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Abstract 

Study on Electrolyte-gated Graphene Biosensors for Biomarker Detection 

Jianbo Sun 

Biosensors are called upon to provide valuable benefits for human society in vital fields such as 

disease diagnosis, food inspection, environment monitoring, etc. Among the various biosensor 

architectures, the field effect transistor (FET) biosensors are promising as the next generation 

nanoelectronic biosensors, particularly attractive for point-of-care biomedical applications. The 

FET biosensors typically operate by measuring the conductance change of the semiconducting 

channel induced by the adsorption of the target biomolecules on it. The superior properties of 

graphene, including the unique electronic characteristics, facile functionalization and good 

biocompatibility, etc., make it an ideal building block for the FET biosensors. In this dissertation, 

we present studies on the electrolyte-gated graphene field effect transistor (EGGFET) biosensor 

and its application for the label-free detection of biomarkers. 

Poly(methyl methacrylate) (PMMA) residues have long been a critical challenge for the transfer 

of the chemical vapor deposited (CVD) graphene, which is critical to obtain reliable devices. To 

address this issue, we first studied the degradation of the PMMA residues upon thermal annealing 

using Raman spectroscopy. An electrolytic cleaning method is shown to be effective to remove 

these post-annealing residues, resulting in a clean, residue-free graphene surface. 

The performance of the EGGFET biosensor is demonstrated by the successful detection of human 

immunoglobulin G (IgG) using IgG-aptamer as the bioreceptor. The gate voltage with the 

minimum conductivity (𝑉Dirac) in the transfer curve of the EGGFET biosensor is used for the 

quantitative measurement of IgG concentration. In EGGFET biosensors, the graphene channels 

are directly exposed to the electrolytes, of which the composition, concentration and pH may vary 

during the testing. The response of the EGGFET biosensors is found to be susceptible to these 

variations which might lead to high uncertainty or even false results. We present an EGGFET 

immunoassay which allows well regulation over the matrix effect. The performance is 

demonstrated by the detection of human IgG from serum. The detection range of the EGGFET 

immunoassay for IgG detection is estimated to be around 2-50 nM with a coefficient of variation 

(CV) of less than 20%. The limit of detection (LOD) is around 0.7 nM. 

Different from the metal-oxide-semiconductor field effect transistors (MOSFET), the gate voltage 

is applied on the electrolyte and the electrical double layer (EDL) at the electrolyte-graphene 

interface serves as the gate dielectric in EGGFET. We studied the capacitance behavior of the 

electrolyte-graphene interface; the results suggest that the electrolyte-graphene interface exhibits 

a complex constant phase element (CPE) behavior (
1

𝑍
= 𝑄0(𝑗𝜔)𝛼) with both 𝑄0 and 𝛼 varying as 

functions of the gate voltage. The EDL capacitance and the quantum capacitance are determined 

which allows us to extract the carrier density and mobility in graphene. This study give insight 

into the device physics of the EGGFET biosensor and is instructive for the design of the EGGFET 

biosensors on the device level. 
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Chapter 1. Dissertation overview 

1.1. Background and Motivations 

The specific detection of biomolecules is of critical importance in a variety of fields, such as 

disease diagnosis, food quality inspection, environment monitoring, etc. Traditional analytical 

techniques rely on complicated instruments and complex operations, e.g. high performance liquid 

chromatography - mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay 

(ELISA) [1,2]. These techniques are expensive, time-consuming, demanding on operation skills 

and cannot meet the expanding demands of the fast developing society [3,4]. Biosensors are easy 

to use, capable for rapid detection with high sensitivity and selectivity, feasible for mass 

production and thus are speculated as a ubiquitous technology of the future for human health and 

wellbeing [5–7]. 

Biosensor is a device that uses specific biochemical reactions mediated by isolated enzymes, 

immunesystems, tissues, organelles or whole cells to detect chemical compounds usually by 

electrical, thermal or optical signals [8]. The first biosensor can be dated back to 1962, as reported 

by Leland C. Clark Jr. [9]. Since then various types of biosensors have been developed, including 

electrochemical, optical, piezoelectric, thermometric, magnetic or acoustic ones, etc., classified by 

the transducing mechanism [5,7,10]. Successful detection of various analytes has been reported, 

such as metabolites [11,12], nucleic acids [13,14], proteins [15,16], etc. However, despite the wide 

prospect, till now the practical application of biosensors is still quite limited [5,6]. The challenges 

include the unsatisfactory performance, impracticability for real sample analysis, lack of corollary 

equipment, etc. [5,6]. In recent years, the rapid development of the nanotechnologies opens up 

new opportunities to promote the development of the biosensors [4,17–20]. On one hand, the 

performance of the biosensors were significantly improved by the introduction of nanomaterials; 
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on the other hand, new biosensing mechanisms are being discovered in nanoscale, such as surface 

enhanced Raman spectroscopy (SERS) [21]. 

Among the various types of biosensors, field effect transistor (FET) biosensors are of particular 

interest due to their high sensitivity, simple configuration and cost-effective mass producibility, 

which make them highly promising as the next generation nanoelectronics biosensors for point-

of-care biomedical applications [19,22–24]. FET biosensors typically operate by measuring the 

conductance change of the channel induced by the specific adsorption of target molecules on it. 

The first FET biosensor (ion-selective field effect transistor, ISFET) was invented by Bergveld in 

1970 using silicon semiconductor [25]. Over the recent years, the development of the FET 

biosensors has been significantly boosted by the introduction of the nanomaterials, such as silicon 

nanowire (SiNW) [26–28], carbon nanotube (CNT) [19,20,29] and graphene [19,30]. Among them, 

the single-atom-layer structure and the superior properties of graphene, including the unique 

electronic characteristics, facile functionalization and good biocompatibility, etc., make it an 

attractive candidate for the building block of FET biosensors [22,31,32]. Significant progress has 

been made on the development of the electrolyte-gated graphene field effect transistor (EGGFET) 

biosensors over the last decades [22]. The outstanding properties of graphene and relatively simple 

preparation make EGGFET biosensor a latecomer outperforming biosensors based on SiNW and 

CNT on performance and mass producibility [33,34]. 

However, till now the development of the EGGFET biosensors is still in the stage of proof-of-

concept and challenges still exist for their practical applications. Firstly, the one-atom-layer 

structure of graphene makes it vulnerable to material imperfections, such as lattice defects, 

contaminations, etc., which are still difficult to avoid with the current preparation and fabrication 

techniques [33]. The significant device-to-device heterogeneity leads to poor reliability and could 
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be fatal to the usability of EGGFET biosensors [19,35]. Secondly, in EGGFET, the gate voltage is 

applied on the electrolyte and the electrical double layer (EDL) at the electrolyte-graphene 

interface serves as the gate dielectric, which makes it much more complicated compared with the 

traditional metal-oxide-semiconductor field effect transistors (MOSFET). Detailed understanding 

on the electrolyte-graphene interface and its impact on the electronic transport in graphene are still 

lacking, while critical for the design, development and operation of the EGGFET biosensors [19]. 

Lastly, despite outstanding performance have been reported, almost all of the results were based 

on experiments using simplified samples in laboratory settings [5,19,22]. The reliability of the 

EGGFET biosensors is still to be studied to deal with the complicated physiological samples and 

strategies to enable their practical application are still to be devised. These issues must be 

addressed to bring the development of the EGGFET biosensors forward.  

1.2. Objectives 

The main objective of this dissertation is to develop a novel nanoelectronic biosensor based on 

the EGGFET structure for the label-free detection of biomarkers. The performance of the EGGFET 

biosensor is to be demonstrated by the detection of human immunoglobulin G (IgG) with high 

specificity. Specifically, this dissertation focuses on: 

1) Improving the fabrication process of the EGGFET biosensors. To obtain reliable device 

with high performance, efforts were taken to address the issues caused by the PMMA residues on 

the graphene surface that was introduced during the transfer of the CVD graphene. The thermal 

degradation of the PMMA residues was studied based on the analysis of the evolution of the Raman 

spectrum upon annealing at different temperature and for different durations. An electrolytic 

cleaning method was developed to effectively remove the post-annealing residue, resulting in a 

clean graphene surface, which is critical to obtain working devices. 
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2) Test the performance of the as-developed EGGFET biosensor by the demonstrative 

detection of human IgG. The underlying biosensing mechanism is confirmed based on the 

measurement of the transfer curve of the EGGFET biosensor upon IgG adsorption. The selectivity 

of the EGGFET biosensor is tested by introducing possible interfering analytes. 

3) Study the electrolyte matrix effect on the EGGFET biosensor to validate it utility for real 

sample analysis. The response of the EGGFET biosensor to the variation in the electrolyte 

matrices was studied by varying the composition, ionic strength and pH of the electrolyte. The 

electrolyte matrix effect on the gate potential and the sensitivity of the EGGFET biosensor were 

also studied. The study should provide guidance for the practical applications of the EGGFET 

biosensor which is challenged by the complexity of the physiological samples.  

4) Develop a novel point-of-care immunoanalytical device based on the EGGFET biosensor. 

An EGGFET immunoassay is presented and the performance is demonstrated by the detection of 

IgG from serum. The EGGFET immunoassay allows well regulation of the matrix effect and 

statistical validation of the measurement results by duplicate channel design. The developed 

EGGFET immunoassay is easy to use, ready to be integrated with microfluidics sensor platform, 

suggesting its great prospect for practical applications.  

5) Study the capacitance behavior of the electrolyte-graphene interface and the carrier 

statistics in graphene. The frequency response of the electrolyte-graphene interface is studied, 

which provides a more accurate understanding on the capacitance behavior. The electrical double 

layer (EDL) capacitance and the quantum capacitance were determined, which allows us to extract 

the carrier mobility in the graphene. The study should be instructive for the future improvement of 

the EGGFET biosensor from the aspect of the device design.   



5 

 

1.3. Significance and novelty 

The work in this dissertation should contribute to the development of the EGGFET biosensors 

from the following aspects: 

1) The study on the formation of the post-annealing residues leads to a more in-depth 

understanding on the degradation of the PMMA residues upon thermal annealing. The electrolytic 

cleaning method provides a novel strategy to remove the post-annealing residues, resulting in a 

clean graphene surface, which is critical to obtain working devices. The study would be instructive 

for the development of the CVD graphene transfer techniques which is important for its 

applications in not only the EGGFET biosensors but also many other fields [34]. 

2) The development of the EGGFET biosensor provides a novel biosensing platform for the label-

free detection of biomarkers. The performance of the EGGFET biosensor is demonstrated by the 

successful detection of human IgG.  

3) The study on the electrolyte matrix effect on the EGGFET biosensor addresses critical issues 

that challenge its usability to deal with complex physiological samples.  

4) The EGGFET immunoassay allows well regulation over the matrix effect and is demonstrated 

to be able to detect IgG from serum. The multichannel design allows duplicate measurements and 

on-site calibration with negative control, and thus statistical validation of the results. Compared 

with traditional immunoassay techniques, the EGGFET immunoassay is label-free and ready to be 

integrated with electronic devices, showing great potential as the next-generation immunoassay 

technique. The EGGFET immunoassay provides a general strategy which accommodates with the 

state-of-the-art development of the EGGFET biosensors and is promising to make the 

breakthrough for its practical applications.  

5) The study on the device physics of the EGGFET provides an in-depth understanding on the 

capacitance behavior of the electrolyte-graphene interface. The EDL capacitance and the quantum 
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capacitance are determined based on the capacitance-voltage profiling measurement, which allows 

us to extract the carrier mobility in the graphene. The study should be instructive for the future 

design of the EGGFET biosensor and the improvement of its performance. 

1.4. Structure of the dissertation 

The following chapters are covered in this dissertation. It is initiated with an overview of the 

dissertation in Chapter 1, in which the background and motivations, the objectives, and the 

significance are introduced. In Chapter 2, the properties, synthesis technique and 

functionalization of graphene are introduced; the state-of-the-art development of the graphene-

based biosensors is reviewed. In Chapter 3, the fabrication processes of the EGGFET biosensors 

were demonstrated. In Chapter 4, we present a study on the thermal degradation of the PMMA 

residue on the transferred graphene and its removal with an electrolytic cleaning method, which is 

critical to obtain working devices. In Chapter 5, the performance of the EGGFET biosensor is 

demonstrated by the detection of the human immunoglobulin G (IgG). In Chapter 6, the impact 

of the electrolyte matrix on the operation of the EGGFET biosensor is studied and an EGGFET 

immunoassay is demonstrated to be able to detect analytes from real physiological samples. In 

Chapter 7, we present studies on the device physics of the EGGFET, including 1) the capacitance 

behavior of the electrolyte-graphene interface; 2) the determination of electrical double layer (EDL) 

capacitance and the quantum capacitance; and 3) the extraction of the carrier mobilities in the 

graphene channel. In the end, I will conclude my dissertation with an outlook on the future 

development of the EGGFET biosensors. Chapter 8 summarizes the conclusions and provide an 

outlook on the future development of the EGGFET biosensor. 
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Chapter 2. Literature Review 

In this chapter, the basics about graphene are introduced, including its properties, synthesis 

methods and functionalization approaches. The state-of-the-art development of the EGGFET 

biosensors is reviewed with respect to 1) the targets that have been detected using EGGFET 

biosensors; 2) the types of graphene that have been employed for the fabrication of the EGGFET 

biosensors; and 3) the efforts to improve the performance of the EGGFET biosensors. In the end, 

we remark the development of the EGGFET biosensors with regarding to the challenges and 

prospect for future development and applications. 

2.1. Graphene: properties, synthesis and functionalization 

Graphene is a two-dimensional one-atom-layer allotrope of carbon with sp2-hybridized carbon 

atoms arranged in honeycomb lattice (Figure 2.1a). The sp2 hybridization leads to the formation 

of the σ bonds between carbons that are separated by 1.42 Å and the overlap of the remaining p 

orbitals leads to the formation of the π bands that are half filled. The delocalized π electrons endow 

graphene with abundant unique physical and chemical properties. Graphene is the basic building 

Figure 2.1 Lattice structure and energy dispersion of graphene. (a) the honeycomb lattice 

structure, (b) the Brillouin zone and (c) electronic dispersion of graphene with zoom in of the 

energy bands close to one of the Dirac points. (Reprinted from [36]) 
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block for other carbon allotropes, including graphite (stacked graphene), CNT (rolled graphene), 

fullerene (wrapped graphene), etc.  

Graphene is a zero bandgap semiconductor with the conduction band and the valance band meeting 

at the Dirac points (Figure 1c) [36]. The Dirac points are located at the K and K’ point of the 

Brillouin zone of graphene (Figure 1b). The linear energy dispersion (Figure 1c) at low energy 

level makes electrons and holes behave as relativistic massless Dirac fermions which move with a 

speed of around 1/300 of the speed of light c [36,37]. Another interesting feature of the Dirac 

fermions is the ballistic transport with a mean free path of micrometers [36,38,39]. As a result, 

graphene exhibits remarkable charge carrier mobility at room temperature. Theoretical studies 

indicate that the intrinsic mobility in single layer graphene can be as high as 2 × 105 cm2V-1s-1 at 

a carrier density of 1 × 1012 cm-2 (limited by the scattering of graphene’s acoustic photons), the 

highest among all the existing materials [40]. Graphene exhibits ambipolar electric field effect due 

to the symmetric band structure (Figure 2.2) [39]. 

Figure 2.2 The ambipolar electrical field effect of graphene with 

schematics showing the band filling structure (Reprinted from [39]). 
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Single layer graphene absorbs around 2.3% of white light, which is rather opaque when 

considering that it is only one atom thick [41]. The high opacity is attributed to the aforementioned 

electronic characteristics and can be used for the location of the graphene during the fabrication of 

graphene-based devices. Graphene is the strongest material ever tested, with an intrinsic tensile 

strength of 130.5 GPa and a Young’s modulus of 1 TPa [42]. 

While the theoretical study on graphene has been for decades [43], few layer graphene had not 

been achieved or rather being recognized to exist till 2004 [39]. Before that graphene was 

considered unstable and would roll up in order to reduce the surface energy [44,45]. The first few 

layer graphene was obtained by repeating exfoliation of highly ordered pyrolytic graphite (HOPG) 

with scotch tape [39]. The interlayer van der Waal’s force is much smaller comparing with the 

intralayer covalent bond and easy to overcome which enables the mechanical exfoliation of 

graphene [37,39,46]. Single layer graphene of several hundred microns in dimension was obtained 

by an improved exfoliation process which involves oxygen plasma cleaning of the substrates and 

additional heat treatment [47]. The graphene obtained by mechanical exfoliation can be single 

crystal and provides the best electrical properties. It has enabled a large number of researches on 

both the intrinsic properties and also the applications of graphene in various fields. Many other 

preparation methods were derived from the mechanical exfoliation, such as using 

polydimethylsiloxane (PDMS) stamps [48], liquid-phase exfoliation assisted by sonication [49], 

ball milling [50], etc. A review on the exfoliation-based preparation methods for graphene can be 

found in [46]. However, the mechanical exfoliation methods are themselves limited and cannot be 

used for large-scale mass production. 

An alternative to the mechanical exfoliation of graphene is the chemical vapor deposition (CVD) 

of graphene on nickel [51] and copper [52], which were reported in 2008 and 2009, respectively. 
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Due to the extremely low solubility of carbon in these metals, the carbon atoms that were absorbed 

at high temperature (around 1100 °C) tend to precipitate during the cooling process and rearrange 

into graphene [52–54]. Monolayer CVD graphene as large as 30 inch was grown on copper using 

roll-to-roll stacking [55]. It is important to note that electrical properties of the CVD graphene are 

significantly dependent on the amount of crystalline boundaries [53,54]. Significant efforts have 

been taken to realize the CVD growth of single crystal graphene by either adjusting the process 

parameters or changing the precursors and catalysts [56–60]. For example, fast growth of meter-

sized single-crystal graphene was obtained using single crystal copper foil as substrate [61]. For 

electronic application, CVD graphene must to be transferred to insulating substrates from the metal 

substrates on which it is grown. Various methods have been developed for the graphene transfer, 

including the dry methods and wet methods [62–64]. Among them the poly(methyl methacrylate) 

(PMMA)-assisted transfer of graphene is the most widely used. One problem that has been 

bothering the PMMA-assisted graphene transfer is the PMMA residue on graphene [34,65]. Many 

attempts have been made by researchers to remove the PMMA residues [66–68], among them 

thermal annealing in high vacuum or protective atmosphere is generally considered as the most 

efficient approach. Our study indicates that there is still residues left on graphene after thermal 

annealing and an electrolytic cleaning method was proposed and tested to be effective in removing 

the post-annealing residues [65].  



11 

 

Another method for graphene synthesis is epitaxial growth on silicon carbide (SiC) [69,70]. This 

method is based on that silicon atoms sublimes faster than carbon from the surface of SiC and the 

carbon left can be rearranged to form graphene layer. Epitaxial graphene can be used directly 

without transfer and the corresponding polymer contamination and is promising for industrial 

application [71]. Besides, graphene can also be obtained by reduction of graphene oxide (GO) 

using thermal, chemical or electrochemical methods [72–74]. Reduced graphene oxide (RGO) 

consists a lot of oxygen-containing groups and thus has good chemical activity which can be used 

in certain fields, such as electrochemical biosensors. A comparison between the different synthesis 

techniques with regarding to the quality and cost for mass production is shown in Figure 2.3 [75]. 

To realize the specific detection of analytes, graphene needs to be functionalized with 

corresponding biorecognition groups, otherwise known as bioreceptors. Various methods have 

been evolved for the graphene functionalization using either covalent or non-covalent binding [76–

78]. The covalent functionalization of graphene involves two general routes: the formation of 

Figure 2.3 The techniques for the synthesis of graphene with respect to 

their quality and price for mass production. Reprinted from [75]. 
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covalent bonds with C=C bonds in graphene and the oxygen groups on GO [77]. The covalent 

functionalization has an advantage in terms of stability and reproducibility, however, it will cause 

the degradation of the conductivity of graphene which limits its application [76,77,79]. In contrast, 

non-covalent approaches allow the immobilization of biomolecules on graphene via electrostatic 

interactions, e.g. π-π stacking, entrapment or van der Waals force, without interfering the sp2 

structure of graphene and thus will not damage its electrical properties. It’s worth noting that the 

π-π stacking is an efficient approach for non-covalent functionalization of graphene due to the 

wide existence of benzene groups in natural and synthesized molecules.  

