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ABSTRACT

Covariance Expressions for Eigenvalue and Eigenvector Problems

Andrew J. Liounis

There are a number of important scientific and engineering problems whose solutions take the form
of an eigenvalue–eigenvector problem. Some notable examples include solutions to linear systems
of ordinary differential equations, controllability of linear systems, finite element analysis, chemical
kinetics, fitting ellipses to noisy data, and optimal estimation of attitude from unit vectors. In many
of these problems, having knowledge of the eigenvalue and eigenvector Jacobians is either necessary
or is nearly as important as having the solution itself. For instance, Jacobians are necessary to find
the uncertainty in a computed eigenvalue or eigenvector estimate. This uncertainty, which is usually
represented as a covariance matrix, has been well studied for problems similar to the eigenvalue and
eigenvector problem, such as singular value decomposition. There has been substantially less research
on the covariance of an optimal estimate originating from an eigenvalue-eigenvector problem.

In this thesis we develop two general expressions for the Jacobians of eigenvalues and eigenvectors
with respect to the elements of their parent matrix. The expressions developed make use of only the
parent matrix and the eigenvalue and eigenvector pair under consideration. In addition, they are ap-
plicable to any general matrix (including complex valued matrices, eigenvalues, and eigenvectors) as
long as the eigenvalues are simple. Alongside this, we develop expressions that determine the uncer-
tainty in a vector estimate obtained from an eigenvalue-eigenvector problem given the uncertainty of
the terms of the matrix. The Jacobian expressions developed are numerically validated with forward
finite, differencing and the covariance expressions are validated using Monte Carlo analysis. Finally,
the results from this work are used to determine covariance expressions for a variety of estimation
problem examples and are also applied to the design of a dynamical system.
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Chapter 1

Introduction

1.1 The History of Eigenvalues and Eigenvectors

Much like the rest of mathematics, the algebraic eigenvalue problem developed in reverse of how it

is taught in schools today. It first arose out of the study of discrete mechanical systems in the early

18th century. It was not until much later that the eigenvalue problem began to be considered a topic

of linear algebra.1

In the early part of the 18th century, Bernouli was the first to discover that vibration problems

would have specific modes and values corresponding with these modes that would govern the steady

state solutions. Unfortunately, Bernouli never recognized where these values/modes come from

(which we now know to be the eigenvalues and eigenvectors of the coefficients of the linear differential

equations governing the system). Euler furthered the work by Bernouli for the vibrations of string

instruments, but Euler still did not fully recognize that he was working with differential equations [1].

In the latter half of the 18th century, the eigenvalue problem began to appear during the solution

of systems of linear ordinary differential equations (ODEs) with constant coefficients.2 In an attempt

to solve the differential equations governing a massless string swinging with three finite masses

attached at various points, D’Alembert happened upon the standard eigenvalue problem and realized

that the solution of the ordinary differential equation governing the motion of the system involved

the exponential of the eigenvalues of the coefficient matrix (in modern linear algebra speak) [4–6].

Lagrange then began to expand upon D’Alembert’s work and extend it to the solutions of other

1This discussion closely follows that of [1], [2], and [3].
2It was not referred to as the eigenvalue problem until much later, and the idea of presenting the coefficients in a

matrix form had not been thought of yet. Despite this the form and solution of the eigenvalue problem was certainly
present and discovered around this time as we will discuss.
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differential equations. Beginning to focus on how the solution to the system of linear ODEs changes

as the eigenvalues change while mainly being concerned with the mechanical stability of the system,3

he discovered a better way to find the eigenvalues [7] when recognizing that the coefficient matrix

was symmetric. Lagrange then turned his attention to celestial mechanics and applied his technique

to determine solutions for the change in various orbital parameters over time [8].

Lagrange’s solution form for systems of linear equations was also extended by Laplace to orbital

elements (although they considered different elements) [9,10]. Lagrange and Laplace both continued

their work in this area off and on, with Lagrange being one of the first to encounter the generalized

eigenvalue problem [8] and Laplace being one of the first to realize that properties of the eigenvalues

could be deduced from the symmetry of the coefficient matrix [11].

The next big step in the eigenvalue and eigenvector problem was the study of eigenvectors.

In [12], Euler determined that any rigid body would rotate about one of its principle axes. In an

attempt to explain this further, Lagrange began to study this problem more and realized that the

principle axes were the eigenvectors of the inertia matrix for the rigid body [13].

In 1826 [14], Cauchy was the first to realize that the eigenvalues of symmetric matrices are always

real. He also was the first to recognize that the characteristic equation came from a determinant [3].4

Hermite later extended this idea to what are now known as Hermetian matrices [15].

Finally, in 1839, the modern terminology began to appear when Cauchy used the phrase “char-

acteristic equation” to describe the polynomial governing the eigenvalues [16]. The terms eigenvalue

and eigenvector were first used by Hilbert (“eigen” is the German word for “own”) in 1904 and have

become the common terms used to describe the problem (in place of proper values and vectors) [17].

The rest of the history of eigenvalues and eigenvectors largely involves their application to differ-

ent problems and work on how to calculate them more efficiently and with more accuracy. There has

also been a move toward understanding the stability and derivatives of eigenvalues and eigenvectors

in recent years that will be discussed in the Literature Review as well as within the primary work

of this document.

1.2 Motivation

There are many problems that make use of the eigenvalue or eigenvector of a matrix in their solutions.

It arises in techniques for the solution of linear ordinary differential equations [18], determining the

3Certain values for the eigenvalues can lead to infinitely oscillating or unbounded systems which are physically
impossible.

4Interestingly, the concept of a determinant developed before a formal concept of a matrix and actually lead to
matrices.
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controllability of a linear system [19], approximation of vibration modes in finite element analysis [20],

determining vibration modes in simpler vibration problems [21], determining buckling modes for

beams under stress [22], modelling the reactions in chemical mixtures [23], finding the optimal

solution to estimation problems [24–27], and many more [28]. Because of this, it is often beneficial

to be able to calculate the Jacobians of eigenvalues and eigenvectors with respect to the elements of

the matrix from which they were computed.

For example, eigenvalue and eigenvectors are used throughout finite-element analysis (FEA)

solutions to vibration problems, where the goal is often to minimize a structure’s sensitivity to

various parameters [20]. In these types of problems, it can be a great help to understand how the

eigenvalues or eigenvectors change if we change a design parameter without having to resolve the

system. In order to do this, we can use a Taylor series expansion along with the eigenvalue and

eigenvector Jacobians to predict how our solution will change if we change part of the system.

There are also numerous examples of eigenvalue estimation problems from the field of com-

puter vision, such as two-dimensional ellipse fitting [29], epipolar geometry [30], the eight-point

algorithm [31], and pose estimation [32]. Examples from other fields are also numerous, including

direction-of-arrival of plane waves [33], estimation of vibration modes [34], quaternion-based space-

craft attitude estimation [35, 36], and horizon-based spacecraft optical navigation [24]. In many

estimation problems, an understanding of the uncertainty in the estimate is equally as important

as the estimate itself—a quantity commonly described through a covariance matrix. Estimation of

the solution’s covariance for the least squares problem is straightforward and well understood. The

covariance of eigenvalues and eigenvectors, however, has received substantially less study to date.

The present work aims to help address this discrepancy.

A variety of factors can give rise to estimation solutions that take the form of an eigenvalue

problem. As a simple motivating example, consider the situation where we seek to find the optimal

parameter vector, v, that minimizes a quadratic cost function where there is also some constraint

on the 2-norm (length) of v. That is, we seek the optimal solution to a problem of the form

Min J(v) = vTAv + λ
(
α2 − vTv

)
(1.1)

where the first term is the quadratic cost function and the second term is the constraint that has

been adjoined with a Lagrange multiplier, λ. In this example, the length of v is constrained to be

α.

The optimal solution is found by applying the first differential condition [37]. If we assume that

3



A is real valued and symmetric, then we have,

2vTAT − 2λvT = 0 (1.2)

or, equivalently,

Av = λv, (1.3)

which is simply the classic eigenvalue problem. The eigenvalues are given by λ and the eigenvectors

are given by v.

Here, we stress that simple problems like this motivating example are not the only source of

eigenvalue problems in estimation applications. Some applications, such as the stability of noncon-

servative systems [38], produce matrices that are non-Hermitian. Others may also have matrices

containing complex valued entries. Thus, we find it necessary to develop methods that are capable

of addressing this more general problem.

1.3 Contribution

There is a large pool of existing literature on the subject of eigenvalue and eigenvector Jacobians.

Unfortunately, this literature has several limitations that we seek to address in this thesis. In

addition, while work has been done on the covariance of estimates making use of the singular value

decomposition of a matrix, to the author’s knowledge, no work has been done on the covariance of

an estimate resulting from an eigenvalue–eigenvector problem. To address these limitations, we offer

contributions in four important areas.

First, we provide an in-depth derivation and discussion of the covariance for eigenvalues and

eigenvectors that are produced from a noisy matrix A with known statistics.

Second, we present two new methods for computing eigenvalue and eigenvector derivatives that

are simple and straightforward to implement. In most of the prior work described in Chapter 2.6, the

eigenvalue derivatives are obtained by either (1) using both the corresponding left eigenvectors and

right eigenvectors, or (2) simultaneously solving for both the eigenvalue and eigenvector derivatives.

Though there are instances of other methods that do not require the left eigenvectors or the simul-

taneous solution for the eigenvector derivatives [39, 40], they are difficult to implement; therefore,

we propose new, simpler solutions along these lines for the eigenvalue and eigenvector derivatives.

Third, we present methods capable of calculating the derivatives of the eigenvalues with respect

to every element of the matrix A in a single expression. Our covariance approach considers the

4



possibility that the covariance matrix describing the uncertainty in the elements of A may be fully

correlated. This requires that the eigenvalue and eigenvector derivatives be computed with respect

to every element in A. In addition, having the full Jacobian matrices with respect to the elements

of the parent matrix makes it easy to use the chain rule to calculate the Jacobian matrices with

respect to multiple parameters that contribute to A. This allows us to design dynamic systems with

multiple parameters at once. Generally, the methods described in Chapter 2.6 only calculate the

derivative of the eigenvalues and the eigenvectors with respect to a single scalar parameter. In fact,

the full Jacobian expressions with respect to each term of a given matrix are only expressed once,

in much brevity, and only for the symmetric case [41]. We therefore propose solutions for the full

Jacobian matrices which, of course, can easily be simplified to find the derivatives with respect to a

vector of parameters or a single scalar parameter through the use of the chain rule.

Fourth, and finally, we present methods capable of handling both real and complex valued eigen-

vectors. The majority of the work described in Chapter 2.6 utilizes the normalization of vTv = 1,

uTv = 1, or some similar implementation in order to make the eigenvectors and eigenvector deriva-

tives unique (where u is the left eigenvector corresponding to λ). This normalization is excellent

when the eigenvectors are real; however, as discussed in [41–44], this normalization is not sufficient

to make imaginary eigenvectors unique. This leads to the eigenvectors not being analytic, and thus

the derivatives developed are only able to handle real valued eigenvectors. Therefore, the choice of

eigenvector normalization must be chosen with some care if the technique is to work for complex

valued problems. We discuss our solution to this problem in some detail.

1.4 Outline

The rest of this document proceeds as follows. First, in Chapter 2 we provide background information

on many of the techniques and methods that we will use in the rest of this work. Then, in Section

2.6 we provide a brief overview of the literature that already exists on this topic concluding the

background portions of the work.

In Chapter 3, we continue with a discussion on the development of analytic expressions for the

covariance in eigenvalues and eigenvectors due to uncertainty in the parent matrix. This chapter

concludes with us still needing expressions for the Jacobian matrices of eigenvalues and eigenvectors

with respect to the elements of their parent matrices. In Chapter 4, we discuss some prerequisites

for ensuring that these derivatives exist, mainly considering the choice of a normalization for the

eigenvectors.

5



Finally, in Chapters 5 and 6, having chosen a normalization for our eigenvectors, we turn our

attention to the development of two new analytic expressions for the Jacobians of the eigenvalues

and eigenvectors. Chapter 5 tackles the problem by first finding the Jacobian for the eigenvalue

by considering the characteristic equation as expressed using exterior algebra. This result is then

used to calculate the eigenvector Jacobian, completing the required expressions. Chapter 6 takes

a different approach by first solving for the eigenvector derivative and then using this to calculate

the eigenvalue derivative. This method represents a major improvement from the results in Chapter

5, as will be seen. This Chapter also introduces expressions for the derivatives of the eigenvalues

and eigenvectors resulting from the general eigenvalue problem, and it contains a comparison of the

numerical efficiency between the two methods.

Chapter 7 concludes the work by showing how each of the techniques may be applied to various

estimation problems. Finally, the conclusion recounts the results of the work and discusses areas of

future work that may need to be addressed.

6



Chapter 2

Background and Literature Review

2.1 The Eigenvalue and Eigenvector Problem

The eigenvalue problem is an attempt to find a scalar term λ such that the problem [28].

Av = λv (2.1)

or equivalently

(A− λI) v = 0 (2.2)

has a non-trivial solution for v. Here A is a n × n matrix, λ is a scaling term referred to as

an eigenvalue, and v is a vector in the direction of the null space of A − λI referred to as an

eigenvector. The eigenvector problem is to find the non-trivial vector(s) that satisfy Eqs. (2.1) and

(2.2) corresponding to a particular choice for the eigenvalue.

Overall, the eigenvalue/eigenvector problem seeks to find vectors that are only scaled and not

rotated when left multiplied by the matrix A.1 It is an important problem from linear algebra

that has application in numerous types of problems and analysis, such as the solution to systems

of linear ordinary differential equations [18], controllability of linear systems [19], finite element

analysis, vibration problems, buckling problems [20,22,45], chemical kinetics [23], optimal estimation

problems [24–26], and many more [28]. Since it arises so frequently, the solution has been well

studied.

1Obviously, the physical meaning of rotation is somewhat lost when n > 3; however, the idea that the vector is
changed in no other way than by scaling should still be relatively clear.

7



2.1.1 Solutions to the Eigenvalue and Eigenvector Problem

The solution to the eigenvalue/eigenvector usually proceeds in two steps (at least when done by

hand). First we must solve for the eigenvalues. As mentioned, the eigenvectors are defined to be

only the non-trivial solutions to Eq. (2.2). As such, the only way Eq. (2.2) can have a non-trivial

solution is if the eigenvalue is chosen such that A− λI is rank deficient, or equivalently

|A− λI| = 0 (2.3)

where |•| means to take the determinant of the matrix. This relationship will result in a polynomial

of degree n in λ where the n roots for λ are the eigenvalues for the matrix A. The polynomial is

referred to as the characteristic equation for the matrix A. Solving for the n roots can be done

either by hand (if n is small) or by using any number of numeric root finders.

Once the eigenvalues have been determined, the eigenvectors can be found by returning to

Eq. (2.1) or (2.2) and solving the resulting linear system of equations. The resulting solution will

only be determined up to an unknown scale, because the null space of a matrix applies to any vectors

in the direction of that null space (arbitrarily scaled vectors). This can be further seen by replacing

v with γv in Eq. (2.1) or (2.2) and noting that the result is the same.

2.1.2 Uniqueness of Eigenvectors

It should be clear that in general, eigenvectors are not unique. In fact, for just a single simple

eigenvalue, there are an infinite number of eigenvectors that satisfy Eq. (2.1) (all in the direction

of v). Due to this non-uniqueness, a normalization constraining the length of the eigenvectors is

usually enforced. For now, we will defer the discussion of eigenvector normalization, as this will be

an important choice for some of the work discussed in Chapters 5 and 6; however, keep in mind this

requirement for the uniqueness of eigenvectors.

2.1.3 Repeated Eigenvalues

Since the characteristic equation is a nth order polynomial, it is possible for there to be roots with a

multiplicity greater than one. For this reason, we give a specific identifier to eigenvalues to indicate

how many times they repeat for a given matrix. An eigenvalue with a multiplicity of one is referred

to as a simple eigenvalue. An eigenvalue with a multiplicity equal to k where k > 1 that also has
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k linearly independent eigenvectors2 is referred to as a semi-simple eigenvalue.3 The multiplicity of

the eigenvalue will play an important role in the rest of this work.

2.1.4 Properties of the Eigenvalue and Eigenvector Problem

There are a few special properties of eigenvalues and eigenvectors that we will make use of throughout

the rest of this work. We will represent them here without proof, as proofs can be found in most

books on the topic.

The first property that we will make use of extensively is that for a real symmetric parent

matrix, the eigenvalues and eigenvectors will always be real. As mentioned in the history section,

this was first realized by Cauchy. The next property is the extension of the symmetric case to

complex matrices. If a complex matrix is symmetric, then we do not have any information about

the eigenvalues and eigenvectors. If a matrix is Hermetian,4 then its eigenvalues are real, although

the eigenvectors can be either real or complex. Finally, if a matrix is skew symmetric (for real

matrices) or skew Hermetian (for complex matrices), then the eigenvalues will be purely imaginary

(or 0).5

Continuing on with the symmetry, for a symmetric or Hermetian matrix, the geometric multi-

plicity will always equal the algebraic multiplicity for the eigenvalues. Further, the eigenvectors of

such a matrix will always form an orthogonal basis for Rn or Cn.

