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ABSTRACT 

Interaction Between Primary Alveolar Macrophages And Primary Alveolar Type II 
Cells Under Basal Conditions 

And After Lipopolysaccharide Or Quartz Exposure 
 

Rania S.  Kanj 

Evidence suggests that hyperproduction of reactive oxidants and inflammatory mediators 
plays a critical role in adverse pulmonary responses to silica or lipopolysaccharide (LPS).  
The main objective of this study was to contribute to advancing the understanding of the 
role of AM’s and type II (TII) cells in the induction of pulmonary inflammation and 
injury in response to silica and LPS, and improve our understanding of the interaction 
between AM’s and TII cells which would occur in vivo.  To reach this objective, three 
aims were put forth.  1) Determine the relative responsiveness of primary rat AM’s, 
primary rat TII cells and RLE-6TN, a rat TII cell line to silica and LPS under comparable 
conditions.  2) Determine if AM/TII intercellular interactions exist and under what 
conditions they can be demonstrated.  3) Attempt to identify the mediator(s) responsible 
for this interaction.  The following findings were made: 1) although AM’s were generally 
found to release more inflammatory mediators than TII cells following LPS or silica 
exposures, primary TII cells clearly produced significant levels of mediators which could 
be capable of contributing considerably to lung inflammation and injury.  2) Since the 
RLE-6TN cell line responses to LPS and silica exposures were generally considerably 
less intense and required higher doses of stimulant than those measured in primary TII 
cells, RLE-6TN cells may not be a good substitute for primary TII cells in studying the 
pulmonary epithelium.  3) LPS was more potent than silica in inducing inflammatory 
cytokines from the three cell types.  However, silica was found to be as potent as LPS or 
even slightly more potent as an inducer of cellular oxidants, especially from primary TII 
cells.  4) Surfactant appears to be an inhibitory mediator released from TII cells and acts 
on AM’s.  5) Basal transwell co-culture conditions are better than mixed co-culture 
conditions to study AM/TII cell interactions since the inhibitory effect of the surfactant in 
the transwell co-culture is minimized.  6) Oxidants, TNF-alpha, IL-1beta, prostaglandins 
and leukotrienes, probably do not directly affect the AM/TII intercellular interaction; 
instead, they (and especially TNF-alpha) appear to indirectly modulate the complex 
pathways of the AM/TII communication.  
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Introduction 

The lung can be susceptible to disease because of its direct contact with the outside 

environment.  Alveolar macrophages (AM’s) phagocytize and clear inhaled microbes and 

particles, therefore, playing an important role in lung defense.  However, when exposed 

to high dust burdens, AM’s secrete reactive products and cytokines, which can cause lung 

inflammation and damage.  This excessive inflammation is believed to play a critical role 

in occupational lung diseases, such as silicosis and toxic pneumonitis (Zhang et al., 

2000).  Recent evidence suggests that alveolar type II epithelial cells (TII) may also 

contribute to lung inflammation (Blau et al., 1994; Crippen et al., 1995; Finkelstein et al., 

1997).   

Main objective: Contribute to advancing the understanding of the role of AM’s and TII 

cells in the induction of pulmonary inflammation and injury in response to silica and 

LPS, and improve our understanding of the interaction between AM’s and TII cells which 

would occur in vivo.  

Aim 1: Determine the relative responsiveness of AM’s, primary TII cells and a TII cell 

line to silica and LPS under comparable conditions.  

Aim 2: Determine if intercellular interactions exist and under what conditions they can be 

demonstrated.  

Aim 3: Attempt to identify the mediator(s) responsible for this interaction.   

The three cell types used in this study are primary rat AM’s, primary rat TII cells, and 

RLE-6TN, a rat TII cell line.  

Alveolar macrophages (AM’s): 
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AM’s are the alveolar derivatives of blood monocytes and are located at the air/tissue 

interface within the surfactant lining of the alveolar region.  These cells are the first line 

of defense against outside contaminants and invaders (Lohmann-Matthes et al., 1994).  

AM’s are the phagocytes of the alveolar region.  With the variety of membrane receptors 

they possess (Johansson et al., 1997), AM’s are able to bind a variety of particles and 

compounds including LPS (Martin, 1999) and silica (Kobzik, 1995; Iyer et al., 1996).  

Once binding has occurred, AM’s engulf inhaled particles and migrate up the mucociliary 

escalator or enter the lymphatic ducts to be cleared from the lung (Stober and McClellan, 

1997).  Phagocytizing AM’s can produce reactive oxygen species through a respiratory or 

oxidative burst that directly contributes to killing microorganisms (Johnson, 1978).  

AM’s are also capable of directly killing viruses by producing interferon (Hahon and 

Castranova, 1989).  When incapable of killing foreign organisms by themselves, AM’s 

recruit more phagocytic cells to the area by releasing chemokines, such as macrophage-

inflammatory protein-2 (MIP-2), which acts to attract polymorphonuclear leukocytes 

(PMN’s), monocytes and other cells from the pulmonary capillaries to the alveolar 

airspaces (Nielson et al., 1995).   

Type II alveolar epithelial cells (TII): 

TII cells comprise about 4% of the alveolar epithelial surface, but they constitute 

approximately 60% of the alveolar epithelial cell population in number (Crapo et al., 

1983).  For a long time, they have been known to synthesize, store and secrete the 

surfactant material lining the alveoli.  Such production and release of surfactant has been 

demonstrated using both in vivo (Askin and Kuhn, 1971) and in vitro (Mason et al., 1980; 

Miles et al., 1988) model systems.  Surfactant consists mainly of phospholipids (Sanders 
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and Longmore, 1975) and proteins, and its role in decreasing surface tension and, thus, 

decreasing the work required to inflate the lungs was demonstrated by Clements (1957 

and 1977).  However, other roles have also been attributed to surfactant, such as 

enhancement of bacterial phagocytosis and killing by AM’s (O’Neil et al., 1984) and 

decreasing the cytotoxicity of inhaled particles by coating their surface (Wallace et al., 

1985).  TII cells are also an important site for xenobiotic metabolism and are strategically 

located in close contact with both the pulmonary air and blood phases.  In effect, TII cells 

are capable of detoxifying or toxifying foreign substances, since they’re rich in 

endoplasmic reticulum (ER) which exhibits P-450-dependent monooxygenase activity 

(Castranova et al., 1988).  TII cells have another important role in the lungs, which is to 

maximize gas exchange.  This is accomplished by the transcellular transport of Na+ and 

H2O, thereby, keeping the alveoli dry and preventing edema (Jones et al., 1983).  Indeed, 

TII monolayers in culture exhibit "Dome" formation as Na+ is passively transported into 

the cell at the luminol side and actively transported to the blood at the basolateral side, 

and water follows (Mason et al., 1982: Castranova et al., 1988).  Regeneration of the 

alveolar epithelium is another important role played by TII cells in the lungs, where TII 

cells have the ability to proliferate following injury (Panos et al., 1990) and de-

differentiate into TI cells to repair the alveolar epithelium (Leslie et al., 1985).  TII cells 

also contribute to protecting the lung from oxidant injury since they have specialized 

pathways for the uptake of antioxidants, such as vitamin C and taurine (Castranova et al., 

1983; Banks et al., 1989), which help in resistance to oxidant damage.  Like AM’s, TII 

cells play a major antiviral role by producing interferon upon viral exposure (Hahon and 

Castranova, 1989).  They can also produce NO., ROS and cytokines in response to 
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different stimulants (Punjabi et al., 1994) and, thus, contribute to cell recruitment in 

response to an inflammatory agent and microbial killing (Crippen et al., 1995).   

Rat lung epithelial-T-antigen negative (RLE-6TN) cells: 

Rat lung epithelial-T-antigen negative, or RLE-6TN cells were derived from alveolar TII 

cells by Kevin Driscoll et al.  (1995a).  Like primary TII cells, RLE-6TN cells contain 

lamellar bodies for surfactant storage, and they have the ability to produce cytokines, NO.  

and other ROS when stimulated (Stringer and Kobzik, 1998; Driscoll et al., 2001).  

Unlike primary TII cells, RLE-6TN cells maintain their morphology and the ability to 

produce surfactant even after a long time in culture (few days).  

Of major importance to lung pathology are two main airborne contaminants: silica and 

lipopolysaccharide (LPS).   

Silica: 

Silica or silicon dioxide (SiO2), mostly in its quartz crystalline form, is a common 

mineral found in most rocks around us (Peters, 1986).  Being highly fibrogenic and 

biologically toxic, it can bind to membrane receptors on target cells, including AM’s 

(through their surface scavenger receptors) and TII cells (Kobzik et al., 1995; Iyer et al., 

1996).  Silica can directly cause cellular toxicity.  It can also initiate an inflammatory 

response that could include increased oxidant production and proinflammatory mediator 

secretion as a result of nuclear transcription factor-κB (NF-κB) activation (Kang et al., 

2000; Vallyathan and Shi, 1997) in target and recruited cells.  Such events could 

eventually lead to lung injury and fibrosis (Castranova, 1998 and 2000 a) or even lung 

cancer (Driscoll et al., 1997).  Cleavage of crystalline silica, as in rock drilling, tunneling 

and sand blasting, results in the generation of the highly toxic silicon-based radicals (Si.    
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and Si-O.  ).  Upon inhalation, these surface radicals can then interact with water 

molecules, producing the highly toxic hydroxyl radicals (OH. ) and other radicals 

(Vallyathan et al., 1988; Castranova, 1994).  Many industry-related occupations have a 

relatively high silica exposures.  In fact, among the highest exposure occupations are rock 

drilling, sandblasting, tunneling, silica flour mill operations, stone grinding, and ceramic 

making (Castranova and Vallyathan, 2000 b).  Through either acute or chronic exposures, 

silica particles can result in biopersistence in the lung alveolar spaces (Stober and 

McClellan, 1997), leading to cell damage, release of inflammatory mediators, and in 

many cases lung fibrosis or silicosis (Donaldson and Tran, 2002).  Among the symptoms 

accompanying acute silicosis are pulmonary edema, interstitial inflammation and 

alveolitis, alveolar epithelial hypertrophy and hyperplasia, and increased surfactant 

phospholipid release by alveolar TII cells (Driscoll et al., 1990; Porter et al., 2001).  With 

chronic silicosis, silicotic nodules, characterized by collagen deposited in a spiral pattern, 

can be recognized mainly in the upper lung lobes (Castranova and Vallyathan, 2000 b).  

LPS: 

LPS is a lipid-carbohydrate component of gram-negative bacterial endotoxin, which is 

the bacteria’s outer cell membrane complex.  Endotoxin, including the active LPS 

component, can be associated with indoor or outdoor organic dust particles, if humidity 

and temperature conditions are favorable to microbial growth.  Endotoxin exposure can 

occur in agricultural settings, such as silo unloading or poultry processing, as well as in 

textile industry, wastewater treatment and other occupations (Burrell, 1997).  

One of the many ways through which LPS can be recognized by target cells is by binding 

with an LPS binding protein (LPB) to CD 14 cellular membrane receptors (Martin, 
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1999).  Other LPS cell membrane receptors are Toll Like Receptors (TLR) (Chen et al.,  

2002).  This recognition is capable of triggering a cell signaling cascade that usually 

involves modification of G proteins and activation of protein kinase C in a calcium-

dependent fashion.  Although recognition and intracellular signaling can differ with target 

cell and type of receptor LPS binds to, the result of this binding with most target cells is 

usually the stimulus for an inflammatory response (Blau et al., 1994), which could be 

associated with many inflammatory lung diseases.  The cellular signaling cascade 

triggered by LPS binding to target cells is thought to induce synthesis of inducible nitric 

oxide synthase (iNOS), activation of NAD(P) oxidase, activation of cyclooxygenase-2 

(COX-2), and activation of many transcription regulatory factors like NF-κB (Calvano et 

al., 2003).  Activation of NF-κB stimulates the synthesis and release of many 

inflammatory mediators, such as the pro-inflammatory cytokines TNF-α, IL-β, and IL-6, 

( Chen et al., 1995; Christman et al., 1998).  Acute exposure to LPS is associated with 

diseases such as byssinosis, acute respiratory distress syndrome (ARDS) and sepsis, 

whereas a chronic exposure is associated with lung diseases, such as asthma, chronic 

bronchitis, chronic obstructive pulmonary disease (COPD), chronic byssinosis and other 

serious lung diseases.  A typical LPS lung inflammation is usually accompanied by fever, 

chills, cough, and tightness of chest caused by pulmonary edema.   Also, symptoms of 

chronic LPS exposure are typical for a chronic lung inflammation and include 

peribronchial and perivascular lymphatic aggregates, alveolar and airway changes 

including alveolar enlargement, airway wall thickening and mucus cell metaplasia 

(Vernooy et al., 2002).  LPS exposure is also characterized by a elevated PMN number in 

the bronchoalveolar lavage (BAL) fluid.   
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The end-points which were investigated in the present study were reactive oxygen species 

(ROS), nitric oxide (NO. ), tumor necrosis factor-α (TNF-α), macrophage inflammatory 

protein-2 (MIP-2), interleukin-1β (IL-1β), and interleukin-6 (IL-6).   

Reactive oxygen species (ROS): 

Although oxygen is vital for energy generation by mammalian cells via aerobic oxidative 

metabolism, some oxygen metabolites can be very toxic to cells if produced excessively.  

Such oxygen metabolites are termed reactive oxygen species or reactive oxygen 

intermediates (ROS or ROI) and include the hydroxyl radical (OH. ), superoxide radical 

(O2
-. ) and hydrogen peroxide (H2O2) (Castranova, 1998).  In resting cells, mitochondrial 

“leakage” is one of the main sources for ROS, whereby 2-4% of the oxygen consumed 

for ATP production is reduced to O2
-.   rather than water (Chen and Castranova, 2003).  

This “leakage” could increase upon cellular activation, since cellular respiration 

increases.  Another main site for ROS formation is the membrane-bound multisubunit 

enzyme complex termed NADPH oxidase.  This enzyme is usually dormant in resting 

cells and is activated upon complexation of cytosolic and membrane subunits as a result 

of cell binding to a stimulus (Babior, 1999).  When cells like AM’s and TII bind toxic 

substances like LPS or silica, high levels of ROS are generated that can overwhelm the 

cells’ antioxidant capacity and cause oxidative stress.  ROS are generally very unstable 

and highly reactive.  They can cause direct cell damage by oxidizing lipids (Dalal et al., 

1990), proteins, carbohydrates, and DNA which confer to ROS a microbicidal and 

tumoricidal role (Johnston, 1978).  They can also cause indirect cell and /or tissue 

damage by inducing cellular production of other pro-inflammatory mediators, such as 

TNF-α, MIP-2, IL-1β, IL-6 and other mediators regulated by NF-κB and AP-1 nuclear 
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transcription factors (Comhair and Erzurum, 2002).  The main set of chemical reactions 

leading to ROS generation include the following (Chen and Castranova, 2004): 

                                     NADPH 
2 O2 +NADPH + H+        →         2 O2

-.  + NADP+ + 2H+ 
                                    oxidase 

2 O2
-.   + 2H+ → H2O2 + O2 

O2
-.   + H2O2 →OH.  + OH- + O2 

Substantial evidence exists that support the ability of AM’s and TII cells to release ROS 

upon stimulation.  Indeed macrophage release of ROS upon LPS (Chandel et al., 2000) 

and silica (Kang et al., 2000) exposure has been suggested to be a mediator in NF-κB 

activation and TNF-α and MIP-2 release (Barrett et al., 1999 b).  Also, TII cells release 

of ROS has been detected in a murine TII cell line (MLE-15) upon silica exposure using 

an oxidant sensitive dye (Barrett et al., 1999 a).  ROS production has also been detected 

in a rat TII cell line (RLE-6TN) (Driscoll et al., 2001).  

