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Abstract 

Comprehensive Model of Lung Cancer Prediction and Prognosis 
Joseph J. Putila 

 

Two unresolved issues in the treatment of non-small cell lung cancer are the assessment of risk 
of recurrence beyond the use of tumor stage alone, and the selection of an effective chemotherapeutic 
agent for patients with similar tumor morphology.  A prognostic model able to identify high or low-risk 
patients with a high degree of accuracy can be used to inform clinicians on potential improvements to 
the current clinical practice.  Clinical presentation, pathology, demographics, and genomics have been 
independently verified as influencing survival.  A comprehensive model capable of incorporating 
multiple predictors into a unified measure has the potential to simplify risk assessment and more 
accurately model the determinants of patient outcome.   

In order to accomplish this, patient characteristics including tumor stage, grade, patient race, 
age, COPD status ,and sex were assessed using Cox proportional hazards modeling across combinations 
of surgical, radiological, and chemotherapeutic treatments.  A comprehensive model combining these 
factors was created and showed superior prognostic ability when compared to stage alone.  In order to 
identify miRNA markers for chemoresponse, this patient data was then compared with information on 
miRNA expression from both a clinical cohort and the NCI-60 anti-cancer screen.  A set of predictive and 
prognostic miRNA were selected by measuring the association between miRNA expression and disease-
specific patient survival.  The sets of significant miRNA were seen to have strong associations with 
mechanisms of apoptosis and cell-cycle control in an analysis of networked molecules. 

The results show that a comprehensive model lends itself to a more accurate assessment of 
patient risk, and that these improvements persist across a variety of patient profiles and treatment 
modalities.  Additionally, miRNA expression appears to play a role in patient response to chemotherapy 
when assessed across categories of disease progression.  Multiple miRNA showed significant 
associations with disease-specific survival in the population analysis.  These associations were able to be 
corroborated in the clinical and cellular data, demonstrating that this approach may be useful for 
identifying broad patterns of genomic expression which influence sensitivity and resistance to 
chemotherapy, and hold promise in further developing clinical tools for prediction.  It was shown that 
the large, well-annotated, and diverse patient sample derived from registry and administrative data can 
be leveraged to approach two of the major unresolved issues in the treatment of non-small cell lung 
cancer. 
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Chapter1:  
Introduction 
 

Lung cancer represents a significant burden on the health and well-being of the U.S. population, 

and many other industrialized nations across the world.  The low cure rate of lung cancer and the 

pervasiveness of its main causal factor, smoking, act together to produce a disease which is both deadly 

and widespread.  While efforts to reduce the prevalence of smoking offer the most straightforward 

preventative solution, treatment of lung cancer in a clinical setting will remain a key component of 

managing the population disease burden for decades to come. 

Lung and Bronchus cancer is currently the second most common cancer for both U.S. males and 

females behind cancers of the prostate and breast, respectively, with nearly half as many cases 

(American Cancer Society, 2012).  Despite being less prevalent than other sites, lung cancer manages to 

lead all other cancers in mortality for both men and women. Lung cancer is responsible for as many 

deaths per year as cancers of the prostate, colon, and pancreas combined in men.  In women, the 

annual number of deaths from lung cancer is equal to the total for the next two deadliest cancers, 

breast and colon.  Because of this, improvements in lung cancer care represent an opportunity to 

significantly reduce the burden of disease on the population level. 

Two unresolved issues in the treatment of non-small cell lung cancer are the assessment of risk 

of recurrence, and the selection of an effective chemotherapeutic agent for patients with similar tumor 

morphology.  Relapse is the major cause of treatment failure and a major cause of death even among 

patients treated with surgical resection.  Tumor stage alone has been unable to accurately select 

patients who may benefit from additional treatment such as adjuvant chemotherapy.  Because of this, 

many early-stage patients experience recurrence even with surgical resection.  Currently, 35–50% of 

stage I NSCLC patients will relapse within five years (Hoffman et al., 2000; Naruke et al., 1989).  Although 

tumor stage is the strongest prognostic factor, other factors such as sex, age, race, comorbidities, and 

tumor grade contribute to survival as well (Clegg et al., 2002; Visbal et al., 2004; Orourke et al., 1987; 

Brown et al., 1996).  We hypothesized that a prognostic model capable of combining multiple factors 

which influence survival would be able to provide refined prognostication when compared to the use of 

tumor stage alone. 
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An advantage of a comprehensive model of survival is the ability to aid in the selection of an 

appropriate therapy for each patient by providing an estimated measure of risk.  The identification of 

high-risk patients who stand to benefit from additional treatment, more aggressive treatment, or 

enhanced follow-up is one of the key applications of a comprehensive prognostic model.  Accurately 

incorporating multiple factors which influence survival has utility in selecting patients who may benefit 

from a modified treatment strategy as a result of increased or decreased risk relative to patients with 

similar clinical profiles.  Currently, there are no models for non-small cell lung cancer prognosis in 

widespread clinical use which are able to incorporate multiple prognostic factors, but similar tools have 

been successful for breast cancers (Ravdin et al., 2001).  Similar approaches to combining prognostic 

factors have shown promise in improving prognostication in lung cancer, but are restricted to limited 

treatment groups such as chemoradiation (Dehing-Oberije et al., 2008; Dehing-Oberije et al., 2009). 

In order to evaluate the comprehensive prognostic model, individual factors were thoroughly 

assessed both as independent predictors in their ability to stratify patients into high and low-risk groups 

in a Kaplan-Meier analysis, and as coefficients in independent and controlled Cox regressions.  The 

presented approach ensures that the model is able to function in a robust manner across a wide range 

of patient characteristics in order to increase its usefulness and generalizability to other patient 

populations.  Although there is no standardized approach for building or evaluating prognostic models, 

the method of bootstrap estimation and internal validation on Harrell’s C, Nagelkerke’s R2, ROC, and 

Brier score provide a robust analytical framework in-line with established theory (Schumacher et al., 

2003; Steyerberg et al., 2001).  These estimates, as well as the assessment of factors in univariate Cox 

models and on patient stratification, give a reasonable assessment of the utility of additional factors in 

improving prognostication. 

The second unresolved issue, treatment prediction, is another area where of the selction of  

biomarkers associated with patient survival can benefit clinical decision-making.  This is particularly true 

for response to chemotherapy, as the response to a given therapeutic agent can vary greatly between 

patients with seemingly similar clinical profiles and tumor morphology.  Because of this, there is much to 

be gained by selecting patients who may benefit from the administration of chemotherapy and the 

selection of a specific agent with a higher probability of being effective.  Avoiding the use of 

chemotherapy in patients highly unlikely to benefit from its administration also reduces the chance of 

unwanted side-effects or complications while ensuring that healthcare budgets are used in the manner 

which is most beneficial for a given population. 
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MiRNA biomarkers have the ability to enhance treatment selection in patients with similar 

tumor morphology.  The use of miRNA has several advantages over other available biomarkers.  It has 

been shown that miRNA are more stable in prepared tissue relative to mRNA (Jung et al., 2010; Mraz et 

al., 2009).  This increased stability offers a significant advantage when attempting to measure expression 

in existing patient samples, most notably those prepared using formalin fixation (Xi et al., 2007).  In 

addition, miRNA can be found in circulating plasma (Chen et al., 2012; Mitchell et al., 2008).  The ability 

to collect miRNA non-invasivlely is a sizable advantage in the practical application of diagnostic and 

predictive tests over other biomarkers which may require biopsy or resected tissue.  The inherent 

regulatory effect of miRNA on post-transcriptional regulation and signalling also represents an 

oppurtunity to focus on broad patterns of epigenetic regulation which are less well-represented with 

other markers (Iorio & Croce, 2012; Avraham & Yarden, 2012).  This advantage is highlighted by the 

networks of regulatory targets and associated molecules generated from the sets of significant miRNA.   