2.2. Development of graphene-based field effect transistor biosensors 

The first GFET biosensor was reported by Mohanty in 2008 using chemically modified graphene 

(CMG) for DNA hybridization [80]. Since then the research on this field has enormously increased 

due to its significance in future healthcare and other fields. In this section, the development of 

GFET biosensors is reviewed with respect to the following aspects: 1) the targets that have been 

detected using the graphene-based FET biosensors, 2) the types of graphene that have been used 

for the fabrication of the graphene biosensors, 3) the efforts that have been taken to improve their 

performances.  

2.2.1. The detecting targets of GFET biosensors 

Various targets have been detected using GFET biosensors, including nucleic acids, proteins, and 

other biologically relevant species. The detection of nucleic acids, e.g. DNA, RNA, is considered 

important for physiological study, disease diagnosis, genetic screening, etc. [81,82]. The high 

negative charges on the phosphate backbones and high matching efficiency enable the successful 

detection of nucleic acids with high sensitivity [18,80,83]. As mentioned above, the first GFET 

biosensor for DNA detection was demonstrated by Mohanty in 2008 [80]. Later, Dong et al. 
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reported detection of DNA hybridization with high specificity of 0.01 nM and the capability of 

identifying single base mismatches [83]. DNA detection with sensitivity down to 1 pM was 

achieved by Chen using single layer graphene FET [84]. The sensing mechanism of GFET DNA 

biosensors was investigated by Lin et al. using Hall effect and found the hole carriers density 

increases upon the binding of complementary DNA strands [85]. Recently ultrasensitive detection 

of DNA with detection limit as low as 100 fM was reported using peptide nucleic acid (PNA) 

modified reduced graphene oxide (rGO) [86]. The sensitivity was further improved to 10 fM using 

PNA modified single layer CVD graphene by the same group in 2015 [87]. A robust DNA array 

yield – seven out of eight transistors – was reported with a 100 fM sensitivity by Xu [88]. A 

scalable and reproducible (> 90% yield) fabrication process for label-free DNA biosensors was 

reported in 2016 [89]. In general, the detection of DNA with GFET biosensor exhibits high 

sensitivity and reproducibility due to the abundant charge and unique structure of DNA chains and 

is highly promising for practical applications. 

The rapid detection of proteins is of critical importance for disease diagnosis, drug development 

and physiological research [90]. The detection of proteins by FET biosensors is based on the 

surface charge on proteins and high affinity and specificity of the antibody with respect to 

corresponding antigen [22,91]. The biosensors for proteins are therefore also called immunosensor. 

Given the rapid increasing demand for disease diagnosis and huge promises of EGGFET 

immunosensors, the development of EGGFET has long been a hot research area. In 2009, Ohno et 

al. reported the detection of bovine serum albumin (BSA) using non-functionalized EGGFET [92]. 

The EGGFET biosensor that was functionalized with antibody Fab fragment and aptamer for the 

detection of immunoglobulin E (IgE) was reported by the same group [93,94]. Chen and co-

workers reported a graphene-gold nanoparticle hybrid sensor for protein detection [95,96]. An all 
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rGO device was fabricated on a transparent and flexible substrate and shown to detect fibronectin 

at concentrations as low as 0.5 nM [97]. An epitaxial graphene immunosensor for the detection of 

human chorionic gonadotropin (hCG), which is a key diagnostic biomarker of pregnancy and also 

cited as  an importance biomarker in relation to cancerous tumors found in prostate, ovaries and 

bladder was reported by Teixeira [98]. Lei and coworkers reported the successful detection of brain 

natriuretic peptide (BNP) in whole blood, which is specific to heart failure, suing a platinum 

nanoparticle (PtNP) decorated rGO-FET immunosensor [99]. In 2017, Zhou et al. demonstrated 

the development of a GFET for the real time monitoring of carcinoembryonic antigen (CET) 

detection with detection limit of 0.5 pM, far exceeding that of the clinical diagnostic cut-off value 

[100]. 

EGGFET immunosensor features simplicity for use and production, portability, high sensitivity, 

utilizes a small amount of sample, enables real-time analyte detection and quantification [101]. 

However, compared with DNA, the reliability of proteins is inferior, and the charge is dependent 

on the specific structure. As a result, the performance of the EGGFET immunosensors are 

relatively lower than that of DNA biosensors.  

EGGFET biosensors have also been developed to detect other biologically relevant species. Chen 

and his coworkers used GFET to detect glucose and glutamate, with a limit of detection (LOD) of 

0.1 mM and 5 μM, respectively [102]. The detection is mediated by surface-functionalized glucose 

oxidase and glutamate dehydrogenase which serve as catalysts to produce H2O2 molecules. As a 

strong electron withdrawing molecule, H2O2 acts as a p-dopant for the graphene channel. In 2010, 

He et al. demonstrated that rGO devices can be applied for the detection of dynamic secretion from 

living cells [97]. Real time monitoring of nitric oxide (NO) using EGGFET biosensors based on 

the charge transfer between NO and the surface-functionalizing porphyrin were reported [103,104]. 
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In addition, EGGFET biosensors are also reported to be effective in detecting bacteria [80,105], 

viruses [106], and cells [107]. 

2.2.2. The type of graphene used in GFET biosensors 

The development of the EGGFET biosensor was also promoted by the maturing of the preparation 

technique of graphene. Reduced graphene oxide (rGO) was first applied before the laboratory 

synthesis of graphene in 2004 [39,80] and have been continuously developed after then [95,108–

110]. Even though the electrical properties are inferior with respect to the graphene prepared by 

mechanical exfoliation and chemical vapor deposition (CVD), the surface oxide-containing groups 

in rGO make it promising for biosensing due to the diverse routes for chemical functionalization. 

The preparation of few layer graphene in lab using mechanical exfoliation triggered the application 

of “true” graphene in the biosensors [39]. The theoretical studies on the electronic characteristic 

of graphene were verified [36,39] and many GFET biosensors were developed using the 

mechanically exfoliated graphene [92,94]. However, the mechanical exfoliation of graphene is 

itself limited and cannot be used for practical applications. The development of the preparation of 

graphene by chemical vapor deposition (CVD) opened up new opportunities to realize the real 

applications of GFET biosensors and were proven to be capable for mass production owing to its 

compatibility with surface microfabrication techniques [83,84,87,102,111]. In recent years, GFET 

biosensors based on epitaxial graphene was reported which exhibits higher homogenous 

performance due to the single crystal feature [112,113]. 

The development of the graphene preparation techniques make GFET an latecomer outperforming 

the existing FET biosensors based on SiNW and CNT [31]. The poor reproducibility and 

difficulties of large-scale integrated processing of SiNW and CNT pose major obstacles for the 

practical applications. For example, the electrical properties of CNT are dependent on the 



16 

 

crystalline orientations, such as armchair, zigzag and chiral, which bring significant challenge to 

the reliable preparation of CNT. In contrast, the electrical properties of graphene are isotropic 

which could significantly simplify the fabrication process and reduce the mass-production cost 

[114,115]. 

2.2.3. Efforts to improve the performance of the EGGFET biosensors 

The Debye screening limit is considered as one of the fundamental challenges for FET biosensors 

[24]. In physiological liquid with high ionic strength, the electrostatic effect of charge is screened 

which exhibits weak modulation capability and thus cannot be detected [116]. During the past few 

years, considerable efforts have been directed to overcome this physical limitation of FET 

biosensors. To reduce the Debye screening effect, diluted electrolytes were used in which the 

Debye length is increased [110,117]. This strategy cannot be used for the real-time detection from 

physiological solutions, which is one of the most promising advantage of FET biosensors over 

other biosensing architectures. Bioreceptors of smaller size were used for the functionalization of 

EGGFET biosensor, such as utilizing antigen binding fragment (Fab) [93] and aptamers [94,118] 

as alternatives for whole antibodies. Ping [119] reported the study on quantifying the effect of 

ionic screening with protein-decorated graphene transistors. Other strategies were also developed 

to overcome the Debye screening and enable the operation of EGGFET biosensors in physiological 

solutions. Kulkarni [120] demonstrated that the fundamental ionic screening effect can be 

mitigated by operation FET biosensors in high-frequency mode. The nonlinear mixing between 

the alternating current excitation field and the molecular dipole field can generate mixing current 

sensitive to the surface-bound molecules. Fu [121] reported a frequency-doubling biosensor based 

on the ambipolar electrical field behavior of the EGGFET. By biasing the ambipolar GFETs in a 

common-source configuration, an input sinusoidal voltage at frequency 𝑓 applied to the electrolyte 
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gate can be rectified to a sinusoidal wave at frequency 2𝑓 at the drain electrode. Gao [122,123] 

demonstrated a general strategy to overcome the Debye screening effect by incorporating a 

biomolecule-permeable polymer layer on the surface of SiNW FET biosensors EGGFET 

biosensors. The studies indicate that EGGFET biosensor that is coated with polyethylene glycol 

(PEG) exhibits detection capability in physiological liquids. 

The performance of the EGGFET biosensors is further improved by decoration with metal 

nanoparticles, which serves to increase the surface area and bioreceptor density [22]. Mao reported 

the IgG detection using thermally reduced graphene oxide (TRGO) sheet decorated with gold 

nanoparticle (AuNP)-antibody conjugates [95,96]. Chan demonstrated the signal amplification by 

directly assembling AuNP conjugated reporter probes on graphene for the detection of avian 

influenza A virus subtype H7 gene [124]. A novel mechanism of metal nanoparticle formation on  

graphene by galvanic displacement was developed by Gutes [125] and its integration onto a gas 

sensing transducer was presented as proof of concept. Lei [99] reported the detection of heart 

failure-related biomarker brain natriuretic peptide (BNP) in whole blood with platinum 

nanoparticle (PtNP) decorated GFET biosensors. The sensor was integrated with a custom-made 

microfilter and exhibited capability of working in a complex sample matrix. AuNP-decorated 

EGGFET was also used to measure the binding affinity of specific protein-antibody interactions 

[126]. 

Microfluidics is a technology featured by the engineered manipulation of fluids at the micrometer 

scale [127,128]. There have been a number of reports that integrate microfluidics with FET 

biosensors based on Si [129,130], AlGaN [131], SiNW [132], etc. The integration of the high 

sensitivity of FET biosensors and the sample processing capabilities of the microfluidics, such as 

flow control, separation, concentration, etc., has shown considerable promise for improving 
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diagnostics and biology research [133,134]. Stern [135] integrated an silicon nanoribbon detector 

with a microfluidic purification system which can be used for the label-free detection of 

biomarkers from whole blood. Given the superior performance of GFET biosensors and good 

compatibility, the integration between GFET biosensors and microfluidics would be of great 

significance.   

2.3. Comments 

Compared with other biosensing techniques, FET biosensors are particularly favored for potentials 

in portable and point-of-care applications due to their high sensitivity, simple configuration and 

cost-effective mass productivity [22]. It is clear that graphene has many superior qualities 

compared with other nanomaterials which makes EGGFET biosensors highly attractive as the next 

generation bioelectronics [19,22,31]. Significant progress has been made on the development of 

the EGGFET biosensors during the last decade, however almost all the results were obtained using 

samples with the highest quality within a laboratory setting. Similar with other biosensors, the 

EGGFET biosensors are still in the stage of proof-of-concept and challenges still exist for its 

practical applications. 

Firstly, the reliability of the EGGFET biosensors is still inferior to meet the requirement for 

practical applications, which is one of the bottle-necks that hindering the further development of 

almost all the nanomaterial-based biosensors. Till now, the performance of EGGFET biosensors 

is still suffering from the significant device-to-device heterogeneity, which leads to poor reliability 

and could be fatal to the usability of the EGGFET biosensors [19,35]. The development of the 

reliable and reproducible fabrication techniques are critical issues to be addressed in future. 

Secondly, except for a few cases, most of the currently existing reports were carried out in ideal 

media such as pure buffer solutions. The real physiological samples are far more complex and will 



19 

 

definitely introduce certain interfering and fouling effects. The usability of the EGGFET biosensor 

for practical application is still to be validated. On the other hand, strategies that can reduce or 

eliminate these effects are to be put forward to realize the practical application of the EGGFET 

biosensors. 

Furthermore, the in-depth understanding on the device physics of the EGGFET biosensors is still 

lacking, which is critical for the further improvement of the EGGFET biosensors. Although 

EGGFET biosensors have been demonstrated to be capable of detecting various targets, very 

limited efforts have been directed to improve the design of the EGGFET on the device level. For 

example, silicon dioxide (SiO2) is typically used as the substrate for graphene in EGGFET. 

However, the carrier mobility of graphene is significantly limited by scattering of the charged 

impurities on the SiO2 surface, which could cause the deterioration of the sensitivity of the 

EGGFET. Improving the device design is promising to further improve the performance of the 

EGGFET biosensors.  
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Chapter 3. Fabrication of the EGGFET biosensor 

3.1. Structure of the Devices 

A schematic diagram of the EGGFET structure is shown in Figure 3.1. It consists of a gate 

electrode and a graphene channel that is connected by the source/drain electrodes. Here a basic 

structure is shown for the illustration of the fabrication process. Specific configurations of the 

devices are presented in the corresponding chapters. 

3.2. Fabrication of the devices 

3.2.1. Graphene transfer and electrolytic cleaning 

The fabrication of the EGGFET biosensor starts with the transfer of the CVD graphene. In this 

work, the graphene was transferred using the PMMA-assisted method followed by thermal 

annealing and electrolytic cleaning to remove the polymer residues. The schematic process of 

transferring the CVD graphene and the experimental setup for the electrolytic cleaning is shown 

in Figure 3.2. The CVD graphene grown on copper foil was purchased from Graphene 

Supermarket and transferred onto glass slides (or silicon wafers with oxide layer) with the 

following procedures. First, PMMA (950 kDa, 4% in anisole, MicroChem) was spin-coated on the 

graphene on copper foil at a spin speed of 2000 rpm for 45 s, and then allowed to cure on a hotplate 

at 120 °C for 1 min. After curing, the graphene on the backside of the copper foil was removed by 

oxygen plasma (30 W) for 90s. The samples were then placed floating on an iron (III) nitrate 

Figure 3.1 Basic structure of the EGGFET biosensor 
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solution (0.7 M, Sigma Aldrich) with the copper-side facing downward for 3 h to etch the copper 

off, followed by rinsing by transferring onto deionized (DI) water for 3 times. The resulting 

PMMA/graphene films were lifted up with glass slides (or oxide silicon wafer) and allowed to dry 

Figure 3.2 Schematic of the transfer process of CVD graphene and the 

experimental setup for the electrolytic cleaning. (Reprinted from [65]) 



22 

 

at room temperature for 1 h. The samples were then heated at 75 °C for 30 min to improve the 

contact between graphene and the substrates. The PMMA was removed by immersing in acetone 

for 10 min and then rinsed with IPA and DI water. The samples were then annealed at 250 °C in 

N2 atmosphere with a flow rate of 1000 sccm to remove the PMMA residue. Thermal annealing 

was performed with an AS-Micro rapid thermal annealer. To confirm that the copper has been 

completely removed and no iron contamination was introduced during the transfer process, we 

used XPS to characterize the as-transferred graphene. As shown in Figure 3.3, no significant XPS 

peaks for copper and iron can be observed, which suggests that clean transfer of the graphene. 

Electrolytic cleaning of graphene was conducted with a Gamry Interface 1000T potentiostat in the 

chronoamperometry mode. The three-electrode electrochemical cell was comprised of the 

graphene sample as the working electrode, a Ag/AgCl reference electrode (Aldrich), and a 

platinum wire counter electrode. 0.5 M sulfuric acid (H2SO4, Sigma Aldrich, 95%~98%, 20 mL) 

was used as the electrolyte because it is conducive to hydrogen evolution and can neutralize the 

OH- generated close to the graphene surface to prevent etching the underlying silicon dioxide 

substrate. The electrolyte was used as prepared without purge and no stirring was applied 

throughout the electrolytic cleaning process. To ensure reliable electrical connection, a copper tape 

Figure 3.3 XPS spectrum of the as-transferred graphene 
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was applied on the transferred graphene. The sample was then covered with a piece of Scotch tape 

with a round opening of 4 mm in diameter which serves to 1) isolate the copper tape from the 

electrolyte and 2) confine the area of graphene for electrolysis. To remove the post-annealing 

residue, the graphene was cleaned with the electrolytic method at -5 V vs Ag/AgCl for 30 min. 

The sample was then rinsed by DI water thoroughly and blown dry with N2. 

3.2.2. Fabrication of the electrodes and the graphene channels 

The schematic of the fabrication process of the source/drain electrodes is shown in Figure 3.4. 

After washing with acetone and IPA and drying at 75 °C for 30 min, 5 nm nickel and 45 nm gold 

were deposited on the sample using e-beam evaporation. The electrodes were patterned by 

photolithography using AZ5214E photoresist (MicroChemicals) followed by etching in gold 

etchant (Gold Etch TFA, Transene) for 10 s. A second photolithography process was applied to 

create a shielding photoresist layer on the graphene channel. The exposed nickel was then etched 

using nickel etchant (Nickel Etchant, TFB, Transene, 10s). The graphene channel was patterned 

by oxygen plasma etching (100 W for 90 s with oxygen flow at 49 sccm) and the shielding 

photoresist layer was then removed using acetone followed by rinsing with IPA and DI water. A 

Figure 3.4 Schematics of the fabrication process of the gate/source/drain electrodes and 

the patterning of the graphene channel. 



24 

 

third photolithography process was implemented to create a passivation layer (AZ 5214, ~1.5 μm 

thick) on the source/drain electrodes. The remaining nickel on the graphene was finally removed 

using nickel etchant (10 s). The devices were then annealed at 120 °C on a hot plate to for 30 min 

to 1) improve the contact between graphene and the source/drain electrodes; 2) strengthen the 

passivating photoresist layer. 

For the fabrication of the EGGFET immunoassay, Ag/AgCl pseudo-reference electrodes were 

fabricated using electroplating methods. A three-electrode cell with a standard Ag/AgCl reference 

electrode, a gold wire coil counter electrode was used for the electroplating of Ag/AgCl on the as-

fabricated gold electrode. The schematic and experimental setup are shown in Figure 3.5. The 

electroplating was conducted using a Camry Interface 1000T potentiostat. For the electroplating 

of silver, 0.3 M silver nitrate (AgNO3) and 1 M ammonia (NH3, aq) solution was injected into the 

chamber. First, an oxidative pre-treatment at +0.95 V was applied for 30 s. For better results, the 

sample was placed in vacuum for 30 min to remove the dissolved oxygen and the microscopic gas 

bubbles on the electrode surface. Then the electroplating was driven at -0.5 mA for 300 s, resulting 

Figure 3.5 Schematic diagram (a) and experimental setup (b) for the fabrication of the 

Ag/AgCl pseudo-reference electrode. 
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in a Ag layer of around 5 μm in thickness. 0.1 M HCl solution was injected into the chamber after 

rinsing with DI water and the chloridization was driven at +0.2 mA for 60 s. After removing the 

electroplating chamber, the sample was rinsed with DI water. 

The sample delivery channel was made of polydimethyl siloxane (PDMS) using soft lithography 

techniques. Due to the vulnerability of graphene, the conventional oxygen plasma cannot be used 

for the activation of the glass surface for PDMS bonding. As an alternative, the GFET chips were 

immersed in 0.1 M NaOH solution for 30 s and then rinsed with DI water with a layer of DI water 

left on the surface. The PDMS sample delivery channel was activated with oxygen plasma and 

then applied onto the GFET chip. The alignment of the sample delivery channel and the GFET 

chip was accomplished under microscope. The interfacial water layer serves as the lubricant and 

prevents the immediate bonding of glass and PDMS, while preserving their activity. The aligned 

sample was then placed in 60 °C oven for 3 h to allow the bonding. 

3.2.3. Functionalization of the graphene channel for IgG detection 

The functionalization process of the graphene surface for IgG detection is shown schematically in 

Figure 3.6. After rinsing the graphene surface with dimethyl sulfoxide (DMSO, VWR), 1-

pyrenebutyric acid N-hydroxysuccinimide ester (PBASE, Sigma Aldrich, 10 mM dissolved in 

DMSO) was applied on the graphene surface and kept for 2 h. PBASE can be adsorbed on graphene 

Figure 3.6 Schematics for the functionalization of the graphene channel for IgG 

detection. (Reprinted from [177]) 
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through π-π interaction while causing no damage to its electrical properties and is widely used for 

the functionalization of graphene and carbon nanotubes [32]. After rinsing with DMSO, 5’-amino 

modified IgG aptamer (Base Pair Biotechnologies, 100 μM in 1× PBS) was applied on the 

graphene surface and incubated for 3 h to allow the conjugation with PBASE. The conjugation is 

achieved by the amide bonding between the reactive N-hydroxysuccinimide (NHS) ester in 

PBASE and the amine group on the 5’ end of the IgG aptamer. The remaining unconjugated sites 

were blocked by bovine serum albumin (BSA, 10% w/v in 1× PBS, Sigma Aldrich) after rinsing 

with 1× PBS. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were performed 

to study the functionalization of the graphene surface (see Appendix 1). The transfer curves of the 

EGGFET biosensors were also measured after each step of functionalization. 
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Chapter 4. Characterization and Electrolytic Cleaning of PMMA 

Residues 

Poly(methyl methacrylate) (PMMA) residue has long been a critical challenge for practical 

applications of the transferred chemical vapor deposited (CVD) graphene. Thermal annealing is 

empirically used for the removal of the PMMA residue; however, experiments imply that there are 

still residues left after thermal annealing which are difficult to remove with conventional methods. 

