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Abstract

Human and Animal Behavior Understanding

Wenbin Chen

Human and animal behavior understanding is an important yet challeng-

ing task in computer vision. It has a variety of real-world applications in-

cluding human computer interaction (HCI), video surveillance, pharmacol-

ogy, genetics, etc. We first present an evaluation of spatiotemporal interest

point features (STIPs) for depth-based human action recognition, and then

propose a framework call TriViews for 3D human action recognition with

RGB-D data. Finally, we investigate a new approach for animal behavior

recognition based on tracking, video content extraction and data fusion.

STIPs features are widely used with good performances for action recog-

nition using the visible light videos. Recently, with the advance of depth

imaging technology, a new modality has appeared for human action recogni-

tion. It is important to assess the performance and usefulness of the STIPs

features for action analysis on the new modality of 3D depth map. Three

detectors and six descriptors are combined to form various STIPs features in

this thesis. Experiments are conducted on four challenging depth datasets.

After evaluating STIPs features for depth-based human action recogni-

tion, we propose an effective framework called TriViews to utilize 3D in-

formation for human action recognition. It projects the 3D depth maps

into three views, i.e., front, side, and top views. Under this framework,

five features, i.e., spatiotemporal interest points (STIP), dense trajectory



shape (DT-Shape), dense trajectory motion boundary histograms (DT-

MBH), skeleton trajectory shape (ST-Shape), and skeleton trajectory mo-

tion boundary histograms (ST-MBH), are extracted from each view, sep-

arately. Then the three views are combined to derive a complete descrip-

tion of the 3D data. The first three features are representative for actions

in intensity data but adapted to depth sequences. The last two are pro-

posed by us, termed as skeleton-based features unique for 3D depth data.

The RGB-D sensors, e.g., the Kinect, provide 3D positions of 20 skeleton

joints and the evolution of each skeleton joint over time corresponds to one

skeleton trajectory. Features aligned with the skeleton trajectory include

shape descriptor (ST-Shape) and motion boundary histograms (ST-MBH),

are extracted to characterize the actions with sparse trajectories. The five

features characterize action patterns from different aspects, among which

the top three best features are selected and fused based on a probabilis-

tic fusion approach (PFA). We evaluate the proposed framework on three

challenging depth action datasets. The experimental results show that the

proposed TriViews framework achieves the most accurate results for depth-

based action recognition, better than the state-of-the-art methods on all

three databases.

Compared to human actions, animal behaviors exhibit some different

characteristics. For example, animal body is much less expressive than

human body, so some visual features and frameworks which are widely used

for human action representation, cannot work well for animals. We in-

vestigate two features for mice behavior recognition, i.e., sparse and dense

trajectory features. Sparse trajectory feature relies on tracking heavily. If

tracking fails, the performance of sparse trajectory feature may deteriorate.

In contrast, dense trajectory features are much more robust without rely-

ing on the tracking, thus a fusion approach is proposed for the integration

of these two features. Experimental results on two public databases show

that the integration of sparse and dense trajectory features can improve the

recognition performance. Furthermore, the proposed approach outperforms

the state-of-the-art methods on both databases.
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1

Introduction

1.1 Motivation

Automatic human action recognition and understanding is an important yet challenging

research topic. It has a wide range of real-world applications, such as human computer

interaction (HCI), video surveillance, video retrieval, health care, etc. [1, 42, 53, 62].

In the past decades, research on action recognition has been mainly focused on using

RGB or gray level intensity videos. Very recently, with the emergence of low-cost

RGB-D sensors, e.g., the Kinect, human action recognition in 3D data has received

great attentions. Compared to traditional color images/videos, depth maps/sequences

exhibit several advantages. For example, the depth maps provide the 3D geometry and

shape cues, which offer more discerning information than 2D videos to recover postures

and recognize actions. Second, depth images/videos are insensitive to illumination

changes. Depth cameras or RGB-D sensors can work in total darkness, which can

benefit many applications such as some monitoring systems in lightless environment.

Third, 3D human skeleton joints positions can be estimated from the depth data [46]

with a reasonably good accuracy. Therefore, it is interesting to study how to fully

utilize the 3D data for action recognition.

Compared to human action recognition, animal behavior analysis is not well-studied

yet, although it is of great importance in practice. For instance, animal behavior anal-

ysis plays an important role in areas such as neuroscience, genetics, and pharmacology

[18, 33, 37, 51].
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1.2 Related Work on Spatiotemporal Interest Points

Spatiotemporal interest points (STIP) are typically localized at spatiotemporal key

points where a sudden change occurs in both space and time. Local STIP features

can be extracted around the interest points, which offer some robustness to clutter,

occlusion, and intra-class variations.

STIP features have been shown successful for action recognition in RGB videos

[45, 59], there are also some works exploring the STIP features for depth-based action

recognition. Zhu et al. [71] transformed depth data into gray level depth videos,

adapted STIP features from RGB to depth videos. Zhao et al. [70] proposed to adapt

STIP detected on RGB videos to depth sequences and combine the two channels for

action recognition. Ni et al. [38] proposed to add depth information to HOG/HOF

descriptor. They divided the video into different depth layers and formed a multi-

channel STIP histogram. Zhang and Parker [69] proposed another approach to utilize

the depth information. They viewed depth as an additional dimension and extended

the 3D Cuboids feature [12] to the fourth dimension. Xia and Aggarwal [64] proposed

a new descriptor called Depth Cuboid Similarity Feature (DCSF) for depth action

recognition. DCSF is a self-similarity feature, which computes a histogram of depth

pixels in 3D blocks. Zhu et al. [72] evaluated the STIP features for depth-based action

recognition. However, these works do not project the STIP features into three views

as we do.

1.3 Related Work on Trajectories

Trajectories are extracted from the temporal tracking of spatial points. Messing et al.

[36] tracked a set of keypoints in video sequence with the KLT tracker [35]. Trajectories

were then represented as sequences of quantized velocity in log-polar coordinates. For

action recognition, they employed a generative mixture model to combine the trajecto-

ries. Sun et al. [49] got trajectories by matching SIFT points over consecutive frames.

Actions were characterized with three levels of contexts: point level, intra-trajectory

level, and inter-trajectory level. Raptis and Soatto [43] tracked feature points in re-

gions of interest. They proposed tracklet descriptors along the trajectories to encode

the motion information. A recent work by Wang et al. [57] used dense trajectories

to characterize video information. In their work, the trajectory shape, histograms of
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oriented gradients (HOG), histograms of optical flow (HOF) and motion boundary

histograms (MBH) are computed to encode the trajectory shape, local motion and ap-

pearance information. For action classification, they used the SVM classifier. Jiang et

al. [21] computed dense trajectory for local patches. To model motion information such

as object relationships, they used global and local reference points. However, the above

works focus on intensity videos rather than 3D depth videos. Furthermore, there is no

projection into three views as ours. Also, there is no study on using dense trajectory

features for animal behavior recognition yet.

1.4 Related Work on Depth-based Human Action Recog-

nition

A number of algorithms and features have been proposed for 3D depth-based action

recognition. According to the data sources, these approaches may be divided into three

categories: depth maps, 3D skeleton joints positions, and multiple data modalities.

In the first category, Li et al. [32] proposed to characterize a set of salient postures

with a bag of sampled 3D points. In order to get the representative 3D points, they

projected the depth map onto three orthogonal Cartesian planes and sampled a spec-

ified number of points at equal distance along the contours of the projections. They

employed action graph to model the dynamics of actions. Vieira et al. [54] proposed

the space-time occupancy patterns (STOP) to encode depth sequences. They divided

both space and time axes into multiple segments, thus each depth sequence was di-

vided into multiple 4D grids. Occupancy feature is computed in each grid by using

the number of points within the grid. A nearest neighbor classifier was applied for

recognition. Similarly, Wang et al. [60] also divided the depth sequence into multiple

4D volumes. They computed a semi-local feature called Random Occupancy Patterns

(ROP) in each cell. Sparse coding was utilized to encode the features and the SVMs

were used for classification. Yang et al. [68] proposed a different approach based on

Motion Energy Images (MEI). They projected the depth map onto three orthogonal

Cartesian planes and computed histogram of oriented gradients (HOG) from depth

motion map (DMM) for each projection. Then they combined the HOG features of all

the three projections to represent human actions. More recently, Oreifej and Liu [40]

characterized the depth data as a surface in the 4D space of time, depth, and spatial

3



coordinates. Histograms of the 4D oriented surface normals (HON4D) were used for

action recognition. To quantize the surface normals, they employed a 600-cell poly-

chorons in the 4D space. For classification, they used the SVMs classifier. In [64], a

modified spatiotemporal feature based on Cuboids was proposed to capture the action

motion. They also used a correction function to suppress the flip noise in depth videos.

A feature selection scheme based on the F-score was applied to the proposed features.

The selected features were fed into the SVMs for action classification.

In the second category, skeleton joints positions are used to encode shape and mo-

tion information. Xia et al. [65] built a coordinate system based on the skeleton joints

and divided the 3D space into different bins. By counting the number of joints in each

bin, histogram of 3D skeleton joint locations (HOJ3D) was obtained as a compact rep-

resentation of postures. The K-means clustering was used to construct the vocabulary

and discrete Hidden Markov Model was used for action classification. Miranda et al.

[31] proposed a pose descriptor in a torso-based coordinate system and used the SVM

classifier to learn key poses. A decision forest was then employed to recognize the ac-

tions. Theodorakopoulos et al. [52] also computed the skeleton feature in a torso-based

coordinate system. In order to obtain robust and invariant pose representations, they

transformed the feature to a new domain called dissimilarity space [41]. Yang and Tian

[66] proposed another skeleton feature called EigenJoints to model the human action

posture. EigenJoints are a combination of static posture feature, motion feature, and

the offset feature. They employed Naive-Bayes-Nearest-Neighbor (NBNN) for action

classification. More recently, Devanne et al. [11] proposed to represent human actions

with spatiotemporal motion trajectories. They concatenated the 3D positions of 20

skeleton joints into a 60-dimensional vector and viewed the evolution of such a vec-

tor over time as a trajectory. To better characterize the trajectory shape, they also

employed the Riemannian manifold learning method [22].

In the third category, more than one data source is used. Wang et al. [61] pro-

posed to combine the pairwise skeleton feature and local occupancy feature (LOP) and

employed Fourier temporal pyramid to encode the temporal dynamics of the actions.

Sung et al. [50] combined all the three channels, i.e., RGB, depth and skeleton joints

positions, for action recognition. Hand positions, body pose and motion features were

extracted from skeleton joints. HOG was used as the descriptor for both RGB and
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depth images. A two-layer maximum-entropy Markov model was trained for classifica-

tion. More recently, Zhu et al. [71] proposed to fuse STIP features extracted from depth

sequence and skeleton joints feature with Random Forests method. A high recognition

accuracy is achieved based on the fusion.

1.5 Related Work on Mice Behavior Understanding

Recently, mice behavior recognition has attracted some attentions to computer vision

researchers. Dollar et al. [12] proposed to use a sparse spatiotemporal feature called

Cuboids for a single mouse behavior recognition. Belongie et al. [6] computed Cuboids

feature to capture caged mice’s local motion. For classification, they employed lin-

ear discriminant analysis. Jhuang et al. [19] proposed to compute space-time motion

features as well as some position and velocity-based features to characterize animal be-

haviors in a home-cage. For behavior classification, they employed the Hidden Markov

Model Support Vector Machine [3]. These three works were to recognize actions of a

single mouse.

More recently, Burgos-Artizzu et al. [9] tried to study social behaviors between

two mice. They proposed trajectory features (TF) to characterize the location and

motion information of mice. They also computed some widely used spatiotemporal

interest point features (STIP) and combined TF with STIP feature for social behavior

recognition in mice. For classification, they used the AdaBoost [15]. Eyjolfsdottir et

al. [13] used the same trajectory feature as [9], but they proposed another classifier

called Structured SVM for animal behavior recognition. Giancardo et al. [16] extended

the social behavior recognition work from two mice to three mice. They proposed

some spatiotemporal features to characterize position, motion and temporal information

of mice. The spatiotemporal features were fed into the Random Forest classifier for

behavior recognition. Also note that different from others using color camera to monitor

the animals, [16] used an infrared camera to record mice behaviors.

On the other hand, dense trajectory features have shown very good performance

for human action recognition. Wang et al. [57] proposed dense trajectories to encode

video information for human action recognition. The trajectory shape, histograms of

gradients (HOG), histograms of optical flow (HOF) and motion boundary histograms

(MBH) were computed. Jiang et al. [21] proposed to cluster dense trajectories, and
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use the cluster centers as motion reference points, thus the object relationships can be

modeled. Vig et al. [55] proposed a saliency-based pruning stage to prune background

features, which results in a more compact representation. More recently, Wang et

al. [58] improved dense trajectories by estimating camera motions. These studies

motivated us to explore dense trajectory features for mice behavior analysis, which has

not been studied before.

Trajectory features (TF) computed from the tracked positions have been shown

promising in mice behavior recognition [9, 13, 16], however, an animal track is composed

of only a few points (only one or three points being tracked), it can easily become

incorrect or erroneous. In contrast, dense trajectory features can overcome this problem

since they are computed based on densely sampled feature points directly. When the

tracking fails, dense trajectory features might correct the errors caused by tracking.

In our approach, we study these two different features separately, and examine their

differences. We also fuse the sparse trajectory features and dense trajectory features,

using different fusion methods, to see if any improvement can be achieved.

1.6 Contributions

First, we conduct an evaluation of spatiotemporal interest points on four depth databases

and find out the best detector and descriptor combination for each database. Second,

we present a framework called TriViews for RGB-D data processing. Third, we in-

vestigate five kinds of features for depth-based action recognition, including two new

features: skeleton trajectory shape (ST-Shape) and skeleton trajectory motion bound-

ary histograms (ST-MBH). Fourth, we investigate and compare two kinds of features

for mice behavior recognition: sparse and dense trajectory features. Moreover, we

propose to combine the two features in a decision-level fusion scheme.

