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Abstract 
 

Improving Lumber Recovery of Low-Quality Hardwoods via Finger-Jointing 
Technologies 

 
Colin Dougherty 

 
 The purpose of this project was to improve hardwood lumber recovery 
from low quality logs and lumber of Appalachian species by using finger-jointing 
technologies to create value-added products.  Currently, there is an abundance 
of low quality lumber created by sawmill operations that cannot be efficiently 
utilized.  The high presence of defects in the lumber makes processing this 
material costly and therefore little market exists to utilize this resource.  Creating 
value added products from this material can help to improve forest health and 
alleviate the demand of quality wood products.   
 This project processed a total of 4,800 board feet of low-grade lumber to 
determine the volume of usable wood contained within low-grade lumber.  Four 
common Appalachian species were salvaged; black cherry, soft maple, red oak, 
and yellow- poplar; and subsequently finger-jointed, end-to-end to create long 
usable stock.  Lumber was then edge-glued to create solid panels which could be 
used in furniture manufacturing.  
 The recovery ratios, size distribution, mechanical and physical properties 
of different species were investigated and compared.  Yellow-poplar produced 
the highest recovery ratios followed by red oak, cherry, and maple.  Finger-
jointed, edge-glued panels were created and their mechanical and physical 
properties were evaluated.  Results indicated that the panels could perform 
suitably for their intended end-use.  The recovery ratio of converting rough, low-
grade lumber, into solid panels was approximately 33%.  Cost/benefit analyses 
were performed to estimate the profitability of the process.  Based on current 
value of solid edge-glued panels, cherry and red oak were the most profitable 
species to process.
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CHAPTER 1 
 

INTRODUCTION 

 

 Many factors are pushing forest products companies across the U.S. to 

improve forest resource utilization.  Continued economic and environmental 

pressures force the industry to constantly attempt to improve utilization of natural 

resources.  At the same time, the amount of low-grade lumber produced in the 

U.S. is on the rise (Wiedenbeck et al. 2004).  As these pressures mount, more 

forest products manufacturers are seeking alternative value-added processing 

methods to utilize this low-quality resource (Lin et al. 1994). Developing new 

methods and processes to efficiently process this resource is a major research 

priority (Shepley et al. 2004).  

 Cumbo (2003) stated the annual hardwood lumber production has been 

estimated at greater than 13 billion board feet.  However, due to changes in 

markets for hardwood lumber and a slowdown in the U.S. economy, hardwood 

manufacturers are having difficulties remaining profitable leading to production 

reductions and mill shutdowns.  The lack of profitability can be especially harsh 

for manufacturers dealing with large volumes of low-grade material as profit 

margins are low and there are few markets (Cumbo 2003).   

 More low-grade lumber is being produced as a result of an increased 

volume of low-quality hardwood logs being harvested.  Evidence suggests there 

is an “over-abundance” of low-value, small diameter timber in forests in the 

eastern United States (Cumbo 2003). The amount of higher-grade hardwood 
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lumber available will continue to decline forcing manufactures to find a market for 

this low-grade material (Meyer 1996). The level of interest placed on developing 

and maintaining markets for this material should increase as low-grade lumber 

production increases. 

 Creating valued-added alternatives for processing this material could 

encourage foresters to remove lower-quality material from the forest, resulting in 

better forest health and increased profits for forest landowners and the forest 

products industry.  Establishing markets for this material will allow both 

landowners and the forest products industry to benefit from improved utilization 

of low-quality material (Shepley et al. 2004).  A trend towards smaller and more 

diversified markets for low-grade lumber may be developing as a result of the 

changes in larger, more traditional markets for this material (Cumbo 2003). 

 Unfortunately this lumber contains a large amount of defects, as well as a 

high percentage of juvenile wood, making it more prone to warp.  As a result, the 

cost to process this material is relatively high.  

 Shepley et al., (2004) investigated opportunities to increase utilization of 

No. 3A Common (3AC).  It was determined that lumber yields could be improved 

by salvaging narrow width and short length pieces from the lumber.  Finger-

jointing operations are ideal for reconstituting small pieces of lumber into longer, 

usable stock.   

 This project investigated the feasibility of utilizing No. 3AC hardwood 

lumber to create solid hardwood panels for use by furniture and cabinet 

industries.    
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OBJECTIVES 

 

 The overall objective of this project was to improve lumber recovery of 

low-quality lumber by salvaging small, clear material (shorts) and to use finger-

jointing technologies to create value-added products.  Low-grade (No. 3A 

Common) lumber was processed to recover the largest volume of usable, clear 

lumber possible.  Clear pieces were then ripped into uniform width-classes and 

finger-jointed end-to-end to create long, usable stock.  The lumber was then 

surfaced and edge-glued to create solid hardwood panels.  The yields and size-

distributions of clear shorts were analyzed, and the volume of finished panels 

was determined.   Specific objectives of this project were: 

 

1.  To investigate and numerically determine the recovery ratio for different 

sequential combinations of drying/salvaging/jointing/ and size-dressing 

operations. 

2.  To develop and document species specific technologies for converting shorts 

into marketable, profit generating products. 

3. To experimentally determine the competitive physical and mechanical 

properties of the new products.  

4. To evaluate the profitability of the manufacturing processes using cost-benefit 

analyses. 

To achieve the above mentioned objectives, the following research methods 

were performed.    
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CHAPTER 2 
 

LITERATURE REVIEW 

 

2.1 Appalachian Hardwood Resources 

 

 Buehlemann et al., (2007) stated that 55% of all hardwoods harvested in 

the northeastern United States consist of Appalachian hardwoods.  These forests 

contain primarily of oak, maple, yellow-poplar, and black cherry hardwood trees.  

Furniture, cabinet and flooring industries are the largest users of this lumber.  

Currently there is an abundance of smaller timber in the forest creating lower 

grade lumber and is therefore a lack of high-grade lumber to satisfy the needs of 

furniture and other wood product companies.  

 It is estimated that small diameter hardwoods consist of 32-42% of the 

growing volume of timber and 93-95% of total trees growing in the northeast.  

Greater utilization of small-diameter logs results in higher percentages of low-

quality lumber produced.  As a result, more than 60% percent of hardwood 

lumber produced is graded No. 2 Common or lower (Bumgardner et al. 2001).   

 Creating markets for this low-grade lumber can have many benefits.  

Silvicultural treatments become more financially attractive for harvesters to 

remove smaller diameter timber and these treatments can help improve forest 

health (Bumgardner et al. 2001). Forest thinning practices are common in forest 

management plans to remove small-diameter or otherwise lower quality timber 

and promote growth of higher value trees as well as to reduce forest fire hazards 
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(Cumbo et al. 2004).  Much of the low-quality material removed from the forest is 

often chipped and sold to pulp/paper industries.  Opportunities may exist to 

create value-added products from this material and promote its extraction from 

the forest.   

 Currently the largest market for low-grade lumber is the pallet industry, 

followed by industrial uses and flooring.  However, the pallet industry has 

recently seen an increase in recovery, repair and reuse of pallets resulting in 

reduced demand for low-grade lumber (Cumbo et al. 2004). The results of these 

factors necessitate research to develop methods to efficiently process and 

market this under-utilized material.  The efficient use of this renewable resource 

can be achieved only if a variety of products can be created from the lumber. 

 These challenges emphasize a need to diversify markets and improve 

recovery of this low-grade material.  This had led to many research projects 

focused on improving utilization of forest resources. 

 

 

2.2 Utilization Improvement Efforts 

 

 Timber is converted into lumber at the primary sawmill and graded based 

on the amount of defects present.  Rough mills then purchase varying grades of 

lumber to process and produce components for furniture and wood product 

industries (Zuo et al. 2003).  Wood products companies need to efficiently 

convert this rough lumber into marketable products to remain profitable.  The 
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rough mill removes undesirable wood characteristics and defects from the 

lumber.  The resultant clear lumber may then be further processed by moulding, 

finger-jointing or edge-gluing to create panels or other value-added products.  

 Rough mills generally purchase a variety of lumber grades in order to cut 

the required parts needed for their customers.  Lumber cost can contribute more 

than 50% of total mills’ operating cost (Zuo et al. 2003).  Therefore it is important 

to achieve the highest yields possible when salvaging lumber without sacrificing 

too much time or energy extracting clear material.  This has been the focus of 

considerable research in the past.   

Due to decreasing production of quality timber and lumber, many different 

utilizations techniques have been proposed.  Rough mill yield is a major 

measurement of mill productivity.  Lumber grade affects the productivity and 

operating costs of rough mills.  Utilizing low-quality lumber creates difficulties due 

to the increased presence and concentrations of defects.  Analyzing boards for 

optimum cutting solutions becomes more difficult and time consuming. Also, 

more energy is required to remove the clear material resulting in increased wear 

and tear on machinery.  Steele et al., (1999) investigated the relationship 

between machine productivity and lumber grade.  It was found that sawmill 

productivity decreased significantly when lower grades were processed.  

Advancements in lumber vision technologies have the potential to improve 

decision making and increase productivity of processing low-grade material.   

 Buehlmann et al., (1999) investigated the potential for increasing lumber 

recovery by including character-marked lumber into dimension parts for the 
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furniture and cabinet industries.  It was found that yield increases of up to 15% 

could be obtained in rip-first rough mills.   

 Bumgardner et al., (2001) reviewed options from the past and present for 

improving utilization of small-diameter hardwood timber.  One suggestion noted 

was the possibility of modifying a previously proposed method called System 6.  

This was a process aimed at creating a new marketing approach to create solid 

hardwood panels directly from low-quality timber for use in furniture and cabinet 

manufacturing.  This process was never widely adopted; however, portions of 

System 6 have been used in modified forms (Bumgardner et al. 2001).  Changes 

in the availability of quality material as well as in technology may create new 

interests in this process.  Some of these alterations include salvaging small 

pieces from lumber to improve yields and the use of finger-jointing to create 

longer stock which may have a variety of uses.   

 Lang and Hassler (2000) investigated the feasibility of finger-jointing 

lumber at various moisture contents to create pallet stock.  Results indicated that 

diffuse-porous species could be finger-jointed while green to create viable 

products.  Finger-jointing processes provided efficient end-jointing techniques 

and provided the necessary strength to create value-added products.   
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2.3 Finger-Jointing 

 

Low-quality lumber contains many defects including knots, wane, and 

decay limiting its use for many markets.  Due to the high concentration of 

defects, it requires more energy to remove the clear material and results in low 

productivity and yields.  However, by utilizing small pieces of lumber it is possible 

to improve yields when salvaging low-grade hardwoods (Shepley et al. 2004).   