The final property that we will make use of is that for any matrices with distinct eigenvalues,

the eigenvectors will always be linearly independent and form a basis for Rn or Cn.6

2.2 Stability of Eigenvalues and Eigenvectors7

In the upcoming chapters we will be developing expressions for the Jacobians and covariance of

eigenvalues and eigenvectors with respect to the elements of their parent matrix. In general, whether

we are computing the covariance or attempting to predict how the eigenvalues and eigenvectors will

change if we change the matrix, we are using the derivatives to linearize a nonlinear problem.8 For

such a linearization to be meaningful, the eigenvalues and eigenvectors must be well behaved in

2In other words, dim [N (A− λI)] = k where N (•) is the null space of • and dim [•] is the dimension of •.
3The multiplicity of the eigenvalue is sometimes referred to as the algebraic multiplicity, while the dimension of

the null space of A− λI is often referred to as the geometric multiplicity [46].
4A Hermetian matrix is one such that A = AH where a superscript of H indicates the Hermetian (complex

conjugate) transpose AH = conj
(
AT

)
.

5We will not use this in the following work but have included it here for completeness.
6Although this is likely not an orthogonal basis if the matrix is not symmetric or Hermetian.
7A portion of this section appeared in the journal paper [47].
8As will be discussed later, if we chose certain normalizations for the eigenvectors, then the eigenvector problem

actually becomes linear and thus the first derivative and the initial value for the eigenvector actually define the system.
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the neighborhood of their nominal values. Thus, an understanding of eigenvalue and eigenvector

stability is a prerequisite to the development of the Jacobian matrices.

As a simple motivating example, consider the case when matrix A is the 3× 3 identity matrix.

The eigenvalues are obviously λ = 1 and the corresponding eigenvectors are the standard basis for

R3.9 Now, a small perturbation to A can cause the eigenvectors to deviate wildly to some new

orientation, breaking our linearization assumption.10 We therefore need some way to quantify how

well behaved our eigenvalues and eigenvectors are.

Fortunately, the stability of the eigenvalue–eigenvector problem has been well studied in the area

of perturbation theory [48–52]. In this case, we consider the analysis presented by Van Loan [48].

Van Loan states the stability of the eigenvalues and eigenvectors can be measured by two terms:

one for an eigenvalue and one for an eigenvector. The condition of an eigenvalue λ is simply

cλ =
1

‖uHv‖
(2.4)

where λ is the eigenvalue being considered, v is the right eigenvector corresponding to λ, u is the

left eigenvector corresponding to λ, H indicates the Hermetian transpose, and ‖ • ‖ indicates the

absolute value when applied to a scalar and the 2-norm when applied to a vector or matrix. In fact,

it is argued in [48] that the perturbation on λ caused by a perturbation of order ε on A will be

approximated by ‖λ̂− λ‖ ≈ cλε, where λ̂ is the perturbed eigenvalue and a perturbation of order ε

is an additive perturbation matrix with a 2-norm equal to ε.

To estimate the condition of the eigenvector, we need to estimate the separation of the corre-

sponding eigenvalue, which provides an estimate of the reciprocal of the distance between the trivial

invariant subspaces spanned by the true and the perturbed eigenvectors. That is

dist(span{v}, span{v̂}) ≈ 1

sep(λ)
= cv (2.5)

where dist(S1, S2) = ‖P1 − P2‖ with Si being subspaces and Pi being the orthogonal projection

onto Si, v̂ is the perturbed eigenvector, and span{v} is referring to the subspace spanned by v.

Calculating the separation of λ is a rather tedious process that involves determining a Householder

matrix and calculating the singular value decomposition of a QR factorization; therefore, the reader

9In actuality, the eigenvectors can be any three linearly independent vectors in C3, but in general we just present
them as the standard basis. This is the main problem with semi-simple eigenvalues, as we will discuss in the next
sentence.

10Again, here the eigenvectors are not really deviating wildly to some new orientation because in actuality they did
not have an original orientation. Rather they just spanned C3.
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is referred to [48], which does an excellent job of presenting the algorithm in a clear manner.

We now attempt to give a basic understanding of the physical meaning of sep(λ). Consider the

unitary transformation Q:

QHAQ =

 λ wH

0 B

 (2.6)

where B and w result from the transformation of Q on A. Now, it can be shown that we can find

some matrix F that satisfies ‖F‖ = sep(λ), such that we have a matrix

Ã = A + Q

 0 0

0 F

QH (2.7)

with λ as a repeated eigenvalue. Therefore, sep(λ) is a measure of the size of the perturbation

required to give A a repeated eigenvalue of λ. Obviously, if λ is already a repeated eigenvalue,

then sep(λ) = 0, indicating that without more information we cannot estimate how the eigenvectors

corresponding to λ will change when A is perturbed.

Having defined these condition values, we now return to the original example of the 3×3 identity

matrix. Recall that for a symmetric matrix, the left and right eigenvectors will be the same; thus,

the dot product will be 1. Therefore the eigenvalue condition for this matrix will be cλ = 1, and we

would expect the perturbation on λ caused by some small perturbation ε on A to be approximately

‖λ̂ − λ‖ ≈ cλε = ε. This is exactly the case, as a perturbation on a diagonal element of the

identity matrix will result precisely in λ̂ = λ+ ε, and a perturbation on the off diagonal will be less

than or equal to this by the Gershgorin Circle Theorem [53, 54]. Now we consider the eigenvector

condition number, which we discover is infinite because the separation of λ is exactly 0. This again

makes intuitive sense because it shows that a small perturbation to A can rotate the eigenvectors

to dramatically different orientations.

In order to demonstrate the usefulness of the condition numbers for the eigenvalue and eigen-

vector, we have generated plots of the eigenvalue and eigenvector condition numbers versus the

sample standard deviation of the eigenvalues and total covariance (
√

Tr [Pvv]) of the eigenvectors.

These plots were generated by considering 1,000 randomly generated matrices, randomly selecting

an eigenpair, calculating the condition numbers for that eigenpair, and then running a Monte Carlo

analysis of 50,000 runs, adding Gaussian noise to the elements of the matrix. This data is shown

in Fig. 2.1. As can be seen, as the condition numbers grow, the covariance and standard deviations

grow.
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Figure 2.1: Sample standard deviation and covariance values as a function of the eigenvalue and
eigenvector condition numbers.

2.3 Jacobians and the Rules of Matrix Vector Calculus

The Jacobian matrix is the extension of a single derivative to functions of multiple variables [55]. It

collects all of the partial derivatives of a function with respect to all of the independent variables in

that function. Mathematically, this is given by

J =
∂f(x)

∂x
=



∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xn

...
...

. . .
...

∂fm(x)
∂x1

∂fm(x)
∂x2

. . . ∂fm(x)
∂xn


(2.8)

where f =

[
f1(x) f2(x) . . . fm(x)

]T
is am×1 vector function and x =

[
x1 x2 . . . xn

]T
is a n× 1 vector of independent variables. Thus, J is a m× n matrix.

The Jacobian matrix (and its determinant when m = n) plays an important role in many multi-

variate problems [56]. For the purposes of this work, the most important role the Jacobian plays

is that it is used in the formation of the best linear approximation of a function at a certain point

through the Taylor series expansion of that function:

f(x) = x0 +
∂f(x)

∂x

∣∣∣∣
x=x0

(x− x0) = x0 + J(x0) (x− x0) (2.9)

where x0 is the point we are linearizing about and ∂f(x)/∂x|x=x0
= J(x0) is the Jacobian of the
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Table 2.1: The resulting sizes from differentiating the top by the side.

1× 1 scalar m× 1 vector m× p matrix
1× 1 scalar 1× 1 m× 1 m× p
n× 1 vector 1× n m× n ?
n× l matrix n× l ? ?

vector function f with respect to x evaluated at x0. This relationship will be key in our development

of covariance expressions for the eigenvalues and eigenvectors, as we will need it to be able to linearize

the eigenvalues and eigenvectors.

The Jacobian also introduces an important concept from matrix vector calculus that we will

make use of repeatedly throughout the rest of this work, namely that the derivative of a m × 1

vector with respect to a n × 1 is a m × n matrix. Using this rule for differentiation with respect

to vectors allows us to create shortcuts for matrix vector calculus in the same ways that we have

shortcuts for normal scalar calculus. Further, it allows us to maintain the definition of all the normal

operators.

Unfortunately, these rules only work as shown in Table 2.1. In this work, we will need to be able

to differentiate vectors and matrices with respect to vectors and matrices (the lower right side of the

table); therefore, we need to choose how best to define these differentiations. There are numerous

options for this, such as tensors or block matrices; however, we will proceed by “vectorizing” our

derivatives and using the Kronecker product [57,58].11

By vectorizing a matrix, we mean stacking the columns of the matrix into a single column vector.

Thus, if we have

A =

[
a1 a2 . . . an

]
where ai is the ith column of the matrix A, then the vectorized version of A is given by

vec [A] = Avec =



a1

a2

...

an


. (2.10)

Now we can complete our table of matrix-vector derivatives as shown in Table 2.2.

The vectorization of matrices and matrix functions is made easier through the use of the Kro-

11We choose this option because we feel that it leads to the cleanest derivatives, as all of the standard operators
still work as in normal linear algebra and we only need to make use of one special operator, the Kronecker product.
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Table 2.2: The complete resulting sizes from differentiating the top by the side.

1× 1 scalar m× 1 vector mp× 1
vectorized

matrix
1× 1 scalar 1× 1 m× 1 mp× 1
n× 1 vector 1× n m× n mp× n

nl × 1
vectorized

matrix
nl × 1 m× nl mp× nl

necker product and its identities. These are given by

vec [ABC] =
(
CT ⊗A

)
Bvec = (In×n ⊗AB) Cvec =

(
CTBT ⊗ Ik×k

)
Avec (2.11)

vec [AB] = (Im×m ⊗A) Bvec =
(
BT ⊗ Ik×k

)
Avec (2.12)

where A is a k× l matrix, B is a l×m matrix, C is a m×n matrix, and ⊗ indicates the Kronecker

product given by

A⊗B =



a11B a12B . . . a1lB

a21B a22B . . . a2lB

...
...

. . .
...

ak1B ak2B . . . aklB


. (2.13)

There are a few other properties that will prove useful in simplifying our derivatives:

A
(
xH ⊗ Il×l

)
= xH ⊗A (2.14)

(B⊗A) + (B⊗ αA) = B⊗ (A + αA) (2.15)

α (B⊗A) = (αB⊗A) = (B⊗ αA) (2.16)

where x is a j × 1 column vector and α is a scalar.
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Using these rules for matrix-vector calculus, the following shortcuts hold:

∂

∂x
Ax = A (2.17)

∂

∂x
yHx =

∂

∂x
xHy = yH (2.18)

∂

∂x
xTx = 2xT (2.19)

∂

∂A
Tr [A] = I (2.20)

∂

∂A
|A| = |A|A−T (2.21)

∂

∂Avec
Ax = xH ⊗ I (2.22)

∂

∂A
Tr
[
Ak
]

= k
(
Ak−1

)T
(2.23)

∂

∂Avec
yHAx = xT ⊗ yH (2.24)

In addition, the chain rule holds, which will be very important for our upcoming derivatives.

2.4 Analyticity and Differentiability

One of the keys to finding the Jacobians discussed in the rest of this work is to determine when

the eigenvalues and eigenvectors are differentiable and analytic within some region about their

nominal values. To prove this requires both the implicit function theorem and the Cauchy-Riemann

equations, which we will discuss in this section. This also requires knowledge of what analyticity

and differentiability imply.

A function is differentiable if at a single point the derivative can be taken. Therefore the function

f(x) = 1
x is not differentiable at x = 0, but is differentiable at every other x ∈ R. A function is

analytic if it is differentiable in some region [28]. Therefore, the previous example is analytic in

x > 0 and x < 0, but it is not analytic in −1 ≤ x ≤ 1.

In general, these definitions are interchangeable for real functions of real variables. If a real

function is differentiable at a point, then it will be analytic within some region around that point

(even if the region is very small). When considering complex functions of complex variables (as is

done in the rest of this work), however, a function may be differentiable at a point while not being

analytic in any region around that point. This is because of the Cauchy-Riemann equations, which

govern complex differentiation.
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2.4.1 The Cauchy-Riemann Equations

The Cauchy–Riemann Equations [28] provide a test for the differentiability and analyticity of com-

plex functions. Given a complex function of a complex variable

f(z) = u(x, y) + iv(x, y) (2.25)

where

z = x+ iy, (2.26)

f(z) is differentiable at point z = z0 = x0 + iy0 if and only if

∂u

∂x
(z0) =

∂v

∂y
(z0), and

∂u

∂y
(z0) = −∂v

∂x
(z0). (2.27)

Further, a complex function is analytic at z0 if and only if the Cauchy-Riemann equations hold

within some region around z0. As will be discussed later, the Cauchy-Riemann equations mean that

we have to carefully consider the normalization that we use for our eigenvectors when dealing with

complex values.

2.4.2 The Implicit Function Theorem

Suppose we have some relation

f(x, y) = 0 (2.28)

on x and y where x and y are independent variables. Now suppose we would like to express y

explicitly in terms of x (making y into a dependent variable). In some cases, this may be easy to

find by rearranging Eq. (2.28) and solving for y, but in many cases, it may be extremely difficult or

impossible to do this symbolically. In these cases, it may still be beneficial to be able to infer if it is

even possible for such a representation to exist. The implicit function theorem can give us insight

into this problem.

Given a vector function12

f (x,y) = 0 (2.29)

that is analytic around some point (x0,y0), if

|J| 6= 0 (2.30)

12We jump straight to the vector case here, as this is what will be used in the rest of this work.
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where the Jacobian matrix is given by

J =
∂f

∂y

∣∣∣∣
x=x0, y=y0

, (2.31)

then there exists a unique vector function

y(x) (2.32)

defined and analytic in some neighborhood of (x0,y0) such that

y(x0) = y0. (2.33)

Essentially we can use this theorem to prove that a derivative of y with respect to x exists in a

region around (x0,y0) [59].13 As with the Cauchy-Riemann equations, this theorem will be used

later to help us choose our normalization condition.

2.5 Covariance Matrices and Uncertainty in a Problem

In real life, almost all data is corrupted by noise, which makes it impossible to actually determine the

truth. Because of this, when we describe a measurement or the estimation of a state, we generally

couple it with its covariance matrix (or variance value if it is a scalar measurement/estimate). A

covariance matrix describes the uncertainty and correlation in a random vector, such as a measure-

ment or state vector corrupted by random noise. The diagonal of the covariance matrix contains

the variance for each element of the random vector, where the variance is the square of the standard

deviation of the 1D probability density function (PDF) describing the uncertainty for the element.14

The off diagonal describes the correlation between the elements of the random vector, which is a

measure of how dependent the elements are on each other.

The covariance matrix is defined as the second moment about the mean of the estimate/measurement

vector. Mathematically, this is given as

Pxx = E
[
(x− x) (x− x)

T
]

(2.34)

where E [•] is the expected value operator and x is the mean or expected value of x. If we expand

13Note that if this theorem fails, it does not necessarily imply that such a function does not exist. Also note that
this gives no insight into how big of a region this function is valid in.

14In general, the PDF of real random variables is almost always approximately Gaussian due to the Central Limit
Theorem; therefore, the covariance matrix completely defines the PDF for all of x since a Gaussian distribution is
defined with just the standard deviation and mean [60].
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this into matrix form for a 3 element vector, then we have

Pxx =


E
[
(x1 − x1)2

]
E [(x1 − x1)(x2 − x2)] E [(x1 − x1)(x3 − x3)]

E [(x1 − x1)(x2 − x2)] E
[
(x2 − x2)2

]
E [(x2 − x2)(x3 − x3)]

E [(x1 − x1)(x3 − x3)] E [(x2 − x2)(x3 − x3)] E
[
(x3 − x3)2

]
 (2.35)

=


σ2
x1

ρx1x2
σx1

σx2
ρx1x3

σx1
σx3

ρx1x2σx1σx2 σ2
x2

ρx2x3σx2σx3

ρx1x3
σx1

σx3
ρx2x3

σx2
σx3

σ2
x3

 (2.36)

where σxi
is the standard deviation of the ith element of x and ρxixj

is the correlation coefficient of

the ith and jth terms of x. The covariance matrix is always symmetric positive semi-definite and is

usually restricted to be symmetric positive definite for filtering purposes.

Since the covariance matrix is always symmetric, it can always be diagonalized using eigenvalues

and eigenvectors. When we do this, the eigenvalues and eigenvectors of the covariance matrix form

the “principle frame” of the covariance, where the rotation matrix from the state’s frame to the

principal frame is given by the unit eigenvector matrix. The principle frame is useful because it

allows us to quickly see the overall uncertainty in the system (note we can also achieve this through

the use of the trace since it is equal to the sum of the eigenvalues of a matrix). Further, it provides a

frame in which covariance is entirely uncorrelated, and thus the error ellipses are unrotated, making

them easier to visualize.