The remainder of the thesis is organized as follows: We first conduct the evaluation

on four depth databases in Chapter 2. Then we present the TriViews framework for

human action recognition with RGB-D data in Chapter 3. In Chapter 4 we present our

work for mice behavior recognition & analysis. Finally, we conclude in Chapter 5 and

discuss possible future works.
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2

Evaluating Spatiotemporal

Interest Point Features for

Depth-based Action Recognition

2.1 Overview of The Method

STIP features have been shown promising performances for human action recognition

in RGB videos, Kinect provides depth data, which is a new modality for human action

recognition. In this chapter, we evaluate the spatiotemporal interest point (STIP)

based features for depth-based action recognition. Figure 2.1 shows the framework

of the proposed approach. Different interest point detectors and descriptors are first

combined to form various STIP features. Then the bag-of-words representation and

the SVM classifiers are used for action learning. Our comprehensive evaluation is

conducted on four challenging 3D depth databases. Further, we use two schemes to

refine the STIP features, one is to detect the interest points in RGB videos and apply

to the aligned depth sequences, and the other is to use the human skeleton to remove

irrelevant interest points. These refinements can help us have a deeper understanding

of the STIP features on 3D depth data. Finally, we investigate a fusion of the best

STIP features with the prevalent skeleton features, to present a complementary use

of the STIP features for action recognition on 3D data. The fusion approach gives

significantly higher accuracies than many state-of-the-art results.

7



Figure 2.1: Framework of the proposed method for depth-based human action recogni-

tion.

2.2 Spatiotemporal Interest Point Features

Different Spatiotemporal Interest Point (STIP) features have been proposed for action

characterization in RGB videos with good performance [59]. For example, Laptev

and Lindeberg [29] used some effective methods to make STIP velocity-adaptive as

well as spatially and temporally invariant. Willems et al. [63] presented a method to

detect features under scale changes, in-plane rotations, video compression and camera

motion, the extended SURF descriptor was also proposed in this work. Dollar et al.

[12] proposed the cuboids detectors and descriptors for action analysis. Jhuang et al.

[20] used local descriptors with space-time gradients as well as optical flow. Klaser

et al. [24] compared space-time HOG3D descriptor with HOG and HOF descriptors

[30]. Recently, Wang et al. [59] conducted an evaluation of different detectors and

descriptors on four RGB/intensity action databases. Shabani et al. [45] evaluated the

motion-based and structured-based detectors for action recognition in color/intensity

videos. However, there is no systematic evaluation of the STIP features on 3D depth

videos.

In Wang et al.’s work [59], it was observed that although the spatiotemporal interest

point features perform differently on different databases, their performances are quite

similar on the same database. Our evaluation will show that the STIP features perform

quite differently on the same depth database (See Section 2.4). In the following, we

introduce the specific STIP features that are used in our evaluation.

8



2.2.1 Interest points detectors

The Harris3D detector was proposed in [27]. It locates the spatiotemporal volumes

with large variations along space and temporal directions in a video sequence. A

spatiotemporal second-moment matrix is used to model a video sequence f ,

µ = g(·)×

 L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 , where g(·) is a Gaussian function for weighting

and L is the convolution of f with a spatiotemporal Gaussian derivative kernel. The

interest point locations are determined by computing the local maxima of the response

function H = det(µ)− k · trace3(µ).

The Cuboids [12] detector computes the interest point location by the local maxima

of the response function R, which is defined as: R = (I ∗ g ∗hev)2 + (I ∗ g ∗hod)2, where

g is the 2D Gaussian smoothing kernel, hev and hod are a quadrature pair of 1D Gabor

filter, which are computed by hev = −cos(2πtω)e−t
2/τ2 and hev = −sin(2πtω)e−t

2/τ2 .

Willems et al. [63] proposed the Hessian detector, which measures the strength

of each interest point using the Hessian matrix. The response function is defined as

S = |det(H)|, where H is the Hessian matrix.

2.2.2 Local feature descriptors

Given a set of interest point locations, various feature descriptors can be applied to

characterize the local space-time content. Given the spatial scale σ and temporal scale

τ at each interest point location, a local volume is used to extract features.

Kläser et al. extended the histograms of oriented gradient (HOG) to HOG3D,

which is the histogram of 3D gradient orientations. Integral videos are computed for

efficiency.

HOG/HOF descriptor was proposed by Laptev et al. [30], using the combination

of histogram of gradient (HoG) and histogram of optical flow (HoF) accumulated from

the local volume.

The Cuboids descriptor was proposed along with the Cuboids detector in [12].

For each detected point (x, y, t, σ, τ), a feature descriptor is computed in a 3D patch

centered at (x, y, t). The gradient at each spatiotemporal location is computed within

the cuboid and the histogram is computed as the feature vector. The PCA can be

applied to reduce the dimensionality.
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The extended SURF (ESURF) descriptor [63] was proposed with the Hessian detec-

tor, which is an extension of the SURF [5]. For each local volume, the feature vector is

computed using the sum of uniformly sampled responses of Haar-waveletes along three

directions.

We will evaluate the above three interest point detectors and six local descriptors

for 3D action recognition. Although there exist some works using the STIP features

for depth-based action recognition [64, 69, 70], only very limited types of STIP features

were investigated. Through the evaluation of several representative STIP features on

multiple depth databases, we will not only provide the benchmark results of STIP

features on depth data, but also find the best, appropriate STIP features that may

help to improve the accuracies significantly [71] for depth-based action recognition.

2.3 Databases

Table 2.1: Depth-based action/activities databases. In the 4th column, RGB denotes

color images, DEP denotes depth maps, and SK denotes skeleton joints positions. The 5th

column shows the average length of each video in the dataset.

Database # of Actions # of Subjects # of sequences # of channels Video Length

MSR-Action3D 20 10 557 DEP, SK ˜1s

MSRDailyActivity3D 16 10 320 RGB, DEP,SK ˜6s

UTKinect-Action 10 10 200 RGB, DEP,SK ˜3s

CAD-60 12 4 60 RGB, DEP,SK ˜45s

In order to perform a comprehensive evaluation, we conduct experiments on four

different depth databases, which were captured under different scenarios and/or envi-

ronments. The evaluation on these databases can provide a thorough test of various

STIP features on depth data. Table 2.1 shows a brief description of the four depth-based

action/activity databases. More details of these databases are given as follows.

2.3.1 MSR-Action3D Dataset

MSR-Action3D Dataset [32] was captured by a depth camera similar to the Kinect

sensor. This dataset contains 20 actions, and each action was performed by 10 subjects

three times. Two channels of data are provided: depth sequences at 15 frames per

second (fps) with resolution of 640 × 480, and skeleton joint positions in each frame.

The 20 actions are: high arm wave, horizontal arm wave, hammer, hand catch, forward
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Figure 2.2: Some samples from MSRAction3D Dataset. 7 depth images are showed. The

actions shown are (from left to right): side kick, bend, jog, high arm wave, golf swing,

pickup&throw and high throw.

Table 2.2: Three subsets of actions used for the experiments on MSRAction3D dataset.

AS1 AS2 AS3

Horizontal arm wave High arm wave Hight throw

Hammer Hand catch Forward kick

Forward punch Draw x Side kick

High throw Draw tick Jogging

Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve

Tennis serve Forward kick Golf swing

Pickup & throw Side boxing Pickup & throw

punch, high throw, draw x, draw tick, draw circle, hand clap, two hand wave, sideboxing,

bend, forward kick, side kick, jogging, tennis swing, tennis serve, golf swing, and pick

up & throw (see Figure 2.2 for some example images).

2.3.2 MSRDailyActivity3D Dataset

This dataset was collected for human daily activities by a Kinect device [61]. In total

there are 16 activities in this dataset: drink, eat, read book, call cellphone, write on a

paper, use laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game, lay

down on sofa, walk, play guitar, stand up, and sit down. Each subject performed an

activity twice, one “sitting on sofa” and the other “standing”. The total number of

videos is 320. Three channels of data, i.e., RGB, depth and skeleton joint positions

are provided in this dataset. See Figure 2.3 for some examples of depth images in this
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Figure 2.3: Sample depth images from MSRDailyActivity3D Dataset. Actions in the top

row (left to right): use laptop, use vacuum cleaner, cheer up, and lay down on sofa. Action

classes in the bottom row: toss paper, stand up, walk, and play guitar.

Figure 2.4: Sample images from UTKinect-Action Dataset. Action classes in the top

row: walk, wave hands, sit down, and throw. Action classes in the bottom row: pick up,

clap hands, carry and push.

dataset.

2.3.3 UTKinect-Action Dataset

The action videos of the UTKinect-Action Dataset [65], were collected by a single

stationary Kinect with the distance ranges from 4 to 11 feet. There are totally 10

action classes performed by 10 subjects. Each subject performed each action twice.

The RGB, depth and skeleton joint locations are synchronized and all three channels

are provided. Some examples of depth images are shown in Figure 2.4. The resolution

of RGB images is 640 × 480, the depth image resolution is 320 × 240. The 10 action

classes are: walk, sit down, stand up, pick up, carry, throw, push, pull, wave hands,

and clap hands.
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Figure 2.5: Examples depth images from the CAD-60 Dataset to illustrate the actions.

2.3.4 CAD-60 Dataset

Cornell Activity Dataset-60 (CAD-60) [50], contains 60 RGB-D videos collected by a

Kinect sensor with the distance ranges from 1.2m to 3.5m, the resolution of the depth

sequences is 640 × 480, and captured at 15 fps. There are 4 different subjects and 12

different actions. The action videos were captured in five different locations, with 3 to

4 common activities performed at each location. The five locations are: office, kitchen,

bedroom, bathroom and living room. Figure 2.5 shows some example depth images

from this dataset. All the RGB, depth and skeleton data are provided in this dataset.
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2.4 Evaluations

We present the experimental settings in Section 2.4.1, the evaluation results for various

combinations of detectors and descriptors in Section 2.4.2, and two STIP refinement

approaches along with the corresponding results in Section 2.4.3.

2.4.1 Experimental settings

The bag-of-words representation is used for the spatiotemporal interest points. First,

different STIP detectors are applied to the depth sequences. Given the detected loca-

tions, different local descriptors are used to characterize the space-time volume around

each interest point. These local features are then quantized into visual words, so that

a depth action sequence can be represented as a histogram of the visual words. In

our evaluation, vocabularies are constructed using the K-means clustering technique.

We empirically set the vocabulary size to be 200, 300, 850 and 1550, respectively,

for the MSRDailyActivity3D, MSRAction3D, CAD-60 dataset and UTKinect-Action

datasets, depending on the database size and empirical performance. After quantiza-

tion, the histograms of visual words are used as the features for action classification.

The multi-class support vector machines (SVMs) are used for action learning, with a

linear kernel for the CAD-60 dataset and χ2-kernel for the other three datasets, based

on our empirical comparisons between different kernels. The χ2-kernel is defined by:

K(Hi, Hj) = exp

(
− 1

2A
ΣV
n=1

(hin − hjn)2

hin + hjn

)
, where Hi = {hin} and Hj = {hjn} are the

frequency histograms of the visual word occurrences, and V is the vocabulary size. A

is the mean value of distances between all training samples.

For different feature representations, we utilize the implementations or source code

provided by the authors, mostly with the default parameter settings, since some ex-

ecutable code cannot be modified. All the experiments were conducted on a 64-bit

operating system DELL Optiplex 790 PC, with i7 3.4GHz CPU and 12G RAM.

Specifically, for the Harris3D detector, we used the original implementation with

the default parameter settings: k = 0.0005, σ2 = [4, 8, 16, 32, 64, 128] and τ2 = [2, 4].

For the Cuboids detector [12], we ran the authors’ implementation and the default scale

values σ = 2, τ = 4 were used in our evaluation. The UTKinect-Action dataset has

typically shorter video clips, we used σ = 2, τ = 2 for the Cuboids detector. For the

Hessian detector [63], the executable code was used with the default parameter setting.
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For the HOG/HOF descriptor, we followed [30] and adopted the grid parameters

nx = ny = 3, nt = 2, σ2 = 4 and τ2 = 2. For the HOG3D descriptor [24], we used

the parameters nx = ny = 5, nt = 4, σ = 2 and τ = 2 for the UTKinect-Action

dataset and nx = ny = 2, nt = 5, σ = 2 and τ = 4 for the other three datasets in

our evaluation. For the Cuboid descriptor [12], we applied the descriptor size ∆x(σ) =

∆y(σ) = 2σ + 1,∆t(τ) = 2τ + 1, where σ = 2, τ = 4. The PCA was applied to reduce

the feature dimensions to 100. For the ESURF descriptor, we used the executable code

with default parameter settings [63]: ∆x(σ) = ∆y(σ) = 3σ,∆t(τ) = 3τ .

For all depth databases, the depth sequences are firstly transformed and stored into

gray level videos (depth videos). The skeleton joint positions are also stored for each

frame. Then the spatiotemporal features are extracted from the depth videos for each

database.

2.4.2 Evaluation Results

The evaluation results are presented in the following, using all four datasets.

2.4.2.1 On MSRAction3D Dataset

MSRAction3D is a commonly used dataset for 3D action recognition. We followed the

same settings as [32], where the dataset is divided into 3 subsets, each consisting of 8

actions (see Table2.2). Then a cross-subject scheme is used in our evaluation, with half

of the subjects for training and the remaining half for testing. The overall accuracy

is computed by taking the average over the three subsets. The results of different

detectors/descriptors on this dataset are showed in Table 2.3. One can see that the

STIP features have very different accuracies on the same database, ranging from 47.1%

to 80.8%, when different detectors and descriptors are used. This observation is very

different from the results on color/gray level action videos [59], where the different STIP

features have similar accuracies on the same database. This evaluation indicates the

significant difference between 3D depth and color/gray level videos in action recognition.