Effectively end-jointing lumber has always presented difficulties because 

wood cannot be bonded well, end-grain to end-grain.  Many end-to-end joints 

such as scarf joints do not exhibit high strength values and create excessive 

waste. Finger-jointing has been used for more than 90 years to create usable 

stock by end-jointing small clear pieces of lumber (Jokerst 1981).  Finger-jointing 

can create quality joints to create long usable stock and improve utilization of 

small pieces.  The joint creates grooves in the end of lumber exposing side grain 

and provides sufficient surface area for proper gluing.  Properly finger-jointed 

lumber can attain up to 90% of the tensile strength of clear lumber (FPL 1999). 

There are two classes of finger-joints: nonstructural and structural.  Non-

structural finger-joints typically utilize shorter finger lengths and blunt tips; 

whereas structural joints use longer fingers and narrower tips.  Lumber is 

generally finger-jointed in two different orientations; horizontal and vertical 

(Jokerst 1981).  Both different types offer their own advantages and 

disadvantages.  The aesthetics of the finger-joints differs as seen in Figure 2.1.   
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a.   

b.  

Figure 2.1 Appearance of finger-jointed, edge-glued panels. Horizontally 

oriented finger-joints (a) and vertically oriented finger-joints (b).    
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Vertical joints are visible on the face of finger-jointed lumber which may 

not be desirable for some uses.  However, the inclusion of these joints makes it 

clearly visible the product is constructed of solid wood.  Both methods provide 

the opportunity to convert small pieces into longer, usable stock.   

Nonstructural finger-joints are often used in the molding and millwork 

industry for trim, siding, fascia boards, and door stiles.  Uses for structural 

applications include jointing studs and glu-lam beams as well as joining rails and 

window frames (Jokerst 1981).  Recent interest has been expressed to create 

finger-jointed, edge-glued panels from small clear pieces to improve recovery of 

low-quality lumber. 
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CHAPTER 3 
 

MATERIALS AND METHODS 

 

3.1 Materials 

 

 This project investigated methods to improve lumber recovery ratios for 

traditional Appalachian hardwood species by using finger-jointing technologies to 

create value-added products from the recovered lumber.  Four commonly used 

Appalachian hardwood species were investigated for this study: 

1. black cherry (Prunus serotina) 

2. soft maple (Acer rubrum) 

3. red oak (Quercus rubra) 

4. yellow-poplar (Liriodendron tulipifera) 

 Lumber used in this project was donated by two different sawmills: 

Coastal Lumber located in Bruceton Mills, WV, and Allegheny Wood Products in 

Kingwood, WV.   

 All lumber was nominal 4/4 thickness and was graded No. 3A Common 

(3AC) at the respective sawmills according to the National Hardwood Lumber 

Association grading rules.  This project consisted of three phases; each which 

processed 400 BF of each species, for a total of 4,800 BF 3AC lumber.   

 Lumber was dried and salvaged at WVU using the facilities located at the 

Division of Forestry and Natural Resources (DFNR) in Morgantown, WV.  Phase 

I salvaged rough lumber while still green.  During Phases II and III, lumber was 

first dried at the DFNR using a dehumidification (DH) kiln.   
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 Clear lumber recovered (hereafter referred to as short(s)) from the salvage 

operations were finger-jointed and then further processed to create value-added 

products.  Half of the finger-jointing operations occurred at the DFNR and half 

were manufactured at Weinig Inc. in Mooresville, NC.  Horizontally-oriented 

finger-joints were created at the DFNR and required the use of an industrial wood 

shaper and finger-joint cutter-head.  After fingers were cut, a polyvinyl acetate 

(PVA) resin (Table 2.1) was applied and the material was joined end-to-end.  A 

clamping system was used to apply pressure to force the joints together. 

 

Table 2.1 Specifications of resin used for finger-jointing and edge-gluing 

operations.  

Resin Type Cross-linked polyvinyl acetate 
Solid Content 48% 
Viscosity 4,000 cps 
Calculated VOC 5.5 g/L 
Weight/gallon 9.1 lbs 
pH 3.0 
Open Assembly Time 5 minutes 
Total Assembly Time 10-15 minutes 
Minimum Required Spread Approximately 250 sq.ft/gallon 
Required Clamping Pressure Softwoods: 100-150 psi 
  Medium Hardwoods: 125-175 psi 
  Dense Hardwoods: 175-250 psi 

                             Source: http://www.titebond.com 

Once the finger-joints cured, the long boards created (hereafter referred to as 

‘blank(s)’) were surfaced on four sides to prepare for edge-gluing; a 4-head 

moulder was used to accomplish this task.  Blanks were cut into the approximate 

length of finished panels.  The resultant finger-jointed, surfaced, blanks prepared 

for edge-gluing will be referred to as staves.  The appropriate numbers of staves 

were selected and edge-glued to achieve the desired width of finished panel.   
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 Edge-gluing was accomplished using stackable panel clamps.  After the 

resin had fully cured, the panels were sent through a planer to achieve the 

desired uniform thickness.  Finally, the panels were ripped and trimmed to their 

final dimensions using a table saw.   

 After panels were formed they were put in an environmental chamber and 

subjected to increased humidity.  Dimensional stability was investigated by 

measuring the panels before and after exposure to environmental changes.  

Warp measurements were taken on a flat table using a calibrated wedge and 

metal ruler.   

 Mechanical tests were performed on finger-jointed samples to determine 

the mechanical properties of the finished products.  Samples were placed in a 

conditioning chamber before testing to achieve an EMC of 12%.  Three-point 

static bending tests were performed using a MTS-810 Universal Servo-Hydraulic 

Testing machine with Instron data acquisition system.   

 

 

3.2 Methods 

 

3.2.1 Acquiring and Drying Lumber 

 

 This project comprised three phases.  Each phase of the project 

investigated 400 BF of each of the four previously noted species, for a total of 

4,800 BF processed (4 species x 3 phases x 400 BF = 4,800 BF).  Lumber was 

acquired soon after it had been sawed to prevent a loss in MC.   
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 All lumber was salvaged while green during Phase I of the project 

(salvage methods are described in the next section).  400 BF of each species 

was acquired and subsequently salvaged to remove defects.  The resultant 

material was then stored for future use.   

 Phase II and Phase III called for lumber be dried to approximately 14% 

MC by weight before salvaging.  The lumber was dried using a dehumidification 

(DH) kiln located at the DFNR.  Lumber was stacked and stickered according to 

the procedures described in the Dry Kiln Operator’s Manual (Simpson 1991).  

Approximately 1,800 lbs (40 lbs/ft²) of top-weight was uniformly applied to aid in 

the prevention of drying defects.  Species were dried separately based on kiln 

schedules provided by the manufacturer of the DH kiln.  After lumber reached the 

desired MC, the charge was removed and sent to the wood shop to be salvaged. 

A new charge of 400 BF was then dried while the first charge was salvaged.   

 Moisture content of lumber throughout the drying process was determined 

in accordance with ASTM standard 4442-06.  Also, MC was approximated using 

a Delmhorst electronic resistance moisture meter.  

 

 

3.2.2. Salvaging Methods 

 

 Rough lumber was processed to remove defects and recover the 

maximum volume of clear, material.  A small minimum cutting-size was chosen to 
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first establish how much useable wood was contained in the rough lumber. 

Defect-free material was extracted, measured, and stored.   

 It was important to remove the entire defect and surrounding abnormal 

wood in order to ensure suitable wood existed to provide for a quality finger-joint.  

Defects identified for removal were chosen based on the Wood Component 

Manufacturers Association’s Rules and Specifications for Dimension and 

Woodwork (WCMA 2007) and included: 

• all knots larger than 1/8”,  

• decay,  

• excessive warp,  

• end splits,  

• pith, 

• surface checks,  

• wane,  

• and worm holes. 

 

 Lumber was salvaged at the woodshop located in the DFNR.  An industrial 

chop saw and straight-line rip saw were used to process the material.  Each 

board was inspected and a cutting pattern was drawn on the board based on the 

location of defects (Figure 3.1).   

 

Figure 3.1 Example of cutting pattern used to salvage rough lumber.  
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 The boards were either cross-cut or ripped first to remove defects based 

on placement and concentrations of defects.  Additional salvaging processes 

were performed to remove all usable material from the rough lumber.   

 For Phase I, the minimum-size piece (cutting-size) removed from the 

lumber was 1” width by 6” length.  This cutting size was used to determine the 

maximum volume of clear, defect-free material contained in the lumber.  All four 

species were salvaged and the lumber was stored for measurement and 

analysis. 

 During Phase II and III the minimum cutting size was altered to 1.5” width 

by 12” length.  This length was determined to be the minimum length necessary 

in order to be compatible with finger-jointing machinery used later in the project.  

All shorts recovered were measured to obtain width and length to the nearest 

1/8”. The material was then further processed to prepare for finger-jointing 

operations. 

The shorts measured up to this point consisted of random widths and 

lengths.  Finger-jointing operations require lumber to be of uniform widths in 

order to process it.  Also, different finger-jointing machines handle different 

dimensions of materials.  Therefore the material had to be processed into 

uniform-widths and meet all other size constraints dictated by the two finger-

jointing processes used in the study. 

The machinery used to create vertically finger-jointed lumber was capable 

of utilizing material from 6”-28” in length and could joint widths from 1.5” to 6”.  

Horizontally finger-jointed lumber produced at the DFNR required shorts to be at 
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least 12” long.  Therefore, a 1.5” width by 12” length board was the minimum size 

that was used for finger-jointing operations.   

Material that was larger than finger-jointing machine capabilities was re-

ripped or cross-cut into appropriate sizes; shorts longer than 28” were cross-cut 

and widths greater than 6” were re-ripped into smaller dimensions.   

The material was then ripped into several different width-classes (Wt.C.).  

Nine widths were selected in an attempt to maximize the recovery of the random 

sized shorts. These widths were selected based on the width-distributions of 

shorts measured during the three salvaging phases (the methods for selecting 

width-classes is discussed further in section 4.1). The nine width-classes 

selected were: 

1.5”, 2.0”, 2.5”, 2.75”, 3.0”, 3.25”, 3.5”, 4.0”, and 4.5”. 

 

 All of the shorts were re-ripped to fit the nearest lower width-class (i.e. 

2.625” 2.50”, 3.875” 3.5”).  Specimens wider than 5” were re-ripped in a way 

to maximize recovery (i.e. 5.0” 2.0” Wt.C. and 2.75” Wt.C. with 0.25” lost in saw 

kerf; as opposed to 5.0” 4.5” Wt.C. with 0.5” waste).  All newly salvaged shorts 

were then re-measured and stored for future use.   
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3.2.3 Finger-jointing Operations 

 

 A portion of the shorts salvaged from the project were finger-jointed to 

create value-added products.  Half of the finger-jointing processes were 

conducted at the DFNR, while the second half was processed in at Michael 

Wienig, Inc. in North Carolina. Figure 3.2 shows the finger-joint geometry of the 

two different cutter-heads.   

a.                            b.  

Figure 3.2 Description of cutter-head geometry for horizontal (a) and vertical (b) 

finger-joints. 