The standard deviation values from the covariance matrix can be used to create theoretical

ellipsoids, which place probabilistic bounds on the potential realizations of a random variable. These

bounds are very useful for both visualizing the uncertainty in a random variable as well as for making

decisions about how to use the random variable. The ellipse bounds are referred to as kσ ellipses

where k is generally a positive integer. For each k there is a probabilistic expression detailing what

percentage of realizations we should expect to see within an ellipsoid with a principal axis of kσ. This

value is both dependent on the value of k as well as the number of degrees of freedom (for instance,

if we are considering a three element random variable, then we have three degrees of freedom),

but it is not dependent on the value of σ itself. Probability can be determined by considering the

Mahalanobis distance, which is χ2 distributed. Table 2.3 gives a few examples of the percentages

contained within various kσ ellipsoids for various degrees of freedom (DOF).
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Table 2.3: Probability of realization of a random variable falling within a kσ ellipsoid of the truth
value.

k

DOF 1 2 3 4
1 68.27% 95.45% 99.73% 99.99%
2 39.35% 86.47% 98.89% 99.97%
3 19.87% 73.85% 97.07% 99.89%
4 9.02% 59.40% 93.89% 99.70%

2.6 Eigenvalue and Eigenvector Derivatives15

Despite the frequency with which eigenvalues and eigenvectors appear in various problems, there

has been relatively little work focused specifically on quantifying the covariance of these quantities.

There are, however, many nice studies on the covariance of closely related problems—such as the

singular value decomposition [61].

While few have specifically addressed the issue of eigenvalue and eigenvector covariance, there is

a vast body of relevant prior work that warrants a careful review. If the Jacobian of the eigenvector

and eigenvalue can be computed, the covariance follows directly (as is discussed in §5). We will,

therefore, now explore this topic more thoroughly.

Eigenvalue and eigenvector derivatives (i.e., Jacobians) have been well studied, particularly in

the application of structural design. This has led to many different solutions for the derivative

of eigenvalues and eigenvectors, although most of the work has been performed on the eigenvec-

tor derivatives. We can classify most of the existing solutions into three basic categories: modal

expansion techniques, direct techniques, and techniques based on Nelson’s method [62]. Modal tech-

niques express the eigenvector derivatives as a linear combination of all of the eigenvectors of the

system, direct techniques rely on solving a linear system of equations for the eigenvalue and eigen-

vector derivatives, and techniques based on Nelson’s method calculate a homogeneous and particular

solution in order to obtain the eigenvector derivatives.

We begin by considering modal techniques. The first known paper to fully detail both the eigen-

value and eigenvector derivatives was written by Fox and Kapoor [63], who considered symmetric

matrices with distinct eigenvalues. Fox and Kapoor developed two methods for the eigenvector

derivatives: a direct technique and a modal technique. Rogers [64] and Plaut and Huseyin [65] then

simultaneously extended the modal technique of [63] to the general asymmetric case for both the

eigenvalue and eigenvector derivative. A similar technique was also proposed by Kalaba, Spingarn,

15A portion of this section appeared in the journal [47].
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and Tesfatsion much later [66]. Lim, Junkins, and Wang considered some issues with previous works

and proposed a corrected modal technique [67]. Andrew and Tan then extended the modal technique

to the case of repeated eigenvalues for a symmetric matrix [68, 69]. This was then extended to the

general asymmetric case by van der Aa, Morsche, and Mattheij [70].

Next we review the direct solutions. The second direct formulation was proposed in 1972 by

Garg [71], who offered a solution for the general asymmetric case that involves simultaneously

solving for the eigenvector and eigenvalue expressions by way of a linear system of equations. This

formulation can be beneficial because it does not require knowledge of the left eigenvector or any

of the other eigenvectors of the system. Rudisill then extended the system of equations method

for just the eigenvector derivative to the general asymmetric case [72] and required knowledge of

only the left and right eigenvectors corresponding to the eigenvalue being considered. Rudisill

and Chu then derived an alternate system to simultaneously solve for both the eigenvalue and

eigenvector derivatives, as well as higher order derivatives [73]. Juang, Lim, and Ghaemmaghami

developed techniques to find the derivatives of repeated eigenvalues and their eigenvectors using

the singular value decomposition [74–76]. Murthy and Haftka altered the techniques from [73] to

use a better normalization condition [42]. Finally, Xu and Wu developed an independent technique

for eigenvector derivatives for general asymmetric systems with complex eigenvectors and repeated

eigenvalues in which they proposed an entirely new normalization [43].

We now turn to the body of work that relies on Nelson’s method. Nelson proposed a solution

for symmetric matrices that involves solving for a particular solution for the eigenvector derivatives

using just the left and right eigenvector being considered and then calculating the full solution by

adding in a scalar multiple of the eigenvector [62]. Cardani and Mantegazza proposed a similar

method to Nelson’s for the general asymmetric case that does not require the left eigenvectors [77]

and also simultaneously solves for the eigenvalue derivative similar to [71] and [73]. Ojalvo [78],

Dailey [79], Mills-Curran [80], Friswell [81], and Wu, Xu, and Li [82] all proposed various extensions

of Nelson’s method to handle symmetric systems with repeated eigenvalues. Friswell and Adhikari

also attempted to extend Nelson’s method to the general asymmetric case, though their choice of

normalization may cause issues in some instances [83].

Finally we turn to four techniques that are difficult to classify into the above groupings. Mag-

nus [41] proposed something similar to the direct techniques for general asymmetric complex ma-

trices, but it uses a pseudo-inverse to circumvent the non-singular matrices that show up in the

derivations. Magnus’s technique chooses a normalization that makes imaginary eigenvectors ana-

lytic (an important point that we will discuss more later). Meyer and Stewart proposed a new
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technique that involves the use of the group inverse [84]. This technique is beneficial because it

is easily adapted to any normalization chosen for the eigenvectors. Xie and Dai [85] proposed a

technique that allows for the simultaneous determination of eigenpairs and their derivatives using

the Davidson method [86], although it is only beneficial if the eigenpairs are not already known, and

it only works for symmetric matrices. Finally, de Leeuw proposed a technique using the generalized

inverse, which is similar to Magnus’s approach [87].
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Chapter 3

Covariance of Eigenvalues and

Eigenvectors1

In data fusion problems that take on the form of an eigenvalue problem as in Eq. (1.3), uncertainty

typically enters the estimation process through the matrix A. Thus, suppose that we have some

n× n matrix Â that is generated using noisy data, such that the true A is given by

A = Â + ∆A (3.1)

where ∆A is the error in Â. In practice, both A and ∆A are unknown.

Now suppose that we want to estimate some meaningful quantity that depends on the eigenvalues

(λ) or eigenvectors (v) of the matrix A. In this case we do not know the matrix A because it has been

obscured by the noisy data; therefore, the best we can do is find the eigenvalues and eigenvectors of

Â (denoted as λ̂ and v̂, respectively). Of equal importance is an understanding of the uncertainty

in λ̂ and v̂ based on some knowledge on the uncertainty in Â. Specifically, we now seek to develop

analytic expressions for the covariance of λ̂ and v̂ as a function of the covariance of the terms in Â.

Begin by taking a Taylor series expansion of the eigenvalue and eigenvector to first order:

λ ≈ λ̂+
∂λ

∂Avec

∣∣∣∣
Âvec

(
Avec − Âvec

)
(3.2)

v ≈ v̂ +
∂v

∂Avec

∣∣∣∣
Âvec

(
Avec − Âvec

)
(3.3)

1A portion of this chapter appeared in the journal paper [47].
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where Avec is the vectorized form of matrix A. Now we can define ∆Avec = Avec−Âvec, ∆λ = λ−λ̂,

and ∆v = v − v̂, resulting in

∆λ ≈ ∂λ

∂Avec

∣∣∣∣
Âvec

∆Avec (3.4)

∆v ≈ ∂v

∂Avec

∣∣∣∣
Âvec

∆Avec. (3.5)

To simplify notation, we also define the Jacobian matrices Hλ = ∂λ
∂Avec

∣∣∣
Âvec

and Hv = ∂v
∂Avec

∣∣∣
Âvec

.

From here we can expand the definition of the covariance matrix to obtain the mapping from the

uncertainty in Âvec to the uncertainty in λ̂ and v̂:

σ2
λ = E

[
∆λ2

]
= E

[
(Hλ∆Avec) (Hλ∆Avec)

T
]

= HλE
[
∆Avec∆Avec

T
]

HT
λ

Pvv = E
[
∆v∆vT

]
= E

[
(Hv∆Avec) (Hv∆Avec)

T
]

= HvE
[
∆Avec∆Avec

T
]

HT
v

where E[•] is the expected value operator. Now, noting that the covariance is defined by PAvecAvec =

E
[
∆Avec∆Avec

T
]
, this can be simplified to

σ2
λ = HλPAvecAvecH

T
λ (3.6)

Pvv = HvPAvecAvecH
T
v . (3.7)

Therefore, as long as we have knowledge of the uncertainty of the elements of matrix Â, we can

determine the variance of the eigenvalues and covariance matrix for the eigenvectors.

Before we continue, recall that eigenvectors are not unique unless a normalization condition

is enforced. Regardless of what normalization condition is chosen, the length of the eigenvector

is always constrained to some specified value. However, because the length is constrained in the

same way for each eigenvector, we lose a degree of freedom, and thus the eigenvector covariance

matrix will always be rank deficient (it will have rank of n − 1). In the 2 × 2 case, the covariance
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matrix will essentially represent a standard deviation value in the direction perpendicular to the

eigenvector. In the 3 × 3 case, the covariance matrix will represent a 2 dimensional ellipse rather

than a 3 dimensional ellipsoid. Further, the reduced covariance matrix can be found by rotating into

a frame where the eigenvector lies along the primary axis, which will leave the reduced covariance

matrix in a (n− 1)× (n− 1) sub-matrix.
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Chapter 4

Choosing a Normalization for the

Eigenvectors

As was mentioned before, in the standard eigenvalue problem, eigenvectors are only determined

up to an unknown scale. For this reason, it is usually necessary to enforce a normalization on the

eigenvectors to make them unique. When we are attempting to find the Jacobians of the eigenvectors,

this is definitely the case. In this section, we will assume that the eigenvectors are complex.

One popular normalization for the eigenvectors is to constrain them to be unit length. Mathe-

matically, this is expressed as

‖v‖2 = vHv = 1. (4.1)

This normalization is popular because it constrains the eigenvectors to lie on the unit hyper-sphere.

Further, when the parent matrix is Hermetian, this ensures that the matrix of eigenvectors is an

orthonormal matrix. That is

VHV = I (4.2)

where

V =

[
v1 v2 . . . vn

]
. (4.3)

Another normalization used with less frequency is

vTv = 1, (4.4)

which has no physical meaning unless the eigenvectors are real (which we are assuming they are
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not). This normalization also does not lead to an orthonormal matrix of eigenvectors when the

eigenvectors are complex.

Another normalization not used commonly is

vH0 v = 1 (4.5)

where v0 is any independent vector that is not orthogonal to v. Physically, this normalization

constrains the length projection of v onto v0 to be equal to 1.

4.1 Determining if the Eigenvectors Are Analytic

As has been mentioned before, the eigenvectors are not guaranteed to be analytic.1 Therefore, we

must be careful to choose a normalization that makes the eigenvectors analytic, or our Jacobian

matrices will not represent the true derivative of the eigenvectors (as a true derivative does not

exist). Now, the eigenvectors are only implicitly defined according to Eq. (2.2), and we have

f(A,y) = 0 (4.6)

where y =

[
vT λ

]T
. In addition, we can express our normalization implicitly as

xv − 1 = 0 (4.7)

where x is a row vector formed by choosing a column normalization vector and transposition

method.2 This leaves us with an expression for f that includes our choice of normalization, given as

f(A,y) =

 (A− λI) v

xv − 1

 = 0n+1×1. (4.8)

We would like to determine if it is possible to express both λ and v as explicit functions of A to be

sure that we can take the derivatives of v and λ with respect to the elements of A. Therefore, we

need to use the Implicit Function theorem in order to test for analyticity.

As was mentioned before, the implicit function theorem states that as long as the determinant

1The eigenvalues are, however, guaranteed to be analytic with respect to A by the implicit function theorem
as long as they are simple. We will not prove this, as this would require determining the partial derivative of the
characteristic equation with respect to λ, which is actually a step in the generation of one of our expression for the
eigenvalue derivatives. Therefore, a proof of this could easily be developed using the analysis and equations provided
in this work.

2For instance, using the normalization in Eq. (4.5), x would equal vH
0 .
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of the Jacobian of f with respect to y can be found and is nonzero, then y can be expressed as a

function of x. Therefore, consider the Jacobian of f as defined in Eq. (4.8):

J =
∂f

∂y
=

 A− λI v

∂
∂v (xv) 0

 (4.9)

where ∂
∂v (xv) will be a row vector from the rules of matrix vector calculus. Recognizing the block

structure of the Jacobian, it can be shown that the determinant is given by

|J| = −1 |A− λI|+
∣∣∣∣A− λI− v

[
∂

∂v
(xv)

]∣∣∣∣
=

∣∣∣∣A− λI− v

[
∂

∂v
(xv)

]∣∣∣∣ . (4.10)

Therefore, in order to evaluate the determinant of the Jacobian, we need to consider the derivative

of the normalization chosen with respect to the eigenvector itself. This is done for each of the

normalizations discussed above in the following subsections.

4.1.1 Constraining the Eigenvectors to the Unit Hyper-Sphere

We begin with the most commonly used normalization for the standard eigenvalue–eigenvector

problem. Expressing this normalization in terms of the elements of v, we have

−1 +

n∑
k=1

vkvk = −1 +

n∑
k=1

(xk − iyk)(xk + iyk) = −1 +

n∑
k=1

x2
k + y2

k = 0 (4.11)

where vk = (xk + iyk) is the kth element of the eigenvector v and • is the complex conjugate of •.

Now, let us attempt to determine if we can find the partial derivative of this normalization with

respect to the eigenvector in a domain around the eigenvector. In order to do this, we need to use

the Cauchy-Riemann Equations to check to see if it is analytic in a region around the eigenvector.

Consequently, we need to check the partial derivatives of the real and the imaginary parts of the

normalization with respect to the components of the jth element of v. Since the partial derivative

and summation operators are linear, these are given by

∂

∂xj
Re

[
n∑
k=1

x2
k + y2

k

]
= 2xj

∂

∂xj
Im

[
n∑
k=1

x2
k + y2

k

]
= 0

∂

∂yj
Re

[
n∑
k=1

x2
k + y2

k

]
= 2yj

∂

∂yj
Im

[
n∑
k=1

x2
k + y2

k

]
= 0
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where Re [•] takes the real component of • and Im [•] takes the imaginary component of •. Now, using

the Cauchy-Riemann equations, it is easy to see that this function is differentiable only when xj and

yj are 0 and is analytic nowhere. Thus, this normalization is only differentiable when v = 0, which

by the definition of an eigenvector is impossible. Therefore, we cannot use this normalization when

we have complex eigenvectors and want to find the eigenvector derivatives since the normalization

is not analytic.

4.1.2 Normalizing Using the Standard Transpose

Let us now consider another possible normalization where we normalize using the standard transpose

and see if this will allow us to find the derivatives. Expressing this normalization in the terms of

the elements of v, we have

−1 +

n∑
k=1

vkvk = −1

n∑
k=1

(xk + iyk)(xk + iyk) = −1 +

n∑
k=1

x2
k − y2

k + i2xkyk. (4.12)

Again, let us check if this function is analytic with respect to v using the Cauchy-Riemann equations.

The partial derivatives with respect to the components of the jth element of the eigenvector are

∂

∂xj
Re

[
n∑
k=1

x2
k − y2

k + i2xkyk

]
= 2xj

∂

∂xj
Im

[
n∑
k=1

x2
k − y2

k + i2xkyk

]
= 2yj

∂

∂yj
Re

[
n∑
k=1

x2
k − y2

k + i2xkyk

]
= −2yj

∂

∂yj
Im

[
n∑
k=1

x2
k − y2

k + i2xkyk

]
= 2xj ,

which meet the Cauchy-Riemann criteria. Since this satisfies the Cauchy-Riemann equations, the

overall partial derivative can be expressed as

∂

∂v

(
vTv − 1

)
= 2vT (4.13)

using the rules of matrix-vector calculus.

Returning to the implicit function theorem, we can check to see if we are guaranteed that v and

λ are analytic functions of A on some domain in the vicinity of v and λ. Substituting Eq. (4.13)

into Eq. (4.10), we are left with

|J| =
∣∣A− λI− 2vvT

∣∣ . (4.14)

The question becomes: is this determinant nonzero? The answer is “sometimes”–the determinant is

non-zero only if λ is a simple eigenvalue. To see this, consider the term A− λI, which by definition
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has a null space in the direction of v (and thus v is not contained in the column space). Now consider

the outer product term 2vvT , which is a matrix with a column space that only spans v. Therefore,

by adding (subtracting) this outer product to A − λI we have effectively added v back into the

column space (actually −v) and made the term A− λI− 2vvT full rank (which implies a non-zero

determinant). Thus, using the Cauchy-Riemann equations and the implicit function theorem, we

have proven that if we use the normalization given in Eq. (4.4), then the eigenvalues and eigenvectors

can explicitly be expressed as a function of A and are analytic in some domain around their nominal

values.

