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Abstract

Human Recognition from Video Sequences and Off-Angle Face Images Supported by

Respiration Signatures

Xue Yang

In this work, we study the problem of human identity recognition using human
respiratory waveforms extracted from videos combined with component-based off-
angle human facial images. Our proposed system is composed of (i) a physiology-
based human clustering module and (ii) an identification module based on facial
features (nose, mouth, etc.) fetched from face videos. In our proposed methodol-
ogy we, first, manage to passively extract an important vital sign (breath), cluster
human subjects into nostril motion vs. nostril non-motion groups, and, then, local-
ize a set of facial features, before we apply feature extraction and matching.

Our novel human identity recognition system is very robust, since it is working
well when dealing with breath signals and a combination of different facial compo-
nents acquired in uncontrolled luminous conditions. This is achieved by using our
proposed Motion Classification approach and Feature Clustering technique based
on the breathing waveforms we produce. The contributions of this work are three-
fold. First, we collected a set of different datasets where we tested our proposed
approach. Specifically, we considered six different types of facial components and
their combination, to generate face-based video datasets, which present two di-
verse data collection conditions, i.e., videos acquired in head fully frontal position
(baseline) and head looking up pose. Second, we propose a new way of passively
measuring human breath from face videos and show comparatively identical output
against baseline breathing waveforms produced by an ADInstruments device [1].
Third, we demonstrate good human recognition performance when using the pro-
posed pre-processing procedure of Motion Classification and Feature Clustering,
working on partial features of human faces.

Our method achieves increased identification rates across all datasets used, and
it manages to obtain a significantly high identification rate (ranging from 96%-
100% when using a single or a combination of facial features), yielding an average
of 7% raise, when compared to the baseline scenario. To the best of our knowledge,
this is the first time that a biometric system is composed of an important human
vital sign (breath) that is fused with facial features in such an efficient manner.
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Chapter 1

Introduction

1.1 Motivation

Human identity security is becoming increasingly important for our society. Nowadays, there

are examples of real-life cases indicating that the traditional authentication techniques based

on passwords, identity documents or physical tokens fail to provide enough safety. In order to

authenticate personal identity with comparatively high security, it would be more convenient

and safe for users to employ a set of biometric features derived directly from their physical or

behavioral characteristics (also known as traits or identifiers) [6]. There already exists several

typical biometric authorization systems [7] or simple biometric features (such as fingerprint

[8], face [9], hand geometry [10], iris [11], signature [12], etc.) in use for diverse applications

[13].

Compared to traditional authorization schema (e.g., password), biometric-based identifica-

tion systems have presented significant advantages in identity security aspects [6]. Biometric

traits are inherently more reliable, as they cannot be forgotten or lost. While simple passwords

are easy to remember, and also easy to guess by others. While complicated passwords can be

lost or forgotten. On the other hand, it is difficult for others to share or duplicate the inherent

characteristics of human beings, but passwords can be stolen by hackers and presented on pub-

lic. And it is a comparatively strict requirement that the authentication process has to be done

only when the person is present at the point of authentication. Also, it is quite difficult to change

1



CHAPTER 1. INTRODUCTION

or erase the personal biometrics, since more time and money as well as advanced technology

are needed to complete it. On the other hand, modifying a password only requires a few sec-

onds. Therefore, designing an authentication system based on critical biometric characteristics

is supposed to be an effective replacement for traditional authentication approaches.

The identity security industry demands the promotion of further research on discovering

and developing novel biometric-based identification systems that can help supplement or re-

place the traditional ones. For example, lately we have seen a number of studies demonstrat-

ing the capability of using the electrocardiogram (ECG) signal for human identity recognition

[14][15][16][17], since human individuals present certain distinctive patterns in their ECG sig-

nals (such as wave shape, amplitude, interval of two adjacent local maximum pointsl).

Inspired by the analysis of ECG-based identification systems, we propose a novel video-

based biometric approach that is composed of two major components:

• A physiology-based human clustering module (passive human respiratory monitoring

and analyzing using a visible camera).

• An identification module based on facial features (nose, mouth, eye, eyebrow) fetched

from face videos.

A typical application of such an approach is face recognition (FR), on laptops and/or cell

phones, which can be used for different purposes, including login access etc. Actually several

techniques are used for respiratory monitoring [18], such as spirometers [19], nasal thermo-

couples [20], transthoracic inductance, impedance plethysmography [21], strain gauge [22],

etc. While each of these techniques requires a dedicate device attached to some region of

human body. The method here proposed derives respiratory waveforms directly from videos

recording of human faces passively, i.e. without any physical contact.

The face recognition component-based approach reveals promising aspects in various se-

curity applications [23]. The main effect of using components is more tolerant of head pose

changes by considering a flexible geometrical relation between the selected facial parts during

the recognition stage [24]. In [23] face recognition studies were conducted by combining a set

facial components into a single feature vector and classifying using linear Support Vector Ma-

chines (SVM) [25]. An improved technique was proposed by combining 3D morphable models

2



CHAPTER 1. INTRODUCTION

with component-based recognition that computed the 3D face models from input face images,

which were used for training the proposed component-based face recognition system [26]. Also

some previous studies [24][27] discussed the approaches of selecting the discriminatory facial

components to categorize subjects. Finally, there are other face recognition component-based

approaches when operating in the mid-wave infrared (MWIR) band [28]. In these papers,

face matching is performed utilizing fiducial points on the face when using either the whole

or sub-regions of the human face. Face matching was also reported to be independent of the

operational band [29].

In our study, we mainly focus on human face identification using the nose component

and its combination with other typical facial components (e.g. eyes, mouth, eyebrow). The

pre-processing stage for our component-based FR system is composed of a physiology-based

classification module, where the features used for classification are generated by respiratory

waveforms produced from our breathing waveform extractor, and the subjects are grouped into

nostril motion vs. nostril non-motion groups before matching is performed that significantly

increases the identity recognition efficiency and reduces process computation. The purpose of

the classification module is to improve the identification performance of our hybrid biometric

system, as we will discuss in the following sections.

1.2 Goals and Contributions

The goals of this work include two major aspects as following:

• The design of a non-contact measurement of the human respiratory waveforms based

on face videos that can guarantee the comparative performance to the traditional human

breathing signal monitoring devices.

• The development of effective pre-processing methodologies can accurately group each

of the original biometric gallery and probe datasets into smaller subsets (such as nostril-

motion specific cohorts or top 5 most similar feature sets) prior to applying single- or

multi-facial component matching, with the purpose of improving identification perfor-

mance.

3



CHAPTER 1. INTRODUCTION

In this regard, we first propose a respiratory waveform extraction schema. The objective

is, for each frame of our available subject-specific face video, to detect and localize the nose

and each nostril, and then, measure a set of pre-defined features, i.e. the width and height of

each nostril in terms of pixel distance. As we will discuss in more detail in our methodology

section, the measurements obtained by our respiratory extraction schema consequentially pro-

duce a client-specific de-noised set of breathing signals representing a 60-second long breathing

waveform that combines all four measured features. In order to facilitate this, the Root Mean

Square (RMS)[30] calculation is applied respectively to both left and right nostril feature val-

ues. Thus, for each frame, these values are averaged to one output generating a hybrid temporal

respiratory waveform.

Second, we propose a motion classification approach when obtaining the respiratory wave-

form from any given video. For this purpose, we perform respiratory waveform peak and bot-

tom detection. Then, based on the detectable number of local maximums and minimums, the

given waveforms are categorized into two groups, i.e., nostril motion and non-motion group.

In order to further reduce the number of potential candidates to match with in the identity

recognition process, we define and extract six features from each input breathing waveform,

and employ the modified K-Nearest Neighbor algorithm [31] to find the top five most similar

subjects within each classified group. The key characteristics of the proposed pre-processing

procedure are the following:

• Instead of comparing all subjects in the testing session, while conducting identity recog-

nition, we narrow down the range of potential identical subjects in advance with compar-

atively high accuracy, hence ensure that the computational complexity of the recognition

algorithm is low.