 

 Horizontal finger-joints were manufactured at the DFNR lab at Percival 

Hall in Morgantown, WV.  An insert-type finger-joint cutter was purchased and 

mounted on a single spindle shaper.  The machine used a 5HP motor and had a 

spindle rotation of 7,200 revolutions per minute (rpm).  The geometry of the 

finger-joint cutter-head is described in Figure 3.2.   
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 The shorts were clamped down to a movable guide ensuring the ends of 

were aligned 90 degrees to the cutter-head (Figure 3.3).  The guide was 

manually moved across the cutter-head creating the fingers in the ends of the 

specimens.   

 

 

Figure 3.3 Shaper set-up used for manufacturing horizontal finger-joints. 

 

 The cutter-head was set up to cut one end of a short, and was then 

adjusted to cut the opposite end to create a good fitting end joint.   

 The feed-rate of the guide had to be relatively slow otherwise tearout 

could occur on the side of the specimen (Figure 3.4).   
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Figure 3.4 Tearout in horizontal finger-joint caused by high feed-rate. 

 

 This problem was most prevalent in the red oak specimens, most likely 

due to the anatomy of the species; however, it occurred among all species 

jointed.  When this occurred it was necessary to cut off the fingers and re-

manufacture the finger-joint.   

 Some warping occurred in the specimens between the time the specimens 

were salvaged and the time they were finger-jointed.  Due to the tolerances of 

finger-jointing machinery, warp can create difficulties in processing.  When all 

sides of the specimen were not square, they had a tendency to slip and rotate 

when moved across the cutter-head (while clamped to the moveable guide).  

This resulted in fingers that were too thin and were unable to ensure a quality 

joint.  In these cases the unsatisfactory fingers were cut off and the specimens 

were jointed again.   
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 Specimens which were twisted or bowed also created difficulties. 

Specimens longer than approximately 18” containing either of these forms of 

warp were cross-cut into more manageable pieces.  Warped material that was 

attempted to be finger-jointed often resulted in fingers being cut at an angle not 

parallel to the plane of the board (Figure 3.5).  This resulted in ‘slanted’ joints that 

if connected with other finger-jointed material created twisted blanks that were 

not suitable for edge-gluing.   

 

Figure 3.5 Specimen with slanted fingers produced from warped shorts.   

  

 After finger-joints were created, the shorts were immediately transferred to 

be glued and pressed into approximately 7 ft long sections (blanks).  Sufficient 

resin was manually applied using a brush to evenly cover the fingers.  Shorts 

were matched end-to-end to and pressed into 7 ft blanks using a screw-driven 

clamping device (Figure 3.6).   A small amount of pressure was applied to the top 
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of the blanks to prevent the shorts from buckling upwards.  The shorts were 

glued using an activated polyvinyl acetate (PVA) resin.   

 

Figure 3.6 Press used for manufacturing finger-jointed lumber at DOF. 

 

 Continuous pressure was applied for 20 minutes and the blanks were then 

removed from the clamp and allowed to cure completely.   

 Vertical finger-joints were manufactured at the Michael Weinig, Inc. North 

American headquarters located in Mooresville, NC.  A Grecon Profijoint D-110 

finger-jointer was used to produce the joints (Figure 3.7).   
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Figure 3.7 Grecon Profijoint machinery and press used to produce vertical 

finger-joints. 

 

 The machine used a 30HP motor with a six-inch vertical cutter-head to 

manufacture finger-joints.  The fingers were 10-mm deep with a tip-to-tip span of 

3.5-mm (Figure 3.2).   

 One worker loaded the shorts into the machine and performed the cutting 

of the fingers.  Meanwhile another person received the freshly cut and glued 

shorts and arranged them to be pressed.  A 20-foot capacity press connected to 

the machine was used to press the shorts together.  The pressure applied was 

adjusted according to the cross-section dimensions of the lumber to provide the 

proper amount of force.  
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 The material was processed one width-class at a time.  The shorts were 

loaded into the machine which cut the fingers and then applied glue using a glue 

comb with pump and tank.  An activated polyvinyl acetate (PVA) resin was used.  

The press applied continuous force for approximately 15 seconds and then 

discharged the blanks in lengths of 16 feet.  After curing for approximately 15 

minutes, the blanks could be handled without compromising the strength of the 

finger-joints.  All material was then returned to the DFNR for further processing.   

 

 

3.2.4 Panel Production 

 

 After the shorts were finger-jointed and glued to form blanks, either at the 

DFNR or at Weinig, Inc., they needed to be surfaced in preparation for edge-

gluing into panels. Blanks were surfaced on four sides using a 4-head moulder 

(Figure 3.8).    
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Figure 3.8 Four-head moulder used to prepare blanks for edge-gluing. 

 

 The objective of this step was to convert the blanks into square stock so 

they could be properly edge-glued; while removing as little material possible 

during the process. The moulder was set-up to remove 0.125” of material from 

each edge of blanks. The lower cutter-head on the machine removed 0.087” and 

the top cutter was set so that the final thickness of the material would be 

approximately 0.875”.   

 After the blanks were moulded, they were cut into the approximate length 

of the finished panels.  These ready-to-edge-glue pieces of lumber are referred 

to as staves.  The appropriate numbers of staves were edge-glued to create the 

desired width of the panels.  Stackable panel clamps (Figure 3.9) were used to 

provide proper pressure to edge-glue the material.  A small paint roller was used 

to apply a consistent amount of PVA glue to the edges of staves. 
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Figure 3.9 Production of edge-glued panels using panel clamps.  

 

 After the curing, the panels were fed through a surface planer to achieve a 

final thickness of ¾”.  Finally, the panels were trimmed to their final width and 

length of 26” and 38” respectively.  Panels were measured and stored for 

mechanical and dimensional stability testing.   

 

 

3.2.5 Panel Warp Determination   

 

 Dimensional stability of the panels was investigated by measuring certain 

forms of warp before and after exposure to elevated humidity conditions.  Bow 

and cup were the two forms of warp measured.    
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 Bow is defined as a deviation from lengthwise flatness in a board.  Cup is 

defined as a deviation from flatness across the width of the board.  Both initial 

measurements were taken immediately after the panels were trimmed to their 

final dimensions.  The ambient conditions were 70 degrees Fahrenheit and 

approximately 55% relative humidity, equivalent to approximately 10% EMC.  

Panels were measured on a flat table using a calibrated wedge and metal ruler to 

the nearest 1/20” (Figure 3.10). 

 

 

Figure 3.10 Measurement of warp (cup) using a calibrated wedge.   

 

The panels were then subjected to 30 days of elevated humidity and then 

allowed to equilibrate to their original EMC. Measurements were re-taken and pre 

and post warp measurements were compared. Figure 3.11 represents the 

environmental conditions the panels were subjected to.    
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Figure 3.11 Environmental conditions used for panel warp determination. 

 

 

3.2.6 Mechanical Testing 

 

 The mechanical properties of the panels were evaluated by testing 

samples in bending to determine modulus of elasticity (MOE) and modulus of 

rupture (MOR). 

Samples were selected from the species finger-jointed (cherry, maple, and 

red oak) and machined into tests specimens.  Ten samples from each species 

and finger-joint type (horizontal and vertical) were tested.  Also, a control group 

was machined from solid wood to compare to the finger-jointed specimens.  

Three-point static bending tests were performed to evaluate MOR and MOE in 
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bending.  A modified ASTM 1037 procedure was followed to test the specimens.  

Due to the intended end-use of the product as a panel material, this method was 

used to evaluate the mechanical behavior in panel flexure.  Test specimens were 

machined to the following dimensions:  2.75” width by 20” length by 0.75” 

thickness.  Actual dimensions were measured using a digital caliper with a 0.01-

mm resolution.  Figure 3.12 shows the testing set up used.  Specimens were 

tested to failure using a Servo-Hydraulic MTS testing machine with a 20,000 lbs 

load cell operated under displacement control. 

 

 

Figure 3.12 Determination of MOE and MOR of horizontally finger-jointed red 

oak test specimen by static three-point bending.   
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The load was applied directly perpendicular to the finger-joint in the test 

specimen.  Speed of testing was determined in accordance with ASTM 1037-99 

using the following equation: 

  .                               [1] 

 

Where: 

N = speed of test (in/min), 

L = length of span (in), 

t = thickness (in). 

 

The load was applied continuously at 0.36 in/min. until failure occurred.  A total of 

60 test specimens were prepared and tested. Load-displacement data pairs were 

collected during the tests by an Instron data acquisition program.  Using the data 

collected, MOE and MOR were determined using the equations found below: 

Ix   bh
3

12                        [2] 

                    

Where:   

Ix = moment of inertia (in4), 

b = width of specimen (in), 

h = height of specimen (in). 
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                                 [3] 

   

Where: 

E = modulus of elasticity (psi), 

F = load (lbs), 

L = testing span (in), 

Ix = moment of inertia (in4), 

Δ = deflection (in). 

 

Modulus of rupture was determined by first calculating the maximum moment 

and section modulus of the test specimens.  The formulas necessary for 

calculation are as follows: 

  

                         [4] 

 

Where: 

Mmax = maximum moment (in-lbs), 

Fmax = maximum force (lbs), 

L = length of span (in).  
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= bh2
                           [5] 

  

Where:   

Sx = section modulus (in3), 

b = average width of specimen (in), 

h = average height of specimen (in). 

 

                                      [6] 

   

Where: 

MOR = modulus of rupture (psi), 

Mmax = maximum moment (in-lbs), 

Sx = section modulus (in3). 
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3.2.7 Statistical Methods 

 

 Different statistical procedures were used to analyze the data obtained 

throughout this project. The most suitable comparison method was chosen for 

each case.  Mechanical properties were compared using one-way ANOVA and 

when necessary, a Kruskal-Wallis One way Analysis of Variance on Ranks test 

was used, followed by a Multiple Comparison Procedure to identify the groups 

that differed from others, in this case Dunn’s Method was used.   

 SigmaStat® software was used to perform statistical tests on the data. For 

the comparison of size distributions of the clear material, One Way ANOVA was 

used.  However, as expected, the data was not normally distributed because it 

consisted of width and lengths with minimum requirements and therefore had a 

right-skewed distribution. Non-parametric data analysis was used in these cases.  

The Kruskal-Wallis ANOVA on Ranks was used.  This test is used when samples 

are drawn from non-normal populations or when there are unequal variances.    

This test is essentially the same as a Mann-Whitney Rank Sum Test except there 

are more than two experimental groups.   The null hypothesis was that there was 

no difference in the distribution of the values between different groups.  After 

establishing that differences were present, the software automatically performed 

a Multiple Comparison Procedure to identify which groups differed.  Specific 

procedures used are further described in the results section.  
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CHAPTER 4 
 

RESULTS AND DISCUSSION 

 

4.1 Size Distributions of Salvaged Material 

 During this project, a total of 4,800 BF of 4/4 thickness, No. 3AC lumber 

was acquired and salvaged.  Rough lumber was measured upon arrival to the 

DFNR; approximately 1,000 individual boards were used.  The summary 

statistics of the dimensions of this lumber may be seen in Table 4.1.   