4.1.3 Constraining the Length of the Projection of the Eigenvector onto

an Independent Vector

Finally, let us consider the normalization which constrains the length of the projection of v onto v0.

Again, expressing this normalization in the terms of the elements of v and v0, we have

−1 +

n∑
k=1

v0kvk = −1

n∑
k=1

(ak − ibk)(xk + iyk) = −1 +

n∑
k=1

akxk + bkyk + i(akyk − bkxk) (4.15)

where v0k = ak−ibk is the kth element of v0. The partial derivatives with respect to the components

of the jth elements of the eigenvector are

∂

∂xj
Re

[
n∑
k=1

akxk + bkyk + i(akyk − bkxk)

]
=aj

∂

∂xj
Im

[
n∑
k=1

akxk + bkyk + i(akyk − bkxk)

]
=−bj

∂

∂yj
Re

[
n∑
k=1

akxk + bkyk + i(akyk − bkxk)

]
=bj

∂

∂yj
Im

[
n∑
k=1

akxk + bkyk + i(akyk − bkxk)

]
=aj

which again satisfy the Cauchy-Riemann equations for any choice of aj and bj , indicating that the

normalization is analytic in all of Cn. Since the Cauchy-Riemann equations are satisfied, the vector

form of the partial derivative with respect to the eigenvector is given as

∂

∂v

(
vH0 v − 1

)
= vH0 (4.16)

using the rules of matrix-vector calculus.

Given this result we can use the implicit function theorem to check to see if the eigenvalues and

eigenvectors are guaranteed to be analytic functions of A on some domain centered at their nominal
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values. Substituting Eq. (4.16) into Eq. (4.10) gives

|J| =
∣∣A− λI− vvH0

∣∣ (4.17)

which, using the same logic as before, is guaranteed to be full rank and have a non-zero determinant.

Therefore, using the implicit function theorem with this normalization, we are guaranteed that the

eigenvectors and eigenvalues are analytic functions of A in some domain around their nominal values.

4.2 Choosing a Normalization

After this analysis, we are left with two potential normalizations that we can use to develop our

analytic derivatives. Unfortunately, the most common normalization of constraining the eigenvector

to unit length is not one of the options.3 Therefore, we must choose between the two normalizations

that are valid in order to proceed.4

Ideally, we would like this normalization to approximate the usual normalization of constraining

the eigenvector to the unit hyper-sphere. The question then becomes which normalization is better

for this. At first glance, it would appear that the normalization given in Eq. (4.4) would be the

best approximation. In fact, if the eigenvector is real, then this normalization exactly constrains

the eigenvectors to the unit sphere. However, in the case of complex eigenvectors (as is our focus in

this work), this is not the case, and to the author’s knowledge this normalization has no “physical”

meaning.5

Now let us consider the other potential normalization. At first glance, this would appear to

be a poor approximation for constraining the length of the eigenvector to the unit hyper-sphere.

However, note that this normalization still maintains a physical meaning, as it constrains the length

of the projection of v onto v0 to be 1. Also recall that the choice of v0 is arbitrary so long as

vH0 v 6= 0. While this is true mathematically, in finite precision computing, the choice of v0 can

play a large role in the numerical stability of the eigenvector derivative. In particular, the closer the

normalization vector gets to being orthogonal to the eigenvector, the more numerically unstable the

3If the eigenvectors can be guaranteed to be real, then the standard normalization can be used if desired; however,
as we will argue, we feel that the normalization we choose provides a better result and more physical meaning than
this normalization.

4Just as the normalization was crucial to being able to prove that derivatives exist for v and λ, it will also be
crucial in the development of the actual derivatives.

5Obviously, in general, complex numbers have lost their physical meaning, but we can still generally extend physical
ideas to them (for instance constraining the “length” of a complex vector to a unit sphere). In this case, however,
we cannot extend this physical meaning to the complex case. This normalization does constrain the length of the
eigenvector, but it is not constraining it to the unit sphere. Further, in general, it actually constrains the length of
the eigenvector to a complex number, further diluting the extended physical meaning.
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derivative is. To demonstrate this fact, consider Fig. 4.1, which shows the condition number of the

term A− λI− vvH0 A/α as a function of the angle between v0 and v for 5,000 randomly generated

choices of normalization vector for a 10 × 10 matrix.6 Based on this information, it is clear that
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Figure 4.1: Condition number of A−λI−vvH0 A/α as a function of the angle between v0 and v for
a 10× 10 matrix and 5,000 randomly generated normalization vectors. A higher condition number
indicates a more poorly conditioned matrix prone to issues in finite precision computing.

choosing the normalization vector such that v0 = v will ensure the best conditioning for the system

if we are using this normalization.

So, since it appears that the normalization given in Eq. (4.5) performs best when v0 = v, this

is starting to look like it will be a good approximation of the normalization we truly desire. In

fact, in general, this behaves exactly like the unit hyper-sphere constraint that we desire if we let

v0 = v̂ where v̂ is the unit vector in the direction of v. Further, as long as the eigenvectors are well

conditioned, it still serves as a good approximation for that constraint so long as v0 was chosen to be

v in cases where this normalization does not behave as the usual constraint to the hyper-sphere. This

is because the usual normalization constrains the eigenvectors to fall on the unit hyper-sphere, while

this normalization constrains the perturbed eigenvectors to fall on the hyper-plane tangent to the

hyper-sphere at v. Therefore, as long as we remain close to the nominal value for the eigenvector,

the proposed normalization approximates the normalization constraining the eigenvectors to the

hyper-sphere to first order. Further, when v0 is chosen to be v̂, the difference between the usual

normalization and Eq. (4.5) rarely needs to be considered in practice, except in very rare situations

such as when attempting to numerically verify the analytic expressions as is done in Sect. 6.3.

6As will be shown later, the condition of this term will play a vital role in the numerical stability of our derivatives
for the eigenvector.
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In addition, since this normalization constrains the eigenvector to lie on the hyper-plane tangent

to v0, we have actually enforced that the eigenvector is a linear function of the elements of A.

Therefore, the explicit function for the eigenvector in terms of the elements of A is given exactly by

the first order Taylor series expansion of the eigenvector about its nominal value with respect to the

change in the elements of A. This is excellent for both estimating how the eigenvectors are changed

when A is changed and also for our covariance expressions. In addition, this helps to relax some of

the requirements on the condition of the eigenvectors since we are no longer linearizing a non-linear

problem (although we still need simple eigenvalues).

Based on this information, it appears the normalization proposed by Eq. (4.5) better approxi-

mates the unit hyper-sphere constraint for the length of the eigenvectors. This normalization also is

beneficial because it maintains some of the properties of the eigenvectors when the matrix is Herme-

tian (namely that the matrix of eigenvectors is orthonormal). Finally, this normalization actually

enforces that the eigenvector is a linear function of the elements of A, which makes the eigenvector

condition less important since we no longer need to linearize. Because of this, we choose to develop

our derivatives using this normalization.7

7As will be seen, the derivatives that we develop are actually valid for all of these normalizations in the real case,
and they can easily be manipulated to match the normalization given in Eq. (4.4) in the complex case if so desired.
Even in the real case, however, we feel as though the chosen normalization actually describes what is physically
happening better, whereas the other potential normalizations only approximate what is happening.
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Chapter 5

Development of Eigenvalue and

Eigenvector Jacobians Via Exterior

Algebra1

We now consider the derivation of a new technique for computing eigenvalue and eigenvector Ja-

cobians. The technique developed only considers simple eigenvalue/eigenvector pairs—which is not

especially surprising given the previous discussion of eigenvalue stability. We begin by discussing

the simple 2 × 2 case, then proceed to the 3 × 3 case, and conclude with a solution to the general

n× n case.

5.1 Finding the Jacobian matrices for the n = 2 Case

To present our technique, we begin with the simplest example—the case where n = 2. For this case,

it is easy to verify that the characteristic equation of matrix A can be written as

λ2 − Tr [A]λ+ |A| = 0. (5.1)

where Tr[ • ] is the trace operator and | • | is the determinant operator. We now seek to determine

the Jacobian of λ with respect to Avec. Begin by distributing the partial derivative and applying

1Portions of this chapter appeared in the journal paper [47].
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the chain rule,

2λ
∂λ

∂Avec
− λ∂Tr [A]

∂Avec
− Tr [A]

∂λ

∂Avec
+

∂ |A|
∂Avec

= 0. (5.2)

From here, the equation can be rearranged to find

(2λ− Tr [A])
∂λ

∂Avec
= λ

∂Tr [A]

∂Avec
− ∂ |A|
∂Avec

. (5.3)

Now, dividing by the scalar term on the right leads to the equation for the Jacobian:

Hλ =
∂λ

∂Avec
= (2λ− Tr [A])

−1

(
λ
∂Tr [A]

∂Avec
− ∂ |A|
∂Avec

)
, (5.4)

which is a function of the eigenvalue being considered and the matrix A. All that is undefined in

Eq. (5.4) is the partial derivatives of the trace and the determinant with respect to Avec. Utilizing

the rules of matrix-vector calculus, these can be shown to be

∂ |A|
∂Avec

= |A| vec
(
A−T

)T
(5.5)

∂Tr [A]

∂Avec
= ITvec, (5.6)

completely defining the change in the eigenvalue with respect to a change in the matrix A.

Returning to Eq. (5.4), we can now see more clearly why we require that eigenvalues be unique.

If we express the scalar term as

(2λ1 − Tr [A]) =

(
2λ1 −

2∑
i=1

λi

)

where we have switched to using a subscript integer to indicate the eigenvalue being considered and

have inserted the definition of the trace being the sum of the eigenvalues, then it is easy to see that if

λ1 = λ2, this term will be zero. Thus, for repeated eigenvalues, we would find ourselves attempting

to divide by zero. This applies to higher order cases as well, as any repeated eigenvalue will cause the

scalar term to be zero. It is important to mention, however, that this singularity only exists when

the specific eigenvalue being considered is repeated. There are no issues so long as the eigenvalue

being considered is unique—this is true even if some of the other eigenvalues of A are repeated. As a

final note, we stress that this will never become an issue if we are only considering stable eigenvalues

as discussed in Section 2.2. We now drop the subscript notation again for compactness and continue

with our discussion.
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It is also necessary to determine the Jacobian of the eigenvector with respect to a change in A.

Begin with the standard eigenvalue problem

Av = λv. (5.7)

Once again apply the partial derivative and the chain rule to obtain

∂

∂Avec
{Av} = v

∂λ

∂Avec
+ λ

∂v

∂Avec
. (5.8)

Now consider the left–hand side a little more closely. The term Av can be expressed as Av =

v1a1 + v2a2, where ai is the ith column of matrix A and vi is the ith element of vector v. Applying

this expansion allows the usual rules of matrix-vector calculus to be utilized along with the chain

rule. This results in

A
∂v

∂Avec
+ v1

∂a1

∂Avec
+ v2

∂a2

∂Avec
= v

∂λ

∂Avec
+ λ

∂v

∂Avec
. (5.9)

Now rearrange to solve for ∂v/∂Avec, resulting in a final expression of

(A− λI)
∂v

∂Avec
= v

∂λ

∂Avec
− v1

∂a1

∂Avec
− v2

∂a2

∂Avec
, (5.10)

which is simply a function of the eigenvector and corresponding eigenvalue, the matrix A, and the

eigenvalue Jacobian derived above.

In order to simplify notation later, we can also consider another expansion of the term Av using

the Kronecker product and vectorization. This expression is given as Av = (vH ⊗ I2×2)Avec, where

⊗ is the Kronecker product. If we use this expression instead, then we have

A
∂v

∂Avec
+ vH ⊗ I2×2 = v

∂λ

∂Avec
+ λ

∂v

∂Avec
, (5.11)

which can again be rearrange to solve for ∂v/∂Avec, resulting in a new final expression of

(A− λI)
∂v

∂Avec
= v

∂λ

∂Avec
− vH ⊗ I2×2. (5.12)

It is easy to verify here that Eqs. (5.10) and (5.12) are equivalent. From this point forward, we will

use the vector notation to simplify the notation.

In Eq. (5.12) the term A− λI must be inverted to find the partial derivative of the eigenvector.
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But this term is not invertible because substituting the eigenvalue into this expression will result in

a rank deficient matrix (from the definition of an eigenvalue) with a null space in the direction of v.

In order to overcome this invertibility issue, we need to make use of our normalization for the

eigenvectors. Recall from Chapter 4 that we have chosen to use the normalization constraining the

eigenvector to the hyper-plane tangent to the unit hyper-sphere at the normalization vector.2 If we

differentiate this normalization with respect to Avec, we get

vH0
∂v

∂Avec
= 0 (5.13)

which shows that the eigenvector derivative must also be constrained to lie along the hyper-plane

perpendicular to the normalization vector if the eigenvector is constrained to this hyper-plane. These

constraints can easily be demonstrated in R2 as shown in Fig. 5.1.

v0

v Line constraining the
derivative of v

Figure 5.1: By constraining the projection of v onto v0, the eigenvector derivative is constrained to
lie on a line perpendicular to v0.

Using these constraints, we can now define a matrix

N = σv0v
T
0 (5.14)

as the outer-product of v0, which we term the Null Space Matrix. Here, σ is a scaling term included

for reasons we will discuss shortly. The Null Space Matrix is clearly of rank 1. Additionally, the

Null Space Matrix only contains information in the direction of v0 and subsequently projects any

non-zero vector onto v0. Using the relationship in Eq. (5.13), we also note that N(∂v/∂Avec) = 0,

and thus we can add this term to the left-hand side of Eq. (5.10) without changing the solution.

2Also recall that, in general, it is best to choose the normalization vector to be the unit vector in the direction of
the eigenvector.
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Therefore, we have

(A− λI)
∂v

∂Avec
+ N

∂v

∂Avec
= v

∂λ

∂Avec
− vH ⊗ I2×2, (5.15)

which we can simply rearrange to get

(A− λI + N)
∂v

∂Avec
= v

∂λ

∂Avec
− vH ⊗ I2×2. (5.16)

Now, since the Null Space Matrix is rank 1 with information only in the direction of v0, and A−λI

is of rank n−1 and is missing information in the direction of v0, we have created a full rank matrix,

which we can invert to solve for the eigenvector derivative. In most cases, the Null Space Matrix

will not be of the same order as A − λI due to normalization conditions placed on v0. This can

cause numerical condition issues, so we allow σ to scale N to be approximately the same order as

A− λI in order to avoid these issues.

Finally, we can write the full eigenvector derivative as

Hv =
∂v

∂Avec
= (A− λI + N)

−1

[
v

∂λ

∂Avec
− vH ⊗ I2×2

]
. (5.17)

We note here that this technique is similar to that proposed in [41] which makes use of the pseudo-

inverse instead of using a Null Space Matrix, but we find this explanation to be more intuitive. In

addition, both the Null Space Matrix and the pseudo-inverse are in the worst case O(n3) and can

be optimized to be less than this in many instances [88]. Finally, the solution in [41] requires both

the left and right eigenvectors in the general complex case, whereas our method only requires the

right eigenvector.

In the case when the eigenvalues and eigenvectors are real, the Null Space Matrix technique can

be used as an approximation for the normalization of vTv = 1. In order to use this technique to

approximate the derivatives for eigenvectors that are normalized to be of unit length, we only need

to be certain that the eigenvectors are well behaved (i.e., they will only move within a small area

when the perturbation to A is small). By enforcing that a perturbation of A only causes a small

perturbation in the eigenvectors, we ensure that the projection of the perturbed eigenvector onto

the unperturbed eigenvector is still nearly unitary, which is the requirement for this technique (that

is, we need the perturbation of the eigenvector to stay within a range of the true eigenvector so the

tangent to the unit circle is a good approximation to the unit circle).
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5.2 Finding the Jacobian matrices for the n = 3 Case

We now consider the slightly more difficult case when n = 3. Once again we begin by expanding the

characteristic equation of matrix A:

|A− λI| = λ3 − Tr [A]λ2 +
1

2

(
Tr [A]

2 − Tr
[
A2
])
− |A| = 0. (5.18)

We are still looking for the Jacobian of λ with respect to Avec. Applying the chain rule leads to

∂

∂Avec
{|A− λI|} =

λ

2

(
2Tr [A]

∂Tr [A]

∂Avec
−
∂Tr

[
A2
]

∂Avec

)

+ 3λ2 ∂λ

∂Avec
− Tr [A] 2λ

∂λ

∂Avec
− λ2 ∂Tr [A]

∂Avec

+
1

2

(
Tr [A]

2 − Tr
[
A2
]) ∂λ

∂Avec
− ∂ |A|
∂Avec

= 0.