Nitric oxide (NO. ): 

Similar to ROS, reactive nitrogen species (RNS), such as nitric oxide (NO. ), nitrite (NO2) 

and peroxynitrite (ONOO-), are vital for normal cell functioning but can be toxic if 

produced excessively by stimulated cells.  Also similar to ROS, RNS are generally very 

unstable and highly reactive.  They can cause direct or indirect cell and /or tissue damage 

by inducing both oxidizing and/or nitrating cellular damage (Jorens et al., 1993).  RNS 

may also induce production of other pro-inflammatory mediators, such as TNF-α, MIP-2, 

IL-1β, IL-6 and other mediators regulated by activator protein-1 (AP-1) and nuclear 

transcription factor-κB (NF-κB) (Comhair and Erzurum, 2002; Chen and Castranova, 

2003).  NO.  gas is released as a by-product of the conversion of L-arginine to L-citruline, 
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catalyzed by the enzyme nitric oxide synthase (NOS).  Of the three types of the cytosolic 

NOS  enzymes, the calcium independent NOS II (or iNOS), which is the inducible form, 

has been the one mostly linked with reactive stress caused by overactivation of the 

enzyme upon its synthesis following cell stimulation (Comhair and Erzurum, 2002; 

Jorens et al., 1993).  The main chemical reactions of NO.  resulting in the generating of 

reactive oxidants include (Castranova, 1998): 

NO.  + O2
-.    → OONO –  

OONO - + H+ → HOONO → OH.  + NO2 

NO.   release from primary AM’s following in vivo silica exposure has been shown to 

increase significantly compared to control.  In contrast, NO.   release from AM’s 

following in vitro silica exposure was not significantly enhanced (Huffman et al., 1998).  

Also, mRNA for iNOS significantly increased in AM’s following intratracheal (IT) 

instillation of silica (Castranova, 1998).  Whereas silica exposure seems to require the 

intercellular communication found in vivo to induce NO.  synthesis from AM’s, LPS has 

been shown to induce both NO.  and iNOS mRNA synthesis in macrophages following 

both in vivo (Blackford et al., 1994) and in vitro (Punjabi et al., 1994; Rao et al., 1999) 

LPS exposure.  As for TII cells, iNOS enzyme and mRNA release have been reported to 

be significantly increased following in vivo LPS (Toga et al., 2001) or silica (Porter et al., 

2002 b) exposure.  

Cytokines and chemokines: 

Cytokines are multifunctional extracellular signaling polypeptide mediators of cell 

behavior and intercellular communication involved in maintaining a steady-state lung 

environment under resting conditions, but are also involved in many ways upon tissue 
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injury (Kelley, 1990).  Cytokines exert their action by binding to their specific surface 

receptors on target cells ( Christman et al., 1998) and triggering a cascade of intracellular 

events that could lead to diverse effects through activation of various transcription 

factors.  Similar to ROS, an imbalance between anti and pro- inflammatory cytokines in 

favor of the latter could result in tissue inflammation and injury (Martin, 1999).  

Chemokines are chemotactic mediators that help recruit inflammatory cells like PMN’s, 

monocytes, lymphocytes, and macrophages to sites of microbial or particle deposition 

(Driscoll et al., 1996 a).   

Tumor necrosis factor-alpha (TNF-α): TNF-α is a very important inflammatory cytokine 

synthesized as an early response mediator in cellular stimulation (Martin, 1999).  It’s a 

mediator in the recruitment and activation of inflammatory cells, cell proliferation, and 

extracellular matrix protein synthesis (Driscoll, 1995 and 1996 b).  It can stimulate the 

production of other pro-inflammatory cytokines, such as MIP-2 (Driscoll et al., 1996 a; 

Barrett et al., 1999 a) and IL-6 (Crestani et al., 1994), and other mediators such as ROS 

and NO.  through the activation of NF-κB (Driscoll et al., 2001; Barrett et al., 1999 a), 

and/or other cellular components.  Primary AM’s have been reported to produce 

increased TNF levels upon exposure to LPS or silica in vitro compared to control (Dubois 

et al., 1989).  Also, TNF-α mRNA and protein has been shown to increase upon LPS or 

silica exposure compared to control in a murine macrophages cell line (RAW 264. 7) 

(Chen et al., 1995; Barrett et al., 1999 b).  In addition, TII cells’ TNF-α levels have been 

shown to increase following LPS (McRitchie et al., 2000; Haddad et al., 2002) or silica 

(Finkelstein et al., 1997) exposure.   
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Interleukin-1beta (IL-1β): IL-1β is an early response pro-inflammatory cytokine with 

many similar effects as TNF-α, such as recruitment and activation of inflammatory cells, 

cell proliferation, extracellular matrix protein synthesis and induction of other pro-

inflammatory cytokines.  IL-1 secretion from AM’s has been shown to increase following 

both in vivo and in vitro LPS exposures (Castranova et al., 2001), and following silica 

exposure (Driscoll et al., 1990).  Also, TII cells have been shown to increase their IL-1β 

production following LPS (Haddad et al., 2002) or silica (Finkelstein et al., 1997) 

exposure.  

Interleukin-6 (IL-6): IL-6 is a pro-inflammatory cytokine associated with fibrogenic 

activity (Lohmann-Matthes et al., 1994).  IL-6 is produced by AM’s following in vivo 

LPS exposure (Finkelstein et al., 1997).  It is also produced by fetal alveolar TII cells 

following LPS exposure (Haddad et al., 2002) and by hyperplastic TII cells in the fibrotic 

human lung (Crestani et al., 1994).  IL-6 synthesis can be mediated by other cytokines, 

such as TNF-α and IL-1β (Kelley, 1990; Crestani et al., 1994).   

Macrophage inflammatory protein-2 (MIP-2): MIP-2 is a pro-inflammatory cytokine with 

chemotactic activity.  It is involved in the recruitment of inflammatory cells (especially 

PMN’s) to the site of tissue damage.  MIP-2 also has a role in stimulating production of 

other inflammatory mediators, such as IL-1β, TNF-α and histamine (Driscoll, 1994), and 

it has been reported to enhance bacterial phagocytosis and killing by AM’s and PMN’s 

(Standiford et al., 1996).  MIP-2 secretion has been shown to increase in AM’s following 

LPS (Shi et al., 1999) and silica (Driscoll et al., 1996 a; Barrett et al., 1999 b) exposures.  

In addition, MIP-2 mRNA and protein increased in TII cells after LPS or silica exposures 

in vivo and in vitro (Driscoll et al., 1996 a; Barrett et al., 1998 and 1999 a).  
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Leukotrienes and prostaglandins: They are products of the breakdown of arachidonic acid 

(cell membrane component) by lipoxygenase (LO) and cyclo-oxygenase (CO) enzymes, 

respectively.  Leukotrienes and prostaglandins are associated with increased 

inflammation, including chemotaxis and inflammatory cytokine production (Dubois et 

al., 1989).  They have been shown to be released from AM’s and macrophage cell lines 

upon both LPS and silica exposures (Dubois et al., 1989; Lohmann-Matthes et al., 1994; 

Chen et al., 1995).  

Although there has been some studies looking at mediator release from AM’s, TII and 

RLE-6TN cells individually upon LPS and silica exposures (Bissonnette et al., 1990, 

McRitchie et al., 2000 and Driscoll et al., 1996 a), there have been no studies, as far as 

we know, comparing the responses of the 3 cell types side-by-side, and only few studies 

looking at the interaction between primary AM’s and primary TII cells in a co-culture 

system.  

Importance of AM/TII intercellular interaction: Many studies have reported different 

results between in vitro and in vivo settings.  For instance, Huffman et al.  (1998) saw an 

increase in NO.  released from AM’s following an in vivo silica exposure but could not 

detect this increase upon exposing AM’s to silica in vitro.  Also, conditioned medium 

from BAL fluid (which includes mediators released from other alveolar cells including 

TII cells and polymorphonuclear leukocytes (PMN’s)) following in vivo silica exposure 

was effective in making naïve AM’s responsive to silica exposure in vitro.  Hence, it is 

clear that intercellular interactions play a major role in cellular responses, such as NO.  

production.  Many more studies contribute to the evidence of the importance of AM/TII 

intercellular interactions.  Those include a study by Miles et al.  (1999) that has shown 
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that surfactant (released from TII cells) inhibits LPS-induced NO.  production from 

AM’s.  And along the same lines, Rao et al.  (2000) have reported that surfactant 

decreases LPS-induced TNF-α and IL-1β release from AM’s.  In addition, Blau et al.  

(1994) have shown that SP-A, an important surfactant protein, increases the production of 

colony stimulating factor (CSF) from primary AM’s in vitro.  Also, Leslie et al.  (1985) 

have reported that AM’s stimulate DNA synthesis in TII cells in vitro, and Standiford et 

al.  (1990) have shown that conditioned media from LPS-stimulated AM’s increased IL-8 

mRNA in a human pulmonary TII-like epithelial cell line (A549).  One more study that 

stresses the importance of intercellular interactions in cellular responses is by Crestani et 

al.  (1994) who have shown that AM-conditioned media increases IL-6 production by TII 

in vitro under basal conditions.   

As discussed above, evidence suggests that hyperproduction of reactive oxidants and 

inflammatory mediators plays a role in adverse pulmonary responses to silica or LPS.  It 

is also clear that AM’s and TII cells are involved in the production of these reactive and 

inflammatory products.  However, no data were found that compared the release of 

several inflammatory mediators from AM’s and TII cells under the same culture 

conditions, same exposures, and same cell concentrations.  Also, no literature was found 

that compared the responsiveness of a type II cell line to primary TII cells under the same 

culture conditions and following exposure to LPS and silica.  In addition, although 

AM/TII cell interactions have been suggested to be very important in cellular responses, 

this interaction has not been studied in parallel under different interaction conditions 

(transwell and mixed co-culture) or different exposure conditions (basally, upon LPS 

exposure, or following silica exposure).  And finally, there haven’t been any studies that 
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attempted different approaches to try to find specific mediators important in AM/TII 

intercellular communication.       

Thus, the following questions remain unresolved: 

1) What is the relative contribution of AM’s and TII cells to the production of oxidants, 

chemokines, and cytokines in the lungs in response to LPS and silica? The answer to this 

question could help in revealing which cell type contributes more inflammatory 

mediators following lung injury caused by LPS or silica.  It could also help reveal which 

agent is more potent at stimulating inflammatory mediators release and hence inducing 

more severe lung injury.   

2) Is the responsiveness of RLE-6TN cell lines and primary TII cells similar? The answer 

to this question could determine if RLE-6TN cell line could be used in research in place 

of primary TII cells (since the TII isolation technique consumes animals, material, and 

time and is thus costly).    

3) Does intercellular communication between AM’s and TII cells alter the activity of 

AM’s and/or TII cells? If so, what mediator(s) is/are involved in this intercellular 

communication? The answer to this question could help in designing in vitro experiments 

which more closely mimic in vivo situations.   

To address these questions, this dissertation has the following objective and aims.  

Main objective: Contribute to advancing the understanding of the role of AM’s and TII 

cells in the induction of pulmonary inflammation and injury in response to silica and 

LPS, and improve our understanding of the interaction between AM’s and TII cells which 

would occur in vivo.  
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Aim 1: Determine the relative responsiveness of AM’s, primary TII cells and RLE-6TN, 

a TII cell line to silica and LPS under comparable conditions.  

Aim 2: Determine if intercellular interactions exist and under what conditions they can be 

demonstrated.  

Aim 3: Attempt to identify the mediator(s) responsible for this interaction.  
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Materials and Methods 

Animal Model: All primary cells were collected from naive male Sprague-Dawley rats 

250-300 g in weight (Hilltop Laboratory Animals, Scottsdale, PA).  The animals were 

housed at the National Institute for Occupational Safety and Health animal facility, which 

is approved by AAALAC.  Rats were housed under temperature and humidity controlled 

conditions under a 12 hour light/12 hour dark cycle and were allowed a week of 

acclimation before use in any experiment.  They had free access to food and water at all 

times.   

AM Isolation by BAL: Rats were anesthetized intraperitoneally with sodium 

pentobarbital (65 mg/kg body weight).  The abdomen was cut vertically, the intestines 

pushed aside, and the renal artery cut to exsanguinate the animals.  The diaphragm was 

carefully pierced to allow intrathoracic massaging of the lungs during the lavage 

procedure.  The trachea was then exposed and a tiny whole was cut in it to allow an 18 

gauge needle coated with plastic tubing (inside diameter = 0. 040’’) to be inserted inside, 

after which the trachea was tied with surgical thread to prevent any movement of the 

needle during the lavage procedure.  While massaging the lungs, a solution of ice-cold 

calcium and magnesium-free phosphate buffered saline (PBS, 1x, 150 mM NaCl, 1. 9 

mM KH2PO4, 9. 35 mM Na2PO4, pH 7. 3-7. 5) was repetitively introduced and sucked 

back out of the lungs through a 10 ml syringe attached to the tracheal canula.  The first 

lavage consisted of only 2 ml/100g body weight to allow any trapped air in the lungs to 

escape and prevent overinflation of the lungs.  Subsequent lavage volumes were 8 ml 

each, and the total volume of BAL fluid collected during this procedure was 

approximately 80 ml.  This fluid was then centrifuged at 1000g for 10 minutes, and after 
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discarding the supernatant, the pellet was resuspended in 1 ml HAM’s F-12 medium (pH 

7. 07-7. 40)supplemented with 1mM glutamine, 100 U/ml of penicillin-streptomycin, and 

10% FBS.  

AM’s were counted using an electronic cell counter (Coulter Multisizer II, Coulter 

Electronics, Hialeah, FL) equipped with a 256 channel cell sizer that counts cells 

according to their diameter.  AM’s were identified as having a diameter of 9-18µm 

(Castranova et al., 1990).  The AM yield was 12 ± 4 million cells/rat (Figure 1: Coulter 

tracing), the purity obtained by BAL was 90-98 % as verified microscopically (Porter et 

al., 2002).  Cell viability measured by LDH release, trypan blue exclusion and total 

protein (TPRO) was 89 ± 5 % (see methods below).  

TII Isolation and Purification by Panning: TII isolation was performed according to 

Jones et al.  (1982).  Rats were anesthetized intraperitoneally with sodium pentobarbital 

(65 mg/kg body weight).  The abdomen was cut vertically, the intestines pushed aside, 

and the renal artery cut to exsanguinate the animals.  The diaphragm was carefully 

pierced to deflate the lungs, and the chest cavity was cut open along the midrib line.  The 

heart and lungs were removed en bloc after cutting the trachea above the lungs and the 

esophagus below the lungs.  The lungs were perfused by instilling approximately 20 ml 

of calcium and magnesium-free PBS through the right ventricle (thin-walled) into the 

pulmonary artery.  Perfusion was completed by instilling approximately 10 ml of the PBS 

solution through the left ventricle (thick-walled) into each of the pulmonary veins until 

the lungs were white.  Next, an 18 gauge needle coated with plastic tubing (inside 

diameter = 0. 040’’) was inserted in the trachea.  The canula was tied with surgical thread 

to prevent any movement of the needle during the procedure.  While the lungs are being 
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massaged, a solution of ice-cold EGTA (0. 2 mM) in PBS was repetitively introduced and 

sucked back out of the lungs through a 10 ml syringe attached to the canula.  The first 

lavage consisted of only 2 ml/100g body weight to allow any trapped air in the lungs to 

escape and prevent overinflation of the lungs.  Subsequent lavage volumes were 8 mls 

each, and the total volume of BAL fluid collected during this procedure was 

approximately 50 ml.  This fluid, which consisted mainly of AM’s, was then discarded.  