 

Table 4.1 Descriptive statistics of rough lumber salvaged. 

     

Species No. of 
boards 

Volume 
(BF) 

Mean width 
(in.) 

Std. 
Dev.1 

Mean 
length (in.) 

Std. 
Dev. 

Cherry 257 1202 6.0 3.70 108.8 30.33 

Maple 223 1203 6.2 1.80 124.4 23.40 

Red Oak 273 1202 5.6 1.97 111.4 18.33 

Yellow-poplar 237 1201 6.8 1.19 107.4 20.33 
1- standard deviation 
 

The average width of cherry, maple, and oak boards was approximately 6 inches.  

Yellow-poplar boards had a larger mean, close to 7 inches.  Statistical tests were 

performed to determine if sizes of input lumber were significantly different among 

species.  One-way ANOVA was performed to determine if significant differences 

existed in the mean width or length of boards by species. Results indicated that 

yellow-poplar lumber was significantly wider than the other three species.  Mean 

lengths were analyzed and found that maple lumber was significantly longer than 
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cherry, red oak, and yellow-poplar.  Results of the one-way ANOVA are located 

in the Appendices.  This information was used to compare the dimensions of 

rough lumber to the dimensions of clear material and may be useful in 

determining a relationship between the size of rough lumber and size of the clear 

shorts that are salvaged from it.    

 Rough boards were salvaged to remove the largest area of clear, useable 

wood possible based on the finger-jointing machine size-constraints discussed in 

the methods section. This resulted in many random-size pieces of lumber.  The 

width and length of the pieces were measured to the nearest 1/8 inch and 

analyzed.  Basic summary statistics for all three phases combined were 

calculated and are reported in Table 4.2.   

 

Table 4.2 Descriptive statistics of clear material. 

             

Species n1 Yield (%) Mean width 
(in.) 

Std. 
Dev.2 

Mean 
length (in.) 

Std. 
Dev. 

Cherry 1026 41.0 2.9 1.04 23.8 8.76 

Maple 1039 40.3 3.4 1.25 23.1 12.10 

Red Oak 1020 45.7 3.4 1.40 23.5 16.04 

Yellow-poplar 1458 49.7 2.6 0.82 21.0 9.96 

¹- sample size 
²- standard deviation 
 

Maple and oak species had the largest mean width of the four species and also 

had the highest standard deviations. Yellow-poplar exhibited the narrowest mean 

width and the lowest standard deviation.  Yellow-poplar also produced the 

shortest mean length of the four species.  The data indicates that yellow-poplar 
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lumber yields shorter and narrower pieces than the other three species.  The 

lengths of pieces were approximately 23 inches for cherry, maple and oak and 21 

inches for yellow-poplar.  Red oak lengths had the highest standard deviation of 

the species at 16 inches.  These size distributions were analyzed using one-way 

ANOVA to determine if statistically significant differences occur among species. 

As described in the methods section, because the data was not normal, non-

parametric statistical procedures were used to compare the data.   

 Using the raw data collected from the measured shorts, histograms were 

created to represent the width and length distributions of the shorts by species 

(Figure 4.1).    
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Figure 4.1 Width distributions of salvaged shorts for all phases combined for 

cherry (a), maple (b), red oak (c), and yellow-poplar (d). 

 

 Probability density curves were fitted to the histograms to represent the 

type of distributions among widths.  All curves were right-skewed and had long 

right tails.  This is due to the fact that a minimum width of one inch was 

necessary.  This resulted in a Weibull distribution as opposed to a normal 

distribution.  However, differences in distributions are noticeable between 

species which can be of importance.  Cherry (Fig. 4.1a) and red oak (Fig. 4.1c) 

pieces were distributed very similarly and appear to be more evenly distributed 

across the widths as compared to maple and yellow-poplar.  Yellow-poplar 
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pieces were more heavily concentrated resulting in a high peak near 2.5 inches.  

The distribution of maple pieces was highly right-skewed. Using this data can 

help to determine what widths the lumber should be ripped into to maximize 

recovery.  For instance, because cherry and red oak pieces are distributed more 

evenly, more width classes should be utilized to prevent excess waste.  For 

yellow-poplar however, pieces are more concentrated around a narrower set of 

width and therefore using less width classes could be acceptable.   

 Based on the data from the width-distribution histograms it was possible to 

determine what widths to re-rip the material into uniform shorts to maximize 

recovery.  Selecting width-classes just below (under) peaks in the histograms will 

minimize waste when re-ripping material into uniform widths.  For example, from 

the yellow-poplar width histogram (Fig. 4.1d) it is possible to visually see where 

the majority of shorts are located; therefore width-classes should be placed just 

before 2 inches, 2.5 inches, and 3 inches to try and recover the most volume of 

material.  For cherry however, (Fig. 4.1a) widths are wider and width-classes at 2 

inches, 3 inches and 3.5 inches should be used to recover the most volume.  

 Also, the spacing of width classes can be manipulated to increase 

recovery.  By spacing width-classes closer together near peaks in the 

histograms, more lumber can be recovered.  Based on the histograms from all 

species, width-classes were chosen as reported in the methods section.  The 

following widths (in inches) were chosen: 

1.5, 2.0, 2.5, 2.75, 3.0, 3.25, 3.5, 4.0, 4.5” 
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Notice that width-classes are spaced more closely together around 3.0 inches 

because this is where the majority of the data was concentrated.   

 Histograms were also created to represent the length distributions of the 

data (Figure 4.2). 
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Figure 4.2 Length distributions of salvaged shorts for all phases combined for 

cherry (a), maple (b), red oak (c), and yellow-poplar (d). 

 

Distributions of lengths were similar for all species.  Again, all data was right-

skewed because the minimum length used, mandated by finger-jointing 

requirements, was 12 inches.  For all species, the mean length was around 22 

inches however, it is visibly clear that the majority of the pieces were less than 
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approximately 30 inches.  This fact supports the use of finger-jointing to 

reconstitute low-grade lumber into longer stock because most finger-jointing 

machinery cannot easily handle material longer than 28 inches.   

 

4.2 Yields  

 After measuring the random width and length shorts, the shorts were 

ripped into uniform-widths.  Recovery of usable material was determined using 

different definitions of yield (%).  First, the yield of converting rough lumber into 

random-width and length shorts was determined.  The following formula was 

used:  

   

c    100                                       [6] 

Where:  

c (%) = Yield of clear wood from rough lumber; 

c = Area of clear shorts; 

r = Area of rough lumber. 

 

This yield represents the maximum amount of clear lumber salvageable from the 

rough lumber.  Table 4.3 provides the results from these calculations for each 

species.    
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Table 4.3 Descriptive statistics of clear lumber recovered from Phase I. 

    

 
Phase I. 

Species n¹ Yield 
(%) 

Mean width 
(in.) 

Std. 
Dev.² 

Mean length  
(in.) 

Std. 
Dev. 

Cherry 268 34 2.66 1.19 27.32 16.36 

Maple 400 36 2.34 1.07 22.45 13.51 

Red Oak 354 48 3.20 1.98 23.87 15.51 

Yellow-poplar 472 41 2.59 1.48 19.49 12.94 
¹ - n refers to number of shorts 
²- standard deviation 
  

For Phase I, red oak exhibited the highest yield of approximately 50%.  Maple 

had the lowest yield of 34%.  Phase I yields were the lowest of all three phases.  

This is opposite what would be expected as the lumber was salvaged green in 

the first phase, therefore the volume should have been higher.  An approximate 

6-8% volume decrease would be expected due to drying according to literature 

(FPL 1999).  This could be partially explained by operator bias.  As experience 

and familiarity with salvaging operations increased so did yield, as a result of 

being able to better identify defects and their boundaries.  Due to the high 

amount of defects and abnormal wood surrounding the defects, it can be difficult 

to identify how much wood needs to be removed to eliminate the defects.  

Defects should be sawn through to remove them.  If the defect still exists under 

the surface or otherwise it shoud be re-sawn again until the entire defect and 

surrounding abnormal wood is removed. In the first trial, too many questionable 

defects probably were removed (such as surface molds, discolorations, and dirt 

on the surface which could be misidentified as knots, decay or other defects). 
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After salvaging the first phase it was easier to accomplish this task more 

effectively.   

 Also, the condition of the 3AC lumber could have led to lower yields.  

Because low-grade lumber is less valuable, often times less care is taken by 

sawmills when storing and transporting the lumber.  Therefore low-grade lumber 

can often contain mechanical damage and become covered in dirt or mud which 

makes identifying defects more difficult.  It is recommened for future yield studies 

and and for production settings where yield is critical that the lumber be lightly 

planed before salvaging to better gauge the quality of the lumber and improve 

accuracy of locating defects.   

 This however, was not plausible for our study due to the desired end-

product.  The creation of finger-jointed, edge-glued panels requires lumber to be 

finger-jointed and then planed, edge-glued and then planed againg; therefore an 

additional planing at the beginning of the process would have prevented the 

desired thickness to be obtained.   

 After Phase I was completed, lumber was acquired and dired for Phase II 

and Phase III. Lumber was salvaged after drying to 14% MC.  The shorts were 

measured and analyzed.  Table 4.4 contains the size distributions and yields of 

salvaged materia for Phases II and IIl. 
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Table 4.4 Descriptive statistics of clear material recovered from Phases II and III. 

    

 
Phases II and III. 

Species n¹ Yield 
(%) 

Mean width 
(in.) 

Std. 
Dev.² 

Mean length 
 (in.) 

Std. 
Dev. 

Cherry 758 45 2.98 0.96 21.99 9.31 

Maple 639 43 3.12 1.14 23.45 10.30 

Red Oak 666 44 3.10 1.18 23.38 12.37 

Yellow-poplar 986 54 2.76 0.98 21.82 9.92 
¹ - n refers to number of shorts 
²- standard deviation 
 

Yields improved in Phases II and III for cherry, maple and yellow poplar as 

compared with Phase I, while red oak yield decreased from 48 to 44%. The 

average yeilds of cherry, maple and red oak produced similar results of about 

44%.  Yellow-poplar again yielded the highest volume of clear material at 54%. 

 The average sizes of the shorts varied, however.  Red oak produced the 

highest mean width of 3.10 inches and yellow-poplar had the lowest mean of 

2.76 inches.  The mean lengths of the species for Phases II and III did not vary 

greatly;  The Coefficient of Variance was only about 4%. Yellow-poplar produced 

the lowest mean lengths followed by cherry, red oak and maple. 