The highest accuracy is achieved by Harris3D+HOG/HOF feature with a recog-

nition accuracy of 80.8%. This accuracy is comparable to some state-of-the-art ap-

proaches, but lower than the highest in the literature by more than 10% (see Table

2.10 for the state-of-the-art results on MSRAction3D). Note that in [61] the skeleton

joints information was used while in our evaluation of STIP features, only the depth
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Figure 2.6: Illustration of the spatiotemporal interest points detected on depth sequences

from four datasets.

Table 2.3: Accuracies of different STIP features on MSRAction3D dataset. Different

detectors and descriptors are combined. Some combinations cannot be realized because of

the non-separable executable code.

HOG3D HOG/HOF HOG HOF Cuboids ESURF

Harris3D 76.1% 80.8% 72.3% 77.3% - -

Cuboids 77.3% 78.7% 68.5% 71.0% 70.0% -

Hessian 60.3% 55.9% 47.3% 44.9% - 47.1%

videos are used. One reason that might impact the accuracy is that the interest points

cannot be detected for several depth sequences where the lengths of the sequences are

quite short.

2.4.2.2 On MSRDailyActivity3D Dataset

The MSRDailyActivity3D dataset contains 16 activities performed by 10 subjects in two

scenarios: sitting and standing. Similar to the partition in [32], we divided this dataset

into 2 subsets, and evaluate the performance considering two different scenarios, sitting

and standing, respectively. We consider the activities in each subset according to the

motions: subset 1 (AS1) contains activities without much motion and subset 2 (AS2)

with obvious motion. Table 2.4 shows how we divide the subsets. In our evaluation,

we adopt the cross-subject test scheme, using half of the subjects for training and the

remaining half for testing. The final results are obtained by averaging accuracies over
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Table 2.4: Subsets of actions used for the experiments on MSRDailyActivity3D dataset.

AS1 AS2

Read book Drink

Write on a paper Eat

Use laptop Call cellphone

Use vacuum cleaner Cheer up

Sit still Lay down on sofa

Toss paper Walk

Play game Stand up

Play guitar Sit down

Table 2.5: Accuracies of various STIP features on MSRDailyActivity3D dataset.

HOG3D HOG/HOF HOG HOF Cuboids ESURF

Harris3D 60.6% 67.5% 63.8% 59.4% - -

Cuboids 68.8% 70.6% 68.1% 58.1% 64.4% -

Hessian 70.6% 63.8% 61.9% 63.1% - 65.6%

the subsets.

The evaluation results on MSRDailyActivity3D dataset using different combina-

tions of detectors and descriptors are presented in Table 2.5. Again, the STIP features

achieved very different accuracies. The highest accuracy is obtained by Cuboids+HOG/HOF

and Hessian+HOG3D, with an accuracy of 70.6%. The result is lower than the reported

results, e.g., Oreifej et al. got 80% accuracy with HON4D feature in [40]. The highest

accuracy from previous approaches is 85.8% obtained in [61]. In our evaluation, all the

combinations of detector/descriptors are above 58%. In the subset with more motion,

the performance of STIP is much better (∼ 80%) than the subset with less motion

(∼ 50%). This demonstrates that the STIP features can characterize actions with sig-

nificant motions, but not static actions like sitting. Further, the STIP features cannot

represent the human-object interaction. There are several activities in this dataset with

similar motion but different objects, e.g., reading and writing, eating and drinking, etc.

We also observe that many of the interest points are detected on depth sequences ir-

relevant to the actions (see Figure 2.7). This inspires us to evaluate some refinement

schemes for the STIP features (to be shown later).
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Figure 2.7: Examples of interest points that are detected from the background (MSRAc-

tivity3D dataset).

Table 2.6: Accuracies of various STIP features on UTKinect-Action dataset. Note that

we use half subjects for training and the remaining half for testing. There are 100 samples

in total in the test set.

HOG3D HOG/HOF HOG HOF Cuboids ESURF

Harris3D 81.0% 80.0% 66.0% 69.0% - -

Cuboids 65.0% 65.0% 56.0% 57.0% 67.0% -

Hessian 69.0% 56.0% 57.0% 53.0% - 65.0%

2.4.2.3 On UTKinect-Action Dataset

The evaluation results on the UTKinect-Action dataset are showed in Table 2.6. Note

that because many depth sequences in this dataset are of length about 10 frames, which

is too short for space-time interest point detection. Thus a preprocessing is conducted

for the depth videos where 10 frames are copied to expand the length of video from

both the starting and ending frames.

From the results, the best accuracy is 81%, obtained by Harris3D+HOG3D. This

result is lower than the result 90.9% in [65], and the highest accuracy 91.5% in [11].

Note that in [65] and [11] the leave-one-out cross-validation scheme was applied but
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Figure 2.8: Confusion matrix for the feature Harris3D+HOG3D on UTKinect-Action

dataset.

we use half of the subjects for training and the other half for testing. Figure 2.8

shows the confusion matrix of the best STIP feature. Most of the actions are correctly

recognized, while the action “carry” has a much lower recognition rate, i.e., 60% of

the testing samples are incorrectly classified as “walk”. These two actions are quite

similar in the dataset, since “carrying” is performed by a “walking” subject who holds

an object. The STIP features might mainly focus on the body motions rather than a

relatively small object.

2.4.2.4 On Cornell Activity Dataset (CAD-60)

For the CAD-60 dataset, all the depth videos are sampled to 500 frames in our eval-

uation. All the activity categories (12 desired activities and a random activity) in
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Table 2.7: Accuracies of various STIP features on CAD-60 dataset.

HOG3D HOG/HOF HOG HOF Cuboids ESURF

Harris3D 43.8% 50.0% 43.8% 37.5% - -

Cuboids 50.0% 31.3% 37.5% 37.5% 43.8% -

Hessian 43.8% 50.0% 56.3% 43.8% - 62.5%

this dataset are used in our evaluation as in [50]. The same experimental settings are

adopted, i.e., three subjects for training, while the remaining for testing.

The evaluation results are shown in Table 2.7. Among the various features, the Hes-

ian+ESURF gives the highest accuracy 62.5%. From the confusion matrix (Figure 2.9),

one can see that some of the similar activities on depth sequence are incorrectly recog-

nized, e.g., talkOnCouch and relaxOnCouch, and the random activity in this dataset

also influences the recognition rate, where the talkOnPhone activity is recognized in-

correctly as the random activity.

In [50], the precision/recall is reported as the performance measurement (67.9%/55.5%).

Yang et al. [67] reported 71.9%/66.6% on this dataset. Koppula et al. [25] reported

the 80.8%/71.4%. We also compute precision/recall for the feature Hessian+ESURF.

The result achieves 66.7%/59.0%. Note that in our experiment we do not divide the

different environment into different subset as [25]. The noisy background in depth

sequences (see Figure 2.6) impact the detection of interest points with many interest

points detected from the background. This drawback can be overcome when human

segmentation is applied. We will investigate some refinement to reduce the effect of

background noise on depth-based action recognition.

2.4.3 Refinements of the STIP features

In the above experiments, various STIP features are evaluated on depth videos with

recognition accuracies reported. The best accuracies on each database are comparable

to, but lower than some state-of-the-art methods that are developed especially for

3D action analysis. Note that the synchronized RGB videos and the human skeleton

joints positions [46] are usually provided with the depth sequences. Intuitively these

different sources of data can be used as the complementary information for human

action recognition. Thus in our evaluation, we attempt to further utilize the RGB videos
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Figure 2.9: Confusion matrix for the feature Hessian+ESURF on CAD-60 dataset.

and the skeleton joints positions, to enhance the performance for action recognition on

depth data. In this way, we can understand the STIP features deeper in depth videos.

Two approaches are investigated in the following.

2.4.3.1 STIP feature refinement using Skeleton Joints

Shotton et al. [46] developed an efficient technique for human skeleton detection with

20 joint positions. Since the STIP features have a drawback, i.e., the spatial relations

or distributions of the interest points cannot be utilized. From the above experiments,

we observe that the detected interest points on depth images can be in the background

or not accurate because of the noise in depth data. Therefore, we demonstrate that

on depth images, the refinement of interest point detection could be done by using the

skeleton. It is based on constraining the locations of STIP according to the skeleton

joints. The idea is different from the work [64], but aims at the same goal—interest
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Figure 2.10: Examples of STIP refinement on different datasets. Left column shows the

original interest points detected, right column shows the interest points after refinement

by the human bounding box derived from the skeleton joints.

points refinement. Specifically, we define a bounding box around the subject at each

frame t. The bounding box at frame t is obtained by the temporal images from time

t − 5 to t + 5, and the maximum boundaries are selected and shifted by 30 pixels

to each side to construct the new bounding box. Then the STIP which are detected

on the whole depth sequences are constrained within the new box. STIP detections

which lie outside the bounding box are considered as from the background, and thus

are eliminated (see Figure 2.10). Finally, we do the evaluation again using the same

experimental settings as previous, only a smaller K in K-means clustering because of

the reduced number of interest points.

The evaluation results using this STIP refinement scheme on four datasets are
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Figure 2.11: Bar graph of the recognition accuracies before and after the refinements on

different datasets. The vertical axis denotes the recognition accuracy (%).

shown in Figure 2.11. From the results we observe that (1) most of the features can

get better results when applied the STIP refinement, e.g., on MSRAction3D dataset,

the accuracy of Cuboids + Cuboids feature increases by 4.2% after the refinement; on

MSRDailyActivity3D dataset, an 11.9% increase is achieved for the Hessian + ESURF

feature; and on UTKinect-Action dataset, the accuracy is increased by 13% for Cuboids

+ HOG/HOF feature. We also notice that on the CAD-60 dataset, the STIP refine-

ment method does not improve the accuracies. One reason might be that the dataset

was collected in five different locations and certain actions are “correlated” to some

specific scene/location, e.g., the action ‘cooking’ is performed in kitchen, while the ac-

tion ‘brushing teeth’ is performed in bathroom, etc. The eliminated STIPs, which are

mainly from the background, could contain some helpful information for action encod-

ing. Eliminating the interest points from background will “lose” the scene or context

information, thus the refinement may have some negative impact on action analysis;

(2) The overall accuracies on MSRAction3D and MSRActivity3D datasets increase af-

ter applying the STIP refinement. On MSRAction3D dataset, the refined accuracy is

80.5%, comparing to the original accuracy 78.7%, on MSRActivity3D dataset, the best

accuracy is 77.5%, which is higher than the original 70.6%, after the refinement.

2.4.3.2 STIP feature refinement using RGB images and Skeleton Joints

We have shown above that in most cases the STIP refinement with the 20 skeleton

joint positions can increase the action recognition rates. However, the performance is

still highly relied on the interest point detection accuracy. When the interest point

detection performs poorly on the depth maps because of the noisy depth data, the
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Table 2.8: Accuracies using skeleton and RGB refinement approaches. Two cells have no

results since the MSRAction 3D dataset does not contain RGB data.

MSRDailyActivity3D UTKinect-Action CAD-60 MSRAction3D

Original 70.6% 81.0% 56.3% 80.8%

RGB Refined 75.6% 85.0% 68.8% –

Skeleton Refined 72.5% 84.0% 50.0% 81.7%

Skeleton & RGB Refined 77.5% 85.0% 62.5% –

skeleton constraints may not help too much. Based on this consideration, we pursue

another refinement scheme. The idea is to adopt the interest point detection on RGB

videos, i.e., using the STIP locations detected in RGB videos for depth sequences. In

other words, the interest point detection is conducted on RGB sequences, and just

duplicated to the depth maps. The feature descriptors are still executed on the depth

videos.

Experiments are conducted on three datasets except the MSRAction3D because it

does not have the RGB data. We use the same settings as previous. The evaluation

results are shown in Table 2.8. The best STIP feature on each dataset are selected

(because separate implementation of ESURF descriptor is not available, we chose the

2nd best STIP feature instead). From the results, one can see that the accuracies are

improved significantly after using RGB refinement approach, either the skeleton refine-

ment is applied or not. On MSRDailyActivity3D dataset, the accuracy is increased

from 70.6% to 75.6%, on CAD-60 dataset, the accuracy is improved from 56.3% to

68.8%, and on the UTKinect-Action dataset, the accuracy is improved from 81.0% to

85.0%, when using the RGB refinement approach.

For the refinement with skeleton joints, the accuracies can be improved or keep the

same on the MSRDailyActivity3D and UTKinect-Action datasets, but reduced on the

CAD-60 dataset. The reason could be that the interest points located in the background

or scene may help to improve the action recognition accuracies (the CAD-60 dataset

contains different actions in different scenes), while the removal of those interest points

(constrained by the skeleton joints) can reduce the recognition performance.

The refinement results show that it may not be accurate enough to use the detected

locations of interest points on depth sequences directly, because of the noisy depth

values.
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2.5 Fusing spatiotemporal features and skeleton joints for

action recognition

In the above, two approaches have been presented to refine the STIP features. These

approaches can be viewed as posing constraints to the interest point locations on depth

videos, by using either RGB videos or the skeleton joints. On the other hand, the

skeleton joints positions extracted from the depth videos can be used as another fea-

ture, representing human posture information. In this section we want to evaluate the

performance of combining the STIP features with the skeleton joints feature. This

evaluation can tell if the STIP features can complement the skeleton joints features,

and if the combination can improve the accuracies significantly. If the accuracies can

be improved greatly, it can indicate the usefulness of the STIP features from another

aspect.

