (Griffiths

et al., 1993, p. 23).

• Standard Deviation is a vital measure of a normal distribution.  It is the square

root of  the variance.  It is a measure of the dispersion in the

sampling distribution of  βk.  The standard deviation is represented by the

equation:
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Where:

sx
2 represents the sample variation

“Large values of sx and sx
2 indicate more dispersion of the values of x about the

arithmetic sample mean, and small values of sx and sx
2 indicate that the values of

x are clustered around the sample mean” (Griffiths et al., 1993, p. 23).

• Degrees of Freedom are the number of observations minus the number of

coefficients estimated.   The lower the degrees of freedom, the less reliable the

estimate is likely to be.  “Thus the increase in the quality of the fit cause by the

addition of a variable needs to be compared to the decrease in the degrees of

freedom before a decision can be made with respect to the statistical impact of the

added variable” (Studenmund, 1992, p. 50).

If n-k-1 ≤ 0, then “the equation cannot be estimated, and if the degrees of freedom

are low, precision is low” (Studenmund, 1992, p. 410).  When this happens the

best course of action is to include more observations in the model.

• The Error Term  is the difference between the observed y and the true regression

equation or the expected value of y.  It is a theoretical value that can never be

observed.  The error term is derived from the omitted explanatory variables.  The

variation described by the error term is probably the result of  “omitted influences,

measurement error, incorrect functional form, or purely random and totally

2
xx ss =
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unpredictable occurrences” (Studenmund, 1992, p. 10).  The equation describing

the error term is:

Where:

Yi represents the observed value of Y

Yi/Xi represents the expected value of Y

The difference between the residual and the error term is that the error term can

never be observed while the residual is a real world value that is calculated for

each observation every time a regression is run (Studenmund, 1992, p. 16).  This

is so because “the residual is the difference between the observed y and the

estimated regression line (y hat), while the error term is the difference between

the observed y and the true regression equation (the expected value of y)”

(Studenmund, 1992, p. 16).

• R2 measures the "goodness of fit."  In other words, it measures the success of the

regression in predicting the values of the dependent variable within the sample.  It

is the fraction of the variance of the dependent variable explained by the

dependent variable.  In other words, it is the proportion of the variance in the

dependent variable explained by variation in the independent variables.  The

higher the R2 value, or the closer to one it is, the better the estimated regression

equation fits the sample data, and the closer the R2 value is to zero the worse the

fit of the regression equation with the sample data.  The equation which represents

R2 is:




−=
i

i
ii X

YEYε



48

( ) ( )yyyy

uu
R

−′−

′
−= 12

Where:

u represents the residuals

y represents the independent variable

y bar represents the mean of the dependent variable

There is a problem with R2, in that adding another independent variable to

the equation can never decrease R2.  Therefore adjusted R2 is needed.

• Adjusted R2 is R2 adjusted for degrees of freedom.  A slightly different variance

is used with this measure than with R2.  Adjusted R2 will increase or decrease

depending on whether the improvement in fit caused by the addition of the new

variable outweighs the loss of the degree of freedom.  It is usually less than R2 if

there is more than one independent variable.  Adjusted R2 is represented by the

equation:

( )
kT

T
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−
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11 22

Where:

u represents the residuals

T represents the number of observations

k represents the number of regressors

• F-statistic is a method of testing the null hypothesis that includes more than one

coefficient.  It works by determining whether the overall fit of an equation is

significantly reduced by constraining the equation to fit the null hypothesis.  It is a

test of the hypothesis that all of the coefficients in a regression are zero except the
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intercept or constant.  If the F-statistics exceeds a critical level, at least one of the

coefficients is probably non-zero.
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Where:

n represents the number of observations

k represents the number of regressors

• Multicollinearity  occurs when the independent variable is a perfect linear

function of one or more of the independent variables.  The consequences of

multicollinearity are (Studenmund, 1995, p. 264-267):

• The estimates will remain unbiased

• The variances of the estimates will increase

• The computed t-scores will fall

• Estimates will become very sensitive to changes in specification

• The overall fit of the equation will be largely unaffected

• The estimation of nonmulticollinear (orthogonal) variables will remain

unaffected

• The severity of multicollinearity worsens its consequences.

• Correlation Coefficient measures the strength and direction of the linear

relationship between two variables (X1 and X2).  The value lies between -1 and 1.

“The correlation between X1 and X2 is 1 or –1 if X1 is a perfect positive or

negative linear function of and X2” (Griffiths et al., 1993, p.44).  The larger the



50

correlation coefficient the larger the linear relationship between the two variables.

The relationship is represented by the following equation:

• The Null Hypothesis is the actual hypothesis being tested and the Alternative

Hypothesis is the logical alternative that will be accepted if the hypothesis is

rejected.  An example of a null hypothesis (H0) and an alternative hypothesis (H1)

is:

H0: β = β0

H1: β ≠ β0

“A statistical test of the null hypothesis is carried out by examining whether or not

the information about the value of β contained in a sample

of the data supports, or appears to be consistent with, the null hypothesis”

(Griffith et al., 1992, p.133).  To test a true null hypothesis a standardized normal

random variable is constructed (also known as the t-statistic):

z has the true standard normal distribution N(0,1) if the null hypothesis is true.

Griffiths et al. discuss three steps for testing a hypothesis about the mean of a

normal population when δ2 is known.  The steps are:

(a) Use the least squares estimate b of β to calculate the value of z

(b) Reject the null hypothesis H0: β = β0z≥ zc or
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(c) Do not reject the null hypothesis if z< zc

• Level of Significance indicates the probability of observing an estimated t-value

greater than the critical t-value.  The level of significance is usually between 0.01 and

0.05.

It is represented by the equation:

“If b≥βL or b≤βU we reject the null hypothesis and if βL≤b≤βU we do not reject the

null hypothesis.  When a null hypothesis is rejected it means that the sample

information does not support the null hypothesis and thus we conclude that it is

unlikely to be true” (Griffiths et al., 1993, p.135).

• Probability  shows the likelihood of rejecting the null hypothesis with the t-statistic

value that was produced.  Usually, a probability lower than 0.05 is strong evidence

that the null hypothesis will be rejected.

• Confidence Intervals can be calculated about the forecasted value.  This confidence

interval is calculated using the following equation:

[ ] [ ] 2
αββ =≤=≥ LU bPbP

( )
( ) 












−
−

++=
∑ 2

2

22 1
1

XX

XX

n
ss

i

F
F



52

4.4 Sensitivity Analysis

Sensitivity analysis is a way of varying one or more factors to determine what impact the

variance has upon the forecast.  In other words, when running the simulation using risk analysis

software, only one of the variables is altered in the equation while the others remain the same to

determine what impact the change has upon the forecast.  Each time a simulation is run another

variable is altered and the results from all of the simulations are compared.  Sensitivity analysis

thereby identifies those factors that have the greatest impact upon the forecast which “allows

evaluators to gather additional data in a more efficient manner” (Torries, 1998, p. 55).

Sensitivity analysis is frequently used to “determine how much change in a variable would be

necessary to reverse the decision based on average-value or best-guess estimate” (Stermole and

Stermole, p. 246) or to determine the impact of price changes upon the forecast.

4.5 Scenario Analysis

Scenario analysis is a means by which “decision makers understand the uncertainty

created by multiple combinations of input factor values;  as a result, they sometimes investigate

the results of scenarios in which combinations of variables are changed” (Torries, 1998, p. 56).

“The scenario analysis identifies of combinations of inputs which leads to output target values”

(Palisade Corporation, 1995, p. 3-7).  Scenario analysis uses groupings to determine which

causes a particular output value.  While there are many different types of scenarios in scenario

analysis, a common arrangement is to compare the base case or the expected case, the optimistic

case, and the pessimistic case.  The base or expected case is developed from the “best” estimates

from the forecast.  The base or expected case is not a true expected value, because “the expected

case can only be determined through probabilistic analysis as the distribution of the input factors



53

has not been considered in the determination of the base case” (Torries, 1998, p. 57).  The

pessimistic case shows the probable outcome when nothing goes as expected, while the

optimistic case shows the results when everything goes better than expected.

The three cases can be used to estimate the distribution of the input values. A basic

concept of probability theory is that a range of values and probabilities are used, because a single

input cannot reflect the risk associated with the variables.  Using the least, most likely, and

greatest values of a variable allows for a more accurate quantification of the risks included in the

variable than one single value.  Crow et al. (1981) suggests that:  “the future is ultimately

unknowable.  Therefore, it is reasonable to select not only the best guess about the future, but

also maximum and minimum plausible values so that some range of likely electricity

consumption can be forecast” (p. 49-50).

This arrangement of the three cases can be portrayed as a triangular distribution as shown

in Figure 3.  If a triangular distribution is symmetrical it has the same property as a normal

distribution in that the value that occurs the most is also the mean value (Torries, 1998, p. 60).

However, the distribution of triangular distributions may also be skewed.
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Source: Megill, 1984, page 23, Figure 3.2

Figure 3: Triangular Distribution

“The lowest and highest values are considered to have low probabilities (say, less than

5%) and the base values the highest probabilities of occurrence” (Torries, 1998, p. 59).  The area

under the triangle represents the frequency of all the events that can occur.  Thus, greater

frequencies have greater area, and smaller frequencies have a smaller area.  The use of

probabilistic inputs for the variables accounts for the risk involved with uncertain values of these

variables.

4.6 Monte Carlo Simulation

Monte Carlo Simulation is a technique used to determine the probabilistic distribution of

an outcome that relies on all probable scenarios.  “Monte Carlo sampling refers to the traditional

technique for using random or pseudo-random numbers to sample from a probability
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distribution” (Palisade Corporation, 1995, p. B-5).  It is a method of recognizing and determining

risk.  Monte Carlo Simulation produces not only one answer, but rather a series of answers or a

range over which the results vary as a function of probability of occurrence and also a most

expected result.  In other words, Monte Carlo Simulation generates hundreds of alternative

(scenarios) for a project.  The answer may fall anywhere within the range of the results produced.

All inputs are independent of one another.  Thus, when the variables are correlated a

correction to the Monte Carlo Simulation is required.  To account for correlation, a correlation

matrix in the Monte Carlo Simulation is used.  The correlation value for each set of variables is

entered in the matrix, and when the simulation is run, correlation among the variables is

accounted for.