 Yellow-poplar yielded the smallest mean width and length; however, 

produced approximately 25 to 33% more shorts than the other three species 

investigated.   
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4.3 Uniform-Width Lumber 

After random-sized shorts were measured and analyzed, they were re-

ripped to create uniform-width shorts compatible with finger-jointing operations.  

Nine width-classes were used to re-salvage the material in an attempt to 

maximize recovery as described in section 3.2.2.  Shorts were then re-measured 

and provided the data needed to compute the yields of transforming rough 

lumber into uniform-width material.  Equation 7 was used to determine this yield.   

 

u    100                                               [7] 

 

Where:  

u (%) = Yield of uniform material from rough lumber; 

u = Area of uniform shorts; 

r = Area of rough lumber. 

 

 The following table describes the results from re-salvaging the random-

width material into uniform widths for all phases combined.   
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Table 4.5 Yield of uniform-width shorts recovered from 1,200 BF, 4/4 thickness 

rough lumber per species. 

 

 Uniform-Width Shorts 

Species n¹ Yield (%) Volume (BF) 

Cherry 969 37.5 449.6 

Maple 947 36.2 434.0 

Red Oak 999 42.1 505.5 

Yellow-poplar 1,335 44.7 536.9 
1 – number of shorts 

 

 The reduction in yields from random-width to uniform widths was 

calculated for each species.  The average yield loss was 4.1% for the four 

species.  Re-ripping cherry and red oak resulted in the least loss of material at 

approximately 3.5%.  This similarity in reduction coincides with the fact that both 

species were distributed similarly as represented by width histograms.  Re-

ripping yellow-poplar resulted in the greatest loss at 5.0% followed by maple at 

4.1%. 

 This may be explained by the high amount of narrow shorts less than 1.5 

inches that were not able to be included in the uniform-width data for yellow-

poplar.  Uniform-width shorts were wrapped in plastic to prevent moisture content 

changes and stored until they were finger-jointed.   
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4.4 Finished Panel Yield Determination 

 

 After shorts were prepared into uniform widths, a portion of the specimens 

were finger-jointed, moulded, and edge-glued into panels as described in Section 

3.3.  Based on the recovery results from these processes, a deterministic model 

was created to predict the yields of converting rough lumber into finished panels. 

 Random-width and length data from each phase was combined into one 

file for each species.  These databases contained approximately 1,000-1,500 

shorts per species.   

 This data was first manipulated to represent the conversion of random-

width shorts into uniform-width shorts.  These calculations were done by filtering 

the data into width-classes.  The actual lumber was re-ripped into nine different 

width-classes: 1.5”, 2.0”, 2.5”, 2.75”, 3.0”, 3.25”, 3.5”, 4.0”, and 4.5”.  By filtering 

the data into these width-classes, the dimensions and volumes of uniform-width 

shorts was determined.   

 Once uniform-width yields were determined for each species using nine-

width-classes, the data was filtered again using a fewer number of width-classes.  

Table 4.6 shows the number of width-classes and different widths used for this 

analysis.   
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Table 4.6 Number of width-classes and widths used to re-rip material.   

 

No. of Width-classes Widths Used 

9 1.5”, 2.0”, 2.5”, 2.75”, 3.0”, 3.25”, 3.5”, 4.0”, and 4.5” 

7 1.5”, 2.0”, 2.5”, 3.0”, 3.5”, 4.0”, and 4.5” 

5 2.0”, 2.5”, 3.0”, 3.5”, and 4.0” 

3 2.0”, 3.0”, and 4.0” 

 

 Yield differences were then compared to provide information about the 

benefits of utilizing different numbers of width-classes.  After uniform-width data 

was determined, additional volume losses were accounted for.  All pieces of 

lumber longer than 28” needed to be filtered to represent cross-cutting 

operations.  This resulted in the creation of two or more shorts and a loss of 0.25” 

in length due to saw kerf per cross-cut  

 Lumber wider than the highest width-class was analyzed and determined 

how to best re-rip to achieve the greatest yield (example: a 6” wide short could 

be ripped into one 2.75” wide short and one 3.0” short, thus total width loss would 

equal 0.25”; as opposed to ripping the 6” width into the 4.5” width-class and 

creating 1.5” width loss).   

 Performing these calculations provided the total volume of uniform-width, 

ready-to-finger-joint material. Length and width reductions were then determined 

for losses due to finger-jointing and moulding operations. 
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 The finger-jointing operations reduced only the length of the shorts.  The 

length reductions were determined from the actual data collected from finger-

jointed specimens.  A general formula was used to calculate length losses: 

 

                                                       [9] 

 

Where:  

  = Length loss (in.) 

  = number of shorts 

 = Trim cut loss (in.) (0.125”) 

 = Length of finger (in.) (0.405) 

 

Both horizontal and vertical finger-joint cutter-heads used the same length of 

finger; therefore few changes were necessary when simulating length losses for 

either of the two types of joints.  Vertical finger-jointing operations utilized a trim 

saw that squared shorts just before they were jointed.  Horizontal finger-jointing 

did not use a trim saw, however the cutter-head was set-up to remove slightly 

more than the length of the fingers, essentially performing the same objective as 

the trim saw.  This data provided the information needed to calculate the lengths 

of material after finger-jointing.  Dimension losses associated with surfacing 

operations were then calculated.  

 Width losses occurred when blanks were moulded in preparation for edge-

gluing.  From the actual process of surfacing blanks it was established that the 
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blanks would lose 0.25” total in width (0.125” on each edge).  With the total 

volume of finger-jointed, moulded lumber established, the volume of panels 

producible was determined.   

 The lengths of surfaced blanks were divided by the length of finished 

panels to determine the number of staves producible.  This was done by dividing 

the total length of a blank by the desired length of the panel plus losses in saw 

kerf resulting from cross-cutting. 

 

Example: If there were 300 linear ft of 3.0 in.  width material, the length 

was divided by 38.25” (panel length + saw kerf) to obtain the number of 

staves producible: 

Number of staves = 300 linear ft x 12 in. = 3,600 linear in. / 38.25 in. = 

94.1 

Thus, 94.1 staves may be produced from that width-class.  The 0.1 stave 

leftover should not be considered waste.  The area of the leftover stave 

may be calculated by multiplying 0.1 x 38.25 in. = 3.825 x 3.0 in. width = 

11.5 in². 

 

 This area should not be considered waste because in industrial operations 

the finger-joint operator has the capability of creating continuous lengths of 

material and would be able to utilize that extra length (Figure 4.3). 
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Figure 4.3 Example of usable excess length of material.   

 

 After the number of staves available was determined, steps were taken to 

calculate finished panel area.  The panels were created by edge-gluing the 

staves to reach the appropriate width.  Therefore, the number of staves required 

to create a panel depends on the width of the stave.  To determine the number of 

staves needed to create a finished panel, the width of the panel (26”) was divided 

by the width of the stave: 

 

Example: Number of staves needed = 26 in. width/3.0 in. width-class = 

8.66. 

So, a total of 9 staves are required to create one panel.  The amount of 

waste associated with excess width of staves can be calculated by 

multiplying 0.33 x 3.0 in. width x 38 in. length = 37.6 in². This area 

represents what excess will be trimmed off the edge of each panel 

produced at that width-class.  

 

Considerations should be taken to minimize this waste (Figure 4.4). 
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Figure 4.4 Example of excess wood after trimming to 26 in. width.   

 

 Some width-classes of staves produced less waste than others.  Table 4.7 

reports width-classes and corresponding waste associated with the trimming 

process. 
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Table 4.7 Excess wood material created by forming 26 in. wide panels.    

Width-Class 
(in.) 

Dressed Width 
(in.) 

No. Staves 
Needed 

Excess Width 
(in.) 

Area of Solid Wood 
Excess (sq.²) 

1.50 1.25 21 0.00 0.00 

2.00 1.75 15 0.00 0.00 

2.50 2.25 12 0.74 28.12 

2.75 2.50 11 1.25 47.50 

3.00 2.75 10 1.26 47.98 

3.25 3.00 9 0.74 28.12 

3.50 3.25 8 0.00 0.00 

4.00 3.75 7 0.01 0.48 

4.50 4.25 7 3.49 132.62 

 

 From Table 4.7, it is possible to see width-classes 1.50, 1.75, and 3.50 all 

result in less than 0.25 in. leftover in width, resulting in no solid wood material 

after trimming with a saw kerf of 0.25 in.  On the contrary, width-class 4.50 

results in a 3.49 in. wide strip of solid wood left over.  This material could be 

salvaged and reused assuming the trimming process created an edge ready for 

gluing.  Width-classes 2.50, 3.25, and 4.00 all resulted in solid wood strips that 

were less than 0.75 in. wide and are too narrow to be re-used. Therefore, based 

solely on yields, these width-classes should be avoided for the production of 26 

in. wide panels.  The width of the staves and width of the panels should be 

coordinated to minimize waste either by changing the width of the finished panel 

or altering the width of the staves.   

 Table 4.7 also provides the information necessary to determine the 

number of glue lines needed per panel by width-class.  The number of glue lines 
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is equal to one minus the number of staves needed.  This will affect the cost of 

glue as well as panel lay-up time and energy.  Width-class 1.50 requires 20 glue-

lines (~1.0” thickness x 38” length x 20 glue lines = 760 in²), whereas width-class 

4.5 will require only 6 glue lines (228 in²), about 1/3 the amount of glue.  The cost 

of glue is low relative to the overall cost of the operation, however the extra time 

involved in applying and handling the pieces will reduce productivity as well as 

increase raw material costs.    

 Finally, the total number of panels producible was determined by dividing 

the number of staves available by the number of staves needed to produce one 

panel: 

Example: We had 94, 3.0 in. width staves.  By dividing 94 (no. of staves) 

by 9 (no. of staves needed for one panel) = 10.4 

So, ten panels could be created from this width class.  Now this data can 

be added to the other width classes for that species to determine the total 

finished area of the species. 

 

The area of finished panels was used to determine the overall yield from 

rough lumber to finished product.  Equation 8 was used to calculate this yield. 
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f    100                                                  [8] 

 

Where:  

f (%) = Yield of finished panels from rough lumber; 

f = Area of finished panels; 

r = Area of rough lumber. 

 

From these data transformations the total finished area for each species was 

predicted. The results from these procedures may be seen in Figure 4.5 

represented as yield (%) from rough lumber to finished panel.   

 

 

Figure 4.5 Yield of finished panels produced from rough lumber by species and 

number of width-classes used.    
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 Yellow-poplar yielded the highest area followed by red oak, cherry and 

maple.  Cherry and maple both produced similar yields. Based on Figure 4.4 it is 

possible to assess the impact number of width-classes has on yields.   

 Each species reacted slightly differently from width-class to width-class.  