Specifically, the combination approach has four major steps, which has been pre-

sented in a workshop [71]. Firstly, the STIP features are extracted on depth sequences.

Then skeleton joints features are computed from the skeleton joint positions. A quan-

tization is performed for the two features respectively to encode the action sequences

with histograms. Finally, a feature-level fusion is executed for action recognition using

the random forests method [7]. We chose the detector/descriptor combinations which

performs the best based on our evaluation presented above. The evaluation of the STIP

features in Section 2.4 is the basis for our fusion approach [71].

We use the histogram of the skeleton joints features proposed in [67] to combine

with the best STIP features on each database. Different from [67] where the Naive

Bayes classifier was used, we compute the histogram of the joints to combine with the

STIP features by the random forests method.

The features from joint locations consist of three parts: (1) current posture: pair-

wise joint distances in current posture; (2) motion: joints difference between current

posture and the original (in the first frame); and (3) offset: joints differences between

current posture and the previous one. A concatenation of the three feature vectors is

taken to represent the feature. The PCA method is applied for dimensionality reduc-

tion.

To represent each action sequence, we quantize the STIP features and the skeleton

joints features, respectively, based on the K-means clustering. The cluster centers are
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used as the keywords to construct the histogram bins. These features are used in the

next step for feature-level fusion and action classification.

In order to perform the fusion and feature selection of spatiotemporal features and

the skeleton joints features, the random forests (RFs) method [7] is used. RFs are

usually considered as a classifier using tree predictors in which each tree splits the data

depending on the randomly selected features. And there are many nice properties to use

the random forests: (1) robustness to noise, (2) efficiency for classification, and (3) the

improvement of accuracy by growing multiple trees and vote for the most popular class.

Here we use the RFs for fusion of distinct features and action classification together.

The experiments are conducted on the four datasets (MSRAction3D, UTKinect-

Action, CAD-60, and MSRDailyActivity3D) while three of them were used in our

study in [71]. Our fusion approach can improve the recognition rates to 94.3%, 91.9%,

87.5%, and 80.0%, respectively, on the four databases, which are significantly higher

than the STIP feature or skeleton. This result shows that the STIP features can be

useful to complement the often-used skeleton features for action recognition.

We also compare the fusion results to other approaches reported in the literature

on the four datasets. Table 2.10 shows all reported results that we can find on the

MSRAction3D dataset. Under the same experimental settings, it can be seen that the

fusion result of 94.3% accuracy is the second best result among all of the previous

methods. Our result is only 0.5% lower than the best result in [39]. On the UTKinect-

Action dataset from Table 2.11, the fusion approach has an accuracy of 91.9% which

is higher than the DSTIP+DCSF feature [64], and slightly higher than the HOJ3D

feature in [65] (90.9%) and the space-time pose representation in [11] (91.5%). Note

that we used the same settings as [64], which is more challenging than the settings in

[65] and [11]. On the CAD-60 dataset, the experimental settings are kept the same as

[50] and the presicion/recall of our fusion method is computed for a direct comparison

with other methods, shown in Table 2.12. Our fusion approach obtained a much higher

accuracy than the state-of-the-art results on this dataset. Finally, Table 2.13 shows the

results on the MSRDailyActivity3D dataset, an accuracy 80.0% is obtained using our

fusion approach. Slightly different settings are used in our experiment, since the actions

are divided into two groups to measure the performance difference between them. Our

fusion result is comparable but about 8% lower than the highest accuracy. Note that
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Table 2.9: Accuracies of the fusion method compared to each single feature on four

datasets. RFs denotes the random forests method.

MSRAction3D Acc.

STIP (Harris3D+HOG/HOF) 77.5%

Skeleton Joint Features 90.9%

Combined features with RFs 94.3%

UTKinect-Action Acc.

STIP (Harris3D+HOG3D) 80.8%

Skeleton Joint Features 87.9%

Combined features with RFs 91.9%

CAD-60 Acc.

STIP (Hessian+ESURF) 75.0%

Skeleton Joint Features 81.3%

STIP + Skeleton 87.5%

MSRDailyActivity3D Acc.

STIP (Hessian+HOGHOF) 70.6%

Skeleton Joint Features 73.8%

Combined features with RFs 80.0%

all the 16 activities are used in our experiment, while in [64], four activities (with less

motion) were removed in their experiment.

From the comparison with various approaches, we demonstrate the usefulness of

the STIP features for depth-based action recognition, when combined with the skeleton

feature.

2.6 Conclusions

We have presented a comprehensive evaluation of the spatiotemporal interest point

features for action recognition in 3D. The evaluated STIP features include three spa-

tiotemporal interest point detectors and six descriptors. The combinations of these

detectors and descriptors form 14 different features. These STIP features have been

evaluated on four different depth action/activity databases. The comparisons to the

state-of-the-art methods have shown that the STIP features are still useful for depth-
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Table 2.10: Comparisons of different methods on MSRAction3D dataset.

Method Accuracy

High Dimensional Convolutional Network [60] 72.5%

Action Graph on Bag of 3D Points [32] 74.7%

HOJ3D feature [65] 79.0%

Key Pose Learning [31] 80.3%

Eigenjoints [67] 82.3%

STOP feature [54] 84.8%

Random Occupancy Patterns [60] 86.2%

Actionlet [61] 88.2%

HON4D [40] 88.9%

DSTIP+DCSF [64] 89.3%

Depth Motion Maps [68] 91.6%

Space-time Pose Representation [11] 92.8%

JAS (Cosine)+MaxMin+HOG2 [39] 94.8%

STIP + Skeleton 94.3%

Table 2.11: Comparisons of different methods on UTKinect-Action dataset.

Method Accuracy

DSTIP+DCSF [64] 85.8%

HOJ3D [65] 90.9%

space-time pose representation [11] 91.5%

STIP+Skeleton 91.9%

Table 2.12: Comparisons of different methods on CAD-60 dataset.

Method Precision/Recall

J. Sung et al. [50] 67.9%/55.5%

X. Yang et al. [67] 71.9%/66.6%

Koppula et al. [25] 80.8%/71.4%

STIP + Skeleton 93.2%/84.6%
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Table 2.13: Comparisons of different methods on MSRDailyActivity3D dataset.

Method Accuracy

NBNN + parts + time [44] 70.0%

Local HON4D [40] 80.0%

DCSF [64] 83.6%

RGGP + Fusion [34] 85.6%

Actionlet [61] 85.8%

DCSF+Joint [64] 88.2%

STIP+Skeleton 80.0%

based action recognition.

From the evaluation, we have shown that most of the results are comparable to

the current state-of-the-art approaches. However, under the bag-of-words framework,

the extracted features do not contain the spatial distribution of the interest points in

depth maps, this is one reason that limits the performance. We have also shown that

the noisy depth data and background have a great impact on interest point detection.

Moreover, the interest point detection may not perform well on actions without much

motion, resulting in lower accuracies.

The evaluation has shown that different STIP features perform quite differently

on depth actions. It discovers that the feature with Harris3D and HOG/HOF per-

forms the best on the MSRAction3D dataset, the Cuboids detector with HOG/HOF

descriptor performs the best on the MSRDailyActivity3D dataset, while the Harris3D

detector combined with HOG3D descriptor is the best on UTKinect-Action dataset.

On the CAD-60 dataset, the Hessian detector with ESURF descriptor gives the highest

accuracy.

Two interest point refinement schemes have been presented for the STIP features,

based on constraining the STIP features using skeleton joint positions and/or the de-

tection in RGB videos. We have shown that the STIP features can be refined to achieve

better performance in most cases. We have also proposed a fusion scheme to combine

the best STIP features with the skeleton joint features in each database. Significant

improvements of the recognition accuracies have been achieved on all four databases.

Overall, we have explored the STIP features for 3D action recognition from different

aspects.
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3

TriViews: A General Framework

to Use 3D Depth Data Effectively

for Human Action Recognition

3.1 Overview of The Method

Our proposed method contains four steps. First, we use 3D skeleton joints positions to

extract the interest region from the original depth map and then project the interest

region onto three orthogonal Cartesian planes. Each 4D depth sequence generates three

3D action videos, according to front, side, and top views. After projection, feature ex-

traction is performed on each view separately. Five different features, i.e., spatiotem-

poral interest points (STIPs), dense trajectory shape descriptor (DT-Shape), dense

trajectory motion boundary histograms (DT-MBH), skeleton trajectory shape descrip-

tor (ST-Shape), and skeleton trajectory motion boundary histograms (ST-MBH), are

extracted. After feature extraction, we use the Random Forests (RFs) [7] to combine

the three views for action recognition. Note that the combination is conducted for each

individual feature separately. Finally, we compare the performances of the five features,

select the top three best features and fuse them with the probabilistic fusion approach

(PFA) [17]. Figure 3.1 illustrates the framework of the proposed approach. The details

of each step in our approach will be presented.
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Figure 3.1: The framework of the proposed method. PFA denotes Probabilistic Fusion

Approach. Five features, i.e., STIPs, DT-Shape, DT-MBH, ST-Shape, and ST-MBH are

used in our experiment.

3.2 TriViews Projection

In order to make use of 3D structure and shape information of depth data, each depth

map is projected onto three orthogonal Cartesian planes. We first use the 3D skeleton

joints locations to extract a 3D interest region in each action sequence. To be specific,

for each depth sequence, we build a 3D bounding box around the human body. In order

to construct the bounding box, we first find the boundary positions of the human body

in x, y and z directions, respectively and then shift a pixels to both sides in x direction,

b pixels in y direction, and c depth units in z direction. These shifts are needed to keep

the full motion data for feature extraction during the action executions. Specifically,

denote k =

 xmin xmax
ymin ymax
zmin zmax

 as the boundary of the human body in a video sequence

and K =

 Xmin Xmax

Y min Y max

Zmin Zmax

 the extracted 3D bounding box. We have:

K = k + p, (3.1)
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where p =

 −a a
−b b
−c c

. After the shifting, if the bounding box goes out of the image

plane, we correct it back into the image plane:

 Xmin

Y min

Zmin

 = max

 Xmin 0

Y min 0

Zmin 0


 Xmax

Y max

Zmax

 = min

 Xmax W

Y max H

Zmax D


(3.2)

where W , H and D are the maximal width, height and depth values of the depth map.

Because (X,Y ) are in screen coordinates while Z is in real world coordinate, we

first convert Z from real world coordinate to screen coordinate using the linear nor-

malization. Specifically, denote Zmin and Zmax be the minimum and maximum depth

values in a sequence, Z be the depth value, we have:

Z
′

=
255

Zmax − Zmin
× (Z − Zmin) . (3.3)

After the preprocessing, Z
′

is in the range of [0,255], X, Y , and Z
′

are all in

screen coordinates. We project each frame into three views. Specifically, denote Q =[
X,Y, Z

′
]′

and q = [x, y, z]
′

the data before and after projection, respectively. Then

we have:

q = M iQ, (3.4)

where i ∈ {1, 2, 3}, M i =

 f3 0 0
0 f2 0
0 0 f1

, f i = 0, and f j = 1 (j 6= i), for each

projection i.

So each 4D (spatial, depth, and time coordinates) depth sequence can generate

three 3D (spatial and time coordinates) action videos. We first extract features on each

single view, then combine the three views with the Random Forests (RFs) method [7]

on various features.

Note that our TriViews framework is different from [32] and [68], where the depth

information in the projection was too simple: only binary images were used for each

projection plane. In contrast, we consider the specific depth information and convert

the depth values into pixel values in the range of [0,255], so we get real value images
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for each single view. Binary maps are limited to a small range of features such as

contour shape as in [32] or motion energy images as in [68], while more general features

can be extracted from our TriViews framework, resulting in an improved performance

significantly.

To demonstrate the effectiveness of our framework, we investigate five different

features in our study, which are divided into three categories: STIP, dense trajectory

(DT), and skeleton trajectory (ST).

3.2.1 Dense Trajectory

Dense trajectory, proposed by Wang et al. [57], was another effective approach for

human action recognition in RGB videos. We investigate the dense trajectory feature

for 3D actions, under our TriViews framework. All the following computations are

on the 3D depth data. Feature points were densely sampled and tracked by median

filtering in the dense optical flow field. Specifically, given a point Pt = (xt, yt) at frame

t, its tracked position at frame t+ 1 is given by:

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ωt) |(xt,yt), (3.5)

where M is the 3 × 3 median filtering kernel, ωt = (ut, vt) denotes the optical flow

field computed by [14]. To avoid the drifting problem, feature points were only tracked

for 15 frames and new points were sampled. In order to increase the precision of

the trajectories, both static trajectories and trajectories with large displacements were

pruned in a post-processing stage.

To characterize the actions, two categories of feature were used: (1) Trajectory

shape feature; (2) Local motion and appearance descriptors, i.e., histograms of gradients

(HOG), histograms of optical flow (HOF), and motion boundary histograms (MBH).

The shape of a trajectory was described by a sequence of displacement vectors:

(4Pt, ...,4Pt+L−1), where 4Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − yt), L is the trajec-

tory length. Specifically, we concatenate L displacement vectors to get a 2× L feature

vector.

To make the trajectory shape descriptor invariant to scale changes, the concatenated

feature vector is normalized by the overall magnitude of motion displacements:

DT-Shape =
(4Pt, ...,4Pt+L−1)∑t+L−1

j=t ‖4Pj‖
, (3.6)
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where L = 15 is the trajectory length.

HOG, HOF, and MBH descriptors are computed in trajectory-aligned 3D video

volumes of size 32× 32× 15. HOG encodes local appearance information, while HOF

and MBH capture local motion pattern. All the histogram features are normalized

with the L2 norm. To further embed the structure information, the 3D volume is

subdivided into a spatiotemporal grid of size 2× 2× 3. Descriptors (e.g., HOG,HOF or

MBH) are computed in each cell of the spatiotemporal grid, and the final descriptor is a

concatenation of descriptor from each cell. HOG is quantized into 8 bins and HOF into

9 bins. MBH is a concatenation of two components, i.e., MBHx and MBHy. MBHx

is the derivative for the horizontal component of the optical flow, while MBHy is the

derivative for the vertical component. MBH has been shown to outperform both HOG

and HOF descriptors in almost all cases [57], so we investigate MBH descriptor in our

study of 3D action videos.

