
Graduate Theses, Dissertations, and Problem Reports 

2003 

Mesomechanics of fabric reinforced composites Mesomechanics of fabric reinforced composites 

Thomas Miles Damiani 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Damiani, Thomas Miles, "Mesomechanics of fabric reinforced composites" (2003). Graduate Theses, 
Dissertations, and Problem Reports. 2491. 
https://researchrepository.wvu.edu/etd/2491 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2491?utm_source=researchrepository.wvu.edu%2Fetd%2F2491&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 Mesomechanics of Fabric Reinforced 
Composites 

 
 
 
 

Thomas Miles Damiani 
 
 
 
 

Dissertation submitted to the College of Engineering and Mineral 
Resources at West Virginia University, in partial fulfillment of the 

requirements for the degree of 
 
 
 
 

Doctor of Philosophy 
in 

Engineering 
 
 
 
 

Ever J. Barbero, Ph. D., Chair 
Jacky Prucz, Ph. D. 

Julio Davalos, Ph. D. 
Ian Christie, Ph. D. 

Charles Stanley, Ph. D. 
 

 
 

Department of Mechanical and Aerospace Engineering 
 
 

Morgantown, WV 
2003 

 
 

Keywords:  Homogenization, Periodic Microstructure, Fourier Expansion 
Copyright 2003 Thomas M. Damiani 



ABSTRACT 
 
 

Mesomechanics of Fabric Reinforced Composites 
 
 

Thomas Miles Damiani 
 

 

Fiber reinforced plastic composites are an attractive alternative to traditional 
materials because of, among other things, the ability to concurrently design the materials 
and ratios to fit a specific need.  One method of fiber reinforcement is through the used of 
woven fabrics, which provide more balanced overall strengths and durability during 
fabrication.  The weaving and interlacing of the fibers, however, adds a level of 
complexity when predicting material properties and strengths using micromechanical 
models.  Traditional models have mostly been based on classical thin lamination theory, 
and this method is limited in its scope and applicability for woven fabric composites. 
This research sought to develop a novel procedure for predicting the overall material 
properties (a complete set) and internal stresses for a plain weave fabric composite.  The 
new model is based on periodic microstructure, taking advantage of the sinusoidal 
weaving nature of the plain weave geometry.  The new application of periodic 
microstructure combines the power and comprehensiveness of the finite element method 
with the ease of use and speed of a micromechanical model based in classical lamination 
theory.  All of the relevant equations and relationships pertaining to the application of 
periodic microstructure to a plain weave fabric composite were developed.  The 
analytical weave geometry of Ito and Chou and the experimentally determined geometry 
developed by the Construction Engineering Research Laboratory (Army Corps of 
Engineers), along with the derived equations, were inputs into a Mathcad program that 
calculates the effective stiffness matrix of the representative volume element (RVE) as 
well as the point wise stresses at any location within the RVE volume.  Results were 
compared with existing experimental and finite element data, with excellent correlation in 
both cases. 
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Chapter 1  

 Introduction and Objectives 

 

1.1 Introduction 
 

Composite materials, specifically fiber reinforced plastic (FRP) composites, are 

being researched and marketed as an alternative to traditional load-carrying materials 

(steel, aluminum, etc.) because of their enhanced properties, some of which are an 

increased strength to weight ratio, corrosion resistance, and the ability to concurrently 

design both the constituent materials and orientations necessary to meet the specifications 

required for a given structural member.  However, these advantageous properties are 

offset, in some instances dramatically offset, by the uncertainty that comes with the 

implementing an FRP member.  There is a sense of security that is associated with the 

use of traditional materials because their properties are well known and their 

effectiveness has been proven over time.  Materials such as steel and aluminum have 

been extensively tested and their properties and characteristics have been well 

documented over the last century.  Compared with the variety and property variations in 

traditional materials, FRP composites have an infinite number of combinations of types, 

ratios, and orientations of the FRP constituents.  This leads to a unique set of material 

properties for each specific FRP configuration.  Because of this, a comprehensive testing 

program that encompasses all possible configurations is not possible.   
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There are many different material characteristics pertaining to FRP composites 

that are in doubt.  Steel and aluminum, for example, are isotropic materials.  Only two 

material parameters (E, G, or ν) are required to fully describe the properties of an 

isotropic material, and those properties are independent of the orientation of the loading.  

Taking the fiber and matrix constituent materials (of which their properties are also well 

known) and processing them forms a single heterogeneous material.  It is significantly 

more complicated to determine the “effective” material properties of the composite based 

on the known material properties of the constituents.  A simple unidirectional composite 

is generally orthotropic in nature, meaning that instead of only two parameters describing 

the material, there are now nine.  This ability to predict the properties of the composite 

material based on the properties of the constituents is an area of great interest to both the 

research community and design engineers alike.   

One method for property prediction is through micromechanical modeling.  This 

method establishes the overall material properties of the FRP composite as a function of 

the properties and ratios of the constituent materials (fiber and matrix) as well as the 

geometry of the system.  For a unidirectional composite, the overall properties of the FRP 

can be accurately determined through micromechanics because the geometry is simple.    

This method becomes complex when the constituent properties and/or geometry are more 

complex.  Another tool for property prediction is through finite element modeling.  By 

taking the material and geometrically discretizing it into many smaller sections, the 

properties of the material can be ascertained through simple micromechanical procedures.  

This method is very powerful, but it can also be very complex and computationally 

expensive to implement.   
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1.2 Fabric Reinforced Composites 
 

A fabric reinforced composite material can be made by taking constituent fiber 

tows and weaving them together into a desired pattern, which results in a fabric of 

interlacing fiber tows.  The fabric is then infused with a resin to form a fabric reinforced 

composite material.  There are a variety of commercially available fabric materials and 

weave patterns.  Some of the most common fabric weaving patterns are the plain weave, 

twill weave, and satin weave, as seen in Figure 1.1.      

Plain Weave Twill Weave

4 Harness Satin
Weave

8 Harness Satin  Weave

 

Figure 1.1:  Schematics of some woven fabric geometries 
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In Figure 1.1, the blank boxes represent the fiber tows that are running in the left-

to-right direction on the page, also known as the warp direction when looking at the 

fabric cross section.  The boxes with the vertical lines inside represent the fiber tows that 

run from top to bottom on the page, and that direction is known as the fill direction.  

These materials possess some additional advantages to using directional fiber tows.  

Through the interlacing of the fiber tows to form a fabric, the fiber material becomes 

more of a self-supporting system.  Fabrics can be draped and manipulated to form more 

complex shapes.  In addition to the fabrication advantages, the interlacing of the tows 

provides both bi-directional rigidity in the plane of loading (E1, E2, G12) and increased 

interlaminar strength out of the plane of loading (E3, G23, G13).  For these and other 

reasons, fabric reinforced composites are an attractive alternative to traditional materials, 

as well as ordinary directional tow FRP composites. 

 

1.3 Objectives 
 

In Sections 1.1 and 1.2, the methods of FRP composite material property 

prediction were outlined, and fabric reinforced composites were introduced.  The 

objective of this research is to develop a novel mathematical model, using the principle of 

periodic microstructure, to determine the material properties and internal stresses of a 

woven fabric composite material.  In Chapter 2 of this dissertation, a literature review of 

the current available micromechanical models is presented, and from that review a need 

will be established for a novel method of determining the material properties.  Chapter 3 
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consists of a full derivation and explanation of all equations and relationships required to 

justify and implement periodic microstructure.  Chapters 4 and 5 detail the construction 

of the mathematical models for a plain weave fabric composite using Mathcad 2001 and 

the comparison of the results with experimental and similar micromechanical modeling 

data.  The research is culminated in Chapter 6 and Chapter 7 with a summary of the 

current work and recommendations for future extension and/or expansions. 
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Chapter 2     

 Review of  Literature 

2.1 Background 
 
 
Research pertaining to the modeling of woven fabrics for use in the textile industry began 

in the 1930’s.  Pan [1] provides an excellent review of the origin of the analysis of woven 

fabrics for use in the textile industry, which are summarized in references [2] through 

[10].  The paper by Pierce [2] is acknowledged to be the first model to describe the 

behavior of a woven fabric under loading.  Subsequent papers that were published in the 

following years sought to build new and/or refine existing models that could provide 

more accurate representations, or to predict properties that had yet to be accurately 

determined.  The approach in these references was to idealize the geometry and material 

characteristics in such a way that would make the analysis as simple as possible and that 

would still maintain the integrity of the system.  In light of the fact that computers were 

either non-existent or not readily accessible, these approaches had to be idealized to the 

point to where their application was limited.  The research that was done on textile 

fabrics, though idealized, provided a foundation for the research that developed in the 

1980’s when the woven fabric geometry was used in the formation of woven fiber tow 

systems that could be fabricated into FRP composites.       



 7

 

 

2.2 Classical Lamination Theory 
 

The first significant paper dealing with the analysis of woven fabric composites 

was authored by Ishikawa and Chou [11] in 1982.  This research produced three 

analytical models to predict the linear elastic properties of woven fabric composites:  the 

mosaic model, the fiber undulation model, and the bridging model.  The mosaic model 

idealizes the woven fabric geometry as an assemblage of asymmetrical cross-ply 

laminates, as seen in Figure 2.1.  This assumption enables the mechanics of the system to 

be solved by classical thin lamination theory, as would be the case for a ply laminate 

composite material.  The mosaic model completely neglects the undulation and 

interlacing of the fiber tows, and is not capable of completely describing all of the 

material properties (CLT cannot predict out of plane properties, i.e. E3, G13, etc.). 

 

Figure 2.1:  Mosaic model [11] idealization of a plain woven fabric RVE 
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The fiber undulation model takes the undulation of the fiber into partial account by 

looking at the undulation of the fabric in either the warp or the fill direction, and 

assuming no undulation in the opposite direction.  In Figure 2.2, the formation of the 

fiber undulation model is presented.  The cross section that contains the undulation is 

segregated into three sections.  The outer sections are analyzed by traditional classical 

lamination theory.   

 

 

Figure 2.2:  Idealization of the fiber undulation model [11] (top) with the discretization of the cross 
section (bottom). 

 

The same can be done for the middle section, but it must be discretized into smaller 

sections.  Each small section of laminate is assumed to be a linear, but set at an angle to 

the outer section.  The properties are solved for in the local or material coordinates of the 

discretized section and then transformed to the global coordinates of the representative 

volume element.  The bridging model is a combination of the mosaic and the fiber 

undulation models, and was developed for the analysis of satin weave fabric composites. 
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Many authors have taken the general approach of Ishikawa and Chou and developed a 

wide variety of models for both material property characterization as well as strength and 

failure prediction.  Hahn and Pandey [12] developed a relationship for the effective 

stiffness C* of a plain woven fabric composite simply by taking the volume average of all 

of the constituents in the fabric RVE in conjunction with the assumption that the strain in 

the RVE is uniform (iso-strain).  The volume averaging was presented in the form of 

classical lamination theory and equations were derived to predict both the mechanical and 

thermal material properties, namely the longitudinal and transverse thermal expansion 

coefficients.  The results they attempted to correlate with experimental data were limited 

to only the in-plane modulus of elasticity and shear modulus (E11 and G12).  Ito and Chou 

[13], [14] researched the effect of the laminate stacking sequence through the modeling 

of the representative volume element (RVE) as being either in phase, out of phase, or a 

random phase.  Their analysis used the iso-strain assumption along with classical 

lamination theory to describe the stiffness and strength of a plain weave fabric composite.  

Naik and Ganesh [15] applied the method of cells approach of Aboudi [16] to the 

idealized cross ply laminates and assumed material nonlinearity in order to predict 

material failure for plain weave fabric laminates.  They took into account the undulations 

in both the warp and the fill direction by discretizing along the fill direction and using the 

geometric shape functions to determine the idealized laminate size and material 

properties.  Scida et al. [16] used a technique similar to that used in [15] by discretizing 

each infinitesimal section of the fabric through its depth and calculating the material 

coordinate stiffness of each of the composite constituents (warp strand, fill strand, or 

matrix).   These incremental stiffnesses are then averaged over volume of the 
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infinitesimal slice.  The calculated stiffness terms are then transformed into the global 

coordinate system and averaged over all of the discretized sections in order to determine 

an average effective stiffness term, denoted as [Aglobal] in the paper.  This method was 

programmed using computer software called MESOTEX (MEchanical Simulation Of 

TEXtile), providing users a general method to predict properties of a wide variety of 

fabric dimensions and loadings.  It was tested on a-glass composites with epoxy and vinyl 

ester resins and plain, 8 harness satin, and 2/2 twill weave fabrics.  Vandeurzen et al. 

[18], [19] developed a similar program called TEXCOMP using Microsoft Excel.  The 

program was built in order to analyze complex unit cells that have the capability to depict 

complex fabric reinforced composite RVE’s.  These complex unit cells are constructed 

by means of a bank of rectangular macro cells that have been developed and 

programmed.  This program incorporates a variation in the methods of discretizing the 

cross sections, either through mixing, not mixing, or combining the different constituent 

properties in each section.  The contrast of the traditional classical lamination theory 

approach (fabric geometry model) and their combi-cell model expose the limitation of 

CLT for computing the out-of-plane properties.  The combi-cell model is evaluated 

through the use of the complementary variational principle.  The discretization 

procedures of references [16] and [19] allow for the calculation of a complete set of 

stiffness terms, which is a significant improvement of the mosaic and fiber undulation 

models of [11]. 
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2.3 Alternative Approaches 
 
 
Some novel approaches exist that derive from a theory other than classical lamination 

theory.  Zhang and Harding [20] used an energy equivalence method that combines a 

finite element analysis with the 1D fiber undulation model of [11] to ascertain the 

mechanical properties of a one ply plain weave fabric composite.  This method was also 

used to obtain values for all of the material properties except the out of plane shear terms 

(G13, G23).  The values, however, were not effectively compared with experimental 

results.  Sheng and Van Hoa [21] developed a 3D model and used variational principles, 

namely the variational potential energy method and the variational complementary 

energy method, along with an iso-strain assumption.  This method predicted a full set of 

material properties for Carbon/Epoxy and E-Glass/Epoxy plain weave fabric composites 

as well as an S2-Glass/C-50 Resin twill weave specimen.  Experimental verification 

through testing was not complete for these specimens, either. 

A vast number of researchers have done finite element analyses on a variety of 

fabric geometries.  These methods vary in, among other things, geometric modeling, 

mesh generation, element type, and the material properties of the constituents.  Dasgupta 

et al, [22], [23] developed a finite element model that uses a two-scale asymptotic 

homogenization theory.  This model also includes the effect of matrix nonlinearity and 

damage.  The research of Kollegal and Sridharan [24]-[26] produced a series of papers 

dealing with the modeling of plain weave fabrics for the prediction of both tensile and 

compressive strength.  These are just a few examples of the finite element analysis 
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research that has been published, and more research can be investigated concerning the 

use of finite element analysis in woven fabric composite modeling in the following 

references: [22]-[31]. 

 

2.4 Conclusions 
 

The method of finite elements can be a very powerful method of solution, and one 

can include a variety and combination of material and geometric complexities 

simultaneously.  However, this method can be very complex to implement and is often 

only applicable to a specific design.  So on one hand there are the generalizations and 

assumptions of classical lamination theory that provide ease of use with limited results.  

On the other hand, there is the finite element method that can provide complete material 

characterizations, but is very complex and time consuming to construct and to solve.  

From the review of the literature, it is evident that there is a need to be able to meld the 

two extremes together with a new constituitive approach that maximizes the accuracy and 

completeness of the material property characterization at a minimum of preliminary setup 

and computer expense. 
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Chapter 3     

 Periodic Microstructure 

 

The literature review of Chapter 2 outlined the need for a method of analysis in 

the area of woven fabric composite materials that takes the best attributes of finite 

element analysis (ability to handle complex parameters) and classical lamination theory 

(ease of solution) and, through a new analytical method, combines them so as to produce 

a simple, efficient, and accurate way to determine a complete set of composite material 

properties.   

There are essentially two aspects of a woven fabric composite that result in a 

more complex situation:  The undulation and interlacing of the warp and fill fiber tows.  

The idealization of classical lamination theory can take into account the undulation of the 

fiber tows through the discretization of the representative volume element (RVE) and 

subsequent transformation of the local material properties to the global coordinate system 

(i.e. the fiber undulation model).  However, it does not take into account the effect that 

the warp tow has to the fill tow, and vice versa.  Each set of material properties is 

determined for that specific discretized section and the contributions of each part are 

averaged to determine the overall RVE properties.  The finite element method can 
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account for these two complexities, but the disadvantages of using this method have 

already been outlined in Chapter 2. 

From a careful analysis of the existing literature on both woven fabrics, as well as 

existing micromechanical models for unidirectional composites, it was determined that a 

woven fabric composite could be modeled using periodic microstructure because the 

undulation of the fiber tows in a fabric reinforced composite are generally periodic in the 

weaving between the warp and the fill tows.  The book authored by Nemat-Nasser and 

Hori [32] outlines the theory behind periodic microstructure and its application to 

materials with micro-cracks or micro voids.  This chapter deals with the derivation of all 

the equations and relationships necessary to extend this technique to the analysis of 

woven fabric composites. 

 

3.1 Eigenstress and Eigenstrain 
 
 

Periodic microstructure is applied through the homogenization of a heterogeneous 

woven fabric representative volume element.  The RVE section consists of the warp 

fibers, the fill fibers, and the matrix material that impregnates and surrounds the fiber 

tows.  The new material is effectively homogeneous, with a unified set of material 

properties.  Homogenization is the basis for some existing micromechanical models that 

are available in composite textbooks and literature.  For a simple unidirectional 

composite, the determination of the modulus of elasticity is found simply by using the 

rule of mixtures: 
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 1 f f m mE E V E V= +  (3.1) 

 

where E is the modulus of elasticity, V is the volume fraction of the material, and the “f” 

and “m” subscripts represent the property of the fiber and matrix, respectively.  This is a 

simple example of homogenization, which produces a single material property (E1) from 

a combination of the geometric (Vf, Vm) and material (Ef, Em) properties.  Even with the 

simple case of a unidirectional FRP composite, however, there are five independent 

material constants (If the material is assumed to be transversely isotropic) that need to be 

determined, and the rule of mixtures is only accurate in the determination of the 

“effective” modulus of elasticity in the direction of the fibers.  Therefore, four other 

relationships are needed in order to fully describe the effective material properties of a 

unidirectional composite (The balance of these properties can be found in Barbero [33]). 

The homogenization approach that was used in this research, and is outlined in 

[32] by Nemat-Nasser and Hori, utilizes the concepts of eigenstrain and eigenstress.  

Consider a heterogeneous material (total volume of V) that consists of a matrix material 

(M) that surrounds an inclusion (Ω).  Assume further that each of constituent materials is 

linear elastic and homogenous (the materials need not be isotropic).   Each constituent 

has an independent set of material properties, which are summarized by stiffness matrices 

and denoted as C for the matrix material and CΩ(x) for the inclusion.  The stiffness 

matrix fully describes the material properties of the constituents and in the most general 

form is a 6 x 6 matrix consisting of 36 terms (for a fully anisotropic material).  In order to 

homogenize the material, it is assumed that both of the constituents have the same 

stiffness matrix.  For the purposes of this research, the inclusion is homogenized to the 
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surrounding matrix material because the surrounding matrix is usually isotropic, which is 

much simpler to represent.  

Figure 3.1 depicts the process of homogenizing the inclusion to the matrix in 

terms of the total strain on the system, in which εo is the applied external strain on the 

system and εd(x) is the disturbance strain induced due to the presence of the inclusion.  