All species experienced increases in yield when moving from 3-width-classes to 

five width-classes.  Yellow-poplar increased the greatest percentage during this 

period.  Cherry, maple and red oak all increased similarly.  Switching from 5-

width-classes to 7-width-classes, maple, red oak, and yellow-poplar experienced 

similar increases, however cherry saw little improvement in yield.  In this case it 

would not make sense to salvage the cherry with 7-width-classes.  Maple had 

little increase in yield when moving from 7-width-classes to 9-width-classes.  

Cherry, red oak and yellow-poplar all increased similarly in this class group.   

 This predicted yield data can be used to compare yield increases with the 

corresponding cost increases associated with utilizing greater numbers of width-

classes. Utilizing more width-classes will result in additional material handling 

and storage costs.  This is discussed in the following section.   

 

 

4.5 Costs-Benefit Analysis 

 

The economic profitability of the production processes was estimated 

using a simple cost-benefit analysis.  To accomplish this, the costs of producing 

finger-jointed, edge-glued hardwood panels were compared to the current 
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estimated value of the finger-jointed, edge-glued panels.  Total costs included 

simply operational costs and raw material costs.   

 

 

4.5.1 Costs 

 

4.5.1.1 Raw Material Costs 

 

Current market prices for 4/4 thickness, No. 3A Common lumber were 

obtained from the September 6, 2008 issue of the Hardwood Market Report.  

Because the Hardwood Market Report does not give values for all kiln-dried No. 

3A Common species of lumber, kiln drying costs were estimated and added to 

the cost (Table 4.8).   

 

Table 4.8 Costs of No. 3A Common lumber per 1000 BF. 

 

 
Species No. 3A Common Kiln-Drying 

Costs Total Lumber Costs 

Cherry $380 $100 $480 

Soft Maple $220 $100 $320 

Red Oak $415 $100 $515 

Yellow-Poplar $240 $100 $340 
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Glue costs were then added to the raw material cost.  Costs of glue for edge-

glued panel manufacturing were based on a previous study by Weidenbeck 

(1994).  The glue cost was increased for inflation and added to the raw material 

cost and operating costs to calculate total costs of processing 1000 BF of rough 

lumber.  Glue costs for finger-jointing were included in the operating costs.   

 

 

4.5.1.2 Operating Costs 

 

Operating costs were estimated using a combination of operating costs 

cited in Araman and Hansen (1983) and Weidenbeck (1994).  An operating cost 

per 1000 BF was established from these two studies and adjusted for inflation. 

These estimates reflected operating costs at a rough mill manufacturing 

dimension lumber and creating edge-glued (non- finger-jointed) panels.  Costs 

also were adjusted to account for the use of low-grade lumber for this project.  

Steel et al., (1999) investigated the effect lumber grade had on productivity in a 

rough mill.  The results indicated that changes in lumber grade significantly affect 

productivity.  Therefore the costs cited in the two studies were increased to 

estimate the increased costs of processing low-grade lumber.   

The addition of finger-jointing operations was roughly estimated to 

increase costs by a maximum of 25% of the total operational costs.  This is 

based on the costs to produce solid wood panel manufacturing costs derived 

from the previously stated literature and the addition of process related to finger-
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jointing operations.  The previously stated literature included operational costs for 

salvaging rough lumber by ripping into uniform widths and then cross-cutting into 

a range of lengths desirable for edge-glued panels.  The strips of lumber were 

then sorted and edge-glued to create panels, trimmed and planed to final 

dimensions.  For the proposed process of finger-jointing certain additional steps 

need to be added.   

First, strips are cross-cut at random lengths and then finger-jointed to 

create long stock.  Finger-jointed material must then be moulded on four sides in 

order to be properly edge-glued.  After edge-gluing, the material is just the same 

as in the previous studies.  The utilization of many width-classes requires an 

increase in operation costs because storage and handling issues will become 

more complicated. The actual magnitude of this increase on operating costs is 

unknown. Therefore, the volume of material that would be recovered using 5-

width-classes was used for the benefit section.  This is due to the fact that 

operation costs cited in the Wiedenbeck (1994) study were based on a process 

that utilized many different widths and the utilization of 5-width-classes should 

not greatly affect the process.   

Based on this information, an operational cost per 1,000 BF was 

estimated.  The total operating cost, including finger-jointing costs and inflation, 

was estimated at $1,130 per 1000 BF.   

  



 

59 
 

4.5.1.3 Total Costs 

Total costs were calculated for each species assuming by adding 

operational costs to lumber costs.  The total cost per species is located in Table 

4.9. 

 

Table 4.9 Total costs to process 1,000 BF rough lumber into finished panels. 

Species Total Cost 

Cherry $1,796.43 

Maple $1,670.35 

Red Oak $1,840.59 

Yellow-poplar $1,626.51 

 

 

4.5.2 Benefits 

 

The value of the finished panels was calculated for each species and for a 

number of width-classes based on the yield determinations described in section 

4.3. Value was determined by multiplying the area of finished panels by the 

current price of edge-glued panels.   

Prices were obtained from a sample of hardwood edge-glued panels 

available in the U.S. and abroad.  Also, prices are included from previous studies 

however; these values were much lower than those currently found on the 

market.  The price/ft2 of common edge-glued panels of each species is located in 
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Table 4.10 with the highlighted areas representing estimated prices for the 

respective species.   

 
Table 4.10 Value of finished panels produced from 1,000 BF rough lumber per 

species.  

  ($) Price per ft² 

Species Area (ft²) $10.00 $8.00 $6.00 $4.00 $3.00 

cherry 376 $3,758 N/A N/A N/A N/A 

maple 365 N/A N/A $2,193 N/A N/A 

red oak 422 N/A $3,373 N/A N/A N/A 

yellow-poplar 448 N/A N/A N/A N/A $1,345 

 

 The area of finished panels produced by salvaging 1,000 BF rough lumber 

for each species, at each set of width-classes, was multiplied by the price/ft2 to 

determine the value.  As the number of width-classes increased, so did the yield 

and corresponding value.  Table 4.11 represents the value of processing 1000 

BF rough lumber for each species, utilizing four sets of width-classes. 
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Table 4.11 Value of finished panel area per 1,000 BF by species and number of 

width-classes.  

 

 Number of Width-classes 

Species 3 5 7 9 

Cherry¹ $3,279 $3,474 $3,496 $3,758 

Maple² $1,884 $1,982 $2,143 $2,193 

Red Oak³ $3,006 $3,146 $3,314 $3,373 

Yellow-poplar4 $1,142 $1,232 $1,314 $1,345 

1- Value based on $10.00/ft² 
2- Value based on $6.00/ft² 
3 -Value based on $8.00/ft² 
4 -Value based on $3.00/ft² 
 

Based on these values, profit was estimated.  It should be noted that due 

to the variability of the values the results should be interpreted cautiously. 

 

 

4.5.3 Profit 

 

Profits were estimated by subtracting the total costs by the value of 

finished panels.  The results of profit may be seen in Table 4.12.   
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Table 4.12 Profit from processing 1,000 BF of rough lumber based on recovered 

yields by species and number of width-classes used.   

 

 Number of Width-classes 

Species 3 5 7 9 

Cherry $273 $468 $490 $752 

Maple $148 $246 $407 $457 

Red Oak $251 $391 $559 $618 

Yellow-poplar $32 $122 $204 $235 

 

Profits were highest for cherry and red oak and lowest for yellow-poplar.  

As noted in the costs section, additional costs associated with utilizing more 

width-classes were not factored into the calculations.   

 

 

4.6 Mechanical Properties 

 

 Static bending tests were performed to evaluate the mechanical properties 

of the finger-jointed panels.  Modulus of elasticity (MOE) and modulus of rupture 

(MOR) were determined by testing specimens to failure in bending. Table 4.13 

contains the summary results of MOE of the test specimens. 
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Table 4.13 Stiffness (MOE x 106 psi) results of finger-jointed and control 

specimens.   

Sample Codes n1 Mean (psi x106) Std. 
Dev.² Min. (psi x106) Max. (psi x106) 

Cherry Horizontal Joint 10 1.34 0.10 1.18 1.46 

Cherry Vertical Joint 10 1.47 0.19 1.29 1.96 

Cherry Solid 10 1.58 0.17 1.43 1.74 

Maple Horizontal Joint 10 1.35 0.14 1.14 1.59 

Maple Vertical Joint 10 1.37 0.21 1.06 1.73 

Maple Solid 10 1.62 0.25 1.22 1.91 

Oak Horizontal Joint 10 1.62 0.18 1.25 1.84 

Oak Vertical Joint 10 1.68 0.20 1.37 2.02 

Oak Solid 10 1.98 0.35 1.34 2.60 
1 - sample size 
²- standard deviation 
 

 Horizontally finger-jointed lumber exhibited the lowest MOE of all 

specimens tested.  Solid wood specimens demonstrated the highest MOE values 

as was expected.  MOE values were compared using One-way ANOVA as 

described in the statistical methods section. The results of these comparisons 

are located in Appendix III.  Figure 4.6 shows some examples of failure for the 

two different finger-joint orientations. 
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a.    

 

b.   

Figure 4.6 Typical failure in bending; horizontally finger-jointed lumber (a), and 

vertically jointed lumber (b). 

 

Table 4.14 provides the results of MOR determination.  All finger-jointed 

specimens exhibited significantly lower MOR values compared to solid wood. 
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Table 4.14 Bending strength (MOR, psi) results of finger-jointed and control 
specimens.   

Sample Codes n1 Mean 
(psi) 

Std. 
Dev.² 

Min. 
(psi) 

Max. 
(psi) 

Cherry Horizontal Joint 10 7467 1554 5199 10664 

Cherry Vertical Joint 10 10472 1318 9066 13034 

Cherry Solid 10 13008 2821 11256 16263 

Maple Horizontal Joint 10 8623 1201 5791 10129 

Maple Vertical Joint 10 10496 1950 6677 13069 

Maple Solid 10 14869 3262 10173 18471 

Oak Horizontal Joint 10 8511 1687 6697 11944 

Oak Vertical Joint 10 8931 2055 6099 12984 

Oak Solid 10 19261 3163 13652 26389 
1- sample size 
²- standard deviation 
 

Horizontally finger-jointed specimens had the lowest mean values of all 

specimens tested.  This could be partially due to the reduced surface area of 

horizontal fingers compared to vertical fingers.  

 MOR of vertically finger-jointed boards was statistically higher than 

horizontally jointed lumber for cherry and maple species.  There were no 

significant differences among oak finger-jointed specimens.  MOR of solid wood 

was significantly higher than both forms of finger-jointed specimens.  Horizontally 

finger-jointed lumber performed worse than vertically oriented joints.   

 This could be caused by two different factors.  First, vertically oriented 

finger-joints were produced using the machinery available at Weinig Inc. by 

experienced personnel.  This properly set-up, automated machine should have 

produced more reliable and consistent jointing quality compared to the manually 

operated set-up used to produce horizontal finger-joints.  Also, the geometry for 
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the cutter-heads differed in some aspects that could affect mechanical 

properties.  