Multiple aspects of chemoresponse such as the control of apoptosis and the cell-cycle show a high 

degree of interconnectivity with the predictive miRNA set and their associated molecules. 

  Numerous studies have shown that mRNA biomarkers can be used for predicting survival in 

lung cancer patients (Wan et al., 2012; Raponi et al., 2006; Chen et al., 2007; Beer et al., 2002).  Similar 

studies have shown that miRNA can also be used in the diagnosis and prognosis of lung cancer (Wang et 

al., 2009; Rabinowits et al., 2009; Yu et al., 2008; Markou et al., 2008; Fabbri et al., 2007; Raponi et al., 

2009).  The development of a biomarker model of chemoreponse has the potential to both enhance 

response rates seen in patients treated with chemotherapy and to highlight the potential regulatory 

networks which influence patient survival and mediate chemoresponse.  The main limitations of clinical 

studies are small sample size and non-random treatment assignment.  Because the sample sizes are 

small and patient survival is influenced by variable treatment assignment it is difficult to assess the role 

of miRNA within treatment sub-groups. 

An approach is presented for the use of registry data in the valdiation of miRNA markers found 

to be significant in a clinical population, and as a source of additional markers.  This approach aims to 

circumvent the common issue of inadequate sample size imparted by cost and recruitment barriers.  It 

was hypothesized that by linking miRNA expression in tumor samples to information on patient 

treatment and follow-up by measures of tumor progression, it would be possible to examine the role of 

miRNA in influencing survival and chemoresponse given a variety of treatment approaches.  Using a 

clinical cohort (Raponi et al., 2009), an initial set of prognostic miRNA were selected by assessing the 
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association between expression and survival using Cox modeling and Kaplan-Meier stratification.  These 

miRNA were then validated in the population cohort by estimating a linear regression between average 

miRNA expression and average survival for each unique combination of tumor T,N,M, and grade.  

Predictive miRNA were selected through the use of linear regression and validated using Cox modeling 

and Kaplan-Meier stratification in groups of patients having received a specific agent.  In each case, 

miRNA expression was assessed using multiple measures of association in order maximize the utility of 

the set as classifiers (Pepe et al., 2004). 

The significant predictive miRNA were then validated using data from cell-line experiments 

quantifying chemoresponse relative to miRNA expression.  The use of cell-lines provides an avenue for 

simulating ex-vivo analyses seen to be useful in validating markers of chemoresponse in lung and other 

cancers (Vogt et al., 2002; Gallion et al., 2006; Chen et al., 2011; Coleman et al., 2004).  Finally, Ingenuity 

Pathways Analysis was used to generate functional networks in which the set of significant miRNA and 

associated molecules were over-represented.  These networks centered around functional aspects of 

cell proliferation and death, and provided insight into some of the potential regulatory networks 

through which miRNA may influence chemoresponse. 

 This document is divided into five chapters, each representing a component of a theoretical 

framework for developing a comprehensive population-based model of prognosis and prediction for 

non-small cell lung cancer.  Chapter 2 outlines the issue of combining multiple prognostic factors to 

improve prognostic ability over a model using only tumor stage.  Chapter 3 extends the analytical 

framework established in Chapter 2 by including data on chemotherapy and co-morbid conditions.  

These data were derived from administrative records, and allow for the assessment of the contribution 

of COPD to the prognostic ability of the comprehensive model and assessment of the accuracy of 

predictions in patients treated with chemotherapy.  Having demonstrated a method for using 

demographic and clinical information to improve prognostication, Chapter 4 explores the role of miRNA 

in mediating chemoresponse.  As with the previous chapters, the large and diverse population sample is 

leveraged to select sets of prognostic and predictive miRNA biomarkers.  The final chapter, Chapter 5, 

concludes by highlighting the advantages of the analytical frameworks used and areas for further 

refinement.
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Chapter2:  
Combining Clinical, Pathological, and Demographic Factors 
Refines Personalized Prognosis of Lung Cancer: A Population-
based Study 
Published in PLoS One 

Putila J, Remick SC, Guo NL, 2011 Combining Clinical, Pathological, and Demographic Factors Refines 
Prognosis of Lung Cancer: A Population-Based Study. PLoS ONE 6(2): e17493. 
doi:10.1371/journal.pone.0017493  
 

Abstract 
Background: In the treatment of lung cancer, an accurate estimation of patient clinical outcome is 

essential for choosing an appropriate course of therapy.  It is important to develop a prognostic model 

by combining clinical, pathological and demographic factors for individualized clinical decision making. 

Methodology: A total of 234,412 patients diagnosed with adenocarcinomas or squamous cell 

carcinomas of the lung or bronchus between 1988 and 2006 were retrieved from the SEER database to 

construct a prognostic model. SEER patients were randomly assigned to a training or test set. Two 

additional patient cohorts (n = 1,991) from multiple hospitals were also used as test sets.  A patient 

stratification scheme was developed on the training set using a Cox proportional hazard model with 

tumor stage, tumor grade, patient age, gender, and race included in the model. The training model was 

used to predict the clinical outcome for each patient in the test sets.  

Principal Findings: The comprehensive model consistently outperformed the model using stage alone on 

Harrell’s C, Nagelkerke’s R2, and Brier Scores. The comprehensive model also performed better than 

stage alone when splitting the SEER patients into four treatment modalities.  Two additional patient 

cohorts (n = 1,991) were also used as external validation, with the comprehensive model again 

outperforming the model using stage alone on the three metrics used.   

Conclusion: These results demonstrate the feasibility of constructing a precise prognostic model 

combining multiple clinical, pathologic, and demographic factors. The comprehensive model significantly 
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improves individualized prognosis upon AJCC tumor staging and is robust across a range of treatment 

modalities, the spectrum of patient risk, and in novel patient cohorts. 

Introduction 
 Lung cancer is one of the most aggressive cancer types and consistently the leading cause of 

cancer-related death in the United States for both men and women.  There are around 215,000 new 

cases and 161,000 deaths annually (Jemal et al., 2008).  Non-small cell lung cancer (NSCLC) accounts for 

about 80% of lung cancer cases. Although tumor stage is strongly predictive of survival in most cases, it 

does not explain the distinct variability in treatment outcome within patients of the same stage.  