• The proposed pre-processing approaches of both motion classification method and fea-

ture clustering technique achieve very high classification accuracy, as demonstrate by the

experimental results.

Moreover, the images employed during the face recognition process are six different com-

binations of facial components acquired randomly from videos under two collection scenarios:

4



CHAPTER 1. INTRODUCTION

[Scenario One] - Uncontrolled condition of variant luminance and unfixed head pose; and [Sce-

nario Two] - Semi-controlled condition with variant luminance and fixed head position. The

proposed recognition system is tested under three experiments:

• No pre-processing methodology is involved and directly match images (it works as base-

line scenario).

• Pre-processing stage contains only motion classification method.

• Pre-processing stage includes both motion classification and feature clustering approach.

And all three experiments work on both original images and waveform-based normalized

(WA) [32] datasets. Standard face recognition academic algorithms are used including, Local

Binary Patterns (LBP) [33] and Local Ternary Pattern (LTP) [34]. Thus we argue that the pro-

posed recognition procedure can achieve high matching performance, especially when baseline

experiments shows comparatively lower identification rates.

1.3 Structure of the Thesis

The rest of this thesis is organized as follows:

• Chapter 2: initially gives a description of the human electrocardiography (ECG) identi-

fication techniques that inspired our research work, the existing techniques that monitors

and measures human breathing signals and how our designed respiratory waveform ex-

traction approach is different from the traditional devices.

• Chapter 3: describes the experimental devices, conditions employed during the data

collection stage, the detailed information about the data collection stage, the face video

datasets and the component-based human face image databases applied in this work.

• Chapter 4: provides a summary of the proposed respiratory waveform extraction ap-

proach, the designed pre-processing techniques (including the proposed motion classifi-

cation and feature clustering methods), the face normalization technique employed, and

the face recognition algorithms applied.

5



CHAPTER 1. INTRODUCTION

• Chapter 5: introduces the detailed design and the purpose of the three experiments

used to test the research hypothesis, displays the output from each step of pre-processing

approaches, and analyzes the experimental results under different experiments of two

different types of input face image databases.

• Chapter 6: summarizes the conclusions of this thesis and future work.

6



Chapter 2

Related Work

This chapter generally describes the human electrocardiography (ECG) identification tech-

niques, especially the specific features defined and extracted from the ECG curves that have

shown the identity distinctness for human recognition [14][15][16][17]. In this chapter, we

also list the existing techniques that monitors and measures human respiratory signals, and ex-

plain how our implementation of breathing waveform extractor is different from the traditional

devices.

2.1 Human ECG for Biometric Recognition

Human electrocardiogram (ECG) is used to record and measure different electrical potentials

of the heart, which was initially developed by Willem Einthoven in the early 1900s. The analy-

sis of ECG data are traditionally served as a tool for clinical diagnosis, and the researches have

shown the link between cardiac function and the expression of the ECG trace. Recently, a lot

of studies have proposed the potential probability of employing ECG data as a novel biometric

attribute for human identity recognition purpose. In [35], the study has supported the proba-

bility of applying ECG signals for human biometric identification based on the fact that both

the physiological and geometrical differences of the heart from the distinct individuals have

presented some certain uniqueness from their ECG data.

A typical ECG signal of a normal heartbeat is mainly consists of the following components:

a P wave, a QRS complex and a T wave shown in Fig. 2.1 [2]. Recent researches have indicated

7



CHAPTER 2. RELATED WORK

Figure 2.1: Main components of an ECG signal [2].

that human individuals present distinct patterns of their ECG curve in regards to the wave

shape for an ECG cycle, the amplitude for PRT peaks, the PT interval, because of the physical

conditions of individual’s heart [36].

In [37], a SIEMENS ECG equipment is used to extract a set of temporal and amplitude

attributes directly. Then a feature selection algorithm is applied to remove unnecessary and

useless features based on the analysis of correlation matrix (i.e. the features with a relatively

high correlation with other features are removed). The empirical feature selection algorithm

reduced the attributes number from 30 to 12 (i.e. 30 is the original number of features delivered

from the SIEMENS device). The identification system was tested on a database of 20 subjects,

and successfully obtain 100% identification accuracy. One critical limitation of this method is

that both the feature measurement approach and the feature selection procedure is not automatic

and has to be dependent on specific equipment.

In [38], the proposed of human identity recognition was consists of two main steps based

on input one-lead ECG. The correlation coefficient for comparing two QRS complexes based

on the specific template matching method as to find the potential candidates for the matching

process. Finally, the identity recognition stage was completed by applying the decision-based

neural network (DBNN) technique for the potential identical candidates selected from the com-

8
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pleted template matching procedure. The final accuracy can achieve 100% identification accu-

racy when combines the template matching (i.e. 95% of correct verification rate) and DBNN

method (i.e. 80% correct rate).

Israel et al. [17] proposed an extensive set of ECG descriptors that characterizes the trace

of the heartbeat in detail. An input ECG signal is firstly applied a bandpass filter to remove

non-signal components. The peaks (i.e. points P, R, T) were established by finding the local

maximums that are surrounding each of the P, R, T complexes, and the base points were local-

ized by tracking downhill and discovering the location of the minimum radius of the curvature.

And in total 15 features listed in Table 2.1 were extracted from each heartbeat signal, which

is defined within the normalized distance between the two fiducials. And a stepwise canonical

correlation that applied the Wilkes lambda as a divergence measure worked for the feature se-

lection process. A database of 29 subjects was used for testing the identification system, and

achieved 100% human identification accuracy and about 81% heartbeat recognition rate. In

this method, the automatic feature extraction and identity recognition process can be achieved.

In general, the existing works about ECG biometric identification measure different critical

components of input ECG signal and utilize feature vectors for further classification procedure.

In our study, we referenced this research schema that define and extract several attributes from

each breathing cycle curve and establish the six-dimension feature vector for further clustering

procedure.

Table 2.1: Extracted 15 attributes. The features list labels are employed the normalized
distance between the two fiducials.

Feature ID Feature Definition Feature ID Feature Definition

1 RQ distance 2 RS distance
3 RP distance 4 RL distance
5 RP’ distance 6 RT distance
7 RS’ distance 8 RT’ distance
9 P width 10 T width
11 ST distance 12 PQ distance
13 PT distance 14 LQ distance
15 ST’ distance

9
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2.2 Human Respiratory Signal Measurement

Detection and measurement of human respiratory rate (RR) works as a significant component

of initial and continuous evaluation of actual patients for clinical diagnosis. The automatic

recording of respiratory signal techniques can be applied to monitor a number of physiological

variables. There exists several typical equipment that can be used to achieve the monitoring

and recording of human respiratory signals [18], which are listed as follows:

• Spirometers and nasal thermocouples: these two devices keep measuring the air flow

in and out of the lungs directly during inhalation and exhalation, which can produce

detailed breathing signals. However, they may interfere with the respiration process that

may influence the accuracy of the actual breathing waveform.

• Transthoracic inductance and inpedance plethysmographs, pneumatic respiration

transducers, whole-body plethysmographs, and strain gauge measurement of tho-

racic circumference [18]: these equipment can also be used to indirectly monitor respi-

ratory signals based on the measurement of the variation of body volume.

All these techniques mentioned above are required some particular devices attached to some

specific component of human body. Travaglini et al. [18] proposed a novel method that derives

reliable detection of respiratory waveform from input human original ECG signals. This tech-

nique doesn’t require additional equipment, which is only based on some signal processing

approaches, and works particularly effective when the input information is only limited on

human ECG data. In this study, eight leads of ECG signals were utilized and worked as the

input data for the conversion of breathing signal, and the whole technique was based on the hy-

pothesis that the points representing the human respiratory waveform can be aligned around the

preferred direction in 8-D space. A database of 10 subjects have been used to test this technique

under several breathing conditions, such as deep breath and short breath, and the results have

been compared with the signals generated from the strain gauge measurement of the thoracic

circumference. This approach can be applied to existing equipment and help analyze the ECG

signals in order to obtain addition information without utilizing other additional devices.
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In our study, the respiratory waveforms are detected and extracted directly from face videos

based on some video-processing methods and signal-processing techniques. This approach

doesn’t require any additional devices or monitors attached to human body, and only a digital

camera is necessary to conduct the video recording from a specific distance from the human

face. Also, it can be incorporated into real-time monitoring system.
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Chapter 3

Experimental Setup

Two unique facial video databases, i.e. DB FF (fixed fully frontal face pose) and DB HU

(head-up face pose) were manually collected and considered to facilitate the proposed study.