 Vertical finger-joints provided greater surface area for bonding than the 

horizontally oriented finger-jointed lumber.  Surface areas were computed for 

both types of finger-joint configurations for 2.75 inch wide test specimens.  

Horizontal-joints provided approximately 4.2 cm² of surface area to be bonded, 

while vertical-joints provided more than double the surface area of approximately 

9.8 cm².  Figures 4.7 and 4.8 show typical failure horizontally and vertically 

jointed lumber.   

 

Figure 4.7 20% wood-failure of horizontally finger-jointed red oak test specimen. 
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Figure 4.8 90% wood-failure of vertically finger-jointed cherry test specimen. 

 

 In figure 4.7, a horizontally finger-jointed oak specimen has mostly failed 

in the glue-line, which was common for oak species.  Figure 4.8 shows a cherry 

specimen with a high percentage of wood failure.   

 

 

4.7 Dimensional stability 

 

 Warp measurement information collected was analyzed and compared to 

determine if one species or joint configuration performed better when subjected 

to environmental changes.  A relationship was attempted to be established 

between the width of the staves that made up the panel and the amount of cup 
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witnessed.  The hypothesis was that the narrower the staves, the less amount of 

warping would occur.  However, no significant differences could be established 

due to the high variation of warp and small sample size.   

 

Figure 4.10 Example of severe cup in cherry, edge-glued panel.   

 Because the length of the panels was 38 inches, a minimum of 2 and 

maximum of 3 individual shorts made up each stave.  For a 1.50 inch width-

class, 21 staves were needed to equal the 26 inch width; therefore a total of 63 

individual shorts could go into creating one standard-size panel.  As a result of 

this, it is not feasible to orient the ring direction of the staves to control warp as 

may be done in solid wood panel manufacturing.  Ring orientation can be 

controlled prior to finger-jointing process however, and there are many benefits to 

doing so.  The downfall is the increased sorting, handling and storing 

requirements associated with this.  This is discussed further in the following 

section. 

 Also visible in Figure 4.10, are splits occurring along the glue lines at the 

end of panels.  Splits along glue lines occurred among many of the panels after 

subjected to environmental changes. This was a result more of machining error 

and had no relation to ring orientation or stave width.  
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4.8 Machining and Edge-glued Panel Manufacturing Concerns 

 Splits occurred along the glue line of approximately 30% of panels largely 

due to machining error during the moulding process (Figure 4.11).   

 

Figure 4.11 Example of end split in finished cherry panel caused by snipe.   

 

 The difference in thickness highlighted in the above figure is referred to as 

snipe.  Snipe occurs as a result of improperly maintained or adjusted machinery. 

This can result in non-parallel edges resulting in uneven glue spread and 

pressure (Forbes et al. 1997).  This difference may not be visible to the eye and 

therefore is very difficult to detect.  Machinery must be accurately calibrated to 

prevent this and must be precisely checked with calipers to ensure no differences 

exist.  The inclusion of sniped lumber in the production of edge-glued panels will 

result in major quality control concerns.   
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 For this project sniped ends could have been removed when detected by 

cross-cutting to remove the defected ends of blanks however, this would have 

resulted in significant losses of finished product.  Because the blanks we were 

moulding were relatively short a significant number of blanks contained sniped 

ends. 

 Forbes et al., (1997) highlighted the importance of properly machining 

lumber before edge-gluing.  The edges of lumber are critically important in order 

to obtain quality edge-glued panels:  

• Edges must be surfaced smoothly and straight from end to end, 

• Edges must be parallel, 

• Edges must not be burnt from sawing, 

• And edges must be free of loose fibers. 

 

 Saw blades and cutter knives must be properly sharpened to prevent 

burning or tearout.  Lumber that is visibly burnt is obviously not suitable for edge-

gluing processes as glue will not adhere properly to the surface.  In addition, 

wood that is not burnt but just burnished will also not be suitable for gluing.  

Burnishing may be hard to identify.  The sawn surface may be lustrous but does 

not appear to be burned (Forbes et al. 2003).  Also, dull knives may result in 

fuzzy or raised grain which also complicates edge-gluing.    

 Once quality surfaced material is obtained, material must be edge-glued 

using the correct magnitude of pressure (Table 4.15).  In general, the denser the 

species of wood, the more pressure needs to be applied.   
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Table 4.15 Required clamping pressure for obtaining quality edge-glued joints for 

various species.   

 

Density Examples of Species Required Clamping 
Pressure(psi) 

High ash, hard maple, oak 200-250 

Medium cherry, soft maple, 
yellow-poplar 150-200 

Low basswood, fir, pine 100-150 

Source: River, 1991  

 Another major concern regarding the manufacture of edge-glued panels is 

moisture content.  It is critical that all staves that make up a panel are of equal 

moisture content.  Mitchell et al., (2003) discussed this issue in detail.  Even 

small changes in moisture content can result in problems with finished panels.  If 

panels are produced and machined to finished dimension with constituent 

material of varying MC, the panel will appear to be uniform until the panel has a 

chance to fully equilibrate.  After equilibration, panels will change dimensions 

resulting in inferior panels.   

 Moisture content must be properly maintained in the rough mill to ensure 

properly dimensioned panels.  Because wood shrinks and swells near the ends 

and surface, small defects can occur quickly between the time the blanks are 

surfaced and the time they are edge-glued.  This is especially true in winter when 

the relative humidity and EMC may be very low.   

 Finger-jointed, edge-glued panels create more complications in this regard 

because, as noted before, a panel could be made up from as many as 63 pieces 
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of lumber.  These pieces certainly come from different parts of a tree and 

different trees, resulting in differences in how the individual pieces react to 

moisture content.  The ring orientation determines how a panel will shrink/sell as 

well as appear.  This is where sorting of ring orientation becomes a valuable 

process.  The combination of color matching and grain matching can greatly 

increase the aesthetics as well as improve the quality of panels.   

 Color matching software exists to aid in the sorting and production of 

finger-jointed blanks.   This is a relatively complex material handling and sorting 

process, where the many small shorts need to be efficiently sorted by color and 

ring orientation before finger-jointing.  The benefits are numerous, however.   

 The appearance of flat grained lumber varies widely as compared to 

vertically oriented lumber. Ring orientation can play a major role in finishing 

panels because flat grained lumber takes stains and finishes differently than 

quarter-sawn lumber (Jourdain, 1999). If a panel consists of many different 

individual pieces as in this study, the appearance of the panel will be dictated by 

the worst looking piece.  For example if the panel consists of all quarter-sawn 

pieces except one flat-grain, the finishing and appearance will be only as good as 

the one flat-grained piece.   Therefore, much care must be taken to produce 

visually appealing panels.  Based on this fact, lower value lumber, such as 

yellow-poplar, may not be suitable for such processes.  Recent advancements 

have been made in scanning technologies to automate color sorting and grain 

matching and will help to improve the efficiency of these processes. 
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CHAPTER 5  
 

SUMMARY AND CONCLUSIONS  

 

 Methods to improve recovery of low-quality lumber were investigated.  

4,800 BF of 4/4 thickness, low-grade (3AC) lumber was salvaged to obtain 

maximum yield based on small cutting-sizes.  The resultant material was 

measured and used to determine yields and size distribution of each species.  

Material was then finger-jointed and edge-glued into panels for use in the 

furniture or cabinet industries.  Mechanical properties of the finger-jointed lumber 

were evaluated.  The yields of finished products were determined for each 

species. Also, a cost-benefit analysis was performed to evaluate the feasibility of 

the process.   

 Based on the findings of this research, the following conclusions may be 

drawn: 

• Yellow-poplar lumber produced the highest yield of usable wood of the 

species investigated; followed by red oak, cherry and soft maple. 

• Both horizontal and vertical finger-jointing methods provided sufficient 

mechanical strength for their intended end-use.  

• The ratio of converting No. 3A Common lumber into finger-jointed, edge-

glued panels was approximately 38% for yellow-poplar, 35% for red oak, 

and approximately 31% for cherry and soft maple. 

• Based on the current value of edge-glued panels, cherry and red oak were 

the most profitable species to process.   
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The results should be interpreted with care as they specific to the species 

investigated and may not be universally applied to all lumber.  A more in-depth 

economic analysis should be undertaken to better determine the feasibility of the 

processes.  As the supply of quality timber continues to become scarcer, market 

demand for finger-jointed, edge-glued panels may increase.   
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Appendices 
 
Appendix I. Results of One-Way ANOVA for size distributions of clear 
shorts for all species. 
 
 

One Way Analysis of Variance Tuesday, August 12, 2008, 11:17:02 PM 

 

Data source: Data 1 in All Species widths 

 

Normality Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on RanksTuesday, August 12, 2008, 11:17:02 PM 

 

Data source: Data 1 in All species widths 

 

Group N  Missing  Median    25%      75%     
Cherry-width 1026 0 2.875 2.125 3.500  

Maple-width 1039 0 2.625 2.000 3.500  

Oak-width 1051 0 3.000 2.250 3.750  

Yellow-poplar-width 1457 0 2.625 2.125 3.125  

 

H = 91.122 with 3 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be 

expected by chance; there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   
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Oak-width vs Yellow-poplar-width 476.313 8.915 Yes   

Oak-width vs Maple-width 393.953 6.821 Yes   

Oak-width vs Cherry-width 199.109 3.436 Yes   

Cherry-width vs Yellow-poplar-width 277.204 5.152 Yes   

Cherry-width vs Maple-width 194.843 3.353 Yes   

Maple-width vs Yellow-poplar-width 82.360 1.536 No   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 

 

One Way Analysis of Variance Tuesday, October 07, 2008, 11:25:02 PM 

 

Data source: Data 1 in All Species lengths 

 

Normality Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on RanksTuesday, October 07, 2008, 11:25:02 PM 

 

Data source: Data 1 in All Species lengths 

 

Group N  Missing  Median    25%      75%     
Cherry-length 1026 0 20.063 14.625 28.000  

Maple-length 1039 0 19.625 15.000 27.000  

Oak-length 1051 0 19.875 14.281 28.344  

Yellow-poplar-length 1457 0 17.750 13.750 25.031  

 

H = 45.344 with 3 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be 

expected by chance; there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 
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All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   
Cherry-length vs Yellow-poplar-length 313.227 5.821 Yes   

Cherry-length vs Oak-length 54.496 0.941 No   

Cherry-length vs Maple-length 47.914 0.825 No   

Maple-length vs Yellow-poplar-length 265.313 4.949 Yes   

Maple-length vs Oak-length 6.582 0.114 No   

Oak-length vs Yellow-poplar-length 258.731 4.842 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 

 

 

 

One Way Analysis of Variance Tuesday, October 07, 2008, 11:27:06 PM 

 

Data source: Data 1 in All Species volumes 

 

Normality Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on RanksTuesday, October 07, 2008, 11:27:06 PM 

 