In this chapter, the thermal degradation of the PMMA residue upon annealing was studied by 

Raman spectroscopy. The study reveals that post-annealing residues are generated by the 

elimination of methoxycarbonyl side chains in PMMA and are believed to be absorbed on 

graphene via the π–π interaction between the conjugated unsaturated carbon segments and 

graphene. The post-annealing residues are difficult to remove by further annealing in a non-

oxidative atmosphere due to their thermal and chemical stability. An electrolytic cleaning method 

was shown to be effective in removing these post-annealing residues while preserving the 

underlying graphene lattice. These studies provide a more in-depth understanding on the thermal 

annealing process for the removal of the PMMA residues from transferred CVD graphene and a 

new approach to remove the post-annealing residues, resulting in a residue-free graphene. 

4.1. Introduction 

Chemical vapor deposited (CVD) graphene has revealed tremendous potential as an important 

member of the graphene family since it was developed in 2009 [52]. It is particularly promising 

for commercialization due to its mass producibility and compatibility with microfabrication 

techniques. To enable its practical applications, CVD graphene must be transferred to insulating 

substrates from the metal substrates on which it is grown. A variety of methods have been 

developed for the transfer of CVD graphene over recent years. The PMMA-assisted method is one 
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the most promising methods for the industrial fabrication of graphene due to its capability of 

realizing large scale, low-cost and high quality of transferred graphene [64]. However, a major 

drawback of this method is that the PMMA residues are left on the transferred graphene, which 

has been a critical challenge that has hindered the applications of CVD graphene for a long time 

[63,136–138]. Studies indicate that the PMMA residues can cause degradation of the electronic 

properties of graphene, such as introducing p-type doping and carrier scattering [136,139]. The 

residues also can be detrimental for the applications of graphene in biosensors. For instance, 

PMMA residues can block the sensing surface of graphene-based biosensors, leading to the 

deterioration of the sensors’ sensitivity and reliability [96,111]. Additionally, the PMMA residues 

can cause significant device-to-device variation [140].   

Multiple approaches have been developed for the removal of the PMMA residues from the 

transferred CVD graphene. Some of them focus on reducing the formation of PMMA residues, 

such as isolating the graphene from the metal substrates by electrochemical delamination [141], 

abrogating all the heat-treatment before removing PMMA with solvents [68], etc. Efforts have also 

been directed to the removal of PMMA residues after transfer. Different solvents were used to 

dissolve PMMA, e.g., acetic acid [67,142], chloroform [64], etc. None of these methods can 

remove PMMA residue completely. Thermal annealing in a specific atmosphere is considered to 

be an effective way to reduce the PMMA residue and it has been empirically used [63,142].  

Recent researches indicate that thermal annealing can result in the formation of post-annealing 

residues that are difficult to remove by annealing in non-oxidative atmosphere. Lin reported that 

these residues are the radicals generated by the random scission of PMMA that are covalently 

bonded with the defect sites on graphene [141]. The new broad Raman D and G peaks in annealed 

graphene has been reported to be amorphous carbon formed by carbonized PMMA residue [143]. 
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Gong et al attributed these residues to the dehydrogenation of PMMA and proposed that thermal 

annealing in a carbon dioxide atmosphere could efficiently remove those residues [144]. However, 

annealing in oxidative atmosphere has the potential risk to damage the integrity of the graphene or 

to introduce defects [63,136,142,144]. 

In this chapter, we explore the formation mechanism of the post-annealing residues after the 

PMMA removal using the Raman spectrum of the transferred CVD graphene as a function of the 

annealing temperature and time. Based on the results, the formation mechanism and composition 

of the post-annealing residues are analyzed. To remove these post-annealing residues, an 

electrolytic method is tested. This method is shown to be an effective tool for removal of the 

residues based on the characterization using Raman spectroscopy and atomic force microscopy. 

The study provides a more in-depth understanding on the formation and composition of the post-

annealing residues. The successful removal of the PMMA residue using the electrolytic cleaning 

is critical to obtain reliable working biosensors.  
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4.2. Experiments 

The samples for the study on the PMMA residues and their removal is glass slides with transferred 

CVD graphene on them as shown in Figure 4.1. The preparation of the samples is introduced in 

Section 3.2.1. The Raman spectra were collected using a Renishaw InVia Raman microscope with 

a 532 nm laser of 100 mW. Raman mapping was achieved by collecting spectra over an area of 20 

μm × 20 μm with steps of 1 μm. The graphene surface was characterized with the Asylum MFP-

3D atomic force microscope (AFM) using tapping mode. 

4.3. Degradation of PMMA residue upon thermal annealing 

We studied the formation mechanism of the post-annealing residues using Raman spectroscopy by 

changing the annealing temperature and time [65]. Different from the transfer process described 

in Section 3.2.1, the PMMA/graphene films were baked on a hot plate at 200 °C for 1 h before 

immersing in acetone. This prolonged heat treatment is intended to increase the amount of PMMA 

Figure 4.1 The samples for the study of the PMMA residues and the 

electrolytic cleaning. The red dashed box indicates the coverage of the 

transferred graphene  
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residue for subsequent analysis [68]. The Raman spectra were collected at 10 points that were 

randomly selected on the graphene surface. Figure 4.2 shows the evolution of the Raman spectra 

with respect to the annealing temperature. The main peak G at 1600 cm-1 corresponds to the E2g 

phonon at Γ point arising from in-plane C-C stretching and the D peak at around 1350 cm-1 arises 

from the TO phonons near the Brillouin zone corner K that is activated by the defects [145]. During 

thermal annealing, as the temperature increases from 100 °C to 200 °C, a new peak arises at 1590 

Figure 4.2 Evolution of the PMMA residue as a function of annealing temperature. Raman 

Spectra (black curves) of the as-transferred graphene after annealing in N2 atmosphere for 1 

h at 100 °C, 150 °C, 200 °C, 300 °C, and 500 °C. The blue and red fitting curves are 

attributed to the G peak of graphene and new peak at 1590 cm-1, respectively. (Reprinted 

from [65]) 
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cm-1 and a broad band (1200~1550 cm-1) develops when further increasing the temperature. The 

G peak and new peak at 1590 cm-1 are fitted with Lorentzian and Gaussian shapes, respectively. 

The similar change of these new bands in the Raman spectrum of PMMA-transferred graphene 

upon thermal annealing has been previously reported [143,144,146]. These new bands cannot be 

removed by further increasing the annealing temperature and duration, indicating that a new type 

of carbon residues is left after the removal of PMMA residue by thermal annealing [144,146]. 

The new peak at 1590 cm-1 can be assigned to C=C stretching which normally lies in the range of 

1500~1630 cm-1 [147]. During prolonged annealing at low temperature (150 °C), we found that 

its intensity keeps increasing (Figure 4.3) while the new broad band at 1200~1550 cm-1 in Figure 

Figure 4.3 Raman spectra of the as-transferred graphene after annealing in a N2 

atmosphere at 150 °C for 1 h, 2 h, 5 h, and 10 h, respectively. The blue and red 

fitting curves are attributed to the G peak of graphene and new peak at 1590 

cm−1, respectively. (Reprinted from [65]) 
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4.2 does not appear. This suggests that some specific degradation mode of PMMA occurs at low 

temperature resulting in the continuous formation of C=C bonds. Previous studies indicate that the 

thermal degradation of PMMA leads to the formation of char by eliminating the methoxycarbonyl 

sidechains within it [148,149]. The infrared spectrum of the char exhibits a strong absorption band 

at 1550 cm-1 (Figure 4.4), suggesting the presence of conjugated unsaturated systems [148]. This 

band corresponds to the Raman peak at 1590 cm-1 in Figure 4.2 and 4.3. A similar Raman peak 

has been also reported but at a lower frequency [144], which might be due to the different 

environment for Raman spectra because the conjugating degree is decrease by oxidation and 

hydrogenation in an ambient air.  

At a higher temperature, the depolymerization of PMMA is initiated by chain end and random 

chain scissions followed by depropagation. This char-forming mechanism interfere with the 

depolymerization process, generating carbon chains of varying lengths with randomly alternate 

Figure 4.4 Infrared spectra of the PMMA char. The inset shows the elimination of 

the methoxycarbonyl side chains in PMMA and the formation of the conjugated 

systems. Reprinted form [148]. 
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saturated and unsaturated carbon segments, which corresponds to the broad band at 1200~1500 

cm-1 in Figure 4.2. The conjugated segments can bind non-covalently with graphene via π-π 

interaction and make these residues difficult to remove, resulting in the post-annealing residues. 

The π-π interaction can also cause the adherence of PMMA residue on graphene because the 

formation of these conjugated segments occurs at low temperature. It has been reported that better 

PMMA removal can be obtained by annealing in Ar/H2 atmosphere [150], which is because H2 

eliminates the conjugated carbon systems by the hydrogenation of the C=C and thus weakens the 

absorption of the post-annealing residues on graphene.  

In addition, reports have indicated that better PMMA removal can be achieved by reducing the 

annealing time, such as rapid thermal annealing [151] and laser irradiation [152], which is 

presumably due to the suppression of this abnormal degradation mechanism of PMMA. Studies 

have shown that alternating annealing in hydrogen and oxygen atmospheres can remove the 

PMMA residue substantially, which is attributed to oxygen cleavage of the C=C bonds [136,153]. 

These studies support our analysis on the formation and the composition of the post-annealing 

residues. 

In summary, the special thermal degradation of PMMA, generating conjugated unsaturated carbon 

systems by the elimination of methoxycarbonyl side chain of PMMA, results in the formation of 

the post-annealed residues and its absorption on graphene. 

4.4. Electrolytic cleaning of the post-annealing residues 

To remove the post-annealing residues, we developed an electrolytic cleaning method which is 

shown to be an effective to remove the post-annealing residues. Electrolytic cleaning is a method 

that using electrochemically generated gas bubbles to strip off the contaminations from conductive 

surfaces [154]. It is typically used for the removal of rust and other contaminations from 
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conductive surfaces, such as cast iron. In recent years, defouling of conductive surfaces, such as 

graphite, carbon nanotube and stainless steel, etc., by electrochemically generated nanobubbles 

have been reported [155–157]. There are two modes of electrolytic cleaning: anodic 

electrocleaning and cathodic electrocleaning, in which oxygen and hydrogen are generated, 

respectively. Cathodic electrolytic cleaning provides higher efficiency for gas generation and 

avoids causing the oxidation of the graphene, and thus it was applied for the removal of the post-

annealing residues on the transferred graphene in this work. 

To study the reduction potential that is required for the removal of the post-annealing residues, the 

samples were cleaned at -1, -3 and -5 V versus Ag/AgCl for 1 h, and Raman spectra were collected 

at ten points that were randomly selected after each step. Because the broad band at 1200~1550 

cm-1 which corresponds to the post-annealing residues was difficult to be fitted as a single peak, 

the intensity at 1480 cm-1 was selected as an indicator for the amount of the post-annealing residues. 

Figure 4.5 Raman spectroscopy study of the electrolytic cleaning at different reduction voltages. 

a) Raman spectra and b) intensity at 1480 cm-1 of graphene that is 1) as-transferred, 2) after 

annealing in N2 atmosphere at 250 °C for 3 h and after electrolytic cleaning at 3) -1 V, 4) -3 V 

and 5) -5 V vs Ag/AgCl in 0.5 M sulfuric acid for 1 h. (Reprinted from [65]) 
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All spectra were normalized by setting the 2D peak intensity as one. As shown in Figure 4.5, after 

electrolytic cleaning at -1 V versus Ag/AgCl, no significant change of the Raman spectrum is 

observed; after electrolytic cleaning at -3 V versus Ag/AgCl, the broad band at 1200–1550 cm-1 

and the peak at 1480 cm-1 are reduced, which indicates that the post-annealing residues are partially 

removed; after electrolytic cleaning at -5 V versus Ag/AgCl, the post-annealing residues have been 

effectively removed. The intensity ratio of the 2D and G peaks (I2D/IG) after electrolytic cleaning 

are around 1.5, indicating that there is no damage to the underlying graphene by the electrolytic 

cleaning. Other experiments show that the graphene remains intact at applied voltage up to -20 V 

vs Ag/AgCl.  

We then studied the efficiency of the electrolytic cleaning by setting the potential at -5V vs 

Ag/AgCl and collecting the Raman spectrum after 10 min, 20 min, and 30 min. As shown in Figure 

4.6, the residues are partially removed after 10 min and are almost completely removed after 20 

Figure 4.6 Raman spectroscopy study of the electrolytic cleaning as a functional of time.a) 

Raman spectra and b) intensity at 1480 cm-1 of graphene that is 1) as transferred, 2) after 

annealing in N2 atmosphere at 250 °C for 3 h and after electrolytic cleaning at -5 V vs Ag/AgCl 

in 0.5 M sulfuric acid for 3) 10 min, 4) 20 min and 5) 30 min. (Reprinted from [65]) 
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min. It is worth noting that there was a redox couple at around +0.35 V vs Ag/AgCl which has 

reduced after electrolytic cleaning process. The origin of the redox couple and whether it is related 

with the post-annealing residues are still to be studied. One possible explanation is that the redox 

couple is the quinone-hydroquinone structure which was introduced during the thermal annealing 

process and electrochemically reduced during the electrolytic cleaning process. 

Raman mapping was used to evaluate the efficiency of the electrolytic cleaning method. The maps 

of the Raman intensity at 1480 cm-1 of the graphene that is as-transferred, after annealing and after 

electrolytic cleaning are shown in Figure 4.7. A large amount of post-annealing residues was 

generated after thermal annealing, as indicated by the high intensity and are effectively removed 

after electrolytic cleaning. The peak position and intensity were also analyzed, and the histogram 

of the distributions are shown in Figure 4.8. The mean position of the G peak and 2D peak are 

both shifted positively after annealing and electrolytic cleaning. The blue shifts of the G peak and 

2D peak, which suggest enhanced p-doping, were previously reported and attributed to the 

following reasons: (1) decomposition of PMMA residue; (2) oxygen and water absorption and (3) 

closer contact between graphene and the substrate [139,144,158]. I2D/IG reduced from around 1.9 

Figure 4.7 Raman mapping of the graphene that is a) as transferred, b) after thermal annealing in 

N2 atmosphere at 250 °C for 3 h and c) after electrolytic cleaning at -5 V vs Ag/AgCl in 0.5 M 

sulfuric acid for 30 min. (Reprinted from [65]) 
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to 1.6 after annealing but no further reduction occurred after electrolytic cleaning which suggests 

electrolytic cleaning causes no damage to the underlying graphene lattice. 

The successful removal of the post-annealing residue was also confirmed by atomic force 

microscopy (AFM). As shown in Figure 4.9, the island-like PMMA residue is significantly 

eliminated after thermal annealing; however, there is still some flocculent residue left which 

cannot be removed by prolonged annealing. These residues exhibit lower height and a different 

morphology compared with the island-like PMMA residue on the as-transferred graphene. After 

Figure 4.8 Histogram of G peak position, 2D peak position and I2D/IG of graphene that is a,b,c) 

as-transferred, d,e,f) after annealing in N2 atmosphere at 250 °C for 3 hours and g,h,i) after 

electrolytic cleaning at -5 V vs Ag/AgCl in 0.5 M sulfuric acid for 3 hours. (Reprinted from [65]) 
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electrolytic cleaning, the flocculent residues disappear, and a clean, residue-free graphene is 

obtained. The surface roughness is significantly reduced after thermal annealing and further 

reduced after electrolytic cleaning. 

In addition to the mechanical stripping effect of the hydrogen bubbles, we speculate that the 

following mechanisms might also be contributing to the removal of the post-annealing residues: 1) 

weakening of the adsorption bonds such as π-π bonds due to the negative charging of graphene; 2) 

improved wetting of the graphene due to the negative charging so that water displaces weakly 

adsorbed residues [159]. 

Figure 4.9 Characterization of thermal removal of the PMMA residues and electrolytic cleaning 

of the post-annealing residues. Representative AFM images of the graphene that is a) as 

transferred, b) after annealing in N2 atmosphere at 250 °C for 3 h, and c) after electrolytic 

cleaning at -5 V vs Ag/AgCl in 0.5 M sulfuric acid for 30 min. The corresponding height profiles 

along the blue dashed line in the AFM images are shown in the bottom panel. The number in the 

left bottom of each image corresponds to the RMS roughness. (Reprinted from [65]) 
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4.5. Impact of PMMA residue removal on the transport properties of graphene 

The studies on the transport properties of CVD graphene were performed using a EGGFET 

structure with a graphene channel of 1 mm in width and 0.1 mm in length. Typical transfer curves 

of the EGGFET that is as-transferred, after thermal annealing, and electrolytically cleaned are 

shown in Figure 4.10A. The gate voltages with the minimum conductivity (Dirac voltage) are 

shown in Figure 4.10B. To compare the transport parameters of the graphene, the electron 

mobility and hole mobility are derived symmetrically at the Dirac voltage ±0.2 V as shown in 

Figure 4.10C. The interfacial capacitance, comprised of electrical double layer capacitance and 

quantum capacitance of graphene, was estimated to be around 1.8 μF cm−2 based on the model 

previously reported [31]. The results indicate that the as-transferred graphene is initially p-type 

doped, indicated by the positive Dirac voltages. Successive negative shifts of the Dirac voltage 

occur when graphene is thermally annealed and electrolytically cleaned as shown in Figure 4.10B. 

The carrier mobilities are increased from ∼680 to ∼1200 cm2 V−1 s−1 after thermal annealing, and 

slightly increased to ∼1250 cm2 V−1 s−1 after electrolytic cleaning.  

The electrical properties of doping in graphene can be affected by multiple factors. The p-type 

doping effects can be caused either by the silicon dioxide substrate [142,160,161] or PMMA 

[139,161], and the n-type doping effect can result from adsorbed water molecules in aqueous 

solutions [162,163]. In the as-transferred graphene, the PMMA residues introduce p-type doping 

and suppress the n-type doping effect of water, resulting in the overall p-type characteristics. The 

annealing process removes the PMMA residues, eliminating the p-type doping effect, and 

exposing graphene to water molecules leading to n-type doping. All of these processes result in 

the negative shift of the Dirac voltage. The electrolytic cleaning removes the post-annealing 

residues and causes the Dirac point to shift further near 0 V, indicating that the post-annealing 
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residues are also a p-type dopant for graphene. The p-type doping effect of the post-annealing 

residues is attributed to the charge transfer between graphene and the conjugated systems [164]. 

Figure 4.10 (a) Representative transfer curves, (b) Dirac voltage distribution, and (c) electron 

and hole mobilities derived of the graphene based SGFET that is as-transferred, after annealing 

in a N2 atmosphere at 250 °C for 3 h and after electrolytic cleaning at −5 V versus Ag/AgCl in 

0.5M sulfuric acid for 30 min. The error bars correspond to the standard error in (b). Reprinted 

from [65]. 
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The negative shift of the Dirac point, which suggests a reduced p-doping, is in controversy with 

the blue shifts of the G and 2D peaks in Raman spectra as mentioned previously. This is because 

the Raman spectroscopy was performed in air ambient where oxygen absorption introduces strong 

p-doping, while in SGFET the oxygen absorption and its p-doping effect are screened by water. 

Our results suggest that oxygen is a strong p-dopant while water has no doping effect or weak n-

doping effect for graphene. Upon annealing, the carrier mobilities are significantly improved, 

indicating that the scattering effect of PMMA residues on graphene have been reduced or 

eliminated [139]. Furthermore, the removal of the post-annealing residues leads to a slight 

increasing in the carrier mobilities, suggesting that the scattering effect of the post-annealing 

residue are very weak. The carrier mobilities we obtained are at the same level as the values 

reported for graphene on silicon dioxide substrates, on which the carrier mobilities of graphene are 

mainly limited by the charged impurity scattering from silicon dioxide [160,165]. 