(5.19)

From here, we can rearrange to solve for ∂λ/∂Avec, resulting in

a =

(
3λ2 − 2Tr [A]λ+

1

2

(
Tr [A]

2 − Tr
[
A2
]))−1

(5.20)

∂λ

∂Avec
=a

[
λ2 ∂Tr [A]

∂Avec
+

∂ |A|
∂Avec

− λ

2

(
2Tr [A]

∂Tr [A]

∂Avec
−
∂Tr

[
A2
]

∂Avec

)]
, (5.21)

which again is simply a function of the eigenvalue being considered and the matrix A. Remember

here that if the eigenvalue is repeated, then a will be singular as mentioned in the 2× 2 case. After

recalling Eqs. (5.5) and (5.6), only one partial derivative remains undefined, and it can be shown to

be

∂Tr
[
A2
]

∂Avec
= 2vec

(
AT
)T
, (5.22)

which completely defines the Jacobian of λ.

Now we need the Jacobian of the eigenvector. Using the same techniques discussed in the 2× 2

case, this can be shown to be given by

(A− λI)
∂v

∂Avec
= v

∂λ

∂Avec
− vH ⊗ I3×3. (5.23)

As before, we must add the Null Space Matrix to the left-hand side in order to solve this system for

Hv:

Hv = (A− λI + N)
−1

[
v

∂λ

∂Avec
− vH ⊗ I3×3

]
. (5.24)
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5.3 Finding the Jacobian matrices for the General Case

The above cases will cover many of the real world applications of this technique. In some instances,

however, it may be necessary to determine the uncertainty in an eigenvalue or eigenvector for systems

with dimension greater than three. Therefore, in this section, we apply the above techniques to the

case of a matrix of size n× n.

Making use of exterior algebra [89], the characteristic equation of matrix A can be expressed as

|λIn×n −A| =
n∑
k=0

λn−k(−1)kTr
[
ΛkA

]
= 0 (5.25)

where ΛkA is the kth exterior power of matrix A, as shown in [90]. Utilizing the following substi-

tution,

Tr
[
ΛkA

]
=
|Qk|
k!

(5.26)

where Qk is given by

Qk =



Tr [A] k − 1 0 0 . . . 0

Tr
[
A2
]

Tr [A] k − 2 0 . . . 0

Tr
[
A3
]

Tr
[
A2
]

Tr [A] k − 3 . . . 0

...
...

...
. . .

...
...

Tr
[
Ak−1

]
Tr
[
Ak−2

]
Tr
[
Ak−3

]
. . . Tr [A] 1

Tr
[
Ak
]

Tr
[
Ak−1

]
Tr
[
Ak−2

]
Tr
[
Ak−3

]
. . . Tr [A]


, (5.27)

the characteristic equation can be written as

|λIn×n −A| =
n∑
k=0

λn−k(−1)k |Qk|
k!

=

n∑
k=0

ckλ
n−k = 0 (5.42)

where ck = (−1)k |Qk| /(k!) are the coefficients of the characteristic equation. We note here that

there are other techniques for finding the coefficients ck, such as solving the system that arises from

the Cayley-Hamilton theorem, which states that every square matrix satisfies its own characteristic

equation [28,91–93]. For now we have chosen to utilize this solution due the compact notation, but

note that other solutions may be more efficient for calculating the derivatives.
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From here the partial derivative with respect to Avec can be applied to obtain

∂

∂Avec
{|λIn×n −A|} =

∂

∂Avec

{
n∑
k=0

ckλ
n−k

}
= 0. (5.43)

The goal is to determine the partial derivative of λ; therefore, it is necessary to isolate terms that

will include this partial derivative from terms that will not. This can be performed by splitting the

summation in Eq. (5.43) as follows:

∂

∂Avec

{
n∑
k=0

ckλ
n−k

}
=

∂

∂Avec

{
n−1∑
k=0

ckλ
n−k

}
+

∂cn
∂Avec

= 0.

Since the partial derivative and the summation are both linear operators, the partial derivative

operator can be distributed inside the sum. Performing this step and taking into account the chain

rule lead to the following:

n−1∑
k=0

(
ckλ

n−k−1 ∂λ

∂Avec
+ λn−k

∂ck
∂Avec

)
+

∂cn
∂Avec

= 0. (5.44)

Here, the partial derivative of the coefficients of the characteristic equation are given by

∂ck
∂Avec

=
(−1)k

k!

∂ |Qk|
∂Avec

. (5.45)

From here, we can rearrange to solve for an equation for the Jacobian of the eigenvalue, resulting in

Hλ =
∂λ

∂Avec
=
−
[∑n−1

k=0

(
λn−k ∂ck

∂Avec

)
+ ∂cn

∂Avec

]
∑n−1
k=0 ck(n− k)λn−k−1

. (5.46)

Once again, in the case of repeated eigenvalues, we will have a singularity with the denominator

being equal to 0, thus why we only consider unique eigenvalues.

In Eqs. (5.45) and (5.46), every term is known except for ∂ |Qm| /∂Avec. This can be determined

by first applying the chain rule as follows:

∂ |Qm|
∂Avec

=
∂ |Qm|
∂(Qm)vec

∂(Qm)vec

∂Avec
. (5.47)

Now, using the rules of matrix-vector calculus, we show that

∂ |Qm|
∂(Qm)vec

= |Qm| vec
(
(Q−Tm )

)T
. (5.48)
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Further, the term ∂(Qm)vec/∂Avec can be expanded into the m2 × n2 matrix given by

∂(Qm)vec

∂Avec
=



(vec (In×n))
T

2
(
vec
(
AT
))T

3
(
vec
(
(A2)T

))T
...

m
(
vec
(
(Am−1)T

))T
01×n2

(vec (In×n))
T

2
(
vec
(
AT
))T

...

(m− 1)
(
vec
(
(Am−2)T

))T
02×n2

...



(5.49)

by considering the form of Qm. This completely defines the Jacobian of the eigenvalue.

As before, it is necessary to find the Jacobian of the eigenvectors, as well. Starting again by

differentiating the standard eigenvalue problem with respect to Avec gives

(A− λI)
∂v

∂Avec
= v

∂λ

∂Avec
− vH ⊗ I. (5.50)

Now, utilizing the same techniques as in the individual cases, it can be shown that the general

solution is given by

Hv =
∂v

∂Avec
= (A− λI + N)

−1

[
v

∂λ

∂Avec
− vT ⊗ In×n

]
. (5.51)

5.4 Numeric Verification

In order to validate the derivatives presented in the above discussions, the analytic results were com-

pared with numerical results obtained through forward finite differencing. This involved perturbing

each element of A and then calculating the eigenvalue and eigenvector of the perturbed matrix, such
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that

Ãi,j = A + Apert(i, j)

Apert(i, j) =

 akl = 0 k 6= i, l 6= j

akl = pert k = i, l = j

(5.52)

λ̃i,j = eigval
(
Ãi,j

)
ṽi,j = eigvec

(
Ãi,j

)
(5.53)(

∂λ

∂Avec

)
num

=

[
λ−λ̃1,1

pert
λ−λ̃2,1

pert . . .

λ−λ̃n,1

pert . . .
λ−λ̃n,n

pert

] (5.54)

(
∂v

∂Avec

)
num

=

[
v−ṽ1,1

pert
v−ṽ2,1

pert . . .

v−ṽn,1

pert . . .
v−ṽn,n

pert

] (5.55)

where pert is the size of the perturbation used for forward finite differencing.

The forward finite differencing described was applied to 5,000 random matrices of size 2 × 2,

5,000 random matrices of size 3× 3, and 5,000 random matrices of size 10× 10. Then, the percent

differences between the analytic and numeric derivatives were calculated. These data are shown

as histograms in Fig. 5.2. As can be seen, the analytic differences matched numeric forward finite

differencing well in all cases. We note that because of finite precision issues, we had to choose random

matrices where the smallest of the elements in the eigenvector derivatives (in absolute value) was

larger than the perturbation we used to perform the forward finite differencing. That is,

min
i,j

∣∣∣∣ ∂v

∂Avec
(i, j)

∣∣∣∣ > pert. (5.56)

42



0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

Largest bin contains 19911 values
at a percent difference of 0.0013201.
Average percent difference across
all runs is 0.00014362.

N
u
m
b
er

o
f
V
a
lu
es

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

10

20

30

40

50

60

70

Largest bin contains 44355 values
at a percent difference of 0.00033014.
Average percent difference across
all runs is 8.816e-05.

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

Largest bin contains 499978 values
at a percent difference of 0.013437.
Average percent difference across
all runs is 5.7251e-05.

0 0.1 0.2 0.3
0

10

20

30

40

50

60

70

Largest bin contains 19888 values
at a percent difference of 0.0018813.
Average percent difference across
all runs is 0.0002419.

Percent Difference

N
u
m
b
er

o
f
V
a
lu
es

(a) 2× 2

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

Largest bin contains 44763 values
at a percent difference of 0.0027021.
Average percent difference across
all runs is 0.00028665.

Percent Difference

(b) 3× 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

Largest bin contains 497850 values
at a percent difference of 0.0037175.
Average percent difference across
all runs is 0.00030295.

Percent Difference

(c) 10× 10

Figure 5.2: Histograms of percent difference between analytic derivatives (eigenvalue derivatives top
and eigenvector derivatives bottom) and finite forward differencing for 5,000 randomly generated
matrices.
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Chapter 6

Numerically Efficient Eigenvalue

and Eigenvector Jacobians

6.1 The General Case

Using the insights from Chapter 5, it is possible to arrive at a simpler and more numerically efficient

solution. Beginning again with Eq. (2.1), we can left multiply by the Hermetian transpose of the

normalization vector vH0 in order to form a new equation:

vH0 Av = λvH0 v. (6.1)

Recall that while it is common to set v0 = v, v0 is not a function of A. Taking the derivative of

Eq. (6.1) leads to

vH0 A
∂v

∂Avec
+ vT ⊗ vH0 = vH0 v

∂λ

∂Avec
+ λvH0

∂v

∂Avec
(6.2)

through simple application of the chain rule and identities pertaining to the vectorization of a matrix.

Note again that a superscript of T indicates a standard transpose, while a superscript of H indicates

the Hermetian (or conjugate) transpose. Now, recalling Eq. (5.13), the right-most term of Eq. (6.2)

vanishes. Thus, after a simple rearrangement, we can find

∂λ

∂Avec
= vH0 A

∂v

∂Avec
+ vT ⊗ vH0 , (6.3)

which expresses the eigenvalue Jacobian as a function of A, v, v0, ∂v/∂Avec, and α.
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With an expression of the eigenvalue Jacobian in hand, we can now determine a compact ex-

pression for the eigenvector Jacobian. Observe that Eq. (5.50) and Eq. (6.3) create a system of two

equations with two unknowns. Therefore, substituting Eq. (6.3) into Eq. (5.50) yields

(A− λI)
∂v

∂Avec
=

v
[
vH0 A ∂v

∂Avec
+ vT ⊗ vH0

]
α

− vT ⊗ I, (6.4)

which can be arranged to give

[
A− λI− vvH0 A

α

]
∂v

∂Avec
=

v(vT ⊗ vH0 )

α
− vT ⊗ I (6.5)

as an equation that isolates the eigenvector derivative. This expression can be simplified to

[
A− λI− vvH0 A

α

]
∂v

∂Avec
= vT ⊗

(
vvH0
α
− I

)
(6.6)

by manipulating the Kronecker products.

The objective is now to solve Eq. (6.6) for ∂v/∂Avec. Unlike the result from Chapter 5, there is no

need to incorporate a Null Space Matrix (or to use a pseudo-inverse) since the term A−λI−vvH0 A/α

is already full rank and invertible. This fact is straightforward to see by considering the column

space of the term A − λI, which will generally be rank n − 1 (assuming λ is simple and A is full

rank). Specifically, A− λI spans Rn−1 with a null space in the direction of v. Now we can consider

the column space of the term vvH0 A/α, which is rank one and spans only v. Therefore, by adding

vvH0 A/α to A − λI, the resulting column space spans all of Rn, making the overall term full rank

and invertible.

In light of this fact, the solution for the eigenvector Jacobian is given by

∂v

∂Avec
=

[
A− λI− v(vH0 A)

α

]−1 [
vT ⊗

(
vvH0
α
− I

)]
, (6.7)

which is a function of only A, λ, v, v0, and α. Additionally, manipulating the Kronecker products

allows for a final form of

∂v

∂Avec
= vT ⊗

[(
A− λI− vvH0 A

α

)−1(
vvH0
α
− I

)]
. (6.8)

Once the eigenvector Jacobian has been calculated, we can calculate the eigenvalue Jacobian

by simply plugging the result of Eq. (6.8) into Eq. (6.3). Making this substitution and simplifying
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yields the final expression for the eigenvalue Jacobian:

∂λ

∂Avec
=

vT

α
⊗

[
vH0 A

(
A− λI− vvH0 A

α

)−1(
vvH0
α
− I

)
+ vH0

]
. (6.9)

6.2 Simplified Cases

The overall goal of this work was to create a numerically efficient algorithm for the calculation of the

Jacobians of an eigenvalue and eigenvector with respect to the elements of the parent matrix. Now

that we have developed these expressions, it is beneficial to discuss how they simplify as assumptions

are placed on the parent matrix. A variety of simplifications are possible by imposing structure on

A and subsequently Eqs. (6.8) and (6.9). Here we will focus on two important and particularly

useful simplifications as a way to gain key insights and show connections with existing literature.

6.2.1 Real Symmetric Parent Matrix

The first simplified case we will consider, when the parent matrix of the eigenvalues and eigenvectors

is real and symmetric, frequently appears in problems (for instance, the Davenport solution to

Wahba’s Problem [36]). In order to simplify and be able to match what is in the existing literature,

it is also necessary to make a choice for v0; therefore, we can choose that v0 = v. Note that as

discussed in Sect. 4.2, this is the choice usually made in practice regardless, as it leads to the best

condition for the calculation of the eigenvector derivative.

To begin the simplifications for the symmetric case, consider Eq. (6.5), repeated here for conve-

nience: [
A− λI− vvTA

] ∂v

∂Avec
= −vT ⊗

(
I− vvT

)
. (6.10)

Note that we have replaced the Hermetian transposes with standard transposes, since the eigenvalues

and eigenvectors are guaranteed to be real since A is real symmetric. Also note that v0 has been

replaced by v. Now, as discussed before, the coefficient matrix of the eigenvector Jacobian matrix

is full rank and invertible as long as the matrix A is full rank and invertible. Making use of the fact

that for an invertible matrix

A† = A−1, (6.11)

where A† is the Moore-Penrose pseudo-inverse of A [94], it is possible to write

∂v

∂Avec
= −vT ⊗

[(
A− λI− vvTA

)† (
I− vvT

)]
. (6.12)
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From here it is necessary to further consider the pseudo-inverse term. Recognize that the pseudo-

inverse term in Eq. (6.12) can be expressed as the addition of a matrix and an outer product

(
A− λI− vvTA

)†
=
(
B + cdT

)†
(6.13)

where B = A− λI, c = −v, and d = Av = λv. Using the case i identities presented in [95], when

A is real and symmetric, we can find that

(
A− λI− vvTA

)†
= (A− λI)

† − λ−1vvT . (6.14)

Substituting this result into Eq. (6.12) yields

∂v

∂Avec
= −vT ⊗

([
(A− λI)

† − λ−1vvT
] [

I− vvT
])
. (6.15)

Now, expanding the matrix multiplication in the Kronecker product gives

∂v

∂Avec
= −vT ⊗

[
(A− λI)

† − λ−1vvT − (A− λI)
†
vvT + λ−1vvTvvT

]
, (6.16)

which, when taking into account that for symmetric matrices the pseudo-inverse has the same null

space as the matrix itself, simplifies to

∂v

∂Avec
= −vT ⊗ (A− λI)

†
. (6.17)

This is exactly the same result presented in [41].

With the simplified version of the eigenvector derivative in hand, the simplified eigenvalue Jaco-

bian is trivial to find. To begin, substitute Eq. (6.17) into Eq. (6.3) to obtain

∂λ

∂Avec
= vT ⊗

[
−vTA (A− λI)

†
]

+ vT ⊗ vT . (6.18)

Now, making use of the fact that vTA = λvT for symmetric matrices and the sharing of the null

spaces, this reduces to

∂λ

∂Avec
= vT ⊗ vT (6.19)

which, again, is exactly the same as that presented in [41]. Note that these expressions do not

assume that the parent matrix is perturbed symmetrically.
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Thus, the general eigenvalue and eigenvector Jacobians presented in Section 6.1 cleanly simplify

to the results from [41] for the special case when A is symmetric. This same result can be achieved

by assuming the symmetry of A and enforcing v0 ≡ v in Eqs. (5.50) and (6.3), as was done in [41].

6.2.2 Real Diagonal Parent Matrix

The second simplified case considered is a diagonal parent matrix with only real valued elements. In

this case, the eigenvalues of the matrix are simply the diagonal elements of A, and the eigenvectors

are the standard basis. While this case is trivial, it leads to some powerful insights into the overall

problem.