The lungs were subsequently twice lavaged with 8 ml of a digestion solution consisting 

of 40 U/ml type I porcine elastase, twice crystallized (ICN Biomedicals Inc., Aurora, 

OH) and 0. 018% DNase from bovine pancreas (USB Corporation, Cleveland, OH) in 

PBS.  The rinsed lung was then filled with digestion solution and left to digest for a total 

of 30 minutes in a 37º C water bath.  Following digestion, the trachea and the main 

bronchi were dissected away and discarded.  The lungs were chopped with a tissue 

chopper set at a cut thickness of 0. 5 mm.  Digestion was then stopped by suspending the 

minced lung tissue in an elastase inhibitor solution (25% FBS and 0. 018% DNase in 

PBS), and the resultant suspension was successively filtered through 3 nylon mesh sheets 

of smaller pore sizes (150, 330, and 440 mesh/cm2, New York Stencil, New York, NY).  

The filtrate was centrifuged at 1000g for 10 minutes.  The pellet containing unpurified 

TII cells was then resuspended in 1 ml PBS.  The cells were then counted and added to 

the panning plate for TII purification.  The panning plate was prepared according to 

Dobbs et al.  (1986) whereby a 100 mm tissue culture dish was coated with 

approximately 2 mg of rat IgG ( Sigma, St Louis, MO) in 4 ml TRIS-base (50mM, pH 9. 

5) for 3 hours at room temperature.  After this coating period the IgG-treated plate was 

washed 5 times with 10 ml PBS, and 1 time with 10 ml culture medium (HAM’s F-12 
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medium supplemented with 1mM glutamine, 100 U/ml of penicillin-streptomycin, and 

10% FBS).  

The cells were added at a concentration of 20-30 million cells/10 ml culture medium/ 

IgG-coated culture dish, and incubated for 1 hour at 37ºC, after which the plate was 

gently rocked and the supernatant which contained the purified TII cells (unlike 

phagocytes, TII cells are a lung cell type that does not have Fc receptors for IgG and thus 

would not adhere to the IgG coated plate) was collected and centrifuged.  The pellet 

obtained from the centrifugation was resuspended in 1ml culture medium, and the cells 

were counted using an electronic cell counter (Coulter Multisizer II, Coulter Electronics, 

Hialeah, FL) equipped with a 256 channel cell sizer that counts cells according to their 

size.  TII cells were identified as having a diameter of 7−12µm (Jones et al., 1982), the 

yield was 25 " 8 million cells/rat (Figure2: Coulter tracing) and the viability was 89. 6 ± 

2. 4%.  TII cells were incubated overnight before using them in any exposure in order to 

let them recover from the isolation procedure.  

TII Identification and Purity Measurements:  

Fluorescent microscopy:TII cells were identified by fluorescent microscopy upon 

phosphine 3R (Roboz Surgical Instrument, Washington, DC) staining whereby the 

lipophylic dye concentrates in the lamellar bodies which store the surfactant to give a 

yellow-green fluorescence (Mason and Williams, 1976).  Phosphine 3R solution in PBS 

was added to the TII cell suspension at a final concentration of 0. 002%.  Two minutes 

later, the stained cells were viewed under a fluorescent microscope (Olympus AX70 

photomicroscope equipped with a Sony 3CCD color video camera DXC 9000) at an 
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absorption peak of 477 nm and an emission peak of 512 nm (Jones et al., 1982).  

Phosphine 3R staining of the isolated TII cell preparation is shown in figure 3.   

Transmission electron microscopy:TEM was also used to identify TII and estimate their 

purity.  In TEM, the cells were pelleted and fixed overnight in Karnovsky’s fixative (2. 

5% gluteraldehyde and 3% paraformaldehyde in 0. 1 M sodium cacodylic buffer pH 7. 

4).  The pellet was post-fixed in 1% osmium tetroxide for 60 minutes, rinsed and placed 

in 1% tannic acid (pH 7. 0) for 60 minutes, and rinsed and placed in 0. 5% uranyl acetate 

for 45 minutes, all in a 8% sucrose and 0. 9% sodium chloride solution.  The sample was 

then dehydrated in an ethanol series and embedded in epon (LX,112, Ladd).  The blocks 

were thin sectioned on a Leica Ultracut and stained with 4% uranyl acetate for 15 

minutes and Reynolds lead citrate for 20 minutes.  The sections were viewed on a JOEL 

1220 TEM at 80 kev.  TII cells were identified as having lamellar bodies with swirls of 

surfactant inside.  TII cell purity was 91±5% (Fig 4, 5).  

Rat lung epithelial-T-antigen negative, or RLE-6TN cells were derived from alveolar TII 

cells by Kevin Driscoll et al.  (1995a).  Like primary TII cells, RLE-6TN cells contain 

lamellar bodies for surfactant storage, and they have the ability to produce cytokines, NO.  

and other ROS when stimulated (Stringer and Kobzik, 1998 and Driscoll et al., 2001).  

Unlike primary TII cells, RLE-6TN cells maintain their morphology and the ability to 

produce surfactant even after a long time in culture (few days).  RLE-6TN cells were 

obtained commercially (American type culture collection, Manassas, VA).  

Cell Viability Measurements:  
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Cell viability and number were monitored during cell culture to assure that cell 

treatments did not cause excessive cellular toxicity or decrease the number of cells 

surviving in culture.  

Lactate dehydrogenase (LDH) activity: LDH was used as an indicator of cell cytotoxicity 

as this enzyme which is usually in the cell cytoplasm can leak into the medium upon 

membrane injury and disruption.  To measure LDH activity, the exposure plates were 

spun at 1000g for 10 minutes after which the supernatant was collected and part of it was 

used for LDH measurement.  A Cobas Mira Plus analyzer (Roche Diagnostics Systems, 

Branchburg, NJ) was used to measure LDH release based on the increase in absorbance 

at 340 nm during the oxidation of lactate to pyruvate, a reaction catalyzed by LDH.  

Viability was determined as LDH released into the supernatant under control and test 

conditions compared to LDH released by the same concentration of lysed cells.  

Total cellular protein (TPRO): TPRO was used as an indicator of number of cells 

attached to the culture plate.  To measure TPRO, cells were sonicated using a Branson 

Sonifier 450 (VWR Scientific, Columbus, OH) for 30 seconds at a duty cycle of 30% and 

an output control of 3, and then centrifuged for 10 minutes at 1000g.  TPRO was 

measured from the supernatant using a Cobas Mira Plus analyzer (Roche Diagnostics 

Systems, Branchburg, NJ) based on a colorimetric reaction (absorbance maximum at 540 

nm).  

Trypan blue exclusion: Trypan blue (Sigma, St Louis, MO) dye exclusion technique was 

used as an indicator of cell cytotoxicity (Miles et al., 1988); since the dye can only enter 

the cell when membrane integrity is lost.  Trypan blue solution was added to the cell 

culture wells at a final concentration of 0. 04%.  After 4 minutes on ice, the cells were 
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fixed with 10% formalin and observed under a light microscope.  The percentage of cells 

excluding dye was taken as the percent viability.     

O2 consumption: Mitochondrial function measured by O2 consumption was also an 

indicator of cell viability and cellular function.  To measure oxygen consumption, a 

Gilson 5/6 oxygraph (Gilson Medical electronics, Middleton, WI), equilibrated with a 

Clark electrode was used.  A baseline was established before adding 3x106 cells in 1. 5 ml 

of calcium and magnesium supplemented (1 mM each) PBS into a preheated 37º C 

chamber equipped with a stirrer.  O2 consumed by the cells was measured over 10 

minutes using a standard curve constructed by equilibrating the Clark electrode with 

solutions bubbled with gases of various O2 concentrations.   

Cell Culture: Cell culture medium used for all cell types was HAM’s F-12 medium 

(Biowhittaker, Walkersville, MD) supplemented with 1mM glutamine, 100 U/ml of 

penicillin-streptomycin, and 10% FBS.  For RLE-6TN, the culture medium was 

supplemented with pituitary extract (bovine, 10µg/ml) (Sigma, St Louis, MO), insulin 

(bovine, 5µg/ml) (Sigma, St Louis, MO), IGF-1(human, recombinant,2. 5 ng/ml) 

(Boehringer Mannheim, Indiannapolis, IN) and holo-transferrin (bovine, 25µg/ml) 

(Sigma, St Louis, MO).  

All exposures were done in vitro using 12-well culture plates (Fisher, Pittsburgh, PA).  

Silica exposures used Min-U-Sil 5 (99% of silica particles<5µm in diameter; purity=98. 

5% crystalline silica) obtained from U. S.  Silica Corporation (Berkeley Springs, WV), at 

concentrations 0-100µg/ml for 18 hour exposures, and 0-600µg/ml for 30 minute 

exposures.  LPS (Sigma, St Louis, MI) exposures were at concentrations of 0-10 µg/ml 

for AM’s and TII cells’ 18 hour exposures, and 0-100µg/ml for RLE-6TN cells’ 18 hour 
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exposures.  LPS exposure concentrations for the three cell types for all 30 minute 

exposures were 0-600µg/ml.  When added to the culture, the TNF-α (Biosource, 

Camarillo,CA), IL-1β (Biosource, Camarillo,CA), prostaglandin E2 (PGE2) and 

leukotriene B4 (LTB4) (Sigma, St Louis, MO) final concentration used was 50ng/ml, and 

H2O2 (Sigma, St Louis, MO) was added at a final concentration of 50µM.  The tissue 

culture plates were centrifuged following exposures at 1000g for 10 minutes before 

collecting the medium.  While some of the post-exposure medium was used right away 

for LDH and TPRO measurement, the rest of it was stored in a -70º C freezer for future 

TNF-α, MIP-2, IL-1β, IL-6 and NO.  measurement.  As for the cells attached to the 

bottom of the wells, they were used to measure cellular viability.  In all experiments, 

exposure time for NO.  , TNF-α, MIP-2, IL-1β and IL-6 studies was 18 hours.  Exposure 

time for ROS and O2
- studies was 30 minutes.  All exposures were performed in a 37 ºC 

10% CO2 incubator.  

Co-culture Systems:  

Mixed co-culture: In a 12-well plate, TII and AM cells were cultured in the same well at 

a concentration of 0. 25x106 cells/ml for each cell type.  Silica exposures used Min-U-Sil 

5 (silica particles<5µm) obtained from U. S.  Silica Corporation (Berkeley Springs, WV), 

at a final concentration of 100µg/ml for 18 hour exposures.  LPS (Sigma, St Louis, MI) 

exposures were at a final concentration of 10 µg/ml.  When fibrinogen (Sigma, St Louis, 

MO) was used to inhibit surfactant, it was initially dissolved in warm saline and then 

added to the co-culture at a final concentration of 0. 8 mg/ml.  All exposures were 

performed in a 37 ºC 10% CO2 incubator.  Figure 6 shows a micrograph of the cells in the 

mixed co-culture plate showing close contact.  
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Transwell co-culture: In a 12-well plate, AM and TII cells were separated by 0. 4µm pore 

size inserts (Fisher, Pittsburgh, PA) which are placed in the main wells.  While TII cells 

were on the bottom of the plate submerged in a total volume of 1500 µl (medium plus or 

minus stimulant plus or minus inhibitor).  AM’s were lying on the insert surface 

submerged in a total volume of 500 µl (medium plus or minus stimulant plus or minus 

inhibitor).  Figure 7 is a diagram of a 12-well plate transwell with dimensions.  Either one 

of the compartments can be exposed to the stimulant or just PBS.  Cell concentration 

used for both cell types was 0. 25x106 cells/ml.  Exposure time for LDH, NO. , and 

cytokines measurement was 18 hours.  Fluid from both compartments was pooled after 

exposure to measure cell mediators.  Inhibitors were dissolved in PBS prior to their 

addition into the co-culture medium with different final concentrations used for different 

inhibitors.  N-acetyl cysteine (NAC) (Sigma, St Louis, MO) was used as a non-specific 

antioxidant at 1 mM; vitamin C(Sigma, St Louis, MO) was used as another non-specific 

antioxidant at 250 µM; superoxide dismutase (SOD) (Sigma, St Louis, MO) was used as 

a superoxide inhibitor at 250 U/ml; catalase (Sigma, St Louis, MO) was used as a 

hydrogen peroxide inhibitor at 5000 U/ml; nordihydroguaiaretic acid (NDGA) (Sigma St 

Louis, MO) was used as a lipooxygenase inhibitor at 1 µM; indomethacin (Sigma St 

Louis, MO) was used as a cyclooxygenase inhibitor at 1 µM; anti-TNF-α (R&D systems, 

Minneapolis, MN) was used as a TNF-α neutralizing antibody at 0. 5 µg/ml; and anti-IL-

1β (R&D, Minneapolis, MN) was used as an IL-1β neutralizing antibody at 0. 2 µg/ml.  

Exposure time for NO.  , TNF-α, MIP-2, IL-1β and IL-6 measurement was 18 hours.  All 

exposures were performed in a 37 ºC 10% CO2 incubator.  

Conditioned medium cell culture: 
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In a 12-well plate, AM and TII cells were cultured separately and without any exposure at 

a concentration of 0. 25x106 cells/ml.  TII-conditioned culture medium and AM-

conditioned culture medium were respectively transferred to AM’s and TII cells 18 hours 

later.  

Superoxide Anion (O2
- .) Measurement by Cytochrome C Reduction: 

 Measurment of O2
-. release using cytochrome C spectrophotometry relies on the change 

in absorbance of cytochrome C (550nm) following its reduction by O2-. (Miles et al., 

1978).  Cytochrome C (Sigma, St Louis, MO) dissolved in Hepes-buffered medium 

(10mM Hepes, 145 mM NaCl, 5 mM KCl, 1mM CaCl2 and 5. 5 mM D-glucose; pH=7. 

4) was added to all wells at a final concentration of 0. 12mM.  2x106 cells / ml in 96-well 

microplates were exposed to 0-600 µg/ml LPS or 0-600µg/ml silica for 30 minutes at 

37ºC.  Cytochrome C reduction was measured before and after exposure using a 

SpectraMax 250 spectrophotometer.  Conversion from ∆OD units to O2
-. concentration 

was performed using the following formula: CL= ∆OD/e where C is the O2
.  

concentration expressed in mM, L is the path length in cm, ∆OD is the change in 

cytochrome C absorbance and e is the O2
-.  extinction coefficient of 18. 7 mM-1cm-1 .   

ROS Measurement: 

Luminol-dependent chemiluminescence(CL): Measurment of ROS using luminol (5-

amino-2,3-dihydro-1,4-phthalazinedion)-amplified chemiluminescence relies on the 

oxidation of luminol by H2O2/peroxidase system to form a luminol radical that produces 

chemiluminescence (Li et al., 1999).  A 22mM luminol stock solution was made by 

dissolving 4 mg luminol (Sigma, St Louis, MO) in 100µl DMSO and then adding 900µl 

of Hepes-buffered medium to the DMSO-dissolved luminol.  The 96-well plate with a 
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cell concentration of 2x106 cells/ml in Hepes-buffered medium (10mM Hepes, 145 mM 

NaCl, 5 mM KCl, 1mM CaCl2 and 5. 5 mM D-glucose; pH=7. 4) was placed in the 37ºC 

preheated measurement chamber where 1mM luminol (final concentration) was added to 

each well at time 0.  PBS, LPS (0-600µg/ml) or silica (0-600µg/ml) were then injected 

into specified wells, and ROS measured for 30 minutes with emission at 460 nm on the 

LB96P microplate luminometer.  Chemiluminescence (CL) was expressed as relative 

light units (RLU) per 2x106 cells per 30 minutes.  