3.2.2 Skeleton Trajectory

Although the dense trajectory can have a good coverage of foreground motion as well

as the surrounding context, it is time-consuming to track the densely sampled feature

points. So we propose a 3D sparse trajectory called skeleton trajectory (ST) for depth-

based action recognition, which is faster than the dense trajectory.

RGB-D sensors, such as the Kinect, provide twenty 3D skeleton joint positions in

real time [46]. The skeleton joints are a natural representation of sparse trajectories.

Specifically, denote Qi (t) = (xi (t) , yi (t) , zi (t)) the ith skeleton joint at frame t and

the number of skeleton joints in each frame as N , ST can be denoted as:

(Qi(t), Qi(t+ 1), ..., Qi(t+ L− 1)) , (3.7)

where L is the trajectory length, i = 1, 2, ..., N .

Note that the location (xi, yi, zi) of a joint Qi might be of inconsistent coordinates.

For example, (xi, yi) are in screen coordinates, while zi is in real world coordinate. We

convert zi from real world coordinate to screen coordinate. Empirically, each depth

value is scaled to the range of [0,255] with a linear normalization scheme.

Also note that the proposed skeleton trajectory is different from the spatiotemporal

motion trajectories proposed by Devanne et al. [11]. They concatenated the coordinates

of all 20 skeleton joints to form a 60 dimensional vector, and the evolution of such a
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vector over time was used as a trajectory, while we treat 20 skeleton joints separately

and each skeleton joint counterparts one trajectory.

We compute two features for skeleton trajectory: skeleton trajectory shape descrip-

tor (ST-Shape) and motion boundary histograms (ST-MBH). ST-Shape characterizes

trajectory shape and motion information, while ST-MBH encodes local appearance and

motion patterns.

The ST-Shape feature is computed as:

ST-Shapei =
(4Qi(t), ...,4Qi(t+ L− 1))∑t+L−1

j=t ‖4Qi(j)‖
, (3.8)

where L is the length of skeleton trajectory, i = 1, 2, ..., 20.

To encode the local motion information, we compute the MBH feature aligned with

the skeleton trajectory. Specifically, denote Ix and Iy as images containing the hori-

zontal and vertical components of optical flow computed from 3D depth data, respec-

tively, we take their local gradients separately, find the corresponding bins, compute

the weighted votes, and build histograms using the weighted votes into local orientation

histograms. Finally, we combine the two components to get the ST-MBH feature.

Note that skeleton trajectory features are unique for depth data. Both the ST-

Shape and ST-MBH are new features to characterize the 3D depth data using the

skeleton trajectories. These features cannot be computed as the dense trajectories in

RGB videos as in [57].

3.3 Random Forests

After obtaining features from each single view, we propose to combine three views with

the Random Forests (RFs) method [7].

Random Forests are a collection of many decision trees. For a test sample x, each

tree gives a classification decision, and the final classification result is the class label

which gets the most votes from all the trees. The forest grows as follows:

Denote the feature vector as v ∈ RN , where N is the feature dimension for each

sample. At each node n features are selected out of N at random to split the node.

The best split is determined by the information gain using the n selected features:

Gain =

2∑
i=1

 |Ii|
I

C∑
j=1

pi,jlog2(pi,j)

, (3.9)
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where Ii are the two splits Ileft and Iright, |Ii| is the size of set Ii, C is the total class

types, pi,j is the fraction of samples in Ii belonging to class j. Once the best split is

found, a binary split is performed on that node. At the next node, another n features

are chosen randomly and the same procedure is performed. Each tree grows until it

reaches the maximum tree depth maxdepth, or the tree node receives the predefined

number of minimum samples minnode. In the leaf node, the probability distribution for

each class is computed.

3.4 Probabilistic Fusion Approach

After evaluating five different features under the TriViews framework, we propose to

fuse the top three best features on each database with the probabilistic fusion approach

(PFA), proposed in [17]. It was originally used to fuse regressors and classifiers for

human age estimation. We adapted the approach to combine the outputs of multiple

Random Forests (RFs) in our study of 3D action recognition.

Let v ∈ Rn be a feature vector extracted from an input pattern, and let {c1, c2, ..., cn}
be the class labels of n classes. For each Random Forests Di, i = 1, 2, ..., L, the out-

put of Di given the input pattern v is: Di(v) = [Nc1(v), Nc2(v), ..., Ncn(v)], where

Ncj (v), j = 1, 2, ..., n is the number of trees that classify v into class cj . We can create

a probability measure for the RFs output as:

Pi (cj |v) =
Ncj (v)∑n
j=1Ncj (v)

, (3.10)

Let pi (cj |v) denote the probability measure that classifier Di classify v into class

cj , then the probabilistic fusion approach is given by

p (cj |v) = A ·
L∑
i=1

ωipi (cj |v) , (3.11)

where ωi is the weight for classifier Di and
∑L

i=1 ωi = 1. A is a constant to maintain a

probabilistic measure.

3.5 Experiments

We conduct experiments on three challenging depth-based action recognition databases,

and compare our results with the state-of-the-art methods on each database.
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For each action sequence, five features, i.e., the STIP, DT-Shape, DT-MBH, ST-

Shape, and ST-MBH will be employed to encode the motion and local appearance

information. We evaluate the features in a bag-of-features scheme. Vocabularies are

constructed with the K-means clustering. For each single view, i.e., front, side, or top

view, the SVMs is used as the classifier. When combining three views, RFs is used,

which can also do feature selection based on the randomized mechanism.

In the following, we introduce our experimental settings, and then present the ex-

perimental results. Finally we provide analysis and discussions, and compare to the

state-of-the-art methods.

3.5.1 Experimental Settings

When extracting the 3D bounding box of the human body, we shift 50 pixels in x

direction, 15 pixels in y direction and 120 depth units in z direction. For STIP features,

we select the best detector and descriptor for each database. Specifically, Harris3D

detector and HOG/HOF descriptor are used for MSRAction3D dataset. Harris3D

detector combined with HOG3D descriptor are used for UTKinect-Action3D dataset.

On the MSRDailyActivity3D dataset, Hessian detector and HOG3D descriptor are

employed to extract local features. These selections are the best STIP features based

on a comparison among various STIP features [72]. The K-means clustering method is

applied to quantize the STIP features into histograms. Because of different application

scenarios, the number of visual words V is selected from [500, 2000], with a step size of

100. To limit the complexity, we cluster a subset of 100,000 randomly selected training

features. To increase precision, we initialize K-means 5 times and keep the result with

the lowest error. In order to get the dense trajectory feature, we use the settings as

[57] although the 3D data are different from the color videos in [57]. The trajectory

length L is 15 frames (6 frames for UTKinect-Action dataset because this dataset has

much shorter video clips). The size of space-time volume aligned with a trajectory is

set to 32 × 32 × 15. To embed structure information, each volume is subdivided into

a spatiotemporal grid of size 2 × 2 × 3. For skeleton trajectory, we adopt the same

parameter settings as the dense trajectory. For the classifiers used in the experiment,

SVMs with χ2 kernel are used. For the random forests, the number of trees can be

selected from [1, 500], and the number of features used in each split can be selected

from [3, 60].
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3.5.2 Experimental Results

We present the experimental results of individual features, and then give the fusion

results using the top three best features.

3.5.2.1 Spatiotemporal Features

We first investigate spatiotemporal features under our new framework. The bag-of-

words approach is used for histogram construction and SVMs is used as the classifier.

When combining three views, the Random Forests (RFs) method is used, but because

the SVM classifier is used for each single view, in order to have a fair comparison, we

also conduct the experiment of combining the three views using the SVM classifier.

The experimental results using STIP features on three databases are shown in Ta-

ble 3.1. We can see that, the front view can get better results than the other two

views on the MSRAction3D (Accuracy: 90.0%) and UTKinect-Action database (Ac-

curacy: 84.8%), while on the MSRDailyActivity3D database, the side view gets a

better result (Accuracy: 73.8%). One reason why the side view has a better perfor-

mance than the front view on the MSRDailyActivity3D database might be that the

actions in this database look more different from the side view. After combining three

views with RFs, the accuracies can be improved to 94.9% on MSRAction3D dataset,

92.9% on UTKinect-Action dataset, and 83.8% on MSRDailyActivity3D database. We

get higher accuracies after combining three views. It validates the usefulness of our

proposed framework that combining three views can improve the overall performance

significantly.

To further demonstrate the effectiveness of the TriViews framework, we compare

our method with [71]. In [71], the 3D depth data were transformed into gray level depth

videos, extracted spatiotemporal feature on depth video and finally did classification

in a bag-of-words scheme. We use the approach in [71] with our experimental settings

and present the results in the first two rows of Table 3.1. To have a fair comparison, we

keep the same parameter settings and the same training and test data sets. From the

table, it can be seen that our method outperforms [71] on all three databases. When

the classifier is the SVM, our method performs 1.6%, 5.1%, and 10.0% higher than

[71] on the MSRAction3D, UTKinect-Action and MSRDailyActivity3D databases, re-

spectively. When the classifier is RFs, the improvements are even higher (2.1% on
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MSRAction3D dataset, 9.1% on UTKinect-Action dataset, and 15.0% on MSRDaily-

Activity3D dataset). The results validate the effectiveness of the proposed method,

i.e., the recognition accuracies can be improved for the spatiotemporal features using

the TriViews framework.

Table 3.1: Performances of STIP with and without projecting the 3D depth data into

three views on three databases: MSRAction3D, UTKinect-Action and MSRDailyActiv-

ity3D. Depth denotes gray level depth videos. TriViews denotes combining three views.

Method
Accuracy

MSRAction3D UTKinect MSRDailyActivity3D

Without Projection
Depth + SVM 89.7% 83.8% 65.0%

Depth + RFs 92.8% 83.8% 68.8%

With Projection

Front + SVM 90.0% 84.8% 65.0%

Side + SVM 88.2% 78.8% 73.8%

Top + SVM 86.9% 77.8% 61.9%

TriViews + SVM 91.3% 88.9% 75.0%

TriViews + RFs 94.9% 92.9% 83.8%

3.5.2.2 Comparison to HON4D Feature

Projecting depth data into three views has shown superiority over the standard use of

the 3D depth data (i.e., without projection). To further demonstrate the effectiveness

of the TriViews framework for depth-based action recognition, we compare our results

with [40], which is a representative work that characterizes the depth data as a surface

in 4D space. Histogram of the 4D surface normals (HON4D) over all voxels in the

depth sequence is used for action recognition. To the best of our knowledge, HON4D is

currently the most effective feature to characterize depth data in 4D. In order to have

a fair comparison, we run the code provided by [40] on the three datasets, using the

same experimental conditions. The results are shown in Table 3.2.

Table 3.2: Comparison of our proposed method with HON4D feature on the three

databases.

Method
Accuracy

MSRAction3D UTKinect MSRDailyActivity3D

HON4D [40] 92.0% 77.8% 75.6%

TriViews+STIPs+RFs 94.9% 92.9% 83.8%
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From Table 3.2, it can be seen that our approach outperforms the HON4D feature

on all three databases. Compared with the HON4D feature, our approach performs

2.9% higher on MSRAction3D, 15.1% higher on UTKinect-Action, and 8.2% higher on

MSRDailyActivity3D, respectively.

After evaluating our proposed TriViews framework with the STIP features, we

explore the framework further with more features, i.e., DT-Shape, DT-Motion, ST-

Shape, and ST-MBH, and show the performance using the same data (training and

test sets).

3.5.2.3 Dense Trajectory

Table 4.3 shows the experimental results on three databases using dense trajectory

shape (DT-Shape) and dense trajectory motion boundary histograms (DT-MBH) fea-

tures. We can see that for both DT-Shape and DT-MBH features, combining three

views gets higher accuracies than any single view. It can also be observed that MBH

consistently outperforms trajectory shape descriptor. On the MSRAction3D database,

trajectory shape descriptor can get an accuracy of 84.8%, while MBH descriptor gets

an accuracy of 96.4%. On the other two databases, trajectory shape descriptor gets an

accuracy of 84.8% and 75.6%, respectively, while MBH gets better results (90.9% on

UTKinect-Action and 87.5% on MSRDailyActivity3D, respectively).

After evaluating dense trajectory, we conduct experiments using skeleton trajectory,

and then compare these two kinds of trajectory features.

Table 3.3: Performances of dense trajectory shape (DT-Shape) descriptor and motion

boundary histograms (DT-MBH) feature on each single view and three views combination.

Methd
Accuracy

MSRAction3D UTKinect MSRDailyActivity3D

Front
DT-Shape 79.0% 78.8% 65.0%

DT-MBH 89.3% 81.8% 66.3%

Side
DT-Shape 63.9% 78.8% 60.6%

DT-MBH 90.9% 79.8% 67.5%

Top
DT-Shape 77.0% 64.6% 58.1%

DT-MBH 92.4% 70.7% 59.4%

TriViews
DT-Shape 84.8% 84.8% 75.6%

DT-MBH 96.4% 90.9% 87.5%
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3.5.2.4 Skeleton Trajectory

The results of skeleton trajectory shape (ST-Shape) and skeleton trajectory motion

boundary histograms (ST-MBH) features on the three databases are shown in Table

3.4. We can see that combining three views can improve recognition rate on all three

databases. MBH has a better performance than the trajectory shape descriptor on the

MSRAction3D database, while on the other two databases skeleton trajectory shape

descriptor outperforms MBH feature. One reason why the MBH performs better than

skeleton trajectory shape on the MSRAction3D database might be that this database

has a clean background, thus local appearance descriptor such as MBH can characterize

the actions more reliably. Skeleton trajectory shape descriptor gets an accuracy of

89.9% on the UTKinect-Action and 77.5% on MSRDailyActivity3D, respectively.