To account for this assumption, an eigenstrain term ε*(x) is added to the total strain term 

so as to “correct” the constitutive equation such that the consistency condition holds.  The 

entire process is represented in the following equations 

 

 

 ( ) ( )o dx C : (x)                   in Mσ = ε + ε  (3.2) 

 ( ) ( )o dx C (x) : (x)            in Ωσ = ε + ε Ω  (3.3) 

 

 ( ) ( ) ( )
( )

o d

o d *

o d *

C : (x)                      in M
x C : (x) (x)

C : (x) (x)          in 

 ε + ε σ = ε + ε − ε =  
ε + ε − ε Ω  

 (3.4) 

 

where Equations (3.2) and (3.3) represent the heterogeneous constitutive equations for 

the matrix and the inclusion, and Equation (3.4) is the homogenized relationship with the 

addition of the eigenstrain term ε*(x).  A similar relationship can be developed through 

the use of an eigenstress σ*(x)     
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 ( ) ( ) ( )
( )
( ) ( )

o d

o d *

o d *

C : (x)                      in M
x C : (x) x

C : (x) x         in 

 ε + ε σ = ε + ε + σ =  
ε + ε + σ Ω  

 (3.5) 

 

in which the disturbance stress σd(x) can be written as 

 

 ( ) ( )d d *x C : (x) xσ = ε + σ . (3.6) 

 

There are several complexities that have to be resolved in order to apply the 

relationships derived from the homogenization of the material using eigenstrains.  In the 

most general form, the terms in Equations (3.2)-(3.4) are functions of position.  The 

stiffness of the matrix C is independent of position if we assume an isotropic matrix, 

which is more than valid.  The stiffness of the inclusion, CΩ(x), cannot be assumed to be 

isotropic, and therefore remains a function of position.  However, the material properties 

can be determined using a variety of other methods, depending on the specifics of the 

inclusion.  The terms that are difficult to determine are the disturbance strain εd(x) and 

the eigenstrain ε*(x).  Since both of the strain fields are induced due to the presence of 

the inclusion, the disturbance strain can be written as an integral operator acting on the 

corresponding eigenstrain [32].  This relationship can be written as follows 

 ( )d *x S(x;  )ε = ε  (3.7) 

where S is the integral operator.  The same form of an integral operator is written for the 

solution of the eigenstress, and is written as 
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 ( )d *x T(x;  )σ = σ . (3.8) 

 

A unique relationship will be derived in subsequent sections that will be specific to the 

periodicity of the woven fabric system. 

 

3.2 Periodic Microstructure 
 

The technique of homogenizing an inherently heterogeneous material, as outlined 

in Section 3.1, can be a useful step in the process of determining a unified or “effective” 

set of material properties.  One of those processes utilizes the periodic nature of the 

material, either through the geometric shape of the constituents, or the placement and 

spacing of the heterogeneities throughout the RVE.   

Figure 3.2 and Figure 3.3 illustrate geometric and spacing periodicity, 

respectively.  In Figure 3.2 it is clear that both the warp and fill tows exhibit periodicity.  

The warp tow is an example of geometric periodicity, since its pattern of undulation is 

sinusoidal, which is inherently periodic.  The fill tow is likewise sinusoidal in nature, and 

if another cross-section were illustrated it would have similar shape.  Figure 3.3 is an 

example of periodic spacing.  The figure could be representative of a variety of material 

views.  It could be an idealized cross-section of a unidirectional composite with 

cylindrical fibers.  Also, it could be a view of the top of a material with spherical 

inclusions spaced throughout.  In either case, the spacing of the heterogeneities is 

uniform, and thus periodic.  This technique has been used by Luciano and Barbero [34] to 
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develop micromechanical models to predict material properties for directional ply 

laminates. 

 

3.2.1 Fourier Series 
 

Fourier series expansion is a useful mathematical tool for representing generally 

discontinuous functions with a summation of a series of sine and cosine functions (such 

as square waves or saw tooth waves).  In a one dimensional case, the Fourier series 

expansion is as follows 

 

n xi
L

n
n

f (x) c e
π ∞

 
 

=−∞

= ⋅∑  (3.9) 

 

n xL i
L

n
L

1c g(x) e dx
2L

π 
 
 

−

= ⋅∫  (3.10) 

 

where g(x) is the local function definition in the range of L and f(x) is the resulting 

function from the summation.  This procedure can be extended into three dimensions, and 

Nemat-Nasser and Hori [32] stated the Fourier series in this manner 

 

 ( ) ( ) ( )i x
3D 3Df x Ff x e ⋅ξ

ξ

= ⋅∑  (3.11) 
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 ( ) ( )i x
3D 3D

U

1Ff g (x) e dV
U

− ⋅ξξ = ⋅∫  (3.12) 

 

where Ff3D(x) is the three dimensional Fourier coefficient, and the vector ξξξξ is represented 

in the following way 

 

 ( ) i
i i i

i

nn
a
πξ = ξ = ξ =  (3.13) 

in which ai is the vector that represents the domain of the RVE in question.  For the 

formulation in this dissertation, the volume of the RVE, denoted as U, is defined as 

 

 ( ) ( ) ( ) ( )
3

i 1 2 3
i 1

U 2 a      U is 2a x 2a x 2a
=

= ⋅   ∏ . (3.14) 

 

When there exists a level of periodicity in the material (either geometric or spacing), the 

Fourier expansion can be applied to all of the relevant field variables, some of which 

being the strain (ε), stress (σ), displacements (u), etc.  This leads to an approximation of 

the exact field variable that is as accurate as the number of terms considered. 

In addition to the Fourier expansion being a tool to represent the field variables, 

the field variables themselves exhibit periodic behavior.  Consider the illustration 

inFigure 3.4, where the material is periodic at a spacing of d in the x direction.  In this 

simple case, the effective stiffness tensor is only a function of x.  Due to the repeating 
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nature of the material at an x coordinate spacing of d, the effective stiffness tensors 

( )1C x  and  ( )2C x  are equal and can be expressed as follows 

 

 ( ) ( ) ( )
2 1

1 2 1

x x d

C x C x C x d

= +

= = +  (3.15) 

 

This simple illustration shows that the field variables in addition to the physical geometry 

repeat as multiple of the dimensions of the RVE. 

 

3.2.2 Expansion of field variables 
 

Recall from Section 3.1 that the homogenization resulted in there being two 

terms, εd(x) and ε*(x) that are unknown, and that the disturbance strain εd(x) is written as 

an integral operator acting on the eigenstrain ε*(x), as described in Equation (3.7).  In 

general, these terms are not able to be resolved, except in the case where the inclusion is 

ellipsoidal in shape.  Eshelby [35] presented a solution for this case, and it turns out that 

the eigenstrain is uniform throughout the inclusion ΩΩΩΩ.  The expansion of the field 

variables through the use of a Fourier series produces a solution for these terms, and 

therefore provides a method of resolving the effective properties of the material.  In this 

section, the relevant field variables are expanded in a Fourier series due to the application 

of either a macro-strain εo or macro-stress σo.   
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The Fourier expansion of the displacement and strain fields are addressed first, 

and are written as follows 

 

 ( ) ( ) ( )u x Fu ix
ξ

 = ξ ⋅ ⋅ξ ∑
'

exp  (3.16) 

 ( ) ( ) ( )
U

1Fu u x ix dV
U

ξ = ⋅ − ⋅ξ∫ exp  (3.17) 

 ( ) ( ) ( )x F ix
ξ

 ε = ε ξ ⋅ ⋅ξ ∑
'

exp  (3.18) 

 ( ) ( ) ( )
U

1F x ix dV
U

ε ξ = ε ⋅ − ⋅ξ∫ exp  (3.19) 

 

where Fu(ξ) and Fε(ξ) are the Fourier coefficients and the prime ‘ in front of the 

summation term in Equations (3.16) and (3.18) represent an exclusion of the term that 

corresponds to 0ξ = .  This term is omitted because it corresponds to rigid body 

translation.  The Fourier expansions for some pertinent field variables are listed in Table 

3.1. 

Along with the terms that have been listed and outlined above, the utilization of 

the Fourier expansion in the context of periodic microstructure provides a method of 

solving for the eigenstrain ε*(x) and the eigenstress σ*(x), and thus determining the 

effective properties of the material.  This is perhaps the most important transformation, 

and the variable with which the entire method hinges.  The expansion of the eigenstrain is 

as follows 
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 ( ) ( ) ( )x F ix
ξ

ε = ε ξ ⋅ξ∑
* *' exp  (3.20) 

with the Fourier coefficient being 

 ( ) ( ) ( )
U

1F x ix dV
U

ε ξ = ε ⋅ − ⋅ξ∫
* * exp . (3.21) 

Similarly, the eigenstress expansion is 

 ( ) ( ) ( )x F ix
ξ

σ = σ ξ ⋅ξ∑
* *' exp  (3.22) 

with the Fourier coefficient being 

 ( ) ( ) ( )
U

1F x ix dV
U

σ ξ = σ ⋅ − ⋅ξ∫
* * exp .  (3.23) 

 

In addition to being able to functionally represent a system that is locally continuous, the 

Fourier series expansion produces continuum relationships that can be resolved in terms 

of the Fourier coefficients, which are not dependant on the position x.  The constitutive 

equations have already been discussed in Section 3.1.  The compatibility and equilibrium 

equations and their resulting relationships will be discussed in subsequent sections. 

 

3.2.3 Compatibility equation expansion 
 

The compatibility equation is the relationship between the strain and the 

displacement for a given RVE.  The assumptions in these derivations, along with all of 
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the work in this dissertation, work within the bound of a compatibility relationship in 

which the following conditions exist: 

1. The real body forces and inertia terms are zero 

2. Surface tractions must be self-equilibrating 

3. Surface displacements must be such that they do not 
produce rigid body translations or rotations. 

 

With these conditions in mind, the strain-displacement, or compatibility, equation is as 

follows 

 

 ( ) ( ) ( )( )T1x u x u x
2
 ε = ∇⊗ + ∇⊗    (3.24) 

 

where the term ( )u x∇⊗  denotes the vector gradient of the displacement.  When the 

gradient of u(x) and its transpose are equal, then the Equation (3.24) simplifies to 

 

 ( ) ( )x u xε = ∇⊗  (3.25) 

 

The vector gradient of u(x) can be expanded in a Fourier series, just as the displacement 

field u(x) was in Equation (3.16).  The expansion is as follows: 

 

 ( ) ( )( ) ( ) ( )u x F u x ix
ξ

 ∇⊗ = ∇⊗ ξ ⋅ ⋅ξ ∑
'

exp  (3.26) 
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where the Fourier coefficient is expressed as 

 

 ( )( )( ) ( ) ( )
U

1F u x u x ix dV
U

∇⊗ ξ = ∇⊗ ⋅ − ⋅ξ∫ exp . (3.27) 

 

Equation (3.27) can be rewritten through the use of the divergence theorem of Gauss to 

be 

 

 
( )( )( ) ( ) ( ) ( )

( ){ } ( )
U

U

1F u x v x u x ix dS
U
1                             ix u x dV
U

∂

∇⊗ ξ = ⊗ ⋅ − ⋅ξ −

∇ − ⋅ξ ⊗

∫

∫

exp

exp
. (3.28) 

 

Because of the periodicity that exists, the surface integral in Equation (3.27) equates to 

zero.  The second term can be simplified through the resultant scalar gradient 

( ){ }ix∇ − ⋅ξexp  in the following manner 

 

 ( ) ( )ix i ix ∇ − ⋅ξ = − ξ − ⋅ξ exp exp . (3.29) 

 

From the simplifications that have been made, Equation (3.28) can be rewritten as 

follows 

 

 ( )( )( ) ( ) ( )
U

1F u x i ix u x dV
U

 ∇⊗ ξ = − − ξ − ⋅ξ ⊗ ∫ exp . (3.30) 
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From this equation, it can be seen that the negative signs cancel, and since the integral is 

over the volume, the isolated vector ξ as well and the imaginary term i can be taken out 

of the integral.  This further modification results in  

 

 ( )( )( ) ( ) ( )
U

1F u x i u x ix dV
U

∇⊗ ξ = ξ⊗ − ⋅ξ∫ exp  (3.31) 

 

which further reduces to 

 

 ( )( )( ) ( )F u x i Fu∇⊗ ξ = ξ⊗ ξ . (3.32) 

 

Equations (3.26) and (3.32) make up the Fourier expansion of the vector gradient of the 

displacement.  These relationships, along with the expansion of the strain term in 

Equation (3.24) yields a modified compatibility equation that relates only the Fourier 

coefficients of the field variables, which in case are the strain and displacement.  The 

expansion is as follows: 

 

 ( ) ( )
( ) ( )

( ) ( )
T

i Fu ix
1F ix
2 i Fu ix

ξ

ξ

ξ

  ξ⊗ ξ ⋅ ⋅ξ +∑   
   ε ξ ⋅ ⋅ξ =∑      ξ⊗ ξ ⋅ ⋅ξ∑     

'

'

'

exp
exp

exp
 (3.33) 

 

which further reduces to 
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 ( ) ( ) ( )iF Fu Fu
2
 ε ξ = ξ⊗ ξ + ξ ⊗ξ  . (3.34) 

 

3.2.4 Equilibrium equation expansion 
 

The equilibrium equation, in light of the assumptions made in Sub-section 3.2.3, 

is free of real body forces.  This means that, in general, the equilibrium equation can be 

written as 

 

 ( )x 0∇⋅σ = . (3.35) 

 

The stress term ( )xσ  can be expanded in terms of both the constitutive equation 

(Equations (3.2) and (3.3)) and the homogenization using eigenstrains (Equation (3.4)).  

If we homogenize through an applied eigenstress, then the stress distribution follows the 

form of Equation (3.6).  Substituting that equation into Equation (3.35) yields the 

following 

 

 ( )C x x 0  ∇ ⋅ ε +∇ ⋅ σ =   
*: ( ) . (3.36) 
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It can be seen from Equation (3.36) that the modification of the constitutive equation 

results in the “corrective” eigenstress that can be thought of through the equilibrium 

equation as a distribution of body forces. 

From Equation (3.36), a relationship can be established that relates the Fourier 

coefficients of the strain ε(x) to the eigenstrain ε*(x).  First, the strain term is replaced by 

Equation (3.25), creating a relationship between the displacement u(x) and the 

eigenstress.  The substitution is a follows: 

 

 ( )( ) ( )C u x x 0  ∇⋅ ∇⊗ +∇⋅ σ =   
*: . (3.37) 

 

The field variables ( )u x∇⊗  and σ*(x) can be expanded as a Fourier series from 

Equations (3.26) and (3.22), and then substituted into Equation (3.37).  The substitution 

results in 

 

 ( ) ( ) ( ) ( )C i Fu ix F ix 0
ξ ξ

     ∇ ⋅ ξ⊗ ξ ⋅ ξ + ∇ ⋅ σ ξ ⋅ ξ =∑ ∑         

' *': exp exp . (3.38) 

 

The divergence term only operates on the exponential term, because that is the only term 

that is a function of position.  Distributing the del operator through each term and 

evaluating ( )ix∇⋅ ⋅ξexp  simplifies Equation (3.38) to 

 

 ( ) ( )( ) ( ) ( )( )C i Fu i ix F i ix 0
ξ ξ

  ξ⊗ ξ ξ ⋅ ⋅ ξ + σ ξ ξ ⋅ ⋅ ξ =∑ ∑   

' *': exp exp  (3.39) 
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Because both terms are summations over ξ, the summations can be removed, realizing 

that the equilibrium exist for a summation of all of the terms inside the summation 

evaluated for all values of ξ , except for ξ = 0.  This simplification yields the following 

relationship 

 

 ( ) ( )C i Fu i F i 0ξ⊗ ξ ⋅ ξ + σ ξ ⋅ ξ =*:  (3.40) 

 

which can be further rearranged to be 

 

 ( ) ( )C Fu F i 0 −ξ ⋅ ξ⊗ ξ + σ ξ ⋅ ξ = 
*:  (3.41) 

 

which is valid for all ξ ≠ 0.  If the term Cξ ⋅ ⋅ ξ  in Equation (3.41) has a defined inverse, 

then the Fourier coefficient of the displacement, ( )Fu ξ , can be resolved as a function of 

( )Fσ ξ*  to be 

 

 ( ) ( ) ( )1
Fu i C F

−
 ξ = ξ ⋅ ⋅ ξ ⋅ ξ ⋅ σ ξ 

*
. (3.42) 

 

The results from Equation (3.42) can be substituted into Equation (3.34), which relates 

the Fourier coefficients of the strain to the displacement, in order to obtain the following 
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 ( )
( ) ( )

( ) ( )

1

1

i C FiF
2 i C F

−

−

   ξ⊗ ξ ⋅ ⋅ ξ ⋅ ξ ⋅ σ ξ +    ε ξ =  
   ξ ⋅ ⋅ ξ ⋅ ξ ⋅ σ ξ ⊗ ξ    

*

*  (3.43) 

 

which can be rewritten as  

 

 ( ) ( ) ( )1
F sym C F

− ε ξ = − ξ⊗ ξ ⋅ ⋅ ξ ⊗ ξ σ ξ
  

*:  (3.44) 

where “sym” stands for the symmetric part of the bracketed term ( ) 1
C

−
ξ⊗ ξ⋅ ⋅ξ ⊗ξ .  

Equation (3.44) represents the relationship between the Fourier coefficients of the strain 

and the eigenstress.  In order to equate the strain and eigenstrain coefficients, the 

equilibrium equation (Equation (3.35)) can be rewritten, using the eigenstrain constitutive 

equation (Equation (3.4)), as 

 

 C x C x 0  ∇⋅ ε −∇ ⋅ ε =   
*: ( ) : ( ) . (3.45) 

 

The subsequent Fourier expansions and simplifications are done in the same order as in 

Equations (3.38) through (3.44).  The result of those steps, for a prescribed eigenstrain, is 

as follows for the displacement-eigenstrain relationship: 

 

 ( ) ( ) ( )( )1
Fu i C C F

−  ξ = − ξ ⋅ ⋅ξ ⋅ ξ ⋅ ε ξ
 

*: . (3.46) 
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The strain-eigenstrain relationship follows the form of Equation (3.44) and is presented 

as 

 

 ( ) ( ) ( )1
F sym C C F

− ε ξ = ξ⊗ ξ⋅ ⋅ξ ⊗ξ ε ξ
  

*: : . (3.47) 

 

Equation (3.47) represents the integral operator expression of Equation (3.7) in terms of 

the Fourier coefficients of the field variables.  The expression can be rewritten as follows 

 

 ( ) ( ) ( )PF FS Fε ξ = ξ ε ξ*:  (3.48) 

 

in which  

 

 ( ) ( ) 1PFS sym C C
− ξ = ξ⊗ ξ⋅ ⋅ξ ⊗ξ

  
: . (3.49) 

 

Recall from Equation (3.7) that the disturbance strain is written as S(x; ε*), which relates 

the disturbance strain to the eigenstrain.  Equation (3.48) provides that relationship 

through the respective Fourier coefficients.  SP, the periodic integral operator, can be 

written as follows by substituting Equation (3.48) into Equation (3.18) 

 

 ( ) ( ) ( ) ( )P P *'S x FS : F exp ix
ξ

= ξ ε ξ ⋅ξ∑ . (3.50) 
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The Fε* term can be replaced by Equation (3.21), realizing that the position term 

contained in  the Fourier coefficient is different from the position term for SP because the 

term is integrated over the volume U.  The expression can be rearranged in the following 

manner 

 

 ( ) ( ) ( ) ( ) ( )P P *'
y

U

1S x FS : y exp iy dV exp ix
Uξ

 
= ξ ε ⋅ − ⋅ξ ⋅ξ 

 
∑ ∫  (3.51) 

   

and Equation (3.51) can be further simplified by condensing the exponential term as 

 

 ( ) ( ) ( ) ( )( )P P *'
y

U

1S x FS : y exp i x y dV
Uξ

 
= ξ ε ⋅ ξ ⋅ − 

 
∑ ∫ . (3.52) 

 

 

Equation (3.52) represents the periodic integral operator that acts on the eigenstrain ε*(x).   

 The equations developed in this and previous sections, though complicated, 

underscore the power of the periodic microstructure method.  Through the use of the 

Fourier expansion, the relationships that were all generally functions of position have 

been replaced by functions of ξ, which is the additive term of the expansion and is 

independent of position.  From this foundation, the constitutive, consistency, and 

equilibrium equations can be applied to a heterogeneous representative volume element 

(RVE) in order to ascertain its effective material properties.
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3.3   Periodic consistency conditions 
 

 

The consistency condition for the homogenized inclusion relates the stiffness or 

compliance of the inclusion to that of the homogenized reference term and corresponding 

eigenstrain/eigenstress.  For the case of periodic microstructure, the relationship can be 

written as follows 

 

 ( ) ( )( ) ( ) ( )( )o p o p *C x : x C : x xΩ ε + ε = ε + ε − ε  (3.53) 

 

for an applied strain and 

 

 ( ) ( )( ) ( ) ( )( )o p o p *D x : x D : x xΩ σ + σ = σ + σ −σ  (3.54) 

 

for an applied stress.  The periodic disturbance strain εP(x) is determined according to 

Equation (3.52), because Equation (3.7) equates the disturbance strain, SP, to the periodic 

integral operator.  It is written as 

 

 ( ) ( ) ( ) ( )( )P P *'
y

U

1x FS : y exp i x y dV
Uξ

 
ε = ξ ε ⋅ ξ ⋅ − 

 
∑ ∫ . (3.55) 
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An equation of the same form could be written for the disturbance stress, σP(x).  For 

purposes of this research, only an applied strain εo was considered.  Replacing the εP(x) 

term in Equation (3.53) with Equation (3.55) and rearranging yields the following 

equation 

 

 
( ) ( ) ( ) ( )( )
( )

P *o '
y

U

*

1C x C : FS : y exp i x y dV
U

C : x 0

Ω

ξ

  
 − ε + ξ ε ⋅ ξ ⋅ −     

  

+ ε =

∑ ∫
. (3.56) 

 

Through expansion of the eigenstrain and inclusion stiffness terms into their respective 

Fourier series, Equation (3.56) can be rewritten in terms of only the Fourier coefficients: 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

o P *'

P * *o

FC : FC : FS : F

C : FS : F F

Ω Ω

ζ

 
ξ ε + ξ − ζ ζ ε ζ 

 

 = ε + ξ ε ξ − ε ξ 

∑
 (3.57) 

 

where the ζ term is an identical vector of the form of ξ that is needed because the 

summation term must be done for every value of  ξ.  Equation (3.57) represents a linear 

system of equations for all values of ξ.  This equation can be solved for any degree of 

accuracy in ξ required to determine the Fourier coefficients of the eigenstrain Fε*(x).  