Confocal microscopy: Two different fluorescent dyes were used to microscopically detect 

ROS; Dichlorodihydrofluorescein (DCFH), or dihydroethydium.  To prepare the stained 

cell slides, 0. 1-1x106 cells were placed in 24-well plates with coverslips (pretreated with 

serum) inside the wells.  Two hours later, the wells with cells inside were gently washed 

with warm (37ºC) glucose solution (5mM glucose in PBS), and either DCFH (dissolved 

in 5mM glucose solution and added at a final concentration of 25 µM) or 

dihydroethydium (dissolved in 5mM glucose solution and added at a final concentration 

of 10µM) dye was added in the dark.  The cells were then exposed to PBS, LPS (0-

600µg/ml) or silica (0-600µg/ml) for 30 minutes in a 37 ºC 10% CO2 incubator, and 

subsequently gently washed with the same glucose solution used earlier.  The cells were 

then fixed with 10% phosphate-buffered formalin solution for 10 minutes, after which the 

wells were gently washed once with PBS and the coverslips placed on glass slides and 

left to dry overnight.  To view the stained cells, an LSM 510 Axiovert 200M confocal 

microscope (Carl Zeiss, Inc., Thornwood, NY) was used; DCFH dye gave off green 

fluorescence at 488nm when it reacted with released ROS, whereas dihydroethydium 

gave off red fluorescence at 543 nm upon its reaction with ROS.  
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NO.  Measurement: Frozen post-exposure supernatants were thawed and used for NO.  

measurement.  Since NO.   is a very unstable gas, the only way to chemically measure its 

release is by measuring its oxidation products, nitrate (NO3) and nitrite (NO2), 

collectively referred to as total NO.  .   A total NO.  assay kit obtained from Assay 

Designs, Inc (Ann Arbor, MI) was used to measure NO.  in 96-well microplates.  The kit 

included a nitrate reductase to convert NO3 to NO2.  It also included Greiss reagents that 

interact with NO2 in a colorimetric reaction the products of which absorb light at 540nm.  

A series of NO2 standards were run in parallel with the samples, and this standard curve 

was used to convert light absorbance units into NO. concentrations.  A SpectraMax 250 

spectrophotometer was used to read the microplate absorbances and convert them to total 

NO.  concentrations.      

Cytokine Measurement: Frozen post-exposure supernatants were thawed and used for 

cytokine measurements.  TNF-α, MIP-2, IL-1β and IL-6 cytokine concentrations were 

measured using cytokine-specific ELISA (enzyme-linked immunosorbent assay) kits 

obtained from Biosource International (Camarillo, CA).  The kits included 96-well 

microtiter plates with cytokine-specific antibody coated wells.  The assay involved a 

sandwich ELISA where cytokines in the samples attach to their specific antibody in the 

well and are detected colorimetrically upon binding to another added antibody.  A series 

of cytokine standards were run in parallel with the samples, and this standard curve was 

used to convert light absorbances into cytokine concentrations.  A SpectraMax 250 

spectrophotometer was used to read the microplate absorbances and convert them to 

cytokine concentrations.    

Diffusion Through the Transwell: 
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To measure how well mediators and surfactant can cross the transwell insert, TNF-

α (5ng/ml) (Sigma, St Louis,MO) and artificial surfactant, Survanta (2mg/ml) (Abbott 

Laboratories, Columbus, OH) were added to the bottom of the well, and they were 

measured 18 hours later both from the bottom of the well and from the insert.    

Surfactant Phospholipids Measured by Phosphorus Content: 

Tissue culture medium phospholipid was measured according to Porter et al.  (2001).  

Briefly, 0. 5 ml fluid sample was mixed with 10 ml CHCl3: MeOH (2:1, v/v) followed by 

incubation for 1. 5 hours at room temperature to extract the lipid.  A 2 ml aliquot of ice-

cold 0. 1 M KCl was then added, and the samples were mixed by inversion and then 

centrifuged for 5 minutes at 2500 rpm.  The top layer was then aspirated away and the 

bottom layer washed 3 times by addition and aspiration of CHCl3: MeOH:H2O (3:48:47, 

v/v/v), then dried.  .  The samples were then heated overnight at 150-160º C after addition 

of 0. 5 ml of water and 0. 5 ml of 10 N H2SO4.  A100 µl aliquot of 30% H2O2 were then 

added to the samples before they were heated for another 1. 5 hours.  Inorganic phosphate 

was determined colorimetrically at 830 nm using a UV-2401 spectrophotometer 

(Shimadzu; Columbia, MD), and a series of phosphate standards were run in parallel to 

the samples.  

 Statistics: All data are means ± SEM of at least 3 trials.  A Student “t” test was used for 

mean comparison.  p < 0.05 was considered statistically significant.  
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Figure 1: Coulter tracing for AM’s ( diameter 9-18 µm).  AM’s were isolated by BAL of 
rat lungs. Particles smaller than 9µm on this graph are mostly debris. 
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Figure 2: Coulter tracing for TII cells (7-12 µm in diameter) isolated by elastase 
digestion of the lung and purified by differential adherence to IgG-coated surface.  TII, 
being a lung cell type not possessing Fc receptors for IgG, are purified in the supernatant 
after adherence of the other cells.  a- Before adherence; b- After adherence 
 

 

                     Particle diameter (µm) 
                                      yield in (b)= 23.38x106cells/ml 

a

b
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Figure 3A: Fluorescent microscopy of TII cells stained with phosphine 3R.  The 
globular inclusions emitting fluorescence are the lamellar bodies which contain 
surfactant and concentrate the lipophylic dye. 3B: Focusing on a single TII cell 
staining positively with phosphine 3R  
 
 
                                                                                                                                                                  
 
   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10 mµ10 mµ

B 

A 



 32

 

 
Figure 4: TEM of a TII cell (x22,000).  The stained swirls consist of phospholipids 
surfactant in the lamellar bodies.  
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Figure 5: TEM of a cell sample following TII isolation and purification by adherance.  
TII cells are identified by swirls of surfactant inside them.  Marked cells are TII.  
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Figure 6: Micrograph of AM and TII cells in mixed co-culture.  0. 5x106 AM’s and 0. 
5x106 TII cells are co-cultured together in a 12-well tissue culture plate in a total volume 
of 2ml.  Note how the cells are in close contact.  
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Figure 7: A 12-well plate transwell with dimensions.  AM’s (0. 25x106 cells/ml) were 
placed in the insert, while 0. 5x106 TII cells were in the bottom of the well.  The media 
from both compartments were in contact.  The transwell insert has a pore size of 0.4 µm.  
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Results 

Objective: To advance the understanding of the role of AM and TII in the induction of 

pulmonary inflammation and injury in response to silica and LPS.  

Aim 1: Determine the relative responsiveness of AM, primary TII and a TII cell line to 

silica and LPS under comparable conditions by comparing the mediator release by 

primary rat AM’s, primary rat TII, and a rat TII cell line (RLE-6TN) upon stimulation 

with LPS or silica.   

Results for aim 1:  

Cell cytotoxicity following LPS and silica exposures: Cell cytotoxicity was measured to 

check for any cell death that might have been caused by LPS or silica exposure, and the 

number of cells was measured to check if the cell concentration remained constant 

throughout the 18 hour exposure period.  

LPS did not cause substantial cytotoxicity or cell disintegration at the doses used in these 

cultures over the 18-hour exposure period in AM’s (Table 1 and Figure 8), TII cells 

(Table 2 and Figure 9), or RLE-6TN cells (Table 3 and Figure 10).  Also, silica did not 

cause substantial cytotoxicity or cell disintegration below 50µg/ml in AM’s (Table 4 and 

Figure 11), TII cells (Table 5 and Figure 12), or RLE-6TN cells (Table 6 and Figure 13).  

However, some cytotoxicity was noted at the 100µg/ml silica exposure for some assays.  

NO.  release upon LPS and silica exposure: LPS dose-responsively increased NO.  

production from the three cell types (Figure 14).  Primary AM’s produced considerably 

more NO.  in response to LPS than primary TII cells, which in turn were more active than 

RLE-6TN cells in response to LPS exposure.  Silica exposure in vitro did not result in 

any detectable NO.  production from the 3 cell types.   In contrast, silica is a potent 
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inducer of NO.  production from BAL cells after in vivo exposure, and a potent inducer of 

iNOS in AM’s and TII cells (Porter et al., 2002 b).  Huffman and colleagues have shown 

that silica induction of iNOS in AM’s requires communication between different types of 

alveolar cells (Huffman et al., 1998).  Such cross-talk is absent in this in vitro study.  

TNF-α release upon LPS and silica exposure: Both LPS and silica dose-responsively 

increased TNF-α production from primary AM’s and primary TII cells, but not from 

RLE-6TN cells (Figures 15 and 16).  Also, primary AM’s were more responsive to both 

LPS and silica in TNF-α release than primary TII cells, which in turn were more active 

than RLE-6TN cells.  LPS induced far greater production of TNF-α from AM’s and 

primary TII cells than silica did.    

MIP-2 release upon LPS and silica exposure: Both LPS and silica dose-responsively 

increased MIP-2 production from primary AM’s, primary TII and RLE-6TN cells 

(Figures 17 and 18).  Primary AM’s were more active in inducing MIP-2 release than 

primary TII cells, which in turn were more active than RLE-6TN cells.  LPS induced far 

greater production of MIP-2 from the 3 cell types than silica did.   

IL-1β release upon LPS and silica exposure: LPS and silica dose-responsively increased 

IL-1β production from primary AM’s and primary TII cells, but not from RLE-6TN cells 

(Figures 19 and 20).  Primary AM’s were more active in inducing IL-1β release than 

primary TII cells, which in turn were more active than RLE-6TN cells.  Unlike the 

production of NO. , TNF-α and MIP-2 where LPS was more potent than silica, both 

agents induced comparable production of IL-1β from the 3 cell types.  

IL-6 release upon LPS and silica exposure: LPS and silica dose-responsively increased 

IL-6 production from primary AM’s, primary TII and RLE-6TN cells (Figures 21and 22).  
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Upon LPS exposure, the 3 cell types had somewhat comparable abilities to produce IL-6, 

although RLE-6TN cells were not responsive to low (< 0. 1 µg/ml) concentrations of 

LPS.  Upon silica exposure, primary AM’s were less active in inducing IL-6 release than 

primary TII cells, which in turn were less active than RLE-6TN cells.  LPS induced a 

greater production of IL-6 from the 3 cell types than silica did.  

O2
- release with LPS and silica exposure: Silica dose-responsively increased O2

- 

production from primary AM’s, primary TII and RLE-6TN cells (figures 23, 24 and 25).  

Upon silica exposure, primary AM’s and TII cells had comparable ability to produce O2
-,  

and that was greater than RLE-6TN ability.  Silica induced a greater production of O2
- 

from the 3 cell types than did LPS, since no O2
- release from the 3 cell types was noted 

with LPS exposure.  

 ROS release with LPS and silica exposure: LPS dose-responsively increased ROS 

production from primary AM’s measured externally as CL and internally with ROS-

sensitive dyes (figures 26 and 27).  However, LPS failed to stimulate ROS from primary 

TII or RLE-6TN cells.  Silica dose-responsively increased ROS production from primary 

AM’s (figures 28 and 29) and TII cells (figures 30 and 31), but not from RLE-6TN.  

Upon silica exposure, AM’s and TII cells had comparable abilities to produce ROS.  

Silica induced a greater production of ROS from AM’s and TII cells than LPS did since 

LPS didn’t induce any detectable ROS in TII.  

Aim 2: Determine if intercellular interactions exist and under what conditions they can 

be demonstrated by evaluating the effect of rat AM mediator release on the physiological 

functions of primary rat alveolar TII cells and visa versa under basal conditions, or upon 

LPS or silica exposure.  For this step, 2 types of co-culture systems were developed, a 
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transwell co-culture system and a mixed co-culture system.  Also, to evaluate the role of 

surfactant in AM/TII interaction, fibrinogen, a surfactant inhibitor (Seeger et al., 1993; 

Gupta et al., 2000), was added in some mixed co-culture experiments.   

Results for aim 2: 

TNF-α release in the co-culture systems: Figure 32 shows that in the transwell co-culture 

system, there was considerable potentiation of TNF-α release compared to the sum of 

mediator release from the 2 cell types cultured separately under basal conditions.  Similar 

potentiation was also observed upon silica exposure.  Upon LPS stimulation, transwell 

co-culture of the 2 cell types resulted in simply an additive (no interaction) TNF-α 

release.  In the mixed co-culture system, the potentiation seen under basal conditions and 

upon silica exposure was removed, and there was an inhibition upon LPS stimulation of 

the mixed co-culture system compared to the sum of TNF-α productions by AM and TII 

cells cultured separately.  Miles et al.  (1999) have reported that surfactant can inhibit 

LPS-induced NO.  production by AM’s.  We have shown that in the mixed co-culture 

system AM’s and TII cells are in close contact (Figure 6).  Therefore, we speculated that 

TII cells could release surfactant which would down regulate cytokine production by 

AM’s.  This inhibiton might not be seen in the transwell system where AM’s and TII 

cells are separated by a considerable distance.  To test this hypothesis, the effects of 

fibrinogen, a surfactant inhibitor, were monitored for AM plus TII in mixed culture under 

basal conditions.  Upon adding fibrinogen, the potentiation of TNF-α release in the 

mixed co-culture system was significantly increased, i. e., the inhibitory effect of close 

cell contact was removed (Figure 33).  
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MIP-2 release in the co-culture systems: As Figure 34 shows, in the transwell co-culture 

system, MIP-2 release was considerably potentiated compared to the sum of mediator 

release from the 2 cell types cultured separately under basal conditions and upon silica 

exposure.  Upon LPS stimulation, the 2 cell types did not alter each others’ MIP-2 

release, i. e., the MIP-2 release was additive.  In the mixed co-culture system, the 

potentiation seen under basal conditions and upon silica exposure was removed, and there 

was an inhibition upon LPS stimulation of the mixed co-culture system compared to the 

sum of MIP-2 release from AM’s and TII cells cultured separately.  Upon adding 

fibrinogen, the inhibition of MIP-2 release in the mixed co-culture system under 

unstimulated conditions was significantly reversed, i. e., potentiation of basal MIP-2 

release was observed in the mixed co-culture upon treatment with fibrinogen (Figure 35).  

NO .   release in the co-culture systems: In the transwell co-culture system, NO.  

production was considerably potentiated compared to the sum of mediator release from 

the 2 cell types cultured separately  under basal conditions.  Upon LPS or silica 

stimulation, the 2 cell types did not alter each others’ NO.  release, i. e., additive NO.  

production was seen.  In the mixed co-culture system, the potentiation seen in the 

transwell system under basal conditions was reversed into an inhibiton, and there was an 

inhibition upon LPS and silica stimulation of the mixed co-culture system below the 

additive production (Figure 36).  Upon adding fibrinogen, the inhibition of NO.  release 

by the mixed co-culture system under unstimulated conditions was significantly 

attenuated (Figure 37).  

IL-1β release in the co-culture systems: In the transwell co-culture system: no significant 

potentiation of IL-1β release was noted compared to the sum of mediator release from the 
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2 cell types cultured separately under basal conditions or upon LPS stimulation.  Upon 

silica exposure, considerable potentiation of IL-1β release was seen.  In the mixed co-

culture system, there was no change in the basal IL-1β release compared to the transwell 

co-culture system.  However, the potentiation seen upon silica exposure was removed, 

and there was an inhibition upon LPS stimulation of the mixed co-culture system (Figure 

38).  

Upon adding fibrinogen to the mixed co-culture system under basal conditions, there was 

a significant increase in IL-1β release compared to the mixed cells with no fibrinogen 

under unstimulated conditions; i. e., potentiation became evident (Figure 39).  

IL-6 release in the co-culture system: In the transwell co-culture system, considerable 

potentiation of IL-6 release was noted compared to the sum of mediator release from the 

2 cell types cultured separately under basal conditions and upon LPS and silica 

stimulation.  In the mixed co-culture system, there was no change in the IL-6 release 

compared to the transwell co-culture system under unstimulated conditions, but the 

potentiation seen upon LPS or silica exposure was removed (Figure 40).  Upon adding 

fibrinogen to the mixed culture system, there was no change in IL-6 release compared to 

the mixed cells with no fibrinogen under basal conditions (Figure 41).  