Simplified Jacobians for a Diagonal Matrix

To develop the simplified derivatives for a diagonal matrix, begin with the simplified derivatives for

the symmetric case given in Eq. (6.17) and Eq. (6.19). Now, recognizing that the pseudo-inverse of

a diagonal matrix is just the reciprocal of the non-zero diagonal elements, the eigenvector derivative

simplifies to

∂vi
∂Avec

= −ei ⊗ diag
[
(λ1 − λi)−1, . . . , (λi−1 − λi)−1, 0, (λi+1 − λi)−1 . . . , (λn − λi)−1

]
= −

[
0n×(i−1)n diag

[{
(λk − λi)†

}]
0n×(n−i)n

]
(6.20)

where ei is the ith standard basis vector and the derivatives presented are for the ith eigenvalue

and eigenvector (at this point, it becomes necessary to distinguish the eigenvalue and eigenvector

being considered). Recall that the pseudo-inverse of a non-zero scalar is the reciprocal, while the

pseudo-inverse of a zero scalar is 0.

The eigenvalue derivative simplifies similarly:

∂λi
∂Avec

= ei ⊗ ei

=

[
01×(i−1)n eTi 01×(n−i)n

]
. (6.21)

Perturbations to the Eigen-space of a Diagonal Matrix

With the simplified relationships in hand, we can make some interesting observations on the per-

turbation of the eigen-space. The first observation is that to perturb the ith eigenvalue, we must

perturb the ith diagonal element of the diagonal parent matrix. Further, the perturbation to the
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eigenvalue in this case is exactly the perturbation to the parent matrix. While this observation

should be trivial (since the diagonal elements are the eigenvalues themselves), it leads to a more

interesting observation for the general case, as will be discussed later. This observation can be

expressed mathematically as

∆λi = δi (6.22)

when

∆A = δieie
T
i = δiviv

T
i . (6.23)

The next observation is that the eigenvector is only perturbed when the ith column of the parent

matrix is perturbed. Further, there is an analytic relationship between the change to the eigenvector,

the eigenvalues, and the perturbation itself. Mathematically, this is expressed as

∆vi = −
n∑

k=1,k 6=i

δk
λk − λi

ek = −
n∑

k=1,k 6=i

δk
λk − λi

vk (6.24)

when

∆A =

n∑
k=1,k 6=i

δkeke
T
i =

n∑
k=1,k 6=i

δkvkv
T
i . (6.25)

These relations show that we can express the eigenvector derivative for a diagonal matrix as a modal

expansion of the other eigenvectors if the coefficients δk can be calculated (which is quite simple for

a diagonal matrix since the eigenvectors are the standard basis).

Perturbations to the Eigen-space of a Diagonalizable Matrix

Now, reconsider the case when the parent matrix is real symmetric (as was done for the previous

section). Since the parent matrix is symmetric, the eigenvectors will form an orthonormal basis for

Rn, and the matrix is diagonalizable as

A = VΛVT (6.26)

where Λ is a diagonal matrix of the eigenvalues and V is an orthogonal matrix whose columns are

the eigenvectors of A. Substituting this into the standard eigenvalue problem gives

VΛVTvi = λivi,
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which can be rewritten as

ΛVTvi = λiV
Tvi. (6.27)

Since the columns of V are made up of the orthogonal eigenvectors of A,

VTvi = ei, (6.28)

which quickly reduces Eq. (6.27) down to the diagonalized eigen-system:

Λei = λiei. (6.29)

Now suppose that the matrix A is perturbed by adding a matrix ∆A. In the diagonalized space,

this matrix perturbation can be expressed as

∆Λ = VT∆AV (6.30)

where ∆Λ is an additive update to Λ. The matrix ∆Λ will not generally be diagonal.

Now that the problem has been diagonalized, the observations described above can be utilized.

Since the eigenvectors in the diagonalized space form the standard basis, it is clear that the matrix

∆Λ can be decomposed as

∆Λ =

n∑
i=1

n∑
k=1

δkieke
T
i (6.31)

where

∆Λ =



δ11 δ12 . . . δ1n

δ21 δ22 . . . δ2n
...

...
. . .

...

δn1 δn2 . . . δnn


(6.32)

and

δki = vTk ∆Avi. (6.33)

Now, analogous to relations in Eq. (6.22) and Eq. (6.24), the perturbations in the diagonalized space
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are described by

∆λi = δii (6.34)

∆ei = −
n∑

k=1,k 6=i

δki
λk − λi

ek. (6.35)

These perturbations must now be related to perturbations in the original eigenvectors, vi. For an

additive update of the diagonalized eigenvector we have

vi + ∆vi = V (ei + ∆ei) . (6.36)

Thus, it becomes apparent that the update to the original eigenvector is given by

∆vi = V∆ei

= −
n∑

k=1,k 6=i

δki
λk − λi

vk. (6.37)

Further, taking the inverse of Eq. (6.30) combined with Eq. (6.31) gives

∆A = V

n∑
i=1

n∑
k=1

δkieke
T
i VT

=

n∑
i=1

n∑
k=1

δkivkv
T
i , (6.38)

which shows that any perturbation can be expressed as a linear combination of the outer products

of the eigenvectors of any symmetric matrix where the coefficients are found using Eq. (6.33). While

this approach is not efficient, it provides an interesting parallel to the modal expansion techniques

discussed in [63–70], as well as stability theory for eigenvectors [96]. Interestingly, the result arrived

at in Eq. (6.37) is exactly that from [96] for the symmetric case.

Further, if the update to A is defined to be ∆A = ∂Aijeie
T
j , then it becomes possible to find

the derivatives for a perturbation to any element of A as

∂vi
∂Alm

= −
n∑

k=1,k 6=i

vklvim
λk − λi

vk (6.39)

where ∂vi/∂Alm is the partial derivative of the ith eigenvector with respect to the (l,m)th element

of the matrix A, and vab is the bth element of the ath eigenvector of A, which is very similar to
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what is done in [63–70]. A similar proof using left eigenvectors can be shown for the case of any

diagonalizable matrix.

In summary, it once again becomes evident that the very general and very efficient expressions

for eigenvalue and eigenvector Jacobians presented in Section 6.1 may be reduced to a variety of

important special cases presented in the literature. In addition, these simplifications provide powerful

insight into the structure and dynamics of the eigenvalue and eigenvector Jacobian problem.

6.3 Numerical Validation

Forward finite differencing was used to validate the formulation of the new eigenvalue and eigenvector

Jacobians presented in Section 6.1. This provides a numerical approximation of the Jacobians, which

may be compared with the analytic expressions developed in this chapter.

The forward finite differencing was performed by perturbing each element of the parent matrix

individually in order to calculate each element of the Jacobians. The analytic derivatives from

Eq. (6.7) and Eq. (6.9) were then compared with the finite differences, and the percent differences

were calculated. This was performed for 5,000 randomly generated complex matrices of size 2 × 2,

5,000 randomly generated complex matrices of size 3 × 3, and 5,000 randomly generated complex

matrices of size 10× 10. The results for both the eigenvalue and eigenvector derivatives are shown

in the histograms in Fig. 6.1. Note that due to finite precision issues, matrices had to be ignored

where the smallest component of the eigenvector derivatives was less than the perturbation size used

in the finite differencing. As can be seen in the figure, the new method performed well in every

instance, well below 0.1% difference for each and every element of the eigenvalue and eigenvector

Jacobians. In addition, the output from the techniques derived in this chapter matched to within

machine precision the outputs from Eqs. (5.46) and (5.51).
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Figure 6.1: Histograms of percent difference between analytic derivatives computed using Eqs. (6.9)
and (6.8) (eigenvalue derivatives top and eigenvector derivatives bottom) and finite forward dif-
ferencing for 5,000 randomly generated matrices of each size. The histograms are of the percent
difference for each element of the eigenvalue and eigenvector derivatives (for example, for each n×n
matrix, there are n2 eigenvalue derivative elements and n× n2 eigenvector derivative elements).

6.4 Comparison of Performance

The primary goal of the derivations presented in this chapter was to decrease the computational

complexity of those presented in Chapter 5. An examination of the two formulations, however,

indicates that both techniques are O(n4) due to the n× n by n× n2 multiplication in Eq. (6.7) and

the Tr [An] term in Eq. (5.27).1 Despite the fact that both these formulations have the same upper

limit on their computational complexity, it should be clear that the new formulation is much simpler,

both in terms of operations performed2 and (perhaps more importantly) in terms of memory use.

A simulation was run in an attempt to detail the increase in computational efficiency from the

technique in [47] to the technique presented in this paper. The simulation was performed by applying

each technique in turn to 50 randomly generated matrices (the same 50 matrices for each technique)

at matrix sizes varying from 2 to 50. For each run, the computation time of each method was

recorded. Finally, the minimum computation time for each matrix size was chosen for each method,

and the results are shown in Fig. 6.2. As can be seen in the Figure, the new method is at minimum

1This is assuming that the technique used to calculate the determinant is faster than O(n!), as this is the case in
most modern linear algebra libraries.

2The formulation from Chapter 5 has two operations that are of order O(n4) as opposed to one for the formulations
proposed here.
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Figure 6.2: A plot of minimum computation time versus matrix size for the method from Chapter 5
(original method) and the method proposed in this Chapter (new method). Note that the method
from Chapter 5 encounters numerical stability issues around a matrix size of 35 due to Eq. (5.48).
This is why there is a cut-off in the data.

an order of magnitude faster, and the distance between the performance of the two methods increases

as the matrix size increases. Also note that the new method is less susceptible to numerical precision

issues, as is evidenced by the cut-off of the results for the method from Chapter 5.

These simulations were performed using an Intel Core i7-3770 processor at 3.4 GHz and the

matlab programming language.

6.5 Extension to the Generalized Eigenvalue Problem

An additional benefit of the numerically efficient technique is that the ideas are easy to extend to

the general eigenvalue and eigenvector problem [97]

Av = λBv. (6.40)
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To begin, differentiate with respect to a parameter vector x to get

A
∂v

∂x
+
(
vT ⊗ I

) ∂Avec

∂x
= Bv

∂λ

∂x
+ λ (v ⊗ I)

∂Bvec

∂x
+ λB

∂v

∂x
, (6.41)

which again provides a single equation with two unknowns. We can simplify this expression to result

in

(A− λB)
∂v

∂x
= Bv

∂λ

∂x
+ λ

(
vT ⊗ I

) ∂Bvec

∂x
−
(
vT ⊗ I

) ∂Avec

∂x
. (6.42)

The parameter vector x contains parameters that A, B, or both are functions of. In order to develop

the full Jacobians for the eigenvalues of A and B, we can simply set the parameter vector to be the

vectorized forms of A and B respectively, as we will do later. Regardless of what is chosen for the

parameter vector, the resulting form is the same.

Now, we again need to make use of the normalization vector to provide the second equation and

to make the eigenvectors unique and analytic, as discussed in Section 4.1. There are two different

normalizations that make our eigenvectors analytic:

vH0 v = α (6.43)

vH0 Bv = α. (6.44)

The choice of the normalization used depends on the rest of the problem being solved; therefore, we

will discuss the solution for each.

Regardless of the normalization chosen, the first step is to left multiply Eq. (6.41) by vH0 , which

results in

vH0 (A− λB)
∂v

∂x
= vH0 Bv

∂λ

∂x
+ vH0 λ

(
vT ⊗ I

) ∂Bvec

∂x
− vH0

(
vT ⊗ I

) ∂Avec

∂x
. (6.45)

This can be rearranged to get

∂λ

∂x
=

1

vH0 Bv

[
vH0 E

∂v

∂x
−
(
vT ⊗ vH0

)(
λ
∂Bvec

∂x
− ∂Avec

∂x

)]
(6.46)

where the system matrix E is given by

E = A− λB. (6.47)

Now we have a system of two equations with two unknowns that can easily be solved by substi-
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tuting Eq. (6.46) into Eq. (6.42). Making this substitution yields

E
∂v

∂x
=

Bv

vH0 Bv

[
vH0 E

∂v

∂x
−
(
vT ⊗ vH0

)(
λ
∂Bvec

∂x
− ∂Avec

∂x

)]
+
(
vT ⊗ I

)(
λ
∂Bvec

∂x
− ∂Avec

∂x

)
,

(6.48)

which can be rearranged to get

ΨE
∂v

∂x
=
(
vT ⊗Ψ

)(
λ
∂Bvec

∂x
− ∂Avec

∂x

)
(6.49)

where the projection matrix Ψ is given by

Ψ = I− BvvH0
vH0 Bv

. (6.50)

The choice of normalization will determine how we solve this system, since the term ΨE is rank

deficient with a null space in the direction of v. The following subsections address each of the two

possible normalizations in turn.

6.5.1 A Solution for the Normalization vH0 v = α

First we consider the case where vH0 v = α. The derivative of this normalization is given by

vH0
∂v

∂x
= 0n×j (6.51)

where j is the length of x. This tells us that the eigenvector Jacobian must be orthogonal to the

normalization vector, as it did before. Again, this observation leads to a solution either using the

Null Space Matrix or a pseudo-inverse. Therefore, the solution for the eigenvector Jacobian is given

by

∂v

∂x
=
[
vT ⊗ (ΨE + N)

−1
Ψ
](

λ
∂Bvec

∂x
− ∂Avec

∂x

)
(6.52)

where N is the Null Space Matrix as given in Eq. (5.14). This approach is analogous to the technique

used in section 5.1.

Substituting this result in Eq. (6.46) and simplifying gives the eigenvalue Jacobian as

∂λ

∂x
=

(
vT

vH0 Bv
⊗ vH0

[
E (ΨE + N)

−1
Ψ− I

])(
λ
∂Bvec

∂x
− ∂Avec

∂x

)
. (6.53)
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Using a pseudo-inverse instead of the Null Space Matrix results in the same forms with (ΨE + N)
−1

replaced by (ΨE)
†
.

6.5.2 A Solution for the Normalization vH0 Bv = α

We now consider the case where v0Bv = α. The derivative of this normalization is given by

vH0 B
∂v

∂x
+
(
vT ⊗ vH0

) ∂Bvec

∂x
= 0n×j . (6.54)

While this result is certainly more complicated than that in Eq. (6.51), it provides a means to avoid

the Null Space Matrix and pseudo-inverse entirely. Consider the left-hand side of Eq. (6.49). If we

expand the multiplication, we are left with

A
∂v

∂x
− λB

∂v

∂x
− BvvH0 A

α

∂v

∂x
− λ

α
BvvH0 B

∂v

∂x
. (6.55)

Now we can make the substitution given in Eq. (6.54) on the right-most term, resulting in

A
∂v

∂x
− λB

∂v

∂x
− BvvH0 A

α

∂v

∂x
+
λ

α
Bv

(
vT ⊗ vH0

) ∂Bvec

∂x
. (6.56)

Having made this substitution, we can return to Eq. (6.49), which, after algebraic simplification,

becomes

(ΨA− λB)
∂v

∂x
= λ

(
vT ⊗ I

) ∂Bvec

∂x
−
(
vT ⊗Ψ

) ∂Avec

∂x
. (6.57)

All that remains is to solve for the eigenvector Jacobian. It turns out that as long as the eigenvalue

being considered is not a zero eigenvector and the matrix B has a rank of at least n − 1, then the

left-hand side of Eq. (6.57) will be full rank and invertible. These assumptions are generally met in

practice; therefore, the solution to the eigenvector derivative is given by

∂v

∂x
= (ΨA− λB)

−1

[
λ
(
vT ⊗ I

) ∂Bvec

∂x
−
(
vT ⊗Ψ

) ∂Avec

∂x

]
. (6.58)

With the eigenvector derivative in hand, it is easy to find the eigenvalue derivative. Substituting

Eq. (6.58) into Eq. (6.46) and simplifying leaves us with

∂λ

∂x
=

(
λvT

α
⊗ vH0

[
E (ΨA− λB)

−1 − I
]) ∂Bvec

∂x

+

(
vT

α
⊗ vH0

[
I−E (ΨA− λB)

−1
Ψ
]) ∂Avec

∂x

(6.59)
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for the eigenvalue Jacobian.

6.5.3 Numerical Verification

Forward finite differencing was used to validate the formulation of the eigenvalue and eigenvector

Jacobians for the generalized eigenvalue problem. This provides a numerical approximation of the

Jacobians, which may be compared with the analytic expressions developed in this chapter.

The forward finite differencing was performed by perturbing each element of each of the parent

matrices individually in order to calculate each element of the Jacobians. The analytic derivatives

from Eqs. (6.53), (6.52), (6.59), and (6.58) were then compared with the finite differences, and

the percent differences were calculated. This was performed for 5,000 randomly generated complex

matrices of size 2× 2, 5,000 randomly generated complex matrices of size 3× 3, and 5,000 randomly

generated complex matrices of size 10×10 for each normalization. The results for both the eigenvalue

and eigenvector derivatives are shown in the histograms in Figs. 6.3 and 6.4. Note that due to

finite precision issues, matrices had to be ignored where the smallest component of the eigenvector

derivatives was less than the perturbation size used in the finite differencing. As can be seen in

the figure, the methods performed well in every instance for each normalization, well below 0.1%

difference for each and every element of the eigenvalue and eigenvector Jacobians.
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Figure 6.3: Histograms of percent difference between analytic derivatives computed using Eqs. (6.53)
and (6.52) (eigenvalue derivatives top and eigenvector derivatives bottom) and finite forward differ-
encing for 5,000 randomly generated matrices of each size with a normalization of vH0 v = 1. The
histograms are of the percent difference for each element of the eigenvalue and eigenvector Jacobians
(for example, for each n×n matrix, there are 2n2 eigenvalue derivative elements and 2n2 eigenvector
derivative elements).
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Figure 6.4: Histograms of percent difference between analytic derivatives computed using Eqs. (6.59)
and (6.58) (eigenvalue derivatives top and eigenvector derivatives bottom) and finite forward dif-
ferencing for 5,000 randomly generated matrices of each size with a normalization of vH0 Bv = 1.
The histograms are of the percent difference for each element of the eigenvalue and eigenvector
derivatives (for example, for each n × n matrix, there are 2n2 eigenvalue derivative elements and
2n2 eigenvector derivative elements).
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Chapter 7

Example Applications

Having developed the theoretical requirements for the Jacobians and covariance of the eigenvalues

and eigenvectors, we now turn our attention to the application of these techniques to a variety of

problems.