Table 3.4: Performances of skeleton trajectory shape (ST-Shape) descriptor and motion

boundary histograms (ST-MBH) feature on each single view and three views combination.

Methd
Accuracy

MSRAction3D UTKinect MSRDailyActivity3D

Front
ST-Shape 78.0% 76.8% 69.4%

ST-MBH 85.4% 66.7% 55.6%

Side
ST-Shape 71.4% 84.8% 70.0%

ST-MBH 76.6% 70.7% 58.1%

Top
ST-Shape 68.0% 76.8% 70.6%

ST-MBH 79.6% 65.7% 58.1%

TriViews
ST-Shape 86.8% 89.9% 77.5%

ST-MBH 94.2% 88.9% 71.3%

3.5.2.5 Comparison of Dense Trajectory with Skeleton Trajectory

Dense trajectory collects the video motion and appearance information densely, while

skeleton trajectory is a sparse representation of motion and local appearance informa-

tion. We compare these two trajectories in Table 3.5. One can see that for the tra-

jectory shape descriptor, skeleton trajectory outperforms dense trajectory on all three

databases, while for the MBH descriptor, dense trajectory consistently outperforms

skeleton trajectory. ST-MBH gets an accuracy of 94.2%, 88.9%, and 71.3% respec-

tively on the three databases, while DT-MBH gets an accuracy of 96.4%, 90.9%, and
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87.5%, respectively. Among the four features, DT-MBH can get the highest accuracy

on all three databases.

Table 3.5: Comparison of dense trajectory (DT) with skeleton trajectory (ST) on three

databases.

Method
Accuracy

MSRAction3D UTKinect MSRDailyActivity3D

Shape
DT 84.8% 84.8% 75.6%

ST 86.8% 89.9% 77.5%

MBH
DT 96.4% 90.9% 87.5%

ST 94.2% 88.9% 71.3%

3.5.2.6 Comparison of Different Skeleton Based Features

From previous results we can see that skeleton trajectory shape descriptor not only

consistently outperforms dense trajectory shape descriptor, but also exhibits better

performance than ST-MBH feature on UTKinect-Action and MSRDailyActivity3D

databases. ST-Shape feature uses only the 3D skeleton location information, we com-

pare this feature with other published work using skeleton locations for depth action

recognition in Table 3.6. Note that on UTKinect-Action and MSRDailyActivity3D

datasets, we implement [67]’s work and get the results with our experimental settings.

From Table 3.6 it can be seen that on the MSRAction3D and MSRDailyActivity3D

databases, the accuracy of ST-Shape descriptor is 86.8% and 77.5%, respectively, higher

than all the other published results. On the UTKinect-Action database, ST-Shape gets

an accuracy of 89.9%, higher than 87.9% by EigenJoints [67]. HOJ3D [65] gets an

accuracy of 90.92%, but they employed a leave-one-out setting, where more training

samples and less test sample were used in their experiment. The cross-subjects setting

is applied in our experiment.

3.5.2.7 Fusing Top Three Features

From above results, we found that among the five individual features, STIPs and DT-

MBH consistently outperform the other three features. On MSRAction3D dataset, the

third best feature is ST-MBH, while on the other two datasets ST-Shape outperforms

both DT-Shape and ST-MBH features. A fusion scheme is proposed to combine the

top three best features based on the probabilistic fusion approach (PFA) method [17].
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Table 3.6: Comparison of ST-Shape feature with other published results using skeleton-

based features for 3D action recognition. *Note that, we use half subjects for training and

the other half for testing. In [65], a leave-one-out setting was applied.

Method
Accuracy

MSRAction3D UTKinect MSRDailyActivity3D

ST-Shape 86.8% 89.9% 77.5%

EigenJoints[67] 82.3% 87.9% 73.8%

HOJ3D[65] 78.97% 90.92%∗ -

Actionlet[61] - - 68.0%

Key Pose Learning[31] 80.3% - -

The experimental results on MSRAction3D dataset are shown in Table 3.7. The

accuracy is only 94.2% using ST-MBH feature, 94.9% using only STIP and 96.4% using

DT-MBH. But after fusion with PFA, recognition rate can be improved to 98.2%, which

is higher than each of the individual features.

Table 3.7: The recognition accuracies of top three individual features and fusion by the

probabilistic fusion approach (PFA). Note that on MSRAction3D dataset, the third best

feature is ST-MBH while on the other two datasets, the third best feature is ST-Shape.

Method
Accuracy

MSRAction3D UTKinect-Action MSRDailyActivity

Single Feature

STIPs 94.9% 92.9% 83.8%

DT-MBH 96.4% 90.9% 87.5%

ST-MBH/ST-Shape 94.2% 89.9% 77.5%

Average 95.2% 91.2% 82.9%

Fusion PFA 98.2% 98.0% 88.8%

The results on the UTKinect-Action dataset are shown in the second column of

Table 3.7. One can see that after fusing the three individual features, the accuracy

achieves 98.0%, which is significantly higher than any single feature. For example, the

accuracy of the best individual feature STIP is 92.9%.

The results on the MSRDailyActivity3D dataset are shown in the third column of

Table 3.7. The accuracy is only 77.5% using ST-Shape feature, 83.8% using only STIP

and 87.5% using DT-MBH, but after fusion, the accuracy achieves 88.8%. The results

validate the effectiveness of fusing multiple features to improve the performance for 3D

action recognition.
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Table 3.8: Comparison of the recognition accuracies between our approach and all existing

methods on MSRAction3D dataset.

Method Accuracy

High Dimensional Convolutional Network [60] 72.5%

Action Graph [32] 74.7%

HOJ3D [65] 79.0%

Key Pose Learning [31] 80.3%

Sparse Representation [4] 80.8%

OESGP [47] 80.9%

EigenJoints [67] 82.3%

STOP [54] 84.8%

ROP [60] 86.2%

Actionlet [61] 88.2%

HON4D [40] 88.9%

DSTIP+DCSF [64] 89.3%

Part-set [56] 90.2%

Depth Motion Maps [68] 91.6%

Space-time pose representation [11] 92.8%

Evolutionary Joint Selection [10] 93.2%

DS-SRC [52] 93.6%

STIPs+Joint+RFs [71] 94.3%

JAS (Cosine)+MaxMin+HOG2 [39] 94.8%

TriViews + ST-MBH 94.2%

TriViews + STIPs 94.9%

TriViews + DT-MBH 96.4%

TriViews + PFA 98.2%

Table 3.9: Comparison of the recognition accuracies between our approach and all existing

methods on the UTKinect-Action dataset. Note that, we used a less number of training

examples, while the leave-one-out setting was used in [65].

Method Accuracy

Posture Word [64] 79.57%

DSTIP+DCSF [64] 85.8%

HOJ3D [65] 90.9%

DS-SRC [52] 91.0%

Space-time pose representation [11] 91.5%

STIPs+Joint+RFs [71] 91.9%

TriViews + ST-Shape 89.9%

TriViews + DT-MBH 90.9%

TriViews + STIPs 92.9%

TriViews + PFA 98.0%
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Table 3.10: Performance comparison between our approach and state-of-the-art methods

on MSRDailyActivity3D dataset. Note that, all the actions are used in our experiment,

while in [64] four actions (with less motion) were removed from the dataset in their exper-

iment.

Method Accuracy

NBNN+parts+time [44] 70.0%

Local HON4D [40] 80.0%

DCSF [64] 83.6%

RGGP+Fusion [34] 85.6%

Actionlet [61] 85.8%

DCSF+Joint [64] 88.2%

TriViews + ST-Shape 77.5%

TriViews + STIPs 83.8%

TriViews + DT-MBH 87.5%

TriViews + PFA 88.8%

3.5.2.8 Computation Complexity

We first evaluate the run time of different features used in our experiments. We compute

the three kinds of features for all the training video samples from the MSRAction3D

dataset. There are about 14,000 frames in the training data. We use the STIP toolbox

from [30] with the default settings. For dense trajectory features, we use the toolbox

from [57]. The skeleton trajectory features were implemented in C++. Experiments

were conducted on a Dell desktop with a 3.4 GHz Intel Core i7-2600 CPU and 12GB

RAM.

From Figure 3.2, we can see that STIP gets the run time of 2.19fps, while dense

trajectory features has the speed of 1.64fps. Skeleton trajectory can get 2.08fps, which

is faster than the dense trajectory features, a little slower than STIP feature.

Besides feature extraction, we also list the run time for other steps in our experi-

ments, i.e., three views projection, action recognition using the features extracted from

the three views, and fusing top three features with PFA for final action classification.

The three views projection is implemented in Matlab and the run time for this step

is 1.21fps on average. When combining three views, we concatenate the features from

three views and then use random forests for classification. And the run time for this

step is 3.34vps (videos per second). When fusing top three features with PFA, it is

almost real time. For example, it takes about 0.08 seconds for every 100 test samples.
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Figure 3.2: Run time for different features. We use Harris3D+HOG/HOF for STIP. ST

denotes skeleton trajectory. DT denotes dense trajectory. Note that for both ST and DT,

we compute two features: MBH and shape descriptors.

3.5.3 Comparison with the State-of-the-art Methods

We further compare our approach with the state-of-the-art methods for depth-based

action recognition on the three challenging datasets. Note that we adopt cross-subjects

scheme in all our experiments, where half of the subjects are used for training and the

remaining half for testing. We list all the published results on the three databases,

to the best of our knowledge. Table 3.8 shows the reported results in the literature

on the MSRAction3D dataset. We can see that under our TriViews framework, STIP

feature achieves an accuracy of 94.9%, and DT-MBH gets an accuracy of 96.4%, both

are higher than all of the previously reported results. After fusion with PFA, the

accuracy can be improved to 98.2%, which is 3.4% higher than the best result 94.8%

[39] in the literature. On the UTKinect-Action dataset, the results are shown in Table

3.9. STIP feature gets an accuracy of 92.9% and PFA achieves 98.0%, both are higher

than the state-of-the-art methods on this dataset. Finally, we compare our results with

the state-of-the-art on the MSRDailyActivity3D dataset. From Table 3.10 one can see

that, after fusion, the accuracy achieves 88.8% , which outperforms the DCSF+Joint

approach in [64]. Also note that DT-MBH can get an accuracy of 87.5% under TriViews

framework, which is close to the 88.2% reported in [64], however, four still actions were

eliminated in their experiments, while we use all 16 actions.
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3.6 Conclusions

We have proposed a general framework for 3D depth-based action recognition called

TriViews. It can utilize the rich 3D information effectively for action recognition. Under

this framework, we have investigated five different features: three features are adapted

from representative approaches in RGB videos, and the other two are proposed uniquely

for depth-based action recognition. The top three best features are combined by a

probabilistic fusion approach (PFA). The experimental results demonstrate that the

TriViews framework is very effective to improve the 3D action recognition performance,

outperforming the state-of-the-art results on each of the three challenging databases.
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4

Mice Behavior Recognition based

on Integration of Sparse and

Dense Trajectory Features

4.1 Overview of The Method

Our proposed approach contains four steps. First, the sparse trajectory features (STF)

are computed from tracked mice positions. Then dense trajectory features (DTF),

including dense trajectory shape (DT-Shape) and dense trajectory motion boundary

histograms (DT-MBH) features are extracted from the mice videos. After feature

extraction, we do mice action recognition for each feature separately, thus get three sets

of action candidates. Finally, we fuse action candidates obtained from different features

with several fusion methods. Figure 4.1 illustrates the framework of the proposed

approach. The details of each step are presented in the following.

4.2 Sparse Trajectory Features

Inspired by Burgos-Artizzu et al.’s work on trajectory features (TF) [9] and Giancardo

et al.’s work of spatiotemporal features [16], we consider three kinds of features from

mice positions: (1) Zero-order position information: position, distance, and direction;

(2) First-order position information: velocity; (3) Second-order position information:

acceleration. Position and distance information help discriminate between solitary and

social behaviors (e.g., clean/approach). Direction feature helps discriminate behaviors
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Figure 4.1: The framework of the proposed method. STF means sparse trajectory fea-

tures, DT means dense trajectory, MBH means motion boundary histograms,
(
ωj
i , p

j
i

)
denotes the sample assigned to class label ωi by classifier j with a confidence pi.

with different interactions (e.g., nose to nose/nose to genital). Velocity and acceleration

are important for distinguishing stationary behaviors from those with large motions.

TF [9] computes the above trajectory feature at a local region and sums them together,

but we use the trajectory features in a different way. We concatenate the three kinds

of feature vectors and then apply a gaussian normalization to normalize the feature

values to the range of [0, 1]. Our sparse trajectory features are also different from

spatiotemporal features [16], which computes some distance and shape information

between two mice, while our sparse trajectory features (STF) include some velocity

and acceleration features.