Filter effect on AM’s: The question arised as to whether the filter of the transwell insert 

itself could have a stimulatory effect on AM’s.  TNF-α and MIP-2 were measured from 

0. 25x106 AM’s grown for 18 hours either on a plate or in the transwell insert.  Figure 42 

shows that in fact the filter has a slight inhibitory effect on AM’s.  Therefore, the 

potentiation of mediator release observed under transwell co-culture conditions cannot be 

accounted for by the filter effect.  
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Mediators and surfactant diffusion through the transwell filter: TNF-α (5ng/ml) or 

Survanta (2mg/ml) were placed in the bottom compartment of the transwell and they 

were measured 18 hours later in both the bottom compartment and the insert to check if 

they diffused freely through the insert or if they were blocked partially or totally by the 

filter.  Figure 43A shows that TNF-α levels were not significantly different in the 

separate compartments, and thus TNF-α can freely diffuse through the transwell filter.  

As for Survanta, according to Figure 43 B, only about 20% diffused from the plate 

bottom into the insert through the transwell, which means that the transwell filter 

significantly inhibits surfactant diffusion between the two compartements.   

Fibrinogen as a surfactant inhibitor: Unlike the situation for AM’s, surfactant does not 

inhibit LPS-stimulated mediator production by RAW cells (Rao et al., FASEB J. 1999).  

Therefore, RAW cells were mixed co-cultured with TII cells in the presence or absence 

of fibrinogen, and TNF-α and MIP-2 were measured in both cases (Figure 44).  No 

change in the TII/RAW co-culture response was observed with or without fibrinogen, 

which suggests that the increase in AM/TII mixed co-culture potentiation upon adding 

fibrinogen was not a nonspecific fibrinogen effect.  

Aim 3: Attempt to identify the mediator(s) responsible for the AM/TII intercellular 

interaction by trying to identify which mediator(s) contribute significantly to the 

interaction of AM’s and TII cells in a transwell system under basal conditions.  For this 

step, different mediator inhibitors were added to unstimulated transwell co-culture plates.  

N-acetyl cysteine (NAC) (Sigma, St Louis, MO) was used as a non-specific antioxidant 

at 1 mM; vitamin C (Sigma, St Louis, MO) was used as another non-specific antioxidant 

at 250 µM; superoxide dismutase (SOD) (Sigma, St Louis, MO) was used as a 



 43

superoxide inhibitor at 250 U/ml; catalase (Sigma, St Louis, MO) was used as a hydrogen 

peroxide inhibitor at 5000 U/ml; nordihydroguaiaretic acid (NDGA) (Sigma St Louis, 

MO) was used as a lipooxygenase inhibitor at 1 µM; indomethacin (Sigma St Louis, MO) 

was used as a cyclooxygenase inhibitor at 1 µM; anti-TNF-α (R&D systems, 

Minneapolis, MN) was used as a TNF-α neutralizing antibody at 0. 5 µg/ml; and anti-IL-

1β (R&D, Minneapolis, MN) was used as an IL-1β neutralizing antibody at 0. 2 µg/ml.   

Results for Aim 3: 

Results from addition of inhibitors: No cytotoxicity was noted upon addition of any 

inhibitor in the study.  However, all inhibitors used significantly decreased TNF-α 

potentiation in AM/TII transwell co-cultures under basal conditions (Figures 45 A); also, 

all inhibitors except anti-IL-1β significantly decreased MIP-2 potentiation (Figures 45 

B).  These results suggest that oxidants, lipooxygenase and cyclooxygenase products 

(leukotrienes and prostaglandins), TNF-α, and IL-1β could all be involved in AM/TII 

intercellular communication.  

Results from addition of mediators: In addition to adding inhibitors to attempt to identify 

mediator(s) that contribute to the interaction of AM and TII cells in a transwell system 

under basal conditions, different mediators and/or their combinations were added to 

either AM or TII cultures.  Mediators added were hydrogen peroxide (H2O2) (50 µM) 

which is an oxidant product, TNF-α protein used at 50 ng/ml, IL-1β protein used at 50 

ng/ml, prostaglandin E2 (PGE2) at 50 ng/ml which is a product of cyclooxygenase, and 

leukotriene B4 (LTB4) (50 ng/ml) which is a lipooxygenase product.  

None of the mediators or their combinations caused cytotoxicity in AM’s or TII cells.  

However, in general addition of mediators to AM or TII cultures did not affect release of 
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TNF-α or MIP-2 (Figures 46 A, 47 A and 47 B).  The only exception was a significant 

stimulatory action of TNF-α on MIP-2 production by AM’s (Figure 46 B).  Addition of 

other mediators in combination to TNF-α to AM’s did not augment the stimulatory effect 

of TNF-α alone (Figure 48).   

Conditioned media results: A third way of trying to identify mediators for the AM/TII 

communication was to expose AM’s to TII-conditioned medium or expose TII cells to 

AM-conditioned medium.  AM’s cultured in TII-conditioned medium did not release 

more TNF-α or MIP-2 than control AM’s (Figure 49).  However, TII cells cultured in an 

18-hour AM-conditioned medium released significantly more TNF-α and MIP-2 than 

control TII cells (Figure 50). These results suggest that some mediator(s) released from 

AM’s basally is/are able to potentiate TII basal response.  To check if this/these 

mediators include TNF-α or IL-1β, an anti-TNF-α or anti-IL-1β neutralizing antibody 

was added to the TII culture when adding the 18-hour AM-conditioned medium to it.  

Neither the anti-TNF-α nor the anti-IL-1β decreased the potentiation conferred to TII 

cells by adding the AM-conditioned medium to them (Figures 51 A and B).  These results 

suggest that neither TNF-α nor IL-1β is a main mediator released from AM’s basally 

which potentiates TII cells.  
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Table 1: LPS-induced cytotoxicity in primary rat AM’s measured by LDH release into 
the medium and the percentage of cell nuclei stained with trypan blue.  106 cells/ml were 
exposed to increasing LPS concentrations for 18 hours.  Values are presented as change 
from control (means ± SE of 5 experiments).  Note that the total LDH release for 1x106 
sonicated AM’s ~ 115 U/L.  
 

 
LPS Dose (µg/ml) Exposure-Induced 

LDH Release (U/L) 
Exposure-Induced  

Cell Nuclei with 
Trypan Blue (%) 

0 0 ± 0 0. 0 ± 0. 0 

0. 025 6. 8 ± 5. 6 1. 8 ± 1. 2 

0. 05 5. 8 ± 5. 8 3. 5 ± 2. 2 

0. 1 1. 6 ± 1. 6 1. 3 ± 1. 3 

1 2. 4 ± 2. 4 2. 8 ± 2. 4 

5 5. 2 ± 3. 6 2. 0 ± 1. 2 
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Figure 8: TPRO from primary rat AM’s upon LPS exposure.  106 cells/ml were exposed 
to increasing LPS concentrations for 18 hours.  Values are means ± SE of 4 experiments.  
Note that TPRO is an indicator of cell number.  
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Table 2: LPS-induced cytotoxicity in primary rat TII cells measured by LDH release into 
the medium and the percentage of cell nuclei stained with trypan blue.  106 cells/ml were 
exposed to increasing LPS concentrations for 18 hours.  Values are presented as change 
from control (means ± SE of 4 experiments).  Note that the total LDH release for 1x106 
sonicated TII cells ~ 170 U/L.  
 
 
LPS Dose (µg/ml) Exposure-Induced 

LDH Release(U/L) 
Exposure-Induced  
Cell Nuclei with 
Trypan Blue (%) 

0 0 ± 0 0. 0 ± 0. 0 

0. 025 0 ± 0 0. 75 ± 0. 75 

0. 05 0 ± 0 3. 25 ± 1. 89 

0. 1 0 ± 0 1. 0 ± 1. 0 

1 0. 75 ± 0. 75 2. 25 ± 1. 65 

5 0. 75 ± 0. 48 2. 75 ± 1. 89 
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Figure 9: TPRO from primary rat TII cells upon LPS exposure.  106 cells /ml were 
exposed to increasing LPS concentrations for 18 hours.  Values are means± SE of 4 
experiments.  Note that TPRO is an indicator of cell number.  
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Table 3: LPS-induced cytotoxicity in RLE-6TN cells measured by LDH release into the 
medium and the percentage of cell nuclei stained with trypan blue.  106 cells/ml were 
exposed to increasing LPS concentrations for 18 hours.  Values are presented as change 
from control (means ± SE of 4 experiments).  Note that the total LDH release for 1x106 
sonicated RLE-6TN ~ 505 U/L.  

 
 
LPS Dose (µg/ml) Exposure-Induced 

LDH Release (U/L) 
Exposure-Induced  
Cell Nuclei with 
Trypan Blue (%) 

0 0 ± 0 0. 0 ± 0. 0 

10 3. 5 ± 2. 6 1. 4 ± 1. 4 

25 13. 8 ± 3. 8 3. 6 ± 2. 54 

50 6. 5 ± 4. 3 1. 0 ± 1. 0 

75 2 ± 2 0. 40 ± 0. 40 

100 3 ± 3 1. 6 ± 1. 6 
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Figure 10: TPRO from RLE-6TN cells upon LPS exposure.  106 cells/ml were exposed 
to increasing LPS concentrations for 18 hours.  Values are means ± SE of 4 experiments.  
Note that TPRO is an indicator of cell number.  
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Table 4: Silica-induced cytotoxicity in primary rat AM’s measured by LDH release into 
the medium and the percentage of cell nuclei with trypan blue.  106 cells /ml were 
exposed to increasing silica concentrations for 18 hours.  Values are presented as change 
from control (means ± SE of 4 experiments).  Note that the total LDH release for 1x106 
sonicated AM’s ~ 115 U/L.  
 
 
Silica Dose (µg/ml) Exposure-Induced 

LDH Release (U/L) 
Exposure-Induced  
Cell Nuclei with 
Trypan Blue (%) 

0 0. 0 ± 0. 0 0. 0 ± 0. 0 

5 16. 7 ± 13. 3 0. 75 ± 0. 75 

25 11. 0 ± 6. 6 3. 0 ± 1. 78 

50 27. 0 ± 12 5. 25 ± 2. 56 

100 52. 0 ± 4. 8 6. 5 ± 2. 72 
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Figure 11: TPRO from primary rat AM’s upon silica exposure.  106 cells/ml were 
exposed to increasing silica concentrations for 18 hours.  Values are means ± SE of 4 
experiments.  Note that TPRO is an indicator of cell number.  
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Table 5: Silica-induced cytotoxicity in primary  rat TII cells measured by LDH release 
into the medium and the percentage of cell nuclei stained with trypan blue.  106 cells/ml 
were exposed to increasing silica concentrations for 18 hours.  Values are presented as 
change from control (means ± SE of 4 experiments).  Note that the total LDH release for 
1x106 sonicated TII cells ~ 170 U/L.  
 
 
Silica Dose (µg/ml) Exposure-Induced 

LDH Release(U/L) 
Exposure-Induced  
Cell Nuclei with 
Trypan Blue (%) 

0 0. 0 ± 0. 0 0. 0 ± 0. 0 

5 0. 0 ± 0. 0 0. 75 ± 0. 75 

25 0. 25 ± 0. 25 3. 0 ± 1. 78 

50 1. 0 ± 0. 71 5. 25 ± 2. 56 

100 13. 5 ± 5. 78 6. 5 ± 2. 72 
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Figure 12: TPRO from primary rat TII cells upon silica exposure.  106 cells/ml were 
exposed to increasing silica concentrations for 18 hours.  Values are means ± SE of 4 
experiments.  Note that TPRO is an indicator of cell number.  
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Table 6: Silica-induced cytotoxicity in RLE-6TN cells measured by LDH release into the 
medium and the percentage of cell nuclei stained with trypan blue.  106 cells/ml were 
exposed to increasing silica concentrations for 18 hours.  Values are presented as change 
from control (means ± SE of 4 experiments).  Note that the total LDH release for 1x106 
sonicated RLE-6TN ~ 505 U/L.  
 
 
Silica Dose (µg/ml) Exposure-Induced 

LDH Release(U/L) 
Exposure-Induced  
Cell Nuclei with 
Trypan Blue (%) 

0 0. 0 ± 0. 0 0. 0 ± 0. 0 

5 13. 0 ± 13. 0 3. 4 ± 1. 5 

20 24. 5 ± 24. 5 2. 8 ± 1. 8 

50 46. 8 ± 46. 8 3. 8 ± 2. 0 

100 84. 3 ± 28. 6 7. 4 ± 1. 6 
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Figure 13: TPRO from RLE-6TN cells upon silica exposure.  106 cells/ml were exposed 
to increasing silica concentrations for 18 hours.  Values are means ± SE of 4 experiments.  
Note that TPRO is an indicator of cell number.  
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Figure 14: Exposure- induced NO.  release from the 3 cell types upon LPS exposure.  
1x106 cells /ml were exposed to increasing concentrations of LPS for 18 hours.  Values 
are means ± SE of 4 experiments.  Note the break in the x-axis.  * indicates a significant 
difference (p<0. 05) from control (0 LPS) for each cell type.  
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Figure 15: Exposure- induced TNF-α release from the 3 rat alveolar cell types upon LPS 
exposure.  1x106 cells/ml were exposed to increasing concentrations of LPS for 18 hours.  
There was no detectable TNF-α release from RLE-6TN cells upon LPS exposure.  
Values are means ± SE of 4 experiments.   Note the breaks in the axes.  * indicates a 
significant difference (p<0. 05) from control (0 LPS) for AM’s and TII cells.  
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Figure 16: Exposure- induced TNF-α release from the 3 rat alveolar cell types upon 
silica exposure.  1x106 cells/ml were exposed to increasing concentrations of silica for 18 
hours.  There was no detectable TNF-α release from RLE-6TN cells upon silica 
exposure.  Values are means ± SE of 4 experiments.   * indicates a significant difference 
(p<0. 05) from control (0 silica) for AM’s and TII cells.   
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Figure 17: Exposure- induced MIP-2 release from the 3 rat alveolar cell types upon LPS 
exposure.  1x106 cells/ml were exposed to increasing concentrations of LPS for 18 hours.  
Values are means ± SE of 3 experiments.  Note the breaks in the axes.  * indicates a 
significant difference (p<0. 05) from control (0 LPS) for each cell type.   
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Figure 18: Exposure- induced MIP-2 release from the 3 rat alveolar cell types upon silica 
exposure.  1x106 cells/ml were exposed to increasing concentrations of silica for 18 
hours.  Values are means ± SE of 4 experiments.  Note the break in the y-axis.  * 
indicates a significant difference (p<0. 05) from control (0 silica) for each cell type.   
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Figure 19: Exposure- induced IL-1β release from the 3 rat alveolar cell types upon LPS 
exposure.  1x106 cells/ml were exposed to increasing concentrations of LPS for 18 hours.  
There was no detectable IL-1β release from RLE-6TN cells upon LPS exposure.  Values 
are means ± SE of 4 experiments.  Note the break in the x-axis.  * indicates a significant 
difference (p<0. 05) from control (0 LPS) for AM’s and TII cells.   
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Figure 20: Exposure- induced IL-1β release from the 3 rat alveolar cell types upon silica 
exposure.  1x106 cells/ml were exposed to increasing concentrations of silica for 18 
hours.  There was no detectable IL-1β release from RLE-6TN cells upon silica exposure.  
Values are means ± SE of 4 experiments.  * indicates a significant difference (p<0. 05) 
from control (0 silica) for AM’s and TII cells.   
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Figure 21: Exposure- induced IL-6 release from the 3 rat alveolar cell types upon LPS 
exposure.  1x106 cells/ml were exposed to increasing concentrations of LPS for 18 hours.  
Values are means ± SE of 3 experiments.  Note the break in the x-axis.  * indicates a 
significant difference (p<0. 05) from control (0 LPS) for each cell type.   
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Figure 22: Exposure- induced IL-6 release from the 3 rat alveolar cell types upon silica 
exposure.  1x106 cells / ml were exposed to increasing concentrations of silica for 18 
hours.  Values are means ± SE of 4 experiments.  Note the break in the x-axis.  * 
indicates a significant difference (p<0. 05) from control (0 silica) for each cell type.   
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Figure 23: Exposure- induced O2
- release (measured by cytochrome C reduction) from 