Once the Fourier coefficients of the eigenstrain are known, the expanded eigenstrain is 

known according to Equation (3.20) as a function of the number of ξ terms that are 

considered. 
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3.4 Average eigenstrain approximation 
 

 

The resolution of the linear system of equations prescribed by Equation (3.57) is 

an involved process, and one that will be outlined in the subsequent chapters in this 

dissertation.  A simplification of the analysis is to assume that the eigenstrain is equal to 

some average value, which is denoted as 
*
ε .  This assumption has the effect of 

simplifying the periodic disturbance strain term εP(x) given by Equation (3.55), which 

results in the following 

 

 ( ) ( ) ( )( )*P P'
y

U

1x FS : exp i x y dV
Uξ

 
ε = ξ ε ⋅ ξ ⋅ − 

 
∑ ∫ . (3.58) 

 

Since the eigenstrain exists only in the domain of the inclusion, which was previously 

defined as Ω, Equation (3.58) can be rewritten in the following form 

 

 ( ) ( ) ( ) ( ) *P P'
y

1x FS exp i y dV exp i x :
Uξ Ω

 
ε = ξ − ξ ⋅ ξ ⋅ ε 

 
∑ ∫  (3.59) 
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in which the domain of the volume integral has been modified from U to Ω.  If the 

algebraic term 
Ω
Ω is multiplied to the right side of Equation (3.59), then it can be 

simplified further to be 

 

 ( ) ( ) ( ) ( ) *P P'x f g FS exp i x :
ξ

ε = ⋅ −ξ ξ ξ ⋅ ε∑  (3.60) 

 

in which f
U
Ω=  and 

 ( ) ( ) y
1g exp i y dV

Ω

−ξ = − ξ ⋅
Ω ∫ . (3.61) 

Given that the eigenstrain has been assumed to be an average (uniform) value, then the 

subsequent volume average of the periodic disturbance strain can be written as 

 

 ( ) *P P1 x dV S :
Ω

ε = ε
Ω ∫  (3.62) 

 

where SP is found according to 

 

 ( ) ( ) ( )P ' PS f g g FS
ξ

= ⋅ −ξ ξ ξ∑  (3.63) 
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and the g-integral values are determined according to Equation (3.61).  The modified 

consistency condition in light of the average eigenstrain can be expressed as 

 

 ( ) ( )( )* * *o P o P (4s)C : S : C : S 1 :Ω ε + ε = ε + − ε  (3.64) 

 

in which 
*

CΩ is a defined here as the average value of the general inclusion stiffness 

matrix ( )C xΩ and (4s)1  is a fourth order identity tensor.  Similarly, the effective stiffness 

consistency condition can be expressed according to 

 

 ( )*o oC : C : fε = ε − ε . (3.65) 

 

By solving Equation (3.64) for 
*
ε  and substituting into Equation (3.65), the following 

expression can be written for the effective stiffness matrix 

 

 ( )( ) 11 P(4s)C C : 1 f C C : C S
−−Ω  

= − − −  
  

. (3.66) 

 

This equation is valid for a heterogeneous RVE consisting of a single inclusion 

surrounding an isotropic matrix region.  In the case of multiple inclusions, the analysis is 

the same with the exception that there will be “n” number of consistency equations 
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corresponding to the number of inclusion present in the RVE.  This is represented as 

follows: 

 

 ( ) ( )( ) ( ) ( )( )o p o p *C : x C : x x
αΩ ε + ε = ε + ε − ε . (3.67) 

 

In addition, the term SP is written as 

 ( ) ( ) ( ) ( )P ' PS , f g g FSα β α β
ξ

Ω Ω = ⋅ −ξ ξ ξ∑  (3.68) 

 

in which the α and β terms correspond to the considered inclusion.  For multiple 

inclusions, there are SP terms that correspond to the effects that inclusion α (1 .. n) has on 

inclusion β (1 .. n).  Equation (3.68) takes into account the interaction between the 

various inclusions present in the RVE.  Subsequently, the g integral is now represented as 

 

 ( ) ( ) y
1g exp i y dV

α

α
α Ω

−ξ = − ξ⋅
Ω ∫ . (3.69) 

 

Replacing the periodic disturbance strain term in Equation (3.67) with the summation of 

SP terms for all of the interactions transforms the consistency equation to the following 

form 
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( ) ( )

( )

n *o P

1

n *o P (4s)

1

C : S , :

C : S , 1 :

β

β

αΩ
α β

β=

α β αβ
β=

 
ε + Ω Ω ε = 

 

 
 ε + Ω Ω −δ ε  

 

∑

∑
 (3.70) 

 

This equation is valid for every αth inclusion.  The effective stiffness matrix can also be 

rewritten to account for multiple inclusions.  The procedure for deriving the effective 

stiffness term is similar to that of the single inclusion outlined in Equations (3.64) 

through (3.66).  Solving Equation (3.70) for the eigenstrain results in a linear system of 

equations of the form of 

 

{{{{ }}}}
{{{{ }}}}

{{{{ }}}}

[[[[ ]]]] [[[[ ]]]] [[[[ ]]]]
[[[[ ]]]]

[[[[ ]]]] [[[[ ]]]]

*1 1 1 o
11 12 16x6 6x6 6x6

*2 2 o
22 6x6

o* 1 6x6 6x6

A A .. A (C C) :
: A : (C C) :
: : ::

A A (C C) :

−−−−
αααα

αααααααα α ααα ααα ααα αα

    εεεε          − ε− ε− ε− ε    
             εεεε − ε− ε− ε− ε         ====    
             
              − ε− ε− ε− ε             εεεε        

 (3.71) 

 

in which the ijA          sub matrices are all 6x6, and each of the eigenstrain terms are all 6x1, 

which completely describes all of the components of the eigenstrain.  Subsequently, the 

entire matrix that encompasses all of the ijA          sub matrices is 6α x 6α.  The ijA          sub 

matrices are written as 

 

 ( )( ) ( )P P(4s)A C : S , 1 C :S ,
αΩ

α β αβ α β= Ω Ω −δ − Ω Ω . (3.72) 
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The effective stiffness consistency equation for a multiple inclusion case is written as 

 

 

n *o o

1
C : C : f

β

β
β=

 
ε = ε − ε 

 
∑  (3.73) 

 

and the effective stiffness matrix is resolved by substituting the eigenstrain terms found 

in Equation (3.71) and simplifying, which results in the following: 

 

 
( ) ( )

n n
4s 4s1

1 1

C C : I f A : (C C) : Iα−
α αβ

α= β=

   = − −  
   

∑ ∑ . (3.74) 

  

The equations that have been derived and expounded upon in this Chapter detail 

the mechanical and mathematical foundations that were used in developing the meso-

scale models for the material property prediction of fabric reinforced composite 

materials.  In the next two chapters, the procedures that were taken to apply these 

equations to the woven fabric geometry for both the average eigenstrain assumption and 

the exact eigenstrain term will be presented, along with the analysis and comparison of 

the results with experimental data. 
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Field Variable Fourier Expansion Fourier Coefficient 

Displacement ( ) ( ) ( )u x Fu ix
ξ

 = ξ ⋅ ⋅ξ ∑
'

exp  ( ) ( ) ( )
U

1Fu u x ix dV
U

ξ = ⋅ − ⋅ ξ∫ exp  

Strain ( ) ( ) ( )x F ix
ξ

 ε = ε ξ ⋅ ⋅ξ ∑
' * exp  ( ) ( ) ( )

U

1F x ix dV
U

ε ξ = ε ⋅ − ⋅ξ∫ exp  

Inclusion 
Stiffness 

( ) ( ) ( )C x FC ixΩ Ω

ξ

 = ξ ⋅ ⋅ξ ∑
'

exp  ( ) ( ) ( )
U

1FC C x ix dV
U

Ωξ = ⋅ − ⋅ξ∫
* exp  

Matrix 
Stiffness 

( ) ( ) ( )C x FC ix
ξ

 = ξ ⋅ ⋅ξ ∑
'

exp  ( ) ( ) ( )
U

1FC C x ix dV
U

ξ = ⋅ − ⋅ξ∫ exp  

 

Table 3.1:  Listing of the Fourier expansions and coefficients for some pertinent field variables 
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a)  Heterogeneous Material b)  Equivalent Homogeneous Material

ΩΩΩΩ M ΩΩΩΩ M

( ) ( )
( ) ( )( )

o d *

o d *

x x

C : x x

ε + ε − ε

ε + ε − ε

( )
( )( )

o d

o d

x

C : x

ε + ε

ε + ε
( )

( ) ( )( )
o d

o d

x

C x : xΩ

ε + ε

ε + ε

 
Figure 3.1:  Illustration of the homogenization of an RVE using eigenstrains. 
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Warp tows Fill tows

 
Figure 3.2:  Cross section of a plain weave fabric, illustrating an example of geometric periodicity 

with the sinusoidal shape of the warp tows. 
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Figure 3.3:  An example of periodic spacing in a material cross-section or RVE. 
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d d

x

( )1C x ( )2C x

y

( ) ( ) ( )1 2 1C x C x C x d= = +

ε

2 1x x d= +

 
Figure 3.4:  An illustration showing that if the material is periodic at an interval d, the material 

properties are equivalent at a spacing that are multiples of d. 
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Chapter 4     

 Average Eigenstrain Approximation 

 

The application of periodic microstructure set forth by Nemat-Nasser and Hori in 

[32] was applied to heterogeneous representative volume elements containing micro-

voids and micro-inclusions in which the fraction of the total void volume to the RVE 

volume is small (~0.10).  The contribution of this dissertation is to apply these techniques 

of homogenization and effective material property determination in order to ascertain the 

effective material properties of a plain weave fabric composite material.  The inclusions 

are defined as the system of fiber tows and the matrix that impregnates the tow during 

fabrication.  For the woven fabric architectures analyzed, the void/RVE volume fraction 

is on the order of 0.5 for a given RVE, meaning that the inclusions exist in the meso 

scale, instead of the micro scale.   

This chapter details the geometric representation of the boundaries of each yarn 

through three dimensional surface functions, and even though the inclusions consist of a 

sub-level of fiber and matrix (micro scale), the model assumes that the tows are locally 

unidirectional and the material properties are already known (the properties of a 

unidirectional composite can be accurately determined from existing micromechanical 

models).  Once the inclusion geometry has been completely described, the equations 
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derived in Chapter 2 can be evaluated and the effective material properties of the RVE 

can be determined.  Those subsequent equation evaluations will be described herein.  

Two plain weave fabric geometries were investigated:  AS4 Carbon/Vinyl Ester 

fabric composite analyzed by Ito and Chou [13] and an E-glass/Epoxy fabric composite 

for use by the Construction Engineering Research Laboratory (CERL) of the US Army 

Corps of Engineers.  The geometry of Ito and Chou is derived solely from sinusoidal 

functions that were reported in their investigation.  For the CERL geometry, the 

sinusoidal functions were fit from photomicrographs of the composite cross section.  The 

objective of the geometric characterization is to describe with surface functions the 

volume boundaries of the tows, i.e. where the pure matrix and the fiber/matrix regions 

meet.  From the functional representations of the faces of the RVE, three dimensional 

surface functions were generated. 

 

 

4.1  Geometric characterization procedures 
 

This section details the procedures for obtaining the surface functions that define 

the boundaries of the fiber/matrix tow system.  For a plain weave fabric composite, the 

representative volume element is represented according to Figure 4.1.  From this 

illustration, it is evident that the weaving and interlacing of the tows in the 0 and 90 

degree directions are sinusoidal in nature.  The general weaving shape of the fiber/matrix 

tow can be represented according to the following function 

 



 48

 ( ) ( )f x Asin B x C D= ⋅ + +  (4.1) 

 

in which the variables A, B, C, and D are all curve fitting parameters.  This equation 

holds not only for the general shape of the tow, but also for the shape of the tow cross- 

section as well.  From photomicrographs of the four faces of the RVE, the warp (tow 

running across the face) and fill (the two tows that come out of the page) tows can be 

plotted and curves can be fitted in accordance with Equation (4.1).  This concept is 

portrayed in Figures 4.2 and 4.3.  From these two dimensional plots, two things can be 

determined for a given cross-section:  The shape of the fill tow cross-sections, and the 

nature of the warp tow undulation through the RVE.  For the cross-section modeled in 

[13], only one face is defined. Because the authors used classical lamination theory to 

analyze the system, there was no need to define or model the other three faces of the 

RVE.  It was assumed in this work that the 0 and 90 degree front faces were identical, 

and the corresponding rear faces were mirror images.  This was done for the simplicity of 

the equations.  For each tow, there exists boundaries on each of the four faces of the RVE 

that define the top and the bottom of the tow, respectively.  The top fill tow on the front 

face in, say, the 0 degree direction is aligned with the bottom fill tow on the rear face, and 

so on.  Therefore, from Figures 4.2 and 4.3 the outermost boundaries and the cross-

sections are defined, with there being two equations to describe each fill cross section, 

respectively.  The shape of the warp tows in the 0 degree direction defines the sinusoidal 

path that the fill tows in the 90 degree direction take, and vice versa.  By resolving the 

two dimensional representations of all four RVE faces, the three dimensional surface 

functions corresponding to the boundaries of the fiber/matrix tow system can be derived. 
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4.1.1 Ito and Chou geometry 
 

The graphs in Figures 4.4 through 4.7 depict the cross sections that are defined in 

[13].  The equations that describes that warp tow for the front faces are (the function 

defined with f denotes the 0 degree direction and g described the 90 degree direction). 

 

 ( ) 3
front

1

af x sin x
2 2 a

 π=  ⋅ 
 (4.2) 

 

 ( ) 3
front

2

ag y sin y
2 2 a

 π=  ⋅ 
 (4.3) 

 
in which a1, a2, and a3 are the dimensions of the RVE that describe the total volume (V = 

2a1 x 2a2 x 2a3).  The outermost warp boundaries correspond to lines which are displaced 

a distance equal to ½ the vertical RVE dimension, a3.  Therefore, the warp boundaries on 

each cross section have the following form: 

 

 ( ) ( ) 3
front, top front

af ,g x, y f x, y
2

= +  (4.4) 

 

 ( ) ( ) 3
front ,bottom front

af ,g x, y f x, y
2

= −  (4.5) 
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The equations for the top and bottom fill boundaries for the 0 degree front face are 

 

 

( ) ( )( ) ( )
( )( )

( )

g 1g

1 g 1 g 1

g

1

a 4aa1 1
fill,top 3 32 4 a 2 a 2a 2 a 2a

a1 1
3 32 4a 2

f x a sin a sin x

a sin a

π −π⋅ π
⋅ − −

π

= − − ⋅ ⋅ − −

+
 (4.6) 

 

 

( ) ( )( ) ( )
( )( )

( )

g 1g

1 g 1 g 1

g

1

a 4aa1 1
fill,bottom 3 32 4 a 2 a 2a 2 a 2a

a1 1
3 32 4a 2

f x a sin a sin x

a sin a

π −π⋅ π
⋅ − −

π

= − − ⋅ ⋅ + +

−
 (4.7) 

 
 

in which the term ag is the measured distance between the innermost fill points, as they 

intersect with the warp tow boundaries.  The equations that describe the top and bottom 

fill tows in the 90 degree direction are: 

 

 

( ) ( )( ) ( )
( )( )

( )

g 2g

2 g 2 g 2

g

2

a 4aa1 1
fill, top 3 32 4 a 2 a 2a 2 a 2a

a1 1
3 32 4a 2

g y a sin a sin y

a sin a

π −π⋅ π
⋅ − −

π

= + ⋅ ⋅ + −

+
 (4.8) 

 

 

( ) ( )( ) ( )
( )( )

( )

g 2g

2 g 2 g 2

g

2

a 4aa1 1
fill,bottom 3 32 4 a 2 a 2a 2 a 2a

a1 1
3 32 4a 2

g y a sin a sin y

a sin a

π −π⋅ π
⋅ − −

π

= + ⋅ ⋅ − +

−
(4.9) 
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The lines described by Equations (4.6) to (4.9) are for the top or bottom cross section 

boundary for each respective fill yarn.  The other boundary is described by the equation 

for the top or bottom warp tow boundary, signified by Equations (4.4) and (4.5).  In order 

to account for the rear faces, the equations for the front face need only to be multiplied by 

-1, given the simplifications of the geometry.  For the photomicrographs from CERL, this 

will not be the case. 

   Now that the equations for all of the boundaries are taken into account, the next 

step is to combine the boundary values of the front and rear fill cross sections along with 

the corresponding warp shape on the adjacent face to develop a surface function that 

blends the two faces together.  Consider first the 0 degree front face.  In Figure 4.8, only 

the top boundary of the top fill is plotted with respect to the RVE on the front face.  On 

the rear face, the top portion of the top warp tow boundary is plotted along the same 

distance in ax.  These two extremum are going to be the “points” that are used to fit a 

surface function to the two lines.  Recalling the general form of a sinusoidal function in 

Equation (4.1), this term can be rewritten for the surface function purposes to be 

 

 ( ) ( ) ( ) ( ) ( )fill, top,0F x, y A x sin B x y C x D x = ⋅ + +   (4.10) 

 
in which the terms A through D are now functions of the position in x, and the surfaces is 

swept in the y, or 90 degree, direction.  In Mathcad 2001, there is a tool called a symbolic 

solve block, in which linear systems of equations can be solved simultaneously.  Four 

conditions exist at the boundaries that enable the unknowns A through D to be 

determined as functions of the position in x.  The equations of the lines on the front and 
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rear face are known from Equations  (4.4) and (4.6).  The other two conditions come 

from the shape of the RVE.  Looking at the shape of the warp tow in the 90 degree 

direction, the slope of that line at the end points –a2 and a2 are zero.  From this, four 

conditions exist with which to symbolically determine the values of A, B, C, and D.  The 

results of that calculation for the upper portion of the top fill yarn in the 0 degree 

direction are summarized below 

 

 

( )

( )
( )

( )
( )

fill, top,0 3 3
1

g 1 g3

1g 1

g 1 g3
3

1g 1

1 x 1A x a sin a
4 2a 2

2x a 4a aa sin sin
4 4a2 a 2a

2x a 4a aa 1sin a sin
4 4 4a2 a 2a

 π= − − 
 

 π − + π 
+    −    

 π − + π 
+ +   −    

 (4.11) 

 
 

 ( )fill, top,0
2

B x
2a
π=  (4.12) 

 

 

 ( )fill, top,0C x 0=  (4.13) 
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( ) ( )
( )

( )
( )

g 1 g3
fill, top,0 3

1 1g 1

g 1 g3
3

1g 1

2x a 4a a1 x aD x a sin sin sin
4 2a 4 4a2 a 2a

2x a 4a aa 1sin a sin
4 4 4a2 a 2a

 π − + π   π= − +     −     

 π − + π 
− −   −    

. (4.14) 

 

These four terms are then inserted into Equation (4.10) in order to plot the surface 

function that maps the upper portion of the top fill yarn in the 0 degree direction, as seen 

in Figure 4.9.  This same procedure can be done for the bottom portion of the top fill yarn 

in the zero degree direction, along with the other 3 yarns, respectively.  The result of 

finding the coefficients and plotting the surfaces for all of the fiber/matrix tow systems is 

plotted in Figure 4.1.     