Monte Carlo simulation is done using risk analysis software.  The results of the analysis

may be viewed differently by different people.  This variety of opinions is because of the

differences in the level of acceptable risk among individuals.

4.7 Preference Theory & Certainty Equivalence

Walls and Torries (1998) discuss the concept of preference theory and certainty

equivalence.  With preference theory a utility function is produced which is representative of the

individual’s or business’ willingness to accept or reject risk. The utility function is represented

by the equation:

Where:

RT represents the risk tolerance coefficient

x represents the monetary variable
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e represents exponential constant

Certainty equivalence is used to determine the individual’s preference for what type of

risk they are:  risk seeking or risk averse.  The equation representing certainty equivalence is:

Where:

pi represents the probability of outcome I

xi represents the value of outcome I

n represents the total number of possible outcomes

Certainty equivalence makes a distinction between the risks involved between two

different outcomes.  “The Cx valuation measures the trade-offs between potential and uncertain

upside gains versus downside losses with respect to the investor’s risk propensity” (p. 125).

4.8 Forecasting

Forecasting is a means of predicting what is going to happen in the future—next month,

year, decade, etc.  Accurate forecasting requires high quality data, application of the appropriate

forecasting technique, and knowledgeable interpretation.  “The accuracy of such forecasts

depends in large measure on the degree to which the past is a good guide to the future”

(Studenmund, 1995, p. 4).

Prior to building a forecast model, the first step is to clearly understand the problem in

order to establish the forecast range and objectives (Al-Alawi, 1996, p. 142).  Therefore, the four

steps of forecasting are:
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1. Collect and analyze the data through graphs to determine if any of the numbers seem

inconsistent with the others.

2. Make assumptions consistent with the data

3. Test the relationships using statistical analysis

4. Feed back the results—iterate, con problems until get reliable and reasonable results

(Burns, 1984, p. 1439).

A forecasting model for electricity demand includes:

• Historical, current, and predicted values of demand-determining variables

• Identification of the equations and parameters that relate those variables to electricity

demand

• A method for solving the electricity demand model for each forecast year and

summarizing the results. (Mitchell, Park, & Labrune, 1986, p.4)

Burns (1984) suggests that “the time period should be long enough to permit a trend to

develop and so short as to depend solely on the outcome of particular events” (p. 1439).

Forecasting is the estimation of the expected value of a dependent variable for observations,

which are not in the sample data set, but rather at some point in the future (Studenmund, 1995, p.

574).  “Forecasts are generated (via regressions) by estimating an equation for the dependent

variable to be forecasted, and substituting values for each of the independent variables (for the

observations to be forecasted) into the equation” (Studenmund, 1995, p. 595).

A problem that may arise is that just because an equation is an excellent fit with the

sample data, does not mean that the equation will forecast well outside of the time period of the

data set.  Another problem is the need to anticipate the impact of future technology (Burns,

1984). Yet another problem is that the farther into the future one goes, the more likely errors are
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going to occur in the forecast (Granger, 1986, p. 7).  In other words, no forecast beyond the

short-term can be assumed to be highly accurate, but the more accurate the forecast, the better

the decisions that are made from it.

Electricity load forecasts are inherently uncertain.  Therefore, the forecaster needs to

understand the uncertainty and include it in the analysis.  “The forecaster needs to present

quantitative measures of forecast uncertainty and to understand the sources of forecast error as

they relate to key factors that influence electricity demand” (Charles River Associates, 1995, p.

8).  A method of forecasting electricity demand that produces accuracy for one to three years is

not usually the best method for forecasting long-term demand.  “Disaggregating forecast models

by end use, timing of loads, geography, or other facts can improve forecast accuracy or the

usefulness of forecasts in planning, but it increases model complexity and makes models more

difficult to obtain” (Charles River Associates, 1995, p. 9).

Because forecasts are inherently uncertain, uncertainty exists about the future direction of

explanatory variables.  Uncertainty also exists in relationships or “causality” among different

dependent and independent variables such as changes in consumer behavior in response to higher

or lower prices.  Also, uncertainty exists in the observed explanatory variables due to presence of

“noise” or errors of estimation and measurement plus other factors.  Thus, there is no guarantee

that the past is an accurate representation of the future.  Yet, another forecasting problem is the

need to anticipate future technology (Burns, 1984).

Another problem with forecasting is that of inconsistencies in the data.  The forecast is

intended only for Appalachian Power Company’s service area in West Virginia.  In a perfect

world all of the data should be based upon that service area.  The problem arises when not all of

the data are available on such a specific level.  It is only available for the state or not a national
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level in some instances.  While these values can be used as proxies for Appalachian Power

Company’s service area, the forecast is not the most accurate for that area.

Another problem is that of geographic regions.   This problem is in conjunction with the

inconsistency of data.  As said previously, not all of the data were available for only Appalachian

Power Company’s service area.  Therefore, some of the data are only available on a state or

national basis.  The geography is different in Appalachian Power Company’s service area from

that of rest of the state.  Therefore, data that do not recognize these differences may not be

appropriately used.

4.9 Predictive versus Explanatory Models

Predictive models attempt to determine what is going to happen in the future, while

explanatory models attempt to explain a situation based upon empirical evidence.  Where

predictive models are used to “predict” future events, explanatory models are used to “explain”

why an event took place.

Predictive models are used to predict what the future outcome may be.  Predictive models

extrapolate the trend to determine what the future will be—future growth, decline, or remain the

same.  Predictive models are used for the planning of future projects, acquisitions, or long-term

need.  Predictive models are usually time-series in nature as time-series is a mean of predicting

future outcomes based upon past trends.   Trend extrapolation (see section 2.3.1) is also used to

determine future trends.

Explanatory models attempt to explain why something is the way it is based upon some

theory.  Therefore, explanatory models must be based on theory—if there is no theory, then the
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situation cannot be explained.  Explanatory models show if the theory tested makes sense.  It is a

test of whether or not the empirical evidence is consistent with the explanation.

4.10 Functional Form

The functional form is the form that the electricity demand equation takes, e.g. linear,

logarithmic, or exponential.  The choice of a functional form is a critical one.  To choose a

functional form, one should determine the logical relationship between the independent and

dependent variables and compare them with the properties of various functional forms.  The one

that comes closest to agreeing with the underlying theory should be chosen.  As Griffith et al.

(1993) suggests:  “The first consideration in this regard should always be to choose a functional

form whose characteristics reflect the economic nature of the relationship.  Should the elasticities

be constant over the whole range of the explanatory variables?  Should the marginal responses

(first order partial derivatives) be constant over the whole range of explanatory variables” (p.

344)?

The functional form chosen to represent the residential summer peak forecast for

Appalachian Power Company is the semi-log form.  The semi-log functional form is used when

economic theory shows that some but not all of the variables are expressed in terms of their logs

as the following equation depicts (Studenmund, 1995, p. 220):

The elasticity for the semi-log equation can be expressed as (Studenmund, 1995, p. 220):
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The equation shows that β1/y decreases as y increases.

The traditional method of energy demand analysis use either linear or double-log forms

for determining energy demand.  According to Plourde and Ryan (1985), the double log form is a

reasonable choice of a functional form for an equation to determine energy demand.  The

reasoning behind this is that the estimated coefficients are estimates of the elasticities, and the

standard errors provide measures of the variability of the estimated elasticities.  Yet, there are

problems with the double log form and forecasting energy demand.  One problem is that because

the elasticities are constant they do not vary according to income level or price.  “An additional

problem with the use of double-log forms in energy demand analysis is the relationship of the

form to the economic theory of consumer (or producer) behavior” (p. 107).  In other words, it is

also important to determine whether energy demand functions which use the double-log form

can be “obtained from a less restrictive representation of consumer preferences” (p. 107).

Harvey (1983) highlights the idea that when there is an economic time series the

logarithm should be used, because if a series contains seasonal components,  e.g. temperature,

these components tend to combine multiplicatively.  In other words, a seasonal pattern appears

more stable after a logarithm is taken.

Munley, Taylor, and Formbly (1990) dismiss the idea of traditional linear and double log

forms of energy modeling.  Instead, they show that the method that produces the best results is

when the demand equation is raised to approximately the one-half power.  Munley et al. tested

the linear functional form, the inverse functional form where kWh was raised to the one-half

power, and the double log functional form to determine which method is most appropriate.  What

is interesting about the results is that they showed that the price and income elasticities of

electricity demand are almost identical for all three functional forms tested (p. 187).  Also, the



62

“hypothesis tests about the significance of individual independent variables would lead to the

same general conclusions under any of the three specifications” (p.187).  Although Munley et al.

admit that the hypothesis tests for the three functional forms are not statistically different, they

still conclude that the linear or logarithmic forms should be rejected and the inverse functional

form where kWh is raised to the one-half power is the correct functional form.

Nan and Murry (1992) determine that the flexible double-log is the proper functional

form for an energy demand equation.  This functional form is developed to meet the assumptions

of consumer behavior.  “The traditional log-linear functional form has some short comings of

constant elasticities.  The regression equations in this study, with varied estimated elasticities,

have overcome some of these short comings” (p. 153).  The problem with this method is that of

the constant elasticities.

4.11 Consumer Price Index

The consumer Price Index (CPI) adjusts dollar figures for inflation and is produced by the

Bureau of Labor Statistics (BLS).   The CPI is a statistical measure of change, over time, of the

prices of goods and services in major expenditure groups—food, housing, apparel,

transportation, and medical care typically purchased by urban customers.  “The CPI measures

changes in prices only of goods and services that families purchase for consumption, which

account for about sixty-five percent of total output.  The remaining thirty-five percent goes to

business investment, government services, and the goods and services that we buy from and sell

to foreigners” (Miller, 1994, p. 153).

A price index compares the cost of a sample “market basket” of goods and services in a

specific month relative to the cost of the same “market basket” in an earlier reference period.  A
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price index is calculated starting at some base year which is the reference year for comparison of

prices in other years.  It is defined by the equation:

Price Index =            Cost of Market Basket                *100
            Cost of Market Basket in Base year

The CPI has some problems associated with it.  One is that it is a fixed-quantity price

index which means “that each month the BLS samples only prices rather than relative quantities

purchased by consumers” (Miller, 1994, p. 135).  The reason that this is a problem is that of the

demand curve and the substitution effect.  As prices increase consumers substitute in favor of a

lower price good, yet when prices decrease, the consumer purchases more of the first product.