7.1 A Simple 2× 2 Case

As with the theory development, we start with a simple case. Begin by supposing we have the

following 2× 2 matrix:

A =

 3 4

−2 −7

 . (7.1)

Now let us assume that the vectorized version of this matrix has the following uncorrelated covariance

matrix

PAvecAvec
= diag

[
0.05 0.07 0.1 0.004

]
. (7.2)

This system has the following eigenvalues and eigenvectors:

λ1 = 2.123 v1 =

 0.9768

−0.2141


λ2 = −6.123 v2 =

 −0.4016

0.91584

 .
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We can apply the techniques presented in Section 5.1 or Section 6.1 directly for each eigenpair. This

results in the following standard deviation value for the eigenvalue and covariance matrix for the

eigenvector:

σλ1
= 0.2891 Pv1v1

=

 4.471× 10−4 2.039× 10−4

2.039× 10−4 9.303× 10−4


σλ2

= 0.1668 Pv2v2
=

 9.803× 10−4 4.298× 10−4

4.298× 10−4 1.885× 10−4

 .
Now, to demonstrate that this technique correctly maps the covariance of the matrix into the variance

and covariance of the eigenvalues and eigenvectors, we ran a Monte Carlo analysis of 1,000,000 runs

by adding noise to the terms of the matrix according to the information encoded in the covariance

matrix of the vector form of A. For each iteration, we recorded the eigenvalues and eigenvectors

and then used this data to generate a sample standard deviation for the eigenvalues and a sample

covariance for the eigenvectors. Comparing these numerical results with the analytic resulted in the

following percent differences (PD):

PD(σλ1
) = 0.37% PD(Pv1v1

) = 0.79%

PD(σλ2) = 1.00% PD(Pv2v2) = 0.55%.

We make a note here that the percent differences for the covariance matrices indicate the percent

difference for each term of the covariance matrix, since the covariance matrix is actually only of rank

1.

7.2 Ellipse Fitting

We now turn our attention to the application of these techniques to an actual estimation problem

involving the use of eigenvectors in the form of ellipse fitting. Ellipse fitting to noisy data points, as

demonstrated in Fig. 7.1, is a well studied problem [27,29,98–104] that has numerous applications,

especially in computer vision and spacecraft optical navigation [24, 25, 105–109]. One technique

that has received much attention for its speed and ease of implementation is the numerically stable

Fitzgibbon’s method (NSFM) [27].

In the NSFM, noisy 2 dimensional data (in the form of {x, y} pairs) are used to estimate ellipse
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Figure 7.1: An example ellipse fit to noisy data. The noisy data points are shown as asterisks, and
the fit ellipse is shown as a gray line.

parameters { A B C D E F } that form the coefficients in the implicit equation for a conic

section

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (7.3)

where the result is an ellipse if 4AC > B2. NSFM computes the solution through the use of a 3× 3

eigenvalue and eigenvector problem. We now briefly outline the steps in this technique. The reader

is directed to [27] for the complete derivation.

The first step is to form the matrices D1 and D2 using the set of n noisy {x, y} pairs as follows:

D1 =



x2
1 x1y1 y2

1

...
...

...

x2
i xiyi y2

i

...
...

...

x2
n xnyn y2

n


D2 =



x1 y1 1

...
...

...

xi yi 1

...
...

...

xn yn 1


(7.4)

where subscript i represents the ith {x, y} pair. Having formed the design matrices (D1 and D2),

63



we can calculate the scatter matrices as

S1 = DT
1 D1 S2 = DT

1 D2 S3 = DT
2 D2 (7.5)

and the constraint matrix as

C =


0 0 2

0 −1 0

2 0 0

 . (7.6)

Finally, we can define the reduced scalar matrix as

M = C−1(S1 − S2S
−1
3 ST2 ), (7.7)

which is a 3× 3 matrix.

The ellipse parameters can be found by solving the eigenvector–eigenvalue problem given by

Mv1 = λv1 (7.8)

where v1 = [ A B C ]T . It can be shown that there is only one eigenvector for which 4AC−B2 >

0; this yields the optimal solution for the parameters A, B, and C. From here, the remaining

parameters can be computed as

v2 = −S−1
3 ST2 v1 (7.9)

with v2 = [ D E F ]T .

We now turn our attention to solving for the covariance of the best fit ellipse as a function of the

covariance of the data points. Begin by assuming we have knowledge of the accuracy of the {x, y}

pairs in the form of the standard deviation of these coordinates, σx and σy respectively. Assuming

noise in the x-direction is uncorrelated with noise in the y-direction, we can define a covariance

matrix for each and every data point as

Ppp =

 σ2
x 0

0 σ2
y

 (7.10)

where p = [ x y ]T is a data point expressed as a column vector. To use the techniques outlined

in this paper, we must find the values of the covariance matrix of Mvec. The covariance matrix of
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Mvec is given by

PMvecMvec
=

n∑
i=1

∂Mvec

∂pi
Ppp

∂Mvec

∂pi

T

(7.11)

where pi is the ith data point and

∂Mvec

∂pi
=

[
∂Mvec

∂xi

∂Mvec

∂yi

]
. (7.12)

Proceeding by direct computation, the derivations of ∂Mvec/∂xi and ∂Mvec/∂yi are straightforward.

Note that both of these are column vectors. We omit the corresponding details for the sake of brevity.

Having calculated the covariance matrix for Mvec, we can now directly compute M and its

covariance matrix using the results presented in Section 5.2 or 6.1, thus giving the expression for

the covariance of the first three parameters of the optimal ellipse fit. Further, once the covariance

of the first three parameters is obtained, it is easy to show that the covariance of the second three

parameters is

Pv2v2 =

n∑
i=1

∂v2

∂pi
Ppp

∂v2

∂pi

T

(7.13)

and the cross-covariance between v1 and v2 is given by

Pv1v2 =

n∑
i=1

∂v1

∂pi
Ppp

∂v2

∂pi

T

(7.14)

where

∂v1

∂pi
=

[
∂v1

∂xi

∂v1

∂yi

]
∂v2

∂pi
=

[
∂v2

∂xi

∂v2

∂yi

]

are left to the reader to derive. This completes the 6 × 6 covariance matrix for all of the optimal

ellipse parameters.

We implemented the above steps and calculated the analytic covariance for an ellipse with σx =

0.01 and σy = 0.01, and x and y were about 4 orders of magnitude larger. We then ran a Monte

Carlo analysis of 20,000 runs, adding noise to the x and y data, and generated the plot shown

in Fig. 7.2. This plot shows the results of the Monte Carlo analysis, as well as the analytic and

numeric covariances for v1. As can be seen, the numerical and analytic covariances match very

well. In addition, this plot demonstrates how the covariance matrix is rank deficient, and thus the

covariance is represented as a disk rather than an ellipsoid.

65



0.8 0.81 0.82 0.830.28

0.3

0.32

0.34

0.36

0.47

0.475

0.48

0.485

0.49

0.495

0.5

 

A

P1

P3

B

P2

 

C

Monte Carlo Results
Truth
Numerical 3σ Covariance
Analytic 3σ Covariance
Principle Axes of Covariance

(a) Ellipse Parameter Frame

−0.04 −0.02 0 0.02 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

P2

P
1

(b) Principal Frame

Figure 7.2: Covariance results for the first three parameters of an ellipse fit. The figure to the left
shows the covariance in the ellipse parameter frame {A,B,C}, while the figure to the right shows
the covariance and Monte Carlo results rotated in the principal axis frame of the covariance matrix.
The legend is for both figures.

7.3 Attitude Estimation

Attitude estimation represents another important application of the eigenvector problem in the field

of data fusion. Suppose that we collect a set of m noisy unit vector observations in a sensor frame,

b̃i, along with their corresponding unit vectors in a reference frame, ai. In the case of attitude

estimation, these are 3 dimensional unit vectors such that
{

b̃i, ai

}
∈ R3. Finding the optimal

rotation between the reference frame and the sensor frame, T, is described by the well-known

Wahba Problem [110]:

Min J(T) =
1

2

m∑
i=1

wi

∥∥∥b̃i −Tai

∥∥∥ . (7.15)

In [35], it was shown that the optimal solution to Eq. (7.15) is given by

Kq̄ = λq̄ (7.16)

where the attitude quaternion, q̄, is found by choosing the unit eigenvector associated with the largest

eigenvalue. Although first published by Keat, this solution was developed by Paul Davenport and

has since become the foundation for many popular numerical solutions for efficiently solving for

only the eigenvector of interest [111, 112]. These are widely used in practice for spacecraft attitude

estimation. The values in the symmetric 4×4 matrix K are found using the pairs of m corresponding
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unit vectors

K =

 S− µI3×3 z

zT µ

 (7.17)

B =

m∑
i=1

1

σ2
i

b̃ia
T
i z =

m∑
i=1

1

σ2
i

(
b̃i × ai

)
(7.18)

µ = trace [B] S = B + BT . (7.19)

This form of the solution assumes that the quaternion has the vector part first and scalar part

second, q̄T = [ qT qs ]. Thus, the attitude estimation problem has been reduced to finding the

solution to a symmetric 4× 4 eigenvector problem.

The application of the theory introduced in this paper now becomes clear. The noise in the

measurements introduce perturbations in the matrix K. The result is error in the estimated attitude

quaternion. Because the attitude quaternion is an eigenvector of K, the covariance of this eigenvector

may be estimated with the techniques introduced in this paper.

There are two important notes to make before proceeding. First, both the “true” and “noisy”

versions of K are symmetric. Thus, the matrix K only really has 10 unique values,

K =



k11 k12 k13 k14

k12 k22 k23 k24

k13 k23 k33 k34

k14 k24 k34 k44


. (7.20)

If we define the unique entries of K as the 10× 1 vector k

kT = [ k11 k12 k13 k14 k22 k23 k24 k33 k34 k44 ] , (7.21)

then we can write

Kvec = Gk (7.22)

and eventually

PKvecKvec
= GPkkGT (7.23)

where Pkk is the covariance of k. Finding G for this case is straightforward and is left to the reader.

This provides the necessary information to implement the general n×n solution for the specific 4×4
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case.

The second note worth making has to do with the way attitude errors are expressed. The

formulation developed in this paper assumes that the eigenvector errors (and, hence, the attitude

quaternion errors in this example) are additive in nature. That is, q̄ = ˆ̄q + ∆q̄. We know, however,

that attitude errors are actually multiplicative,

q̄ = δq̄� ˆ̄q (7.24)

where � is the quaternion multiplication operator. We use the non-Hamiltonian form [36], such

that the above equation defines δq̄ to be the attitude error that transforms the estimated attitude

quaternion, ˆ̄q, into the true attitude quaternion, q̄. Assuming that the attitude error is small, the

two forms (additive error and multiplicative error) may be equated, and to first order we see that

∆q̄ =

 ∆q

∆qs

 = M δq (7.25)

where the 4× 3 matrix M is defined as

M =

 q̂sI3×3 + [q̂×]

−q̂T

 . (7.26)

We now turn our attention to the application of the techniques outlined in this paper to this

problem. The first step is to calculate the covariance of k as a function of the measurement covari-

ance. It can be shown that the measurement covariance for a unit vector observation is approximated

by [26]

Ri = σ2
i

[
b̃i×

] [
b̃i×

]T
= σ2

i

(
I3×3 − b̃ib̃

T

i

)
(7.27)

where Ri is the covariance matrix for the ith measurement and σi is the standard deviation of the

rotation error on the ith measurement. With the measurement covariance in hand, the covariance

of k can be calculated as

Pkk =

m∑
i=1

∂k

∂b̃i
Ri

∂k

∂b̃i

T

(7.28)

where Pkk is the covariance matrix of vector k and ∂k/∂b̃i is the Jacobian of k with respect to the

ith measurement vector.

After computing the covariance matrix of k, the covariance matrix of Kvec can be computed using
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Eq. (7.23). We now have all of the information needed to use the techniques outlined in this paper.

Running the matrix K, the largest eigenvalue and corresponding eigenvector, and the covariance

matrix for Kvec through the techniques for the n × n case will directly yield the covariance of the

attitude quaternion estimate. We once again note that this covariance matrix is for additive errors

in the quaternion. That is, application of the equations from Sections 5.3 or 6.1 yields P∆q̄∆q̄.

In order to validate this method, we performed a Monte Carlo analysis of 10,000 runs varying

the multiplicative noise on the unit vector measurements. For the Monte Carlo analysis, we did not

enforce the normalization conditions discussed in this paper, since quaternions must be unit length.

In addition, we compared the analytic results of our technique to another analytic expression for

the attitude covariance, which is derived from the Fisher information matrix (FIM). This formulation

is given in [26] (as later modified to this form in [113]):

Fθθ = Tr
[
TBT

]
I3×3 −

1

2
(TBT + BTT ) (7.29)

Pδq̄δq̄ =

 1
4F−1

θθ 03×1

01×3 0

 (7.30)

where Fθθ is the FIM. This representation of the covariance is for the multiplicative errors. The

additive error covariance can then be calculated using

P∆q̄∆q̄ = MF−1MT . (7.31)

The results of the analytic covariance as discussed in this document, the analytic covariance using

the FIM, and the numerical covariance of the Monte Carlo results (all for the additive noise) are

shown in Fig. 7.3. As can be seen, all of the results match very well. In addition, we note that the

two theoretical covariances (our new eigenvector covariance and the FIM covariance from [26]) are

equivalent to machine precision.
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Figure 7.3: 2D covariance projections for the Davenport q-method solution to the Wahba problem.
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7.4 Horizon-based OPNAV

7.4.1 A Review of Horizon-based OPNAV

There are a variety of optical navigation (OPNAV) problems that make use of a celestial body’s

horizon. One of the most popular techniques in horizon-based OPNAV is the central and apparent

diameter (CAD) method. While a variety of solutions for CAD OPNAV exist, the present work

will consider the method recently put forward by Christian [24].1 A brief review of this technique

is presented here, primarily as a way of introducing key notation. Readers interested in how this

technique works (or CAD OPNAV in general) are directed to References [24] and [114] for a thorough

discussion.

An ellipse approximation is made based off of the extracted 

horizon points.  This ellipse contains information about the 

position of the camera relative to the body being observed.

Horizon points are extracted over a lit section 

of the limb using image processing tools.

Figure 7.4: Lit horizons of celestial bodies are used to estimate the relative position of the spacecraft
in CAD OPNAV. Diagram modeled after Reference [24].

To begin, suppose there is an ellipse in the camera image plane that has been fit to points on the

planet’s lit horizon (see Figure 7.4). This ellipse fit is described by the six coefficients of the implicit

equation for a conic section given as

Ax2 +Bxy + Cy2 +Dx+ Fy +G = 0, (7.32)

1This earlier technique has since been superseded by newer methods, such as Iterative Horizon Reprojection [114]
and a non-iterative technique using Cholesky factorization [115]. Despite this, the original CAD method is an excellent
case study for eigenvector covariances from the generalized problem.
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where x and y are coordinates of points on the edge of the ellipse and the result is an ellipse if

4AC > B2. Further, modeling the planet as a tri-axial ellipsoid and describing the shape through

the 3×3 matrix A, such that pTi Api = 1 (where pi is a point on the ellipsoid’s surface and everything

is in the camera frame), the relationship of the camera’s position with respect to the planet, r, can

be shown to be [24]

λAr = Cr. (7.33)

Here, the matrices A and C are explicitly given as

C =
1

2


2Af2 Bf2 Df

Bf2 2Cf2 Ff

Df Ff 2G

 A = TP
C


a−2 0 0

0 b−2 0

0 0 c−2

TC
P ,

where f is the camera focal length, {a, b, c} are the parameters of the tri-axial ellipsoid model of

the observed planet, and TP
C is the rotation matrix from the planet-fixed principal axis frame to the

camera frame. Thus, it is known that r is in the direction of one of the eigenvectors of A and C. As

shown in [24], the eigenvector associated with the eigenvalue of unique sign will produce the correct

solution, resulting in

rI = −sign (v3) ρTC
I v (7.34)

where

ρ =

[
Tr [C]− λTr [A]

λ(vTAAv)− λ(vTAv)Tr [A]

] 1
2

(7.35)

and λ is the uniquely signed eigenvalue from Eq. (7.33), v = [ v1 v2 v3 ]T is the unit-eigenvector

corresponding to λ, and TC
I is the rotation matrix from the camera frame to the inertial frame.