 

4.1.2 CERL geometry 
 

 

The steps that were taken to resolve the surface functions for the bounds of the 

fiber/matrix tow system can be implemented for any plain weave system.  For the fabric 

analyzed by CERL, all of the faces of the E-GLASS/epoxy composite were plotted, the 

results of which are presented in Figures 4.10 through 4.13.  Therefore, there exists no 

simple relationship between the front and rear faces in both the 0 and 90 degree 

directions.  The reality of measuring and analyzing all of the separate faces produces a 

range of values for the curve fitting function parameters.  These parameters were 

averaged and normalized from the measurement of 5 separate specimens in order to allow 

for the surface function generation.  The values of the parameters are summarized in 
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Table 4.1  and Table 4.2, and the functions are plotted in Figures 4.14 through 4.17.  The 

general shape of the warp tow on each face was fit to a sinusoidal function according to 

Equation (4.1), and the upper and lower boundaries were found by translating the curve 

such that the difference between the upper and lower bounds was the measured height of 

the warp tow, denoted as b0 or b90, respectively.  From these boundary functions, the 

surfaces are generated in the same manner as Section 4.1.2. 

 

4.2 Evaluating the g-integral 
 
 
 

When the eigenstrain is assumed to be an average value of the inclusion, the 

effective stiffness C  can be determined from Equation (3.66) for a single inclusion and 

Equation (3.74) for multiple inclusions.  In order to solve the equations, there are three 

terms that need to be evaluated:  FSP(ξ), g(ξ), and SP.  The g-integral will be discussed in 

this section.   

Recall from Chapter 3 that the g-integral for a single inclusion was expressed 

according to Equation (3.61) as 

 

( ) ( ) y
1g exp i y dV

Ω

−ξ = − ξ ⋅
Ω ∫ . 

in which Ω is the volume of the inclusion.  Generation of the surface functions to 

describe the bounds of the 0 and 90 degree tows was necessary for the evaluation of the 

g-integral.  It requires, first, the volume of the inclusion Ω.  Looking at the geometry of 
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Ito and Chou, the volume of the tow that starts at the top on the 0 degree face is evaluated 

as follows 

 ( )

( )2 g tfu 0

2 x tfl0

a a F x,y

tf 0 a a F x,y
V dzdxdy

−

− −
= ∫ ∫ ∫ . (4.15) 

 

The notation is important.  Vtf0 stands for the volume of the top fill tow that starts from 

the 0 degree front face and is swept to the 0 degree rear face.  Ftfl0 stands for the surface 

function that defines the top fill lower surface that is swept from the front face in the 0 

degree direction.  Similarly, Ftfu0 stands for the surface function that defines the top fill 

upper surface that is swept from the front face in the 0 degree direction.  All of the 

functions swept from the front and rear 0 degree faces will be “F”, and for the functions 

swept through the 90 degree faces will be “G”.  Equation (4.15) is used to find the 

respective volumes of all the tows.  The limits of integration are defined by the surface 

functions, and these can also be used for expressing the g-integral.  Substituting Equation 

(4.15) into Equation (3.61) and rewriting yields 

 

 ( ) ( )
( )

( )2 g tfu 0

2 x tfl0

a a F x,y

tf 0
a a F x,ytf 0

1g exp i y dzdxdy
V

−

− −
−ξ = − ξ ⋅∫ ∫ ∫ . (4.16) 

 
In Equation (4.16), the term ξ is defined by Equation (3.13) and y is a position vector.  

The dot product of the vectors ξ and y can be expanded in the following way 
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[ ]31 2

1 2 3

31 2

1 2 3

nn ny x y z
a a a

n zn x n y
a a a

 
ξ ⋅ = π ⋅ 

 

 
= π + + 

 

 (4.17) 

where the “a” terms are the dimensions of the RVE and the “n” terms are indexes 

according to 

 

 in 0, 1, 2,= ± ± ±∞�  (4.18) 

 
Substituting the results of Equation (4.17) into (4.16) yields 
 

 ( )
( )

( )2 g tfu 0

2 x tfl 0

a a F x,y
31 2

tf 0
a a F x,ytf 0 1 2 3

n zn x n y1g exp i dzdxdy
V a a a

−

− −

  
−ξ = − π + +   

  
∫ ∫ ∫ .(4.19) 

 

The g integral, as expressed in Equation (4.19), is now a function of n1, n2, and n3.  As the 

values of the “n” terms increases, the shape of the exponential term becomes highly 

oscillatory, and therefore the integral becomes more difficult to evaluate.  For small 

values of n (-5 < n < 5), Mathcad is an acceptable tool for calculating the g-integral.     

 

 

4.3 Evaluating FSP(ξξξξ) 
 

     If it is assumed that the matrix surrounding the tows is isotropic, then FSP can 

be written according to the following equation: 
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( ) ( ) ( )
( )

P (2)

iso

(2)

1FS 2sym 1
1

1
1

ξ = ξ⊗ ⊗ξ − ξ⊗ξ⊗ξ⊗ξ +
−ν

ν+ ξ⊗ξ⊗
−ν

 (4.20) 

     

in which ν is Poisson’s ratio for the matrix.  This equation can be rewritten in indicial 

notation in the following form [37] 

 

( ) ( ) ( )
( )

P
j k i k lijkl il ik l jl jkiso

i j k l i j kl

1FS
2

1
1

 ξ = ξ δ ξ + δ ξ + ξ δ ξ + δ ξ
 

− ξ ξ ξ ξ + ξ ξ δ
− ν

 (4.21) 

 
in which ξ  has the following form 

 

 

ξ
ξ =

ξ  (4.22) 

 
and δ is the Dirac delta function.  With FSP expressed in the form of Equation (4.21), it 

can now be easily programmed into any language or commercial mathematics software 

(such as Mathcad) for evaluation.  A simple routine was written in Mathcad to not only 

evaluate Equation (4.21) as a function of ξ, but to also output the results in contracted 

notation.  The result of evaluating the expression is a 6 x 6 matrix.         

4.4 Evaluating SP 
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The g-integral and FSP were defined in the previous sections, and are needed to 

evaluate SP according to Equation (3.63), which is written below as 

 

 ( ) ( ) ( )' Pf g g FS
ξ

⋅ −ξ ξ ξ∑ . (4.23) 

 
All of the terms in Equation (4.23) can be evaluated, and the volume fraction of the 

inclusion to the RVE is found by 

 

 
tf 0

RVE

Vf
V

=
 (4.24) 

 

and the volume of the RVE is expressed as 

 

 RVE 1 2 3V 8 a a a= ⋅ ⋅ ⋅ . (4.25) 

 
 
The summation is done for all ξ terms from -∞ to ∞.  From Section 4.3, the g-integral 

was expressed as a function of n1, n2, and n3.  Equation (4.23) can also be rewritten in the 

same manner as 

 

 ( ) ( ) ( )
1 2 3

P ' P
m 1 2 3 p 1 2 3 1 2 3

n n n

S f g n ,n ,n g n ,n ,n FS n ,n ,n= ⋅∑∑∑  (4.26) 
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in which the gp and gm are the g-integrals that correspond to a positive or negative 

exponential term, respectively.  The ‘ in front of summation denotes an exclusion of the 

term when n1, n2, and n3 all are equal to zero.  This equation can also be programmed into 

Mathcad, and for a single inclusion the result is a 6 x 6 matrix.  For multiple inclusions, 

the modification of SP would look like this 

 

  

 ( ) ( ) ( ) ( )
1 2 3

P ' P
m, 1 2 3 p, 1 2 3 1 2 3

n n n
S , f g n ,n ,n g n , n ,n FS n , n ,nα β α βΩ Ω = ⋅∑∑∑ (4.27) 

 
in which the determination of the g-integrals depend on the set of inclusion combinations.    

SP for multiple inclusions results in a 6*m x 6*m matrix where m is the number of 

inclusions. 

4.5 Determination of material and global tow properties  
 
 

The final step in determining the effective stiffness of a plain weave fabric 

composite is the resolution of the material properties of the undulating tows in the warp 

and fill directions, respectively.  This resolution is done in two steps:  Finding the global 

material properties with respect to the direction of undulation and then transforming them 

into the global RVE coordinate system.  For the tows that traverse from the front to the 

rear 0 degree face, the global coordinates of the local tow and the RVE are identical.  For 

the two tows that sweep from the front to the rear 90 degree face, there needs an 

additional transformation to go from the local tow to the RVE.  Since a given tow only 

undulates in one plane (either the x-z plane for the 90 degree tows or the y-z plane for the 
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0 degree tows), at any given point along the local longitudinal axis the tow is transversely 

isotropic to a coordinate system in which the abscissa is along its slope.  In order to 

transform the properties into the global RVE coordinates, the following steps must be 

followed: 

1. Determine the compliance matrix [S] of each tow assuming that it is a 
unidirectional composite. 

2. Transform the [S] matrix from the unprimed (material) coordinate system to the 
primed (global) coordinate system. 

3. Average the point-wise global compliance matrix values over the length of each 
tow. 

4. Invert the average global compliance matrix to obtain the average global stiffness 
matrix [C] for each tow. 

 
Step 1 of the process, determining the compliance matrix assuming it was a unidirectional 

composite is equivalent to saying that the tow has the same material properties with 

respect to a coordinate system in which the abscissa is coincident to the slope of the tow.  

This step can be done using a variety of available micromechanical models for 

unidirectional composites [33].  For purposes of consistency, the micromechanical 

modeling developed by Luciano and Barbero in [34] employed periodic microstructure, 

so this was the modeling technique used to determine the local compliance matrix for 

each respective tow.  A property that is necessary for this computation is the fiber volume 

fraction of the tows, denoted as Vf,tow.  This value is considerably more than the overall 

fiber volume fraction because of the regions of pure matrix that surround the woven 

structure.  From experimental techniques such as the resin burn out test, the overall fiber 

volume fraction can be found, which is denoted as Vf,o.  Vf,tow can be computed from the 

overall fiber volume fraction and the volume fraction of the tows to the total RVE, 
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Vf,meso.  From these properties, the value of Vf,tow can be calculated according the 

following equation 

 
f ,o RVE

f ,tow
meso

V V
V

V
=

. (4.28) 

  

 Step 2 of the tow material property resolution is the transformation of the local 

compliance matrix to the global coordinate system.  The transformation of the 

compliance matrix requires the calculation of the direction cosines matrix, denoted as [a], 

and the transformation matrix, denoted as [T].  The [a] matrix for transformation from the 

local to global tow coordinate systems is  

 ( )
cos( ) 0 sin( )

a 0 1 0
sin( ) 0 cos( )

θ θ 
 θ =  
 − θ θ 

 (4.29) 

 

in which θ is the approximated slope of the tow undulation.  The transformation matrix 

[T] is a function of the [a] matrix, and its form is listed in Appendix A of this dissertation 

as well as in the Mathcad files of Appendix B.  Once the transformation matrix is 

calculated at a given point in the tow, the transformed compliance matrix [S’] is 

calculated in the following manner 

 [ ] [ ][ ]T'S T S T  =  . (4.30) 

The value of [S’] can be calculated for any point through the length of the tow.  For 

averaging purposes in atep 3, a number of points equally spaced throughout the length of 
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the tow were selected, and values of [S’] were calculated at each incremental value.  

These calculated values were divided by the number of selected points to obtain an 

average tow compliance across the undulation.  Finally, for the tows that traverse the 90 

degree faces the averaged compliances were then transformed again to conform to the 

controlling 0 degree direction.  This process necessitates a unique set of [a] and [S] terms, 

and they are presented below: 

 2

0 1 0
a 1 0 0

0 0 1

 
 =  
  

 (4.31) 

     

 [ ] [ ]T'
2 2 2[S ] T S T =    (4.32) 

 

in which the transformations are simply a rotation by 90 degrees in the x-y plane.  These 

details are also available in Appendices A and B.  The calculation of the averaged 

stiffness matrix [C] is determined by matrix inversion of Equation (4.32). 

 

4.6 Evaluating C  
 

The steps outlined in Sections 4.2 through 4.5 outline a building block approach 

in which the next step is dependant upon the previous one.  It was seen that evaluating the 

g-integral was dependant upon the surface functions that bound the tows, and resolving 

SP was dependant upon the evaluation of both the g-integral and FSP.  The same is true 



 63

for evaluating the effective stiffness matrix C .  The evaluation of C  is dependant upon 

the determination of SP, as well as the material property definitions of the matrix and the 

inclusion, respectively.  For a single inclusion, C  was written according to Equation 

(3.66) as 

 

 ( )( ) 11 P(4s)C C : 1 f C C : C S
−−Ω  

= − − −  
  

. (4.33) 

 

and for multiple inclusions as (Equation (3.74) 

 
 

 
( ) ( )

n n
4s 4s1

1 1
C C : I f A : (C C) : Iα−

α αβ
α= β=

   = − −  
   

∑ ∑ . (4.34) 

 

These relationships were applied to two distinct geometric forms:  The purely analytical 

form develop by Ito and Chou in [13] and the experimentally determined parameter 

developed at CERL.  The results of the analyses are presented in subsequent section.      

4.7 Ito and Chou geometry results 
 

From the execution of the average eigenstrain periodic microstructure model, the 

geometry and material characteristics of the RVE of Ito and Chou were determined, and 

the results are summarized in Table 4.3 through Table 4.5., and a full text of the program 

is listed in Appendix B.    The model showed excellent agreement with the experimental 
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result, as well as the authors’ classical lamination theory model when looking at the 

longitudinal modulus of elasticity, E1.  From their results, this was the only material 

property listed.  If it is assumed that the plain weave fabric is effectively orthotropic, that 

leaves 8 other material characteristics that need to be defined.  As you can see from the 

comparison with the work in [13], the periodic microstructure model returns all of the 

material properties, not just E1.  A complete set of experimental data and numerical 

predictions are found in Scida et al. [17], who applied their model to an E-glass/vinyl 

ester plain weave fabric composite.  As an example of the versatility of the periodic 

microstructure model, the original Ito and Chou geometry and material properties were 

modified to reflect the material properties of an E-glass/vinyl ester plain weave 

composite.  This new model was calculated, and the results are reported in Table 4.8.  

From the table, it is seen that the periodic microstructure model accurately predicted all 

of the material properties either within or close to the listed tolerances.          

 

 

4.8 CERL geometry results 
 

The results of the model for the geometry of CERL are summarized in Table 4.11 

and Appendix B.  The results are compared with the finite element analysis of Kollegal 

and Sridharan [25] and they show a favorable comparison for the limited data reported.  

The finite element data of [25] only report values of E1, G12, and ν12.  For all of those 

values, the model showed good agreement, further validating the procedures developed 

and adapted herein.  
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Figure 4.1:  Illustration of the plain weave fabric representative volume element. 
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Figure 4.2:  Two dimensional plot of the 0 degree front and rear faces of a plain weave fabric RVE. 
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Figure 4.3:  Two dimensional plot of the 90 degree front and rear faces of a plain weave fabric RVE. 
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Figure 4.4:  Plot of the 0 degree front face of the RVE of Ito and Chou [13]. 
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Figure 4.5:  Plot of the 0 degree rear face of the RVE of Ito and Chou [13]. 
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Figure 4.6:  90 degree front face of the RVE of Ito and Chou [13]. 

 

 

 



 71

0.001530.001035.275 .10 42.75 .10 54.725 .10 49.725 .10 40.001470.00197
4 .10 4

3 .10 4

2 .10 4

1 .10 4

0

1 .10 4

2 .10 4

3 .10 4

4 .10 4

Upper warp tow boundary
Lower warp tow boundary
Upper fill tow boundary
Lower fill tow boundary

r90u y( )

r90l y( )

r90tu ytu( )
r90tl ytl( )

y y, ytu, ytl,

 

Figure 4.7:  Plot of the 90 degree rear face for the RVE of Ito and Chou [13]. 
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Figure 4.8:  Plot of the top fill boundary that exists for the front and rear faces of the 0 degree 
direction in [13]. 
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Figure 4.9:  Plot of the surface function generated by Equation (4.10) for the upper portion of the top 
fill yarn in [13]. 

 

 

 

 

 

 

 



 74

 

Figure 4.10:  0 degree front face for the fabric geometry of CERL. 
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Figure 4.11:  0 degree rear face for the fabric geometry of CERL. 
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Figure 4.12:  90 degree front face of the fabric geometry of CERL. 
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Figure 4.13:  90 degree rear face of the fabric geometry of CERL 
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Figure 4.14:  0 degree front face for the CERL geometry 
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Figure 4.15:  0 degree rear face for the CERL geometry 
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Figure 4.16:  90 degree front face for the CERL geometry 
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Figure 4.17:  90 degree rear face for the CERL geometry. 
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 0 degree 
 Top fill front Bottom fill rear Bottom fill 

front 
Top fill rear 

A (m) 1.29E-4 -2.01E-4 1.01E-4 1.04E-4 
B (1/m) -2153.1 1646.0 -2554.6 2499.8 

C -0.4100 3.08514 0.7794 -0.7290 
D (m) 9.10E-5 -1.9E-5 -1.19E-4 1.16E-4 

 

Warp tow parameters  Height of 0 degree fill tow 
P1,0 7.4E-5 m  b0 187.6 µm 
P2,0 1710 1/m    

 
RVE dimensions    

a1 920 µm    
a2 920 µm    
a3 250 µm    

 

Table 4.1:  0 degree face parameters for the CERL geometry. 
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 90 degree 
 Top fill front Bottom fill rear Bottom fill 

front 
Top fill rear 

A (m) 1.00E-4 -2.251E-4 9.37E-5 -1.889E-4 
B (1/m) 1965.7 1415.5 2405.7 1561.4 

C -0.2376 0.2685 0.64245 -0.13432 
D (m) 4.459E-5 5.547E-5 -7.592E-5 -1.927E-5 

 

Warp tow parameters  Height of 0 degree fill tow 

P1,90 1.37E-4 m  b90 212.5 µm 
P2,90 1726 1/m    

 
RVE dimensions    

a1 920 µm    
a2 920 µm    
a3 250 µm    

 

Table 4.2:  Averaged values of the 90 degree face parameters for the CERL geometry 
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AS4/ 

Vinyl Ester (Ito and 
Chou) 

Ef 221 GPa 
Em 3.4 GPa 
ννννf 0.22 
ννννm 0.30 
Vf 0.7536 

 

Table 4.3:  Micro-scale properties of the fiber matrix tow system for the geometry of Ito and Chou. 
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AS4/ 

Vinyl Ester (Ito and 
Chou) 

Ex 171.7 GPa 

Ey 23.09 GPa 

Gxy 9.370 GPa 

Gyz 7.988 GPa 

ννννxy 0.29007 

ννννyz 0.44523 

 

Table 4.4:  Meso-scale averaged properties over the undulations for the fiber/matrix tow system for 
the geometry of Ito and Chou. 
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Effective Material Properties  

Periodic 
Microstructure 

Ito and Chou 
(experimental) 

E1 43.11 GPa ~ 43.5 GPa 
E2 42.89 GPa - 
E3 8.429 GPa - 

G23 4.750 GPa - 
G13 4.740 GPa - 
G12 6.721 GPa - 
νννν23 0.224 - 
νννν13 0.211 - 
νννν12 0.228 - 

 

Table 4.5:  Effective material property comparison for the AS4/vinyl ester composite from [13]. 
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  E Glass/ 
Vinyl Ester (Scida et al.) 

Ef 72.45 GPa 
Em 3.4 GPa 
ννννf 0.22 
ννννm 0.38 
Vf 0.8 

 

Table 4.6:  Micro-scale properties of the fiber matrix tow system for the geometry of Ito and Chou 
and the material properties of Scida et al. [17]. 
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 E Glass/ 
Vinyl Ester (Scida et al.) 