Another problem is that the BLS only obtains list prices, it does not account for free warranties,

sales, etc.  Also, the BLS does not account for quality changes.  Yet another problem is that the

BLS does not account for improvements on a product whose price remains the same despite the

improvements.
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5.0 Methodology

This section describes the methodology used to forecast summer peak demand for

Appalachian Power Company’s service area in West Virginia.  Included in the discussion are the

variables that potentially impact summer peak electricity demand for this service area.  Also

discussed are the steps taken to analyze the model using regression analysis and Monte Carlo

Simulation.

5.1 Model Development

Residential electricity demand is affected by many different factors.  Halvorsen suggests

that “residential energy demand is assumed to be a function of the number of customers,

electricity and gas prices, per capital income, and several noneconomic variables” (Halvorsen,

1970, p. 612).  Therefore, when forecasting a residential energy demand model, one must

account for many different variables that combine to form the basis of a residential energy

demand model.  The forecaster needs to account for the consumers' buying power.  The majority

of residential energy demand models include variables that measure economic capacity such as

income, temperature or cooling/heating degree-days, price of a substitute such as natural gas, and

the price of electricity.  Some models also include a variable for the number of residential

customers.

Heat waves, humidity, and soaring temperatures cause problems during the summer when

temperatures reach uncomfortable levels.  When the temperature rises, the demand for electricity

increases due to the increased demand for cooling devices.  In other words, everyone turns up

their air conditioning.  Thus, the summer peak usually occurs on one of the warmest day of the
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summer.  A temperature variable such as maximum temperature or cooling degree-days

measures the relationship between temperature and electricity demand.

When electricity prices are high the consumer tends to use less electricity and when the

prices are low the consumer tends to use more.  Also, if a consumer has a choice between two

comparable goods, the consumer will usually choose the less expensive good.  In the case of

electricity consumption, a substitute could be natural gas.

Total income is included in an electricity model to measure the consumer’s buying

power.  It is used to determine how much the consumer can afford to pay for electricity.  When

income is higher a consumer can afford to spend more on electricity which increases demand.

The consumer whose income is low must watch and use only the electricity they can afford.

Therefore, electricity consumption is affected by a consumer’s income.  Also, those with higher

incomes tend to have larger homes than those with lower incomes, and larger homes use more

electricity to cool the home.

Without consumers there is no need to forecast residential energy demand.  Therefore, a

variable measuring the number of customers should be included in the model.  One method of

measuring the number of customers is to actually measure the total number of residential

customers in Appalachian Power Company’s service area.  Another method is to use total

population in the service area. By measuring the total population, the researcher is able to

include some of the consumers of electricity that may not actually be included in the number of

residential customers.
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5.2 Description of the Data

All data are yearly from 1980 to 1995 (shown in Appendix A in Tables 12-14).  The data

series starts with 1980 because of the difficulties in using data prior to the oil crisis of the 1970's.

If the data started with the 1970's the results would be inordinately skewed because of the higher

fuel prices resulting from the crisis.  This situation does not exist in the United States today for

today’s fuel prices are relatively stable and are expected to remain stable over the forecast time

period.  Thus, to forecast the demand for electricity accurately it is important to use the scenario

that exists in today's world, rather than that of the 1970's.

The data are also at the county-level where county-level data were available.  If county-

level data were unavailable, then state-level data were used.  County-level data were desired

because Appalachian Power Company only services certain counties in West Virginia.  These

counties are Boone, Cabell, Fayette, Jackson, Kanawha, Lincoln, Logan, McDowell, Mason,

Mercer, Mingo, Nicholas, Putnam, Raleigh, Wayne, and Wyoming counties.  The county data

also included data for West Virginia Power Company, a small electric company supplied by

Appalachian Power Company.  The counties in the West Virginia Power Company service area

are Greenbriar, Monroe, and Summers counties. These counties are highlighted in Figure 4

below.
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Figure 4: Map of Appalachian Power Company’s Service Area in West Virginia

When available, monthly data for the month of the summer peak were used.  When

unavailable quarterly data were used for the quarter when the summer peak occurred.

5.3 Variables

The variables represent the numerous factors that influence summer peak residential

demand.  While the results may show that all of the variables do not have an impact upon

summer peak electricity demand in West Virginia, they may have an impact upon electricity

demand in other states or on the national-level.



68

5.3.1 Peak Summer kWh

Total energy demand is the amount of electricity consumed by Appalachian Power

Company’s residential customers on the day of the summer peak.  Appalachian Power Company

provided the data for energy demand.

5.3.2 Trend Variable

A trend variable is simply a number one through fourteen.  It measures the trend involved

in the forecast.  A trend variable helps to determine if there is a trend in the data.

5.3.3 Maximum Temperature

Temperature is a variable that measures the highest temperature on the day of the summer

peak.  The theory behind this is that the hotter the temperature, the more electricity needed due to

increased use of air conditioning, fans and other cooling devices.  The problem with the

temperature variable is that it does not account for other factors that affect temperature:  solar

radiation, wind, humidity, or other variables.   The temperature data were taken from the West

Virginia Climatological Journal for each month, day, and year of the peak day.  Since demand

for home cooling will be positively related to summer temperature, the demand and temperature

should be positively related.

5.3.4 Cooling Degree-Days

Cooling degree-days are obtained by adding the high and low temperature for the day and

then subtracting that average from 65, the base number.  Cooling degree-days relate the day's

temperature to the energy demands of air conditioning.  Cooling degree-days can be used to
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relate how much more or less one might spend on air conditioning in one part of the country than

someone in another part of the country.  Crow et al. (1981) suggests that one problem with using

cooling degree-days is that they do not take into account all weather factors, e.g. solar radiation,

wind, and humidity.  Another problem discussed by Crow et al. is the unreliability of the

benchmark temperature.  It may not be the correct choice for all areas or even for all utilities.

The temperature data used to calculate cooling degree-days were found in the West Virginia

Climatological Journal for the peak month, day, and year.  Cooling degree-days and the demand

for electricity should be positively related.

5.3.5 The Number of Residential Customers

Since this is a study of a residential summer peak model, there needs to be a variable that

measures the total number of residential customers.  Electricity use by residential customers

tends to peak in the morning when the household is getting up and getting ready for work and

school and again at night when they return home and cook dinner, watch television, etc.

Therefore, the residential customer variable is one of the most important when modeling

residential energy demand.  The data for total number of residential customers were found in

Appalachian Power Company’s Annual Statistical Report to the West Virginia Public Service

Commission for each year of the study.  Since residential demand depends on the number of

residential customers, the relationship between residential demand and electricity is expected to

be positive.
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5.3.6 Total Population

Total population is a measure of the total population in Appalachian Power Company’s

service area in West Virginia.  A more exact measure is the total number of residential

customers, but total population is an attempt to measure the differences in the population, e.g.,

urban and rural differences and different demographics in the population.  The total population

also accounts for all people that use electricity where total residential customers only measures

the number of people that purchase electricity from the power company.  Total population

figures for West Virginia were found on the REIS CD-ROM 1969-1995.  The relationship

between population and electricity demand is expected to be positive, because the greater the

population the more demand upon electricity.

5.3.7 Percent Rural Population

Urban and rural customers have different needs when it comes to residential electricity

consumption.  Urban consumers tend to use less electricity than rural consumers, because a

greater number of urban consumers live in apartments and other multi-unit structures, while rural

consumers tend to live in homes.  Multi-unit structures take less electricity to heat and light than

homes.  Therefore, rural consumers tend to use more electricity than urban consumers.  Since

data were unavailable for total urban and rural residential customers, percent rural population

was used as a proxy.  Data for total urban and rural population were found in the 1980 Census of

Population, General Population Characteristics for West Virginia, and the 1990 Census of

Population and Housing Summary Tape File 3A CD-ROM.
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5.3.8 Price of Electricity

The price of electricity is important, because it shows an individual’s willingness to pay.

Le theorizes that “since income is limited, the consumer will react to price and income changes

by changing demand to satisfy budget constraints as the price of electricity increases, the price

and income effects show that with the higher prices the consumer may conserve or use a

substitute good” (Le, 1983, p. 221).  The only problem with this variable is that the price of

electricity is so low in West Virginia that it may not have a recognizable impact upon demand.

Energy prices from 1983-1987 are from Appalachian Power Company’s Annual Statistical

Report to the West Virginia Public Service Commission, and energy prices from 1988-1995 are

from EIA-861 (“Annual Electric Utility Report”) published in Electric Sales and Revenue.  The

price of electricity and the demand for electricity should be negatively related.

5.3.9 Price of Natural Gas

When developing an economic model one always has to consider the effects of substitute

goods on the demand for the good in question.  When modeling the demand for electricity the

natural substitute is natural gas. If given a choice, the consumer will chose the one with the lower

cost to heat or cool their home.  The problem with this theory is that many people are not given

the choice unless they build their own home or include fuel choice when buying a home.

Therefore, consumer choice may be obscured by the costs of home construction.

Natural gas prices for West Virginia were found on Energy Information Administration’s

home page.  The price series for natural gas was selected for the years 1984 to 1995.  Since the

natural gas industry experienced deregulation in the years prior to 1984, natural gas prices would
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not be an accurate reflection of today’s demand.  The price of natural gas and the demand for

electricity are negatively related, because natural gas is a substitute for electricity.

5.3.10 Per Capita Income

Total personal income is a measurement of the economic strength of the consumer.  In

other words, as personal income increases, the consumption in the household sector is expected

to increase.  Total income was found on the REIS-CD ROM 1969-1995.  The demand for

electricity and total income should be positively related to summer peak, because the higher an

individual’s income the greater their demand for electricity.

5.3.11 Age

Age is an interesting variable, because the older one is the less electricity they are likely

to use.  Younger people tend to use more electricity than the elderly, because they have families.