4.6. Conclusion 

The formation of the post-annealing residues on PMMA-transferred CVD graphene was studied 

by Raman spectra and an electrolytic cleaning method was used to remove these post-annealing 

residues successfully. The changes of the Raman spectrum of the CVD graphene transferred with 

PMMA during thermal annealing reveals the formation of the post-annealing residues: the 

elimination of the methoxycarbonyl side chain in PMMA leads to the formation of conjugated 

unsaturated carbon systems, as indicated by the Raman peak at 1590 cm−1
. Additionally, carbon 

chains of varying lengths with randomly alternate saturated and unsaturated segments, 

corresponding to the broad band at 1200–1550 cm−1
 in the Raman spectrum, are generated because 

of the depolymerization of PMMA during thermal annealing. These carbon residues are absorbed 

on graphene via π–π interactions and are difficult to remove by further annealing. Transport 
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properties measurements with a SGFET structure indicate that the PMMA residues introduce both 

p-type doping and carrier scattering to the transferred CVD graphene. The post-annealing residues 

are also a source for p-type doping due to the charge transfer between graphene and the conjugated 

systems. The scattering by the post-annealing residue is much weaker compared with PMMA 

residue. 

For practical uses of CVD graphene, it is of critical importance to remove the post-annealing 

residues to get a clean surface. The electrolytic method reported in this paper is shown to be 

effective in removing the post-annealing residues while preserving the underlying graphene lattice. 

This method is easy to implement and can be performed with simple equipment such as a DC 

power supply. In addition, the electrochemical method could also be used for the removal of many 

other contaminants, such as absorbed oxygen (by electrochemical reduction) and organic 

molecules (by cathodic stripping). Therefore, we suggest the electrochemical cleaning as an 

effective method for the deep-cleaning and surface-restoration of graphene. 
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Chapter 5. Detection of IgG using EGGFET biosensor 

In this chapter, the performance of the developed EGGFET biosensor is demonstrated by the 

detection of human immunoglobulin G (IgG). Continuous negative shift of the transfer curve of 

the EGGFET biosensor was observed upon the successive addition of IgG with increasing 

concentrations. The detection of IgG is attributed to the modulation of the Fermi level in the 

graphene caused by the adsorption of the positively charged IgG molecules. The real-time 

detection of IgG is demonstrated by the change of the drain current at a fixed gate voltage. The 

selectivity of the EGGFET is studied by measuring the drain current change upon the addition of 

the interfering antibodies, including human immunoglobulin M (IgM) and human immunoglobulin 

A (IgA). 

5.1. Introduction 

Immunoglobulin G (IgG) is the main type of antibody found in blood and extracellular fluid and 

play an important role in the immune systems. IgG molecules are made of amino acids which make 

them generally charged [166]. The basic amino acid terminals, e.g. lysine, glutamine, asparagine, 

exhibit positive charges, whereas acidic amino acids residues, e.g. glutamic acid, aspartic acid, 

exhibit negative charges. The overall charge of a protein molecule is determined by its isoelectric 

point (pI) and the pH of the solution. When the pH is lower than its pI, the protein is positively 

charged; when the pH is higher than its pI, the protein is negatively charged. The charges of 

proteins play an important role in their structure formation and functioning [166,167] and can be 

used for the analysis of proteins, such as charge-induced chromatography and mass spectroscopy 

[168–170]. There are four IgG subclasses (IgG1, IgG2, IgG3 and IgG4) in human blood and IgG1 

is the most abundant. IgG antibodies are large molecules of about 150 kDa made of four peptide 

chains: two large heavy chains and two small light chains. The Y-shaped IgG consists of two 
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antigen-binding fragments (Fab) for specific binding with antigen and a crystallizable fragment 

(Fc). Both fragments are heavily decorated with lysine groups [171]. The abundant amino 

terminals make the pI of the IgG fall in the range of 8.7-9.1 [172] which makes IgG positively 

charged in physiological pH of around 7.4.  

In general, EGGFET biosensors operate by measuring the conductance change of the channel 

induced by the binding of the target molecules on it. The successful triggering of the conductance 

change is the key for its operation. Depending on the properties of the target molecules, different 

mechanisms can be employed, such as electron transfer [104], scattering, Schottky barrier 

modulation between carbon materials and metal electrodes [173] and electrostatic gating [174–

176]. The charges on the IgG molecules provide opportunity for their detection with FET 

biosensors by electrostatic gating. The detection of IgG with EGGFET biosensors is based on the 

modulation of the Fermi level in the graphene channel by electrostatic gating upon the specific 

adsorption of the positively charged IgG molecules [177]. Owing to the low density of states at 

Figure 5.1 Operation principle of the EGGFET biosensor for IgG detection. (a) the 

modulation of the Fermi level in the graphene channel upon the adsorption of IgG 

molecules. (b) the negative shift of the transfer curve upon the adsorption of the IgG 

molecules. (Reprinted from [177]). 
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low energy level, the Fermi level in graphene is very sensitive to the change of the carrier density, 

which can be modulated by the adsorption of the charged molecules. As shown in Figure 5.1, the 

specific binding of the positively charged IgG molecules will cause the accumulation of the 

electrons in the graphene channel, resulting in the positive shift of the Fermi level.  

The transfer curve measurement allows us to locate the Fermi level. Graphene is a zero-bandgap 

semiconductor with the conduction band and the valance band meeting at the Dirac points with 

linear energy dispersion. The transfer curves of the EGGFET biosensors exhibit unique ambipolar 

electrical field effect behavior. As shown in Figure 5.1, the minimum conductivity is obtained 

when the Fermi level of graphene coincides with the Dirac point and the corresponding gate 

voltage (𝑉𝑔) can be used for parameterizing the Fermi level of graphene [178]. This gate voltage 

is generally referred as Dirac voltage (𝑉𝐷𝑖𝑟𝑎𝑐) [179–181]. The shift of the Dirac voltage can thereby 

be used for the quantification of the IgG. 

In this chapter, we present a proof-of-concept study on the detection of the human IgG using the 

EGGFET biosensor. The performance of the EGGFET biosensor is demonstrated by the detection 

of IgG in two different operation modes: transfer curve measurement and continuous drain current 

measurement. The selectivity of the EGGFET is studied by measuring the drain current change 

upon the addition of the interfering antibodies, including human immunoglobulin M (IgM) and 

human immunoglobulin A (IgA). 

5.2. Experiments  

The EGGFET biosensor used for IgG detection is shown in Figure 5.2. It consists of five parallel 

graphene channels. A PDMS well with an opening of 5 mm in diameter was applied on the chip 

for the confinement of the samples. A standard Ag/AgCl reference electrode embedded in a PDMS 

stamp was used as the gate. Figure 5.2b shows the enlarged view of the graphene channel, which 
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is 150 μm in length and 75 μm in width. The graphene channel was functionalized with IgG 

aptamer for the specific detection of human IgG. The fabrication and functionalization processes 

are given in Section 3.2. 

The electrical measurement was conducted using a Keithley 4200 Semiconductor Characterization 

System (SCS) which consists of two source measure units (SMU). The experiment setup for IgG 

detection is schematically shown in Figure 5.2c. The gate voltage was applied using SMU2 and 

the drain current was measured by SMU1. For the transfer curve measurement, the gate voltage 

was swept from +0.1 V to +0.3V with steps of 1 mV and scan rate of 10 mV/s. The source-to-drain 

voltage was set to be 10 mV. For the continuous drain current measurement, the gate voltage was 

set to be 0 V and the source-to-drain voltage was set to be 10 mV. 

Figure 5.2 Device and experimental setup for IgG detection. (a) The EGGFET biosensor 

integrated with a standard Ag/AgCl reference electrode and a PDMS well for sample 

containing. (b) The enlarged view of the graphene channel. (c) The schematic diagram of 

the circuit connection for the detection of IgG using EGGFET biosensor. 
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5.3. Detection of IgG using EGGFET biosensor 

To test the response of the EGGFET biosensors, the device was incubated in human IgG (dissolved 

in 1× PBS) with different concentrations for 10 min successively. After each incubation, the 

chamber was rinsed with 0.01× PBS and filled with 0.01× PBS for transfer curve measurement. 

As shown in Figure 5.3, continuous negative shift of the transfer curve was observed as the 

concentration of the IgG increases. We extracted the Dirac voltage 𝑉𝐷𝑖𝑟𝑎𝑐  based on the linear 

regression analysis of the 𝑉𝑔 vs the slope of the transfer curves (see Appendix 2 for details). As 

mentioned above, the shift of the 𝑉𝐷𝑖𝑟𝑎𝑐  can be used for the quantitative analysis of the 

measurement results. The response of the EGGFET biosensor is plotted with respect to the IgG 

concentrations as shown in Figure 5.3b. The plots are fitted with the Hill-Langmuir equation 

Figure 5.3 The responses of an EGGFET immunosensor to IgG. a) The continuous shifts of the 

transfer curves of the EGGEFT immunosensor upon the addition of IgG with different 

concentrations (0, 0.1, 0.5, 1.0, 5.0, 10, 50, 100, 500 nM). The transfer curves are stacked 

vertically with offsets of 0.1 μA with the arrow indicating the increasing of IgG concentrations. 

b) ∆𝑉Dirac with respect to the concentrations of IgG. The uncertainties of the fitting parameters 

indicate the standard errors of the estimates for the fitting. (Reprinted from [177]). 
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∆𝑉𝐷𝑖𝑟𝑎𝑐 = ∆𝑉𝐷𝑖𝑟𝑎𝑐
𝑚𝑎𝑥 ×

[IgG]

[IgG] + 𝐾𝐷
 (5-1) 

in which 𝐾𝐷 is the dissociation constant of the aptamer-IgG complex. The Hill-Langmuir equation 

is commonly used in biochemistry to estimate the binding equilibrium in ligand-receptor 

interaction. In its original form 

𝜃 =
[𝐿]𝑛

[𝐿]𝑛 + 𝐾𝐷
 (5-2) 

where 𝜃 represents the fraction of the receptor sites that have been bound to the ligand; [𝐿] is the 

concentration of the ligands and 𝐾𝐷 is the apparent dissociation constant derived from the law of 

mass action, which is equal to the ratio of the dissociation rate of the ligand-receptor complex to 

its association rate; 𝑛 is the Hill coefficient which describes the cooperativity between ligands. 

The fitting indicates that the linear relation between ∆𝑉𝐷𝑖𝑟𝑎𝑐  and the occupation ratio 𝜃 of the 

binding sites. The fitting yields 𝐾𝐷 of 12.3 nM which is higher than the value provided by the 

manufacturer (8.4 nM) which can be attributed to the depressed on-rate caused by the spatial 

orientation of the aptamer. ∆𝑉𝐷𝑖𝑟𝑎𝑐
𝑚𝑎𝑥  represents the maximum response of the EGGFET biosensor 

and is estimated to be 27.2 mV for the device being tested. To evaluate the cooperativity between 

Figure 5.4 The response of the EGGFET biosensor to IgG and its fitting 

using the full Hill equation. 
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the IgG molecules, we also used the original Hill equation (equation 5-2) to fit the measured results 

(Figure 5.4).  The Hill coefficient is fitted to be 0.94, which suggests a negatively cooperative 

binding. 

The response of the EGGFET biosensor to IgG was also tested by the continuous monitoring of 

the drain current at a fixed gate voltage. In this case, IgG dissolved in 0.01× PBS with different 

concentrations were added into the detection chamber and the drain current was monitored 

continuously. As shown in Figure 5.5a, continuous decrease of the drain current was observed 

upon the addition of the IgG. The results are in agreement with the transfer curve measurement 

and previous results [182]. The decrease of the drain current is attributed to the negative shift of 

the transfer curves. The change of the drain current can also be well fitted with the Hill-Langmuir 

equation which generates a maximum response of 0.123 μA and a dissociation constant 𝐾𝐷 of 9.6 

nM. 

Figure 5.5 The real-time measurement of IgG using the EGGFET immunosensor. (a) The 

change of 𝐼d upon successive addition of IgG with increasing concentrations from 0.1 nM to 500 

nM. (b) ∆𝐼d with respect to the concentrations of IgG. The uncertainties of the fitting parameters 

indicate the standard errors of the estimates for the fitting. (Reprinted from [177]). 
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5.4. Selectivity of the EGGFET biosensor 

Selectivity is an important benchmark for biosensors which indicates the ability of a biosensor to 

measure the concentration of the analytes in presence of other interfering substances. To test the 

selectivity, we measured the response of the EGGFET biosensor to human immunoglobulin A 

(IgA) and human immunoglobulin M (IgM). IgA and IgM are possible interfering substances 

existing in human blood. As shown in Figure 5.6, no significant drain current change was observed 

upon the addition of IgA and IgM; while significant decrease of the drain current occurred upon 

the addition of IgG. The results suggest the good selectivity of the EGGFET biosensor for IgG 

detection. 

5.5. Conclusion 

The performance of the EGGFET biosensor is demonstrated by the detection of human IgG. Upon 

the adsorption of the positively charged IgG, the Fermi level in the graphene channel is modulated 

by the electrostatic gating effect which causes the negative shift of the transfer curves. The shift 

of the Dirac voltage can thereby be used for the quantitative measurement of IgG. Based on the 

operation principle, the EGGFET biosensor is also capable for real-time for IgG detection by 

Figure 5.6 The selectivity of the EGGFET immunosensor for IgG detection. (a) Responses of 

the EGGFET immunosensor to the successive addition of IgA, IgM and IgG. (b) ∆𝐼d of the 

EGGFET immunosensor as responses to IgA, IgM and IgG. (Reprinted from [177]). 
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monitoring the drain current change at a fixed gate voltage. The selectivity of the EGGFET 

biosensor is tested by measuring the drain current change upon the addition of the possible 

interfering antibodies, human IgA and IgM.  

It’s worth noting that in this proof-of-concept study, the IgG was measured in pure PBS buffer. 

However, the real samples, e.g. human blood, serum and plasma, are much more complex which 

might introduce biofouling to the measurement results. Although the EGGFET biosensor is 

promising for real-time detection, the variation of the sample matrices might cause significant 

uncertainty or even false. This point must be considered for the practical applications of the 

EGGFET biosensors. 
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Chapter 6. Matrix Effect Study and Immunoassay Detection Using 

EGGFET biosensor 

In this chapter, we study the electrolyte matrix effects, including its composition, pH and ionic 

strength, and demonstrate that the variations of the electrolyte matrices have a significant impact 

on the Fermi level of the graphene channel and the sensitivity of the EGGFET biosensors. It is 

attributed to the polarization-induced interaction between the electrolyte and the graphene at the 

interface which can lead to considerable modulation of the Fermi level of the graphene channel. 

As a result, the response of the EGGFET biosensors is susceptible to the matrix effect which might 

lead to high uncertainty or even false results. Then an EGGFET immunoassay is presented for 

allowing well regulation over the matrix effect. The multichannel design allows in-situ calibration 

with negative control, as well as the statistical validation of the measurement results. The detection 

range is estimated to be around 2-50 nM with a coefficient of variation (CV) of less than 20% and 

the recovery rate for IgG detection from serum is around 85~95%. The limit of detection (LOD) 

is estimated to be around 0.7 nM. Compared with traditional immunoassay techniques, the 

EGGFET immunoassay is label-free, and ready to be integrated with microfluidics sensor 

platforms, suggesting its great prospect for point-of-care applications. 

6.1. Introduction 

Significant progress has been made on the development of the electrolyte-gated graphene field 

effect transistor (EGGFET) biosensors during the last decade [22]. Various targeting analytes were 

demonstrated for detection, including nucleic acids [80], proteins [92], metabolites [102] and other 

biologically relevant analytes [104]. The EGGFET biosensors have shown sensitivity as low as 

attomolar and high selectivity toward target biomolecules [183]. EGGFET biosensors have also 

been applied for electrophysiological measurements due to the high spatial resolution and low 
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noise level, such as the detection of electrical activity of electrogenic cells [184,185]. Efforts have 

been taken to overcome the Debye screening effect which is one of the main factors that limit the 

sensitivity of EGGFET biosensors [94,120,122]. Other strategies were also applied to further 

improve their performance, such as gold nanoparticle decoration [186]. In addition, the rapid 

development of the preparation techniques of graphene also contributes to the maturing of the 

EGGFET biosensor and makes it a latecomer outperforming SiNW and CNT on performance and 

mass producibility [33,34]. 

Despite outstanding performance have been reported, most results were based on experiments 

using simplified samples in laboratory setting [19,22]. In EGGFET biosensors, the graphene 

channels are in direct exposure to the electrolytes, which might be variant in composition, 

concentration and pH, etc. These variables might originate from the sample themselves and the 

sample handling processes and affect the operation of the EGGFET biosensors. For example, the 

pH of human blood is normally regulated between 7.35 and 7.45; but many conditions and diseases 

can interfere with the pH control and cause the blood pH to fall outside of the healthy limits, such 

as acidosis and alkalosis [187]. During the actual measurement, the samples are often diluted to 

make the analyte level fall within the detection range of the biosensors, which may also change 

the electrolyte matrix composition. Furthermore, in EGGFET biosensors, the gate voltage is 

applied on the electrolytes and the electrical double layer (EDL) at the electrolyte-graphene 

interface serves as the gate dielectric, therefore it’s of critical importance to study if and how the 

variance in the electrolytes would affect the operation of the EGGFET biosensors. Till now, 

detailed understanding on the electrolyte-graphene interaction and its impact on the electronic 

transport in graphene are still lacking [19], while critical for the design and operation of the 

EGGFET biosensors, especially for their practical applications. 
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In this chapter, we studied the impact of the variance in the electrolytes on the EGGFET biosensors, 

namely matrix effect, by varying the composition, ionic strength and pH of the electrolytes. The 

underlying mechanisms were discussed with regarding to the strong polarization-induced 

interaction between the electrolytes and the graphene and its impact on the Fermi level of the 

graphene channel. The influence of the matrix effect on the gate potential and the sensitivity of the 

EGGFET biosensors was also studied. For the regulation of the matrix effect, we present an 

immunoassay based on the EGGFET immunosensors. The performance was demonstrated by the 

successful detection of human immunoglobulin G (IgG) from serum by spike-and-recovery 

experiments. 

6.2. Experiments 

6.2.1. Design of the EGGFET immunoassay 

A prototype of the EGGFET immunoassay chip and an enlarged view of the EGGFET 

immunosensor configuration are shown in Figure 6.1a and b, respectively. The chip consists of 7 

immunosensor sets that are distributed in a circular form, including five sets (number 1-5) for 

calibration curve (standards) measurement, one (number 6) for sample measurement, and one 

(number 7) for negative control. A common ring-like Ag/AgCl pseudo-reference electrode works 

as the gate (G). Each immunosensor set consists of 5 EGGFET immunosensors, which allows the 

statistical validation of the measurement results. The dimension of the graphene channels is 150 

μm × 75 μm. The sample-delivery channels are filled with red food dye for demonstration.  
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6.2.2. Electrical measurement 

The electrical measurements were conducted using Keithley 4200 SCS and a Micromanipulator 

probe station. The experiment setup is shown in Figure 5.1. For the operation of using the 

EGGFET immunoassay for IgG detection, the operation parameters, including the gate voltage 

scan rate, gate voltage setting and drain-source voltage, were optimized to minimize the hysteresis-

induced deviation and maximize the transconductance (see Appendix 3). The data were collected 

by measuring the five parallel channels in each immunosensor set and the results were obtained 

by the statistical analysis of the measured results. The open circuit potential (OCP) of the Ag/AgCl 

pseudo-reference electrode with respect to the standard Ag/AgCl reference electrode (CHI111, CH 

Instruments, Inc.) was measured using a Gamry Interface 1000T potentiostat. 

Figure 6.1 EGGFET immunoassay chip. (a) The prototype of the EGGFET immunoassay chip 

with the sample delivery channels filled with red food dye. The numbers indicate the 7 

immunosensor sets with their function assignment as specified on the right. (b) An enlarged view 

of the EGGFET immunosensor set that was fabricated on SiO2/Si substrate for the visualization of 

graphene (as indicated by the white dashed frames). The sample delivery channel is indicated by 

the brown dashed line. (Reprinted from [177]). 
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6.3. Matrix effect on the EGGFET biosensor 

6.3.1. Matrix effect on the 𝑽Dirac of the EGGFET biosensors 

In EGGFET biosensors, the graphene channels are directly exposed to the electrolytes, which 

makes it important to learn if and how the electrolytes would affect the operation of the EGGFET 

biosensors. The electrolyte matrices for bioanalysis are highly variant and complex, to better 

understand the underlying mechanisms, we chose several simple electrolytes and studied the 

matrix effect as a function of the composition, pH and ionic strength. In this study, we focus on 

the matrix effect on the 𝑉Dirac  of the EGGFET which is directly related with its biosensing 

applications.  