Ex 59.58 GPa 

Ey 21.51 GPa 

Gxy 8.770 GPa 

Gyz 7.591 GPa 

ννννxy 0.2916 

ννννyz 0.4171 

 

Table 4.7:  Meso-scale properties over the undulations for the fiber/matrix tow system for the 
geometry of Ito and Chou and material properties of Scida et al. [17]. 
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Effective Material Properties  

Periodic 
Microstructure 

Scida et al. 
(experimental) 

E1 22.10 GPa 24.8 ±±±± 1.1 GPa  
E2 21.85 GPa  24.8 ±±±± 1.1 GPa  
E3 8.98 GPa 8.5 ±±±± 2.6 GPa  

G23 4.37 GPa 4.2 ±±±± 0.7 GPa  
G13 4.35 GPa 4.2 ±±±± 0.7 GPa  
G12 6.37 GPa 6.5 ±±±± 0.8 GPa  
νννν23 0.229 0.28 ±±±± 0.07 
νννν13 0.224 0.28 ±±±± 0.07  
νννν12 0.247 0.1 ±±±± 0.01  

 

Table 4.8:  Comparison of periodic microstructure vs. the experimental results from Scida et al. [17] 
for an E glass/vinyl ester plain weave fabric composite. 
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  E Glass/Epoxy (Kollegal 
and Sridharan) 

Ef 72.45 GPa 
Em 3.5 GPa 
ννννf 0.22 
ννννm 0.35 
Vf 0.7 

 

Table 4.9:  Micro-scale properties of the fiber matrix tow system for the CERL geometry and the 
material properties of [25]. 
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 E Glass/Epoxy (Kollegal 
and Sridharan) 

Ex 52.63 GPa 

Ey 16.69 GPa 

Gxy 5.90 GPa 

Gyz 5.58 GPa 

ννννxy 0.32341 

ννννyz 0.49535 

 

Table 4.10:  Meso-scale properties over the undulations for the fiber/matrix tow system for the 
geometry of CERL and material properties of [25]. 
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Effective Material Properties  

Periodic 
Microstructure 

Kollegal and 
Sridharan 

(experimental) 
E1 19.251 GPa 19.29 GPa  
E2 16.489 GPa -  
E3 7.243 GPa -  

G23 2.952 GPa - 
G13 2.950 GPa -  
G12 4.656 GPa 3.18 GPa  
νννν23 0.261 - 
νννν13 0.233 -  
νννν12 0.265 0.2  

 

Table 4.11:  Comparison of periodic microstructure vs. the experimental results from Kollegal and 
Sridharan [25] for an E glass/epoxy plain weave fabric composite.
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Chapter 5    

 Exact Eigenstrain Analysis 

 
 

5.1 Evaluation procedures for point-wise RVE stresses 
 
 
 

From the periodic microstructure derivations of Chapter 3, the assumption that the 

eigenstrain was an average value enabled the formation of Equations (3.58) through 

(3.74) in Section 3.4.  The implementation of those relationships to the geometries of Ito 

and Chou and CERL produced a complete set of material properties.  In this Chapter, the 

implementation of Equations (3.1) through (3.57) will be presented for the purpose of 

determining the point-wise stresses at any give location within the RVE.  The solution of 

Equation (3.57) is the starting point for a sequence of Fourier coefficient and equation 

evaluations that will enable the resolution of stress at any give point inside of the RVE.  

All calculations were done in Mathcad 2001, and the equation formations and program 

results are listed in Appendix C. 

5.1.1 Solution of the Linear System of Equation (3.57) 
 

Recall from Sub-sections 3.2 through 3.3 that all of the field variables, 

consistency, and equilibrium conditions were expanded by means of three-dimensional 
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Fourier series.  These expanded terms were then substituted into the consistency 

conditions and the result was the following linear system 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

o P *'

P * *o

FC : FC : FS : F

C : FS : F F

Ω Ω

ζ

 
ξ ε + ξ − ζ ζ ε ζ 

 

 = ε + ξ ε ξ − ε ξ 

∑
  

which is Equation (3.57).  The size of the linear system is dependant upon the number of 

N terms (n1, n2, and n3 combinations) that were taken in order to evaluate the Fourier 

coefficients.  In order to solve the system, one assumption was made:  The Fourier 

coefficient of the tow stiffness matrix, represented as 

 

 ( ) ( ) ( )1
U

U

FC C x exp ix dVξ = − ⋅ξ∫ , (5.1) 

was approximated by assuming that the stiffness term, C(x) , was not a function of 

position.  The average values of tow stiffnesses outlined in Section 4.5 were inserted for 

purposes of calculating ( )FC ξ .  For this research, the resolution of the linear system was 

only solved for N = 1.  The number of equations in the linear system grows exponentially 

when the value of N increases.  This increase results in longer run times for the Mathcad 

shell, which is slower than a program written with a computer language. 

 

5.1.2 Evaluation of ( )* xε  

              
According to the following consistency equation derived in Section 3.3: 
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 ( ) ( )( ) ( ) ( )( )o p o p *C x : x C : x xΩ ε + ε = ε + ε − ε   (3.53) 

 

the terms that require evaluation are the periodic disturbance strain, ( )p xε , and the 

eigenstrain, ( )* xε . Once the Fourier coefficients of the eigenstrain, ( )*Fε ξ , have been 

calculated the  next step is to evaluate the expanded eigenstrain equation according to 

 

 ( ) ( ) ( )x F ix
ξ

ε = ε ξ ⋅ξ∑
* *' exp  (3.20) 

 

for a given point in the cross section.  Since the evaluation of the Fourier coefficient is 

not dependant upon the position inside of the RVE, the eigenstrain can be easily 

calculated at any point within the RVE for any desired N. 

 

5.1.3 Evaluation of ( )P xε  
 
 

Evaluation of ( )* xε must be done first because resolving the periodic 

disturbance strain is a function of the eigenstrain.  The relationship has been listed in 

Equation (3.55) and is as follows 

 

 ( ) ( ) ( ) ( )( )P P *'
y

U

1x FS : y exp i x y dV
Uξ

 
ε = ξ ε ⋅ ξ ⋅ − 

 
∑ ∫  (3.55) 
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in which the x vector is the same point to which the eigenstrain was calculated in 

Equation (3.20).  From the resolution of ( )* xε  and ( )P xε  the stress values can now be 

determined at the pre-determined point. 

 

5.2 Selection of the consistency conditions for stress 
calculation 

 
 

 

The consistency equations listed in Sections 3.1 and 3.3 are relationships that 

equate stress terms at a given point.  The homogenization of the tows to the matrix 

surrounding the tows produced the following consistency condition: 

 

 ( ) ( )( ) ( ) ( )( )o p o p *C x : x C : x xΩ ε + ε = ε + ε − ε . (3.53) 

 

From the evaluations of ( )* xε  and ( )P xε  in Section 5.1, the right side of Equation 

(3.53) can be evaluated provided that the selected point is within one of the four 

fiber/matrix tows.  If the selected point lies outside of the tows and in the pure matrix 

region, then Equation (3.53) will not work because the tows were homogenized to the 

matrix due to the isotropic nature of composite resins.  Therefore, the point wise stresses 

for locations outside of the tows can be computed using 

 

 ( ) ( )( )0 px C : xσ = ε + ε . (3.2) 
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From the geometric modeling of Section 4.1, bounds for each of the tows are described 

according to surface functions and the boundaries of the RVE.  A simple routine was 

written in Mathcad to distinguish the location of a given point so that the appropriate 

stresses can be calculated, and subsequently use the correct consistency condition with 

which to calculate the point wise stresses.       

 

5.3 Comparison of Ito and Chou geometry with Finite 
Element Data 

 
 

 

The availability of internal or point wise stress data has been limited to only finite 

element analyses of plain weave fabric composites.  Therefore, the idealized geometry of 

Ito and Chou was use to determine point wise stresses under a given longitudinally 

applied strain, normally in the range of 0.1 to 1.0 % and for a convergence value of N = 

1.  Point wise stresses were calculated for internal points corresponding to each of the 

four tows.  The results are listed in .  No suitable data has been found or generated to date 

that could be compared to the data produced with the periodic microstructure model.  

That effort is ongoing.  However, from the procedures outlined in this chapter, along with 

the Mathcad program listed in Appendix C, this research has verified that the procedure 

can be applied in this application.  The data used in the preliminary comparison was from 

a finite element analysis done of the Ito and Chou geometry for a separate project at West 

Virginia University. 
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 Point wise stress calculations 

 Periodic microstructure 
AS4/Vinyl Ester 

Finite Element Model 
AS4/Vinyl Ester 

σσσσx 193 MPa 660 MPa 
σσσσy -157 MPa -117 MPa 
σσσσz 4.054 MPa -7.097 MPa 
ττττxy -4.69 MPa -6.224 MPa 
ττττxz -3.49 MPa -5.887 MPa 
ττττyz -7.51 MPa -8.249 MPa 

 

Table 5.1:  Comparison of point wise stress calculations with finite element analysis of the geometry 
of Ito and Chou. 
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Chapter 6     

 Summary and Conclusions 

 

6.1 Summary 
  

The research that produced this dissertation came about from a combination of 

military demand, previous work of the principal investigator, and a review of current 

literature on woven fabric composites.  Periodic microstructure was used by Luciano and 

Barbero [34] in the development of micromechanical models for the property prediction 

of unidirectional fiber reinforced composite lamina.  The literature review, as written in 

Chapter 2, outlined the previous research on woven fabric composites, and from that it 

was determined that a new analytical model could be developed through the use of 

periodic microstructure that would combine the advantages of classical lamination theory 

and the finite element method.  The derivation of all the relevant equations and 

relationships was done in Chapter 3, with an emphasis on application to a plain weave 

fabric geometry.  In Chapter 4, the fiber/matrix tows inside of the RVE were 

mathematically characterized from both existing two dimensional yarn equations as well 

as photomicrographs of the fabric cross-section, resulting in the derivation of three 

dimensional surface functions that describe the bounds of the tows.  From the equation 

derivations and the tow descriptions, a Mathcad program was written to evaluate both the 
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effective stiffness of the plain weave fabric as well as point wise stresses throughout the 

RVE.  These results were compared with published experimental, analytical, and finite 

element data from a variety of sources. 

 

6.2 Conclusions 
                 

 

Based on comparisons of the periodic microstructure model with experimental 

data for both effective material property and point wise stress prediction, the objectives 

stated in Section 1.3 have been successfully fulfilled.  This novel technique produces a 

full set of effective material properties for given constituent values and fiber volume 

fractions, the results of which compared very well with experimental data, as seen in 

Table 4.3 through Table 4.11.  This is a significant extension of classical lamination 

theory, which is capable of only predicting the in plane properties.  In addition, the 

solution of the linear system and subsequent calculations defined in Chapter 5 enable this 

analytical model to calculate point wise stresses anywhere through the volume of the 

cross section.  This capability is entirely unique to the periodic microstructure model.  

However, further verification of the point wise stress model is necessary to validate the 

process of internal stress calculation.  For the simplest case, N=1, it required 5 hours of 

calculation time on a 1.33 GHz windows based computer.  This time constraint grows 

exponentially for increase N values, and the result is only the stress value at one point.  

These issues limited our ability to comprehensively examine the results from the model.  

Even with the limited validation, we were able to effectively demonstrate the procedures 
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necessary to extract the internal point wise stresses without the need of a finite 

element model.          



 102

Chapter 7     

 Recommendations              

 

There are several areas in which the work done in this research could be extended 

and/or expanded.  The application of this model to other geometries and material 

properties is limited only by the geometric modeling of the inclusion in a given RVE.  

The same Mathcad program was used in the effective material property prediction for 

both geometric models, as well as the point wise stress calculations.  The differences are 

only the tow geometries and meso-scale tow properties.  A further extension of the 

effective material property prediction would be to apply this technique to a different 

fabric geometry, such as a twill weave or a satin weave.  In such cases, the RVE would 

be considerably more complex.  However, once the tows were geometrically defined, the 

model could be easily modified to accommodate the new weaving pattern.  The model is 

not limited to any specific type of material.  The application in this research was for 

woven fabric composites.  In actuality, this program could be applied to any 

heterogeneous system with a pseudo-periodic structure, as long as the heterogeneities can 

be geometrically defined. 

With regard to the point wise stress model, there are still many areas that need to 

be investigated in order to verify the procedure.  A more complete convergence study 

would be necessary, in light of the fact that the model required five hours for the simplest 
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calculation.  Also, a detailed finite element model developed specifically for the purpose 

of comparison with the periodic microstructure model would provide a dependable 

benchmark with which to compare.  The finite element models in the literature are 

difficult to compare because even if stress distributions are published, it is usually on the 

free edges and not internal stresses.   

These are a few recommendations that would help in acquiring a better 

understanding of this novel technique, with the hope that continued research and 

development would reinforce the work done herein.  
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Appendix A      
      
 Matrix Representation of 4th Order  
 Symmetric Tensors and Coordinate 
 Transformations 
 
 

The stresses (σ), strains (ε), and material property terms (stiffness C or compliance S) 

that comprise the generalized constitutive equations are generally expressed in tensor notation.  

The stress and strain terms are second order tensors and the material properties are 4th order 

symmetric tensors.  The tensor representation of the constitutive equation, similar to that of 

Equation (3.2), would be 

 ij ijkl klCσ = ε  (A.1) 

in which i,j,k,l are indices that run from 1 to 3, respectively.  In general, Equation (A.1) could be 

expanded into a system of nine equations because there are nine possible combinations of the i 

and j indices for σ and ε.  This general system of nine equations results in C having 81 terms.  

Because of symmetry, ij jiσ = σ  and ij jiε = ε  and the system is reduced to six equations, resulting 

in the stiffness C having 36 terms.  This representation is equivalent to the notation of Equation 

(3.2).  The tensor notation can be further reduced, due to the symmetry of the system, to matrix 

notation through the used of contracted notation.  The contraction is done according to the 

following system: 
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i                if i = j 
9 i j if i j

α =
α − − − ≠ . (A.2) 

 
 For a second order tensor such as the stress, the contraction is as follows 

 

111

222

333
ij

423

513

612

α

σσ   
   σσ   
   σσ

σ = → σ =    σσ   
   σσ
  
σσ      

 (A.3) 

the result of which is a first order tensor, which is a column vector.  The same contraction can be 

performed on the stiffness or compliance tensors, but in this case there are two sets of terms to be 

contracted, the i,j and k,l terms, respectively.  This is referred to as double contraction, and the 

result reduces the 4th order tensor to a 6 x 6 matrix.  The contraction is illustrated below 

 

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312
ijkl

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1213 1212

C C C C C C
C C C C C C
C C C C C C

C
C C C C C C
C C C C C C
C C C C C C

 
 
 


= 



 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

 

C C C C C C
C C C C C C
C C C C C C

 C
C C C C C C
C C C C C C
C C C C C C

αβ








↓

 
 
 
 

=  
 
 
 
  

. (A.4) 
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Now that the 2nd and 4th order tensors are contracted, there is an additional modification 

necessary to equivalently express the tensor and matrix equations for the constitutive 

relationship.  The double contraction of C and ε, which is expressed in Equation (3.2), is written 

in matrix form as 

 [ ] C Wα αβ βγ γ     σ = ε       (A.5) 

  
 in which Wβγ  is referred to as the Reuter matrix, and is expressed as 

 [ ]

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

W
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 
 
 
 

=  
 
 
 
 

. (A.6) 

Writing these terms in matrix form allowed for the equations derived in the body of this 

dissertation to be programmed into Mathcad 2001, and any required matrix manipulations or 

operations could be easily done using its built-in functions. 

The determination of the average stiffnesses in each of the fiber tows required the use of 

coordinate transformations for the stiffness and compliance terms in the material coordinate 

system.  These terms are generally written as fourth order tensors, but because of symmetry the 

terms can be reduced to matrix form by means of contracting the notation.  The general form of 

the constitutive equation for an anisotropic material in a general coordinate system is 

 

 ij ijkl klCσ = ε  (A.7) 

and for a different coordinate system is 
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' ' '
ij ijkl klCσ = ε . (A.8) 

The relationship between the stiffness tensors is expressed in terms of the [a] matrices of 

Equations (4.29) and (4.31), respectively, as 

 

 
'
ijkl ip jq kr ls pqrsC a a a a C=  (A.9) 

which can also be expressed as 

 

 
'
ijkl ipjq krls pqrsC T T C=  (A.10) 

in which the T terms constitute the transformation from the unprimed to the primed coordinate 

system.  Rewriting Equation (A.10) in matrix form results in the following 

 

 [ ][ ][ ]T'C T C T  =   (A.11) 

 when going from the unprimed to the primed coordinate system.  To go in the opposite 

direction, the matrix form is 

 

 [ ] [ ] [ ]T 'C T C T =   . (A.12) 

 

The [a] matrix is often written in the following form 
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1 1 1

2 2 2

3 3 3

[ ]
l m n

a l m n
l m n

 
 =  
  

 (A.13) 

 in which the l, m, and n values are the direction cosines.  Using this notation, the transformation 

matrix can be written as 

 

 

 

T[ ]

l 1
2

l 2
2

l 3
2

2 l 2⋅ l 3⋅

2 l 1⋅ l 3⋅

2 l 1⋅ l 2⋅

m 1
2

m 2
2

m 3
2

2 m 2⋅ m 3⋅

2 m 1⋅ m 3⋅

2 m 1⋅ m 2⋅

n 1
2

n 2
2

n 3
2

2 n 2⋅ n 3⋅

2 n 1⋅ n 3⋅

2 l 1⋅ l 2⋅

2 m 1⋅ n 1⋅

2 m 2⋅ n⋅ 2,

2 m 3⋅ n 3⋅

m 2 n 3⋅ n 2 m 3⋅+

m 1 n 3⋅ n 1 m 3⋅+

m 1 n 2⋅ n 1 m 2⋅+

2 l 1⋅ n 1⋅

2 l 2⋅ n 2⋅

2 l 3⋅ n 3⋅

l 2 n 3⋅ n 2 l 3⋅+

l 1 n 3⋅ n 1 l 3⋅+

l 1 n 2⋅ n 1 l 2⋅+

2 l 1⋅ m 1⋅

2 l 1⋅ m 1⋅

2 l 1⋅ m 1⋅

l 2 m 3⋅ m 2 l 3⋅+

l 1 m 3⋅ m 1 l 3⋅+

l 1 m 2⋅ m 1 l 2⋅+

























 (A.14)  

 

These terms were used in the Mathcad files to do all of the necessary transformations.    
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Appendix B      
      
 Computation of the Effective Material 
 Properties of a Plain Weave Woven 
 Fabric Composite 
 

 
 

 This is the text of a Mathcad file written to compute the effective material properties of a 
plain weave fabric composite using periodic microstructure.  All of the effective material 
property data generated in this research was computed in a file of this general form.  The only 
differences are the RVE and weave geometry, the material properties and fiber volume fractions 
of the constituent materials, and the convergence value N used to calculate the matrix SP. 
       
This file contains geometric descriptions determined by the Construction Engineering Research 
laboratory of the US Army Corps of Engineers. 
 