A family uses more electricity than just one or two people.  Also, younger people tend to have

more appliances that use electricity, e.g. computers.  Also, for most elderly people, their income

decreases when they reach retirement age.  Therefore, they will lessen their electricity use to

meet their current income standards.  Therefore, the age differences within a community may

have an impact upon residential energy use.  Age was obtained from the 1980 Census of

Population, Characteristics of the Population, General Social and Economic Characteristics for

West Virginia, and the 1990 Census of Population, Social and Economic Characteristics for

West Virginia.
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5.3.12   Total Number of Households

The total number of households variable is used because the household is who is

obtaining the energy for residential use.  Therefore, the more households there are the greater the

demand for energy.  The total number of households data were obtained from was obtained from

the 1980 Census of Population and Housing, Summary Characteristics for Government Units and

Standard Metropolitan Statistical Areas for West Virginia, and the 1990 Census of Population

and Housing, Summary Population and Housing Characteristics for West Virginia.

5.4 Method of Analysis

The two types of analysis of the Appalachian Power Company’s summer peak demand

model for its service area in West Virginia were completed to better understand the risk and

uncertainty involved in the forecast.  A conventional regression analysis was completed and the

results analyzed.  The results of the regression analysis were then used to complete a

probabilistic forecast using Monte Carlo simulation.

The first step of the statistical analysis is to develop a model with summer peak energy

demand in Appalachian Power Company’s service area in West Virginia as the dependent

variable and various combinations of the variables discussed in Section 5.3 above as the

independent variables.  The next step is to run a regression analysis on the equation to determine

which variables have an impact upon the dependent variable and which do not.  Those

independent variables that do not appear to have an impact upon the dependent variable are

removed from the equation and a regression is run on the new model.  This process is repeated

until the results appear to make sense by choosing the most statistically significant results.  Any

problems such as multicollinearity among the independent variables are expected to be corrected
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in this process.  However, multicollinearity could not be removed from the forecast results

because of unresolved problems with the data set.  These problems are discussed in the next

section, Section 6.0.

The first step in Monte Carlo Simulation is to use the statistical model as the basis of the

probabilistic model.  Next the data set for the variables in the statistical model are forecasted

until the year 2005.  This forecast is accomplished by regressing each independent variable

against a trend variable.  The results of this regression equation are used to produce a forecasted

value for the independent variables.  The results of the forecasted values of the independent

variables are analyzed to determine if they are logical.  If they are not logical as determined by

analyzing a graph of the forecasted values and comparing future values to past values, then the

forecast is accomplished by using the subjective method of analysis of trend extrapolation.

A distribution about the forecasted values is calculated using the equation for calculating

a confidence interval.  If the resulting confidence intervals of the input values do not appear to be

logical based upon an analyses of the graphs of the confidence intervals and the input values, the

distributions for these values are also determined using trend extrapolation.  A distribution about

the estimated coefficients was also calculated using the standard error of the estimated

coefficients.

The next step is to develop a probabilistic equation based upon the statistical equation

using the distributions about the coefficients, the coefficients, the distributions about the

forecasted variables and the forecasted variables.  The Monte Carlo simulation on the model is

accomplished by using a commercial risk analysis software.  The final step is to analyze the

results of the Monte Carlo simulation to determine if they are logical based upon an analysis of

the results for statistical significance.
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Once the statistical analysis and probabilistic analysis are completed a forecast is

developed using each method.  Although the data are insufficient, which makes the results

unreliable, a comparison of the two methods is done to analyze their differences and similarities.
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6.0 Discussion of Regression Results

Numerous regressions were conducted to determine which factors influence summer peak

residential energy demand for Appalachian Power Company’s service area in West Virginia.

These results were then compared to the results of the probabilistic analysis.  The four

regressions in Table 3 below will be discussed in detail.  These results are not the best results as

defined by a subjective choice based upon many different factors, such as the expected sign, the

standard error of the estimated, the R-squared value, etc., but because they produced the most

logical results. All other regressions may be viewed in Appendix B in Tables 18-20.

Table 3:  Results of Regression Analysis
Regression 1 Regression 2 Regression 3 Regression 4

Intercept 1944.215
(0.1029)*

-7144.578
(-0.9489)

4.627
(4.195)

-186296.355
(-1.053)

Trend 1.883
(0.05)

-4.311
(-0.112)

Electricity Price -22390.546
(-0.0168)

-420504.007
(-0.295)

-203.87
(-2.482)

-447279.569
(-0.313)

Temperature 22.727
(2.877)

21.825
(2.742)

0.000627
(1.606)

21.851
(2.752)

Residential Customers 0.034
(1.068)

Log Residential
Customers

33623.535
(1.051)

Log Per Capita Income 1591.848
(2.435)

-1247.583
(-0.537)

0.0325
(0.319)

Per Capita Income -0.038
(-0.569)

Log Population -1455.71
(-0.505)

-0.575
(-3.868)

Log Percent Rural -1.284
(-2.473)

R-Squared 0.8347 0.8621 0.9887 0.8627
Adjusted R-Squared 0.7612 0.7759 0.9816 0.777
Standard Error 81.134 78.611 0.00398 78.418

F-Statistic 11.362 10.000 140.063 10.057
*The values in ( ) are the t-statistics
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The most logical results were chosen first on the basis of expected sign, and then other

statistical factors were considered.  Expected signs are what sign the variables are expected to

have prior to running a regression.  If a sign is not as expected it could be an indication that there

is a problem with the results or that there is some matter the researcher failed to consider.

Although the sign may be unexpected, it may still be statistically significant.  Therefore, the

significance of the variable should also be considered.

In Regression 1, temperature and per capita income have expected signs, but electricity

price and log population do not. In Regression 2, price, temperature, and per capita income all

have expected signs, but the variable for the number of residential customers does not.  In

Regression 3, price temperature, log per capita income, and log percent rural all have expected

signs, but log population does not.  In regression 4, electricity price, temperature, per capita

income, and log residential customers all have the expected sign.

The Adjusted R-squared values for all four regressions are within a reasonable range.  A

high R-squared value is desired, but depending on the situation, one that is very high can indicate

problems.  Therefore, the high R-squared values combined with the low calculated t-scores are

the first indication that there is a problem with the results.

The value of the critical t-value for Regression 1 is ±1.812.  The t-statistic calculated for

the intercept, electricity price, and log population all fall within the acceptable range for the

calculated t-statistic value, while temperature and log per capita income do not.  The critical t-

value for Regression 2 is also ±1.83.  The variables whose calculated t-statistics fall within the

acceptable range of ±1.83 are the intercept, the trend variable, electricity price, residential

customers, and log per capita income and the variable that does not is temperature.  The critical

t-value for regression 3 is again ±1.83.  For this regression the calculated t-statistics for



78

temperature, and log per capita income all fall within the acceptable range of  ±1.83, but the

intercept, electricity price log population, and log percent rural do not.  The critical t-value for

regression 4 is also ±1.83.  The calculated t-statistics for the intercept, trend, electricity price, per

capita income, and log residential customers all fall within the acceptable range of ±1.83, while

the calculated t-statistic for temperature does not.

The correlation statistic gives an indication of when two variables are closely related to

one another.  (Refer to Table 17 in Appendix B for the correlation matrix.)  Per capita income is

highly correlated with age at 0.92, residential customers at 0.99, percent rural at -0.93, and

natural gas price at 0.95.  Age is highly correlated with natural gas price at 0.89, and number of

residential customers at 0.95.  Percent rural is highly correlated with natural gas price at –0.90

and residential customers at –0.91.  Natural gas price and residential customers are highly

correlated at 0.946.  Electricity price is not highly correlated with any other variable.

Many problems exist within the data. With such a small sample size, the dispersion in the

sample is not large enough to produce results that make sense.  This problem compounds the

problem of multicollinearity.  Auxiliary regressions—regression run where one of the dependent

variables is regressed against all of the others to determine where the problems lie--were run to

determine what variables were affected by the multicollinearity.  The results can be viewed in

Tables 21-26 in Appendix B.  These results show that multicollinearity exists, because the R-

squared values are high while the t-scores are low.  Another indication of multicollinearity is the

high R-squared values combined with low t-scores in the regression results calculated to forecast

energy demand.  The high standard error of the estimated coefficients is another indication of

multicollinearity.  One way to solve the problem of multicollinearity is to drop one or more of

the variables from the equation.  This was done, but did not solve the problem.  Another way to
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solve the problem is to increase the sample size.  This solution was considered, but not done

because increasing the sample size would include data from the 1970’s which was unacceptable

due to the high-energy prices resulting from the energy crisis.   Therefore with the insufficient

data that exists for regional energy forecasting, the problem of multicollinearity could not be

solved.

Thus, the results of the regression analysis show that none of the regressions produce

results that are acceptable.  Without accurate data the results cannot be reliable.  To confirm the

results and to compare the two techniques a probabilistic analysis was done.

6.1 Discussion of Probabilistic Simulation Results

A probabilistic analysis was conducted on Regression 2 and Regression 4.  These

regressions were chosen because the variables for per capita income have a negative sign.

Although not expected, there is some theory behind why the sign may be negative whereas the

unexpected negative signs in Regression 1 and Regression 3 for the variable representing the

number of residential customers has no theory as to why it may be negative.  One reason per

capita income may be unexpectedly negative is that those with higher incomes may have better

and more efficient housing than those with lower incomes.  Another reason is that those with

higher incomes are less likely to use inefficient post construction cooling units than those with

lower incomes.

Each variable used in Regression 2 and Regression 4 was forecasted until the year 2005

by regressing each variable against time.  The results of those equations can be viewed in Tables

27-29 in Appendix B.  The resulting equation was then used to forecast the value for each

variable.  The results of this forecast were unacceptable.  When graphed they did not appear to
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follow the trend of the variable (see Figures 23-25 in Appendix B for graphs).  The reason why

the forecast did not follow the trend is that the early values for the variables are different than the

latter values which results in a forecast trend that is either lower or higher than the trend.

Therefore, trend extrapolation was used to forecast the future values of the variables.  See Figure

5, Figure 6, and Figure 7 below for graphs of the extrapolation of future values.