We measured the transfer curves of a set of EGGFET biosensors in different electrolytes using a 

standard Ag/AgCl reference electrode as the gate and the 𝑉Dirac were extracted from the transfer 

curves based on the linear regression analysis of the 𝑉g vs the slope of the transfer curves (see 

Appendix 2). As shown in Figure 6.2a, the 𝑉Dirac of the EGGFET biosensors exhibit a strong 

dependence on the composition of the electrolytes. In particular, the 𝑉Dirac of the EGGFET in 

potassium salt electrolytes are lower than those in the corresponding sodium salt electrolytes of 

the same concentration. The ion-specific dependence was also reported in Heller’s report that 

claims Li+ shows stronger electrostatic gating effect than K+ [188]. Our result is in accordance with 

a simulation which took into account the polarization of both the graphene and the ions at the 

graphene-electrolyte interface and suggests that K+ ion are more strongly absorbed onto the 

graphene than Na+ ions [189]. Because both K+ and Na+ have one positive charge, the stronger 

adsorption of K+, which leads to a higher surface charge density on graphene, will introduce 

stronger n-doping in the graphene channel due to the electrostatic gating effect. The stronger n-

doping effect of K+ compared with Na+ is further verified by the measurement of the 𝑉Dirac of the 
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EGGFET in the mixture of NaCl and KCl solutions with different ratios. As shown in Figure 6.2b, 

the 𝑉Dirac shifts negatively as the ratio of the KCl increases. In addition, the EGGFET exhibits 

different 𝑉Dirac in NaCl, NaNO3 and Na2SO4 (all containing 1 M Na+), respectively, suggesting 

that the 𝑉Dirac of the EGGFET is also dependent on the type of anions. 

Figure 6.2 The 𝑉Dirac of the EGGFET biosensors in (a) different electrolytes (all concentrations 

are 1 M except for Na2SO4, K2SO4 and H2SO4, which are 0.5 M); (b) mixture of KCl (1 M) and 

NaCl (1 M) with different mixing ratios (horizonal axis); (c) NaCl and KCl solution with different 

ionic strength and (d) KCl solution (1 M) that was titrated with different pH. The schematics in 

(d) show the possible orientation of the H3O
+ and OH- on the graphene. The error bars indicate the 

standard deviation of the measured results of the five parallel channels. (Reprinted from [177]). 
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More significantly negative shift of the 𝑉Dirac  was observed when acids were used as the 

electrolytes (Figure 6.2a). We further extended the pH range of the electrolyte by titrating HCl 

(0.1 M, in 1 M KCl) with KOH (0.1 M, in 1 M KCl). The titration allows us to adjust the pH of 

the electrolytes while keeping the ionic strength relatively constant. The pH was monitored using 

a Hach pocket pro pH tester. Linear positive shift of the 𝑉Dirac with respect to the pH was observed 

as shown in Figure 6.2d. The result is consistent with previous reports that proposed the 

application of EGGFET as pH sensors [92,113]. The pH dependence of the 𝑉Dirac suggests the 

strong adsorption of the hydronium and hydroxide ions on graphene and their n-doping and p-

doping effects, respectively. In addition to the ion-π interaction which leads to the enhanced 

adsorption of H3O
+ and OH- on graphene as discussed above, the dipole-π interaction might be a 

more important contributing factor [190]. Studies indicate that polar molecules tend to orient in 

the direction normal to the graphene with strength sufficient to overcome thermal effects [191]. 

Due to the strong adsorption of these polar ions, the continuous transition from the n-doping H3O
+ 

to p-doping OH- causes the continuous positive shift of 𝑉Dirac as the pH increases.  

Additionally, the transfer characteristics of the EGGFET were studied in electrolytes with different 

ionic strength. NaCl and KCl solutions with different ionic strengths were prepared by successive 

10-fold dilution of the stock solutions (1 M). The ionic strengths were calculated according to 𝐼 =

𝑐(𝑀) for monovalent salts, 𝑐(𝑀) represents the molar concentration. As shown in Figure 6.2c, 

the increase of the ionic strength causes the negative shift of the 𝑉Dirac, which is in agreement with 

previous report [188]. Because the overall doping effect of the electrolytes is determined by the 

competitive adsorption of the cations and the anions, the result indicates that Na+ and K+ surpass 

Cl- in the capability of doping graphene and reveals the significant impact of the ions in the 

electrolytes on the transfer characteristics of the EGGFET. It’s worth noting in Chen’s paper 
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[192,193], the  negative shift of the 𝑉Dirac is attributed to the dielectric screening of the charged 

impurities on the underlying SiO2 substrate by the dissolved ions. This explanation is based on the 

observed transconductance improvement of the EGGFET as the concentration of the electrolyte 

increases. However, no significant change of the transconductance was observed in our 

experiments and some other papers [188,194,195]. As shown in Figure 6.3, the transconductance 

of the EGGFET is almost the same in KCl solution over a wide concentration range. Therefore, 

we speculate that the negative shift of the transfer curve is caused by the adsorption of the cations 

on the graphene, rather than the dielectric screening of the charged impurities. Our speculation can 

also well explain the observed ion-specific gating effect of different electrolytes. 

6.3.2. Matrix effect on the potential of the gate electrode 

For the application in the EGGFET biosensors, standard Ag/AgCl reference electrode is preferred 

due to its well-defined potential. However, standard Ag/AgCl reference electrodes are difficult to 

be miniaturized and integrated with microfluidics devices. Ag/AgCl pseudo-reference electrode is 

Figure 6.3 The transfer curves of the EGGFET in KCl with different concentrations 
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an alternative because its fabrication is compatible with the microfabrication techniques [196]. In 

EGGFET, the real gate voltage that modulates the graphene channel is the voltage across the 

electrical double layer (EDL) [31], and the potential of the reference electrode must be considered 

for the determination of the 𝑉Dirac. The potential distribution in EGGFET with Ag/AgCl reference 

electrode is shown in Figure 6.4a and can be described as equation 6-1: 

𝑉gating = 𝑉Ag/AgCl − 𝑉gs (6-1) 

in which 𝑉gating is the potential across the EDL, 𝑉gs is the applied gate-to-source voltage, 𝑉Ag/AgCl 

is the potential of the Ag/AgCl electrode versus the electrolyte. Different from the standard 

Ag/AgCl reference electrode, the potential of Ag/AgCl pseudo-reference electrode is not fixed but 

determined by the composition of the electrolytes. In PBS, the potential of Ag/AgCl pseudo-

reference electrode can be estimated by the activity of the Cl- using the Nernst equation 6-2: 

𝐸Ag/AgCl = 𝐸Ag/AgCl
o −

𝑅𝑇

𝐹
ln(𝑎Cl

-)  (6-2) 

in which 𝐸Ag/AgCl
0  is the standard potential, 𝑅 is the universal gas constant, 𝑇 is the temperature in 

kelvins, 𝐹  is the Faraday’s constant, 𝑎Cl
-  is the activity of Cl-. We measured the 𝑉Dirac  of the 

EGGFET biosensors with a Ag/AgCl pseudo-reference electrode as the gate and the open circuit 

potential (OCP) of the Ag/AgCl pseudo-reference electrode with respect to the standard Ag/AgCl 

reference electrode in PBS with different dilution factors. As shown in Figure 6.4b, the OCP of 

the Ag/AgCl pseudo-reference electrode decreases as the concentration of the PBS increases; 
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comparatively, the 𝑉Dirac also shift downwards but with a larger amplitude and the difference can 

be attributed to the matrix effects of the electrolyte on graphene as discussed above. 

6.3.3. Matrix effect on the sensitivity of the EGGFET biosensors 

In electrolytes, the electrostatic effect of charges is screened by the attraction of the opposite 

charges and the specific orientation of the dipoles around them. Debye length, which is dependent 

on the ionic strength of the electrolyte, is normally used to characterize the distance of the 

electrostatic effects’ persistence. The sensitivity of the FET biosensors is significantly limited by 

the Debye screening effect [116]. Figure 6.5a shows the responses of one EGGFET immunosensor 

to IgG in PBS with different dilution factors. In 1× PBS, no significant response was observed 

because the Debye length (around 0.7 nm) is smaller than the height of the functional layer (the 

linker + the receptor). As the concentration of PBS decreases, the charged molecules exhibit 

Figure 6.4 The impact of the gate electrode potential on EGGFET biosensors. (a) The potential 

distribution in EGGFET biosensors.  (b) The 𝑉Dirac of the EGGFET biosensors with Ag/AgCl 

pseudo-reference electrode as the gate in different PBS diluents and the OCP between the 

Ag/AgCl pseudo-reference electrode and the standard Ag/AgCl reference electrode. The error 

bars indicate the standard deviation of the measurement results of the five parallel channels. 

(Reprinted from [177]). 
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stronger modulation capability as the Debye length increases and thus stronger response can be 

obtained. As shown in Figure 6.5b, the ∆𝑉 Dirac
max  under different ionic strength are plotted in 

comparison with the corresponding Debye length which was calculated by equation (3),  

𝛿 = √
휀𝑘𝑇

2𝑒2𝑁𝐴𝐶
 (6-3) 

in which 휀 is the permittivity of the electrolyte, 𝑘 is the Boltzman constant, 𝑇 is the temperature in 

kelvins, 𝑒 is the elementary charge, 𝑁𝐴 is the Avogadro number and 𝐶 is the concentration of the 

electrolytes in mol/m3. The results indicate that the Debye lengths are highly dependent on the 

ionic strength of the electrolytes, resulting a strong impact on the sensitivity of the EGGFET 

biosensors. 

As shown in Figure 6.5, higher sensitivity could be obtained with PBS with lower concentrations; 

however, the low concentration also introduces significant uncertainties, possibly due to 1) the 

Figure 6.5 The impact of the ionic strength on the sensitivity of an EGGFET biosensor. (a) 

The response of the EGGFET biosensor to IgG under different diluents; (b) The maximum 

response (∆𝑉 Dirac
max ) of the EGGFET biosensor in different PBS diluents and the corresponding 

Debye length. The error bars indicate the standard errors of the estimates for the fitting. 

(Reprinted from [177]). 
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high resistance of the electrolytes of low concentrations which makes the voltage between the 

reference electrode and the graphene unstable; 2) the fluctuation of the potential of the Ag/AgCl 

pseudo-reference electrode when the concentration of Cl- is low as discussed in section 6.3.2. The 

results show that 0.01× PBS provides the best performance which compromises the sensitivity and 

measurement uncertainty. 

6.4. EGGFET immunoassay 

6.4.1. Standard Operation Protocol of the EGGFET immunoassay 

As discussed in the previous section, the EGGFET biosensors are intrinsically sensitive to the 

variation of the electrolyte matrices. The matrix effect has to be properly taken into account when 

using EGGFET biosensor for real sample measurement. To allow the regulation of the matrix 

effect and obtain reliable test results, we developed a standard operation protocol of the EGGFET 

immunoassay as shown in Figure 6.6. For a better understanding of the operation of the EGGFET 

immunoassay, several terms used in this paper are clarified in the following: 1) the detection buffer 

is the electrolyte in which the transfer curves of the immunosensors are measured, 2) the washing 

buffer is the solution to rinse the channel and remove the nonspecifically adsorbed biomolecules. 

Figure 6.6 Standard operation protocol of the EGGFET immunoassay for IgG 

measurement. (Reprinted from [177]). 
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In this work, 0.01× phosphate buffer saline (PBS) was used as the detection buffer and washing 

buffer during the experiment unless specified otherwise. 

The operation protocol of the EGGFET immunoassay is described as the following. (1) The 7 

immunosensor sets were filled with detection buffer after rinsing with washing buffer for 3 times. 

(2) The transfer curves of the EGGFET immunosensors were measured and the initial 𝑉Diracwere 

extracted. (3) The EGGFET immunosensors were incubated with standards, blank solution and 

sample for 30 minutes, according to the function assignment as shown in Figure 6.1a. 4) The 

immunosensors were rinsed with washing buffer for 3 times and then filled with detection buffer. 

5) The transfer curves of the EGGFET immunosensors were measured and the modulated 𝑉Dirac 

were extracted). We hereby emphasize the 𝑉Dirac are measured in the detection buffers instead of 

the original samples to minimize or exclude the effect caused by the sample matrices. 

6.4.2. Spike-and-recovery test 

Spike-and-recovery test was used for examining the performance of the EGGFET immunoassay. 

The standards were prepared by dissolving human IgG (essentially salt-free, lyophilized powder, 

Sigma Aldrich) in 1× PBS to specific concentrations; goat serum (Sigma Aldrich) was used as the 

blank sample for negative control; the samples to be measured were prepared by spiking goat 

serum with human IgG with specific concentrations (2 nM, 5 nM, 20 nM, 50 nM, 100 nM). 

Following the protocol as mentioned above, the initial and modulated 𝑉Dirac  of EGGFET 

immunosensors before and after IgG binding were measured and ∆𝑉Dirac were calculated. The 

measured results are shown in Figure 6.7a. The calibration curve was obtained by fitting the 

responses to the standards using the Hill-Langmuir equation, and the IgG concentration of the 

sample was calculated based on the calibration curve. The fitting parameters and the measured 

concentrations of IgG are summarized in Table 6.1.  
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Figure 6.7 Evaluation of the EGGFET immunoassay. (a) The spike-and-recovery test of the 

EGGFET immunoassay for IgG detection. The error bars refer to the standard deviations of 

measurement results of the five parallel channels. (b) The linearity-of-dilution assessment of the 

EGGFET immunoassay. 
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Table 6-1 Summary of the fitting parameters and the measured results 

Device Spike Measured Recovery ∆𝑽 Dirac
max  𝑲𝑫 R2 

 nM nM  mV nM  

1 2 2.13 1.07 21.7 9.39 0.99 

2 5 5.16 1.03 19.0 10.24 0.99 

3 20 17.7 0.86 16.22 8.95 0.98 

4 50 48.0 0.96 25.44 9.40 0.99 

5 100 88.6 0.89 20.55 9.65 0.99 

 

Based on the results, (1) for all the five tests, the measured results of the standards can be well 

fitted with the Hill-Langmuir equation, which suggests the biosensors on a single chip exhibit high 

uniformity in the sensitivity. The good fitting allows us to calculate the concentration of the target 

IgG with high confidence. (2) Satisfactory recovery rates (0.86~1.07) were obtained which 

suggests the immunoassay can be used for the IgG detection from complex physiological samples. 

The reliability of the EGGFET immunoassay was further verified by the linearity-of-dilution 

assessment. As shown in Figure 6.7f, the measured concentrations are plotted with respect to the 

spike concentrations. The good linearity indicates that the matrix effects have been well regulated. 

Reproducible results can be achieved with a satisfactory recovery rate, suggesting the feasibility 

of the EGGFET immunoassay for IgG detection from serum. The discrepancy between the 

measured results and the actual concentrations might be attributed to the constituent difference 

between standards and samples and can be reduced by optimizing the composition of the standards 

matrix. (3) There’s a significant variability between different chips. For example, the maximum 

Dirac voltage shift ∆𝑉 Dirac
max  varies from 16.22 mV (Device 3) to 25.44 mV (Device 5). In our 
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experiment, we found this “chip-to-chip” variation always exist but the performance of the 

biosensors that are fabricated on the same chip exhibits high uniformity. This significant “chip-to-

chip” variation might originate from a) the variation in the quality of the graphene being used and 

b) the device fabrication process. For the biosensors that are fabricated on the same chips, they 

were made of the same piece of graphene and went through the same fabrication process and thus 

exhibit relatively high uniformity. Our immunoassay takes advantage of this point and integrates 

the self-calibration capability, showing great potential for practical applications. The limit of 

detection (LOD) is estimated to be around 0.7 nM based on the measurement results and the 

detection range is estimated to be around 2~50 nM with a coefficient of variation (CV) of less than 

20% (see Appendix 4).  

We compared our immunoassay with other biosensors that have been reported for IgG detection. 

The development of the biosensors typically bases on the demonstrative detection of an example 

target and the performance of the biosensors is highly dependent on the structures and properties 

of targets. It is meaningless to compare the results based on different targets. For example, the 

detection of DNA using FET biosensors is much more efficient than the detection of the proteins 

due to the higher affinity between matched DNA chains and more charges on the DNA backbones. 

Here the biosensors that have been reported for the detection of the human immunoglobulin G 

(IgG) are summarized in Table 6-2 for comparison. 
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Table 6-2 Summary of the biosensors for IgG detection 

Ref. Method Detection range (M) LOD (M) Label free Sample 

[197] SPR N/A 3.7 × 10-10 Yes Plasma 

[198] SPR 1.3~6.7 × 10-8 N/A Yes PBS 

[199] SPR 1 × 10-10~ 

6.67 ×10-8 

5.3 × 10-7 Yes Milk 

[200] Optical 1.3~6.7 × 10-5 1.3 × 10-5 No Blood 

[201] Interferometer 5 × 10-9~ 

2 ×0-7 

3.1 × 10-9 Yes Serum 

[202] Interferometer 2.7 × 10-10~ 

3.0 × 10-8 

2.7 × 10-10 Yes PBS 

[203] OMR 1.7 × 10-10~ 

2.73 × 10-9 

1.7 × 10-10 Yes PBS 

[204] EIS 6.7 × 10-14~ 

6.7 × 10-11 

6.7 × 10-14 Yes PBS 

[205] EIS 6.7 × 10-11~ 

6.7 × 10-9 

3.3 × 10-11 Yes PBS 

[206] Amperometry 2.6 × 10-9 ~ 

1.3 × 10-7 

1.3 ×10-9 No Milk 

[86] CNT-FET 7 × 10-15~ 

7 ×10-13 

7 × 10-15 Yes PBS 

[207] TRGO-FET 1.3 × 10-12~ 

1.3 × 10-6 

1.3 × 10-12 Yes PBS 

This 

work 

EGGFET 2 × 10-9~ 

5 × 10-8 

7 × 10-10 Yes Serum 

Abbreviation: EIS: electrochemical impedance spectroscopy; OMR: optical micro-ring resonator; 

SPR: surface plasmon resonance; TRGO: thermal reduced graphene oxide; CNT: carbon nanotube; 

PBS: phosphate buffered saline. Note: some units were transferred to molar using IgG molecular 

weight of 150kDa. 
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Comparing with other biosensors and other techniques, the merits of our immunoassay reside in 

(1) The label-free detection capability. Comparing with other bioanalysis techniques, such as the 

widely used ELISA, our biosensor is label-free and could significantly simplify the operation 

procedures.  

(2) It’s based on electrical measurement and doesn’t rely on complicated supporting equipment. 

Comparing with other biosensors, such as SPR, OMR and interferometer, the signal of our 

biosensor can be directly read using a simple electrical measurement device. Therefore, our 

biosensor and immunoassay are ready to be integrated with the portable electrical measurement 

device and is highly promising for point-of-care biomedical applications.  

(3) The capability for analyzing real physiological samples. The performance of the biosensors is 

mainly challenged by the capability to deal with complex physiological samples. Currently, the 

reports on the FET-based biosensors are mostly proof-of-concept demonstration by measuring in 

purified buffers, e.g. in reference [86] and [207], PBS is used as the buffer for IgG detection. Our 

EGGFET immunoassay actually provides a strategy to enable their application for real sample 

measurement. 

It’s worth noting that the sensitivity of our EGGFET immunoassay is not the highest among all 

the reported biosensors. In particular, the LOD is lower than the reported FET biosensor based on 

CNT [86] and TRGO [207]. However, the determination of the LOD and detection range is highly 

subjective due to the lack of the uniform criterions for the determination of these parameters (as 

discussed in Appendix 4). For example, the LOD of the TRGO-FET biosensor is determined by 

the noise level which yields around 2 ng/mL [207], however the determination of the noise level 

(10.8% resistance increase) is not specified. The LOD of the CNT-FET biosensor is claimed to be 

7 fM in [86], however the determination of the LOD is not specified in the reports. Furthermore, 
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the LOD and the detection range is mainly determined by the affinity between the bioreceptors 

and the target analytes. The lower 𝐾D the bioreceptor has, the detection range of the biosensor is 

of lower concentration. For example, the 𝐾D of the Fab fragment for IgG employed in [86] should 

be around 10-14 M to yield a detection range of picomolar (pM) to femtomolar (fM). Our biosensor 

exhibits a detection of 2-50 nM is mainly determined by the dissociation constant 𝐾D of the IgG 

aptamer we used, which is around 10 nM. Lower LOD can be obtained by using bioreceptors with 

lower 𝐾D. 