Each database consists of two sets of video recordings (session 1 and session 2) of the same

30 subjects. The data collection of session 1 and session 2 were conducted on different days in

order to guarantee the facility and validity of the gallery and probe. For each session, five 1-

minute long videos were recorded for each subject (i.e., totally 150 videos are included in each

set). From each video database and for the purpose of conducting the face component-based

recognition experiments, two sets of six different face image databases (DB FF1∼DB FF6 and

DB HU1∼DB HU6) of diverse facial component combinations (i.e., eye, eyebrow, mouth, and

successively group with nose to build the image databases) were generated.

The following subsections provide more detailed information and settings about each database

as well as the equipment used for acquiring the facial videos and the baseline breathing wave-

form data from device.

3.1 Equipment

• Cannon 5D Mark II: This digital SLR camera has a 21.1-megapixel full-frame CMOS

sensor with DIGIC 4 Image Processor and a vast ISO range of 100-6400. It supports Live

View HD video recording with up to 39 frames per second (FPS). In this study, the Mark

II is used to obtain ultra-high resolution facial videos (about 1-minute for each recording)
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in the visible spectrum.

• ADInstruments Respiratory Belt Transducer: This Respiratory Belt Transducer con-

tains a piezo-electirc device that measures changes in thoracic or abdominal circumfer-

ence during respiration, which indicate inhalation, expiration, breathing strength and can

be used to derive breathing rate. In this study, the Respiratory Belt Transducer is used

to track and measure the up-and-down movement of the subject’s chest accompanying

the inhalation and exhalation while taking deep breath and convert it to the respiratory

waveform signal served as the baseline data, which helps assess the performance of our

developed respiration waveform extraction system.

• ADInstruments PowerLab 4/35: This PowerLab device is a high-performance data ac-

quisition hardware physically connected with Respiratory Belt Transducer. It is capable

of recording at speed of up to 400,000 samples per second to disk continuously with four

analog input channels. In this study, we set up the sampling rate to be 40 samples per

second, which is the most compatible option to our video recording frame rate (39 frames

per second). And the generated datasets are stored in MAT format.

Table 3.1: Utilization information about each database. All the videos were collected under
natural light that was in uncontrolled illumination condition and might vary according to the
different collection days.

# of # of # of Data
Database Cameras Subjects Sessions (/subject Head Pose

/session)
DB FF 5D Mark II 30 2 1 Full Frontal Face
DB HU 5D Mark II 30 2 5 Head up at 30◦ − 40◦

DB FF1∼DB FF6 5D Mark II 30 2 5 Full Frontal Face
DB HU1∼DB HU6 5D Mark II 30 2 5 Head up at 30◦ − 40◦

3.2 Databases

Thirty (30) subjects were involved into the data collection over two sessions conducted on two

different days in order to guarantee the facility and validity of the gallery and probe data. The

13
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following is a detailed description for each database utilized in our experiments. Additional

information can be found in Table 3.1.

Table 3.2: Six different types of facial-component combinations and their corresponding
covered regions employed during the identity recognition stage, which is to eliminate the
potential influence on the matching performance caused by other facial features not included
within the specific combination.

Database Facial Components Image Size Covered Area
DB FF1, DB HU1 Nose 180*150 Top Width:55; Top Height:40;

Bottom:17;
DB FF2, DB HU2 Nose, Eye 330*180 Top Width:0; Top Height:0;

Bottom:17;
DB FF3, DB HU3 Nose, Mouth 330*260 Top Width:135; Top Height:42;

Bottom:22;
DB FF4, DB HU4 Nose, Eye, Eyebrow 330*250 Top Width:165; Top Height:20;

Bottom:22;
DB FF5, DB HU5 Nose, Mouth, Eye 330*340 Top Width:165; Top Height:50;

Bottom:25;
DB FF6, DB HU6 Nose, Mouth, Eye, Eyebrow 330*340 Top Width:165; Top Height:0;

Bottom:25;

• DB FF: Collected in an indoor environment with semi-controlled conditions of fixed

head pose and variant illumination. And high quality of one 10-second video was cap-

tured for each subject in each session with a Cannon 5D Mark II with 39 frames per

second and 1920 by 1080 pixel per image. Videos were collected at fully frontal head

position with 2-meter distance between the camera.

• DB HU: Collected in an indoor environment with uncontrolled conditions of unfixed

head position and variant illumination. Five videos of 60-second long were captured for

each subject in each session utilizing a Cannon 5D Mark II with 39 frames per second

and 1920 by 1080 pixels per image. Videos were acquired at a un-fixed head-up pose,

i.e., the pitch (see Fig. 3.1 [3]) was between at 30 to 40 degrees plus (head looking up)

with 2-meter distance between the camera.

• DB FF1∼DB FF6: For each session, 5 visible full frontal face images were extracted

(per subject) from the corresponding group in DB FF. The number 1 to 6 represents a

specific component-based face image database as follows. And more detailed informa-

tion about each type of component-based face image used in our work can be found in
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Table 3.2.

– Number 1: Image contains only nose part.

– Number 2: Image contains nose and eye.

– Number 3: Image contains nose and mouth.

– Number 4: Image contains nose, eye, and eyebrow.

– Number 5: Image contains nose, mouth, and eye.

– Number 6: Image contains nose, mouth, eye, and eyebrow.

• DB HU1∼DB HU6: For each session, five visible head-up face images (per subject)

were extracted from the corresponding group in DB HU. The number 1 to 6 represents

a specific component-based face image database as same as the combinations of facial

parts in DB FF1∼DB FF6. More detailed information about each type of component-

based face image used in our work can be found in Table 3.2.

Figure 3.1: Illustration of three types of rotational descriptors on face images acquired under
variable conditions using two different sensors [3]. Note that in order to clearly track and record
the movement of nostrils, the face videos (DB UH) used in our study were generated when the
pitch descriptor rotated between 30 to 40 degrees, i.e., in head looking up position.
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Methodology

In this section, we outline the techniques used for achieving and manipulating human respi-

ratory waveforms from input face videos, and describes the proposed two data pre-processing

methodologies (i.e., motion classification method and feature vector clustering approach) and

facial recognition algorithms. The overall work is displayed in Fig. 4.1 and the salient stages

of the proposed approaches are described below.

4.1 Breathing Waveform Extraction

In this study, instead of applying traditional techniques of monitoring and measuring human

respiratory signals, a novel approach dealing with head-up face videos (DB HU) for non-

contact measurement of human breathing waveform is completely developed based on nostril

movements during inhalation and exhalation while taking breath. Throughout data collection,

while asking subjects to breathe, a number of them showed an obvious enlargement of the nos-

trils opening during inspiration, which is a medical symptom named Nasal Flaring [39]. And

our designed respiratory waveform extractor is mainly based on the changing opening of the

nostrils.

Nasal flaring is the condition where human nostrils are getting dilated compared to normal

situation, which usually occurs during inspiration and may occasionally happen during expira-

tion or throughout the breathing cycle. Certain respiratory treatments, such as deep breathing,

can cause nasal flaring [40].
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Figure 4.1: Overview of input experimental datasets, the design of our proposed pre-processing
approaches based on human respiratory waveforms that supports the human identity authenti-
cation system, and the three testing scenarios.