The equation for calculating a confidence interval about the mean value was used to

calculate a confidence interval about the forecasted values for the input variables and

coefficients.  The confidence intervals can be viewed in Tables 30-31 and in Figures 26-29 in

Appendix B.  The confidence intervals calculated in this manner do not make sense for they are

too large to be realistic.  The reason they are so large is that the standard errors of the estimated

coefficients are used to calculate them and the large standard errors indicate that there is a large

variance about the variables.  Therefore, the confidence intervals were determine by using

subjective trend extrapolation.  A graph of each variable was studied and a distribution was

drawn about the trend as seen in Figures 5, 6, and 7:
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Figure 5:  Distribution for Appalachian Power Company’s Residential
Electricity  Price ($/mWh) for West Virginia using Trend Extrapolation

Figure 6:  Distribution for the Number of Residential Customers for Appalachian
Power Company’s West Virginia Service Area using Trend Extrapolation
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Figure 7:  Distribution for Per Capita Income for Appalachian Power
Company’s West Virginia Service Area using Trend Extrapolation
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Figure 7 shows that the distribution about per capita income is relatively unchanged as a

percent of the expected value.  The distribution range is not skewed in either direction.  Per

capita income in West Virginia has been increasing steadily over time and it is unlikely that this

will change.  It is also likely to continue to follow the present trend

The confidence interval about the coefficients was calculated by adding or subtracting the

standard error for each coefficient from the estimated coefficient which are shown in Table 4 for

Regression 4 and Table 5 for Regression 2.

Table 4:  Confidence Intervals about the Estimated Coefficients for Regression 4

Mean Upper Lower
Intercept -186296 -9447 -363144
Trend -4.31 34.16 -42.79
Electricity Price -447279.57 979852.84 -1874411.97
Temperature 21.85 29.79 13.91
Log Residential Customers 33623.54 65621.66 1625.41
Per Capita Income -0.04 0.03 -0.10

Table 5:  Confidence Intervals about the Estimated Coefficients for Regression 2

Mean Upper Lower
Intercept -7144.578 387.9 -14677.06
Trend 1.883 39.48 -35.72
Electricity Price -420504.007 1006186.31 -1847194.33
Temperature 21.825 29.79 13.87
Residential Customers 0.034 0.066 0.002
Log Per Capita Income -1247.583 1077.45 -3572.62

In Table 4 and Table 5 the confidence intervals about the estimated coefficients are large

because of large standard errors about the estimated coefficients.  The large standard errors are

an indication of a large variance about the estimated coefficients, and, as discussed earlier, an

indication of multicollinearity among the variables.
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The maximum and minimum values of the range of values chosen must have the same

probability of occurrence in order to be used in the Monte Carlo Simulation.  It is assumed that

this probability of occurrence is small.  In other words, if there are two triangular distributions,

the maximum and minimum values of each distribution have the same probability of occurrence.

The maximum value of one distribution must have the same probability of occurring as the

maximum value of the other distribution, and the minimum values for each distribution have the

same probability of occurrence as all other minimum values.

Summaries of the variables used in the Monte Carlo Simulation for Regression 2 and

Regression 4 are given in Tables 6 and 7 respectively.  The “most likely” value represents the

maximum value in an assumed triangular distribution.  Minimum and maximum values about the

“most likely” values complete the definition of the triangular distribution for each variable.
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Table 6:  Variables for Monte Carlo Simulation for Regression 4

Variable
Intercept
Trend
Trend Coefficient
Electricity price coefficient
Electricity price variable
Temperature coefficient
Temperature variable
Log Number of residential customers coefficient
Log Number of residential customers variable
Per capita income coefficient
Per capita income variable

Table 7:  Variables for Monte Carlo Simulation for Regression 2

Variable
Intercept
Trend
Trend Coefficient
Electricity price coefficient
Electricity price variable
Temperature coefficient
Temperature variable
Number of residential customers coefficient
Number of residential customers variable
Log per capita income coefficient
Log per capita income variable

Having the high, “most likely,” and low values for each variable and coefficient allows

for the risk to be incorporated into the analysis.

Commercial risk analysis software was used to conduct the probabilistic analysis using

triangular distributions.  Unlike the statistical analysis, the probabilistic analysis gives a range of

values as answers.  The range of values in Table 8 presents the forecast for Appalachian Power

Company’s summer peak energy demand for Regression 4 using 1000 iterations.
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Table 8:  Results of Monte Carlo Simulation for Regression 4

Name Minimum Mean Maximum
1996 / MW/HR -346321 3484 355696
1997 / MW/HR -346465 3478 355971
1998 / MW/HR -346652 3528 356354
1999 / MW/HR -346751 3476 356628
2000 / MW/HR -346843 3505 356873
2001 / MW/HR -346936 3555 357158
2002 / MW/HR -347069 3570 357467
2003 / MW/HR -347153 3597 357783
2004 / MW/HR -347226 3630 357988
2005 / MW/HR -347453 3661 358275

The problem with the results of the probabilistic analysis for Regression 4 is that

electricity demand can never be a negative number as the low value shows, and the high value is

so high that it is unrealistic.  The mean value is within a reasonable range.  The results are shown

in Figure 8, which shows the probability of each value occurring for the year 2000, and Figure 9,

which show the same statistics for the year 2005.  The plots illustrate the unreasonable results

from the Monte Carlo Simulation.
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Figure 8:  Regression 4:  West Virginia’s Summer Peak Residential
Electricity Demand (mWh) for Appalachian Power Company for 2000

Figure 9: Regression 4: West Virginia’s Summer Peak Residential
Electricity Demand (mWh) for Appalachian Power Company for 2005
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The summary results of the Monte Carlo Simulation for Regression 2 in Table 9 show the

forecast for Appalachian Power Company’s residential summer peak energy demand for 1000

iterations.

Table 9:  Results of Monte Carlo Simulation for Regression 2

Cell Name Minimum Mean Maximum
B100 1996 / MW/HR -21443 2386 27568
B101 1997 / MW/HR -19658 2524 24121
B102 1998 / MW/HR -20308 2414 25399
B103 1999 / MW/HR -16550 2219 26616
B104 2000 / MW/HR -18414 1968 23601
B105 2001 / MW/HR -19333 2401 25181
B106 2002 / MW/HR -18204 2446 26915
B107 2003 / MW/HR -17590 1997 27886
B108 2004 / MW/HR -21750 2349 28700
B109 2005 / MW/HR -18056 2254 24257

As with the results for Regression 4, the minimum value is negative which is impossible

for electricity demand, while the maximum value is so high that it is unrealistic.  The mean value

is within a reasonable range.  Figure 10 and Figure 11 highlight the probability of the value of

electricity demand at various percentages for 2000 and 2005.

The Monte Carlo simulation for both Regression 4 and Regression 2 show uneven growth

in electricity demand from one year to another.  One explanation for this decline is that the

demand for summer peak energy is dependent upon the temperature.  One summer may be

warmer than the next, resulting in a fluctuation in summer peak demand.
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Figure 10:  Regression 2:  West Virginia’s Summer Peak Residential
Electricity Demand (mWh) for Appalachian Power Company for 2000

Figure 11:  Regression 2: West Virginia’s Summer Peak Residential
Electricity Demand (mWh) for Appalachian Power Company for 2005
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The results of the probabilistic analysis could be created using the statistical method by

using the standard errors to calculate the maximum and minimum values around the forecasted

values.  Probabilistic analysis was used, because it computes different scenarios based upon the

confidence interval.  Although similar conclusions may be reached using statistical analysis by

looking at the t-statistic, probabilistic analysis gives a visual portrayal of the input and output

distributions.  This difference may be important if the input distributions are not normally

distributed.  To compare the forecasting using the statistical and probabilistic methods, a forecast

was developed with each technique.  The forecast developed using statistical analysis for

Regression 4 and Regression 2 are shown in Tables 10 and 11 respectively.
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Table 10:  Forecast for Regression 4 using Statistical Method

Minimum Mean Maximum Standard Error
Of Forecast

1996 3819 3963 4107 78.418
1997 3948 4092 4235 78.418
1998 4076 4220 4364 78.418
1999 4072 4216 4360 78.418
2000 4217 4361 4505 78.418
2001 4401 4545 4689 78.418
2002 4529 4673 4816 78.418
2003 4635 4779 4923 78.418
2004 4738 4882 5026 78.418
2005 4843 4987 5131 78.418

Table 11:  Forecast for Regression 2 using Statistical Method

Minimum Mean Maximum Standard Error
of Forecast

1996 2436 2293 2436 78.611
1997 2435 2291 2435 78.611
1998 2469 2326 2469 78.611
1999 2386 2243 2386 78.611
2000 2415 2271 2415 78.611
2001 2532 2388 2532 78.611
2002 2545 2401 2545 78.611
2003 2570 2427 2570 78.611
2004 2622 2479 2622 78.611
2005 2674 2531 2674 78.611

The results show that the statistical method forecasts summer peak electricity demand at

a much higher level for Regression 4 than does the statistical method.  The results also show that

the statistical method for Regression 2 produces results that are higher than the probabilistic

method, but the difference is not as great as between the results for Regression 4.  These

differences are cause by the negatively skewed distributions of the input variables used in the

Monte Carlo Simulation compared to the normal distributions assumed in the statistical analysis.



92

As discussed earlier, the mean for both probabilistic forecasts fluctuates, while the mean for both

statistical forecasts show a steady increase.  A reason for this is that Monte Carlo Simulation

accounts for the random changes in temperature from year to year, while regression analysis

does not.

Preference theories involving certainty equivalence could have been used to evaluate the

results, as shown by the probability distribution of energy demand.  Certainty equivalence

identifies the risk preference of the decision-maker given two different outcomes.   The reasons

that certainty equivalence is not used are:  the results are not significant, and no information

exists on the risk preference of the user of results in the data.
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7.0 Summary and Conclusions

The summary and conclusions section discusses the results of the study, the implications

of those results, the studies that could be conducted in the future, and the limitations of the study.

7.1 Summary

Regression analysis and Monte Carlo Simulation were compared in the development of a

summer peak residential energy demand model for Appalachian Power Company’s service area

in West Virginia.  Regression analysis is used to develop and test the validity of a summer peak

forecasting model and determine if a more precise model could be developed.  Risk is

incorporated into the analysis, but the statistical output needs to be analyzed to determine the

inherent risk.  The regression models that had the most statistically significant and logical results

were then used for the Monte Carlo Simulation.  A commercial risk analysis software was used

to conduct the Monte Carlo Simulation and to produce a range of results given the probabilistic

distribution of inputs.  Both regression analysis and Monte Carlo Simulation use the concept of

risk in the analysis, but do so in a different manner.

During the 1980’s the use of air conditioning increased in the West Virginia residential

sector, and the demand for electricity in the summer kept pace.  Therefore, a summer peak

residential energy demand model is needed to forecast growing demand.