In summary, the EGGFET immunoassay exhibits high reliability for the detection of analytes from 

physiological samples due to 1) the high uniformity in the sensitivity of the sensing channels in a 

single chip; 2) the well regulation of the matrix effects and the operation procedure; 3) the 

statistical validation of the measured results using multiple parallel EGGFET immunosensors. The 

performance can be further improved by optimizing the operation parameters, such as the 

composition/pH of the detection buffer. This assay can also be used for detecting other 

biomolecules by functionalizing graphene channels with their corresponding bioreceptors. It’s 

worth noting that the operation parameters should be adjusted depending on the physical and 

physiological properties of the target biomolecules, e.g. the pH of the buffer should be adjusted 

based on the isoelectric point (pI) of the target proteins. Compared with traditional immunoassay 

techniques, such as the commercial ELISA, the EGGFET immunoassay is label-free and easy to 

use. It doesn’t rely on specific signal collecting equipment and can be easily integrated into 

electrical measurement and sample delivery systems, suggesting its great prospect for point-of-

care applications. 
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6.5. Conclusion 

In this chapter, matrix effects of electrolytes were investigated for electrolyte-gated graphene 

biosensor, the results show that the composition, pH, and ionic strength of the electrolyte have 

considerable impact on the characteristics and performance of EGGFET due to the polarization-

induced interaction at the interface between electrolyte and graphene. The study on the matrix 

effect on the EGGFET biosensors provides a more in-depth understanding in the characteristics, 

optimization, and application of the EGGFET biosensors. An EGGFET immunoassay was further 

demonstrated to allow well regulation of the matrix effects and being able to detect analyte from 

physiological samples, which has the potential for practical application. Considering the label-free 

detection capability and ease of operation, the EGGFET immunoassay has great prospect for point-

of-care biomedical applications. 
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Chapter 7. Capacitance Behavior of the Electrolyte-graphene 

Interface and the Carrier Statistics in Graphene 

Understanding the “device physics” of an electronic device is of critical importance for its design 

and applications. Different from the traditional metal-oxide-semiconductor field effect transistors 

(MOSFET), in EGGFET, the gate voltage is applied on the electrolytes and the electrolyte-

graphene interface serves as the gate dielectric. In this chapter, the capacitance behavior of the 

electrolyte-graphene interface and the transport behavior in the graphene channel are studied. The 

results suggest that the electrolyte-graphene interface exhibits a complex constant phase element 

(CPE) behavior (
1

𝑍
= 𝑄0(𝑗𝜔)𝛼) with both 𝑄0 and 𝛼 dependent on the gate voltage. The capacitance 

of the electrical double layer (EDL) capacitance and the quantum capacitance of graphene are 

determined; the carrier mobilities in the graphene channel are extracted based on the measurement 

results. The studies give insight into the device physics of the EGGFET biosensor and are 

fundamental for the future improvement on the design of the EGGFET biosensors. 

7.1. Introduction 

7.1.1. Interfacial capacitance at the electrolyte-graphene interface 

The development of the EGGFET biosensor requires an in-depth understanding on the device 

physics of the EGGFET, e.g., its transfer characteristics and carrier statistics, etc. The gate 

capacitance is of critical importance because it determines the transconductance, which is one of 

the key parameters characterizing the sensitivity of the EGGFET biosensors [31]. Different from 

the traditional metal-oxide-semiconductor field effect transistors (MOSFET), in EGGFET, the 

gate voltage is applied on the electrolyte and the electrolyte-graphene interface serves as the gate 

dielectric. Therefore, it is of particular interest to study the capacitance behavior of the electrolyte-

graphene interface.  
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The total capacitance of the electrolyte-graphene interface is governed by two factors: the 

capacitance of the electrical double layer (EDL) (𝐶EDL) and the quantum capacitance (𝐶Q) of the 

graphene channel [208]. Considering the series arrangement of these two capacitors, the total 

capacitance (𝐶total) of the electrolyte-graphene interface can be calculated as [208,209] 

1

𝐶total
=

1

𝐶EDL
+

1

𝐶Q
 (7-1) 

The EDL arises from the accumulation of counterions at the electrolyte-graphene interface which 

gives rise to an electrostatic layer that compensates the charges in the graphene channel [210]. The 

capacitance of the EDL is typically in the scale of several μF/cm2, which is much higher than the 

capacitance of a typical silicon dioxide (SiO2) dielectric layer (several nF/cm2) [92,210]. As a 

result, the EGGFET exhibits much higher transconductance when operated in the electrolyte-gated 

mode than in the back-gated mode [92]. Typically, EDL doesn’t behave as an ideal capacitor, but 

is considered as the so-called constant phase element (CPE) [211], whose impedance (𝑍) has the 

form of 

𝑍 =
1

𝑄0(𝑗𝜔)𝛼
 (7-2) 

where 𝑄0 has the numerical value of the admittance at 𝜔 = 1 rad/s. The unit of 𝑄0 is S·sα. Different 

from the ideal capacitors whose impedance always have a phase angle of -90°, the phase angle of 

a CPE’s impedance is -90°·α (0 < α < 1). Till now there is no particular theory that can well explain 

the CPE behavior of the EDL; several possible explanations include the surface roughness of the 

electrodes [212], the inhomogeneous distribution of the reaction rates on the surface of the 

electrodes [213], the varying thickness or composition of the surface coating layer [214] and the 

non-uniform distribution of current on the electrode surface [215], etc. However, as pointed out 

by Macdonald in his textbook [216], very often the CPE can well fit the experimental data and 
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describe the capacitance behavior of the EDL. To better understand the capacitance behavior of 

the electrolyte-graphene interface, the frequency response of the interfacial capacitance is to be 

studied. 

On the other hand, the interfacial capacitance between electrolyte and graphene is limited by the 

quantum capacitance (𝐶Q) of graphene, which arises from the low density of states in graphene 

[217]. Based on the linear density of states in graphene, the quantum capacitance (𝐶Q) of graphene 

is approximately linear with respect to the electrostatic potential in the graphene sheet [217]. Xia 

[208] first measured the quantum capacitance of the graphene electrode as a function of gate 

potential and after then several reports have demonstrated the voltage dependence of the quantum 

capacitance (𝐶Q) of graphene. At low gate potentials, the total capacitance (𝐶total) of the electrolyte-

graphene interface is dominated by the quantum capacitance (𝐶Q) of graphene, which is smaller 

than the capacitance of EDL (𝐶EDL) [208,210]. Therefore, to better understand the capacitance 

behavior of the electrolyte-graphene interface, the contribution of the quantum capacitance has to 

be taken into account [209]. 

Several reports have recently studied the interfacial capacitance of graphene in various electrolytes, 

such as ionic liquid [208], ion-gels [195] and aqueous electrolytes [218–221]. They show the 

voltage dependence of the interfacial capacitance, with a minimum value (the interfacial 

capacitance at the Dirac point) ranging from 1 μF/cm2 [221] to 5 μF/cm2 [208]. However, these 

reports failed to display the complexity of the interfacial capacitance of graphene in aqueous 

electrolytes. In these reports, the interfacial capacitance was measured either at a fixed frequency 

assuming it behaves as an ideal capacitor [208] or over some range of frequency but ignoring the 

frequency dispersion [218,219]. Considering the CPE behavior of the EDL, the frequency response 

of the electrolyte-graphene interface is to be studied to better understand its capacitance behavior.  
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7.1.2. Carrier statistics in the graphene channel 

Carrier mobility and density are important parameters that characterize the transport properties of 

semiconductors. In fact, the intrinsic high carrier mobility is one of the most exciting features of 

graphene for its applications in nanoelectronics biosensors [31,104]. The carrier mobility of the 

one-atom-layer graphene is highly dependent on the environment, e.g. the carrier mobility of 

graphene is compromised by the scattering from the substrates it resides on [142,160]. In EGGFET, 

the graphene channel is directly exposed to the highly ionized electrolyte; it is of particular interest 

to learn if the ions in the electrolyte would introduce extra scattering for the carriers in graphene. 

This is especially true when considering that the gating effect in EGGFET is achieved by the 

accumulation of the ions in the EDL, in which the first layer is almost directly anchored on the 

graphene surface.   

The carrier mobility can be determined by the Hall effect or inferred from the transistor behavior. 

Hall effect allows direct measurement of the carrier density and the carrier mobility can be 

extracted based on the measured conductance [222]. Garrido [31] and Minot [223] measured the 

carrier density and mobilities of graphene in aqueous electrolytes using the Hall bar structure. The 

Hall effect measurement involves specific device configuration and measurement technique. More 

importantly, near the Dirac point, the estimation of the carrier density because invalid because the 

Hall voltage goes to zero when the number of holes and electrons is similar [31]. The field-effect 

measurement provides a feasible alternative to estimate carrier mobility and is compatible with 

our biosensor design. Many reports have studied the extraction of the carrier mobility in graphene 

based on the field effect measurement [165,222,224–227]. However, most of these reports are 

based on the back-gated graphene transistors using silicon oxide as the gate capacitor and thus fail 

to display the complexity of the electrolyte-gated field effect mobility. Hess [165] derived the 

carrier mobility in graphene from the measured transfer curve of the EGGFET and a theoretical 
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prediction of the gate capacitance based on the extended Poisson-Boltzmann (ePB) model. To the 

best of our knowledge, till now there is no report that extracts the carrier mobility based on the 

experimentally measured interfacial capacitance, which should provide a more accurate result. In 

this study, we present the extraction of the carrier mobility based on the transfer curve 

measurement and capacitance-voltage profiling. 

In this chapter, we present a study on the capacitance behaviors of the electrolyte-graphene 

interface by studying its frequency response using electrochemical impedance spectroscopy (EIS). 

The gate voltage dependence of the interfacial capacitance is studied using capacitance-voltage 

(C-V) profiling; the capacitance of the EDL and the quantum capacitance of the graphene are 

differentiated which allows us to estimate the carrier density in the graphene. In the end, the carrier 

mobility in the graphene channel is extracted. 0.1 M NaF solution was used as the electrolyte for 

all the experiments in this chapter. 

7.2. Experiments 

7.2.1. EIS measurement 

EIS is a frequency domain measurement technique often used to study the interfacial behavior in 

electrochemical systems, such as the charge transfer resistance, interfacial capacitance, etc. [228]. 

Briefly, if we apply a small AC voltage perturbation to an electrochemical cell and measure the 

output AC current (magnitude and phase shift), the impedance of the system can be obtained as a 

function of the applied frequency. EIS data are commonly analyzed by fitting to an equivalent 

electrical circuit model, in which each electrical element should have a basis in the physical 

electrochemistry of the system. For example, a CPE is typically involved in an electrical circuit 

model to describe the capacitance behavior of the EDL. In this section, we use EIS to measure the 
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frequency response of the electrolyte-graphene interface, which is used for the analysis of its 

capacitance behavior. 

Circular graphene electrodes as shown in Figure 7.1a were used for EIS measurement. It has a 

graphene electrode of 500 μm in diameter that is electrically connected using a metal contact. 

Figure 7.1b shows the zoom-in view of the graphene electrode and a schematic of the cross-section 

is shown in Figure 7.1c. A photoresist layer was employed to (1) precisely define the circular area 

of graphene (500 μm in diameter) that was exposed to the electrolyte and (2) passivate the metal 

contacts. A PDMS well (not shown) with an opening of 5 mm in diameter was applied on the chip 

for the confinement of the electrolytes. More details about the fabrication of the graphene 

electrodes are given in Section 3.2. 

A schematic diagram of the experimental setup is shown in Figure 7.1c. The EIS measurements 

were conducted with a Gamry Interface 1000T potentiostat in a three-electrode configuration with 

a standard Ag/AgCl electrode as the reference electrode (RE) and a gold wire as the counter 

electrode (CE). The graphene electrode was connected to the working electrode (WE) of the 

Figure 7.1 The device and the schematic diagram of the experimental setup for EIS measurement. 

a) A picture of the graphene electrode for EIS measurement; b) The zoom-in view of the graphene 

electrode as marked by the red dashed box in a); c) The cross-section schematic (not scaled) of the 

graphene electrode and the EIS measurement setup. 
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potentiostat. The EIS spectrum were collected over a frequency range from 20k Hz to 0.1 Hz with 

an AC perturbation voltage of 10 mV rms. The potential of the graphene electrode was swept from 

-0.5 V to +0.5 V vs REF with a step of 0.05 V. 

7.2.2. Transfer curve measurement and C-V profiling 

The transfer curves measure the drain current (𝐼𝑑) of the graphene channel as a function of the gate 

voltage (𝑉𝑔). The C-V profiling is a technique for measuring the gate capacitance as a function of 

the gate voltage (𝑉𝑔). The device for the transfer curve measurement and the C-V profiling is shown 

in Figure 7.2a. Each device contains six parallel graphene channels that are electrically connected 

using metal contacts as the source and drain electrodes. Figure 7.2b shows the zoom-in view of 

the graphene channels which have a dimension of 75 μm in width and 150 μm in length. A 

photoresist layer was employed to passivate the metal contacts so that only the graphene channels 

were exposed to the electrolytes. A PDMS well (not shown) with an opening of 5 mm in diameter 

was applied on the chip for the confinement of the electrolytes. More details about the fabrication 

of the devices are given in Section 3.2. 
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The transfer curve measurements were conducted with two source measure units (SMU) in a 

Keithley 4200 Semiconductor Characterization System (SCS) with a standard Ag/AgCl reference 

electrode serving as the gate. The experimental setup is shown schematically in Figure 7.2c. The 

gate voltage (𝑉𝑔) was applied using SMU2 which swept from -0.5 V to +0.5 V with steps of 1 mV 

and a scan rate of 10 mV/s. The drain current (𝐼𝑑) is measured by SMU1 with a 10 mV load (𝑉𝑑𝑠). 

The C-V profiling was conducted with a capacitance-voltage unit (CVU) in the Keithley 4200 SCS 

with an AC perturbation voltage of 10 mV rms. The CVU allows two operation modes: frequency 

sweep and voltage sweep. Firstly, we applied constant gate voltages ( 𝑉𝑔 ) and measured the 

impedance as a function of the frequency. Secondly, we measured the impedance as a function of 

the gate voltage (𝑉𝑔) at fixed frequencies. 

 

 

 

Figure 7.2 The device and the schematic diagram of the experimental setup for transfer curve 

measurement and C-V profiling. a) A picture of the graphene electrode for EIS measurement; b) 

The zoom-in view of the graphene electrode as marked by the red dashed box in a); c) The cross-

section schematic (not scaled) of the graphene electrode and the EIS measurement setup. 
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7.3. Capacitance behavior of the electrolyte-graphene interface 

Figure 7.3 shows the representative Bode plot of the graphene electrode. A capacitive regime with 

a phase shift of ~ -80° is observed at 100-1000 Hz. At frequencies lower than 100 Hz, the electrode 

exhibits a mixed response (capacitive and resistive) due to the current leakage. An equivalent 

Randles circuit model (see inset in Figure 7.3b) can be used to fit the measured impedance. The 

correspondence between the circuit elements and the electrochemical systems are listed as below: 

Rs - The series resistance, including the access resistance, electrolyte resistance, etc.; 

CPE - The interfacial capacitance at the electrolyte-graphene interface; 

Zf - The faradaic impedance, which causes the leakage current; 

Zw - The Warburg impedance, which is attributed to the diffusion-limited faradaic 

reaction. 

The fitting yields a CPE with 𝑄0 = 3.8 × 10-9 S·sα and α = 0.89 which corresponds to the capacitive 

regime with a phase shift of around -80° in the frequency range of 100 – 1000Hz (Figure 7.3b), 

which suggests that the electrolyte-graphene interface behaves as a CPE rather than an ideal 

Figure 7.3 Representative Bode plot of the graphene electrode and the fitting curve using the 

Randles circuit shown in the inset of (b). 
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capacitor. A similar result was reported by [209] in which a capacitive regime with a phase shift 

of around -85° was observed. Using the Randles circuit model, we analyzed the impedance of the 

graphene electrode at different gate voltages. The fitting results of 𝑄0 and α are plotted with respect 

to the gate voltage (𝑉𝑔) in Figure 7.4. 𝑄0 exhibits an ambipolar behavior with a minimum of 3.0 × 

10-9 S·sα at 𝑉𝑔 ≈ +0.2 V and increases on both sides of the minimum value. Noting that the 𝑄0 is 

numerically equal to the capacitance at 𝑓 =1 Hz, the result is expected considering the 𝑉𝑔 

dependence of the quantum capacitance in the graphene as discussed above. What surprises us is 

that α also exhibits an ambipolar behavior with respect to the gate potential, which is unique for 

typical EDL.  

Even though the Randles circuit model can well reproduce impedance spectrum (as shown in 

Figure 7.3), it might also introduce high uncertainties to the fitting result because it involves too 

many fitting parameters, which could possibly lead to the observed 𝑉𝑔-dependence of α. To rule 

out this possibility, we analyzed the measured impedance spectrum using a simplified electrical 

circuit model which consists of a resistor and a CPE in series arrangement as shown in the inset of 

Figure 7.5. For convenience, the simplified model is called the Rs-CPE model. The Rs-CPE model 

Figure 7.4 Fitting results using the Randles circuit model. 



83 

 

is based on the analysis of the out of phase elements (𝑍") of the impedance spectrum in the 

capacitive region. In the absence of charge transfer induced by Faradaic reactions at the electrolyte-

graphene interface, Zf and Zw can be removed leading to the simplified Rs-CPE circuit whose 

impedance can be calculated as 

𝑍 = 𝑅𝑠 +
1

𝑄0(𝑗𝜔)𝛼
 (7-3) 

The out-of-phase (𝑍") component is 

𝑍" =
− sin (

𝜋𝛼
2 )

𝑄0𝜔𝛼
 (7-4) 

We get 

log(−𝑍") = log (
sin (

𝜋𝛼
2 )

(2𝜋)𝛼𝑄0
) − 𝛼 log 𝑓 (7-5) 

Figure 7.5 A representative plot showing log(-Z”) with respect to 

log(f). The inset shows the Rs-CPE circuit model. 
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According to equation 7-5, if we plot log(−𝑍") with respect to log 𝑓,  a linear relationship would 

be expected, and the slope would be −𝛼. The 𝑄0 can thereby be calculated based on the intercept 

log (
sin(

𝜋𝛼

2
)

(2𝜋)𝛼𝑄0
) at 𝑓=1 Hz. As shown in Figure 7.5, log(−𝑍") exhibits good linearity with respect 

to log 𝑓 at frequencies. We applied linear regression analysis in the frequency range of 100-1000 

Hz; the fitting results of 𝑄0 and α are shown in Figure 7.6 with respect to the gate potential (𝑉𝑔). 

Both 𝑄0 and α exhibit dependence on the gate potential (𝑉𝑔), which is in accordance with the fitting 

results using the Randles circuit model. Based on the fitting results using the two different models, 

we claim the observed 𝑉𝑔 dependence of α is not caused by the experimental error, but rather an 

intrinsic property of the electrolyte-graphene interface.  

Figure 7.6 Fitting results using the Rs-CPE circuit model as a function of the gate voltage 
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To the best of our knowledge, the dependence of α on 𝑉𝑔 has not been reported till now. We 

speculate this unique phenomenon could be attributed to the low density of states in graphene near 

the Dirac point which makes α sensitive to the imperfections in the graphene. As is reported 

previously [208,229], the properties of graphene is highly subject to the imperfections in it, such 

as the charged impurities, lattice defects and dopants, etc. These imperfections could be considered 

as local sites with density of states that are different from these in the “good” graphene sites. 

Considering the single-atom-layer structure and low density of states of graphene at low energy 

level, such imperfections might have a significant impact on the capacitance behavior of the 

graphene electrodes. A schematic diagram depicting this effect is shown in Figure 7.7. When the 

gate potential is low (Figure 7.7a), e.g. near the Dirac point, the carrier density in the graphene is 

low and the capacitance is limited; these imperfections dominate the capacitance behavior of the 

graphene electrode, which gives rise to the smaller α values. When the gate potential in graphene 

is driven away from the Dirac point (Figure 7.7b), the carrier density in graphene is high and the 

Figure 7.7 Schematic diagram showing the impact of the imperfection sites 

on the capacitance behavior of the electrolyte-graphene interface. 
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imperfections are “submerged” by the carriers in the graphene lattice; as a result, these 

imperfection states exhibits smaller impact on the interfacial capacitance behavior and a higher α 

is observed. 