In our case, we exploit this physiological condition (see Fig. 4.2), and for each frame

within one given video, the proposed method, firstly detects and localizes the nose compo-

nent position using the Masayuki Tanaka face parts detection algorithm [5] , then, detects the

edges of the facial features and measures the horizontal width W and the vertical height H for

both nostrils (i.e., collects four critical feature values: Hleft,Wleft, Hright,Wright). Fig. 4.3

illustrates the measurement approach of these four defined features on each given frame from

input video. By accumulatively collecting the value for each type of distance produced from

any single video, we managed to obtain four sets of data (as discussed above) representing
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Figure 4.2: A visual example where flared nostrils are observed. This condition is noticed over
time on some individuals, and if exploited properly, we can group subjects before performing
any face component-based matching that will significantly reduce the computation complexity
during recognition process [4].

Figure 4.3: Illustration of our nostrils features measurement approach. The nose component
is firstly detected and localized (shown as red squares) using the Masayuki Tanaka face parts
detection algorithm [5]. Then, 4 features (left height Hleft, left width Wleft, right height Hright

and right width Wright) are measured. The picture is an example frame from subject no. 16
(session no. 1, video no. 1, frame no. 12).

18



CHAPTER 4. METHODOLOGY

Figure 4.4: Example of extracting breathing waveforms from one of the collected video. The
proposed approach keeps measuring four nostril features for each frame along the video, then
apply the 0-1 normalization and de-noising algorithms on the collected data for each extracted
feature value set. The top Fig. represents the frames selected with 10-frame interval to display
the observable nostril movement. Bottom Fig. represents the four curves for the measured
nostril features within one video. Both the frames and the curves shown are collected from
subject from subject no. 16 (session No. 1, video No. 1).

the nostrils four-dimension movement within 1-minute time. Besides considering the measure-

ment errors (such as the slight difference of the distance between camera and subjects during

video shooting process caused by the unconscious body movement), all four sets of feature

values were processed using 0-1 normalization by scaling between 0 and 1, using equation (1)

and applying a signal de-noising algorithm in order to smooth the signal waveforms. Fig. 4.4

shows the breathing waveform extraction process of converting measured four nostril features

of each frame from input face video into consecutive curves with 0-1 normalization and signal

de-noising manipulations.

Normalized(ei) =
ei − Smin

Smax − Smin

(4.1)

Where ei is the target value to be normalized; Smax and Smin are the global maximum and
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minimum values in the given set of data.

Instead of analyzing four nostril features separately, the Root Mean Square [30] (RMS, also

called quadratic mean) measurement is conducted on each frame to combine each pair of two

features from one side nostril (i.e., Hleft and Wleft for left nostril; and Hright and Wright for

right nostril). And the averaged RMS value for both nostrils is the target output for one given

frame, and its accumulative collection of data throughout one input video forms the resulting

respiratory waveform. The RMS works as a tool to comparatively reduce the measurement

errors, and it is mathematically characterized as:

Lleft =

√
Hleft

2 +Wleft
2

2
(4.2)

Lright =

√
Hright

2 +Wright
2

2
(4.3)

Lmean =
Lleft + Lright

2
(4.4)

Where Hleft, Wleft, Hright, and Wright are the measured nostril feature values for one given

frame; Lleft and Lright are the resulting RMS values for left and right nostrils and Lmean is

the target mean value combining 4 features produced from one input frame. The collection of

the Lmean value for each frame along one video make up the target dataset representing one

breathing waveform.

The resulting breathing waveform for our designed system is generated according to the

collected set of the mean value Lmean based on left RMS value Lleft and right RMS value

Lright for each frame. All the videos were collected with 39 frames per second, thus the sam-

pling rate for the breathing waveform is 39 points per second. However, the ADInstrument

device we used to acquire the baseline data works at 40 samples per second. Therefore in order

to guarantee the same dimension of two datasets and equally compare these two respiratory

curves, the Linear Interpolation is applied to baseline dataset (i.e., from ADInstrument device).

One example of the comparison between the output waveform extracted from one input video

and its corresponding baseline breathing curve (i.e. real-time waveform detected via ADIn-
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Figure 4.5: Comparison between the breathing waveform output from our designed system
(red line) and the baseline breathing curve measured by ADInstruments device (blue line).
The waveforms are selected from subject no.16 (session no.1, video no.1) which is the same
example subject shown in Fig. 4.3 and Fig. 4.4.

struments device) is shown in Fig. 4.5. And by analyzing this example, for each breathing

cycle (i.e., includes consecutive two local bottoms and one local maximum point) these two

waveforms can achieve a good match at the time dimension.

In order to get a precious comparison between the resulting output from the designed breath-

ing waveform extraction system and the signal produced by the ADInstruments indicating the

same video taking process, the Root Mean Square [30] was also applied on each pair of breath-

ing signals (i.e. one is from the ADInstruments, and the other one is from the developed

system). Table 4.1 indicates the results from the Root Mean Square calculation.

4.2 Nostril Motion Classification

After applying the breathing waveform extraction on each video, for every subject on both

gallery and probe sessions 5 new data sets are generated and each group of data represents

a 60-second long respiratory waveform of 39 sampling rate extracted from its correspond-

ing head-up face video in database DB HU (i.e., each produced new data set consist of 1 by

2340 dimension). Through the observation and analysis of the collected videos from database

DB HU, one phenomenon has been noticed that the nostril flaring symptom doesn’t happen on
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Table 4.1: The Root Mean Square results between the produced waveform from the designed
system and its corresponding baseline data generated from the ADInstruments.

# of Subject Section 1 Section 2 Average # of Subject Section 1 Section 2 Average
1 0.20 0.18 0.19 2 0.26 0.28 0.27
3 0.13 0.12 0.12 4 0.27 0.30 0.29
5 0.20 0.16 0.18 6 0.21 0.17 0.19
7 0.06 0.12 0.09 8 0.06 0.07 0.06
9 0.19 0.15 0.17 10 0.11 0.13 0.12
11 0.07 0.11 0.09 12 0.13 0.14 0.14
13 0.28 0.29 0.28 14 0.12 0.16 0.14
15 0.24 0.24 0.24 16 0.15 0.15 0.15
17 0.11 0.16 0.14 18 0.12 0.13 0.12
19 0.12 0.13 0.12 20 0.31 0.31 0.31
21 0.24 0.26 0.25 22 0.17 0.20 0.18
23 0.17 0.17 0.17 24 0.09 0.13 0.11
25 0.19 0.19 0.19 26 0.07 0.06 0.07
27 0.28 0.27 0.27 28 0.22 0.19 0.21
29 0.09 0.13 0.11 30 0.04 0.04 0.04

every person, where some subjects showed comparatively observable nostril movement while

asking to take a deep breath, however others motion are invisible or non-significant. Therefore,

the hypothesis was proposed that the detectable movement of the nostrils can be powerfully

used to categorize subjects into groups.

Our proposed pre-processing technique of nostril motion classification technique following

the respiratory waveform extraction module is based on the detectable number of both peak

points and bottom spots of a given breathing waveform using the Peakdet algorithm [41] with

fixed threshold values (i.e., the pre-define values used to detect and determine the local maxi-

mum and local minimum points, the thresholds of detectable number of peaks and bottoms to

classify movement and non-movement groups).

Considering the signal noise, which mostly exists in real-life signals, accidentally lead to

the zero values of its first derivate, the well-known zero-derivate approach will result in false

peak or bottom detection. A better solution employed by Peakdet’ is to realize that for each

local maximum point there must exist lower value points around it, and the algorithm is to

discover the highest point X, around which there are points lower than X on both sides [5]. On

the other hand, the local bottom point Y locates on the valley that some higher value points

align on both sides of Y.
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Figure 4.6: Illustration of how our nostril motion classifier that categorizes input subjects into
movement and non-movement groups. 2 examples are selected from subject no.16 (session
no.1, video no.1) and subject no.1 (session no.1, video no.3). The threshold value for detecting
peak and bottom point is 0.15 and the number of local maximums (as well as minimums) used
for classification is 4.