A summer peak demand model developed for Appalachian Power Company’s service

area in southern West Virginia was constructed.  The model considered the following variables:

maximum temperature on the day of Appalachian Power Company’s summer peak in West

Virginia, yearly average electricity price for Appalachian Power Company’s service area in West

Virginia, per capita income for Appalachian Power Company’s service area in West Virginia, the

total number of residential customers in Appalachian Power Company’s Service area, the total
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population in Appalachian Power Company’s service area in West Virginia, natural gas price in

West Virginia, cooling degree days on the day of Appalachian Power Company’s summer peak

in West Virginia, the percentage of rural population in Appalachian Power Company’s service

area in West Virginia, the average age in Appalachian Power Company’s service area in West

Virginia, and the total number of households in Appalachian Power Company’s service area in

West Virginia.  The data were analyzed by regression analysis to determine what impact each

variable has upon electricity demand.  The identified regression equation was then used to do a

forecast.  The results of the regression analysis were then used to formulate the inputs for a

forecast based on Monte Carlo Simulation.

An analysis of the statistical output shows that multicollinearity exists among the

variables, which results in unreliable forecasts.  The Monte Carlo Simulation confirms the

problems identified with the statistical analysis.  The forecast resulted in negative minimum

demand values and high values so high to be unrealistic.  Therefore, the probabilistic forecast is

also unreliable.

The results of the probabilistic forecast can be computed by the statistical method using

the calculated t-statistics and the standard errors, but the probabilistic method produces a visual

picture of the results.  A forecast developed using regression analysis and Monte Carlo

Simulation shows that the statistical method produces a forecast of steadily increasing demand,

while Monte Carlo Simulation produces a forecast that varies throughout the forecast time

period.  This variation is the result of the statistical analysis not adapting to changing conditions,

such as temperature fluctuations, while the Monte Carlo Simulation does adapt.  Neither method

produced results that were acceptable.  Therefore, both methods produce unacceptable results

when the data are unreliable.
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7.2 Implications of the Analysis

Although neither forecasting method produced reliable forecasts of electricity demand,

the exercise did result in a number of implications.  The most obvious implication is the need for

adequate data.  The data set must be large enough so that the past can accurately reflect the

future.  Without a sufficient data set, problems arise such as the ones discussed in the Results

Section.  Without an adequate data set, electricity demand may be over or underestimated.

Both regression analysis and Monte Carlo Simulation indicate that there are problems

with the data.  The regression analysis indicates that multicollinearity exists, while the Monte

Carlo Simulation produces minimum and maximum values that are unrealistic.  Also, the

standard error of the forecast calculated using regression analysis can be used to calculate the

distribution about the forecasted values as Monte Carlo Simulation does.

When the results of the forecast are not logical, it may be advantageous to use subjective

inputs. Subjective inputs rely upon the interpretation of the trend of the data to forecast future

values.  Therefore, when the results of the resulting confidence intervals are not logical, it is

necessary to revert back to subjective methods of trend extrapolation.

Regression analysis and Monte Carlo Simulation both incorporate risk into the analysis,

but in different ways.  Monte Carlo Simulation gives a visual representation of risk in the form of

the probability distribution graph, while with regression analysis the statistical results need to be

analyzed to determine the risk.

7.3 Limitations and Further Research

The most glaring limitation of the study is the small sample size.  A small sample size

does not give much of an indication into the past as to what will happen in the future.  Thus, the

small sample size in this study does not give a great historical indication of what past demand
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was and the impact the factors affecting demand had upon it.   Another problem with the small

sample size is that multicollinearity exists.  When multicollinearity exists it has the effect of

making the effective sample size even smaller.  Thus, with a small sample size and

multicollinearity co-existing the sample size is even smaller which eliminates the ability to

accurately predict the future from the past.   A way to solve this problem would be to include

data from the 1970’s but use a dummy variable to account for the data from the abnormal energy

market conditions in the 1970’s.  Another way to solve this problem would be to use a simple

extrapolation.

An annual event limitation exists.  The summer peak occurs only once every summer.

This annual summer peak limits the rest of the data obtained because it should be on a daily basis

as well.  The problem arises from the fact that it is difficult to obtain data this precise.  Data are

usually available on only a monthly, quarterly, or yearly basis, but rarely on a daily basis.

Regional limitations on the data produce problems.  The study is only for Appalachian

Power Company’s service area in southern West Virginia.  Therefore, the data should be for this

area only, but most data are unavailable on such a specific level.  Data are usually available on

only a state or national-level which is not precise enough for the forecast.

The structural change limitation is another limitation placed upon the data.  The data

begins with the 1980’s, because that is when residential air conditioning use became wide

spread.  Since the study is for summer peak residential energy demand and the consumers did not

begin using large levels of energy during the summer until the use for residential air conditioning

increased, the study did not go beyond this time period.  Another reason the data begins with the

1980’s is that the oil crisis existed in the 1970’s.  Because the energy industry today is different

than the one that existed in the 1970’s, the data does not begin until the 1980’s.  Beginning with
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the 1970’s would skew the results.  However, a dummy variable could be used to differentiate

data from the 1970’s and data from the 1980’s to correct for these problems.

A future study could correct some of the problems in the forecast and perhaps develop a

more reliable summer peak model for the state of West Virginia.  Although, the types of

variables impacting demand would likely be similar, some variables may differ.  For example, a

variable representing total population variable rather than one representing the number of

residential customers variable might be used.  The impact of deregulation upon electricity

demand in West Virginia could be included in another study.

One concept to consider for a future study is the impact age has upon residential demand.

West Virginia is a state with an aging population, and younger and older consumers use

electricity differently.  The elderly do not use as much electricity as younger individuals and with

an aging population in West Virginia the demands placed upon the system peak may not be as

great as expected.  A study that addresses this question could provide answers that might help the

elderly save money on their electricity bill by instituting conservation measures.  It would also

identify the impact a large elderly population has upon a region’s energy demand.

An interesting idea would be to study the impact school age children have upon summer

peak demand.  Children are home from school all day during the summer.  This means that

electrical appliances such as televisions, computers, and radios are on all day, and rather than

turning the air conditioning down when someone is not home, as may people do, the air

conditioning would have to remain on at a high-level to remain comfortable for the children.

Therefore, with children are home during the summer for the hottest portion of the day the

residential summer peak may be affected.
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Another study could determine what impact the sharp rise in per capita income in West

Virginia has upon summer peak electricity demand (see Figure 17 in Appendix A).  Normally the

higher the income the greater the demand for energy.  Therefore, it would be interesting to see

what impact this increase in income in West Virginia has upon energy demand.

A future study could analyze the impact of the migration from the urban to rural areas

that is taking place in West Virginia.  As Figure 20 in Appendix A shows West Virginia’s rural

population is decreasing in Appalachian Power Company’s service area.  Therefore, it would be

interesting to study what impact this has upon energy demand in West Virginia.  Rural

consumers tend to use more electricity than urban consumers do because rural consumers tend to

live in homes while more urban consumers live in apartments and other multi-unit structures.

Therefore, studying the impact of the migration from rural to urban may help forecasters

determine what can be done to meet the changing needs of West Virginia’s consumers.
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Appendix A:  The Data

Table 12:  The Data

Year Appalachian
Power
Company’s West
Virginia
Residential
Summer Peak
(mWh) 1

Trend Appalachian
Power
Company’s
Residential
Electricity Price
($/mWh) for West
Virginia (1990
Constant dollars) 2

Maximum
Temperature
(Degrees F)
on Day of
Appalachian
Power
Company’s
West
Virginia
Summer
Residential
Peak3

Per Capita Income
(1990 Constant $)
for Appalachian
Power Company’s
West Virginia
Service Area 4

1982 1786 1 0.000637 92 12849
1983 1969 2 0.000641 98 12512
1984 1878 3 0.000664 91 12906
1985 1887 4 0.000641 96 13057
1986 1792 5 0.000606 92 13397
1987 1828 6 0.000586 95 13358
1988 2151 7 0.000580 99 13663
1989 2017 8 0.000563 91 13879
1990 2072 9 0.000550 94 15013
1991 2129 10 0.000571 98 15619
1992 2072 11 0.000592 92 17047
1993 2268 12 0.000625 98 18188
1994 2138 13 0.000620 93 19443
1995 2274 14 0.000630 92 20998

1.   Source:  Appalachian Power Company

2. Source:  1983-1997, Appalachian Power Company’s Annual Statistical Report to the West
Virginia Public Service Commission
1988-1995, EIA-861 (“Annual Electric Utility Report”) published in Electric Sales and
Revenue

3. Source:  West Virginia Climatological Journal, 1982-1995

4. Source:  REIS-CD ROM 1969-1995
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Table 13:  The Data Continued

Year Total
Population for
Appalachian
Power
Company’s
West Virginia
Service Area 5

Appalachian
Power
Company’s
Residential
Customers in
West Virginia 6

% Rural Population
for Appalachian Power
Company’s Service
Area in West Virginia 7

Total
Households for
Appalachian
Power
Company’s
West Virginia
Service Area 8

1982 1013534 359720 0.63 375420
1983 1064309 361430 0.62 372147
1984 998333 362437 0.62 368875
1985 985439 362868 0.62 365602
1986 970674 363288 0.62 362329
1987 953193 363338 0.62 359057
1988 932400 363820 0.63 355784
1989 915416 366183 0.63 352512
1990 904834 368054 0.63 349239
1991 906332 369625 0.61 345966
1992 909145 371818 0.60 342694
1993 913738 374874 0.59 339421
1994 913568 377225 0.58 336149
1995 913775 381678 0.57 332876

5. Source:  1990 Census of Population and Housing Summary Tape File 3A CD ROM

6. Source:  Appalachian Power Company’s Annual Statistical Report to the West Virginia
Public Service Commission, 1982-1995.