7.4. Determination of 𝑪EDL and 𝑪Q 

For an ideal capacitor, the capacitance can be calculated based on the imaginary part (𝑍") of the 

measured impedance at any frequency using equation 

𝐶 =
1

2𝜋𝑓(−𝑍")
 (7-6) 

However, as discussed above, the electrolyte-graphene interface behaves as a CPE rather than an 

ideal capacitor, which gives rises to a frequency dispersion of the calculated capacitance. In this 

dissertation, 𝑄0 , which is numerically equal to the capacitance at 𝑓  = 1 Hz, is chosen as the 

interfacial capacitance of the electrolyte-graphene interface. We first measured the frequency 

response of the graphene channels at fixed voltages (𝑉𝑔). As shown in Figure 7.8, good linearity 

Figure 7.8 A representative plot showing log(-Z”) with respect to log(f) at 

different gate voltages. 
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with slopes approximating but less than one (𝛼 ≼ 1) is observed at all 𝑉𝑔, which suggests that the 

interface between the electrolyte and the graphene channel works in a capacitive regime in this 

frequency range (1k-10k Hz) according to equation 7-5.  

For C-V profiling, we prefer to measure the capacitance in a continuous voltage range. Therefore, 

we measured the impedance of the graphene at selected frequencies (1k, 2k, 3k, 4k, 6k, 8k, 10k 

Hz) while sweeping the 𝑉𝑔 from -0.5V to 0.5V with steps of 1 mV. The results are shown in Figure 

7.9. According to equation 5-5, we applied linear regression analysis of log(−𝑍") with respect to 

log 𝑓; 𝑄0 and α were extracted based on the intercept at 𝑓 = 1 Hz and the slope using equation 7-

5, respectively. As shown in Figure 7.10, both 𝑄0 and α show dependence on 𝑉𝑔, which is in 

accordance with the unique CPE behavior of the electrolyte-graphene interface as discussed above.  

Figure 7.9 The C-V profiling of the EGGFET at different frequencies. 
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Fang [217] derived the quantum capacitance ( 𝐶Q ) of graphene as a function of the local 

electrostatic potential (𝑉ch) (see Appendix 5): 

𝐶𝑄 =
2𝑒3

𝜋(ℏ𝑣𝐹)2
𝑉ch (7-7) 

in which 𝑒 is the elementary charge; ℏ is the reduced Planck’s constant; 𝑣𝐹 ~ 108 cm/s is the Fermi 

velocity of carriers in graphene. According to equation 7-7, the 𝐶𝑄 should be zero at the Dirac 

point for ideal graphene, which would lead to an overall interfacial capacitance of zero at the Dirac 

point. The non-zero minimum interfacial capacitance observed in Figure 7.10a could be attributed 

to the imperfections in the real graphene, which could introduce local density-of-states and residue 

carriers and cause the deviation of the capacitance near the Dirac point. It has been reported that 

the charged impurities could cause local potential fluctuations and carrier puddles in graphene 

[229,230]. Xia [208] included these residual carriers and built a quantitative model for the quantum 

capacitance of non-perfect graphene.  

Considering (see Appendix 5) 

𝑛 ≅ (
𝑒𝑉𝑐ℎ

ℏ𝑣𝐹√𝜋
)

2

 (7-8) 

Figure 7.10 Fitting results based on the C-V profiling. 
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Equation 7-7 reduces to 

𝐶𝑄 =
2𝑒2

√𝜋ℏ𝑣𝐹

√𝑛 (7-9) 

Xia took an approximation that the total carrier density in graphene is 

𝑛𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑔 + 𝑛𝑟𝑒𝑠 (7-10) 

in which 𝑛𝑔  is the gate voltage induced carrier density; 𝑛𝑟𝑒𝑠  is the residue carrier density 

introduced by the imperfections. The quantum capacitance 𝐶𝑄 can thereby be given as 

𝐶𝑄 =
2𝑒2

ℏ𝑣𝐹√𝜋
(𝑛g + 𝑛res)

1/2
 (7-11) 

Considering the series arrange of the EDL capacitance and the quantum capacitance, the total 

interfacial capacitance (𝐶𝑡𝑜𝑡𝑎𝑙) can be calculated based on equation 7-1. Till now we have built a 

model for the electrolyte-graphene interface that integrates the EDL capacitance and the quantum 

capacitance of graphene. For simplicity, we name it Model 1 (inset of Figure 7.11). We replotted 

the measured interfacial capacitance (𝐶𝑡𝑜𝑡𝑎𝑙) with respect to the Dirac point in Figure 7.11 and the 

results were fitted using the Model 1. The detailed fitting method is given in Appendix 5. The 

Figure 7.11 Fitting results based on the model as shown in the inset. 
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capacitance of the EDL (𝐶𝐸𝐷𝐿) and the residual carrier density (𝑛res) are assumed to be constant 

over the measured voltage range. The quantum capacitance of the graphene is calculated based on 

the fitting results and plotted in Figure 7.11 (orange line). Based on the fitting results, the 

interfacial capacitance at the electrolyte-graphene interface is limited by the quantum capacitance 

(𝐶𝑔) in the low voltage range measured, which is in accordance with previous reports [208,221]. 

As shown in Figure 7.11, the experimental result can be roughly fitted with this model. However, 

there is some systematic deviation between the fitted result and the experimental result. For 

example, at the low voltage range, the fitting results in a slight overestimation of the interfacial 

capacitance. It’s worth noting that the similar deviation is also observed in Xia’s report [208]. 

A better fitting can be obtained by adding a compensating capacitance (𝐶𝑐𝑜𝑚𝑝) in parallel with the 

interfacial capacitance of graphene (Model 2, see inset of Figure 7.12). As shown in Figure 7.12, 

the new model can better reproduce the experimental results in the whole voltage range. The 

compensating capacitance might be attributed to the following causes: (1) The “leakage 

Figure 7.12 Fitting results based on the model 2 which includes a 

compensating capacitance. 
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capacitance” of the metal contacts (source and drain electrodes). Even though the metal contacts 

have been passivated by a photoresist layer, its area exposed to the electrolyte (around 0.025 cm2 

estimated based on Figure 7.2) is still much larger than that of the graphene (around 1.125 × 10-4 

cm2, Figure 7.2b). Therefore, it might generate considerable parasite capacitance. (2) The 

imperfect sites in graphene. As mentioned previously, there are inevitable imperfections in 

graphene, e.g. impurities, defects and dopants. These imperfections might present different density 

of states comparing with the perfect graphene, and therefore behave as an extra capacitor which is 

in parallel with the remaining graphene sites. In addition, the compensating capacitance might be 

responsible for the observed gate voltage dependence of α as discussed in Section 7.3. Nevertheless, 

the origin of this compensating capacitance is still to be studied.  

A comparison between the fitting results using the two models is given in Table 7.1. The 

compensating capacitance is fitted to be 0.82 μF/cm2 (normalized with respect to the area of the 

graphene channel), which is fairly high comparing the total capacitance and would have significant 

impact on the fitting results. Ignoring the compensating capacitance causes the overestimation of 

the residue carrier density 𝑛𝑟𝑒𝑠, which is an importance parameter for the extraction of the carrier 

mobility. The compensating capacitance also causes a slight difference among the fitted 𝐶𝐸𝐷𝐿.  

 

Table 7-1 Comparison of the fitting result based on the two models 

Parameters Units Model 1 Model 2 

𝐶𝐸𝐷𝐿 μF/cm2 8.98 7.35 

𝑛𝑟𝑒𝑠 cm-2 1.36 × 1012 3.39 × 1011 

𝐶𝑐𝑜𝑚𝑝 μF/cm2 0 0.82 

 

Based on the previous analysis, the following conclusions are obtained. (1) The total interfacial 

capacitance at the electrolyte-graphene interface is limited by the quantum capacitance of graphene 
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at low potential and exhibit a voltage-dependence. (2) the EDL capacitance is around 7.35 μF/cm2, 

which is close to the experimental result from [221]. The value is lower than the interfacial 

capacitance for metal electrodes (typically around 20 μF/cm2)  [219,231], which could be possibly 

attributed to the dielectric saturation of water near the surface of the highly charged graphene [210]. 

(3) the fitting yields a residue carrier density 𝑛res = 1.36 × 1012 cm-2, which is comparable to 

previous reports [229,232].  

Overall, the theoretical model could well explain our measured interfacial capacitance of the 

graphene electrode; the EDL capacitance (𝐶𝐸𝐷𝐿) and the quantum capacitance (𝐶𝑄) are determined 

using the model. Comparing with previous reports, in which the 𝐶𝐸𝐷𝐿 was set to be a specific value, 

e.g. 20 μF/cm2 [208,219], our multi-factor curve fitting method takes 𝐶𝐸𝐷𝐿 as a variable fitting 

parameters which should provide more accurate results. 

7.5. Carrier mobility in graphene 

The conductivity of the graphene channel is mainly determined by the drift of the carriers which 

is given as 

𝜎 = 𝑒𝑛𝜇𝑒 + 𝑒𝑝𝜇ℎ (7-12) 

in which 𝜎 is the sheet conductivity of graphene; 𝑛 and 𝑝 are the density of electrons and holes, 

respectively; 𝜇𝑒 and 𝜇ℎ are the mobility of electrons and holes, respectively. The carrier mobilities 

can be extracted based on the sheet conductivity 𝜎 and the carrier densities (𝑛 and 𝑝), which can 

be determined by the transfer curve measurement and the C-V profiling, respectively. 

The sheet conductivity 𝜎 of the graphene channel is calculated as  

𝜎 =
𝐼𝑑

𝑉𝑑𝑠
∙

𝐿

𝑊
 (7-13) 
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where 𝐼𝑑 is the drain current; 𝑉𝑑𝑠 is the voltage applied between the source and drain; 𝑊 and 𝐿 are 

the width and length of the graphene channel, respectively. The measured sheet conductivity 𝜎 can 

be compromised by the access resistance (𝑅𝑎𝑐𝑐𝑒𝑠𝑠), including the contact resistance (𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡) 

between the metal and the graphene and the resistance of the source and drain electrode.  

To evaluate the impact of the access resistance, we applied a transmission line measurement 

(TLM). The device used for TLM is shown in Figure 7.13a. It consists of five graphene channels 

with different aspect ratios (
𝐿

𝑊
). The total resistance 𝑅𝑡𝑜𝑡𝑎𝑙 is given as 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒 (
𝐿

𝑊
) + 𝑅𝑎𝑐𝑐𝑒𝑠𝑠 (7-14) 

in which 𝜌𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒 is the sheet resistivity of the graphene. We measured the transfer curves of 

each graphene channel and the results are shown in Figure 7.13b. According to equation, at a 

given voltage, 𝑅𝑡𝑜𝑡𝑎𝑙 should be linear with respect to the aspect ratio 
𝐿

𝑊
; the slope can be referred 

as the sheet resistivity of the graphene 𝜌𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒 and the intercept at 
𝐿

𝑊
 = 0 is the access resistance 

𝑅𝑎𝑐𝑐𝑒𝑠𝑠 . As shown in Figure 7.13c, good linearity is observed. We applied linear regression 

analysis to the 𝑅𝑡𝑜𝑡𝑎𝑙 with respect to 
𝐿

𝑊
 and the 𝜌𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒 and 𝑅𝑎𝑐𝑐𝑒𝑠𝑠.are plotted in Figure 7.13d. 

The 𝜌𝑔𝑟𝑎𝑝ℎ𝑒𝑛𝑒 ranges from 0.7 kΩ/□ to 3.5 kΩ/□ as a function of the gate voltage 𝑉𝑔, which is 

around 5-7 times of the 𝑅𝑎𝑐𝑐𝑒𝑠𝑠 . It’s worth noting that the access resistance also exhibits 

dependence on the gate voltage. It can be attributed to the contact resistance between the metal 

and the graphene; in the vicinity of the Dirac point, the carrier density in the graphene is low which 

leads to a high resistance at the metal-graphene junction.  
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The aspect ratio of the graphene channel was set to be 2 in our devices because 1) it provides a 

graphene channel resistance that is around 10 orders higher than the access resistance and the 

contribution of the access resistance can be ignored; 2) it provides a practical resistance range for 

electrical measurement (the current is in the range of several μA for a voltage load of 10 mV). We 

Figure 7.13 Transmission line measurement of the sheet conductivity of graphene and the 

access resistance. (a) The device for TLM study. (b) The transfer curves of each channel 

with different aspect ratio. (c). The linear regression analysis of the resistance measurement 

with respect to the aspect ratio. (d) The extracted sheet resistivity of graphene and the 

access resistance. 
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measured the transfer curves of the EGGFET device and the sheet conductivity (σ) is calculated 

using equation 7-14. The results are shown in Figure 7.14.  

The carrier densities (𝑛 and 𝑝) were extracted based on the C-V profiling analysis as discussed in 

the previous section using equation 7-10. Based on the mass-action law [224], we add a correction 

to the overall carrier density 

𝑛𝑝 = 𝑛𝑖
2 (7-15) 

in which 𝑛𝑖 is the residue carrier density 𝑛𝑟𝑒𝑠. As a result, the carrier density can be calculated as 

𝑛𝑡𝑜𝑡𝑎𝑙 =
𝑛𝑟𝑒𝑠

2

(𝑛𝑟𝑒𝑠 + 𝑛𝑔)
+ 𝑛𝑟𝑒𝑠 + 𝑛𝑔 (7-16) 

and shown in Figure 7.15. 

Figure 7.14 The transfer curve of the EGGFET and the extracted 

sheet conductivity of the graphene channel 
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The carrier mobilities were calculated based on equation 7-12 and plotted with respect to the carrier 

density as shown in Figure 7.16. Overall, the carrier mobility is much lower than the theoretical 

predictions of the ideal graphene (~2×105 cm2V-1s-1) [40]. The calculated carrier mobility shows a 

similar dependence on the carrier density as the results given in reference [224] (Figure 7.17a). 

The mobility peaks at ~1700 cm2V-1s-1 and 2000 cm2V-1s-1, for holes and electrons, respectively, 

Figure 7.15 The extracted carrier density based on the fitting results 

obtained in Figure 7.12. 

Figure 7.16 The extracted carrier mobility with respect to the carrier 

density. 
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and decreases at carrier density higher than ~1.5 × 1012 cm-2. The transition suggests that the 

dominating scattering mechanism changes from coulomb to phonon scatterings at higher densities 

[224]. However, the calculated carrier mobility is lower than the results reported in [224], which 

could be attributed to the quality of the graphene or the scattering from the dissolved ions in the 

electrolytes. Our results are different from the results measured by the Hall effect [31,223] (Figure 

7.17b). This is because the Hall effect cannot measure the residue carrier density and thus will 

cause the overestimation of the carrier mobility near the Dirac point. In our case, the residue carrier 

density can be obtained based on the analysis of the interfacial capacitance and thus should provide 

more accurate estimation of the carrier mobility. 

The measurement of the conductivity σ and carrier mobility μ allow us to analyze the dominating 

scattering mechanisms in the graphene. According to the self-consistent theory [229], the charged 

impurity scattering is responsible for most of the observed transport behavior in graphene. These 

charged impurities could reside on the substrate or be trapped at the graphene-substrate interface 

Figure 7.17 Carrier mobility in graphene reported in previous reports. (a) The carrier mobility 

extracted based on the back-gated graphene FET structure [224]. (b) The measurement results 

based on Hall effect [223]. (c) The measurement results based on EGGFET structure and 

theoretically predicted carrier density [165]. 
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during the transfer of the graphene. The typical concentration of charged impurities on SiO2 

substrate is around 1012 cm-2 and is known to dominate the transport properties of other extensively 

studied 2D systems [233,234]. In EGGFET, the graphene is directly exposed to the electrolytes and 

counterions accumulate at the electrolyte-graphene interface. There’s a possibility that the ions 

will introduce extra Coulomb scattering for the carriers in graphene [223]. We compared our 

measurement results to previous works on dry, SiO2-supported graphene [40,235]. Since we find 

similar μ in our electrolyte-gated, SiO2-supported graphene, we speculate that the charged impurity 

on the SiO2 substrate are likely the dominating scattering source in both a dry environment and an 

aqueous electrolyte environment. This is consistent with the finding in ref [223] and [236] which 

claim that the SiO2 substrate has a much greater effect on μ than the dissolved ions in the aqueous 

electrolyte. 

Based on the discussion above, an obvious strategy to improve the carrier mobility is to eliminate 

the charged impurities on the substrates. According to the self-consistent theory, reducing the 

impurity concentration to 1010 cm-2 could increase the carrier mobility to extremely high value of 

~2 × 105 cm2/V·s [234]. A study [237] suggests that using hexagonal boron nitride (h-BN) as the 

substrate, the carrier mobility in graphene can be improved to be 1.7 × 105 cm2/V·s. For the 

development of the EGGFET biosensor, the higher carrier mobility would give rise to higher 

sensitivity. Therefore, choosing the proper substrates with lower charged impurities will 

significantly improve the performance of the EGGFET biosensors.  

7.6. Conclusion 

In this chapter, we studied the capacitance behavior of the electrolyte-graphene interface by 

measuring the frequency response using EIS. The results suggest that the electrolyte-graphene 

interface exhibits a complex constant phase element (CPE) behavior (
1

𝑍
= 𝑄0(𝑗𝜔)𝛼) with both 𝑄0 
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and 𝛼  dependent on the gate voltage. The capacitance of the electrical double layer (CPE) 

capacitance and the quantum capacitance of graphene are determined; the carrier mobilities in the 

graphene channel are extracted based on the measurement results. The results suggest that the 

performance of the EGGFET biosensors is highly compromised by the imperfections in the 

graphene lattice and scattering introduced by the substrates, which is instructive for the future 

design of the EGGFET biosensors with improved performance. 
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Chapter 8. Conclusion and Outlook 

In this dissertation, we present studies on the electrolyte-gated graphene field effect transistor 

(EGGFET) biosensor and its application for the label-free detection of biomarkers. 

First, we studied the thermal degradation of the PMMA residue on the transfer CVD graphene and 

presented an electrolytic cleaning method which is demonstrated to be effective to remove the 

post-annealing residues. The study revealed the generation of the post-annealing residues due to 

the elimination of the methoxycarbonyl side chains in PMMA during thermal annealing. These 

post-annealing residues are believed to be absorbed on graphene via the π-π interaction between 

the conjugated unsaturated carbon segments and graphene and are difficult to remove by further 

annealing in non-oxidative atmosphere due to their thermal and chemical stability. The electrolytic 

cleaning method is shown to be effective to remove these post-annealing residue, resulting in 

cleaning, residue-free surface, which is critical to obtain reliable devices. The study should be 

instructive for the improvement on transfer of the CVD graphene, which is important for its 

application in not only biosensors, but also in a wider range. 

The performance of the EGGFET biosensor is demonstrated by the successful detection of human 

immunoglobulin G (IgG) using IgG-aptamer as the bioreceptor. The operation principle is 

attributed to the electrostatic gating effect of the positively charged IgG molecules that are 

absorbed on the graphene channel which can modulates the doping level of graphene and cause 

the negative shifts of the transfer curves. Negative shift of the transfer curve of the EGGFET 

biosensors was observed upon IgG adsorption and the gate voltage with the minimum conductivity 

(𝑉Dirac) is used for the quantitative measurement of IgG concentration. The EGGFET biosensor is 

also capable of real-time measurement of IgG by monitoring the drain current at a fixed gate 

voltage. Continuous decrease of the drain current was observed as the IgG concentration increases, 
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which is in accordance with the negative shift of the transfer curves. The selectivity of the 

EGGFET biosensor is tested by measuring its response to possible interfering targets. This proof-

of-concept study implies that the EGGFET biosensor is a feasible platform for the label-free 

detection of biomarkers. 