Currently, surgery is the major treatment option for patients with stage I NSCLC.  However, 35–50% of 

stage I NSCLC patients will relapse within five years (Hoffman et al., 2000; Naruke et al., 1989), which is 

the major cause of treatment failure, i.e. death from lung cancer.  It remains an unsolved challenge for 

physicians to reliably identify patients at high risk for tumor recurrence as candidates for adjuvant 

chemotherapy. 

Prognostic factors such as age, gender, and tumor grade, have been shown to be strongly 

associated with survival.  Age is an established risk factor for the development of lung cancer and can 

also influence the type of treatment received either due to medical coverage or the existence of co-

morbid conditions which preclude certain therapies (Brown et al., 1996; Orourke et al., 1987). Males 

diagnosed with lung cancer consistently experience poorer survival than do females (Visbal et al., 2004).  

This gender difference persisted even when controlling for other variables such as tumor stage, age at 

diagnosis, and treatment. 

Race has also been shown to be a significant predictor of survival, with Asians and Pacific 

Islanders experiencing better survival in both prospective (Thatcher et al., 2005) and population-based 

studies (Clegg et al., 2002).  While the disease mechanism and genetic background is not well 

characterized, the consistency of this finding is useful in terms of prognostication and treatment. 

The emerging use of genetic markers may enable physicians to make treatment decisions based 

on the specific characteristics of individual patients and their tumors, instead of population statistics 

(Dalton & Friend, 2006). This study presents an alternative avenue to improve personalized prognosis of 

NSCLC by combining clinical, pathological, and demographic factors in a population-based study (n = 

234,412). This comprehensive model was tested across a number of treatment modalities and blindly 

validated on multiple separate patient cohorts (n = 1,991). The comprehensive model achieved a 
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significant improvement in prognostication when compare with AJCC tumor staging system including 

cases converted to AJCC 7th Edition (American Joint Committee on Cancer, 2010). This patient 

stratification scheme could be integrated with future clinically-validated prognostic gene signatures for 

personalized prognosis of NSCLC. 

Materials and Methods 
Acquisition of Patient Cohorts 

A cohort of patients diagnosed with lung cancer was retrieved from the Surveillance 

Epidemiology and End Results (SEER) database (SEER, 2010).  The SEER database is an aggregate of 

registry data from specific geographic areas covering approximately 26 percent of the U.S. population, 

and contains clinical, demographic, treatment, and follow-up information for a variety of cancers.  The 

requirements for inclusion in the study included a diagnosis of primary lung adenocarcinoma (ICD-O-3 

8140 to 8380) or squamous cell carcinoma (ICD-O-3 8050 to 8080) between the years 1988 and 2006, as 

well as available data on tumor stage, tumor grade, race, age, gender, disease-specific survival, and 

treatment.  Patients who were diagnosed via autopsy or death certificate, or had no valid survival data 

were excluded from the analysis.  A total of 234,412 patients met the inclusion criteria.  Patients staged 

using the 6th edition of AJCC staging, in general 2004 and newer diagnoses, were recoded to the 7th 

edition based on the proposed staging changes in the AJCC Staging Manual (American Joint Committee 

on Cancer, 2010) and information about tumor size, extension, metastasis, and lymph node involvement 

found in the SEER database where possible.  A total of 58,634 cases were able to be converted from the 

6th to the 7th edition. 

Two additional patient cohorts were also used as validation sets. De-identified data for a total of 

1,552 patients treated at the Mary Babb Randolph Cancer Center at West Virginia University from 1990 

to 2009 with squamous cell carcinoma (n = 758) or adenocarcinoma (n = 794) were obtained.  The study 

was approved with an IRB exemption from West Virginia University. According to HIPAA regulation, de-

identified clinical information can be used in research without prior consent from the patients. A total of 

439 lung adenocarcinoma cases were also obtained from Shedden et al (Shedden et al., 2008) for 

patients with Stage I-IIIB cancers. These patients were treated in H. Lee Moffitt Cancer Center, 

University of Michigan Comprehensive Cancer Center, Dana-Farber Cancer Institute, and Memorial 

Sloan-Kettering Cancer Center.  Patients have provided consent. These data have been published in 

Shedden et al (Shedden et al., 2008) before. It is not clear if patients have provided written or verbal 
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consent. The protocols were approved with Institutional Review Boards (IRB-Med) of the respective 

institutes.  The total numbers and distribution of patient characteristics are described in detail in Tables 

2.1 and 2.2. 

 

Table 2.1. Outline of patient clinical characteristics for major histology of non-small cell lung cancer and AJCC 
staging editions retrieved from SEER database.   

 Adenocarcinoma  Squamous  
Variable AJCC 3rd+6th AJCC 7th AJCC 3rd+6th AJCC 7th 

Age     
Mean Age (σ) 66.9 (11.4) 67.0 (11.3) 69.0 (9.9) 69.8 (10.2) 

Sex     
    Male (%) 75,753 (50.4) 18,550 (48.3) 55,794 (66.2) 12,678 (62.7) 
Race     
    API 10,377 (6.9) 2,853 (7.4) 3,877 (4.6) 885 (4.4) 
    Black 14,432 (9.6) 3,620 (9.4) 10,373 (12.3) 2,317 (11.5) 
    White 125,349 (83.5) 31,953 (83.2) 70,004 (83.1) 17,006 (84.2) 
Tumor Stage*     

 I 36,052 (24) 8,295 (21.6) 21,495 (25.5) 4,090 (20.2) 
 II 6,118 (4.1) 4,661 (12.1) 4,899 (5.8) 3,026 (15) 
IIIA 11,447 (7.6) 5,773 (15) 11,284 (13.4) 4,497 (22.2) 
IIIB 26,905 (17.9) 3,008 (7.8) 19,933 (23.7) 2,435 (12) 
IV 69,636 (46.4) 16,690 (43.4) 26,643 (31.6) 6,160 (30.5) 

Tumor Grade     
Grade 1 11,415 (7.6) 3,602 (9.4) 2,559 (3.0) 464 (2.3) 
Grade 2 28,999 (19.3) 8,637 (22.4) 22,877 (27.2) 5,700 (28.2) 
Grade 3 45,424 (30.3) 9,796 (25.5) 32,380 (38.4) 7,266 (36) 
Grade 4 64,320 (42.8) 16,391 (42.7) 26,438 (31.4) 6,779 (33.5) 

*Sub-stages for stage I and II patients are combined as it was not possible to differentiate between sub-
stages for all patients diagnosed with AJCC 3rd and 6th staging systems.  Categorical variables show the N 
and percentage of the total for each category.  Age is represented as the mean age with the standard 
deviation in parentheses. 
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Table 2.2. Outline of patient clinical characteristics for external non-small cell lung cancer validation sets. 