Fig. 4.6 illustrates the designed nostril movement classification process, and presents the

two examples from both motion group and non-motion group. The defined motion classifier

worked on both sessions (i.e., gallery and probe sessions) and categorized subjects from each

session into two classes: Movement Group (MG) and Non-Movement Group (NG). It can be

biased and mostly introduce some error to determine the subject’s group by only analyzing one

input curve. Considering for each subject there are five distinct data sets of the same dimensions

in each unit (i.e., unit is defined as a group of data for one subject in one session), the motion

classification output is referred to the majority-voting results of five input curves within the

specific unit. There can be 6 different types of combined results, and the detailed decision

making procedure for our motion classifier is listed in Table 4.2.
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Table 4.2: The decision making procedure of the motion classifier applied on each unit of 5
videos. And the final decision is referred to the classified group for the corresponding subject
in one session.

# of Motion # of Non-Motion Final Decision
Decision Decision
5 0 Motion
4 1 Motion
3 2 Motion
2 3 Non-Motion
1 4 Non-Motion
0 5 Non-Motion

As a result of the motion classification approach, both the gallery and probe datasets as

well as their corresponding subjects are segmented and categorized into two smaller groups.

As a pre-processing methodology, it can significantly reduce the computational complexity

and increase the matching efficiency during the identity recognition stage, since instead of

comparing with the whole population of gallery database it only need to conduct the matching

algorithm within a reduced group. Besides comparing with fewer subjects will also decrease

the probability of matching the false target.

4.3 Feature Extraction and Clustering

Another pre-processing methodology might be introducing other schema that can further nar-

row down the number of potential candidates as well as reduce the matching complexity in the

recognition procedure. Through observation and analysis of the input respiratory waveforms,

certain breathing cycles are presented as the repeated patterns, which is quite similar to the

human electrocardiogram (ECG) patterns and features that can successfully identify different

subjects.

The following content provides more details about the feature definition and clustering

procedure involved in the second pre-processing methodology that introduces another method

to further narrow down the group size following the motion classification approach.
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4.3.1 Feature Extraction

Inspired by the studies of human ECG identification, we proposed the hypothesis that some

crucial features can be extracted from breathing waveforms to help categorize subjects with

high feature similarity. Referred to the defined feature vector used for ECG classification

[14][37][42][43], 4 dynamic features are selected within each breathing cycle time (i.e., one

inspiration and its following expiration) shown in Fig. 4.7. Besides, the extraction of each

respiratory cycle is based on the consecutive two detected local bottom points with pre-defined

threshold values.

Considering the integrality of a 60-second long respiratory waveform, instead of directly

using the four feature values extracted from only one periodic time, our defined feature vector

is consisted of the averaged attribute values among detectable integrated breathing cycles. In

addition, two more static features are also involved, which are defined as the ratio of horizontal

distance and vertical distance for both left nostril and right nostril and extracted from facial

images to complement the target feature vector representing one input breathing waveform.

The detailed definition about each attribute is defined as follows:

Figure 4.7: Definition of 4 dynamic features for a cycle of breathing waveform. Notice that its
a real respiratory cycle extracted from the output of our breathing waveform extraction system
for subject No.16.
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• F1: Averaged ratio value of horizontal distance and vertical distance for left nostril in the

first 10 frames: f1 = 1
10

∑10
k=1

Wleft

Hleft

• F2: Averaged ratio value of horizontal distance and vertical distance for right nostril in

the first 10 frames: f2 = 1
10

∑10
k=1

Wright

Hright

• F3: Averaged breathing cycle period including one inspiratory and its expiratory in

60-second.

• F4: Averaged detectable local peak value in 60-second.

• F5: Averaged detectable local bottom value in 60-second.

• F6: Averaged point value for one waveform in 60-second.

4.3.2 Clustering

By using feature extraction as just mentioned, for each subject five distinct feature vectors are

generated for both gallery and probe sessions. Since the produced feature sets are of the same

dimension (i.e., each feature vector is defined as 1 by 6 dimension), the distance calculation

between two feature sets can be applied to measure their similarity.

The method used to further cluster subjects after nostril motion classification is modified

K-Nearest Neighbor (or K-NN for short) [31] approach. The goal of designed K-NN model is

to discover the top similar subjects measured by feature vector distances. In our study, the K

value is set to five. Generally speaking, the cluster treats five feature vectors from every subject

in each session as a group, and in terms of each subject or group in the probe (i.e., session 2) the

algorithm will find the top 5 subjects or groups from gallery databases (i.e., session 1) with the

smallest averaged distance from the given input group from probe. Since for each group five

feature vectors are included, the distance measurement between two groups X and Y should

contain the comparison of each feature set from X and every feature vector from Y (i.e., totally

25 times of comparisons).

The detailed steps of distance measurement between 2 given groups are defined as follows:

• Group X includes five feature vectors; and group Y includes five feature sets of the same
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dimension.

• Each vector vi (i=1,2,. . . ,5) from group X will compute the Euclidean Distance with all

vectors vj (i.e.,(j=1,2,. . . ,5) from the group Y, and generate 25 results corresponding to

each computation.

• Average all 25 distance values produced from step 2.

• Set the averaged value from step 3 to the measured distance between these two given

groups X and Y.

Mathematically calculation procedure can be described as:

dist(vi, vj) =
6∑

k=1

(fik − fjk)
2 (4.5)

dist value =
1

25

5∑
i=1

5∑
j=1

dist(vi, vj) (4.6)

Where vi and vj (i=1,2,. . . ,5 and j=1,2,. . . ,5) are the feature vectors that come from the com-

pared two groups that one comes from gallery and the other one is from probe database; and

fik (k=1,2,. . . ,6) is the corresponding one feature value at position k for specific feature vector

vi; and dist(vi, vj) is the measured distance between feature vector vi and vj; and dist value

is the produced distance value between two input groups.

As a results of the second pre-processing methodology introduced above that combines mo-

tion classification and feature clustering, the number of potential subjects from gallery database

that are identical to the testing subject from probe database is reduced to 5 instead of 30. Conse-

quently it will markedly simplify the computational complexity during the identity recognition

stage that only five pairs of images need to compare with.

4.4 Component-Based Face Recognition

During the video recording process, the subjects cannot keep the same head or body position

for 60-second long. Besides, involving less facial features from images, measuring the deter-
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ministic influence of respiratory waveforms is also our goal throughout the recognition system

design. Therefore, instead of using the whole face image the component-based face recognition

is employed, which can compensate for head pose changes and involving less facial biometric

features as well.

The major steps of the recognition process are described below.

4.4.1 Face Image Selection

Five frames of face images are randomly selected and extracted from each fully frontal face

video in database DB FF as well as the head-up pose video in database DB HU for each subject

in every sessions (i.e., totally, for both gallery and probe image databases there are 150 face

images involving 30 subjects). And all the images are in the same size of 1920 by 1080 pixel.

Considering the missing information from the images (such as the eyes are closed or the facial

expression changes quite a lot), some re-pick manipulations was done at random.

4.4.2 Face Image Geometric Normalization

Since subjects may change their head position or body pose during the 60-second long video

shooting process, an image modification scheme was applied to all face images. The approach

consisted of three main steps as follows:

• Pupil detection: First, the Masayuki Tanaka face parts detection algorithm [5] was ap-

plied to all the face image database (i.e., all the images generated from the face image

selection procedure), where automated eye detection was performed using a template

matching algorithm and the coordinates of pupils were generated automatically.

• Image rotation: After localizing the pupils’ coordinates, the image rotation scheme was

applied to compensate for slight left or right head move in the frontal pose. In order to

achieve horizontally rearranged location for the center of pupils, the canonical faces were

automatically constructed by applying an affine transformation based on the detected the

pupil coordinates. Fig. 4.8 displays the image rotation procedure. In general, the rotation

approach is based on the following rules:
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– The coordinates of the center point between the two pupils keeps the same value.

– The distance between the two pupils, in other words the distances between the cen-

ter point to left pupil and right pupil, keeps the same value.

– Since the images before and after the rotation are of the same size. In terms of the

pixels that exceeds the boundary after rotation, they are not included in the new

image. And for the region in the new image that none of the pixels from the old

image will be projected in, they are set as black, i.e., set pixel value as (0, 0, 0).