AM’s upon silica exposure.  2x106 cells/ml were exposed to increasing concentrations of 
silica for 30 minutes.  Values are means ± SE of 4 experiments.  * indicates a significant 
difference (p<0. 05) from control (0 silica).  
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Figure 24: Exposure- induced O2
- release (measured by cytochrome C reduction) from 

TII cells upon silica exposure.  2x106 cells/ml were exposed to increasing concentrations 
of silica for 30 minutes.  Values are means ± SE of 4 experiments.  * indicates a 
significant difference (p<0. 05) from control (0 silica).  
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Figure 25: Exposure- induced O2
- release (measured by cytochrome C reduction) from 

RLE-6TN cells upon silica exposure.  2x106 cells/ml were exposed to increasing 
concentrations of silica for 30 minutes.  Values are means ± SE of 4 experiments.  * 
indicates a significant difference (p<0. 05) from control (0 silica).  
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Figure 26: Exposure- induced ROS (measured by luminol-dependent 
chemiluminescence) release from AM’s upon LPS exposure.  2x106 cells/ml were 
exposed to increasing concentrations of LPS for 30 minutes.  Values are means ± SE of 4 
experiments.  * indicates a significant difference (p<0. 05) from control (0 LPS).  
Chemiluminescence: CL; Relative light units: RLU 
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Figure 27: Confocal microscopy of AM’s with dihydroethydium dye (indicator of ROS) 
upon LPS exposure.  2x106cells/ml were exposed to 600µg/ml LPS for 30 minutes.  
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Figure 28: Exposure- induced ROS (measured by luminol-dependent 
chemiluminescence) release from the AM’s upon silica exposure.  2x106 cells/ml were 
exposed to increasing concentrations of silica for 30 minutes.  Values are means ± SE of 
7 experiments.  * indicates a significant difference (p<0. 05) from control (0 silica).  
Chemiluminescence: CL; Relative light units: RLU 
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Figure 29 : Confocal microscopy of AM’s with dihydroethydium dye (indicator of 
ROS) upon silica exposure.  2x106 cells/ml were exposed to 600µg/ml silica for 30 
minutes.  
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Figure 30: Exposure- induced ROS (measured by luminol-dependent 
chemiluminescence) release from primary rat TII cells upon silica exposure.  2x106 cells / 
ml were exposed to increasing concentrations of silica for 30 minutes.  Values are means 
± SE of 4 experiments.   * indicates a significant difference (p<0. 05) from control (0 
silica).  
Chemiluminescence: CL; Relative light units: RLU 
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Figure 31: Confocal microscopy of primary rat TII cells with dihydroethydium dye 
(indicator of ROS) upon silica exposure.  2x106 cells/ml were exposed to 600µg/ml silica 
for 30 minutes.  
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Figure 32: TNF-α release in mixed AM/TII co-culture, transwell AM/TII co-culture, or 
AM and TII monocultures.  AM and primary TII cell concentration used in all cases was 
0. 25x106 cells/ml, exposure time was 18 hours.  Values are means ± SE of 4 
experiments.   * indicates a significant difference (p<0. 05) between AM/TII transwell 
co-culture and the sum of the separate cultures(AM+TII).  + indicates a significant 
difference (p<0. 05) between mixed and transwell co-cultures.  
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Figure 33: TNF-α potentiation (value in the mixed co-culture system minus value of the 
sum of the separate cell cultures) upon adding 0. 8mg/ml fibrinogen (a surfactant 
inhibitor) to AM/TII basal mixed co-culture versus TNF-α potentiation without adding 
fibrinogen (control).  AM and TII cell concentration used in all cases was 0. 25x106 
cells/ml, exposure time was 18 hours.  Values are means ± SE of 4 experiments.    * 
indicates a significant increase in the mediator potentiation upon adding fibrinogen.  
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Figure 34: MIP-2 release in mixed AM/TII co-culture, transwell AM/TII co-culture, or 
AM and TII monocultures.  AM and TII cell concentration used in all cases was 0. 
25x106 cells/ml, exposure time was 18 hours.  Values are means ± SE of 4 experiments.  
* indicates a significant difference (p<0. 05) between AM/TII transwell co-culture and 
the sum of the separate cultures (AM+TII).  + indicates a significant difference (p<0. 05) 
between mixed and transwell co-cultures.  
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Figure 35: MIP-2 potentiation (value in the mixed co-culture system minus value of the 
sum of the separate cell cultures) upon adding 0. 8mg/ml fibrinogen (a surfactant 
inhibitor) to AM/TII basal mixed co-culture versus MIP-2 potentiation without adding 
fibrinogen (control).  AM and TII cell concentration used in all cases was 0. 25x106 
cells/ml, exposure time was 18 hours.  Values are means ± SE of 4 experiments.   * 
indicates a significant increase in the mediator potentiation upon adding fibrinogen.  
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 Figure 36: NO.  release in mixed AM/TII co-culture, transwell AM/TII co-culture, or 
AM and TII monocultures.  AM and TII cell concentration used in all cases was 0. 
25x106 cells/ml, exposure time was 18 hours.  Values are means ± SE of 4 experiments.   
* indicates a significant difference (p<0. 05) between AM/TII transwell co-culture and 
the sum of the separate cultures (AM+TII).  + indicates a significant difference (p<0. 05) 
between mixed and transwell co-cultures.  
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Figure 37: NO.  potentiation (value in the mixed co-culture system minus value of the 
sum of the separate cell cultures) upon adding 0. 8mg/ml fibrinogen (a surfactant 
inhibitor) to AM/TII basal mixed co-culture versus NO.   potentiation without adding 
fibrinogen (control).  AM and TII cell concentration used in all cases was 0. 25x106 
cells/ml, exposure time was 18 hours.  Values are means ± SE of 4 experiments.  * 
indicates a significant reversal of mediator inhibition upon adding fibrinogen.  
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Figure 38: IL-1β release in mixed AM/TII co-culture, transwell AM/TII co-culture, or 
AM and TII monocultures.  AM and TII cell concentration used in all cases was 0. 
25x106 cells/ml; exposure time was 18 hours.  Values are means ± SE of 4 experiments.  
* indicates a significant difference (p<0. 05) between AM/TII transwell co-culture and 
the sum of the separate cultures (AM+TII).  + indicates a significant difference (p<0. 05) 
between mixed and transwell co-cultures.  
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Figure 39: IL-1β potentiation (value in the mixed co-culture system minus value of the 
sum of the separate cell cultures) upon adding 0. 8mg/ml fibrinogen (a surfactant 
inhibitor) to AM/TII basal mixed co-culture versus IL-1β potentiation without adding 
fibrinogen (control).  AM and TII cell concentration used in all cases was 0. 25x106 
cells/ml, exposure time was 18 hours.  Values are means ± SE of 4 experiments.   * 
indicates a significant increase in the mediator potentiation upon adding fibrinogen.  
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Figure 40: IL-6 release in mixed AM/TII co-culture, transwell AM/TII co-culture, or 
AM and TII monocultures.  AM and TII cell concentration used in all cases was 0. 
25x106 cells/ml; exposure time was 18 hours.  Values are means ± SE of 4 experiments.   
* indicates a significant difference (p<0. 05) between AM/TII transwell co-culture and 
the sum of the separate cultures(AM+TII).  + indicates a significant difference (p<0. 05) 
between mixed and transwell co-cultures.  
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Figure 41: IL-6 potentiation (value in the mixed co-culture system minus value of the 
sum of the separate cell cultures) upon adding 0. 8mg/ml fibrinogen (a surfactant 
inhibitor) to AM/TII basal mixed co-culture versus IL-6 potentiation without adding 
fibrinogen (control).  AM and TII cell concentration used in all cases was 0. 25x106 
cells/ml, exposure time was 18 hours.  Values are means ± SE of 4 experiments.    
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Figure 42: TNF-α and MIP-2 levels from AM’s cultured on the transwell insert (or 
filter) relative to AM’s cultured on the plate surface.  AM concentration used in all cases 
was 0. 25x106 cells/ml; exposure time was 18 hours.  Values are means ± SE of 3 
experiments.  
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Figure 43 A: Diffusion of TNF-α through the transwell.  (5 ng/ml) TNF-α was added to 
the bottom transwell compartment (plate bottom), and 18 hours later, TNF-α was 
measured in both the bottom compartment and the insert.  Values are means ± SE of 3 
experiments.    
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Figure 43 B: Diffusion of Survanta through the transwell.  2 mg/ml Survanta was added 
to the bottom transwell compartment (plate bottom), and 18 hours later, Survanta 
phospholipid was measured in both the bottom compartment and the insert.  Values are 
means ± SE of 3 experiments.  * indicates a significant difference (p<0. 05) in 
phospholipid content between the transwell insert and the plate bottom.  
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Figure 44: TNF-α and MIP-2 potentiation (value in the mixed co-culture system minus 
value of the sum of the separate cell cultures) upon adding 0. 8mg/ml fibrinogen (a 
surfactant inhibitor) to RAW/TII mixed co-culture versus potentiation without adding 
fibrinogen (control).  RAW and TII cell concentration used in all cases was 0. 25x106 
cells/ml; exposure time was 18 hours.  Values are means ± SE of 3 experiments.    
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Figure 45 A: Fold difference (value in the transwell co-culture system divided by value 
of the sum of the separate cell cultures) in TNF-α release  upon adding different 
inhibitors to AM/TII basal transwell co-culture versus fold difference without adding any 
inhibitor (control).  AM and TII cell concentration used in all cases was 0. 25x106 
cells/ml; exposure time was 18 hours.  * indicates a significant decrease (p<0. 05) in 
potentiation upon adding the inhibitor versus control.  Values are means ± SE of 5 
experiments.    
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Figure 45 B: Fold difference (value in the transwell co-culture system divided by value 
of the sum of the separate cell cultures) in MIP-2 release upon adding different inhibitors 
to AM/TII basal transwell co-culture versus fold difference without adding any inhibitor 
(control).  AM and TII cell concentration used in all cases was 0. 25x106 cells/ml; 
exposure time was 18 hours.  * indicates a significant decrease (p<0. 05) in potentiation 
upon adding the inhibitor versus control.  Values are means ± SE of 5 experiments.   
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Figure 46 A: TNF-α levels relative to control upon adding different mediators to AM’s.  
AM concentration used was 0. 25x106 cells/ml; exposure time was 18 hours.  Values are 
means ± SE of 6 experiments.    
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Figure 46 B: MIP-2 levels relative to control upon adding different mediators to AM’s.  
AM concentration used was 0. 25x106 cells/ml; exposure time was 18 hours.  * indicates 
a significant increase (p<0. 05) in MIP-2 release upon adding the mediator versus control.  
Values are means ± SE of 6 experiments.    
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Figure 47 A: TNF-α levels relative to control upon adding different mediators to TII 
cells.  TII concentration used was 0. 25x106 cells/ml; exposure time was 18 hours.  
Values are means ± SE of 6 experiments.    
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Figure 47 B: MIP-2 levels relative to control upon adding different mediators to TII 
cells.  TII concentration used was 0. 25x106 cells/ml; exposure time was 18 hours.  
Values are means ± SE of 6 experiments.    
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Figure 48 : MIP-2 levels relative to control upon adding different mediator combinations 
to AM’s.  AM concentration used was 0. 25x106 cells/ml; exposure time was 18 hours.  * 
indicates a significant increase (p<0. 05) in MIP-2 release upon adding the mediator(s) 
versus control.  Values are means ± SE of 6 experiments.   
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Figure 49: TNF-α and MIP-2 from AM’s cultured in normal medium (control) and from 
AM’s cultured in an 18-hour TII-conditioned medium.  AM and TII concentration used 
was 0. 25x106 cells/ml; exposure time was 18 hours.  Values are means ± SE of 3 
experiments.  
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Figure 50: TNF-α and MIP-2 from TII cells cultured in normal medium (control) and 
from TII cells cultured in an 18-hour AM-conditioned medium.  TII and AM 
concentration used was 0. 25x106 cells/ml; exposure time was 18 hours.  * indicates a 
significant (p<0. 05) increase compared to control.  Values are means ± SE of 3 
experiments.  
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Figure 51 A: MIP-2 from TII cells cultured in normal medium (control) and from TII 
cells cultured in an 18-hour AM-conditioned medium, and in an 18-hour AM-conditioned 
medium plus anti-TNF-α.  TII and AM concentration used was 0. 25x106 cells/ml; 
exposure time was 18 hours.  * indicates a significant (p<0. 05) increase compared to 
control. Values are means ± SE of 3 experiments.  
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Figure 51 B: TNF-α and MIP-2 from TII cells cultured in normal medium (control) and 
from TII cells cultured in an 18-hour AM-conditioned medium, and in an 18-hour AM-
conditioned medium plus anti-IL-1β.  TII and AM concentration used was 0. 25x106 
cells/ml; exposure time was 18 hours.  * indicates a significant (p<0. 05) increase 
compared to control.  Values are means ± SE of 3 experiments.  
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Discussion 

AM’s are the alveolar derivatives of blood monocytes and are the first line of defense 

against outside contaminants and invaders (Lohmann-Matthes et al., 1994).  

Phagocytizing AM’s can produce reactive oxygen species through a respiratory or 

oxidative burst that directly contributes to killing microorganisms (Johnson, 1978).  

When incapable of killing foreign organisms by themselves, AM’s recruit more 

phagocytic cells to the area by releasing chemokines, such as macrophage-inflammatory 

protein-2 (MIP-2), which acts to attract polymorphonuclear leukocytes (PMN’s), 

monocytes and other cells from the pulmonary capillaries to the alveolar airspaces 

(Nielson et al., 1995).  TII cells constitute approximately 60% of the alveolar epithelial 

cell population in number (Crapo et al., 1983).  They are known to synthesize, store and 

secrete the surfactant material lining the alveoli.  They can also produce NO., ROS and 

cytokines in response to different stimuli (Punjabi et al., 1994).  RLE-6TN cells were 

derived from rat alveolar TII cells by Driscoll et al.  (1995a).  Like primary TII cells, 

RLE-6TN cells contain lamellar bodies for surfactant storage, and they have the ability to 

produce cytokines, NO.  and other ROS when stimulated (Stringer and Kobzik, 1998; 

Driscoll et al., 2001). 

As discussed earlier, evidence suggests that hyperproduction of reactive oxidants and 

inflammatory mediators plays a role in adverse pulmonary responses to silica or LPS.  It 

is also clear that AM’s and TII cells are involved in the production of these reactive and 

inflammatory products.  However, no data were found that compared the release of 

several inflammatory mediators from AM’s and TII cells under the same culture 

conditions, same exposures, and same cell concentrations.  Also, no literature was found 
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that compared the responsiveness of RLE-6TN, a type II cell line, to primary TII cells 

under the same culture conditions and following exposure to LPS and silica.  In addition, 

although AM/TII cell interactions have been suggested to be very important in cellular 

responses, this interaction has not been studied in parallel under different interaction 

conditions (transwell and mixed co-culture) or different exposure conditions (basally, 

upon LPS exposure, or following silica exposure).  And finally, there haven’t been any 

studies that attempted different approaches to try to find specific mediators important in 

AM/TII intercellular communication.       

Main objective of this study: Contribute to advancing the understanding of the role of 

AM’s and TII cells in the induction of pulmonary inflammation and injury in response to 

silica and LPS, and improve our understanding of the interaction between AM’s and TII 

cells which would occur in vivo.  