 Adenocarcinoma Squamous  
Variable Director’s Challenge 

(Shedden et al., 2008) 
MBRCC MBRCC 

Age    
Mean Age (σ) 64.4 (10.1) 64.3 (11.3) 67.1 (10.1) 
Sex    
Male 218 (50.3%) 419 (52.8) 479 (63.2) 
Race    
API 7 (1.6) 2 (0.3) 1 (0.1) 
Black 12 (2.7) 9 (1.1) 15 (2.0) 
White 420 (95.7) 783 (98.6) 742 (97.9) 
Tumor Stage    
I 276 (62.9) 181 (22.8) 176 (23.2) 
II 95 (21.6) 48 (6) 57 (7.5) 
IIIA 57 (13) 74 (9.3) 111 (14.6) 
IIIB 11 (2.5) 95 (12) 115 (15.2) 
IV 0 (0) 396 (49.9) 299 (39.4) 
Tumor Grade    
Grade 1 60 (13.7) 62 (7.8) 22 (2.9) 
Grade 2 208 (47.4) 137 (17.2) 172 (22.6) 
Grade 3 166 (37.8) 231 (29) 267 (35.2) 
Grade 4 5 (1.1) 364 (45.8) 297 (39.2) 

 

Conversion of Cases to AJCC 7th Edition 

 Cases diagnosed from 2004 onward were able to be converted into the AJCC 7th Edition.  The 

original TNM staging information regarding tumor size and extension (T), lymph node status (N), and 

distant metastasis (M) was retrieved from the SEER data.  Using this information, the T, N, and M 

classifiers were recoded according to the new guidelines (American Joint Committee on Cancer, 2010) 

and then used to determine the AJCC 7th stage. 

Model Construction and Statistical Analyses 

Disease-specific survival was analyzed primarily using a Cox proportional hazards model.  This 

model estimates the effect of a set of factors on the time until an event, in this case death, following a 

diagnosis.  Four models, one for each of the histology and AJCC staging combinations, were estimated.  

A total of 500 bootstrapped samples equal in size to the original adenocarcinoma and squamous cell 

carcinoma patient cohorts were constructed.  This method has been seen to be superior to split-sample 

techniques (Steyerberg et al., 2001), and in general produces less biased estimates with a smaller 
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variance.  A Cox model was then fit on each bootstrapped sample.  In order to determine the advantage 

of using other variables in addition to AJCC stage, two sets of variables were used. The first contained 

information on tumor stage and grade, patient age, race, and gender. The second contained only 

information on tumor stage and used as a model of current clinical practice.  The final model used the 

mean value of all coefficients generated from the bootstrapped samples, as the distribution of hazard 

scores was normal. Hazard scores were calculated for each patient in the original samples based on the 

final model constructed from the means. The formula used to specify the model is shown below, 

demonstrating the relationship between hazard h for patient i at time t and the coefficients, β, for 

variables 1 through k with values of x. 

ikiii xxxtth βββα ++++= 2211)()(l o g  

Patients still alive or dead due to unrelated causes were censored at the time of last follow-up 

or death, respectively.  Internal performance was measured using Harrell’s C, Nagelkerke’s R2, and Brier 

Scores.  Harrell’s C is a measure of concordance which is representative of the area under an ROC curve 

ranging between 0 and 1, with higher scores indicating greater concordance (Steyerberg et al., 2001).  

Nagelkerke’s R2 is functionally similar to the R2 value in linear models, ranging between 0 and 1 with 

higher values explaining more variance, with this variant being calculated on the log-likelihood scale.  

The Brier score represents the average prediction error, ranging from 1 to 0, with lower values indicating 

a lower average error.  The model constructed using the training set was then further validated on SEER 

sub-cohorts as well as patients from the MBRCC and the Director’s Challenge (Shedden et al., 2008) 

cohorts, without re-estimating parameters of the model.  Selection of patient stratification cutoffs was 

done by iterating through a range of possible cutoff values and measuring the difference in survival 

between High, Intermediate, and Low risk groups defined according to the Full and Stage Only models at 

each cutoff.  The set of cutoff values that offered the greatest improvement in prognostication over the 

Stage Only model was selected for use in the final model.  Statistical analyses were conducted with the 

pamr, pec, Design, and survival packages in R v2.11.0. 

Results 
 This study focused on two major cell types of NSCLC, lung adenocarcinoma and squamous cell 

lung cancer.  For each cell type, a comprehensive model was constructed to include the previous AJCC 

staging system (the 3rd and 6th editions) and the current AJCC 7th edition. The clinical characteristics of 



11 
 

 

the SEER patient population are listed in Table 2.1, and two external validation cohorts are summarized 

in Table 2.2.  

 The models were constructed by taking the mean of each coefficient from a Cox model fit on 

500 bootstrapped samples of each original cohort.  This resulted in a total of four models, one for each 

of the two AJCC staging systems and two cell types considered in combination with one another.  These 

models were tested on the original samples in their entirety, sub-cohorts representative of four major 

treatment modalities, and two external cohorts. 

In the overall studied patient population, earlier stage at diagnosis was significantly related to 

disease-specific survival in a univariate Cox Proportional Hazards model in both adenocarcinoma and 

squamous cell carcinoma for each AJCC Staging system (P<0.05).  In the multivariate analyses AJCC 

stage, tumor grade, patient age, race, and gender were all significant.  Specifically, lower tumor grade, 

younger age at diagnosis, and being of Asian/Pacific Islander descent were all significantly associated 

with improved survival (P<0.05).  Being male or having a later stage at diagnosis was associated with a 

poorer outcome across all groups.  The comprehensive model incorporating all these factors showed 

significantly improved prognostic categorization when compared with the AJCC staging system, including 

the latest edition.  The improvement across all patients for each staging system and histology is 

demonstrated in Figure 2.1. 
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Figure 2.1. Prediction of survival at 60 months for the AJCC 3rd and 6th Editions (top) and 30 months for the 
cases converted to the AJCC 7th Edition (bottom) for both lung adenocarcinoma (left) and squamous cell lung 

cancer (right) using ROC curves.  P<0.05 indicates that the full model is significantly more accurate in predicting 
disease-specific survival than tumor stage. 

 

The patients were then assigned into one of four treatment categories based on the treatment 

record in SEER database.  These categories were surgery alone, radiation alone, surgery with radiation, 

and no treatment listed.  For simplicity, this determination was based on the presence or absence of any 

surgical or radiation procedure, regardless of the specific procedure.   

Patient stratification for lung adenocarcinoma (the AJCC 3rd and 6th edition) 

A total of 150,158 lung adenocarcinoma patients staged with the 3rd and 6th AJCC Editions met 

the criteria for inclusion.  Harrell’s c statistic was calculated for both the model using stage alone and 

the comprehensive model using additional variables.  The comprehensive model had a higher C statistic 
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(0.732) compared to the stage only model (0.694).  A similar improvement was seen for Nagelkerke’s R2 

(0.294 v. 0.253) and Brier score (0.134 v. 0.143).  The distribution of Hazard scores and general trend in 

improvement is shown in Figure 2.2 for all patients, and for patients treated with surgery alone. 
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Figure 2.2. Results of survival analysis on lung adenocarcinoma patients staged using AJCC 3rd or 6th Edition.  a) 
Histogram of Hazard Scores obtained from the comprehensive model. b) Probability of death from lung cancer 

prior to 24 months based on Hazard Scores calculated using the comprehensive model. c) Kaplan-Meier survival 
plots for low-, intermediate-, and high-risk groups determined by the comprehensive model (blue) and AJCC 

staging alone (orange). d) Average survival of each group in months, with log-rank P-values shown. L: low-risk; 
Int: intermediate-risk; H: high-risk defined by the full model. Stage only model contains patient with stage 1, 2, 

3a, 3b and 4. e) Kaplan-Meier survival plots for each risk group in patients who received surgery without 
radiation. f) Average survival for risk groups in patients who received surgery without radiation. L: low-risk; Int: 

intermediate-risk; H: high-risk. Stage only model contains patient with stage 1, 2, 3a, 3b and 4. 
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The analysis comparing the performance of each model on treatment subgroups also showed a 

similar improvement in predictive ability with the comprehensive model.  In patients who received 

surgery alone, the comprehensive model had consistently better estimates for Harrell’s C (0.768 v 

0.723), Nagelkerke’s R2 (0.225 v 0.173) and Brier Score (0.206 v. 0.210).  A similar improvement, 

summarized in Tables 2.3, 2.4 and 2.5, was observed in patients receiving radiation alone, surgery with 

radiation, and those with no treatment listed. 