And all the other points keep the same pixel values throughout the rotation, but

coordinates may change.

Figure 4.8: Illustration of applying affine transformation to obtain image rotation. Notice that
during the rotation process, the center coordinates of the two pupils (i.e., shown as the green
triangle point) will keep the same. While the coordinates of the pupils may change during the
rotation, the distance between the two pupils will be the same value.

• Image resizing: After rotation, all the resulting images have the their two pupils aligned

on the same horizontal line. Finally, the images are resized based on different ratio values

in order to obtain fixed distance between two pupils (i.e., distance of 180 pixels for every

image).
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4.4.3 Component-Based Face Image Extraction

Our studies mainly focus on investigating the potential identity distinctness of human respira-

tory signals, thus the image databases used in the identity recognition procedure are concen-

trated on nose component where the component-based image databases are built surrounding

the nose part.

The input videos are from both the frontal face pose database DB FF and the head-up pose

database DB HU, and the generated image databases are six different types of combinations

of facial components extracted from all the selected and processed face images as mentioned

above (i.e., Face Image Selection and Image Reconstruction of Pupil Detection, Image Rotation

and Image Resizing approaches). And more details, for each implemented component-based

face image is listed in in Table 3.2.

After acquiring the location of eyes as well as the coordinates of pupils by applying the

Masayuki Tanaka face parts detection algorithm [5], the segmentation process of facial compo-

nents was automatically conducted with the pre-defined cutting locations for each combination

(i.e., defining the specific width and height of the target image for each type of combination).

Since the proportion of facial features may vary among different faces, the resulting facial part

segmentations may contain other unnecessary features that may have some influence on the

recognition performance, which is not expected in our experiments (such as the cutting of the

nose component may include partial canthus structure). Therefore, in terms of each type of

component-based face combination image, a specific covering strategy was applied on the seg-

mentation output in order to eliminate the influence of other unnecessary features, and Table

3.2 also presents the specific strategies about the pre-determined covered regions for each type

of facial parts combination.

Fig. 4.9 presents more details about each type of segmentation and its corresponding cov-

ering strategy, and displays a visual illustration about each type of facial components combi-

nation of the original output and the resulting segmentation images with pre-defined covering

area. And in terms of the pixels within the specific regions that may contain other unnecessary

facial components, their pixel values will be reset as (255, 255, 255) the covers the original

structures and contents.
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Figure 4.9: An example (subject no. 1) of the comparison between the original component-
based face images and the resulting segmentation outputs with pre-defined covered regions
for each type of combination. Notice that in order to show 6 different types of facial parts
combination in this work, all the displayed images were resized to the same size on this figure
instead of using their original size as listed.)
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4.4.4 Face Image Photometric Normalization

Normalization of facial data is a crucial technology for human recognition application. The

objective of applying face normalization approaches is to eliminate or alleviate the redundant,

disturbed and unnecessary information such background, cloth, hair etc. in order to improve

the performance of identity recognition.

In this study, 14 different types of face normalization approaches provided in Illumination

Normalization techniques for robust Face recognition (INface) toolbox v2.0 [44][45] have been

tested on all six kinds of component-based face feature combination. Fig. 4.10 represents the

normalized images obtained based on 14 different types of normalization techniques applied

(for one given sample image). More detailed information about each normalization approach

is introduced as follows:

• Wavelet Based Normalization Technique (WA): The WA approach was proposed by

Du and Ward [32], that applies the discrete waveform transform to an image and pro-

cesses the obtained sub-bands. This technique focuses on the detailed coefficient matri-

ces and employs histogram equalization to the approximate transform coefficients. Fi-

nally, reconstructs the normalized image using the inverse waveform transform after the

manipulation of each individual sub-band.

• Anisotropic Diffusion Based Normalization Technique (AS): The AS approach adopts

anisotropic smoothing of the input image to evaluate the luminance function, which was

introduce by Gross et al. [46] to the face recognition area.

• Discrete Cosine Transform Based Normalization Technique (DCT): The DCT tech-

nique was introduced by Chen et al. [47] that truncates an appropriate number of DCT

coefficients to minimize the illumination variations under different lighting conditions.

• Gradientfaces Based Normalization Technique (GRA): The GRA approach proposed

by Zhang et al. [48] is to transform image into the gradient domain and use the generated

face representation as the illumination invariant version of the target image.

• Homomorphic Filtering Based Normalization Technique (HOMO): The HOMO is to

transform the input image into the logarithm followed by the frequency domain in order
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to enhance the high-frequency components and weaken the low-frequency parts. Finally,

apply the inverse Fourier transform to obtain the output image in the spatial domain [49].

• Isotropic Diffusion Based Normalization Technique (IS): The IS approach [49], is

applied to estimate the luminance function of the input image using isotropic smoothing

algorithm which is a simpler variance of the anisotropic diffusion based normalization

technique [46].

• Large-Scale and Small-Scale Features Normalization Technique (LSSF): The LSSF

proposed by Xie et al. [50], firstly computes the reflectance and luminance function of

the input image and then further analyzes both generated functions using a second time

of normalization. Within the INface toolbox used in our experiment, the SSR technique

Figure 4.10: Illustration of the resulting images from the 14 types of face normalization ap-
proaches for the same example image of only nose component. And the WA technique was
proven to provide the best result from identity recognition process and selected to apply to all
facial component combinations.
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is implemented as the normalization approach in both steps of LSSF technique.

• Modified Anisotropic Diffusion Normalization Technique (MAS): The MAS approach

included two main modification into the original anisotropic diffusion normalization

technique [46]: First, introducing an additional atan function to estimate the local con-

trast. Second, apply a robust post-processing procedure proposed by Tan et al. [34] in

the final stage of this technique.

• Multi-Scale Retinex (MSR) Algorithm: The MSR method is to extend the previously

designed single-scale center/surround retinex technique to a multi-scale version proposed

by Jobson et al. [51].

• Multi-Scale Weberfaces Normalization Technique (MSW): The MSW is an extend

the single-scale Weberfaces approach proposed by Wange et al. [52]. The technique is

used to compute the relative gradient using a modified Weber contrast method for diverse

neighborhood sizes and to apply a linear combination of the produced face representation

as an illumination invariant version of the target output.

• Steerable Filter Based Normalization Technique (SF): The SF approach produces the

target normalized image by removing illumination induced appearance variation from

the input facial image using steerable filters.

• Single Scale Retinex (SSR) Algorithm: The SSR approach was proposed by Jobson et

al. [53] on the basis of the retinex theory [54] as the majority of photometric normaliza-

tion techniques.

• Tan and Triggs Normalization Technique (TT): The TAT is to employ a processing

chain on the input image by firstly using gamma correction, then applying DoG filtering

and finally adopting a robust post-processor to generate the output normalized image

[34].

• Single Scale Weberfaces Normalization Technique (WEB): The WEB method is used

to compute the relative gradient using a modified Weber contrast algorithm and treat

the generated face representation as an illumination invariant version of the target image

[52].
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Based on the generated experimental output, the waveform based normalization technique

(WA) provided the best experimental results in the identity recognition procedure, and the

WA normalization technique was applied to all component-based face images from databases

DB FF1∼DB FF6 and DB HU1∼DB HU6. The WA approach was proposed by Du and Ward

[32], which applies the discrete waveform transform to an input image and processes the ob-

tained sub-bands. This technique focuses on the detailed coefficient matrices and employs his-

togram equalization to the approximate transform coefficients. Finally, our proposed approach

reconstructs the normalized image using the inverse waveform transform after the manipulation

of each individual sub-band.