Specifically, for two interacting mice, denote (xmi(t), ymi(t)) as the position for

mouse mi ∈ [1, 2] at frame t. Each feature can be denoted as:

(1a) Position: xmi(t), ymi(t)

(1b) Distance between two mice:

Dist(t) =
√

(xm1(t)− xm2(t))2 + (ym1(t)− ym2(t))2 (4.1)

Inspired by the “relative position” feature in [9], when one mouse is tracked with

3 points: head, body, and genital, we add 4 more distance features: “head2head”,

“head2body”, “head2genital”, and “genital2genital”.
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(1c) Distance change between two consecutive frames:

DistChange(t) = Dist(t)−Dist(t− 1) (4.2)

(1d) Direction for each mouse:

Dirmi = atan−1
(
ymi(t)− ymi(t− 1)

xmi(t)− xmi(t− 1)

)
(4.3)

(1e) Direction change between two consecutive frames:

DirChangemi(t) = Dirmi(t)−Dirmi(t− 1) (4.4)

(1f) Direction difference between two mice:

DirDiff(t) =| Dirm1(t)−Dirm2(t) | (4.5)

(2) Velocity for each mouse:[
V xmi

(t)

V ymi
(t)

]
=

1

4t

[
4xi(t− 1) 4xi(t) 4xi(t + 1)

4yi(t− 1) 4yi(t) 4yi(t + 1)

]
·

 0.25

0.50

0.25

 (4.6)

,where 4xi(t0) = xmi (t0)− xmi (t0 − 1), and 4yi(t0) = ymi (t0)− ymi (t0 − 1).

(3) Acceleration for each mouse: Axmi
(t) =

Vxmi
(t+1)−Vxmi

(t−1)
24t

Aymi
(t) =

Vymi
(t+1)−Vymi

(t−1)
24t

(4.7)

The total dimension for the sparse trajectory features is 19 without the “relative posi-

tion” features. After adding the “relative position” distance features, the final feature

dimension is 23.

4.3 Dense Trajectory Features

Dense trajectory features were proposed by Wang et al. [57] for human behavior recog-

nition. Feature points were densely sampled with a step size of 5 pixels. In order to

guarantee a good coverage of the video content, 8 spatial scales were employed. Sam-

pling was carried out on each spatial scale, separately. Tracking was performed by

median filtering in the optical flow field. Specifically, given a point Pt = (xt, yt) at

frame t, the corresponding position at frame t+ 1 is given by:

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ωt) |(xt,yt), (4.8)
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where M is the 3 × 3 median filtering kernel, ωt = (ut, vt) denotes the optical flow

field computed by the method in [14], which was implemented in the OpenCV li-

brary. Tracked points of subsequent frames were concatenated to form trajectories:

(Pt, Pt+1, Pt+2, ..., Pt+L−1). In order to avoid drifting, only the tracked feature points

for 15 frames are used and new points will be sampled to replace them. To increase

the precision of the trajectories, both static trajectories and trajectories with sudden

large displacements were pruned in a post-processing stage.

To encode the video sequences, two kinds of features will be considered: (1) Point

locations to characterize trajectory shape and motion information; (2) Feature descrip-

tors to encode local motion and local appearance information.

To be specific, the shape of a trajectory is described by a sequence of displacement

vectors: (4Pt, ...,4Pt+L−1), where 4Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − yt), and L

is the trajectory length. To make the trajectory shape descriptor invariant to scale

changes, the concatenated feature vector is normalized by the overall magnitude of

motion displacements:

DT -Shape =
(4Pt, ...,4Pt+L−1)∑t+L−1

j=t ‖4Pj‖
, (4.9)

where L = 15 is the length of trajectory.

The local motion and appearance information is described by trajectory-aligned fea-

tures such as histograms of oriented gradients (HOG), histograms of optical flow (HOF),

and motion boundary histograms (MBH). HOG encodes local appearance information,

while HOF and MBH capture local motion pattern. All the histogram features are nor-

malized with the L2 norm. A 3D video volume of size 32× 32× 15 is aligned with each

trajectory and features are computed in the 3D volume. To further embed the structure

information, the 3D volume is subdivided into a spatiotemporal grid of size 2× 2× 3.

Descriptors (e.g., HOG, HOF or MBH) are computed in each cell of the spatiotemporal

grid, and the final descriptor is a concatenation of descriptor from each cell. HOG is

quantized into 8 bins and HOF into 9 bins. MBH has two components, i.e., MBHx and

MBHy. MBHx is the derivative for the horizontal component of the optical flow, while

MBHy is the derivative for the vertical component. Each component (i.e., MBHx and

MBHy) is quantized into 8 bins. So the dimension is 2× 2× 3× 8 = 96 for both MBHx

and MBHy. MBH is a concatenation of MBHx and MBHy. MBH has been shown to
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outperform both HOG and HOF descriptors for human action recognition [57]. Here

we investigate the DT-MBH feature for mice behavior analysis.

4.4 Post-Processing with Temporal Coherence Features

(TCF)

For either sparse trajectory features or dense trajectory features, we use Random

Forests [7] to do frame-based action recognition, so each frame t will have a confidence

vector [h1(t), h2(t), ..., hK(t)], where K is the total behavior types. Because temporally

close frames are very likely to have the same behavior type, inspired by the auto-context

work in [9], we consider a post-processing approach and compute three kinds of fea-

tures from the confidence scores of frames preceding and following the current frame

t: pairwise confidence difference between actions, first order derivative of confidence

score, and some statistical features including mean, maximum, minimum, and variance

values.

Note that in order to search the starting point of a new behavior and to detect the

ending point of an existing behavior, both the statistical features and the first order

derivative features are computed in three types of windows:

(a) Center frame window: 4W1 =
[
t− sz

2 , t+ sz
2

]
;

(b) Pre frame window: 4W2 =
[
t− sz

2 , t ];

(c) Past frame window: 4W3 =
[
t, t+ sz

2 ];

The temporal coherence features are added to the original STF, DT-Shape or DT-

MBH feature sets for a new iteration of computation. This process is repeated 2 times

in our experiments.

4.5 Gaussian Normalization

When adding temporal coherence measure to either STF, DT-Shape, or DT-MBH fea-

tures, we use the gaussian normalization to map different features into a comparable

range. Suppose there are M samples in the database, after adding the temporal co-

herence measure we can get an M × N feature matrix F = fij , where fij is the jth

feature component in feature vector fi,·, each feature vector is of N dimensions. Our

goal is to normalize the entries in each column f·,j to the same range so as to ensure

52



that each individual feature component is within the same range in determining the

similarity between two vectors. We compute the mean µj and standard deviation σj

of each feature, and then normalize the original features into a normal distribution

N ∼ (0, 1) as follows:

f
′
ij =

fij − µj
3σj

(4.10)

then, the probability of a feature component value in the range of [-1, 1] is approximately

99%. An additional shift will guarantee that 99 percent of feature values are within

[0,1]:

f̃ij =
f
′
ij + 1

2
(4.11)

After this shift, we can consider that all of the feature component values are within

the range of [0,1]. Therefore, this normalization process ensures the same range of the

feature components when different types of features are combined.

4.6 Fusion Methods

Data fusion has received considerable attention in recent years. Decision level fusion is

one of the most popular fusion types [23, 26]. Given a set of classifiers {D1, D2, ..., DL},
decision level fusion aims at a higher accuracy than any single classifier. We studied

five representative classifier fusion strategies [2]: minimum, maximum, sum(average),

median, and majority voting, and chose the majority voting and median based fusion

methods because of their simplicity and good performance in our experiments.

4.6.1 Majority Voting

Majority voting [23] is one of the most common approaches for decision level fusion.

The idea is that in combining the decisions of multiple classifiers, the sample is assigned

the label that the majority classifiers agree with. Specifically, for an input sample x,

each classifier Di , i = 1..N , outputs a predicted class label ωci . The final class label is

the one with the most occurrence in the decision vector Ω =
[
ωc1 · · · ωci · · · ωcN

]
.

If two or more labels have the most equal occurrence, the class label will be randomly

selected from those labels.

In the above scenario, all the experts are considered equally reliable, as a conse-

quence, even an expert is very confident on its decision, the opinions of less reliable
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classifiers may change the final decision. One simple but powerful way of overcom-

ing this drawback is to assign higher weights to the decisions made by more accurate

classifiers. So the rule can be rewritten as:

Denote Z the predicted class label, assign Z → ωj if

ΣN
i=1wikδik =

C
max
j=1

ΣN
i=1wijδij , (4.12)

where wij is the weight of classifier Di for class ωj , and δik is an indicator function

defined as:

δik =

{
1, if the classifier Di outputs class label ωk

0, otherwise
(4.13)

4.6.2 Median Based Fusion

The median based fusion is another popular decision-level fusion method [23]. The idea

is to use the median of different classifiers to make the final decision.

Denote Z the predicted class label, P (ωj | xi) the posteriori probability of Z as-

signed as class ωj by the measurement vector xi from the i-th classifier. The median

based fusion can be denoted as:

Assign Z → ωj if

N
max
i=1

P (Z = ωj | xi) =
C

max
k=1

medNi=1P (Z = ωk | xi) (4.14)

4.7 Experiments

We conduct experiments on two challenging mice behavior databases, and compare our

results with the state-of-the-art methods on each database.

For each action sequence, three features, i.e., STF, DT-Shape, and DT-MBH, are

computed, separately. For DT-Shape and DT-MBH features, we employ a bag-of-

features scheme. Vocabularies are constructed with the K-means clustering. The RFs

method is used for mice action classification.

In the following, we introduce the two databases first, and then present the ex-

perimental settings and experimental results. Finally we provide some analysis and

discussions of the experimental results.
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4.7.1 Databases

In order to evaluate the proposed approach, two mice behavior databases are used

in our experiments. The first one is the Caltech Resident-Intruder Mouse dataset

(CRIM13) [9], which captures thirteen different social actions between two mice. This

database was recorded using two fixed, synchronized cameras at 25fps with a resolu-

tion of 640×480, so each scene has both top and side views. Because mice are noctur-

nal animals, the near-infrared in-cage lighting was used, and the captured videos are

monochromatic. The other database is the Mice Behavior Analysis dataset (MBADA)

[16, 48], which records the interaction between two/three mice with an infrared camera

FLIR A315. The camera has a spatial resolution of 320×240 at 30fps. More details

about each database are given below.

CRIM13 database consists of 237×2 videos. Each video lasts ∼10min. The full

dataset lasts over 88 hours and has more than 8 millions frames. There are 13 different

actions: Approach, Walk away, Circle, Chase, Attack, Copulation, Drink, Eat, Clean,

Human, Sniff, Up, and Other. The videos always start with a male “resident” mouse

alone in a laboratory enclosure. At some point, a second mouse called “intruder”

is introduced into the enclosure by a human and social interaction between the two

mice begins. The resident mouse tries to get to know the intruder mouse, thus some

behaviors like approach, circle, and sniff will happen at this time. Once it is identified

that the intruder is a male mouse, the resident mouse will likely attack it to defend

its territory. If the intruder is a female mouse, the resident mouse will likely court her

(copulation, chase). Another case is that the resident mouse just ignores the intruder

and is engaged in some solitary behaviors like clean, drink, eat, and up. The intruder

mouse is removed just before the end of the video. Because of the running time issue, we

followed [13] and used a subset of the database: the validation set. This set contains 40

videos (20 from top view and 20 from side view). Half videos are used for training and

the other half for testing. We used 10 out of the 13 actions as in [13]. On this database,

we follow the same setting as [9, 13] to compute the average per-frame agreement as the

error metric, which is computed by taking the average of the diagonal in the confusion

matrix. Some example frames from this database are shown in Figure 4.2.

The MBADA dataset is collected for a study of multiple mice tracking and behavior

analysis problem. It is composed of 4 subsets: dataA-1, dataA-2, dataA-3, and dataA-4.
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Figure 4.2: Some example frames in the CRIM13 dataset.

The first three sets monitor the social behavior of three interacting mice while dataA-4

monitors two mice. When there are more than two mice, we follow the same setting

as [16] and study the behavior between every two mice. Set dataA-1 lasts about 30

minutes, while each of the other three sets lasts about 60 minutes. There are 8 actions in

this dataset: Nose2Body, Nose2Nose, Nose2Genitals, Above, Following, StandTogether,

StandAlone, and WalkAlone. This dataset was manually labelled by 2 experts: Grader

1 and Grader 2. We checked the two sets of labels and found that Grader 1 has a better

labeling. Besides, [16] also shows that when Grader 1 is considered as the ground truth,

grader/system’s performance is more consistent with the inter-grader one. So in our

experiment, we only use the labels from Grader 1. Figure 4.3 shows some example

images from this database. Because this database involves behavior analysis among

multiple mice, we only focus on two interacting mice and mask out the irrelevant

mouse when computing the dense trajectory features.

4.7.2 Experimental Settings

On the CRIM13 database, we follow the same experimental setting as [13]. Specifically,

we use the validation set: 10 full videos for training and 10 full videos for testing. On

the MBADA database, we follow the same experimental setting as [16]. A 3-fold cross

validation approach is adopted. Each video is divided into three consecutive parts
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Figure 4.3: Some example images in the MBADA dataset.

(leaving the frame ordering intact). Two folds are joined together for training and the

other one for testing. The process is iterated over all folds and the final recognition

result is the average of all iterations. The K-means clustering method is applied to

quantize the DT-Shape and DT-MBH features into histograms. In our experiment, we

set the number of visual words V as 250. To limit the complexity, we cluster a subset

of 100,000 randomly selected training features. In order to get the dense trajectory

features, we adapted the same setting for human action recognition [57] to the mice

actions. The size of space-time volume aligned with trajectory is set as 32 × 32 × 15.

To embed structure information, each volume is subdivided into a spatiotemporal grid

of size 2 × 2 × 3. For the trajectory length L, we set it to be 9 frames. For temporal

coherence features, we used windows of size 75, 185, and 615 to combine short, median,

and long term context similar to [9]. For the random forests, the number of trees can

be selected from [1, 500], and the number of features used in each split can be selected

from [3, 50]. To control how deep the tree grows, we set the minimum size of terminal

nodes to be 1.

4.7.3 Experimental Results

We present the experimental results of individual features first, so we can understand

the performance of each single feature. Then we give the fusion results to measure the

improvement.
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4.7.3.1 Sparse Trajectory Features

Table 4.1 shows the experimental results using sparse trajectory features(STF) on the

two databases and the comparison of recognition performances between sparse trajec-

tory features and the trajectory features(TF) [9]/spatiotemporal features(S-TF) [16].