Lung adenocarcinoma cases converted to the AJCC 7th edition 

 A total of 38,426 lung adenocarcinoma cases were converted into the AJCC 7th edition.  It is 

important to note that the converted cases represent a much smaller cohort and have shorter follow-up 

time compared to the AJCC 3rd and 6th Edition cohorts.  When considering the entire patient sample, 

Harrell’s C for the comprehensive v. the stage only model (0.763 v. 0.731), Nagelkerke’s R2 (0.305 v. 

0.274) and Brier score (0.144 v 0.150) were all improved.  These effects persisted in when considering 

the four patient sub-cohorts defined by treatment modality, although the performance of both models 

was similarly decreased when compared to the original staging system.  The patient sub-cohort with no 

treatment listed performed the worst on all three metrics.  Figure 2.3 shows the distribution of Hazard 

scores and improvement over the use of stage alone when constructing risk groups. 
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Figure 2.3. Results of survival analysis on lung adenocarcinoma patients converted to AJCC 7th Edition.  a) 
Histogram of Hazard Scores obtained from the comprehensive model. b) Probability of death from lung cancer 

prior to 24 months based on Hazard Scores calculated using the comprehensive model. c) Kaplan-Meier survival 
plots for low-, intermediate-, and high-risk groups determined by the comprehensive model (blue) and AJCC 

staging alone (orange). d) Average survival of each group in months, with log-rank P-values shown. e) Kaplan-
Meier survival plots for each risk group in patients who received surgery without radiation. f) Average survival 

for risk groups in patients who received surgery without radiation. L: low-risk; Int: intermediate-risk; H: high-risk 
defined by the full model. Stage only model contains patient with stage 1, 2, 3a, 3b and 4. 
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Prognostication of squamous cell lung cancer (the AJCC 3rd and 6th edition) 

A total of 84,254 squamous cell lung cancer patients diagnosed with the ACC 3rd and 6th staging 

system met the inclusion criteria.  Performance of both the comprehensive and stage only model were 

slightly decreased when compared to the adenocarcinoma patients in the overall patient sample.  

However, there was still an improvement in the overall treatment cohort when using the comprehensive 

model on Harrell’s C (0.722 v. 0.706), Nagelkerke’s R2 (0.289 v. 0.274), but not on Brier score (0.119 v 

0.119).  There was a similar improvement in the sub-cohorts defined by treatment modality, with the 

comprehensive model performing as well or better than the stage only model in all sub-cohorts.  Figure 

2.4 shows the improvement in patients receiving any treatment, and those receiving surgery alone when 

constructing risk groups, as well as the distribution of Hazard scores. 
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Figure 2.4. Results of survival analysis on squamous cell lung cancer patients staged using AJCC 3rd or 6th 
Edition.  a) Histogram of Hazard Scores obtained from the comprehensive model. b) Probability of death from 
lung cancer prior to 24 months based on Hazard Scores calculated using the comprehensive model. c) Kaplan-

Meier survival plots for low-, intermediate-, and high-risk groups determined by the comprehensive model 
(blue) and AJCC staging alone (orange). d) Average survival of each group in months, with log-rank P-values 

shown. e) Kaplan-Meier survival plots for each risk group in patients having received surgery without radiation. 
f.) Average survival for risk groups in patients who received surgery without radiation. L: low-risk; Int: 

intermediate-risk; H: high-risk defined by the full model. Stage only model contains patient with stage 1, 2, 3a, 
3b and 4. 

 



19 
 

 

 

Squamous cell lung cancer cases converted to the AJCC 7th edition 

A total of 20,208 squamous cell lung cancer cases could be converted to the AJCC 7th edition.  

Prediction was similar or improved when using the comprehensive model on all three metrics and in all 

treatment cohorts considered, however the difference between the two models was marginal in a few 

cases.  The most marked improvement in prediction was in the sub-cohort of patients receiving surgery 

only.  For that group, the comprehensive model outperformed the stage only model on Harrell’s C 

(0.689 v. 0.670), Nagelkerke’s R2 (0.064 v. 0.055), and marginally on Brier score (0.113 v. 0.114).  Figure 

2.5 shows the improvement in risk group construction over the model using stage alone, as well as the 

distribution of Hazard scores. 
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Figure 2.5. Results of survival analysis on squamous cell lung cancer patients converted to AJCC 7th Edition.  a) 
Histogram of Hazard Scores obtained from the comprehensive model. b) Probability of death from lung cancer 

prior to 24 months based on Hazard Scores calculated using the comprehensive model. c) Kaplan-Meier survival 
plots for low-, intermediate-, and high-risk groups determined by the comprehensive model (blue) and AJCC 

staging alone (orange). d.) Average survival of each group in months, with log-rank P-values shown. e) Kaplan-
Meier survival plots for each risk group in patients who received surgery without radiation. f.) Average survival 

for risk groups in patients who received surgery without radiation. L: low-risk; Int: intermediate-risk; H: high-risk 
defined by the full model. Stage only model contains patient with stage 1, 2, 3a, 3b and 4. 
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Treatment selection for stage I surgical patients 

Patients with stage I cancers who were treated with surgery alone were extracted for further 

analysis to determine whether the comprehensive model could identify patients who may benefit from 

a more aggressive therapy.  In most cases, stage I patients that received surgery had the most favorable 

outcome compared to other stages or treatment modalities, meaning that this cohort represents an 

extreme tail of the patient risk spectrum. 

The models developed on the overall patient samples were applied to stage I patients that had 

received surgery alone in order to determine the predictive ability of the comprehensive and stage only 

models in a cohort with a more favorable outcome.  For adenocarcinoma patients staged using AJCC 7th 

Edition (N=6,872), the comprehensive model performed better on Nagelkerke’s R2 (0.021 v. 0.002) and 

Brier score (0.0541 v. 0.0552) but did not outperform the stage only model on Harrell’s C (0.371 

v.0.469).  However, when using the median hazard score to split patients into low and high-risk groups, 

the comprehensive model was able to select a group of low-risk patients with better survival (16.53 v. 