4.4.5 Human Recognition based on Sub-facial Regions

The standard texture based face recognition methods, Local Binary Pattern (LBP) and Local

Ternary Pattern (LTP), were employed to perform the component-based face recognition ex-

periments. The LBP was introduced by Ojala et al [55], is an effective gray-scale invariant

texture measure. In the simplest form, the LBP description of a given pixel is computed by

thresholding the values of the 3 × 3 neighborhoods of the target pixel based on the value of

the central pixel (i.e., each neighbor pixel greater than or equal to the central pixel value is set

as 1, otherwise the new value is assigned 0), and these binary values are arranged to build a

binary number. Finally, the resulting binary pattern (i.e., converts the results of the eight neigh-

borhoods to a binary number) is interpreted as a decimal value. An example of this LBP code

process is presented in Fig. 4.11.

The LBP operator employed in our experiments is generalized as considering a larger local

neighborhood that the sampling points evenly space on a circle, which is centered at the target

pixel to be labeled. Specifically the descriptor is defined as LBPU2

P,R, where R represents the

a circle neighborhood radius and P refers to the number of sampling points located on the

circle. The symbol U2 means the uniform pattern because of the most frequently existence in

our experiments (Since Ojala has observed that uniform patterns accounted for around 90%

of all the patterns in their image datasets [56]). An LBP operator is named uniform, if there

exists at most two bitwise transitions (i.e., changes from 0 to 1 or 1 to 0) when considering
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the corresponding binary string as a circular [56]. For instance, the 8-bit strings 00110000 (0

transition) and 01111110 (2 transitions) are uniform patterns, while 01010101 (7 transitions)

and 00011010 (4 transitions) are not.

Figure 4.11: The LBP operator thresholds each pixel against its eight neighborhoods, and forms
these binary patterns to a binary number (10100111), which is finally converted to a decimal
value (167).

Formally, in terms of an input pixel at (xa, ya) the resulting LBP value can be interpreted in

decimal form as follows [57]:

LBPP,R(xa, ya) =
P−1∑
p=0

S(vp − va)2
P (4.7)

Where va and vp (i.e., p = 0, 1, . . . , P − 1) are the gray-level pixel values of the central pixel

and its P surrounding pixels in the circle neighborhood with a radius R, 2P is a binomial weight

assigned to each S(vp − vc), and the function S(x) is mathematically defined as:

S(vp − va) =

 1, if vp − va ≥ 0;

0, if vp − va < 0.

 (4.8)

The LBP operator works as a powerful mean of texture descriptor. However, since the

computation of the binary code is based on thresholding the center of the pixel region, the LBP

tends to be sensitive to noise in homogeneous image regions [58].

Local ternary pattern (LTP) operator is introduced as an extension of LBP that employs a
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Figure 4.12: The LTP operator thresholds each pixel against its eight neighborhoods and as-
signs a 3-valued code of 0, 1 and -1. These trinary values are arrange to form a trinary number
(0”-1”10”-1”101), and then transferred into two binary number (00100101, 01001001) and two
decimal values(37, 73).

3-valued codes [34]: (1). the gray-level pixel values in an interval value of ±t around central

pixel value are quantized to zero; (2) the pixel values above that interval are assigned to +1;

and (3) the pixel values below it are set as -1, i.e. the function S(x) is alternatively expressed

as:

S(vp − va, t) =


1, if vp − va ≥ t;

0, if |vp − va| ≤ t;

−1, if vp − va ≤ −t.

 (4.9)

The threshold interval value t can be adjusted to generate diverse patterns, which makes the

LTP descriptor become more tolerant to noise. A coding scheme is applied to split each trinary

number into two separate channels of LBP descriptors, i.e. the positive one and the negative

one. Finally the feature vector is formed by concatenating these two histograms of these two

decimal values. An example of this LBP code process is presented in Fig. 4.12.

Consequently, the identification performance of our designed system shown in Fig. 4.1 is
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evaluated through the Calculative Match Characteristic (CMC) curve, which measures the 1:

m recognition performance and evaluates the ranking capability of the system [58].
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Experimental Results and Discussion

The component-based face recognition experiments worked on the databases of all facial parts

combinations (i.e. databases of DB HU1∼DB HU6 and DB FF1∼DB FF6) for both WA-

normalized and non-normalized component-based face images under the following three de-

signed scenarios, and Fig. 5.1 displays the detailed steps for each experiment.

• Original Images (OI): Original face parts images without any pre-processing manip-

ulations. The face recognition algorithm worked on both WA-normalized and non-

Figure 5.1: Illustration of the process flows for three scenarios applied in our study.
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normalized facial parts combination images.

• Motion Classification (C1): The pre-processing technique only contains motion clas-

sification method. Firstly, subjects are categorized into two groups (i.e. motion and

non-motion groups) based on the attributes of the extracted respiratory waveforms, then

face recognition algorithm is applied separately on each group of both WA-normalized

and original facial parts combination images.

• Motion Classification and Feature Clustering (C1&C2): The pre-processing tech-

nique contains both motion classification and feature clustering approaches. Firstly, sub-

jects are categorized into two groups. Then, for each subject, the top 5 most similar

entities via feature clustering are found, finally face matching method is applied on each

cluster of the 5 candidates in both WA-normalized and non-normalized form of facial

components combination images.

5.1 Motion Classification Results (C1)

For all waveforms generated from our respiratory waveform extraction system, which worked

on every videos from database DB HU, the motion classifier was initially applied as to catego-

rize input data sets representing waveforms in both sessions from identical subjects into same

group with accuracy of 100%. The detailed classification output for each subject can be found

in Table 5.1.

Table 5.1: Output of two categorizations (movement and non-movement group) from nostril
movement classification for each subject in both sessions of database DB HU.

Group # of Subjects Subjects’ ID

Motion Group (MG) 14 6, 7, 8, 11, 12, 14, 16, 17,
18, 19, 22, 23, 24, 29

Non-Motion Group (NG) 16 1, 2, 3, 4, 5, 9, 10, 13, 15,
20, 21, 25, 26, 27, 28, 30

As a result of applying the first pre-processing technique, in the recognition process instead

of comparing with 30 subjects in gallery, for each subject it only need to compare with half of

40



CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION

the original size. Specifically speaking, for the subject in the motion group, it has to match with

14 potential subject, while in the other group, the recognition algorithm is required to apply 16

times for each subject.

5.2 Feature Clustering Results (C1&C2)

After categorizing subjects into 2 group, extracted feature vectors for each waveform was used

to manipulate further clustering using K Nearest Neighbor (i.e. K is set as 5). As a result, for

each subject in probe session the cluster will generate an output consisted of the top 5 most

similar subjects in gallery session. The accuracy of obtaining the identical subject in the output

cluster is shown in Table 5.2.

Table 5.2: Accuracies of finding the identical subject in the output group after employing
feature vector clustering.

Group Name Accuracy(%)

Motion Group (MG) 100

Non-Motion Group (NG) 93.75

All Subjects 96.67

Consequently, the second pre-processing technique can further improve the recognition effi-

ciency that instead of comparing with about 15 subjects after the motion classification method,

it only requires to conduct the comparison with 5 subjects. However, from the results in Table

5.2 we can see that the second pre-processing methodology fails to provide 100% accuracy,

which may reduce the system’s recognition performance. In the following subsection we can

clearly see the comparison between the first and the second pre-processing approaches.

5.3 Experimental Results for Three Scenarios

The experimental results generated from LBP descriptor are comparative to the output pro-

duced from using LTP approach. Therefore, in the following content, we just discuss the LBP

descriptor’s performance.
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The CMC performance (LBP approach) for scenarios 1-3 across all databases (DB HU1∼DB HU6

and DB FF1∼DB FF6) for 2 types of images (waNorm and noNorm) is illustrated in Fig. 5.2

and Fig. 5.3. In addition the performance measured by rank-1 identification rate of the pro-

posed 3 experiments (i.e., OI, C1 and C1&C2) are presented in Table 5.3.

Table 5.3: Rank 1 identification rates when utilizing CMC curves (LBP) for OI, C1, and
C1&C2 scenarios of both WA-normalized (waNorm) and Non-normalized (noNorm) matching.