Part 1:  Geometric description, function derivation, and 3-D plotting 
 
The basis of the RVE from the respect of the 2D view is to start from the fill tows, as represented 
by a series of sine curves 
 
The dimension of the RVE is 2ax by 2ay by 2az, and the dimensions are as follows: 
 
µm 10 6− m⋅:=  ax 920 µm⋅:=  ay 920 µm⋅:=  az 250 µm⋅:=  
 
minc 4:=  
 
α 1 minc..:=   β 1 minc..:=  
 
Data from CERL for the equations that represent the geometry for the 0 degree direction 
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n 5:=    i 1 n..:=  
 
 
P1data0 1

1
2

3

4

5

0.00007
0.00013

0.0001

-0.0002

0.0001

:=  P2data0 1

1
2

3

4

5

1710
-2153.098

-2554.569

1646.022

2499.771

:=  P3data0 1

1
2

3

4

-0.41005
0.77941

3.08514

-0.72899

:=  

P4data0 1

1
2

3

4

0.00009
-0.00012

-0.00002

0.00012

:=  xdata0 1

1
2

3

4

-0.00017
0.00017

-0.00017

0.00017

:=  b0 1

1 0.00019

:=  

 
b0 b0 m⋅:=  

P01

P1tb1f0

P1tb2f0

P1tb1r0

P1tb2r0





















P1data01 1,

P1data02 1,

P1data03 1,

P1data04 1,

P1data05 1,

























m⋅:=   

P02

P2tb1f0

P2tb2f0

P2tb1r0

P2tb2r0





















P2data01 1,

P2data02 1,

P2data03 1,

P2data04 1,

P2data05 1,

























1
m

:=  

P3tb1f0

P3tb2f0

P3tb1r0

P3tb2r0

















P3data01 1,

P3data02 1,

P3data03 1,

P3data04 1,





















:=   

P4tb1f0

P4tb2f0

P4tb1r0

P4tb2r0

















P4data01 1,

P4data02 1,

P4data03 1,

P4data04 1,





















m⋅:=  

xcb1f0

xcb2f0

xcb1r0

xcb2r0

















xdata01 1,

xdata02 1,

xdata03 1,

xdata04 1,





















m⋅:=  

 
 
Data from Army Corps for the equations that represent the geometry for the 90 degree 
direction 
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P1data90 1

1
2

3

4

5

0.00014
0.00016

0.00008

0.00027

-0.0002

:=   P2data90 1

1
2

3

4

5

1726.67
1812.57

2798.27

1338.46

1566.63

:=

 
 
P3data90 1

1
2

3

4

-0.0967683
1.003615

3.481002

-0.1294923

:=   P4data90 1

1
2

3

4

0.000025
-0.000099

0.000085

-0.000019

:=

 
 
ydata90 1

1
2

3

4

0.00017
-0.00017

0.00017

-0.00017

:=   b90 1

1 0.00021

:=  

 
b90 b90 m⋅:=  

P901

P1tb1f90

P1tb2f90

P1tb1r90

P1tb2r90





















P1data901 1,

P1data902 1,

P1data903 1,

P1data904 1,

P1data905 1,

























m⋅:=  

P902

P2tb1f90

P2tb2f90

P2tb1r90

P2tb2r90





















P2data901 1,

P2data902 1,

P2data903 1,

P2data904 1,

P2data905 1,

























1
m

:=

 
 

P3tb1f90

P3tb2f90

P3tb1r90

P3tb2r90

















P3data901 1,

P3data902 1,

P3data903 1,

P3data904 1,





















:=   

P4tb1f90

P4tb2f90

P4tb1r90

P4tb2r90

















P4data901 1,

P4data902 1,

P4data903 1,

P4data904 1,





















m⋅:=  
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ycb1f90

ycb2f90

ycb1r90

ycb2r90

















ydata901 1,

ydata902 1,

ydata903 1,

ydata904 1,





















m⋅:=   

P01

P1tb1f0

P1tb2f0

P1tb1r0

P1tb2r0





















74.42109

128.8584

100.5215

200.7841−

103.5348

















µm=

 
 

P02

P2tb1f0

P2tb2f0

P2tb1r0

P2tb2r0





















0.00171

0.00215−

0.00255−

0.00165

0.0025

















1
µm

=   

P3tb1f0

P3tb2f0

P3tb1r0

P3tb2r0

















0.41005−

0.77941

3.08514

0.72899−















=

 

 

P3tb1f0

P3tb2f0

P3tb1r0

P3tb2r0

















0.41005−

0.77941

3.08514

0.72899−















=   

P901

P1tb1f90

P1tb2f90

P1tb1r90

P1tb2r90





















0.00014

0.00016

8.16908 10 5−×

0.00027

0.0002−



















m=

 
 

P902

P2tb1f90

P2tb2f90

P2tb1r90

P2tb2r90





















1726.667

1812.57

2798.273

1338.464

1566.634

















1
m

=   

P3tb1f90

P3tb2f90

P3tb1r90

P3tb2r90

















0.09677−

1.00361

3.481

0.12949−















=

 

 
P4tb1f90

P4tb2f90

P4tb1r90

P4tb2r90

















2.52333 10 5−×

9.89974− 10 5−×

8.46611 10 5−×

1.92365− 10 5−×



















m=

 
 
Equations that form the 2 tows in the 0 degree direction 
 
For each tow, there are 2 surface functions that define the top and bottom faces of the tow, 
receptively.  These equations were developed using the symbolic solve block function, with 
properties of the tows in at the front and rear faces as boundary conditions. 
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Tow 1 
 
Top Equation 
 

A1top x( )
1
2

P01⋅ sin P02 x⋅ π+( )⋅
1
2

b90
2

⋅−
1
2

P1tb1f0⋅ sin P2tb1f0 x⋅ P3tb1f0+( )⋅−
1
2

P4tb1f0⋅−:=  

 

B1top
12500

23
π
m
⋅:=  

 
C1top 0:=  
 

D1top x( )
1
2

P01⋅ sin P02 x⋅ π+( )⋅
1
2

b90
2

⋅−
1
2

P1tb1f0⋅ sin P2tb1f0 x⋅ P3tb1f0+( )⋅+
1
2

P4tb1f0⋅+:=  

 
F1top x y,( ) A1top x( ) sin B1top y⋅ C1top+( )⋅ D1top x( )+:=  

 
Bottom Equation 
 

A1bot x( )
1
2

P4tb1r0⋅
1
2

P01⋅ sin P02 x⋅( )⋅−
1
2

b90
2

⋅−
1
2

P1tb1r0⋅ sin P2tb1r0 x⋅ P3tb1r0+( )⋅+:=  

 

P02 1710
1
m

=  

 

B1bot
12500

23
π
m
⋅:=  

 
C1bot 0:=  
 

D1bot x( )
1
2

P4tb1r0⋅
1
2

P01⋅ sin P02 x⋅( )⋅+
1
2

b90
2

⋅+
1
2

P1tb1r0⋅ sin P2tb1r0 x⋅ P3tb1r0+( )⋅+:=  

 
F1bot x y,( ) A1bot x( ) sin B1bot y⋅ C1bot+( )⋅ D1bot x( )+:=  
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Tow 2 
 
Top Equation 
 

A2top x( )
1−

2
P01⋅ sin P02 x⋅( )⋅

1
2

b90
2

⋅+
1
2

P1tb2r0⋅ sin P2tb2r0 x⋅ P3tb2r0+( )⋅+
1
2

P4tb2r0⋅+:=  

 

B2top
12500

23
π
m
⋅:=  

 
P3tb2r0 0.72899−=  
 
C2top 0:=  
 

D2top x( )
1
2

P01⋅ sin P02 x⋅( )⋅
1
2

b90
2

⋅−
1
2

P1tb2r0⋅ sin P2tb2r0 x⋅ P3tb2r0+( )⋅+
1
2

P4tb2r0⋅+:=  

 
F2top x y,( ) A2top x( ) sin B2top y⋅ C2top+( )⋅ D2top x( )+:=  

 
 
Bottom Equation 
 

A2bot x( )
1−

2
P4tb2f0⋅

1
2

P01⋅ sin P02 x⋅ π+( )⋅+
1
2

b90
2

⋅+
1
2

P1tb2f0⋅ sin P2tb2f0 x⋅ P3tb2f0+( )⋅−:=  

 

B2bot
12500

23
π
m
⋅:=  

 
C2bot 0:=  
 

D2bot x( )
1
2

P4tb2f0⋅
1
2

P01⋅ sin P02 x⋅ π+( )⋅+
1
2

b90
2

⋅+
1
2

P1tb2f0⋅ sin P2tb2f0 x⋅ P3tb2f0+( )⋅+:=  

 
F2bot x y,( ) A2bot x( ) sin B2bot y⋅ C2bot+( )⋅ D2bot x( )+:=  
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Equations that form the tows (labeled 3 and 4) in the 90 degree direction 
 
Tow 3 
 
Top Equation 
 

A3top y( )
1
2

F2bot ax y,( )⋅
1
2

P1tb1f90⋅ sin P2tb1f90 y⋅ P3tb1f90+( )⋅−
1
2

P4tb1f90⋅−:=  

 

B3top
12500

23
π
m
⋅:=  

 
C3top 0:=  
 

D3top y( )
1
2

F2bot ax y,( )⋅
1
2

P1tb1f90⋅ sin P2tb1f90 y⋅ P3tb1f90+( )⋅+
1
2

P4tb1f90⋅+:=  

 
F3top x y,( ) A3top y( ) sin B3top x⋅( )⋅ D3top y( )+:=  

 
 
Bottom Equation 
 

A3bot y( )
1−

2
F1top ax− y,( )⋅

1
2

P1tb1r90⋅ sin P2tb1r90 y⋅ P3tb1r90+( )⋅+
1
2

P4tb1r90⋅+:=  

 

B3bot
12500

23
π
m
⋅:=  

 
C3bot 0:=  
 

D3bot y( )
1
2

F1top ax− y,( )⋅
1
2

P1tb1r90⋅ sin P2tb1r90 y⋅ P3tb1r90+( )⋅+
1
2

P4tb1r90⋅+:=  

 
F3bot x y,( ) A3bot y( ) sin B3bot x⋅( )⋅ D3bot y( )+:=  

 
Tow 4 
 
Top Equation 
 

A4top y( )
1
2

P4tb2r90⋅
1
2

F1bot ax− y,( )⋅−
1
2

P1tb2r90⋅ sin P2tb2r90 y⋅ P3tb2r90+( )⋅+:=  
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B4top
12500

23
π
m
⋅:=  

 
C4top 0:=  
 

D4top y( )
1
2

P4tb2r90⋅
1
2

F1bot ax− y,( )⋅+
1
2

P1tb2r90⋅ sin P2tb2r90 y⋅ P3tb2r90+( )⋅+:=  

 
F4top x y,( ) A4top y( ) sin B4top x⋅( )⋅ D4top y( )+:=  

 
Bottom Equation 
 

A4bot y( )
1−

2
P4tb2f90⋅

1
2

F2top ax y,( )⋅+
1
2

P1tb2f90⋅ sin P2tb2f90 y⋅ P3tb2f90+( )⋅−:=  

 

B4bot
12500

23
π
m
⋅:=  

 
C4bot 0:=  
 

D4bot y( )
1
2

P4tb2f90⋅
1
2

F2top ax y,( )⋅+
1
2

P1tb2f90⋅ sin P2tb2f90 y⋅ P3tb2f90+( )⋅+:=  

 
F4bot x y,( ) A4bot y( ) sin B4bot x⋅( )⋅ D4bot y( )+:=  

 
 
3D Representation 
 
Once the respective top and bottom surface functions are generated, the RVE is plotted in order 
to visually inspect and verify the overall weaving shape of the tows. 
 
xb10 ax−:=  xb1f xcb1f0:=  xb20 xcb2f0:=  xb2f ax:=  xcb1f0 0.00017− m=  
yb10 ay−:=  yb1f ay:=  yb20 ay−:=  yb2f ay:=  xb1900 ax−:=  
 
mesh 25:=  
 
F1t CreateMesh F1top xb10, xb1f, yb10, yb1f, mesh,( ):=  
F1b CreateMesh F1bot xb10, xb1f, yb10, yb1f, mesh,( ):=  
 
F2t CreateMesh F2top xb20, xb2f, yb20, yb2f, mesh,( ):=  
F2b CreateMesh F2bot xb20, xb2f, yb20, yb2f, mesh,( ):=  
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xb190f ax:=  xb2900 ax−:=  xb290f ax:=  yb1900 ycb1r90:=  
yb190f ay:=  yb2900 ay−:=  yb290f ycb2r90:=  
 
F3t CreateMesh F3top xb1900, xb190f, yb1900, yb190f, mesh,( ):=  
F3b CreateMesh F3bot xb1900, xb190f, yb1900, yb190f, mesh,( ):=  
F4t CreateMesh F4top xb2900, xb290f, yb2900, yb290f, mesh,( ):=  
F4b CreateMesh F4bot xb2900, xb290f, yb2900, yb290f, mesh,( ):=  
 

F1t F1b, F2t, F2b, F3t, F3b, F4t, F4b,

 

 
Location of tow 1 (0 degree minus):   
x from -ax to -.00017 
y from -ay to ay  

Location of tow 2 (0 degree plus):  
x from .00017 to ax 
y from -ay to ay  
 

Location of tow 3 (90 degree plus): 
x from -ax to ax 
y from .00017 to ay 

Location of tow 4 (90 degree minus): 
x from -ax to ax 
y from -ay to -.00017 
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The 3D surface functions are simplified for future calculations by means of indexing. 
 
i 1 minc..:=  
 

x0i

ax−

xcb2f0
ax−

ax−

:=
 

xfi

xcb1f0
ax
ax
ax

:=
 

y0i

ay−

ay−

ycb1f90
ay−

:=
 

yfi

ay
ay
ay

ycb2f90

:=

 
 
Ftop x y, i,( ) F1top x y,( ) i 1if

F2top x y,( ) i 2if

F3top x y,( ) i 3if

F4top x y,( ) i 4if

:=   Fbot x y, i,( ) F1bot x y,( ) i 1if

F2bot x y,( ) i 2if

F3bot x y,( ) i 3if

F4bot x y,( ) i 4if

:=  

 
Determination of the tow volumes 

 

Vi
y0i

yfi
y

x0i

xfi
x

Fbot x y, i,( )

Ftop x y, i,( )

z1
⌠

⌡

d
⌠


⌡

d
⌠


⌡

d:=  

 
Determination of the RVE volume and fiber volume fractions 
 
VRVE 8 ax⋅ ay⋅ b90⋅:=  
 
Volume of the total RVE 
 
VRVE 1.43911mm3=  

 
Vmeso

i

Vi∑:=  

Total volume of all of the 4 tows 
 
Vmeso 7.06515 10 10−× m3=  
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fmeso
Vmeso
VRVE

:=  

 
fmeso 0.49094=  
 
Volume fraction of the tows to the RVE 
 
vfo 0.37:=   overall fiber volume fraction of the RVE 
 

vfmeso 1
1 vfo−( ) VRVE⋅ VRVE Vmeso−( )−

Vmeso
−:=

 
Meso-scale fiber volume fraction of an 

inclusion 
 
vfmeso 0.75366=  

 

fi
V i

VRVE
:=  

fi
0.11578
0.11309

0.13223

0.12984

=  

 
Part 2: ξξξξ vector definition 
 
The vector ξ is a terms that is used in the construction of the Fourier series expansion of all field 
variables, such as stresses and strains. 
 

ξ r s, t,( ) π
r

ax

s
ay

t
az









T
:=   ξabs r s, t,( ) ξ r s, t,( ) ξ r s, t,( )⋅:=  

 

ξbar r s, t,( )
ξ r s, t,( )

ξabs r s, t,( )
:=   X x y, z,( ) x y z( )T:=  
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Part 3:  The G-integral 

 

gp r s, t, i,( )
1
Vi y0i

yfi
y

x0i

xfi
x

Fbot x y, i,( )

Ftop x y, i,( )

zei ξ r s, t,( ) X x y, z,( )⋅( )⋅⌠

⌡

d
⌠


⌡

d
⌠


⌡

d⋅:=

 
 

gm r s, t, i,( )
1
Vi y0i

yfi
y

x0i

xfi
x

Fbot x y, i,( )

Ftop x y, i,( )

ze i− ξ r s, t,( ) X x y, z,( )⋅( )⋅⌠

⌡

d
⌠


⌡

d
⌠


⌡

d⋅:=  

 
 
Part 4:  Material properties of the constituent materials 
 
 In order to homogenize the the properties of the inclusions (tows) to that of the 
surrounding matrix, the constituent materials, i.e. the matrix and the tow (meso scale), must be 
determined.  The results for the CERL geometry and an E Glass/Epoxy composite are reported 
here.   
 
Material Properties of the matrix 
 
GPa 109 Pa⋅:=  
 
Em 3.4 GPa⋅:=   νm 0.38:=  

Cm
Em

1 νm+( ) 1 2 νm⋅−( )⋅

1 νm−

νm

νm

0

0

0

νm

1 νm−

νm

0

0

0

νm

νm

1 νm−

0

0

0

0

0

0

1
2

1 2 νm⋅−( )

0

0

0

0

0

0

1
2

1 2 νm⋅−( )

0

0

0

0

0

0

1
2

1 2 νm⋅−( )































⋅:=  
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Material Properties of the Inclusions 
 
 Cavgα

 are the stiffness matrices of the α number of inclusions.  In this example, all of the 

inclusions are orthotropic in the direction of the undulation of the fibers in the inclusion.  The 
material coordinate stiffnesses of each tow is determined by assuming transverse isotropy with 
respect to a coordinate system in which the abscissa corresponds to the slope of the tow.  Those 
transformed properties are averaged over the length of the inclusion.  The data for the tow 
constituent properties were taken from Table 1.1 of Barbero, E. J. "Introduction to Composite 
Materials Design" for E-Glass/Epoxy.  The accompanying software, CADEC, was used to 
determine the transversely isotropic properties as if the tow were unidirectional.  In addition, the 
value of the fiber volume fraction inside of the tows was determined above for given overall 
fiber volume fraction and the volume fraction of the tows.     
 
Exα

59.58 GPa⋅:=  Eyα
21.51 GPa⋅:=  Ezα

Eyα
:=  

 
Gxyα

8.770 GPa⋅:=  Gyzα
7.591 GPa⋅:=  Gxzα

Gxyα
:=  

 
νxyα

0.29155:=   νyzα
0.41706:=   νxzα

νxyα
:=

 
 
 

Smatα

1
Exα

νxyα
−

Exα

νxzα
−

Exα

0

0

0

νxyα
−

Eyα

1
Eyα

νyzα
−

Eyα

0

0

0

νxzα
−

Ezα

νyzα
−

Ezα

1
Ezα

0

0

0

0

0

0

1
Gyzα

0

0

0

0

0

0

1
Gxzα

0

0

0

0

0

0

1
Gxyα

















































:=   Cmatα
Smatα






1−:=  

 
Coordinate Transformation for contracted stiffness notation 
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Fx α x,( ) F3top x ay,( ) α 3 α 1∨if

F4top x ay−,( ) α 4 α 2∨if

:=  

 

F'x α x,( )
x

Fx α x,( )∂

∂
:=   θx α x,( ) atan F'x α x,( )( ):=  

a α θ,( )

cos θ( )

0

sin θ( )−

0

1

0

sin θ( )

0

cos θ( )











:=

 
 
T α θ,( )

Ti j, a α θ,( )i j,( )2← i 3≤ j 3≤∧if

γ 9 ii− jj−←

Ti j, 2a α θ,( )i ii, a α θ,( )i jj,⋅( )← γ jif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3≤ j 3>∧if

β 9 ii− jj−←

Ti j, a α θ,( )ii j, a α θ,( ) jj j,⋅( )← β iif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3> j 3≤∧if

χ 9 ii− jj−←

δ 9 kk− ll−←

Ti j, a α θ,( )ii kk, a α θ,( ) jj ll,⋅
a α θ,( )ii ll, a α θ,( ) jj kk,⋅+

...← δ iif

kk ll≠if

ll kk 3..∈for

kk 1 3..∈for χ jif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3> j 3>∧if

j 1 6..∈for

i 1 6..∈for

T

:=  

Tx α θ,( ) T α θ,( ):=  
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S'mat α x,( ) Tx α θx α x,( ),( )( )T Smatα

⋅ Tx α θx α x,( ),( )⋅





:=  

 
mstep 100:=   nstep 1 mstep 1+( )..:=  
 

xnstep ax− nstep 1−( )
2 ax⋅

mstep
⋅+:=   ynstep ay− nstep 1−( )

2 ay⋅

mstep
⋅+:=

 
 
S'avgα

Si j,
1

mstep
1

mstep 1+

n

S'mat α xn,( )i j,∑
=

⋅← α 2≤if

Si j,
1

mstep
1

mstep 1+

n

S'mat α yn,( )i j,∑
=

⋅← α 2>if

j 1 6..∈for

i 1 6..∈for

S

:=  C'avgα
S'avgα






1−:=  

 

a α( )

0

1

0

1

0

0

0

0

1











:=  
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T1 α( )

Ti j, a α( )i j,( )2← i 3≤ j 3≤∧if

γ 9 ii− jj−←

Ti j, 2a α( )i ii, a α( )i jj,⋅( )← γ jif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3≤ j 3>∧if

β 9 ii− jj−←

Ti j, a α( )ii j, a α( ) jj j,⋅( )← β iif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3> j 3≤∧if

χ 9 ii− jj−←

δ 9 kk− ll−←

Ti j, a α( )ii kk, a α( ) jj ll,⋅
a α( )ii ll, a α( ) jj kk,⋅+

...← δ iif

kk ll≠if

ll kk 3..∈for

kk 1 3..∈for χ jif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3> j 3>∧if

j 1 6..∈for

i 1 6..∈for

T

:=

 
 
 
Savgα

T1 α( ) S'avgα
⋅ T1 α( )T⋅ α 3<if

S'avgα
otherwise

:=  Cavgα
Savgα






1−:=
 

 

Cmeso
1
4

α

Cavgα∑⋅:=  
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Part 5:  FSP calculation 
 
n 3:=  
 
FSP r s, t,( )

α i← i jif

α 9 i− j−← i j≠if

β k← k lif

β 9 k− l−← k l≠if

Fα β,
1
2

ξbar r s, t,( ) j δ i l,( ) ξbar r s, t,( )k⋅
δ i k,( ) ξbar r s, t,( )l⋅+

...







⋅

ξbar r s, t,( )i δ j l,( ) ξbar r s, t,( )k⋅
δ j k,( ) ξbar r s, t,( )l⋅+

...







⋅+

...













⋅

1
νm 1−

ξbar r s, t,( )i⋅ ξbar r s, t,( ) j⋅ ξbar r s, t,( )k⋅ ξbar r s, t,( )l⋅+

...

νm
1 νm−

ξbar r s, t,( )i⋅ ξbar r s, t,( ) j⋅ δ k l,( )⋅+

...