16.15 months, P=0.0008).  The comprehensive model performed similarly to the stage only model in 

squamous cell patients (N=2,953), with no significant difference between the risk groups defined by 

each model (P>0.05).  The comprehensive model was also able to further separate stage IA and stage IB 

patient groups into high and low-risk groups with significantly different survival curves (p<0.05) for both 

adenocarcinoma and squamous cell carcinoma, as shown in Figures 2.6 and 2.7, respectively. 
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Figure 2.6. Results of survival analysis on lung adenocarcinoma patients diagnosed with stage IA or IB disease.  
The Kaplan-Meier plots show the difference between low- and high-risk groups as determined by the 

comprehensive model. Data on sub-stage was only available for patients staged using the AJCC 6th Edition 
staging system (2004 and later) and for those patients converted into the 7th Edition. 
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Figure 2.7. Results of survival analysis on squamous cell lung carcinoma patients diagnosed with Stage IA or IB 
disease.  The Kaplan-Meier plots show the difference between low- and high-risk groups as determined by the 

comprehensive model. Data on sub-stage was only available for patients staged using the AJCC 6th Edition 
staging system (2004 and later) and for those patients converted into the 7th Edition. 

 

External Validation 

 The comprehensive model was also able to improve prognostication in the external validation 

sets from MBRCC and Shedden et al (Shedden et al., 2008).  Patients with both adenocarcinomas 

(n=794) and squamous cell carcinomas (n=758) were available from the MBRCC cohort, with only 

adenocarcinoma patients (n=439) available from the Director’s Challenge cohort (Shedden et al., 2008).  

The comprehensive model performed consistently better across all three metrics considered when the 

models estimated using the SEER cohort was applied to the cohorts from MBRCC and the Director’s 

Challenge study, with the results being consistent across histology in the MBRCC cohort.  The model 

appeared to perform much better in the MBRCC cohort, possibly due to the lack of stage IV patients in 

the Director’s Challenge cohort.  These results are summarized in Tables 2.3, 2.4, and 2.5.  Improvement 

in the construction of risk groups when using the comprehensive model is shown in Figure 2.8 
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Table 2.3. Harrell’s C-statistics from each model for each of the patient cohorts, separated into AJCC coding 
system, treatment modality, and histology where possible. 

 
Adenocarcinoma Squamous Cell Carcinoma 

 
AJCC 3+6 AJCC 7 AJCC 3+6 AJCC 7 

 
FM SO FM SO FM SO FM SO 

All SEER Patients 0.732 0.694 0.763 0.731 0.722 0.706 0.733 0.717 
Surgery Only 0.768 0.723 0.742 0.707 0.762 0.742 0.689 0.670 
Radiation Only 0.631 0.608 0.665 0.632 0.647 0.636 0.666 0.658 
Both Surg+Rad 0.688 0.677 0.696 0.678 0.688 0.674 0.682 0.663 
No Treatment 0.601 0.542 0.607 0.558 0.582 0.567 0.598 0.580 
MBRCC 0.721 0.708 N/A N/A 0.695 0.681 N/A N/A 
Dir's Challenge 0.687 0.660 N/A N/A N/A N/A N/A N/A 

 

Table 2.4. Nagelkerke’s R2 values from each model for each of the patient cohorts, separated into AJCC coding 
system, treatment modality, and histology where possible. 

 
Adenocarcinoma Squamous Cell Carcinoma 

 
AJCC 3+6 AJCC 7 AJCC 3+6 AJCC 7 

 
FM SO FM SO FM SO FM SO 

All SEER Patients 0.294 0.253 0.305 0.274 0.289 0.274 0.246 0.230 
Surgery Only 0.225 0.173 0.094 0.073 0.283 0.268 0.064 0.055 

Radiation Only 0.107 0.084 0.140 0.115 0.109 0.103 0.120 0.118 
Both Surg+Rad 0.204 0.178 0.084 0.072 0.201 0.184 0.095 0.089 
No Treatment 0.066 0.034 0.075 0.044 0.051 0.042 0.065 0.054 

MBRCC 0.343 0.311 N/A N/A 0.244 0.233 N/A N/A 
Dir's Challenge 0.189 0.162 N/A N/A N/A N/A N/A N/A 

 

Table 2.5. Brier Scores from each model for each of the patient cohorts, separated into AJCC coding system, 
treatment modality, and histology where possible. 

 
Adenocarcinoma Squamous Cell Carcinoma 

 
AJCC 3+6 AJCC 7 AJCC 3+6 AJCC 7 

 
FM SO FM SO FM SO FM SO 

All SEER Patients 0.134 0.143 0.144 0.150 0.119 0.119 0.162 0.161 
Surgery Only 0.206 0.210 0.089 0.092 0.186 0.188 0.113 0.114 

Radiation Only 0.097 0.099 0.163 0.168 0.102 0.102 0.170 0.172 
Both Surg+Rad 0.096 0.097 0.153 0.154 0.098 0.099 0.160 0.163 
No Treatment 0.098 0.101 0.167 0.178 0.078 0.081 0.151 0.152 

MBRCC 0.071 0.074 N/A N/A 0.079 0.081 N/A N/A 
Dir's Challenge 0.163 0.170 N/A N/A N/A N/A N/A N/A 
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Figure 2.8. Results of survival analyses performed on patient cohorts from the Director's Challenge Study and 
the Mary Babb Randolph Cancer Center at West Virginia University. 
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Discussion 
 Substantial efforts have been made to establish prognostic factors for patients with lung cancer 

during the last two decades.  The traditional prognostic factors are tumor size, vascular invasion, poor 

differentiation, high tumor-proliferative index, and genetic alterations, including K-ras (Rodenhuis et al., 

1987; Slebos et al., 1990) and p53 (Horio et al., 1993).  With the development of molecular 

biotechnology, especially high-throughput microarrays, there have been a number of promising studies 

on lung cancer prognosis by transcriptional profiling (Beer et al., 2002; Bhattacharjee et al., 2001; Bild et 

al., 2006; Borczuk et al., 2005; Chen et al., 2007; Raponi et al., 2006; Shedden et al., 2008; Guo et al., 

2006; Guo et al., 2008).  Although the traditional prognostic factors lack the information about the 

biological diversity of lung cancer and have not reflected the complexity of molecular mechanisms of 

these diseases, they are still the most valuable criteria for clinicians to decide the relevant therapies 

(Ludwig & Weinstein, 2005).  For instance, Adjuvant! (www.adjuvantonline.com) is a prognostic system 

for lung cancer, breast cancer, and colon cancer based on traditional pathological features, including 

age, tumor stage, and grade.  It has been independently validated as a reliable aid to clinical decision-

making on average breast cancer patients (Olivotto et al., 2005).  A study by Birim and others (Birim et 

al., 2006) also demonstrated that clinical factors outside of stage such as respiratory function, 

comorbidity, and smoking behaviors could be used to refine prognosis in a smaller cohort (N=766) of 

NSCLC patients. 