Aim 1: Determine the relative responsiveness of AM’s, primary TII cells and RLE-6TN, 

a TII cell line to silica and LPS under comparable conditions. This part of the study was 

an attempt to answer the following unresolved questions: 1) What is the relative 

contribution of AM’s and TII cells to the production of oxidants, chemokines, and 

cytokines in the lungs following LPS or silica exposure? The answer to this question 

could help in revealing which cell type contributes more inflammatory mediators 

following lung injury caused by LPS or silica.  It could also help reveal which agent is 

more potent at stimulating the release of inflammatory mediators and hence inducing 

more severe lung injury.  2) Is the responsiveness of cell lines and primary cells similar? 

The answer to this question could determine if RLE-6TN cell line could be used in 
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research in place of primary TII cells, since TII isolation technique is more time and 

money consuming.    

Main results and discussion for aim 1: 

1A-Responsiveness of cell types to stimuli: 

AM>TII: (True for NO. ,TNF-α, MIP-2, and IL-1β, but not true for IL-6 and ROS): 

The results of the present study show that primary AM’s were significantly more active 

in producing NO., TNF-α, MIP-2, IL-1β, and ROS than primary  TII cells, which in turn 

were more active than RLE-6TN cells upon LPS exposure.  Upon silica exposure, 

primary AM’s are significantly more active in producing TNF-α, MIP-2, and IL-1β than 

primary TII cells, which in turn are more active than RLE-6TN cells.  In contrast, 

primary AM’s and primary TII cells released equivalent amounts of IL-6, and ROS upon 

exposure to silica.  

AM’s, being professional phagocytes, can clear inhaled microbes and particles from the 

lungs.  Therefore, it’s expected that AM’s would secrete high levels of inflammatory 

cytokines and reactive products which can cause lung damage and inflammation both of 

which might play a critical role in occupational lung diseases.  The data in the present 

study support the major contribution of AM’s in lung inflammation and disease upon 

occupational exposure, but it also raises another lung cell type to a higher importance 

level as far as its contribution to pulmonary disease.  Indeed, data from our results 

suggest that, although AM’s are more active than TII cells in producing many 

inflammatory mediators upon LPS and silica exposure, TII cells are also capable of 

producing highly significant levels of inflammatory mediators.  Indeed, our data support 

recent evidence suggesting that alveolar type II epithelial cells (TII) may significantly 
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contribute to lung inflammation by a direct interaction with a stimulant (Blau et al., 1994; 

Crippen et al., 1995; Finkelstein et al., 1997).  Our data also extend previous literature by 

measuring mediator release from primary TII cell cultures instead of TII-like cell lines 

used in most previous studies.   

 Among the very few studies comparing AM’s and TII cells in separate primary cultures 

are those from Crestani et al.  (1994), which support our findings that TII cells produce 

more IL-6 than AM’s basally in vitro.  Also, it’s not surprising to see that TII cells could 

produce comparable amounts of ROS as AM’s upon silica exposure.  Indeed, TII O2 

consumption measured basally in the present study in preliminary studies characterizing 

the viability of TII cells was approximately 193 ± 82nmoles/106cells/hr, and this value is 

comparable to values reported in the literature (Jones et al., 1982), and is significantly 

greater than AM oxygen consumption (~ 46. 2 nmoles/106cells/hr) as reported by 

Castranova et al.  (1980).  TII cells are more dependent on mitochondrial respiration, 

whereas AM’s are more dependent on glycolysis (Fisher et al., 1980).  This is manifested 

basally and upon exposure.  Indeed, Chandel et al., (2000), reported that, while LPS 

activates NF-κB in the murine macrophage cell line J 774. 1 through the release of 

significant levels of ROS, mitochondrial ROS are not required for LPS activation of NF-

κB in J 774. 1.  Previous data from Driscoll et al., (2001), have reported a significant 

increase in mitochondrial-derived H2O2 in RLE-6TN cells following silica exposure.  Our 

data complement previous literature by having measured this ROS increase in primary 

TII cells.  TII have a higher intracellular taurine concentration, and a comparable 

ascorbate intracellular concentration than AM’s (Banks et al., 1989; Castranova et al., 
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1983).  Since TII cells contain more antioxidants than AM’s, they might have the ability 

to produce more oxidants while resisting oxidant injury.  

TII>RLE-6TN (True for NO. , TNF-α, MIP-2, IL-1β, and ROS ; but not true for IL-6): 

When it was established, RLE-6TN cell line had promise to be a potential alternative to 

the costy and time consuming TII cell isolation in studies involving pulmonary epithelial 

cells (Driscoll et al., 1995a).  Indeed, since then, the RLE-6TN cell line has been used in 

place of primary TII cells in many experiments studying the pulmonary epithelium 

without questioning its sensitivity or its level of responsiveness compared to primary TII 

cells.  For this reason, the present study had, among other aims, the goal to compare 

primary rat TII cells to RLE-6TN cells, a rat TII cell line.  For this purpose, the same 

mediators released from the two cell types were measured under comparable conditions.  

Primary TII cells were significantly more active in producing NO. , TNF-α, MIP-2, IL-

1β, and ROS than RLE-6TN cells upon LPS exposure.  Upon silica exposure, primary 

TII cells were significantly more active in producing TNF-α, MIP-2, IL-1β, and ROS 

than RLE-6TN cells.  In addition, primary TII cells showed a higher sensitivity to LPS 

and silica than RLE-6TN.  Indeed, a much higher LPS or silica dose is required to initiate 

significant mediator release from RLE-6TN cells.  For some mediators, namely TNF-α 

and IL-1β, even very high stimulant doses, which caused some cell injury, were 

incapable of inducing significant release from RLE-6TN cells.  This lower 

responsiveness and sensitivity of the TII cell line to stimuli was obvious in data by 

Driscoll et al. (1996a) where it’s clear to see that induction of MIP-2 mRNA from 

primary TII cells was more than MIP-2 mRNA from RLE following exposure to the same 
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silica dose.  Primary TII cells also responded at a lower silica dose and were thus more 

sensitive than the cell line.  

Some studies have reported similar responsiveness of primary TII and RLE-6TN cells to 

certain stimuli.  In fact, whereas our study reports a several fold lower sensitivity and 

responsiveness for MIP-2 release from RLE-6TN compared to primary TII cells upon 

LPS exposure, Driscoll et al.  (1996a) showed that MIP-2 mRNA measured in both cell 

types was similar following LPS exposure.  After looking at Driscoll’s study 

experimental procedures, it was noticed that this group’s TII cell isolation technique 

involved culturing the cells for 3 days after isolation prior to exposure.  Reports indicate 

that morphological and biochemical changes in primary TII cells are more probable with 

time in culture (Dobbs et al., 1986).  This could explain the reason for the lower 

responsiveness of primary TII cells in Driscoll’s study.  Other studies reporting lower 

primary TII cell responsiveness include one by Punjabi et al.  (1994) where no significant 

induction of NO.  production was detected in primary TII cells in response to 1 µg/ml 

LPS.  Comparing the experimental conditions of the study by Punjabi and colleagues to 

the study in our hands, one main difference could be observed.  Indeed, we used 106 

cells/well which is over three times more cells per well than Punjabi and colleagues’ 

study that only used 3 x 105 cells/well.  It might be possible that NO.  production from the 

lower cell number could not be detected by the Greiss reaction technique.   

Although using the RLE-6TN cell line would have been a less costly and time consuming 

method to study pulmonary epithelial TII cells, our results suggest that using this cell line 

would not reflect, or even be close to responses of primary TII cells.  Hence, RLE-6TN 
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cells may not be a good substitute for primary TII cells in separate culture or in co-culture 

with other cell types.  

1B- Potency of stimuli: As mentioned earlier, silica and LPS are two main airborne 

contaminants of major importance to lung pathology.  Silica, being highly fibrogenic and 

biologically toxic, can directly cause cellular toxicity.  It can also initiate an 

inflammatory response that could include increased oxidant production and 

proinflammatory mediator secretion as a result of nuclear transcription factor-κB (NF-

κB) activation (Kang et al., 2000; Vallyathan and Shi, 1997) in target and recruited cells.  

Also, the cellular signaling cascade triggered by LPS binding to target cells is believed to 

induce the synthesis and release of many inflammatory mediators, such as the pro-

inflammatory cytokines TNF-α, IL-β, and IL-6, (Chen et al., 1995; Christman et al., 

1998).   

In the present study, LPS was found to be more potent than silica in inducing NO., TNF-

α, MIP-2, and IL-6 release from the 3 cell types.  In contrast, LPS and silica had a 

comparable ability to induce IL-1β production from the 3 cell types, whereas silica was 

more potent than LPS in inducing ROS production, especially from primary TII cells.  

LPS>silica.  (True for NO. , TNF-α, MIP-2 and IL-6; not true for IL-1β or ROS): 

Although Chen et al. (1995) reported a stronger activation of one of the NF-κB forms 

(p50/p50 homodimer) in the early phase after stimulation of a macrophage cell line with 

silica than after stimulation with LPS, considerable literature supports the hypothesis that 

LPS is more potent than silica in inducing cytokine release from AM’s.  Blackford et al., 

(1994) have shown that iNOS mRNA and enzyme levels increase much more in AM’s 

following in vivo exposure of rat to LPS (89 fold for the mRNA and 7 fold for the protein 
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respectively) than following silica exposure (36 and 3 fold, respectively).  Also, Dubois 

et al.  (1989) reported that TNF and LTB4 release from primary AM’s following in vitro 

LPS exposure was higher than the released from AM’s following silica exposure.  Much 

less data exist that compare LPS and silica exposure in primary TII or RLE-6TN cells.  

Some data from Driscoll et al.  (1996a) suggest that MIP-2 mRNA from primary TII and 

RLE-6TN cells following in vitro LPS exposure might be higher than that produced 

following silica exposure.  Our data clearly show that LPS is more potent than silica in 

inducing NO.  and MIP-2 from primary TII and RLE-6TN cells.  Our data also show that 

LPS is more potent than silica in inducing TNF-α from primary TII cells.  As for ROS, 

although silica and LPS have been both reported to induce ROS release in some TII cell 

lines and AM’s (Barrett et al.  (1999 a and b);  Shi et al.  (1999)), the relative potency of 

these two stimuli was not directly compared.  Chen et al.  (1998) reported that the 

antioxidant ascorbate decreased silica-induced, but not the LPS-induced, NF-κB 

activation in the macrophage cell line RAW 264. 7, suggesting that ROS production was 

greater after silica exposure than after LPS exposure.  Also, Zeidler et al.  (2003) has 

reported slightly lower H2O2 levels in murine AM’s exposed in vitro to LPS than silica.  

As for the present study, while the results for AM’s show that ROS released following in 

vitro silica exposure are comparable or slightly higher than ROS levels released 

following LPS exposure, results for primary TII cells show a much higher potency of 

silica compared to LPS in inducing ROS.  Indeed, whereas LPS produced no detectable 

increase in oxidant release in primary TII cells, silica stimulated these cells to produce 

high levels of ROS, which exceeded those produced by AM’s under the same exposure 

conditions.    
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As mentioned earlier and, as expected, silica exposure did not result in a substantial 

release of NO.  from our three cell types.  Indeed, Huffman et al.  (1998) have shown that 

although in vivo exposure to silica can stimulate NO.  production from various cell types, 

it cannot do the same in vitro.  Also, conditioned medium from BAL fluid (which 

includes mediators released from TII cells) following in vivo silica exposure was 

effective in making naïve AM’s produce NO.  in response to silica exposure in vitro.  The 

most probable explanation for the contrasting results between the in vivo and in vitro 

setting is the presence of multiple types of cells in the in vivo setting.  Hence, different 

cells in the lung alveolar area, including AM’s and TII cells or recruited PMN’s, might 

interact with each other, thereby possibly modifying each other’s responses.  Many more 

studies contribute to the evidence of the importance of AM/TII intercellular interactions.  

Those include a study by Miles et al.  (1999) that has shown that surfactant released from 

TII cells inhibits LPS-induced NO.  production from AM’s in vitro.  Along the same 

lines, Rao et al.  (2000) have reported that surfactant decreases LPS-induced TNF-α and 

IL-1β release from AM’s in vitro.  In contrast, Blau et al.  (1994) have shown that SP-A, 

an important surfactant protein, increases the production of colony stimulating factor 

(CSF) from primary AM’s in vitro.  Also, Leslie et al.  (1985) have reported that AM’s 

stimulate DNA synthesis in TII cells in vitro, while Standiford et al.  (1990) have shown 

that conditioned media from LPS-stimulated AM’s increased IL-8 mRNA in A549, a 

human pulmonary TII-like epithelial cell line.  One more study that stresses the 

importance of intercellular interactions in cellular responses is by Crestani et al.  (1994) 

which showed that AM-conditioned media increases IL-6 production by TII in vitro 

under basal conditions.   
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Aim 2: Determine if intercellular interactions exist and under what conditions they can be 

demonstrated.  Does intercellular communication alter the activity of AM’s and/or TII 

cells? The answer to this question could help in developing in vitro experiments to more 

closely mimic in vivo situations. In this part of the study, AM/TII intercellular 

communication was evaluated under two different co-culture settings: the cell types were 

separated by a transwell insert, or they were mixed in culture.  

Main results and discussion for aim 2: 

2A-Transwell co-culture: In the transwell setting of the present study, AM’s probably do 

not go across the insert filter since its 0. 4µm pore size is 5 times smaller than the 2µm 

Boyden chamber membrane pore size used to measure chemotaxis (Schagat et al., 2003).  

The most consistent change observed using this experimental system was considerable 

potentiation under basal conditions, i. e., the co-culture release of mediators was 

significantly above the sum of production by the cells cultured separately.  Indeed, TII 

and AM cells considerably potentiated each others’ NO., TNF-α, MIP-2, and IL-6 

release.  However, they did not alter each others’ IL-1β production.  On the other hand, 

stimulation of AM/TII transwell co-culture with LPS or silica resulted in an inconsistent 

profile of responses, which generally consisted of less potentiation, especially upon LPS 

exposure, compared to basal conditions.  The results from the transwell co-culture system 

can be summarized as follows: 

Transwell basal significant potentiation.  (True for NO., TNF-α, MIP-2 and IL6; not 

true for IL-1β)  

Transwell basal potentiation >Transwell LPS potentiation.  (True for NO., TNF-α, 

MIP-2 and IL-1β; not true for IL-6)  
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Transwell silica potentiation >Transwell LPS potentiation.  True for TNF-α, MIP-2 

and IL-1β; not true for IL-6 and NO. )  

Although TII/AM transwell potentiated basal NO.  production, less potentiation was seen 

for NO.  production after silica exposure.  Therefore, TII/AM interaction can not explain 

the activation of silica induced NO.  production in vivo or in vitro after exposure to BAL 

fluid from silica-exposed rats (Huffman et al., 1998).  

2B-Mixed co-culture: In the mixed co-culture system, there was a trend for less 

potentiation or even significant inhibition of mediator release.  TII and AM cells only 

slightly potentiated each others’ TNF-α, IL-1β and IL-6 release.  They did not alter each 

others’ MIP-2.  They inhibited each others’ NO.  release.  