7. Source: 1980 Census of Population, General Population Characteristics, West Virginia, and
the 1990 Census of Population and Housing Summary Tape File 3A CD ROM

8. Source: 1980 Census of Population and Housing, Summary Characteristics for Government
Units and Standard Metropolitan Statistical Areas for West Virginia, and the 1990 Census of
Population and Housing, Summary Population and Housing Characteristics for West Virginia
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Table 14:  The Data Continued

Year Residential Natural
Gas Price
($/Btu) in West
Virginia
(1990 Constant $) 9

Cooling Degree-Day on for
Appalachian Power
Company’s West Virginia
Residential Summer
Peak10

Average Age for Appalachian
Power Company’s West Virginia
Service Area 11

1982 5.64 15.0 30.84
1983 5.57 20.0 31.40
1984 5.64 16.5 31.95
1985 5.93 17.5 32.51
1986 6.19 17.5 33.07
1987 6.12 17.0 33.62
1988 5.66 20.0 34.18
1989 5.76 14.5 34.73
1990 6.46 18.0 35.29
1991 6.58 19.0 35.85
1992 6.50 19.5 36.40
1993 7.06 18.0 36.96
1994 7.43 15.0 37.51
1995 7.46 17.0 38.07

9. Source:  Energy Information Administration Homepage, http://www.eia.doe.gov/

10. Source:  West Virginia Climatological Journal, 1982-1995

11. Source:  1980 Census of Population, General Social and Economic Characteristics for West
Virginia, and the 1990 Census of Population, Social and Economic Characteristics for West
Virginia
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Table 15:

Electricity Price and Natural
Gas Price Index
Percentages
(Base year = 1990)

Electricity Natural
Gas

1982 81.64% 92.23%
1983 84.29% 107.64%
1984 89.65% 108.42%
1985 92.87% 107.70%
1986 94.06% 102.46%
1987 93.82% 97.78%
1988 94.89% 97.18%
1989 97.72% 99.86%
1990 100.00% 100.00%
1991 103.78% 101.25%
1992 105.79% 103.09%
1993 107.91% 109.41%
1994 107.96% 111.52%
1995 110.39% 105.79%

Source:  Bureau of Labor
Statistics Data Homepage

Table 16

West Virginia Consumer Price Index
Percentages for Income
(Base year  = 1990)

1982 73.83%
1983 76.21%
1984 79.50%
1985 82.33%
1986 83.86%
1987 86.92%
1988 90.51%
1989 94.87%
1990 100.00%
1991 104.21%
1992 107.35%
1993 110.56%
1994 113.39%
1995 116.60%

Source:  Bureau of Business & Economic
Research homepage,
wvbeis.be.wvu.edu/public/cat/cpi80p.txt
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(Source:  Table 12)

Figure 12:  Appalachian Power Company’s
West Virginia Residential Summer Peak (mWh)

(Source:  Table 12)

Figure 13: Maximum Temperature (degrees Fahrenheit) on Day of
Appalachian Power Company’s West Virginia Residential Summer Peak
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 (Source:  Table 14)

Figure 14:  Cooling Degree-Days on Day of Appalachian
Power Company’s West Virginia Residential Summer Peak

 (Source:  Table 12)

Figure 15:  Appalachian Power Company’s Average Residential
Electricity Price ($/mWh) for West Virginia in 1990 Constant Dollars
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 (Source:  Table 14)

Figure 16:  Residential Natural Gas Price ($/Btu)
for West Virginia in 1990 Constant Dollars

 (Source:  Table 12)

Figure 17:  Per Capita Income for Appalachian Power Company’s
West Virginia Service Area in 1990 Constant Dollars
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(Source:  Table 13)

Figure 18:  Appalachian Power Company’s
Residential Customers in West Virginia

(Source:  Table 13)

Figure 19:  Total Population for Appalachian
Power Company’s Service Area in West Virginia
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(Source:  Table 13)

Figure 20:  Percent Rural Population for Appalachian
Power Company’s Service Area in West Virginia

(Source:  Table 14)

Figure 21:  Average Age for Appalachian Power
Company’s Service Area in West Virginia
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(Source:  Table 13)

 Figure 22:  Total Households for Appalachian Power
Company’s Service Area in West Virginia
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Appendix B:  The Results
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Table 17:  Correlation Matrix

Electricity
Price

Temperature Per
Capita
Income

Population Residential
Customers

Percent
Rural

Total
Households

Natural
Gas
Price

CDD Average
Age

Electricity
Price

1

Temperature -0.117 1
Per Capita
Income

-0.012 -0.106 1

Population 0.650 0.056 -0.662 1
Residential
Customers

-0.076 -0.088 0.991 -0.705 1

Percent
Rural

-0.281 0.079 -0.929 0.411 -0.909 1

Total
Households

0.352 0.003 -0.920 0.874 -0.948 0.771 1

Natural Gas
Price

-0.057 -0.061 0.951 -0.662 0.946 -0.898 -0.894 1

CDD -0.148 0.681 -0.083 0.050 -0.061 0.057 0.018 -0.100 1
Average
Age

-0.352 -0.002 0.920 -0.874 0.948 -0.771 -1.000 0.894 0.019 1

* Unexpected Sign

These results generally make sense.
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Table 18:  The Statistical Results

Regression 5* Regression 6 Regression 7 Regression 8

Intercept -13596.727
(-1.093)

-160284.29
(-1.0849)

-16429.12
(-3.418)

-8548.768
(-1.032)

Trend -2.789
(-0.075)

0.285
(0.007)

-4.66
(-0.218)

16.891
(0.436)

Electricity Price -427499.045
(-0.302)

-43.94
(-0.306)

-634079.268
(-0.782)

52702.86
(0.036)

Temperature 21.839
(2.754)

21.839
(2.743)

23.952
(5.27)

CDD 23.267
(1.734)

Residential Customers 0.0392
(1.058)

0.038
(2.07)

0.027
(0.795)

Log Residential Customers 29764.389
(1.069)

Log Per Capita Income -1231.639
(-0.532)

1071.813
(0.75)

365.64
(0.138)

Per Capita Income -0.0392
(-0.586)

Log Population
Log Percent Rural
Natural Gas Price -267.193

(-4.224)
-208.494
(-1.758)

R-Squared 0.863 0.862 0.96 0.865
Adjusted R-Squared 0.777 0.776 0.93 0.749
Standard Error 78.35 78.607 44.607 83.18
F-Statistic 10.08 10.002 28.86 7.467
 * Regressions 1-4 are shown in Table 3
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Table 19:  The Statistical Results Continued

Regression 9 Regression 10 Regression 11 Regression 12

Intercept -48858.431
(-2.003)

-16450.767
(-3.423)

107594.776
(2.117)

-833962.565
(-0.0004)

Trend 96.529
(2.248)

-4.559
(-0.213)

675.304
(3.042)

-5145.176
(-0.0002)

Electricity Price 3759001.47
(2.109)

-623279.377
(-0.769)

2432703.408
(1.581)

3382590.986
(1.962)

Temperature 15.745
(2.161)

23.971
(5.277)

19.003
(3.33)

CDD -0.614
(-0.034)

Log Per Capita Income 2893.689
(1.691)

1066.407
(0.747)

2165.708
(1.299)

Log Population 6739.089
(1.685)

2535.243
(0.771)

Residential Customers 0.038
(2.078)

Population 0.003
(1.91)

Log Percent Rural 27975.75
(2.529)

3845.979
(1.429)

Natural Gas Price -268.803
(-4.229)

-178.5
(-1.42)

Log Average Age -81001.99
(-2.665)

Average Age 15032.636
(1.383)

Log Natural Gas Price -2087.155
(-1.849)

Percent Rural 13938.377
(2.256)

Total Households 0.946
(0.0002)

R-Squared 0.918 0.961 0.96 0.949
Adjusted R-Squared 0.847 0.928 0.91 0.835
Standard Error 64.939 44.575 49.46 67.436
F-Statistic 12.999 28.899 20.07 8.313
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Table 20:  The Statistical Results Continued

Regression 13 Regression 14 Regression 15

Intercept -286687.246
(0.0002)

41967.2
(0.271)

-189267.578
(-1.853)

Trend -2069.341
(-0.0002)

391.283
(0.584)

-3.616
(-0.163)

Electricity Price 2599341.454
(2.326)

2248950.992
(1.322)

-617583.459
(-0.748)

Temperature 15.232
(2.514)

19.156
(3.122)

23.847
(5.17)

Log Per Capita Income 2938.818
(2.719)

1761.253
(0.454)

Per Capita Income 0.019
(0.476)

Log Population 3119.25
(0.83)

Log Residential
Customers

34280.396
(1.855)

Population 0.002
(2.043)

Log Percent Rural 14874.47
(1.397)

Natural Gas Price -178.54
(-2.532)

-260.106
(-4.12)

Log Average Age -43562.22
(-0.491)

Average Age 5429.793
(0.914)

Log Natural Gas Price -2448.503
(-1.688)

Percent Rural 11457.082
(2.885)

Total Households 0.265
(7.8657 x 10-5)

R-Squared 0.98 0.96 0.96
Adjusted R-Squared 0.92 0.898 0.93
Standard Error 41.99 53.105 45.3
F-Statistic 22.14 15.263 27.946
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Table 21:  Auxiliary Regression with Appalachian Power Company’s
Residential Electricity Price for West Virginia as Dependent Variable

Regression Statistics
Multiple R 0.96
R Square 0.91
Adjusted R Square 0.86
Standard Error 0.00001
Observations 14

ANOVA
Df SS MS F Significance F

Regression 5 1.4E-08 2.8E-09 16.89 0.0005
Residual 8 1.3E-09 1.7E-10
Total 13 1.5E-08

Coefficients Standard Error t Stat P-value
Intercept 0.008011 0.005720 1.400375 0.198971
Temperature 0.000001 0.000001 0.500949 0.629897
log percapinc -0.000198 0.000324 -0.611855 0.557618
log pop -0.000737 0.000772 -0.955539 0.367284
log age -0.002134 0.000860 -2.481842 0.038002
log perrural -0.004886 0.001411 -3.463475 0.008524

Table 22:  Auxiliary Regression with Maximum Temperature
on Day of Appalachian Power Company’s West Virginia

Residential Summer Peak as the Dependent Variable

Regression Statistics
Multiple R 0.54
R Square 0.29
Adjusted R Square -0.15
Standard Error 3.14
Observations 14