In this study, we sought to investigate the impact of clinical, pathological, and demographic on 

lung cancer survival using a population-based approach.  It was found that the addition of pathological 

and demographic variables to AJCC staging was able to significantly improve predictive ability in both 

lung adenocarcinomas and squamous cell carcinomas.  These additional variables accounted for 

previously unexplained variation within and independent of stage, and resulted in a more accurate 

assessment of the risk for tumor recurrence when evaluated as integrated prognostic indicators.  This 

effect persisted within multiple treatment modalities. 

The comprehensive model was also able to improve prediction in stage I surgical 

adenocarcinoma patients, with the low-risk group selected by the comprehensive model having 

significantly better survival than the same group chosen using stage alone (P=0.0008).  These patients 

may not benefit from additional therapies while, conversely, those who failed to be selected as low-risk 

may benefit from adjuvant chemotherapy. 

http://www.adjuvantonline.com/�
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These results demonstrate that the comprehensive prognostic model was able to reliably 

identify stage I NSCLC patients at higher risk for tumor recurrence, possibly benefitting from adjuvant 

chemotherapy.  The external validation results indicate that the comprehensive prognostic model 

constructed from SEER population data could improve prognosis in multiple local hospitals. 

The improvement seen is likely an underestimate, as the coefficients for stage only model, while 

intended to be representative of current clinical practice, were estimated with the same rigor as the 

comprehensive model likely resulting in a far more refined estimate of survival than could be garnered 

from clinical experience.  Furthermore, there was a similar improvement in prediction when cases were 

converted into the AJCC 7th staging edition despite smaller sample sizes and shorter follow-up, indicating 

that the improvement attributed to the additional variables is not merely an artifact of shortcomings in 

the AJCC staging system which were addressed in the previous round of revisions.  These findings show 

promise for a clinical model capable of considering these impactful factors in a robust and intuitive 

manner. 

A limitation of the study is that it assumes that the quality or effectiveness of the treatment 

patients receive is similar across the study sample.  As the patients come from a large number of 

different institutions it is unlikely that the assumption holds true.  A separate analysis utilizing median 

county income as a surrogate measure for socio-economic status showed that there was a significant 

positive association between median county income and survival independent of other clinical, 

demographic, or pathologic factors.  However, this sort of measure is not appropriate for individual 

prediction and was omitted from the model. 

 This study demonstrated the feasibility of refining NSCLC prognosis using easily collectable 

patient information in a large retrospective population study.  A significant limitation of the study was 

the lack of information on the use of chemotherapy and co-morbidities present at the time of diagnosis.  

It is expected that inclusion of data found in the linked SEER-Medicare database will more appropriately 

address these issues and allow for further refinement of the model. In future research, we plan to 

construct a comprehensive model to estimate treatment benefits of commonly used chemotherapy 

utilizing the SEER-Medicare data partition patients according to a specific treatment approach.  We 

envision that this model could be combined with future clinically validated gene signatures for a more 

refined assessment of patient risk. 
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Chapter3:  
Effect of COPD and Chemotherapy on an  
Integrative Prognostic Model 
 

Joseph Putila, Nancy Lan Guo 

Abstract 
Background: Selection of an appropriate course of therapy is a key factor in prolonging survival in lung 

cancer, and relies heavily on an accurate assessment of a patient’s risk of recurrence.  This analysis 

extends the previously described prognostic model through the use of data on chemotherapy and co-

morbidities, further refining prognostication. 

Methods: Data on 34,203 adenocarcinoma and 26,967 squamous cell carcinoma patients were used to 

determine the contribution of Chronic Obstructive Pulmonary Disease (COPD) to prognostication in 30 

treatment combinations.  A Cox model including COPD was estimated on 1000 bootstrap samples, with 

the resulting model assessed on ROC, Brier Score, Harrell’s C, and Nagelkerke’s R2 metrics in order to 

highlight improvements in prognostication over a previously defined model without COPD. 

Results: The addition of COPD to the model was shown to improve prognostication in patient groups 

covering multiple treatment combinations including those treated with and without chemotherapy.  For 

adenocarcinoma patients, there was an improvement seen in the overall patient sample and in patients 

without chemotherapy, including those receiving surgery only.  For squamous cell carcinoma, an 

improvement was seen in both the overall patient sample and in patients receiving multiple types of 

chemotherapy.  In many cases these improvements persisted in several of the treatment subsets on 

multiple measures.  COPD was also able to stratify patients into significantly different high and low-risk 

groups independent of other factors in stage and treatment sub-sets. 

Significance:  Although COPD is known to influence the treatment received, the results suggest that 

those with the disorder are at higher risk when compared to patients receiving a similar treatment.  This 

extension of the previously described prognostic model to include COPD status and chemotherapy was 

able to significantly improve prognostication. 
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Introduction 
One of the most important factors influencing the survival of patients with lung and bronchus 

cancers is the selection of an appropriate course of therapy based on an accurate assessment of patient 

risk.  However, the selection of a course of therapy is currently based largely on tumor stage alone 

despite the contribution of other factors to patient survival.  In particular, comorbidities such as COPD 

can have a significant effect on long-term survival due to varying treatment candidacy, increased 

complication rate, or decreased treatment efficacy (Janssen-Heijnen et al., 1998; Janssen-Heijnen et al., 

2004; Kiri et al., 2010), and the prevalence of this disease is elevated in lung cancer patients 

independent of smoking status (Young et al., 2009).  A major impediment is determining the 

contribution of each of these factors in a comprehensive prognostic model, rather than as independent 

effects. 

Comorbidities which affect lung function, such as COPD, are likely to influence post-operative 

survival independent of their effects on surgical candidacy due to the possibility of decreased lung 

function.  The Forced Expiratory Volume in 1 second (FEV1) of a patient, a potential indicator of COPD, 

was found to be a significant prognostic factor in a model controlling for other clinical variables such as 

nodal status (Dehing-Oberije et al., 2008; Dehing-Oberije et al., 2009).  Although COPD and lung cancer 

are often seen together in patients due to their shared association with smoking behavior, neither 

condition is a clinical end-point for the other.  As such, COPD remains viable as a potential prognostic 

factor despite any shared similarity with lung cancer in the etiology of the disease.   

Previously, we described a prognostic model utilizing similar data derived from the SEER cancer 

registry initiative (Putila et al., 2011) designed to address the problem of developing an integrative 

model.  The previous approach utilized clinical and demographic variables in a single model to achieve 

superior prognostication over a similar model using stage alone.  The model was however limited by the 

data in that the use of specific chemotherapies and the presence of comorbidities could not be 

determined.  This analysis extends the previous analysis by utilizing patient records from the linked 

SEER-Medicare database.  These additional data allow for the role of COPD in prognostication to be 

determined across combinations of surgical, radiological, and chemotherapeutic treatments (Elixhauser 

et al., 1998; Warren et al., 2002b). 
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Materials and Methods 
 Patient data was obtained from the linked SEER-Medicare database, a combination of 

population-based registry data and billing histories for patients covered by Medicare.  In short, data 

from participating Surveillance Epidemiology and End-Results (SEER) registries were linked with 

Medicare data through the use of social security number, census tract, age, and other identifying 

variables(Warren et al., 2002b).  The resulting data contain information on treatments administered, co-

morbidities present in the patient, clinical presentation, survival, and demographics.  Criteria for 

inclusion in this analysis were a diagnosis of lung or bronchus cancer between 1991 and 2005, and 

complete information on age, race, gender, tumor grade and stage, as well as valid follow-up and billing 

history.  This set of patients was further refined to only include those with tumors broadly classifiable as 

either squamous cell carcinoma or adenocarcinoma.  Cases reported solely from autopsy or death 

certificate were excluded.  In total, 34,203 patients with adenocarcinomas and 26,967 patients with 

squamous cell carcinomas met these criteria. 