Data source: Data 1 in All Species volumes 

 

Group N  Missing  Median    25%      75%     
Cherry-volume 1026 0 56.820 37.875 84.813  

Maple-volume 1039 0 52.938 32.121 83.672  

Oak-volume 1051 0 58.188 37.992 90.012  

Yellow-poplar-volume 1457 0 46.219 31.492 70.441  

 

H = 86.186 with 3 degrees of freedom.  (P = <0.001) 
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The differences in the median values among the treatment groups are greater than would be 

expected by chance; there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   
Oak-volume vs Yellow-poplar-volume 446.364 8.354 Yes   

Oak-volume vs Maple-volume 226.716 3.925 Yes   

Oak-volume vs Cherry-volume 62.869 1.085 No   

Cherry-volume vs Yellow-poplar-volume383.495 7.127 Yes   

Cherry-volume vs Maple-volume 163.846 2.820 Yes   

Maple-volume vs Yellow-poplar-volume219.649 4.097 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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Appendix II. Results of One-Way ANOVA for Mechanical Testing 
 

One Way Analysis of Variance Monday, December 22, 2008, 11:30:51 AM 

 

Data source: Data 1 in all FJ mechanical props 

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Passed (P = 0.930) 

 

Group Name  N  Missing Mean Std Dev SEM  

CV-mor 10 0 10472.335 1318.346 416.898  

CH-mor 10 0 7466.529 1553.607 491.294  

CS-mor 10 0 12337.382 1775.930 561.598  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 2 120794944.955 60397472.478 24.802 <0.001  

Residual 27 65750910.226 2435218.897    

Total 29 186545855.181     

 

The differences in the mean values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = <0.001). 

 

Power of performed test with alpha = 0.050: 1.000 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor:  

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

CS-mor vs. CH-mor 4870.853 6.979 <0.001 0.017 Yes  

CV-mor vs. CH-mor 3005.806 4.307 <0.001 0.025 Yes  

CS-mor vs. CV-mor 1865.047 2.672 0.013 0.050 Yes  

 

 

One Way Analysis of Variance Monday, December 22, 2008, 11:32:09 AM 
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Data source: Data 1 in all FJ mechanical props 

 

Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Passed (P = 0.594) 

 

Group Name  N  Missing Mean Std Dev SEM  

CV-moe 10 0 1.475 0.194 0.0613  

CH-moe 10 0 1.336 0.0956 0.0302  

CS-moe 10 0 1.618 0.135 0.0428  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 2 0.398 0.199 9.176 <0.001  

Residual 27 0.585 0.0217    

Total 29 0.983     

 

The differences in the mean values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = <0.001). 

 

Power of performed test with alpha = 0.050: 0.948 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor:  

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

CS-moe vs. CH-moe 0.282 4.284 <0.001 0.017 Yes  

CS-moe vs. CV-moe 0.143 2.174 0.039 0.025 Yes  

CV-moe vs. CH-moe 0.139 2.110 0.044 0.050 Yes  

 

 

One Way Analysis of Variance Monday, December 22, 2008, 11:34:58 AM 

 

Data source: Data 1 in all FJ mechanical props 
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Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Failed (P = 0.002) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Monday, December 22, 2008, 11:34:58 AM 

 

Data source: Data 1 in all FJ mechanical props 

 

Group N  Missing  Median    25%      75%     

MV-mor 10 0 10533.182 9385.687 11812.467  

MH-mor 10 0 8581.974 8382.873 9538.260  

MS-mor 10 0 15377.295 11358.276 17800.853  

 

H = 18.041 with 2 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

MS-mor vs MH-mor 16.700 4.242 Yes   

MS-mor vs MV-mor 9.100 2.311 No   

MV-mor vs MH-mor 7.600 1.930 No   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 

One Way Analysis of Variance Monday, December 22, 2008, 11:44:06 AM 

 

Data source: Data 1 in all FJ mechanical props 
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Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Passed (P = 0.221) 

 

Group Name  N  Missing Mean Std Dev SEM  

MV-moe 10 0 1.367 0.210 0.0664  

MH-moe 10 0 1.349 0.140 0.0443  

MS-moe 10 0 1.618 0.246 0.0777  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 2 0.453 0.226 5.473 0.010  

Residual 27 1.117 0.0414    

Total 29 1.570     

 

The differences in the mean values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = 0.010). 

 

Power of performed test with alpha = 0.050: 0.720 

 

The power of the performed test (0.720) is below the desired power of 0.800. 

You should interpret the negative findings cautiously. 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor:  

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

MS-moe vs. MH-moe 0.269 2.957 0.006 0.017 Yes  

MS-moe vs. MV-moe 0.251 2.764 0.010 0.025 Yes  

MV-moe vs. MH-moe 0.0176 0.193 0.848 0.050 No  

 

 

One Way Analysis of Variance Monday, December 22, 2008, 11:37:10 AM 

 

Data source: Data 1 in all FJ mechanical props 
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Normality Test: Passed (P > 0.050) 

 

Equal Variance Test: Passed (P = 0.780) 

 

Group Name  N  Missing Mean Std Dev SEM  

OV-mor 10 0 8930.983 2055.179 649.905  

OH-mor 10 0 8510.788 1687.243 533.553  

OS-mor 10 0 19261.210 3162.563 1000.090  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 2 741539148.458 370769574.229 65.153 <0.001  

Residual 27 153651212.379 5690785.644    

Total 29 895190360.836     

 

The differences in the mean values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = <0.001). 

 

Power of performed test with alpha = 0.050: 1.000 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor:  

Comparison Diff of Means t Unadjusted P Critical Level Significant?

  

OS-mor vs. OH-mor 10750.423 10.077 <0.001 0.017 Yes  

OS-mor vs. OV-mor 10330.227 9.683 <0.001 0.025 Yes  

OV-mor vs. OH-mor 420.196 0.394 0.697 0.050 No  

 

 

One Way Analysis of Variance Monday, December 22, 2008, 11:38:06 AM 

 

Data source: Data 1 in all FJ mechanical props 

 

Normality Test: Passed (P > 0.050) 
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Equal Variance Test: Passed (P = 0.597) 

 

Group Name  N  Missing Mean Std Dev SEM  

OV-moe 10 0 1.684 0.196 0.0621  

OH-moe 10 0 1.615 0.185 0.0584  

OS-moe 10 0 1.983 0.354 0.112  

 

Source of Variation  DF   SS   MS    F    P   

Between Groups 2 0.765 0.383 5.792 0.008  

Residual 27 1.784 0.0661    

Total 29 2.549     

 

The differences in the mean values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = 0.008). 

 

Power of performed test with alpha = 0.050: 0.753 

 

The power of the performed test (0.753) is below the desired power of 0.800. 

You should interpret the negative findings cautiously. 

 

 

All Pairwise Multiple Comparison Procedures (Holm-Sidak method): 

Overall significance level = 0.05 

 

Comparisons for factor:  

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

OS-moe vs. OH-moe 0.368 3.202 0.003 0.017 Yes  

OS-moe vs. OV-moe 0.299 2.601 0.015 0.025 Yes  

OV-moe vs. OH-moe 0.0690 0.600 0.553 0.050 No  
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Appendix III. Results of One-Way ANOVA for ‘shorts’ size distribution 
 
One Way Analysis of Variance Saturday, July 12, 2008, 8:17:36 PM 

 

Data source: Data 1 in All species 

 

Normality Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Saturday, July 12, 2008, 8:17:36 PM 

 

Data source: Data 1 in All species 

 

Group N  Missing  Median    25%      75%     

Cherry-width 1026 0 2.875 2.125 3.500  

Maple-width 1039 0 2.625 2.000 3.500  

Oak-width 1051 0 3.000 2.250 3.750  

Yellow-poplar-width1457 0 2.625 2.125 3.125  

 

H = 91.122 with 3 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

Oak-width vs Yellow-poplar-width 476.313 8.915 Yes   

Oak-width vs Maple-width 393.953 6.821 Yes   

Oak-width vs Cherry-width 199.109 3.436 Yes   

Cherry-width vs Yellow-poplar-width 277.204 5.152 Yes   

Cherry-width vs Maple-width 194.843 3.353 Yes   
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Maple-width vs Yellow-poplar-width 82.360 1.536 No   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 

 

 

One Way Analysis of Variance Saturday, July 12, 2008, 8:18:06 PM 

 

Data source: Data 1 in All species 

 

Normality Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Saturday, July 12, 2008, 8:18:06 PM 

 

Data source: Data 1 in All species 

 

Group N  Missing  Median    25%      75%     

Cherry-length 1026 0 20.063 14.625 28.000  

Maple-length 1039 0 19.625 15.000 27.000  

Oak-length 1051 0 19.875 14.281 28.344  

Yellow-poplar-length1457 0 17.750 13.750 25.031  

 

H = 45.344 with 3 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 

 

 

All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   
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Cherry-length vs Yellow-poplar-length 313.227 5.821 Yes   

Cherry-length vs Oak-length 54.496 0.941 No   

Cherry-length vs Maple-length 47.914 0.825 Do Not Test   

Maple-length vs Yellow-poplar-length 265.313 4.949 Yes   

Maple-length vs Oak-length 6.582 0.114 Do Not Test   

Oak-length vs Yellow-poplar-length 258.731 4.842 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 

 

 

One Way Analysis of Variance Saturday, July 12, 2008, 8:18:29 PM 

 

Data source: Data 1 in All species 

 

Normality Test: Failed (P = <0.001) 

 

 

Test execution ended by user request, ANOVA on Ranks begun 

 

Kruskal-Wallis One Way Analysis of Variance on Ranks Saturday, July 12, 2008, 8:18:29 PM 

 

Data source: Data 1 in All species 

 

Group N  Missing  Median    25%      75%     

Cherry-volume 1026 0 56.820 37.875 84.813  

Maple-volume 1039 0 52.938 32.121 83.672  

Oak-volume 1051 0 58.188 37.992 90.012  

Yellow-poplar-volume 1457 0 46.219 31.492 70.441  

 

H = 86.186 with 3 degrees of freedom.  (P = <0.001) 

 

The differences in the median values among the treatment groups are greater than would be expected by 

chance; there is a statistically significant difference  (P = <0.001) 

 

To isolate the group or groups that differ from the others use a multiple comparison procedure. 
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All Pairwise Multiple Comparison Procedures (Dunn's Method) : 

 

Comparison Diff of Ranks Q P<0.05   

Oak-volume vs Yellow-poplar-volume 446.364 8.354 Yes   

Oak-volume vs Maple-volume 226.716 3.925 Yes   

Oak-volume vs Cherry-volume 62.869 1.085 No   

Cherry-volume vs Yellow-poplar-volume 383.495 7.127 Yes   

Cherry-volume vs Maple-volume 163.846 2.820 Yes   

Maple-volume vs Yellow-poplar-volume 219.649 4.097 Yes   

 

 

Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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