ANOVA
df SS MS F Significance F

Regression 5 32.45 6.49 0.66 0.66
Residual 8 78.76 9.84
Total 13 111.21

Coefficients Standard Error t Stat P-value
Intercept -1886.59 1403.68 -1.34 0.22
Electricity Price 42460.51 84760.07 0.50 0.63
Log percapinc -27.22 80.21 -0.34 0.74
Log pop 259.96 175.75 1.48 0.18
Log age 389.01 242.15 1.61 0.15
Log perrural 387.01 525.48 0.74 0.48
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Table 23:  Auxiliary Regression with Per Capita Income for Appalachian
Power Company’s West Virginia Service Area as the Dependent Variable

Regression Statistics
Multiple R 0.99
R Square 0.98
Adjusted R Square 0.97
Standard Error 0.01
Observations 14

ANOVA
df SS MS F Significance F

Regression 5 0.069 0.014 73.42 1.82E-06
Residual 8 0.002 2E-04
Total 13 0.071

Coefficients Standard Error t Stat P-value
Intercept 6.29 6.43 0.98 0.36
Electricity Price -225.28 368.19 -0.61 0.56
Temperature -0.001 0.002 -0.34 0.74
Log pop -0.58 0.84 -0.68 0.51
Log age 0.39 1.21 0.32 0.76
Log perrural -4.28 1.83 -2.33 0.05

Table 24:  Auxiliary Regression with Total Population for Appalachian Power
Company’s West Virginia Service Area as the Dependent Variable

Regression Statistics
Multiple R 0.98
R Square 0.96
Adjusted R Square 0.94
Standard Error 0.01
Observations 14

ANOVA
Df SS MS F Significance F

Regression 5 0.0062 0.001237811 39.56 1.96E-05
Residual 8 0.0003 3.12856E-05
Total 13 0.0064

Coefficients Standard Error t Stat P-value
Intercept 7.73 0.45 17.30712973 1.26532E-07
Electricity Price -138.91 145.38 -0.955538735 0.367
Temperature 0.00083 0.00 1.479129651 0.177
Log percapinc -0.095 0.14 -0.681446532 0.515
Log age -1.133 0.29 -3.867718586 0.005
Log perrural -1.82 0.72 -2.52858909 0.035
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Table 25:  Auxiliary Regression with Percent Rural Population for
Appalachian Power Company’s West Virginia Service Area as

the Dependent Variable

Regression Statistics
Multiple R 0.99
R Square 0.99
Adjusted R Square 0.98
Standard Error 0.002
Observations 14

ANOVA
df SS MS F Significance F

Regression 5 0.002 0.0004 106.04 4.33E-07
Residual 8 3.34E-05 4.17E-06
Total 13 0.002

Coefficients Standard Error t Stat P-value
Intercept 2.21 0.64 3.45 0.01
Electricity Price -122.78 35.45 -3.46 0.01
Temperature 0.0002 0.0002 0.7365 0.4825
Log percapinc -0.09 0.04 -2.33 0.05
Log pop -0.24 0.10 -2.53 0.04
Log age -0.34 0.14 -2.47 0.04

Table 26:  Auxiliary Regression with Average Age for Appalachian Power
Company’s West Virginia Service Area as the Dependent Variable

Regression Statistics
Multiple R 0.99
R Square 0.99
Adjusted R Square 0.98
Standard Error 0.004
Observations 14

ANOVA
df SS MS F Significance F

Regression 5 0.01 0.002 140.06 1.45E-07
Residual 8 0.0001 1.59E-05
Total 13 0.01

Coefficients Standard Error t Stat P-value
Intercept 4.63 1.10 4.20 0.00
Electricity Price -203.87 82.14 -2.48 0.04
Temperature 0.00 0.00 1.61 0.15
Log percapinc 0.03 0.10 0.32 0.76
Log pop -0.57 0.15 -3.87 0.00
Log perrural -1.28 0.52 -2.47 0.04
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Table 27:  Regression Equation used to Forecast Appalachian Power
Company’s Residential Electricity Price for West Virginia

Electricity price

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.352049897
R Square 0.12393913
Adjusted R Square 0.050934058
Standard Error 3.34817E-05
Observations 14

ANOVA
df SS MS F Significance F

Regression 1 1.93E-09 1.90E-09 1.698 0.217
Residual 12 1.35E-08 1.12-09
Total 13 1.54E-08

Coefficients Standard Error t Stat P-value
Intercept 0.00063 1.89E-05 33.29 3.42E-13
Trend -2.89E-06 2.22E-06 -1.30 0.22

Table 28:  Regression Equation used to Forecast Per Capita Income for
Appalachian Power Company’s West Virginia Service Area

Per Capita Income
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.92
R Square 0.85
Adjusted R Square 0.83
Standard Error 1118.49
Observations 14

ANOVA
df SS MS F Significance F

Regression 1 82468517.8 82468517.8 65.92 3.23E-06
Residual 12 15012203.47 1251016.96
Total 13 97480721.26

Coefficients Standard Error t Stat P-value
Intercept 10622.31 631.41 16.82 1.04E-09
Trend 602.08 74.16 8.12 3.23E-06
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Table 29:  Regression Equation used to Forecast Log Residential Customers
for Appalachian Power Company’s West Virginia Service Area

Log Residential Customers
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.95
R Square 0.90
Adjusted R Square 0.90
Standard Error 0.0025
Observations 14

ANOVA
df SS MS F Significance

F
Regression 1 0.0007 0.0007 112.51 1.88796E-07
Residual 12 7.53846E-05 6.28205E-06
Total 13 0.0008

Coefficients Standard
Error

t Stat P-value

Intercept 5.55 0.0014 3,923.99 5.05438E-38
Trend 0.0018 0.0002 10.61 1.88796E-07
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Figure 23:  Graph of Appalachian Power Company’s Residential
Electricity Price ($/mWh) for West Virginia using Forecast Equation

Figure 24:  Graph of Per Capita Income for Appalachian Power
Company’s West Virginia Service Area using Forecast Equation
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Figure 25:  Graph of Appalachian Power Company’s
Residential Customers in West Virginia using Forecast Equation
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Table 30:  Confidence Intervals of Forecast Values of Exogenous Variables
using Confidence Interval Equation (α = 0.05)

Year Electricity
Price

Electricity Price
Upper

Electricity Price
Lower

1996 0.0005859 720737.385 -720737.384
1997 0.0005830 726437.896 -726437.894
1998 0.0005801 732850.970 -732850.969
1999 0.0005772 739976.609 -739976.607
2000 0.0005743 747814.811 -747814.810
2001 0.0005714 756365.577 -756365.576
2002 0.0005685 765628.907 -765628.906
2003 0.0005656 775604.801 -775604.799
2004 0.0005627 786293.258 -786293.257
2005 0.0005598 797694.280 -797694.278

Year Temperature Temperature Upper Temperature Lower
1996 94.357 99 91
1997 94.357 99 91
1998 94.357 99 91
1999 94.357 99 91
2000 94.357 99 91
2001 94.357 99 91
2002 94.357 99 91
2003 94.357 99 91
2004 94.357 99 91
2005 94.357 99 91

Year Per Capita Income Per Capital Income
Upper

Per Capita Income
Lower

1996 19653.49254 19653.531 -19653.531
1997 20255.57142 20255.612 -20255.612
1998 20857.6503 20857.693 -20857.693
1999 21459.72918 21459.774 -21459.774
2000 22061.80806 22061.855 -22061.855
2001 22663.88695 22663.937 -22663.937
2002 23265.96583 23266.019 -23266.019
2003 23868.04471 23868.101 -23868.101
2004 24470.12359 24470.183 -24470.183
2005 25072.20247 25072.265 -25072.265
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Table 31:  Confidence Intervals of Forecast Values of Exogenous Variables
using Confidence Interval Equation (α = 0.05) Continued

Year Residential
Customers

Residential Customers
Upper

Residential Customers
Lower

1996 378902 379062 -379062
1997 380443 380650 -380650
1998 381990 382250 -382250
1999 383543 383863 -383863
2000 385103 385488 -385488
2001 386669 387126 -387126
2002 388242 388777 -388777
2003 389821 390441 -390441
2004 391406 392118 -392118
2005 392998 393808 -393808
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Table 32:  Confidence Intervals using Simple Trend Extrapolation

Year Electricity
Price

Electricity Price
Upper

Electricity Price
Lower

1996 0.0006300 0.000635 0.0006255
1997 0.0006300 0.000650 0.0006254
1998 0.0006300 0.000655 0.0006253
1999 0.0006300 0.000660 0.0006252
2000 0.0006350 0.000665 0.0006251
2001 0.0006350 0.000670 0.0006250
2002 0.0006350 0.000680 0.0006200
2003 0.0006400 0.000685 0.0006150
2004 0.0006500 0.000690 0.0006050
2005 0.0006550 0.000695 0.0006000

Year Temperature Temperature Upper Temperature Lower
1996 94 99 91
1997 94 99 91
1998 94 99 91
1999 94 99 91
2000 94 99 91
2001 94 99 91
2002 94 99 91
2003 94 99 91
2004 94 99 91
2005 94 99 91

Year Per Capita Income Per Capital Income
Upper

Per Capita Income
Lower

1996 21500 23000 21000
1997 23500 26000 22000
1998 25000 28000 23500
1999 26500 31500 24000
2000 28500 32500 24500
2001 29500 35000 25000
2002 31500 37000 26000
2003 33000 39500 26500
2004 34000 40500 27000
2005 35000 42000 29000
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Table 33:  Confidence Intervals using Simple
Trend Extrapolation (Continued)

Year Residential
Customers

Residential Customers
Upper

Residential Customers
Lower

1996 383000 384000 382000
1997 384500 386000 383000
1998 386500 390000 385500
1999 385000 392000 384250
2000 387000 394500 385500
2001 391000 397000 386000
2002 392500 400000 387000
2003 394000 403000 388000
2004 396000 405000 389000
2005 398000 408000 391500
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Figure 26:  Graph of Appalachian Power Company’s
Residential Electricity Price ($/mWh) for West Virginia
Confidence Interval using Confidence Interval Equation

Figure 27:  Graph of Confidence Interval for Maximum
Temperature on Day of Appalachian Power Company’s

West Virginia Residential Summer Peak
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 Figure 28:  Graph of Confidence Interval for Per Capita Income for
Appalachian Power Company’s West Virginia Service Area

using the Confidence Interval Equation

Figure 29:  Graph of Appalachian Power Company’s Residential
Customers in West Virginia using the Confidence Interval Equation
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