To explain the above mentioned results, we theorized that surfactant released from TII 

cells is inhibiting cytokine and oxidant release from AM’s whenever it’s able to reach 

them.  The ability of surfactant and other mediators, namely TNF-α, to diffuse through 

the transwell was measured.  The results showed that TNF-α was able to freely diffuse 

across the transwell filter.  However, free diffusion of surfactant was inhibited by 

approximately 80% by the presence of the transwell filter between the bottom well and 

the insert.   Thus, when the 2 cell types are in direct contact as in the mixed co-culture 

system, surfactant’s effects on AM’s are more apparent compared to when the cells are 

separated by the transwell filter.  Other investigators have supported this theory.  Indeed, 

Miles et al.  (1999) has shown that surfactant inhibits AM responsiveness to LPS.  Also, 

for our theory to stand, it has to be clarified that TII cells are able to secrete surfactant in 

culture and that AM’s are able to engulf all the released surfactant in our experimental 

setting.  Indeed, Mason et al. (1980) have shown that primary TII cells in culture are able 
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to synthesize saturated phospatidylcholine and phosphatidylglycerol (lipid components in 

surfactant) linearly for days in culture.  Chander et al. (1983) have shown that 0. 25x106 

primary TII cells in vitro can synthesize ~2.5 µg/ml DSPC during a 6-hour incubation 

period, that would be equivalent to 7.5 µg/ml DSPC during 18 hours, which is the time 

period of our exposure.  In addition, Dobbs et al.  (1987) have shown that ~2% of the 

synthesized DSPC is secreted by 0. 25x106 primary TII cells in vitro every 6 hours.  So 6 

% would be secreted in 18 hours.  7. 5x6 /100 = 0. 45µg/ml DSPC is secreted in our 

setting.  Miles et al.  (1988) have shown that 2.4 µg/ml DSPC, which would be much 

greater than the 0. 45µg/ml DSPC secreted in our setting can be totally internalized in 

vitro by an AM concentration equivalent to the one we used.  Therefore, all the surfactant 

secreted would be available to the AM’s to affect AM secretory activity (Miles et al., 

1999).  In addition, the lower basal potentiation observed upon adding silica and LPS to 

the AM/TII transwell co-culture could be explained by the fact that silica and LPS 

(possibly more than silica) increase surfactant phospholipid release by alveolar TII cells 

(Porter et al., 2001; Sugahara et al., 1996).  

The alveolar lining in a rat lung has been reported to have an average thickness of ~ 0.2 

µm (Bastacky et al., 1995).  The portion of the AM volume in contact with surfactant in 

vivo is not known and hence the inhibition of AM’s by surfactant might or might not be 

significant in vivo.  Therefore, the question of whether an in vitro transwell or mixed 

AM/TII co-culture setting might more closely mimic the in vivo situation is still 

unanswered.  

To support our theory stating that surfactant is an inhibitory mediator released from TII 

cells and acting on AM’s, a surfactant inhibitor, fibrinogen (Seeger et al., 1993; Gupta et 
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al., 2000), was added in the mixed co-culture system.  The results showed that the 

inhibitory effect observed in the basal mixed co-culture system was removed for NO. , 

TNF-α, MIP-2, and IL-1β by inhibiting surfactant with fibrinogen.  Preliminary control 

studies indicate that fibrinogen did not stimulate AM’s or TII cells separately.    

Mixed co-culture potentiation <Transwell co-culture potentiation.  (True for NO., 

TNF-α and MIP-2; not true for IL-1β and IL-6) 

Fibrinogen (surfactant inhibitor) decreased the mixed basal co-culture inhibition.  

(True for NO., TNF-α, MIP-2 and IL-1β; not true for IL6) 

The above results support the hypothesis that surfactant probably is the inhibitory 

mediator released from TII cells which acts on AM’s,  since inhibiting surfactant 

decreased the significant inhibition in mediator release observed under basal conditions 

in the AM/TII mixed co-culture compared to transwell co-culture.  Therefore, it could be 

argued that basal transwell co-culture conditions could prove to be very helpful in 

studying surfactant effects on lung cells.  

Whereas lung surfactant seems to have inhibitory effects on AM’s, adding Survanta to 

lung fibroblasts might stimulate IL-6 mRNA production from these cells (personnel 

communication with Dr Murali Rao).  Knowing that surfactant could be in contact with 

fibroblasts in the case where alveolar TI epithelial cells are damaged and/or dead, 

cytokine release from AM/fibroblast intercellular interaction could be very important to 

investigate.    

AM/TII cell interaction could change with the type of cells used, i. e., primary vs.  cell 

line.  For example, Tao and Kobzik (2002) reported different results than ours; i. e., they 

reported an increase in TNF-α and MIP-2 in AM/RLE-6TN mixed co-culture but not in 
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transwell co-culture exposed to silica.  It could be argued that the contrasting results of 

Tao and Kobzik (2002) can be explained by their using the RLE-6TN cell line instead of 

primary TII cells.  Indeed, Driscoll et al.  (1995a) has shown that RLE-6TN cells produce 

much less surfactant than primary TII cells.  In addition, just like surfactant was reported 

to differentially regulate chemotaxis of different neutrophil populations (Schagat et al., 

2003), it is possible that it interacts differently with different cell types.  Indeed, using the 

macrophage cell line RAW 264. 7 instead of primary AM’s resulted in significantly 

different effects of surfactant on macrophage activity.  Indeed, Rao et al. (1999) have 

shown that Survanta does not inhibit LPS-induced NO.  production in the macrophage 

cell line RAW 264. 7, whereas it significantly inhibits NO.  production by LPS-induced 

primary AM’s (Miles et al., 1999).  Rao et al.  (2002) also showed that the signaling 

pathways for NF-κB activation of various macrophage cell lines upon LPS exposure may 

differ from primary AM’s, supporting that cell lines might not be a good model system.  

The AM/TII cell interaction also changes with exposure.  Indeed, LPS and silica 

exposures could modify the levels and/or the functions of important mediators in 

intercellular interactions.  For example, LPS and silica increase surfactant levels 

(Sugahara et al., 1996; Porter et al., 2001).  LPS has also been reported to directly interact 

with surfactant (Kalina et al., 1995; Kuau et al., 1992), which could possibly lead to 

modification of surfactant functions.   

Aim 3: An AM/TII intercellular communication was found to exist and to be 

significantly highlighted under unstimulated transwell co-culture conditions. Therefore, 

this part of the study was an attempt to answer the following question: what mediator(s) 
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is/are involved in the AM/TII intercellular communication? The answer to this question 

could help in designing in vitro experiments to be closer to in vivo situations.  

Three experimental approaches were taken to try to determine possible intercellular 

mediators. The first approach was to determine the effect of some inhibitors on the 

AM/TII transwell basal interaction as far as cytokine release is concerned.  The second 

approach was to determine the effect of adding exogenous mediators to AM or TII cell 

monocultures on the ability of the cell types to release cytokines, and the third approach 

was to add unstimulated conditioned medium following an 18-hour culture from one cell 

type onto the other and observe any alteration in cytokine release.  

Main results and discussion for aim 3:  

3A-Conditioned medium experiments  

AM conditioned medium increased cytokine release (TNF-α and MIP-2) from TII 

meaning that some mediator(s) from AM’s could be potentiating TII cell.  Indeed, Leslie 

et al.  (1985) reached the same conclusion when AM conditioned medium stimulated 

DNA synthesis in TII cells.  Also, AM conditioned medium has been reported to increase 

basal IL-6 release from primary TII cells (Crestani et al., 1994).  To try to find out if 

this/those mediators include TNF-α and/or IL-1β, antibodies for these mediators were 

added to the AM conditioned medium before adding it to the TII culture.  The results 

were as follow:  

Anti-TNF-α and anti-IL-1β didn’t decrease the TII potentiation induced by adding 

the AM conditioned medium, suggesting that TNF-α and IL-1β might not be the main 

mediators in the intercellular communication.   
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TII conditioned medium didn’t increase TNF-α or MIP-2 release from AM’s, 

suggesting that no mediator released from TII is influencing TNF-α or MIP-2 release 

from AM’s.  

3B-Mediator experiments (done on the AM’s or TII cells separately): Mediators used 

were exogenous TNF-α, IL-1β, H2O2, PGE2 and LTB4 

Hydrogen peroxide (H2O2): As mentioned earlier, H2O2 is an important ROS.  When cells 

like AM’s and TII respond to a stimulant, high levels of ROS can be generated that may 

overwhelm the cells’ antioxidant capacity and cause oxidative stress.  ROS can cause 

direct cell damage by oxidizing lipids (Dalal et al., 1990), proteins, carbohydrates, and 

DNA which confer to ROS a microbicidal and tumoricidal role (Johnston, 1978).  They 

can also cause indirect cell and /or tissue damage by inducing cellular production of other 

pro-inflammatory mediators, such as TNF-α, MIP-2, IL-1β, IL-6 and other mediators 

regulated by NF-κB and AP-1 nuclear transcription factors (Comhair and Erzurum, 

2002).  In the present study, exogenous H2O2 (Shi et al., 1999), was added to the culture 

medium of separate cell types in order to assess role of oxidants on each cell type and 

thus see if oxidants are potential mediators in AM/TII cell interaction.   

Tumor necrosis factor-alpha (TNF-α): TNF-α is a very important inflammatory cytokine 

synthesized as an early response mediator in cellular stimulation (Martin, 1999).  It’s a 

mediator in the recruitment and activation of inflammatory cells, cell proliferation, and 

extracellular matrix protein synthesis (Driscoll, 1996 b).  It can stimulate the production 

of other pro-inflammatory cytokines, such as MIP-2 (Driscoll et al., 1996 a; Barrett et al., 

1999 a) and IL-6 (Crestani et al., 1994), and oxidant species, such as ROS and NO.  , 

through the activation of NF-κB (Driscoll et al., 2001; Barrett et al., 1999 a), and/or other 
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cellular components.  In our study, exogenous TNF-α protein (Crestani et al., 1994), was 

added to the culture medium of separate cell types (AM’s or TII cells) in order to assess 

its role on each cell type and thus see if it could be a mediator in the AM/TII cell 

interaction.   

Interleukin-1beta (IL-1β): IL-1β is an early response pro-inflammatory cytokine with 

many similar effects as TNF-α, such as recruitment and activation of inflammatory cells, 

cell proliferation, extracellular matrix protein synthesis and induction of other pro-

inflammatory cytokines.  In the present study, exogenous IL-1β protein (Crestani et al., 

1994), was added to the culture medium of separate cell types (AM’s or TII cells) in 

order to assess its role on each cell type and thus see if it could be a mediator in the 

AM/TII cell interaction.   

Leukotrienes and prostaglandins: They are products of the breakdown of arachidonic acid 

(a cell membrane component) by lipoxygenase (LO) and cyclo-oxygenase (CO) enzymes, 

respectively.  Leukotrienes and prostaglandins are generally associated with increased 

inflammation, including chemotaxis and inflammatory cytokine production (Dubois et 

al., 1989).  In the our study, exogenous LTB4 or PGE2 (Christman et al., 1991), were 

added to the culture medium of separate cell types (AM’s or TII cells) in order to assess 

their role on each cell type and see if either one could be a mediator in the AM/TII cell 

interaction.   

Out of all the exogenous mediators added to separate AM or TII cell cultures, only 

TNF-α added to AM’s stimulated cytokine release (MIP-2).  These results show that 

TNF-α is a stimulant for AM’s.  But since the TII conditioned medium on AM’s results 

suggested that MIP-2 does not increase in AM’s following the addition of TII 
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conditioned medium, it could be argued that TNF-α level released from TII cells is not 

enough to potentiate MIP-2 release from AM’s, and that maybe an additional source of 

TNF-α is needed for AM MIP-2 potentiation in vivo.  As for the effect of exogenous 

TNF-α on TII cells, although our results suggest that this mediator does not potentiate 

MIP-2 release from TII cells, a study by Koyama et al.  (1999) that measured different 

end points following TNF-α addition to a TII-like cell line (A549) found significant 

stimulation.  Indeed, Koyama et al. have reported an increase in monocyte 

chemoattractant protein-1 (MCP-1) and LTB4 from A549 following TNF-α addition.  In 

addition, whereas use of exogenous H2O2  in our study did not induce an increase in TNF-

α or MIP-2 from AM’s or TII cells (cultured separately), Shi et al.  (1999) have reported 

that H2O2 induced an increase in MIP-2 mRNA from an NR 8383 rat AM cell line.  The 

discrepancy of the above results could be explained by the fact that Shi et al.  (1999) have 

used a cell line instead of primary AM’s, which could very well have different responses 

than primary cells, as was demonstrated earlier.  As for the results in the present study 

showing that exogenous IL-1β did not stimulate TNF-α or MIP-2 release from AM’s or 

from TII cells, these data certainly do not mean that IL-1β does not stimulate AM’s or 

TII cells in general.  Indeed, Standiford et al. (1990) have measured different end points 

upon adding exogenous IL-1β and found significant stimulation such as an increase in 

IL-8 from an A549 TII-like cell line.  Furthermore, Punjabi et al. (1994) reported an 

induction of NO.  release in TII cells, and Yang et al.  (1999) showed an increase in TII 

DNA synthesis following IL-1β addition.  Finally, although our data with mediator 

addition report no stimulation of TNF-α or MIP-2 release from AM’s or TII cells upon 

PGE2 or LTB4 addition, they do not mean that prostaglandins or leukotrienes do not 
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stimulate AM’s or TII cells in general.  Indeed, Fournier et al.  (1999) have reported an 

increase in alpha 1-acid glycoprotein (AGP), which is induced during pulmonary 

inflammation, upon adding PGE2 to AM’s in vitro.  Also, whereas Christman et al.  

(1991) have shown an increase in chemotactic activity in AM’s in vitro upon adding 

LTB4, they reported a suppression of the chemotactic activity by adding PGE2 to 

endotoxin-stimulated AM’s.  It appears, therefore, that the response to mediator 

treatmentdepends on both the cell types studied and the end point measured.      

3C-Inhibitors experiments (done in AM/TII transwells under basal conditions): Different 

inhibitors were added to the AM/TII transwell medium to assess the role of the inhibited 

substance on AM/TII interaction and thus try to see if the inhibited substance is/are 

mediator(s) in AM/TII intercellular communication.  Inhibitors used were: NAC(non-

specific antioxidant (Kang et al., 2000)), Vitamin C(non-specific antioxidant (Chen et al., 

1998)), SOD(superoxide inhibitor (Li et al., 1999)), catalase (hydrogen peroxide inhibitor 

(Li et al., 1999)), NDGA (lipoxygenase inhibitor (Dubois et al., 1989)), indomethacin 

(cycloxygenase inhibitor (Peden et al., 1984)), anti-TNF-α (TNF-α neutralizing antibody 

(Barrett et al., 1998)), and anti-IL-1β (IL-1β neutralizing antibody (Yang et al., 1999)) 

All inhibitors significantly decreased AM/TII transwell basal potentiation.  These 

results suggest that oxidants, TNF-α,  IL1β, prostaglandins and leukotrienes, somehow 

contribute in the pathway of AM/TII intercellular communication.   

Conclusions: 

After having compared the release of several inflammatory mediators from AM’s, TII, 

and RLE-6TN cells and different AM/TII co-culture settings under the same culture 
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conditions, same exposures (basally, or following LPS or silica exposures) and same cell 

concentrations, the following statements could be safely stated: 

1) Although AM’s were generally found to release more inflammatory mediators than TII 

cells following LPS or silica exposures, TII cells clearly produced significant levels of 

mediators which could be capable of contributing considerably to lung inflammation and 

injury.   

2) Since the RLE-6TN TII cell line responses to LPS and silica exposures were generally 

considerably less intense and required higher doses of stimulant than those measured in 

primary TII cells, RLE-6TN cells may not be a good substitute for primary TII cells in 

studying the pulmonary epithelium.   

3) LPS was found to be a more potent inducer of inflammatory cytokines from AM’s, 

TII, and RLE-6TN cells.  However, silica was found to be as potent as LPS or even 

slightly more potent as an inducer of cellular oxidants, especially from TII cells.    

4) Surfactant appears to be an inhibitory mediator released from TII cells and acting on 

AM’s.   

5) Basal transwell co-culture conditions are better than mixed co-culture conditions to 

study AM/TII cell interactions since the inhibitory effect of the surfactant in the transwell 

co-culture is minimized.   

6) AM/TII cell interaction is very specific for the cell type used, (i. e., primary vs.  cell 

line) and for exposure conditions, among other factors.  

7) Oxidants, TNF-α, IL1β, prostaglandins and leukotrienes, probably do not directly 

affect the AM/TII intercellular interaction; instead, they (and especially TNF-α) appear 

to indirectly modulate the complex pathway(s) of the AM/TII communication.  
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