DB HU

Scenario DB HU1 DB HU2 DB HU3 DB HU4 DB HU5 DB HU6

OI 0.80 0.93 0.89 0.95 0.91 0.92
noNorm C1 0.84 0.95 0.90 0.95 0.91 0.93

C1&C2 0.87 0.95 0.89 0.97 0.92 0.94

OI 0.82 0.92 0.89 0.99 0.92 0.96
waNorm C1 0.85 0.93 0.89 0.99 0.93 0.96

C1&C2 0.89 0.94 0.90 0.97 0.95 0.95

DB FF

Scenario DB FF1 DB FF2 DB FF3 DB FF4 DB FF5 DB FF6

OI 0.93 0.96 0.97 0.97 0.97 0.97
noNorm C1 0.96 0.98 0.97 0.97 0.97 0.97

C1&C2 0.93 0.95 0.93 0.94 0.93 0.93

OI 0.89 0.97 0.96 0.99 0.99 1
waNorm C1 0.95 0.98 0.97 0.99 0.99 1

C1&C2 0.93 0.95 0.97 0.97 0.96 0.97

The experimental results indicate that human identify recognition process involving only

nose component under uncontrolled situation (i.e. database DB HU1 collected under the con-

dition that the illumination may vary under different collection days and the head pose as well

as the body position may change during the 60-second video shooting process) is a very chal-

lenging problem, since the component-based face image identification rate at rank-1 for orig-

inal facial parts image (i.e., scenario OI, baseline scenario) of head-up pose is 80% for non-

normalized form and 82% after applying WA normalization technique, when both gallery and

probe images were randomly acquired from videos under possibly variant illumination situa-

tion and uncontrolled head pose changing while taking videos in diverse days. However, when
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Figure 5.2: CMC curves comparing the performance of 3 types of scenarios (i.e.,
OI, C1 and C1&C2) for head-up face images of 6 different facial parts combinations
(DB HU1∼DB HU6).

using our proposed pre-processing technique of applying motion classification approach (i.e.,

scenario C1), the identification rate is increased to 84% for the original facial parts images

and 85% with conducting WA-normalization manipulation. Moreover, in terms of the sec-
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Figure 5.3: CMC curves comparing the performance of 3 types of scenarios (i.e., OI,
C1 and C1&C2) for fully frontal face images of 6 different facial parts combinations
(DB FF1∼DB FF6).

ond pre-processing technique, the feature clustering approach is respectively applied on the

two classified categorizations (i.e., scenario C1&C2) produced from motion classification, the

identification rate at rank-1 improves about 7%, resulting in 87% accuracy for original input
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and 89% accuracy with WA-normalization manipulation compared to baseline scenario.

In the other databases (DB HU2∼DB HU6), more facial biometric features (i.e., eye, eye-

brow and mouth) are included besides nose component that form other five different facial parts

combinations. Although the baseline experimental results are increased to over 90% matching

accuracy at uncontrolled condition, our feature clustering approach in combination with motion

classification technique (i.e. the second pre-processing technique tested in scenario C1&C2)

can still improve the identification rate (at rank-1) by approximately 2%. However, for sev-

eral experimental outputs (i.e. database DB HU3 of noNorm case, DB HU4 and DB HU6

of waNorm case), the feature clustering approach from scenario 3 unfortunatelly reduce the

identification rate compared with the first pre-processing technique that only applys the motion

classificaiton approach. It mainly accounts for the clustering errors introduced from the feature

clustering method.

Under the semi-controlled condition (DB FF1∼DB FF6), when the head pose were fixed

to fully frontal position but the illumination status were still dependent on the natural light of

the video collection date. Even though the component-based face image identification rates

of the baseline scenario (i.e., Scenario OI) for all types of facial-feature combinations in both

WA-normalized and original forms are observably increased compared to the baseline situation

of uncontrolled condition, our proposed motion classification technique can still provide good

performance. Especially for database DB FF1 only containing the nose information, the ad-

vantage of using motion classification is that it performs even better than baseline performance

by approximately 3% of non-normalization and 6% of WA-normalized form. However, in this

semi-controlled condition (i.e. the head pose is fixed to fully frontal, while the illumination

situation may still be variant), the feature clustering technique from the second pre-processing

technique failed to perform well. The main problem is that although the motion classification

can produce 100% accuracy, the following feature clustering approach still introduces some er-

ror (i.e., overall accuracy is 97% with 100% accuracy in motion group and 94% for non-motion

group) which will lead to the output identification rate as best as 97%.

Overall, our proposed video-based human respiratory waveform extraction and component-

based face image recognition system can achieve significantly increased identification rates
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across all datasets applied for both original and WA-normalized facial parts images, and it

manages to obtain a markedly high identification accuracy (ranging from 96%-100% when

using a single or a combination of facial components), yielding an average of 7% raise, when

compared to the baseline scenario. To the best of our knowledge, this is the first time that a

biometric system is composed of an important human vital feature (human breathing waveform)

that is fused with facial features in such an efficient manner.
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Conclusions and Future Work

In this work our focus was on investigating the problem of human identity recognition in un-

controlled environments with the help of respiratory waveforms extracted from videos, when

taking advantage of a medical condition known as nasal flaring. Specifically we have studied

the human facial components identification tasks under several pre-processing techniques. The

breathing waveform produced by our proposed respiratory waveform extraction system is com-

parative to the ADInstruments device measured output for some portion of subjects showing

nostril flaring symptom. The proposed motion classification technique can successfully catego-

rize input waveforms into two groups with 100% accuracy. Notice that the defined accuracy is

to classify the waveforms in both data collected sessions from the same subjects into the same

group. In addition, our designed feature clustering technique, combined with our proposed

motion classification approach, can locate the same subject within the top 5 candidates with

an accuracy of 97% (i.e., 100% accuracy for motion group and 94% accuracy for non-motion

group), which results in significant reduction on the number of comparisons during the identity

recognition procedure.

For the purpose of the this work, 3 different scenarios (i.e., Original Image, Motion Classifi-

cation and Feature Clustering) were designed and tested on 6 types of databases (DB HU1∼DB HU6

and DB FF1∼DB FF6) of diverse facial components combinations in both non-normalized and

waveform Based (WA) normalized form under semi-controlled and uncontrolled indoor envi-

ronments. The experimental results indicate that, across all datasets used, the application of mo-
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tion classification and feature clustering improves facial components recognition performance.

Especially when only investing the nose information, our proposed system can significantly in-

crease the rank-1 identification rate by approximately 7% for both original and WA-normalized

datasets. The proposed respiratory waveform recognition technique shows particularly good

performance on the baseline scenarios with low accuracy under uncontrolled conditions.

Our future plans are to develop an improved respiratory waveform extraction approach

that will successfully detect and enhance the slight movement of nostrils. In addition, the

experiment video databases will be acquired using cellphone cameras with diverse resolution

under uncontrolled conditions, such as varying luminous condition and unfixed head position.

This is expected to result in as good as or even improved identification performance.
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[45] Vitomir Štruc and Nikola Pavešic. Photometric normalization techniques for illumination

invariance. Advances in Face Image Analysis: Techniques and Technologies, IGI Global,

pages 279–300, 2011.

[46] Ralph Gross and Vladimir Brajovic. An image preprocessing algorithm for illumination

invariant face recognition. In Audio-and Video-Based Biometric Person Authentication,

pages 10–18. Springer, 2003.

[47] Weilong Chen, Meng Joo Er, and Shiqian Wu. Illumination compensation and normal-

ization for robust face recognition using discrete cosine transform in logarithm domain.

http://www.nlm.nih.gov/medlineplus/ency/article/003055.htm
http://www.nlm.nih.gov/medlineplus/ency/article/003055.htm
http://www.billauer.co.il/peakdet.html
http://www.billauer.co.il/peakdet.html


Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 36(2):458–

466, 2006.

[48] Taiping Zhang, Yuan Yan Tang, Bin Fang, Zhaowei Shang, and Xiaoyu Liu. Face recog-

nition under varying illumination using gradientfaces. Image Processing, IEEE Transac-

tions on, 18(11):2599–2606, 2009.

[49] Guillaume Heusch, Fabien Cardinaux, and Sébastien Marcel. Lighting normalization
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