We can see that STF consistently outperforms both TF and S-TF features. STF

achieves an accuracy of 4.80% higher than TF on the CRIM13 database. On the

MBADA database, STF outperforms S-TF on each subset. For example, on Set dataA-

2 2Vs3, the STF gets the largest improvement of 6.36% over S-TF features. On the

whole database, STF improves the average accuracy by 4.31%.

On the CRIM13 database, each mouse is tracked and denoted with 1 point on the

body, thus we compute only one distance feature: “body2body”, but for the MBADA

database, each mouse is denoted with 3 points: head, body, and genital, so we compute

five distance features: “body2body”, “head2head”, “head2body”, “head2genital”, and

“genital2genital”. In order to examine whether more distance measures can improve

the final recognition result or not, we also compute the sparse trajectory feature with

only one distance feature “body2body” for one set from the MBADA database and

call this sparse trajectory feature “STF 1Pt”. We compare the performances among

S-TF, STF, and STF 1Pt on Set dataA-4 2Vs1 in Table 4.2. We can see that STF 1Pt

feature can get a 2.87% higher recognition accuracy than S-TF, while the STF can

further improve the accuracy over the STF 1Pt by 1.74%.

Table 4.1: Performances of sparse trajectory features (STF) on the two databases and

comparison of classification performance between STF and spatiotemporal features(S-

TF)[16]/trajectory features(TF)[9]. We show the recognition results after adding temporal

coherence feature (TCF).

Dataset S-TF / TF + TCF STF + TCF

CRIM13 42.30% 47.10%

MBADA

dataA-1 redVsBlue 76.16% 81.12%

dataA-1 redVsYellow 78.01% 83.35%

dataA-1 yellowVsRed 81.61% 84.25%

dataA-2 2Vs1 69.94% 72.34%

dataA-2 2Vs3 70.94% 77.30%

dataA-3 2Vs1 73.09% 76.00%

dataA-3 2Vs3 73.71% 79.00%

dataA-4 2Vs1 72.06% 76.67%

Average 74.44% 78.75%
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Table 4.2: Comparison of performances among spatiotemporal features (S-TF), STF, and

STF 1Pt on Set dataA-4 2Vs1 of the MBADA database.

Method Accuracy

S-TF [16] 72.06%

STF 1Pt 74.93%

STF 76.67%

4.7.3.2 Dense Trajectory Features

After evaluating STF’s performance, we present the results on the two databases using

dense trajectory shape (DT-Shape) and dense trajectory motion boundary histograms

(DT-MBH) features in Table 4.3. We can see that for both DT-Shape and DT-MBH

features, it can improve the recognition accuracy by about 8.00% ∼ 9.00% using the

temporal coherence features. We also observe that DT-MBH consistently outperforms

the DT-Shape descriptor. On the CRIM13 database, top view can get slightly higher

accuracy than side view.

Table 4.3: Performances of dense trajectory shape (DT-Shape) and motion boundary

histograms (DT-MBH) features on the CRIM13 and MBADA databases. Top means top

view, and Side means side view.

Dataset

Accuracy

Without TCF With TCF

DT-Shape DT-MBH DT-Shape DT-MBH

CRIM13
Top 28.50% 31.70% 39.10% 40.50%

Side 25.80% 27.10% 33.60% 37.40%

MBADA

dataA-1 redVsBlue 51.34% 58.86% 59.66% 65.94%

dataA-1 redVsYellow 50.09% 66.76% 60.45% 72.79%

dataA-1 yellowVsRed 55.03% 68.11% 64.58% 72.92%

dataA-2 2Vs1 46.29% 53.24% 56.02% 62.14%

dataA-2 2Vs3 44.29% 52.34% 56.54% 60.12%

dataA-3 2Vs1 47.57% 61.00% 58.68% 67.55%

dataA-3 2Vs3 51.67% 57.99% 60.59% 64.63%

dataA-4 2Vs1 41.35% 50.29% 50.31% 59.79%

Average 48.45% 58.57% 58.35% 65.74%
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4.7.3.3 Comparison of Dense Trajectory Features with STIP features

From Table 4.1 and Table 4.3, we can see that dense trajectory features get lower accu-

racy than sparse trajectory features, but can dense trajectory features get higher accu-

racy than another popular category of spatiotemporal descriptor: spatiotemporal inter-

est points (STIP) [12, 24, 28, 30]? To answer this question, we compare dense trajectory

features with some popular STIP features on the CRIM13 database in Table 4.4. We

can see that among different detector and descriptor combinations, Cuboids+Cuboids

can get the highest accuracy of 24.6% on this database. However, both DT-Shape and

DT-MBH features can get higher accuracies than the Cuboids+Cuboids feature. This

comparison tells us that the dense trajectory features perform better than the popular

STIP features in mice behavior understanding.

Table 4.4: Comparison of dense trajectory features (without temporal coherence features)

with STIPs features (without temporal coherence features) on the CRIM13 database.

Method Top Side

Dense Trajectory Features
DT-Shape 28.5% 25.8%

DT-MBH 31.7% 27.1%

STIPs

Harris3D+Cuboids 20.9% -

Harris3D+HOG3D 18.7% -

Harris3D+HOG/HOF 15.5% -

Cuboids+Cuboids 24.6% -

Cuboids+HOG3D 18.2% -

Cuboids+HOG/HOF 19.8% -

4.7.3.4 Fusing Sparse Trajectory Features with Dense Trajectory Features

In this task, we study whether the dense trajectory features can be used to further

boost the performance of sparse trajectory features. We combine the sparse trajectory

features and dense trajectory features with fusion schemes, e.g., the majority voting

and median based fusion.

The experimental results on the CRIM13 database are shown in Table 4.5. Based on

fusion, the recognition rate can be improved to 52.40% by majority voting and 56.20%

by median based fusion. Both are higher than any individual feature, e.g., 39.10% by

DT-Shape, 40.50% by DT-MBH, and 47.10% by STF, respectively. This result validates

our proposed approach, i.e., dense trajectory features can be supplementary to sparse

60



Table 4.5: The recognition accuracies of fusing sparse and dense trajectory features on

the CRIM13 database. MAJ and MED denote majority voting and median based fusion,

respectively. Note that we only use dense trajectory features from top view because top

view gets higher accuracies than side view.

Method Accuracy

Single Feature

DT-Shape Top 39.10%

DT-MBH Top 40.50%

STF 47.10%

Fusion
MAJ 52.40%

MED 56.20%

trajectory features, thus it can improve the recognition accuracy. The confusion matrix

by median based fusion is shown in Figure 4.4.

Table 4.6: The recognition accuracies of fusing sparse and dense trajectory features on

the MBADA database.

Set

Accuracy

Single Feature Fusion

DT-Shape DT-MBH STF MAJ MED

dataA-1 redVsBlue 59.66% 65.94% 81.12% 83.15% 81.61%

dataA-1 redVsYellow 60.45% 72.79% 83.35% 86.07% 86.97%

dataA-1 yellowVsRed 64.58% 72.92% 84.25% 87.07% 86.19%

dataA-2 2Vs1 56.02% 62.14% 72.34% 77.47% 74.02%

dataA-2 2Vs3 56.54% 60.12% 77.30% 82.22% 79.70%

dataA-3 2Vs1 58.68% 67.55% 76.00% 80.98% 79.20%

dataA-3 2Vs3 60.59% 64.63% 79.00% 82.10% 81.15%

dataA-4 2Vs1 50.31% 59.79% 76.67% 79.78% 79.50%

Average 58.35% 65.74% 78.75% 82.36% 81.04%

The fusion results on the MBADA dataset are shown in Table 4.6. We can see that

after fusing the two features, the average accuracy achieves to 82.36%, which is signifi-

cantly higher than any single feature. For example, the accuracy of the best individual

feature STF is 78.75%. Between the two fusion methods,i.e.,MAJ, and MED, MAJ

performs better than MED on almost all subsets except dataA1 redVsYellow. On Set

dataA1 redVsYellow, MED can get an accuracy of 86.97%, a little higher than 86.07%

by MAJ. Figure 4.5 shows confusion matrix by MAJ on Set dataA1 yellowVsRed, where

most of the actions are separated reasonably well.

61



.33 .12 .11 .02 .04 .35

.58 .11 .09 .05 .06 .09

.06 .84 .03 .02 .01

.04 .10 .73 .01 .02 .06

.32 .22 .04 .02 .04 .06 .23 .02

.11 .41 .07 .13 .24

.11 .01 .76 .03 .05

.15 .01 .09 .02 .21 .25 .08 .16

.01 .02 .02 .84 .07

.01 .05 .06 .02 .83

approach

attack

coitus

chase

circle

clean

sniff

up

walk

other

approach

attack
coitus

chase
circle

clean
sniff

up walk
other

Figure 4.4: The confusion matrix of median based fusion on the CRIM13 Database.
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Table 4.7: Comparison of the recognition accuracies between our approaches and all the

state-of-the-art methods on the CRIM13 and MBADA databases.

Method
Accuracy

CRIM13 MBADA

TF + Structured SVM [13] 37.20% -

TF [9] 42.30% 72.26%

S-TF [16] - 74.44%

STF (Ours) 47.10% 78.75%

Combined Features by MAJ (Ours) 52.40% 82.36%

Combined Features by MED (Ours) 56.20% 81.04%

4.7.3.5 Computation Complexity

We report run time (frames per second) of both sparse and dense trajectory features,

and also compare with some popular STIP features in Table 4.8. The run-time is

obtained on a Dell desktop with a 3.4 GHz Intel Core i7-2600 CPU and 12GB RAM.

For the STF feature, we implement it in Matlab (given the tracks, available from

project website [8]). For DTF, we use the toolbox from [58] under our settings, for

example, the trajectory length is set to be 9. As a comparison, we also compute STIP

(Harris3D+HOGHOF and Cuboids+Cuboids) features with the toolboxes provided by

[30] and [12], respectively.

From the results, we can see that the sparse trajectory feature achieves real-time

with a speed of greater than 1.0×103fps. Note that the STF feature only relies on mice

locations:(x, y), then some geometry features like distance, velocity are computed. The

database website provides mice locations before hand, so I do not need to read/process

image for the computation of STF, I only need to load in mice locations in matlab

and then do some calculation on those (x, y) locations. Also the 1.0 × 103fps is only

for STF feature extraction. The time for classification is not counted, because feature

extraction is the most time-consuming part. Cuboids + Cuboids feature’s run time is

10.0fps, Harris3D + HOG/HOF can get 2.3fps. Dense trajectory feature gets a speed

of 1.1fps, which is slower than STIP features. But in Section 4.7.3.3, we have shown

that dense trajectory feature can get better performance than all STIP features.
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Table 4.8: Comparison of different features’ computation complexity on the CRIM13

dataset. fps denotes frames/second. *Mice locations are given before hand, no image/video

processing was performed. The other features involve image/video processing.

Feature fps

STF > 1.0× 103∗

DTF 1.1

STIP
Cuboids+Cuboids 10.0

Harris3D+HOG/HOF 2.3

4.7.4 Comparison with the State-of-the-Art Methods

We further compare our approach with the state-of-the-art methods for mice behavior

recognition on the two challenging datasets in Table 4.7. We list all the published

results on the two databases, to the best of our knowledge. On the CRIM13 database,

the current state-of-the-art performance on this dataset is 42.30%, while our approach

can improve the accuracy to 52.40%, and 56.20% by median based fusion. On the

MBADA dataset, STF can get an accuracy of 78.88%, which is higher than both [9]

and [16]. After fusion with MAJ and MED, the accuracy can be further improved to

82.36% and 81.04%, respectively as shown in Table 4.7. Therefore, our approach can

have significantly better results than state-of-the-art methods.

4.8 Conclusions

We have presented a new approach to mice behavior recognition, based on integration

of sparse and dense trajectory features using different fusion methods. Comprehensive

experiments have been conducted on two mice behavior databases. We have shown

that the sparse trajectory features can perform better than dense trajectory features.

Fusion of these two kinds of features can improve the performance significantly. We

have also shown that the proposed approach outperforms the state-of-the-art methods

on both datasets.
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5

Conclusion & Future Work

We have presented our approaches for human action recognition using RGB-D data,

and mice behavior recognition based on the integration of sparse and dense trajectory

features.

We have proposed an effective framework for depth-based human action recogni-

tion. Five different features are investigated under our framework. Two of the five

features, i.e., skeleton trajectory shape descriptor (ST-Shape) and skeleton trajectory

motion boundary histogram features (ST-MBH) are proposed by us for posture and

motion representation in depth data. The top three best features are combined by a

probabilistic fusion approach (PFA). The experimental results demonstrate that the

TriViews framework is very effective to improve the RGB-D human action recognition

performance, outperforming the state-of-the-art results on each of the three challenging

databases.

We have also presented a new approach for mice behavior recognition, based on

the fusion of sparse and dense trajectory features. Experimental results show that

sparse trajectory features can perform better than dense trajectory features, however,

fusion of the two features can improve the performance significantly. Our approach is

validated on two public mice databases and gets the state-of-the-art performance on

both databases.

In the future, we will consider the following work:

(1) Because RGB-D data have many advantages over traditional gray-level im-

ages/videos, we will consider collecting an animal behavior database with the Kinect.

And do some research on that database. (2) In our TriViews framework, we currently
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treat all three views equally. However, different views contain different amount of infor-

mation, so it is interesting to develop some novel approaches to handle different views

in different ways. For example, one very simple way is to assign different weights to

different views when combining the three views. (3) Design and develop some new

features for human/animal behavior representation, and investigate the new features

under our TriViews framework for human action recognition, and fuse the new features

for our mice behavior recognition work.
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