←

l k n..∈for

k 1 n..∈for

j i n..∈for

i 1 n..∈for

F

:=  

 
Part 6:  SP tensor formulation 
 
 The SP tensor is the key computational aspect of the periodic microstructure micro 
mechanical model.  Evaluation of this term for all possible combinations of inclusions is where 
the model becomes computationally expensive.  An alternate program to compute SP that 
encompasses all of the previous calculations has been written in Fortran.  It is a more efficient 
way of determining SP, and the values can be entered into this program with for the continuation 
of the model computation. 
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 Calculation of the SP tensor as a function of N 
 
SP N α, β,( ) Sold 0←

continue r 0( ) s 0( )∧ t 0( )∧if

S fβ gp r s, t, α,( )⋅ gm r s, t, β,( )⋅ FSP r s, t,( )⋅←

Snew S Sold+←

Sold Snew←

t N− N..∈for

s N− N..∈for

r N− N..∈for

Snew

:=

 
 
Matrix representation of SP for all possible combinations of inclusions 
 
SPα β, SP 1 α, β,( ):=  
 
SPtotal is the construction of the 6*minc by 6*minc matrix using the computed value of SP 
above. 
 
SPtotal

Sold SPα 1,← β 1if

Saug augment Sold SPα β,,( )←

Sold Saug←

otherwise

β 1 minc..∈for

Soldstack Saug← α 1if

Sstack stack Soldstack Saug,( )←

Soldstack Sstack←

otherwise

α 1 minc..∈for

Sstack

:=

SPα 1,
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SPdata is an input variable for externally computed values of SP for  N 3:=    
 
SPdata

1 2 3 4 5 6
1
2
3
4
5
6

0.18721 0.07201 0.05628 -0.00221 0.00016 -0.000021
0.00585 0.03623 -0.01325 0.03879 0.0000045 -0.000021
0.11897 0.11559 0.35259 -0.01209 -0.0000611 0.0000288
0.01615 0.05715 0.00627 0.14594 0.0000172 0.0000907
0.00023 0.0000784 0.0000128 0.0000172 0.22649 0.01921

-0.000031 -0.000031 0.0000189 0.0000907 0.01921 0.0919

:=  

 
Because of the imported data, the SP terms need to be separated into the sub-matrices, as given 
in the Mathcad computation of SP 
 
αstep α( ) α 5 α 1−( )⋅+:=   βstep β( ) β 5 β 1−( )⋅+:=  
 
 
SP

Sα β, submatrix SPdata αstep α( ), αstep α( ) 5+, βstep β( ), βstep β( ) 5+,( )←

β 1 minc..∈for

α 1 minc..∈for

S

:=

 
 

W

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

2

0

0

0

0

0

0

2

0

0

0

0

0

0

2





















:=

 

 

 
W is the Reuter matrix, which is used to resolve the double contraction of two tensors 
represented by matrices. 
 
Part 7:  Determining the A matrix and its inverse 
 
A

AAα β, Cm W⋅ SPα β, δ α β,( ) W 1−⋅−



⋅ Cavgα

W⋅ SPα β,⋅−





W⋅←

β 1 minc..∈for

α 1 minc..∈for

AA

:=

  

A is an α*m by α*m matrix 
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Afinal is the combination of all possible interactions of inclusions 

 

 
Afinal

Aold Aα 1,← β 1if

Aaug augment Aold Aα β,,( )←

Aold Aaug←

otherwise

β 1 minc..∈for

Aoldstack Aaug← α 1if

Astack stack Aoldstack Aaug,( )←

Aoldstack Astack←

otherwise

α 1 minc..∈for

Astack

:=   Ainvfinal Afinal
1−:=  

 
Calculation of the inverse of Afinal 
 
αstep α( ) α 5 α 1−( )⋅+:=  βstep β( ) β 5 β 1−( )⋅+:=  
 
Ainv

Aα β, submatrix Ainvfinal αstep α( ), αstep α( ) 5+, βstep β( ), βstep β( ) 5+,( )←

β 1 4..∈for

α 1 4..∈for

A

:=  

 
Cbar is the effective stiffness of the homogenized RVE 

 

Cbar Cm W⋅ W 1−

1

4

α

fα
1

4

β

Ainvα β, W⋅ Cavgα
Cm−





W⋅ W 1−⋅





⋅∑
=

∑
=

−










⋅:=

 

 
 

Cbar

30.684876

12.343095

9.653916

0.005143−

0.011013−

0.000399

12.538234

26.955036

9.190744

0.01238−

0.006405−

0.000184

9.222006

9.067244

12.196127

0.002963−

0.005154−

0.000082

0.006812

0.012031−

0.001284−

3.399771

0.00002−

0.00069

0.000551

0.00164

0.000174

0.00006

3.335631

0.002892

0.000698

0.000183−

0.000001

0.00069

0.003261

5.360821





















GPa=  
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Sbar Cbar
1−:=  

 

E1
1

Sbar1 1,

:=   E1 21.95038GPa=  G23
1

Sbar4 4,

:=   G23 3.39977GPa=  

 

E2
1

Sbar2 2,

:=   E2 18.88755GPa=  G13
1

Sbar5 5,

:=   G13 3.33563GPa=  

 

E3
1

Sbar3 3,

:=   E3 8.01202GPa=  G12
1

Sbar6 6,

:=   G12 5.36082GPa=  

 
ν12 Sbar1 2,

− E2⋅:=  ν12 0.23899=  
 
ν13 Sbar1 3,

− E3⋅:=  ν13 0.20063=  
 
ν23 Sbar2 3,

− E3⋅:=  ν23 0.24451=  
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Appendix C      
   
 Computation of Point-wise Stresses in 
 the RVE of a Plain Weave Fabric 
 Composite 
 
  

This is the text of a Mathcad file written to compute the point-wise stresses throughout 
the RVE of a plain weave fabric composite using periodic microstructure.  All of the stress data 
generated in this research was computed in a file of this general form.  The only differences 
between different files are the RVE and weave geometry, the material properties and fiber 
volume fractions of the constituent materials, and the convergence value N used to calculate the 
matrix SP.       
 
 
This file contains geometric descriptions determined by the research of Ito and Chou. 
 
 
Part 1:  Geometric description, function derivation, and 3-D plotting 
 
 
The basis of the RVE from the respect of the 2D view is to start from the fill tows, as represented 
by a series of sine curves 
 
The dimension of the RVE is 2ax by 2ay by 2az, and the dimensions are as follows: 

µm 10 6− m⋅:=  
 
i 1 3..:=  j 1 2..:=  
 

ai

1608 µm⋅
1527.5 µm⋅

318 µm⋅

:=   
agj

392 µm⋅
275 µm⋅

:=
  ag is the gap width between the tows 

 
ax a1:=   ay a2:=   az a3:=  
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minc 4:=  

hc j

a3

2
sin

π agj
⋅

4aj











1+










⋅:=  

 
Distance between the top of the transverse tow and the contact point with the longitudinal tow 
 
Equations for the front side of the 0 degree direction of the RVE (x-z plane) 
 

f0 x( )
a3

2
sin

2 π⋅ x⋅
4 a1⋅









⋅:=   f0u x( ) f0 x( )
a3

2
+:=   f0l x( ) f0 x( )

a3

2
−:=

 
 
Assuming as sinusoidal shape for the transverse tows, the two equations below represent 
the bounds for the transverse fill tows in the 0 degree direction 
 
 

f0tu x( )
1−

2
a3⋅ sin

1
4
π⋅

ag1

a1
⋅











⋅
1
2

a3⋅−










sin
π

ag1
2 a1⋅−





x⋅
1−

2
π⋅

ag1
4 a1⋅−





ag1
2 a1⋅−





⋅+










⋅

1−
2

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅
1
2

a3⋅++

...:=

 
 

f0tl x( )
1−

2
a3⋅

1
2

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅−










sin
π

ag1
2 a1⋅−





x⋅
1
2
π⋅

ag1
4 a1⋅−





ag1
2 a1⋅−





⋅+










⋅

1−
2

a3⋅
1
2

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅++

...:=

 
 

xtu a1− a1− 10 µm⋅+,
ag1
−

2
..:=   xtl

ag1

2

ag1

2
10 µm⋅+, a1..:=  
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0.0015 0.001 5 .10 4 0 5 .10 4 0.001 0.0015
4 .10 4

2 .10 4

0

2 .10 4

4 .10 4

f0u x( )

f0l x( )

f0tu xtu( )
f0tl xtl( )

x x, xtu, xtl,  
 
 
Equations for the rear side of the 0 degree direction of the RVE (x-z plane) 
 

r0 x( )
a3

2
− sin

2 π⋅ x⋅
4 a1⋅









⋅:=  r0u x( ) r0 x( )
a3

2
+:=   r0l x( ) r0 x( )

a3

2
−:=  

 
r0tl x( ) f0tu x( )−:=   r0tu x( ) f0tl x( )−:=  
 

xtl a1− a1− 10 µm⋅+,
ag1
−

2
..:=  xtu

ag1

2

ag1

2
10 µm⋅+, a1..:=

 
 

0.0015 0.001 5 .10 4 0 5 .10 4 0.001 0.0015
4 .10 4

2 .10 4

0

2 .10 4

4 .10 4

r0u x( )

r0l x( )

r0tu xtu( )
r0tl xtl( )

x x, xtu, xtl,
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f90 y( )
a3

2
− sin

2 π⋅ y⋅
4 a2⋅









⋅:=  f90u y( ) f90 y( )
a3

2
+:=   f90l y( ) f90 y( )

a3

2
−:=

 
 
 

f90tl y( )
1
2

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅
1
2

a3⋅+










sin
π

ag2
2 a2⋅−





y⋅
1−

2
π⋅

ag2
4 a2⋅−





ag2
2 a2⋅−





⋅+










⋅

1
2

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅
1
2

a3⋅−+

...:=

 
 

f90tu y( )
1
2

a3⋅
1
2

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅+










sin
π

ag2
2 a2⋅−





y⋅
1
2
π⋅

ag2
4 a2⋅−





ag2
2 a2⋅−





⋅+










⋅

1
2

a3⋅
1
2

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅−+

...:=

 
 

ytl a2− a2− 10 µm⋅+,
ag2
−

2
..:=   ytu

ag2

2

ag2

2
10 µm⋅+, a2..:=

 
 
 

0.001530.001035.275 .10 42.75 .10 54.725 .10 49.725 .10 40.001470.00197
4 .10 4

2 .10 4

0

2 .10 4

4 .10 4

f90u y( )

f90l y( )

f90tu ytu( )
f90tl ytl( )

y y, ytu, ytl,

 

 
 

r90 y( )
a3

2
sin

2 π⋅ y⋅
4 a2⋅









⋅:=  r90u y( ) r90 y( )
a3

2
+:=

  
r90l y( ) r90 y( )

a3

2
−:=
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r90tu y( ) f90tl y( )−:=   r90tl y( ) f90tu y( )−:=  
 

ytu a2− a2− 10 µm⋅+,
ag2
−

2
..:=   ytl

ag2

2

ag2

2
10 µm⋅+, a2..:=  

0.001530.001035.275 .10 42.75 .10 54.725 .10 49.725 .10 40.001470.00197
4 .10 4

2 .10 4

0

2 .10 4

4 .10 4
0.00032

0.00032−

r 90u y( )

r 90l y( )

r 90tu y tu( )
r 90tl y tl( )

a2−a2 y y, y tu, y tl,  
 
 
Equations that form the 2 tows (1 and 2) in the 0 degree direction 
 
For each tow, there are 2 surface functions that define the top and bottom faces of the tow, 
repectively. 
 
Tow 1 
 
Top Equation 

A1top x( )
1−

4
a3⋅ sin

1
2
π⋅

x
a1
⋅








⋅
1
4

a3⋅ sin
1
2
π⋅

2 x⋅ ag1
− 4 a1⋅+





ag1
2 a1⋅−





⋅










⋅ sin
1
4
π⋅

ag1

a1
⋅











1+










⋅+

1
4

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅
1
2

a3⋅−










+

...:=  

 

B1top
1
2

π
a2
⋅:=   C1top 0:=  
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D1top x( )
1−

4
a3⋅ sin

1
2
π⋅

x
a1
⋅








⋅
1
4

sin
1
2
π⋅

2 x⋅ ag1
− 4 a1⋅+





ag1
2 a1⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅−

1
4

sin
1
2
π⋅

2 x⋅ ag1
− 4 a1⋅+





ag1
2 a1⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅+










−+

...:=

 
 
F1top x y,( ) A1top x( ) sin B1top y⋅ C1top+( )⋅ D1top x( )+:=  

 
 
Bottom Equation 
 
 

A1bot x( )
1
4

sin
1
2
π⋅

2 x⋅ ag1
− 4 a1⋅+





ag1
2 a1⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
2
π⋅

x
a1
⋅








⋅−
1
2

a3⋅−

1
4

sin
1
2
π⋅

2 x⋅ ag1
− 4 a1⋅+





ag1
2 a1⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅
1
4

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅++

...:=  

 

B1bot
1
2

π
a2
⋅:=   C1bot 0:=  

 

D1bot x( )
1
4

sin
1
2
π⋅

2 x⋅ ag1
− 4 a1⋅+





ag1
2 a1⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
2
π⋅

x
a1
⋅








⋅+

1
4

sin
1
2
π⋅

2 x⋅ ag1
− 4 a1⋅+





ag1
2 a1⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅
1
4

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅++

...:=

 
 
F1bot x y,( ) A1bot x( ) sin B1bot y⋅ C1bot+( )⋅ D1bot x( )+:=  

 
Tow 2 
 
Top Equation 
 

A2top x( )
1
4

sin
1
2
π⋅

2 x⋅ ag1
+ 4 a1⋅−





ag1
2 a1⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅
1
4

a3⋅ sin
1
2
π⋅

x
a1
⋅








⋅−
1
2

a3⋅+

1
4

sin
1
2
π⋅

2 x⋅ ag1
+ 4 a1⋅−





ag1
2 a1⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅−+

...:=  
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B2top
1
2

π
a2
⋅:=   C2top 0:=  

 
 

D2top x( )
1
4

sin
1
2
π⋅

2 x⋅ ag1
+ 4 a1⋅−





ag1
2 a1⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅
1
4

a3⋅ sin
1
2
π⋅

x
a1
⋅








⋅+

1
4

sin
1
2
π⋅

2 x⋅ ag1
+ 4 a1⋅−





ag1
2 a1⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅−+

...:=

 
 
F2top x y,( ) A2top x( ) sin B2top y⋅ C2top+( )⋅ D2top x( )+:=  
 
 
Bottom Equation 
 

A2bot x( )
1−

4
a3⋅ sin

1
2
π⋅

x
a1
⋅








⋅
1
2

a3⋅+
1
4

sin
1
2
π⋅

2 x⋅ ag1
+ 4 a1⋅−





ag1
2 a1⋅−





⋅










⋅ a3⋅+

1
4

sin
1
2
π⋅

2 x⋅ ag1
+ 4 a1⋅−





ag1
2 a1⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅
1
4

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅−+

...:=

 
 

B2bot
1
2

π
a2
⋅:=   C2bot 0:=  

 

D2bot x( )
1−

4
a3⋅ sin

1
2
π⋅

x
a1
⋅








⋅
1
4

sin
1
2
π⋅

2 x⋅ ag1
+ 4 a1⋅−





ag1
2 a1⋅−





⋅










⋅ a3⋅−

1
4

− sin
1
2
π⋅

2 x⋅ ag1
+ 4 a1⋅−





ag1
2 a1⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅
1
4

a3⋅ sin
1
4
π⋅

ag1

a1
⋅











⋅++

...:=

 
 
F2bot x y,( ) A2bot x( ) sin B2bot y⋅ C2bot+( )⋅ D2bot x( )+:=  
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Equations that form the 2 tows (3 and 4) in the 90 degree direction 
 
Tow 3 
 
Top Equation 

A3top y( )
1
4

a3⋅ sin
1
2
π⋅

y
a2
⋅








⋅
1
2

a3⋅−
1
4

sin
1
2
π⋅

2 y⋅ ag2
+ 4 a2⋅−





ag2
2 a2⋅−





⋅










⋅ a3⋅−

1
4

− sin
1
2
π⋅

2 y⋅ ag2
+ 4 a2⋅−





ag2
2 a2⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅
1
4

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅++

...:=

 
 

B3top
1
2

π
a1
⋅:=   C3top 0:=  

 

D3top y( )
1
4

a3⋅ sin
1
2
π⋅

y
a2
⋅








⋅
1
4

sin
1
2
π⋅

2 y⋅ ag2
+ 4 a2⋅−





ag2
2 a2⋅−





⋅










⋅ a3⋅+

1
4

sin
1
2
π⋅

2 y⋅ ag2
+ 4 a2⋅−





ag2
2 a2⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅
1
4

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅−+

...:=

 
 
F3top x y,( ) A3top y( ) sin B3top x⋅( )⋅ D3top y( )+:=  
 
 
Bottom Equation 
 

A3bot y( )
1−

4
sin

1
2
π⋅

2 y⋅ ag2
+ 4 a2⋅−





ag2
2 a2⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅
1
4

a3⋅ sin
1
2
π⋅

y
a2
⋅








⋅+
1
2

a3⋅−

1
4

− sin
1
2
π⋅

2 y⋅ ag2
+ 4 a2⋅−





ag2
2 a2⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅++

...:=

 
 

B3bot
1
2

π
a1
⋅:=   C3bot 0:=  
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D3bot y( )
1−

4
sin

1
2
π⋅

2 y⋅ ag2
+ 4 a2⋅−





ag2
2 a2⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅
1
4

a3⋅ sin
1
2
π⋅

y
a2
⋅








⋅−

1
4

− sin
1
2
π⋅

2 y⋅ ag2
+ 4 a2⋅−





ag2
2 a2⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅++

...:=

 
 
F3bot x y,( ) A3bot y( ) sin B3bot x⋅( )⋅ D3bot y( )+:=  

 
Tow 4 
 
Top Equation 
 

A4top y( )
1−

4
sin

1
2
π⋅

2 y⋅ ag2
− 4 a2⋅+





ag2
2 a2⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
2
π⋅

y
a2
⋅








⋅+
1
2

a3⋅+

1
4

− sin
1
2
π⋅

2 y⋅ ag2
− 4 a2⋅+





ag2
2 a2⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅
1
4

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅−+

...:=

 
 

B4top
1
2

π
a1
⋅:=   C4top 0:=  

 

D4top y( )
1−

4
sin

1
2
π⋅

2 y⋅ ag2
− 4 a2⋅+





ag2
2 a2⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
2
π⋅

y
a2
⋅








⋅−

1
4

− sin
1
2
π⋅

2 y⋅ ag2
− 4 a2⋅+





ag2
2 a2⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅
1
4

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅−+

...:=

 
 
F4top x y,( ) A4top y( ) sin B4top x⋅( )⋅ D4top y( )+:=  

 
Bottom Equation 
 

A4bot y( )
1
4

a3⋅ sin
1
2
π⋅

y
a2
⋅








⋅
1
2

a3⋅+
1
4

sin
1
2
π⋅

2 y⋅ ag2
− 4 a2⋅+





ag2
2 a2⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅−

1
4

− sin
1
2
π⋅

2 y⋅ ag2
− 4 a2⋅+





ag2
2 a2⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅−+

...:=
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B4bot
1
2

π
a1
⋅:=   C4bot 0:=  

 

D4bot y( )
1
4

a3⋅ sin
1
2
π⋅

y
a2
⋅








⋅
1
4

sin
1
2
π⋅

2 y⋅ ag2
− 4 a2⋅+





ag2
2 a2⋅−





⋅










⋅ a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅+

1
4

sin
1
2
π⋅

2 y⋅ ag2
− 4 a2⋅+





ag2
2 a2⋅−





⋅










⋅ a3⋅
1
4

a3⋅ sin
1
4
π⋅

ag2

a2
⋅











⋅+










+

...:=

 
 
F4bot x y,( ) A4bot y( ) sin B4bot x⋅( )⋅ D4bot y( )+:=  
 
3D Representation 
 

xb10 a1−:=  xb1f

ag1
−

2
:=  xb20

ag1

2
:=  xb2f a1:=  

 
yb10 a2−:=  yb1f a2:=  yb20 a2−:=  yb2f a2:=  
 
mesh 25:=  
 
F1t CreateMesh F1top xb10, xb1f, yb10, yb1f, mesh,( ):=  
 
F1b CreateMesh F1bot xb10, xb1f, yb10, yb1f, mesh,( ):=  
 
F2t CreateMesh F2top xb20, xb2f, yb20, yb2f, mesh,( ):=  
 
F2b CreateMesh F2bot xb20, xb2f, yb20, yb2f, mesh,( ):=  
 
 
xb1900 a1−:=  xb190f a1:=  xb2900 a1−:=  xb290f a1:=  

yb1900

ag2

2
:=  yb190f a2:=  yb2900 a2−:=  yb290f

ag2
−

2
:=

 
 
F3t CreateMesh F3top xb1900, xb190f, yb1900, yb190f, mesh,( ):=  
 
F3b CreateMesh F3bot xb1900, xb190f, yb1900, yb190f, mesh,( ):=  
 
F4t CreateMesh F4top xb2900, xb290f, yb2900, yb290f, mesh,( ):=  
 
F4b CreateMesh F4bot xb2900, xb290f, yb2900, yb290f, mesh,( ):=  
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F1t F1b, F2t, F2b, F3t, F3b, F4t, F4b,

 

 
 
Location of tow 1 (0 degree minus):   
x from -ax to -0.5 ag 
y from -ay to ay  

Location of tow 2 (0 degree plus):  
x from 0.5ag to ax 
y from -ay to ay  
 

Location of tow 3 (90 degree plus): 
x from -ax to ax 
y from 0.5 ag to ay 

Location of tow 4 (90 degree minus): 
x from -ax to ax 
y from -ay to -0.5ag 
 

 
 
 
i 1 4..:=  
 

x0i

ax−

0.5− ag1
⋅

ax−

ax−

:=
 

xfi

0.5 ag1
⋅

ax
ax
ax

:=
 

y0i

ay−

ay−

0.5 ag2
⋅

ay−

:=
 

yfi

ay
ay
ay

0.5− ag2
⋅

:=
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Ftop x y, i,( ) F1top x y,( ) i 1if

F2top x y,( ) i 2if

F3top x y,( ) i 3if

F4top x y,( ) i 4if

:=   Fbot x y, i,( ) F1bot x y,( ) i 1if

F2bot x y,( ) i 2if

F3bot x y,( ) i 3if

F4bot x y,( ) i 4if

:=  

 
Determination of the tow volumes 
 

Vi
y0i

yfi
y

x0i

xfi
x

Fbot x y, i,( )

Ftop x y, i,( )

z1
⌠

⌡

d
⌠


⌡

d
⌠


⌡

d:=   Vi

0.7925
0.7925

0.90838

0.90838

mm3

=

 
 
Determination of the RVE volume 
 
VRVE 8 ax⋅ ay⋅ az⋅:=    Volume of the total RVE 
 
VRVE 6.24862mm3=  

 
Vmeso

i

Vi∑:=    Total volume of all of the 4 tows 

 

fmeso
Vmeso
VRVE

:=     Volume fraction of the tows to the RVE 

 
fmeso 0.5444=  
 
vfo 0.37:=     overall fiber volume fraction of the RVE 
 

vfmeso 1
1 vfo−( ) VRVE⋅ VRVE Vmeso−( )−

Vmeso
−:=    

 
Meso-scale fiber volume fraction of an inclusion 
 
vfmeso 0.67965=  
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fi
V i

VRVE
:=  

fi
0.12683
0.12683

0.14537

0.14537

=  

 
Part 2: ξξξξ vector definition 
 
The vector ξ is a terms that is used in the construction of the Fourier series expansion of all field 
variables, such as stresses and strains. 
 