One of the challenges for the applications of the EGGFET biosensors is the complexity of the 

physiological samples. In EGGFET biosensors, the graphene channels are directly exposed to the 

electrolytes, which makes it highly sensitive to the variations in the electrolytes matrices. We 

studied the impact of the electrolytes on the Dirac voltage of the EGGFET biosensors by varying 

the composition, the ionic strength and the pH. The response of the EGGFET biosensors is found 

to be susceptible to these variations which might lead to high uncertainty or even false results. We 

presented an EGGFET immunoassay which allows well regulation of the matrix effects. The 

performance of the EGGFET immunoassay is demonstrated by the detection of human IgG from 

serum based on spike-and-recovery tests. The detection range of the EGGFET immunoassay for 

IgG detection from serum is estimated to be around 2-50 nM with a coefficient of variation (CV) 

of less than 20% and the limit of detection is estimated to be 0.7 nM. The EGGFET immunoassay 

is label-free, easy to use and ready to be integrated with simple electrical measurement units and 

thus have a great potential as the next generation immunoassay techniques 

In the end, we present a study on the device physics of the EGGFET biosensors, which is important 

for the design and improvement of the nanoelectronics devices. Different from the metal-oxide-

semiconductor field effect transistors (MOSFET), the gate voltage is applied on the electrolyte and 

the electrical double layer (EDL) at the electrolyte-graphene interface serves as the gate dielectric 

in EGGFET. We studied the capacitance behavior of the electrolyte-graphene interface; the results 

suggest that the electrolyte-graphene interface exhibits a complex constant phase element (CPE) 
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behavior (
1

𝑍
= 𝑄0(𝑗𝜔)𝛼) with both 𝑄0 and 𝛼 varying as functions of the gate voltage. The EDL 

capacitance and the quantum capacitance are determined which allows us to extract the carrier 

density and mobility in graphene.  

To improve the performance of the EGGFET biosensor and realize the practical applications, the 

device design of the EGGFET biosensor should be optimized. For example, SiO2 is typically used 

as the substrate for the graphene channel; however, the charged impurities on the surface of SiO2 

can significantly reduce the carrier mobility in graphene by Coulomb scattering. This will cause 

the loss of the sensitivity of the EGGFET biosensors. Studies indicate that the scattering is much 

lower using hexagonal boron nitride (h-BN) as the substrate for graphene (Figure 8.1). Therefore, 

it would be promising to improve the performance of the EGGFET biosensors using h-BN as the 

substrate for the graphene channel. 

In addition, the integration of the EGGFET biosensor with the fast-developing microfluidics might 

bring new opportunities to enable the its practical application. Our lab developed an integrated 

lateral flow device (LFD) which applied the capillary forces with functionalized polymer-based 

microfluidics as a strategy to realize a portable, simplified, and self-powered LFD (Figure 8.2) 

Figure 8.1 Computed electron mobility in graphene on different substrates. 
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[134]. The LFD can realize the blood separation without external equipment for flow initiation and 

control. It would be interesting to integrate the developed EGGFET biosensors with the LFD, 

which is promising for point-of-care blood analysis. The developed EGGFET biosensor was 

embedded in the LFD and human IgG was detected directly from plasma (Figure 8.3). 

Figure 8.2 (A) Schematic diagram of the assembled lateral flow device (LFD) 

for blood separation and flow control. (B) Schematic diagram shows the 

interfacial layer and the microfluidics capillary pump. (C) A picture shows 

the fabricated LFD. 
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Figure 8.3 Real-time detection of IgG using nanoelectronics sensor integrated with 

the LFD. (A) A representative picture shows a fabricated LFD integrated with a 

nanoelectronics biosensor; (B) Continuous measurement of the drain current as 

responding to the addition of IgG with increasing concentrations; (C) The detection 

of IgG directly from human plasma. 
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Appendix 

Appendix 1. Characterization of the functionalization of graphene 

XPS and Raman spectroscopy were used for the characterization of the functionalization of 

graphene. The samples for characterization are glass slides with transferred CVD graphene on 

them and the characterizations were performed after each functionalization step. As shown in 

Figure A1a, the bare graphene exhibits a single C1s peak which indicates that cleaning graphene 

was obtained. After the immobilization of PBASE, new C1s peak at 289.5 eV and N1s peak at 402 

eV arise which are attributed to the O-N-C=O in the N-Hydroxysuccinimide (NHS) group in the 

PBASE [238]. After conjugation with aptamer, strong C1s peaks at 288 eV and 286.5 eV and N1s 

peak at 400.5 eV arise which are common in DNA [239]. These peaks are intensified after blocking 

with BSA which are typically for protein functional groups [240]. 

A standard Raman spectrum was obtained after graphene transfer (Figure A1b). After PBASE 

immobilization, new peak arises just by the G peak on the right side which is assignable to the 

resonance introduced by the pyrene-graphene stacking [241]. The enhancement of the D peak at 

1380 cm-1 is due to the disorder arising from π-π orbital hybridization [241]. After conjugation 

with aptamer, the two peaks are further intensified and a broad band appears at around 2900 cm-1 

which is also reported by [242]. But the assignment of these peaks is still to be studied. Normally 

the broad band at around 2900 cm-1 is assigned to the aliphatic C-H stretching. 

The transfer characteristics of the GFET were measured after each functionalization process. As 

shown in Figure A1c, significant positive shift was observed after functionalization and blocking 

due to the p-doing effect of pyrene group [243] and negatively charged BSA [244]. After 

incubating with 1μM IgG, the transfer curve was shifted negatively which suggests the positive 

charge of IgG and its n-doping effect on graphene. 
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Figure A1. Characterization of graphene upon functionalization. (a) C1s and N1s XPS spectrum. 

(b) Raman spectrum. (c) Transfer curves measured in 0.01X PBS with 𝑉ds= 0.01 V. 
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Appendix.2 Determination of the Dirac Voltage 

The determination of the 𝑉Dirac from the transfer curves was conducted using Excel. The original 

transfer curve is shown in Figure A2a. The slope of the drain current 𝐼d vs the gate voltage 𝑉g was 

calculated using the SLOPE function (Figure A2b). The slope was calculated over 7 data points 

to reduce noise. Since the slope goes thru zero at the Dirac voltage, we plotted the 𝑉g vs the slope 

for the data near the zero crossing and then fitted the small piece of data (20 points) with a straight 

line using the LINEST function (Figure A2c). The LINEST function provides the slope, intercept 

Figure A2 Derivation of the 𝑉Dirac from the transfer curves. a) the original transfer curve (𝐼d vs 𝑉g). 

b) the slope of 𝐼d vs 𝑉g. c) 𝑉g vs slope and the linear regression near. d) Enlarge view of the transfer 

cure as indicated by the box in a). 
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and their standard deviations. The intercept is the Dirac voltage and the standard deviation of the 

intercept is the uncertainty in the Dirac voltage. 

The linear regression analysis allows more precise determination of the Dirac voltage with an 

uncertainty of less than 0.2 mV. The direct determination of the Dirac voltage by locating the 

minimum 𝐼d  generates uncertainty of several millivolt due to the noise in the measured drain 

current (as shown in Figure A2d). In the example as demonstrated in Figure A2, the Dirac voltage 

determined by linear regression of the 𝑉g vs the slope is +0.21856 V with an uncertainty of 0.00017 

V, while the 𝑉g with the minimum 𝐼d is +0.220 V. 

 



109 

 

Appendix 3. Optimization of the operation parameters 

The hysteresis of the transfer curves of GFET upon reversal of the sweeping direction has been 

previously reported [245]. Our experiments indicate that the hysteresis also happens in EGGFET 

and have a direct impact on the detection precision for EGGFET based biosensors (Figure A3a). 

The hysteresis shows great dependence on the gate voltage sweeping rate and range. As shown in 

Figure A3b, the hysteresis can be effectively reduced at scan rate lower than 10 mV/s. All the 

transfer curves were obtained at gate voltage sweep rate of 10 mV/s unless otherwise specified. 

Figure A3 Optimization of the operation parameters of the EGGFET biosensor. a) Hysteresis of 

the forward and backward transfer curves measured with scan rate of 100 mV/s. b) The 𝑉Dirac and 

𝐼Dirac (minimum drain current) of the forward and backward transfer curves at different scan rates. 

c) The transfer curve (𝐼d ), leakage current (𝐼g ) and transconductance (𝑔m ) of the EGGFET 

measured in 0.01X PBS. 
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We propose the hysteresis is caused by the lagging of the ions movement in response to the gate 

voltage change. 

To maximize the modulation capability of the 𝑉g, 𝑉ds was set to be 0.01 V which is smaller relative 

to the 𝑉g sweeping range and yields 𝐼d  of several microamperes. The leakage current (𝐼g) was 

measured and leakage current was observed at 𝑉g > +0.2V (in 0.01X PBS with standard Ag/AgCl 

reference electrode) which is attributed to the electrochemical reduction of water (Figure A3c). 

To avoid the change of the electrolyte composition caused by water reduction, the 𝑉g sweeping 

range should be kept away from the water reduction potential. Our devices work well in the range 

of 𝑉g < +0.5 V; as shown in Figure A3c, even though the leakage current might cause some 

distortion of the transfer curves at high 𝑉g, it won’t have significant impact on the measurement of 

the 𝑉Dirac. One of the key parameters characterizing the sensitivity of the FET biosensors is the 

transconductance (𝑔m). As shown in Figure A3c, the maximum 𝑔m was obtained at around 0.1 V 

and 0.3 V. 𝑉g of 0 V was used for the continuous measurement of 𝐼d for the detection of IgG 

because the sensitivity of the biosensor is the highest near 0V (maximum 𝑔m) and the biosensor 

gives the most stable response in this range. 

  



111 

 

Appendix 4. Determination of the detection range 

As a bioanalytical device, the performance of the biosensor is normally characterized by the 

sensitivity, limit of detection (LOD), limit of quantification (LOQ), detection range, selectivity, 

reliability, etc. For the practical application of biosensors, especially for point of care biomedical 

applications, other factors must also be considered, such as production cost, operation difficulty, 

supportive facilities requirement, etc. In addition, the capabilities for real-time detection and 

multiple-target analysis are also anticipated for biosensors which distinguish them from traditional 

bioanalytical techniques. Among them, LOD, selectivity and detection range are referred to as the 

benchmarks for biosensors. Here the LOD and detection range are derived based on the duplicate 

measurement using the EGGFET immunosensors assay. 

Determination of LOD 

LOD is the lowest quantity of a substance that can be distinguished from the absence of the 

substance within a stated confidence limit [246]. There has often been a lack of criterion on the 

determination of LOD which leads to variable results [247]. Several methods have been used to 

define LOD, such as visual definition, calculation from the signal-to-noise ratio, calculation from 

the standard deviation of the blank, and calculation from the calibration line at low concentrations, 

etc. [247]. There is a preference to find the linear range of calibration curve and the LOD is 

determined by: 

𝑐L = 𝑘𝜎/𝑏 (A-1) 

where 𝑐L is the LOD, 𝜎 is the standard deviation of the blank, 𝑏 is the slope of the calibration curve. 

The magnitude of the 𝑘 value is chosen so that a certain confidence level can be achieved. The 

IUPAC recommends that the 𝑘 value should be 3 which corresponds to a confidence level of about 

90% for limited measurements. However, our results indicate that the response of the EGGFET 
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biosensor is not linear to the concentration of the IgG but regulated by the Hill equation (Figure 

A4). Although at low concentration range, the calibration curve is approximately linear; yet the 

determination of the linear range would introduce ambiguity and complexity. As a result, the LOD 

is determined by calculating the IgG concentration which corresponds to ∆𝑉Dirac of 3 times of the 

standard deviation of the blank measurement: 

𝑐L =
3𝜎𝐾D

∆𝑉 Dirac
max − 3𝜎

 (A-2) 

For the measurement shown in Figure A4, the standard deviation of blank is around 0.4 mV, which 

yields a LOD of around 0.7 nM. This method finds the LOD based on the intrinsic fitting equation, 

avoids defining the linear range which introduces unnecessary ambiguity and should be applicable 

for the bioanalysis in which the equilibrium follows the Hill equation instead of linearity. 

 

Figure A4 The determination of the LOD. 
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Detection range 

The detection range is the concentration range that can be reliably measured by the biosensor. 

Similar with LOD, there is a lack of criterion for the determination of the detection range [248]. 

Here we determine the detection range of the EGGFET biosensors based on the relative standard 

deviation (RSD) of the concentration estimates. Firstly, the response is fitted using the Hill 

equation as shown in Figure A5a. The slope of the fitting curve is derived as shown in Figure 

Figure A5 Determination of the detection range of the EGGFET biosensor for IgG detection. a) 

the fitting curve of the measurement results; b) the slope of the fitting curve; c) the SD of the 

concentration estimates; d) the RSD of the concentration estimated with respect to the 

concentration. 
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A5b. The standard deviation (SD) of the concentration estimated (Figure A5c) is calculated by 

dividing the SD of measurement (0.4 mV) by the slope. The RSD is the ratio of the SD to the 

estimated concentration and plotted in Figure A5d. For bioanalysis, such as ELISA, a coefficient 

of variance (CV) of 20% is empirically accepted. Therefore, the detection range of the EGGFET 

biosensor is determined to be around 2 ~ 50 nM which corresponds to RSD < 20% as shown in 

Figure A5d. This method determines the detection range based on the concentration estimates 

instead of the measurement reading, generates results with certain precision. It is applicable for 

bioanalysis that is regulated by nonlinear equation. 
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Appendix 5 Quantum capacitance of graphene 

The dispersion of mobile π electrons in graphene in the first Brillouin Zone (BZ) is given by 

𝐸(𝑘) = 𝑠ℏ𝑣𝐹|𝑘| 

The linear density of states (DOS) in graphene is 

𝜌(𝐸) =
𝑔𝑠𝑔𝑣

2𝜋(ℏ𝑣𝐹)2
|𝐸| 

The carrier density can thereby be calculated as 

𝑛 = ∫ 𝜌(𝐸)𝑓(𝐸)𝑑𝐸
∞

0

 

where 𝑓(𝐸) is the Fermi-Dirac distribution function given by 𝑓(𝐸) = (1 + exp[(𝐸 − 𝐸𝐹)/𝑘𝑇])−1. 

Using the dimensionless variables 𝑢 = 𝐸/𝑘𝑇 and 𝜂 = 𝐸𝐹/𝑘𝑇, the carrier density can be calculated 

as: 

𝑛 =
2

𝜋
(

𝑘𝑇

ℏ𝑣𝐹
)

2

𝒥1(+ 𝜂) 

and 

𝑝 =
2

𝜋
(

𝑘𝑇

ℏ𝑣𝐹
)

2

𝒥1(− 𝜂) 

where 𝒥𝑗(𝜂) = 1/Γ(𝑗 + 1) ∫ 𝑢𝑗/(1 + 𝑒(𝑢−𝜂))𝑑𝑢
∞

0
 is the Fermi-Dirac integral with 𝑗 = 1  and 

Γ(… ) is the gamma function. 

The intrinsic carrier concentration is given by 

𝑛𝑖 =
𝜋

6
(

𝑘𝑇

ℏ𝑣𝐹
)

2

 

𝑛𝑖 =
2

𝜋
(

𝑘𝑇

ℏ𝑣𝐹
)

2

𝒥1(0) =
2

𝜋
(

𝑘𝑇

ℏ𝑣𝐹
)

2

∙
𝜋2

12
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The carrier density can be rewritten as 

𝑛 = 𝑛𝑖𝒥1(+ 𝜂)/𝒥1(0) 

and  

𝑝 = 𝑛𝑖𝒥1(− 𝜂)/𝒥1(0) 

Respectively. 

The total carrier density can be written as 

𝑄 = 𝑒(𝑝 − 𝑛) 

The quantum capacitance for graphene 𝐶𝑄 = 𝜕𝑄/𝜕𝑉𝑐ℎ can be calculated as 

𝐶𝑄 =
2𝑒2𝑘𝑇

𝜋(ℏ𝑣𝐹)2
ln [2 (1 + cosh

𝑒𝑉𝑐ℎ

𝑘𝑇
)] 

𝐶𝑄 =
𝜕𝑄

𝜕𝑉𝑐ℎ

=
𝑒𝑛𝑖

𝒥1(0)
[
𝜕𝒥1( 

𝑒𝑉𝑐ℎ

𝑘𝑇
)

𝜕𝑉𝑐ℎ
−

𝜕𝒥1(− 
𝑒𝑉𝑐ℎ

𝑘𝑇
)

𝜕𝑉𝑐ℎ
]

=
𝑒𝑛𝑖

𝒥1(0)

𝑒

𝑘𝑇
[𝒥0 (

𝑒𝑉𝑐ℎ

𝑘𝑇
) + 𝒥0( 

−𝑒𝑉𝑐ℎ

𝑘𝑇
)]

=
2𝑒2𝑘𝑇

𝜋(ℏ𝑣𝐹)2
[ln (1 + 𝑒

𝑒𝑉𝑐ℎ
𝑘𝑇 ) + ln (1 + 𝑒−

𝑒𝑉𝑐ℎ
𝑘𝑇 )]

=
2𝑒2𝑘𝑇

𝜋(ℏ𝑣𝐹)2
ln (2 + 𝑒

𝑒𝑉𝑐ℎ
𝑘𝑇 + 𝑒−

𝑒𝑉𝑐ℎ
𝑘𝑇 )

=
2𝑒2𝑘𝑇

𝜋(ℏ𝑣𝐹)2
ln [2 (1 + cosh

𝑒𝑉𝑐ℎ

𝑘𝑇
)] 

 Under the condition 𝑒𝑉𝑐ℎ ≫ 𝑘𝑇, it reduces to 

𝐶𝑄 =
2𝑒2𝑒𝑉𝑐ℎ

𝜋(ℏ𝑣𝐹)2
 

Recall 
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𝒥1(+ 𝜂) = −𝐿𝑖2(−𝑒𝜂) 

where 𝐿𝑖2(−𝑒𝑥) is the polylogarithm. 

Note that 

𝜂 =
𝑒𝑉𝑐ℎ

𝑘𝑇
. 

For -1 V < 𝑉𝑐ℎ < +1 V, -38.7 < 𝜂 < 38.7. In this range, −𝐿𝑖2(−𝑒𝜂)  ≅ 𝜂2/2 (Figure A6). 

Therefore,  

𝒥1(+ 𝜂) ≅
𝜂2

2
=

1

2
(

𝑒𝑉𝑐ℎ

𝑘𝑇
)

2

 

We obtain 

𝑛 =
2

𝜋
(

𝑘𝑇

ℏ𝑣𝐹
)

2

𝒥1(+ 𝜂) ≅  (
𝑒𝑉𝑐ℎ

√𝜋ℏ𝑣𝐹

)

2

 

The quantum capacitance can thereby be written accordingly 

𝐶𝑄 =
2𝑒2

𝜋ℏ𝑣𝐹
∙ √𝑛 

Considering the residue carriers induced by the imperfections in graphene, 

𝐶𝑄 =
2𝑒2

𝜋ℏ𝑣𝐹
∙ √𝑛𝑔 + 𝑛𝑟𝑒𝑠 

Figure A6 The plot showing −𝐿𝑖2(−𝑒𝜂)  ≅ 𝜂2/2 
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A customized Matlab code was used to fit the measurement results.  

Input parameters: 

 data.mat Experimental results 

 V_bias  𝑉𝑔 − 𝑉𝐷𝑖𝑟𝑎𝑐, the gate potential shifted with respect to the Dirac point; 

Ctotal_exp 𝐶𝑡𝑜𝑡𝑎𝑙 , measurement results of the total capacitance at the electrolyte-

graphene interface 

Output parameters: 

 fp  fitting parameters 

 fp(1) = 𝐶𝐸𝐷𝐿; 

 fp(2) = 𝑛𝑟𝑒𝑠; 

 

 
%Code starts 

  

save 'data.mat' % save the data for function @Ctotal use 

fp0 = [0.06 1e16];   % set initial values for the fitting parameters. 

[fp] = fminsearch(@Ctotal, fp0);  % search minimum value of function @Ctotal. 

disp(fp);   %  display fitting results. 

 

function [ds]=Ctotal(fp) 

load 'data.mat' % load the data  

elech = 1.602e-19; 

hbar = 1.055e-34; 

vf = 1e6; 

kB = 1.38e-23; 

T = 300; 

% save the data for function @Ctotal use 

V_ch = abs(V_bias) - Ctotal_exp .* abs(V_bias) ./ fp(1);    % calculate V_ch 

for n = 1:datasize 

eta(n,1) = elech/(kB*T)* V_ch(n,1); 

polylogarithm(n,1)= polylog(2,-1*exp(eta(n,1))); 

end 

  

%   calculate the polylogarithm and assign the results. 

n_ind = ((kB * T / (hbar * vf)) .^2) * (2 / pi) .* (polylogarithm * -1); 

%   calculate the gate-induced carrier density. 

Cq_fit = 2 * elech^2/(hbar*vf*sqrt(pi)).*sqrt(n_ind + fp(2)); 

%   calculate the quantum capacitance.  

Ctotal_fit = 1./(1/fp(1)+1./(Cq_fit)); 

%   calculate the total interfacial capacitance. 

ds = (Ctotal_fit - Ctotal_exp).^2; 

ds = sum(ds); 

%   return the least square. 

end 

%   Code end. 
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