7.4.2 Covariance of the Ellipse Fit

In order to develop the covariance expressions for the position measurement, we need to understand

the covariance in the ellipse fit. Beginning with

{
A B C D F G

}
as ellipse parameters—

and defining ỹi =

[
x̃i ỹi

]T
as a noisy data point that is thought to lie along the lit horizon and

was extracted from an image—the algebraic distance can be defined as the residual from Eq. (7.32):

d̃i = d(ỹi) = Ax̃2
i +Bx̃iỹi + Cỹ2

i +Dx̃i + F ỹ2
i +G. (7.36)
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Clearly, when ỹi is a point directly on the ellipse, the algebraic distance will be 0, and when ỹi is

close to the ellipse, the algebraic distance should be close to 0.

From here, assuming that the ellipse parameters are normalized such that A = 1,2 a new vector

can be defined as

α =

[
B C D F G

]T
. (7.37)

As shown in Reference [24], after making some assumptions about the body being observed and the

extracted points being uncorrelated, the covariance of α is

Pαα ≈
(
N̂iRyiyi

N̂
T

i

)(
HTH

)−1

(7.38)

where

N̂i =
∂d̃i
∂ỹi

=

[
2Ax̃i +Bỹi +D Bx̃i + 2Cỹi + F

]

H =



x̃1ỹ1 ỹ2
1 x̃1 ỹ1 1

x̃2ỹ2 ỹ2
2 x̃2 ỹ2 1

...
...

...
...

...

x̃nỹn ỹ2
n x̃n ỹn 1


Ryiyi

≈ σ2
FPAI2×2.

Here, σFPA is the accuracy of the horizon point extraction, thereby providing the required rela-

tionship between the accuracy of the edge detection method and the resulting covariance matrix of

the best-fit ellipse parameters. It can be shown that this method results in approximately the same

covariance matrix regardless of what point is chosen for nearly spherical planets.

7.4.3 Covariance of the CAD OPNAV Measurement

With the covariance of the ellipse fit in hand, the covariance of the CAD OPNAV measurement

can be found by expanding Eq. (7.34) to first order using a Taylor series expansion about our best

estimates. We need to do this with regard to some parameter vector x, which we will define to

include the horizon, α (see Eq. (7.37)), the ellipsoidal model of the planet, b, and the attitude error,

2In [24] and [25], a normalization of G = 1 was used. That normalization introduces a well known singularity
when the edge of the ellipse passes through the origin of the plane in which it is defined [100]. Since any planetary
body will project to an ellipse that is nearly a circle, the parameter A will never be near 0, and thus singularities are
avoided by using this non-traditional normalization.
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δθ:

x =

[
αT bT δθT

]
(7.39)

where b =

[
a b c

]T
. This results in

rI ≈ r̂I +
∂rI
∂x

∣∣∣∣
x̂

(x− x̂) . (7.40)

Defining ∆x = (x− x̂), Eq. (7.40) may be rearranged to find

∆rI ≈
∂rI
∂x

∣∣∣∣
x̂

∆x. (7.41)

Now, letting Hx = ∂rI
∂x

∣∣
x̂
, we can directly find the covariance of the CAD OPNAV measurement

as

PrIrI = E
[
∆r∆rT

]
. (7.42)

Distributing the expected value operator, substituting in Eq. 7.41, and assuming the errors in the

ellipse parameters are uncorrelated with errors in the model ellipsoid parameters (as well as the

attitude error) leads to

PrIrI = HxE
[
∆x∆xT

]
HT

x

=HxPxxHT
x , (7.43)

where

Pxx =


Pαα 05×3 05×3

03×5 Pbb 03×3

03×5 03×3 Pδθδθ

 (7.44)

is the covariance matrix for the parameter vector.

Recall that Pαα is known from Eq. (7.38), Pbb is some assumed uncertainty in the planet shape

model, and Pδθδθ should be known from the attitude filter; therefore, all that is needed for Eq. (7.43)

is to calculate the expression for Hx. This follows.
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7.4.4 Jacobian Matrix of the Position Estimate

The matrix Hx is simply the Jacobian matrix of the instantaneous CAD OPNAV position estimate

with respect to x (evaluated at the best estimate). Using matrix-vector calculus and the chain rule

leads to

Hx =
∂r

∂x
= −sign (v3)

[
TC
I

(
v
∂ρ

∂x
+ ρ

∂v

∂x

)
+
(
ρvT ⊗ I3×3

) ∂

∂x

(
TC
I

)
vec

]
. (7.45)

Additionally, the change in the range term (the partial derivative of ρ) can also be found by

using the usual rules of matrix-vector calculus and the chain rule. The derivatives are given by

∂ρ

∂x
=

t

m
(7.46)

where

t =d

[
Tr [C]x − λTr [A]x − Tr [A]

∂λ

∂x

]
− n

[
vTZ

(
2λ
∂v

∂x
+ v

∂λ

∂x

)
+
(
λvT ⊗ vT

) (
A⊗ I3×3 + I3×3 ⊗A−AvecI

T
vec − Tr [A] I9×9

) ∂Avec

∂x

]
,

(7.47)

m = 2ρd2, Z = (AA− Tr [A] A), n = Tr [C]− λTr [A], and d = λvTZv are defined to simplify the

notation.

It is now apparent that the derivatives of eigenvalues and eigenvectors with respect to x are

required. Since this is a generalized eigenvalue problem, eigenvalue and eigenvector Jacobians can

be directly found by applying Eqs. 6.53 and 6.52, respectively. The partial derivatives of the matrices

with respect to x are given by

∂Cvec

∂x
=

[
∂Cvec

∂α 09×6

]
(7.48)

∂Avec

∂x
=

[
09×5

∂Avec

∂b
∂Avec

∂δθ

]
. (7.49)

All that remains undefined are the derivatives of the trace operators. The derivatives of the

traces can be shown to be

Tr [C]x =

[
ITvec

∂Cvec

∂α 09×6

]
(7.50)

Tr [A]x =

[
09×5 ITvec

∂Avec

∂b ITvec
∂Avec

∂δθ

]
(7.51)
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by considering the vectorized form of the trace operator.

The derivative of Cvec can easily be found by considering the structures of C and α:

∂Cvec

∂α
=



0 0 0 0 0

f2/2 0 0 0 0

0 0 f/2 0 0

f2/2 0 0 0 0

0 f2 0 0 0

0 0 0 f/2 0

0 0 f/2 0 0

0 0 0 f/2 0

0 0 0 0 1



. (7.52)

The derivative of Avec with respect to b is slightly more difficult to find. First, use vectorization

to express

Avec = (TP
C ⊗TP

C)APvec (7.53)

where AP is the ellipsoidal model expressed in the principal frame of the planet being considered

(i.e., AP = diag

[
a−2 b−2 c−2

]
where diag [•] forms a square diagonal matrix when • is a

vector). Since APvec is now on the right, the partial derivative can be applied to obtain

∂Avec

∂b
=
(
TP
C ⊗TP

C

) ∂APvec

∂b
(7.54)

where the matrix derivative of A in the principal frame is found by considering the structure of AP .

This results in

∂APvec

∂b
= −2



a−3 0 0

0 0 0

0 0 0

0 0 0

0 b−3 0

0 0 0

0 0 0

0 0 0

0 0 c−3



. (7.55)
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Similarly, to find the derivative of Avec, begin with the vectorization identities

Avec =


(TI

C ⊗TI
C)AIvec

(I⊗TI
CAI)(T

C
I )vec

(TI
CAI ⊗ I)(TI

C)vec

(7.56)

where AI is the ellipsoidal model expressed in the inertial frame (i.e., AI = TP
I APTI

P where TP
I

is the rotation matrix from the principal frame to the inertial frame). Now the application of the

chain rule gives

∂Avec

∂δθ
=
(
I⊗TI

CAI

) ∂

∂δθ

{(
TC
I

)
vec

}
+
(
TI
CAI ⊗ I

) ∂

∂δθ

{(
TI
C

)
vec

}
(7.57)

since AI is not a function of δθ. Modeling the attitude error to first order as

TC
I = (I− [δθ×])T̃C

I , (7.58)

then vectorization, the chain rule, and properties of a skew-symmetric matrix can be used to find

∂

∂δθ

{(
TC
I

)
vec

}
= −

(
TI
C ⊗ I

) ∂ [δθ×]vec

∂δθ
(7.59)

∂

∂δθ

{(
TI
C

)
vec

}
=
(
I⊗TI

C

) ∂ [δθ×]vec

∂δθ
(7.60)

where T̃C
I is the true rotation matrix from the camera to the inertial frame and [•×] places • into the

skew-symmetric cross product matrix. Finally, by considering the structure of the skew-symmetric

cross product matrix, it is easy to find that

∂ [δθ×]vec

∂δθ
=



0 0 0

0 0 1

0 −1 0

0 0 −1

0 0 0

1 0 0

0 1 0

−1 0 0

0 0 0



, (7.61)
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which fully defines the derivatives of the trace operators and the Jacobian matrix of the state vector

with respect to the parameter vector.

7.4.5 Numeric Verification of the Developed Covariance Expressions

In order to verify the analytic expressions provided above, a Monte Carlo analysis of 1,000 runs

was conducted to generate a numerical covariance to compare with the analytic covariance. The

Monte Carlo was performed by generating synthetic 1024× 1024 images of the Earth, using an edge

extraction method to extract the edges, and then using the CAD OPNAV method on a portion

of the extracted edges. The results are presented as 3D and 2D scatter plots with corresponding

3σ error ellipsoids in Figure 7.5. These results were run on a case where the Moon was located at[
−750 350 100, 000

]
km in the camera frame, the Moon was nominally modeled as a sphere

with radius 1737.4 km, the standard deviation for each ellipsoid parameter was 2.5 km [116], the

attitude error was assumed to have a standard deviation of 0.02 degrees, the spacecraft was assumed

to be on the equatorial plane, and the synthetic image was assumed to have a SNR of 13.125 with

no blur (allowing the points to be extracted within 0.002 degrees or 0.07 pixels). As a point of

comparison for the horizon extraction error, the Orion docking camera has a 40◦ × 30◦ FOV with

a 2400 × 1800 pixel FPA [117]. This results in approximately 0.017 deg/pixel. Thus, an error of

0.002 deg is equivalent to approximately 0.12 pixels on the docking camera FPA, which is more than

achievable with modern edge extraction procedures.

It is clear from Figure 7.5 that the analytic and numerical covariance match very well. There

is almost no noticeable difference between the analytic covariance (black covariance lines) and the

numerically computed Monte Carlo covariance (red covariance lines). This verifies that the analytic

expressions presented capture the important contributing factors to the CAD measurement error.

Therefore, the above equations successfully trace errors originating on the camera focal plane array

and in the planet model through the entire projection, image processing, and estimation processes,

ending with an expression for the CAD OPNAV measurement covariance.
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(c) Projection of covariance ellip-
soid onto xy, xz, and yz planes.

Figure 7.5: Synthetic image, error ellipses, and Monte Carlo results. CAD method performed only
on the edge highlighted in green.

7.5 The Design of Natural Frequencies of a Mass Spring Sys-

tem

We will now consider a simple problem in dynamics to see how the Jacobians can be used in the

design of systems. Assume we have a simple undamped three degree of freedom mass spring system

as shown in Fig. 7.6. Now, it is easy to see that this system is governed by the differential equation

m1 m2 m3

z1 z2 z3

k1 k2 k3

Figure 7.6: A simple undamped 3 degree of freedom mass spring system. mi are the masses of
the blocks and ki are the spring constants of the springs. The wheels are allow the boxes to glide
frictionlessly.

Mz̈ + Kz = 0 (7.62)
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where

M = diag

[
m1 m2 m3

]
, (7.63)

K =


k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

 , (7.64)

and m1−3 and k1−3 are the mass and spring constants from Fig. 7.6, respectively.

It can be shown that an ODE of this type will have a solution of the form

z(t) =

3∑
i=1

civi cos
(√

λit+ φi

)
(7.65)

where ci is a constant coefficient determined by the initial conditions, vi and λi are the ith eigen-

value/eigenvector pair of

Kv = λMv vTMv = 1, (7.66)

and φi is a constant phase shift angle determined by the initial conditions of the system [21]. In

these types of problems, the square roots of the eigenvalues are known as the “natural frequencies”

of the system, and the eigenvectors are known as the normal modal shapes, with the reason coming

from the way these values affect the solution of the problem.

When designing dynamical systems, it is generally a good idea to avoid applying a cyclic force

to a system that has a similar frequency to one of the natural frequencies of the system, as this can

quickly lead to instability and failure.3 In general, however, we cannot control the forcing conditions,

only the design of the system itself. Therefore, it is important to be sure that any expected cyclic

forces will not excite close to the natural frequency of the system, which requires “designing” the

eigenvalues of the system. Having the Jacobians for the eigenvalues can be a great help in these

cases.

For instance, return to our simple example problem and assume that we know this system will

experience a cyclic excitation of 2Hz. Also, assume we have a nominal design ofm1 = 5kg, m2 = 2kg,

m3 = 3kg, k1 = 2N/m, k2 = 5N/m, and k3 = 1N/m. The eigenvalues and eigenvectors of this

3For a great example of this, checkout some clips of the Takoma Narrows Bridge collapse [118].
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nominal design are given by

λ1 = 0.1419 λ2 = 0.5863 λ3 = 4.0051

v1 =


−0.1204

−0.1515

−0.2638

 v2 =


0.1716

0.1396

−0.1840

 v3 =


−0.1494

−0.3893

−0.0353

 .

Therefore, it is easy to see that the nominal design has a natural frequency close to 2 from the third

eigenvalue, which based on our expected excitation is not good. We can use the eigenvalue Jacobian

for the third eigenvalue to see how we can adjust this value.4

The eigenvalue Jacobian can be calculated directly using Eq. 6.59 with A = K, B = M, and

x =

[
m1 m2 m3 k1 k2 k3

]T
. (7.67)

All we need for the Jacobian is the partial derivatives of K and M with respect to x, which are

given by

∂Kvec

∂x
=



09×3

1 1 0

0 −1 0

0 0 0

0 −1 0

0 1 1

0 0 −1

0 0 0

0 0 −1

0 0 1



∂Mvec

∂x
=



1 0 0

09×3

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1



. (7.68)

This allows us to calculate the eigenvalue Jacobian as

∂λ3

∂x
=

[
−0.2137 −1.4503 −0.0120 0.0534 0.6935 0.4309

]
, (7.69)

and thus we can predict the new eigenvalue by right multiplying ∂λ3/∂x by our changes to x. For

instance, if we were to change our value of m2 from 2kg to 2.25kg,5 then we would expect the new

4Of course, this simple problem is symbolically solvable; thus, we do not need a nominal design, but in general,
the systems are much more complex in real world applications.

5Here we chose to perturb m2 since it will result in the largest change to the natural frequency according to the
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value for λ3 to change by −0.3626, resulting in λ3 = 3.6425 and a new natural frequency of 1.9085.

In actuality, we get a new eigenvalue of λ3 = 3.6539, resulting in a new natural frequency of 1.9193.

This shows how we can use the Jacobians in the design of dynamic systems. A similar extension to

FEA is also applicable.

eigenvalue Jacobian. This is another benefit of having symbolic expressions for the eigenvalue Jacobians.
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Chapter 8

Conclusion

The covariance expressions for eigenvalues and eigenvectors were developed with respect to the

covariance of the elements of the parent matrix. These expressions required the calculation of

eigenvalue and eigenvector Jacobian matrices with respect to the elements of the parent matrix.

Two new formulations were derived for the complete Jacobians of eigenvalues and eigenvectors

with respect to the elements of their parent matrix. The solutions rely on only the eigenvalue

and eigenvector being considered and are valid for any simple complex eigenvalue–eigenvector pair.

Further, the parent matrix may contain complex entries and need not be symmetric. As a result,

the methods presented here are extremely general with applications to finite-element analysis (FEA)

solutions to vibration problems, fitting of an ellipse to scattered data points, quaternion-based

attitude estimation, and a host of other important scientific and engineering problems.

The second set of eigenvalue and eigenvector Jacobians developed in Chapter 6 was shown to

collapse to well known results if the parent matrix is either (1) real and symmetric or (2) real and

diagonal. This method may also be reinterpreted to gain a deeper understanding of perturbations

of the eigenspace. In addition, this method was extended to the generalized eigenvalue problem for

two different normalization conditions.

The eigenvalue and eigenvector Jacobians were validated by comparison with forward finite dif-

ferencing. The computational performance speed of the technique in Chapter 6 was shown to be

better by a factor of 10 (or greater for large matrices) when compared with the performance of the

technique in Chapter 5.

Example applications were given detailing how to apply these Jacobians to real estimation and

ODE problems. The results for each application were validated using Monte Carlo Analysis.
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Future work on these topics includes extending the method presented in Chapter 6 to the case

when the eigenvalues are semi-simple. The existing literature indicates that to do this will require

the computation of the Hessian matrix (second derivative) of the eigenvalues with respect to the

parent matrix. In addition, it would be useful to compare the numerical performance of this method

with the techniques from the existing literature for the general case. Finally, further insight could

be gained by examining more simplified cases.
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