ξ r s, t,( ) π
r

ax

s
ay

t
az









T
:=   ξabs r s, t,( ) ξ r s, t,( ) ξ r s, t,( )⋅:=  

 

ξbar r s, t,( )
ξ r s, t,( )

ξabs r s, t,( )
:=   X x y, z,( ) x y z( )T:=  

 
 
Part 3:  The G-integral 
 

gp r s, t, i,( )
1
Vi y0i

yfi
y

x0i

xfi
x

Fbot x y, i,( )

Ftop x y, i,( )

zei ξ r s, t,( ) X x y, z,( )⋅( )⋅⌠

⌡

d
⌠


⌡

d
⌠


⌡

d⋅:=

 
 

gm r s, t, i,( )
1
Vi y0i

yfi
y

x0i

xfi
x

Fbot x y, i,( )

Ftop x y, i,( )

ze i− ξ r s, t,( ) X x y, z,( )⋅( )⋅⌠

⌡

d
⌠


⌡

d
⌠


⌡

d⋅:=

 
 
Part 4:  Material properties of the constituent materials 
 
 In order to homogenize the the properties of the inclusions (tows) to that of the 
surrounding matrix, the constituent materials, i.e. the matrix and the tow (meso scale), must be 
determined.  The results for the Ito and Chou geometry and an E Glass/Epoxy composite are 
reported here. 
   
Material Properties of the matrix 
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GPa 109 Pa⋅:=  
 
Em 3.12 GPa⋅:=   νm 0.30:=  
 
 

Cm
Em

1 νm+( ) 1 2 νm⋅−( )⋅

1 νm−

νm

νm

0

0

0

νm

1 νm−

νm

0

0

0

νm

νm

1 νm−

0

0

0

0

0

0

1
2

1 2 νm⋅−( )

0

0

0

0

0

0

1
2

1 2 νm⋅−( )

0

0

0

0

0

0

1
2

1 2 νm⋅−( )































⋅:=

 
 
Material Properties of the Inclusions 
 
 Cavgα

 are the stiffness matrices of the α number of inclusions.  In this example, all of the 

inclusions are orthotropic in the direction of the undulation of the fibers in the inclusion.  The 
material coordinate stiffnesses of each tow is determined by assuming transverse isotropy with 
respect to a coordinate system in which the abscissa corresponds to the slope of the tow.  Those 
transformed properties are averaged over the length of the inclusion.  The data for the tow 
constituent properties were taken from Table 1.1 of Barbero, E. J. "Introduction to Composite 
Materials Design" for E-Glass/Epoxy.  The accompanying software, CADEC, was used to 
determine the transversely isotropic properties as if the tow were unidirectional.  In addition, the 
value of the fiber volume fraction inside of the tows was determined above for given overall 
fiber volume fraction and the volume fraction of the tows.     
 
 
α 1 minc..:=  
 
Exα

56.52 GPa⋅:=  Eyα
19.90 GPa⋅:=  Ezα

Eyα
:=

 
 
Gxyα

6.983 GPa⋅:=  Gyzα
6.553 GPa⋅:=  Gxzα

Gxyα
:=  

 
νxyα

0.31844:=   νyzα
0.51802:=   νxzα

νxyα
:=  
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Smatα

1
Exα

νxyα
−

Exα

νxzα
−

Exα

0

0

0

νxyα
−

Eyα

1
Eyα

νyzα
−

Eyα

0

0

0

νxzα
−

Ezα

νyzα
−

Ezα

1
Ezα

0

0

0

0

0

0

1
Gyzα

0

0

0

0

0

0

1
Gxzα

0

0

0

0

0

0

1
Gxyα

















































:=   Cmatα
Smatα






1−:=
 

 
Coordinate Transformation for contracted stiffness notation 

 
Fx α x,( ) F3top x ay,( ) α 3 α 1∨if

F4top x ay−,( ) α 4 α 2∨if

:=

 
 

F'x α x,( )
x

Fx α x,( )∂

∂
:=   θx α x,( ) atan F'x α x,( )( ):=  

 

a α θ,( )

cos θ( )

0

sin θ( )−

0

1

0

sin θ( )

0

cos θ( )











:=  
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T α θ,( )

Ti j, a α θ,( )i j,( )2← i 3≤ j 3≤∧if

γ 9 ii− jj−←

Ti j, 2a α θ,( )i ii, a α θ,( )i jj,⋅( )← γ jif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3≤ j 3>∧if

β 9 ii− jj−←

Ti j, a α θ,( )ii j, a α θ,( ) jj j,⋅( )← β iif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3> j 3≤∧if

χ 9 ii− jj−←

δ 9 kk− ll−←

Ti j, a α θ,( )ii kk, a α θ,( ) jj ll,⋅
a α θ,( )ii ll, a α θ,( ) jj kk,⋅+

...← δ iif

kk ll≠if

ll kk 3..∈for

kk 1 3..∈for χ jif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3> j 3>∧if

j 1 6..∈for

i 1 6..∈for

T

:=  

 
Tx α θ,( ) T α θ,( ):=  

S'mat α x,( ) Tx α θx α x,( ),( )( )T Smatα
⋅ Tx α θx α x,( ),( )⋅





:=  

 
mstep 100:=  
 

nstep 1 mstep 1+( )..:=   xnstep ax− nstep 1−( )
2 ax⋅

mstep
⋅+:=

 
 

ynstep ay− nstep 1−( )
2 ay⋅

mstep
⋅+:=  
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S'avgα

Si j,
1

mstep
1

mstep 1+

n

S'mat α xn,( )i j,∑
=

⋅← α 2≤if

Si j,
1

mstep
1

mstep 1+

n

S'mat α yn,( )i j,∑
=

⋅← α 2>if

j 1 6..∈for

i 1 6..∈for

S

:=  C'avgα
S'avgα






1−:=
 

 

a α( )

0

1

0

1

0

0

0

0

1











:=  
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T1 α( )

Ti j, a α( )i j,( )2← i 3≤ j 3≤∧if

γ 9 ii− jj−←

Ti j, 2a α( )i ii, a α( )i jj,⋅( )← γ jif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3≤ j 3>∧if

β 9 ii− jj−←

Ti j, a α( )ii j, a α( ) jj j,⋅( )← β iif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3> j 3≤∧if

χ 9 ii− jj−←

δ 9 kk− ll−←

Ti j, a α( )ii kk, a α( ) jj ll,⋅
a α( )ii ll, a α( ) jj kk,⋅+

...← δ iif

kk ll≠if

ll kk 3..∈for

kk 1 3..∈for χ jif

ii jj≠if

jj ii 3..∈for

ii 1 3..∈for i 3> j 3>∧if

j 1 6..∈for

i 1 6..∈for

T

:=

 
 
Savgα

T1 α( ) S'avgα
⋅ T1 α( )T⋅ α 3<if

S'avgα
otherwise

:=  

 
Cavgα

Savgα






1−:=  

 

Cmeso
1
4

α

Cavgα∑⋅:=  

 

Part 5:  FSP formulation for an isotropic reference elasticity tensor 



 151

 
n 3:=  
 
FSP r s, t,( )

α i← i jif

α 9 i− j−← i j≠if

β k← k lif

β 9 k− l−← k l≠if

Fα β,
1
2

ξbar r s, t,( ) j δ i l,( ) ξbar r s, t,( )k⋅
δ i k,( ) ξbar r s, t,( )l⋅+

...







⋅

ξbar r s, t,( )i δ j l,( ) ξbar r s, t,( )k⋅
δ j k,( ) ξbar r s, t,( )l⋅+

...







⋅+

...













⋅

1
νm 1−

ξbar r s, t,( )i⋅ ξbar r s, t,( ) j⋅ ξbar r s, t,( )k⋅ ξbar r s, t,( )l⋅+

...

νm
1 νm−

ξbar r s, t,( )i⋅ ξbar r s, t,( ) j⋅ δ k l,( )⋅+

...

←

l k n..∈for

k 1 n..∈for

j i n..∈for

i 1 n..∈for

F

:=

 
 
 
Part 6:  SP tensor formulation 
 
 The SP tensor is the key computational aspect of the periodic microstructure 
micromechanical model.  Evaluation of this term for all possible combinations of inclusions is 
where the model becomes computationally expensive.  An alternate program to compute SP that 
encompasses all of the previous calculations has been written in Fortran.  It is a more efficient 
way of determining SP, and the values can be entered into this program with for the continuation 
of the model computation  
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SP N α, β,( ) Sold 0←

continue r 0( ) s 0( )∧ t 0( )∧if

S fβ gp r s, t, α,( )⋅ gm r s, t, β,( )⋅ FSP r s, t,( )⋅←

Snew S Sold+←

Sold Snew←

t N− N..∈for

s N− N..∈for

r N− N..∈for

Snew

:=  

 
α 1 minc..:=   β 1 minc..:=  
 
SPα β, SP 1 2, α, β,( ):=  
 
Matrix representation of SP for all possible combinations of inclusions 
 
 
SPtotal

Sold SPα 1,( )
2

← β 1if

Saug augment Sold SPα β,( )
2

,





←

Sold Saug←

otherwise

β 1 minc..∈for

Soldstack Saug← α 1if

Sstack stack Soldstack Saug,( )←

Soldstack Sstack←

otherwise

α 1 minc..∈for

Sstack

:=

SPα 1,

 

 
SPtotal is the construction of the 6*minc by 6*minc matrix using the computed value of SP 
above. 
 
SPdata is an input variable for externally computed values of SP for  N 3:=    
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SPdata
1 2 3 4 5 6

1

2

3

4

5

6

0.2774 0.1147 0.0793 -0.005 0.0005 -0

0.0122 0.0677 -0.0217 0.0659 -0 0

0.2358 0.2373 0.629 -0.0248 -0.0002 -0

0.03 0.1009 0.0102 0.2561 -0 0.0003

0.0009 0.0003 0.0002 -0 0.3587 0.0305

0 0 -0 0.0003 0.0305 0.1312

:=

 
 
Because of the imported data, the SP terms need to be separated into the sub-matrices, as given 
in the Mathcad computation of SP 
 
 
αstep α( ) α 5 α 1−( )⋅+:=  βstep β( ) β 5 β 1−( )⋅+:=  
 
SP

Sα β, submatrix SPdata αstep α( ), αstep α( ) 5+, βstep β( ), βstep β( ) 5+,( )←

β 1 minc..∈for

α 1 minc..∈for

S

:=

 
 

W

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

2

0

0

0

0

0

0

2

0

0

0

0

0

0

2





















:=

 
 
W is the Reuter matrix, which is used to resolve the double contraction of two tensors 
represented by matrices. 
 
Part 7:  Resolution of ξξξξ and ζζζζ vectors for solution of the linear 
system to produce the coefficients of the eigenstrain, Fεεεε* 
 
N 1:=     M N:=  
 

Nzero
2 N⋅ 1+( )3

2
1
2

+:=  Nzero 14=   ζ r s, t,( ) ξ r s, t,( ):=  
 
Ntotal 2 N⋅ 1+( )3:=   Ntotal 27=  
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ξc i 0←

i i 1+←

xi i r s t( )←

t N− N..∈for

s N− N..∈for

r N− N..∈for

x

:=   ζc i 0←

i i 1+←

zi i u v w( )←

w M− M..∈for

v M− M..∈for

u M− M..∈for

z

:=  

 
r x( ) ξcx( )

1 2,
:=   u z( ) ζcz( )

1 2,
:=   s x( ) ξcx( )

1 3,
:=  

 
v z( ) ζcz( )

1 3,
:=   t x( ) ξcx( )

1 4,
:=   w z( ) ζcz( )

1 4,
:=

 
 
Evaluation of the integral form for each tow geometry 
 

Itow a i,( )
1

VRVE y0i

yfi
y

x0i

xfi
x

Fbot x y, i,( )

Ftop x y, i,( )

ze i− a X x y, z,( )⋅( )⋅⌠

⌡

d
⌠


⌡

d
⌠


⌡

d⋅:=

 
 
Evaluation of the Fourier coefficient of the tow stiffness matrices, FC(ξ) 
 
FC a i,( ) expint Itow ξ r a( ) s a( ), t a( ),( )( ) i,[ ]←

Cii jj, Cavgi




 ii jj,

expint⋅←

jj 1 6..∈for

ii 1 6..∈for

CCa C←

:=

 
 
 
Applied strain field 
 
ε0 0.001 0 0 0 0 0( )T:=  
 

ε0 is the tensorial strain field that is applied to the RVE 
Evaluation of the Fourier terms for (ξ-ζ) 
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FCdiff a b, i,( ) expint Itow ξ r a( ) s a( ), t a( ),( ) ζ u b( ) v b( ), w b( ),( )−( ) i,[ ]←

Cii jj, Cavgi




 ii jj,

expint⋅←

jj 1 6..∈for

ii 1 6..∈for

CCa C←

:=

 
 
FSPξ a( ) FSP r a( ) s a( ), t a( ),( ):=  
 
 

zero

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0





















Pa⋅:=

 
 
FSPζ b( ) FSP u b( ) v b( ), w b( ),( ):=  
 
Evaluation of the Left side of the linear system of Equation (3.57) for a given tow 
 
 
Left a i,( )

L FCdiff a b, i,( ) W⋅ FSPζ b( )⋅ W⋅← a b≠( ) a Nzero≠( )∧if

L FCdiff a b, i,( ) W⋅ FSPζ b( )⋅ W⋅( ) Cm W⋅ FSPξ a( ) W 1−−



⋅−← a b( ) a Nzero≠( )∧if

L zero← a b≠( ) a Nzero( )∧if

L Cm− W⋅ FSPξ a( ) W 1−−



⋅← a b( ) a Nzero( )∧if

Lold L←

continue

b 1if

Lnew augment Lold L,( )←

Lold Lnew←

b 1>if

b 1 Ntotal..∈for:=
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Evaluation of the right side of Equation (3.57) 
 
Right a i,( ) Cm FC a i,( )−( ) W⋅ ε0⋅:=  
 
The terms AA and b are the routines that assemble each Left and Right calculation into a matrix 
form. 
 
AAi

L Left a i,( )←

Lold L←

continue

a 1if

Lnew stack Lold L,( )←

Lold Lnew←

a 1>if

a 1 Ntotal..∈for

Lold

:=  bi

R Right a i,( )←

Rold R←

continue

a 1if

Rnew stack Rold R,( )←

Rold Rnew←

a 1>if

a 1 Ntotal..∈for

Rold

:=

 
 
The Fourier coefficients of the eigenstrain are determined for a given N value by solving the 
linear system:  [AA][Fε*]=[b] 
 
Fεstari lsolve AAi bi,( ):=  
 
Fε i( )

eigenβ submatrix Fεstari βstep β( ), βstep β( ) 5+, 1, 1,( )←

β 1 Ntotal..∈for

eigen

:=  

 

εstar is the equation representing the addition of the coefficient terms for all values of n1, n2, and 
n3 and a given point in the RVE 
 

εstar x y, z, i,( )

1

Ntotal

a

Fε i( )a ei ξ r a( ) s a( ), t a( ),( ) X x y, z,( )⋅( )⋅⋅∑
=

:=

 
 

εstar .001− m⋅ ay−, Fbot .001− m⋅ ay−, 4,( ), 4,( ) =   εstardata

0.00435−

0.0003−

0.00084−

0.00291−

0.00147−

0.00192





















:=  
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Bounds on the RVE: 
 

ax− x≥ ax≤   ay− y≥ ay≤   az− z≥ az≤  
 
Determining if a given point in the RVE is in a given tow, or the matrix 
 
 

w x y, z,( ) i 1← ax− x≤
ag1
−

2
≤









ay− y≤ ay≤( )∧ z Fbot x y, 1,( )≥( )∧ z Ftop x y, 1,( )≤( )∧if

i 2← ax x≥
ag1

2
≥









ay− y≤ ay≤( )∧ z Fbot x y, 2,( )≥( )∧ z Ftop x y, 2,( )≤( )∧if

i 3← ay y≥
ag2

2
≥









ax− x≤ ax≤( )∧ z Fbot x y, 3,( )≥( )∧ z Ftop x y, 3,( )≤( )∧if

i 4← ay− y≤
ag2
−

2
≤









ax− x≤ ax≤( )∧ z Fbot x y, 4,( )≥( )∧ z Ftop x y, 4,( )≤( )∧if

i 5← otherwise

i

:=

 
 
w .001− m⋅ ay−, Fbot .001− m⋅ ay−, 4,( ),( ) 4=  
 
 

εpsum x y, z, a,( ) i w x y, z,( )←

Aj
y0i

yfi
v

x0i

xfi
u

Fbot u v, i,( )

Ftop u v, i,( )

wεstar u v, w, i,( ) j ei ξ r a( ) s a( ), t a( ),( ) X x y, z,( ) X u v, w,( )−( )⋅[ ]⋅⋅
⌠


⌡

d
⌠


⌡

d
⌠


⌡

d←

j 1 6..∈for i 5<if

A j 0←

j 1 6..∈for i 5if

A

:=

 
 

εpsumn1

Aa εpsum .001− m⋅ ay−, Fbot .001− m⋅ ay−, 4,( ), a,( )←

a 1 Ntotal..∈for

A

:=

 
 
Evaluation of the disturbance strain at a given point 
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Evaluation of the disturbance strain by means of Equation (3.55) 
 

εp x y, z,( )
1

VRVE
1

Ntotal

a

FSPξ a( ) W⋅ εpsumn1a( )⋅∑
=

⋅:=

 

 
 

εpdata εp .001− m⋅ ay−, Fbot .001− m⋅ ay−, 4,( ),( ):=   εpdata

0.0001

0.00024−

7.02796 10 5−×

2.69811 10 5−×

0.00045

0.00018























:=  

 
 

σeffdata Cm W⋅ ε0 εpdata+ εstardata−( )⋅:=    σeffdata

1

1
2

3

4

5

6

2.46365·10  7

1.17005·10  7

1.37412·10  7

7.04875·10  6

4.608·10  6

-4.176·10  6

Pa=
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