 The administration of chemotherapy was determined using Healthcare Common Procedure 

Coding System (HCPCS) codes in combination with International Classification of Diseases (ICD) codes.  

For each patient, all records were searched for entries with an HCPCS code indicating that 

chemotherapy was administered.  These entries were then cross referenced with the ICD primary and 

secondary diagnosis codes for that entry to ensure that the agent was being administered for the 

treatment of lung or bronchus cancers.  Four specific agents, cisplatin, carboplatin, docetaxel, and 

paclitaxel were considered in addition to a broad group covering a variety of chemotherapeutic agents. 

 Patients were also analyzed according to variable administration of curative surgery and 

radiological treatment.  Five groups were formed on the basis of surgical and radiological treatments; a 

group containing all patients regardless of treatment, a group for patients having surgery without 

radiation, another for those having radiation without surgery, a group with both surgery and radiation, a 

group of patients without any treatment listed.  Surgical and radiological treatment group assignments 

were based on the presence of any curative treatment of that type in the SEER portion of the data. 

Comorbidities were measured as components of a version of the Charlson Comorbidity Index 

(CCI) adapted for use with administrative data (Charlson et al., 1987; Deyo et al., 1992; Klabunde et al., 

2000; Romano et al., 1993).  Comorbidities were determined using code available from the NCI designed 

specifically for this SEER-Medicare dataset 
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(http://healthservices.cancer.gov/seermedicare/program/comorbidity.html), under the assumption that 

the presence of a treatment for a specific disease in the billing history was indicative of its presence in 

the patient at the time.  All claims out to three years prior to the diagnosis with lung cancer were 

analyzed for specific sets of ICD-9 codes indicative of one of the conditions listed in the CCI.  Upon 

finding a relevant ICD code for any of the 18 conditions included in the index, patients were flagged as 

being positive for the corresponding condition.  The determination of chemotherapy use and co-

morbidities was done using SAS version 9.2 in the PC environment. 

Patient age, race, and sex were identified using information in the SEER portion of the data, with 

Black and Asian/Pacific Islander patients being compared to Whites as a reference group.  Tumor grade 

was also identified from the SEER portion of the data.  Tumor grades 1 and 2 were grouped together and 

served as a reference group for grades 3 and 4, which were also grouped in the Cox models.  Tumor 

stage was listed in the SEER portion of the data in either the 3rd or 6th Edition of the AJCC staging system.  

Records coded using the 6th Edition were able to be recoded to the 7th Edition provided that they had 

complete and valid information on tumor size, extension, nodal involvement, and distant metastases.  

Tumor stage I was used as a reference group in the Cox models.  The number and distribution of patient 

characteristics is detailed in Table 3.1. 

Each co-morbid condition was assessed as an independent predictor of survival using Cox 

proportional hazards modeling in patients treated with surgery but without chemotherapy or radiation 

indicated in order to isolate the effects of comorbidity from those of disparate treatment benefit or 

treatment candidacy (Table 3.2).  Additionally, the presence of COPD as determined via the analysis of 

administrative records was assessed as an independent predictor of survival by testing for significant 

stratification of Kaplan-Meier survival curves.  Patients were split into two outcome groups based on 

COPD status, and separate survival curves were estimated and plotted (Figure 3.1).  Again, only patients 

receiving surgery without radiation or chemotherapy were included in order to better isolate the effect 

of COPD from other effects resulting from disparate treatment candidacy.  The significance of the 

difference in survival was determined using the G-rho family of tests, with a p-value less than 0.05 

indicating a significant difference in the survival curves estimated for the two groups being compared.  

Patients were then further split into stage groups and the effect of COPD in these subsets was assessed 

for each group.  A selection of these results can be seen in Figures 3.2 through 3.7. 

http://healthservices.cancer.gov/seermedicare/program/comorbidity.html�
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Table 3.1. Distribution of demographic and clinical characteristics of patients diagnosed with adenocarcinoma or squamous cell carcinoma in the original 
and recoded AJCC staging systems.   

Variable 
 

Adenocarcinoma  
 

Squamous Cell Carcinoma 

 AJCC 3rd AJCC 6th AJCC 7th AJCC 3rd AJCC 6th AJCC 7th 
Stage       

1 9,510 (35.6%) 3,127 (42%) 2,371 (33.3%) 7,110 (33%) 1,968 (36.5%) 1,466 (28.6%) 
2 1,475 (5.5%) 580 (7.8%) 1,400 (19.7%) 1,272 (5.9%) 574 (10.6%) 958 (18.7%) 

3a 2,610 (9.8%) 661 (8.9%) 1,145 (16.1%) 3,074 (14.2%) 650 (12%) 1,114 (21.7%) 
3b 4,638 (17.3%) 919 (12.3%) 438 (6.2%) 4,928 (22.8%) 907 (16.8%) 496 (9.7%) 

4 8,516 (31.8%) 2,167 (29.1%) 1,762 (24.8%) 5,188 (24.0%) 1296 (24%) 1,089 (21.3%) 
Grade       

1 3,436 (12.8%) 1,189 (16%) 1,143 (16%) 1,000 (4.6%) 191 (3.5%) 180 (3.5%) 
2 8,780 (32.8%) 2,892 (38.8%) 2,800 (39.3%) 8,384 (38.9%) 2,284 (42.3%) 2,182 (42.6%) 
3 13,885 (51.9%) 3,235 (43.4%) 3,044 (42.8%) 11,713 (54.3%) 2,850 (52.8%) 2,694 (52.6%) 
4 648 (2.4%) 138 (1.9%) 129 (1.8%) 475 (2.2%) 70 (1.3%) 67 (1.3%) 

Age, Mean(SD) 73.4 (7.2) 74.0 (7.6) 73.9 (7.6) 73.5 (6.9) 74.1 (7.4) 74.2 (7.3) 
Race       

White 23218 (86.8%) 6,515 (87.4%) 6,219 (87.4%) 18,456 (85.6%) 4,727 (87.6%) 4,490 (87.6%) 
Black 1945 (7.3%) 531 (7.1%) 508 (7.1%) 2,232 (10.3%) 486 (9%) 459 (9.0%) 

Asian/Pac. 
Islander 1586 (5.9%) 408 (5.5%) 389 (5.5%) 884 (4.1%) 182 (3.4%) 174 (3.4%) 

Sex       
Male 13678 (51.1%) 3,556 (47.7%) 3,372 (47.4%) 14,111 (65.4%) 3,370 (62.5%) 3,186 (62.3%) 

Female 13071 (48.9%) 3,898 (52.3%) 3,744 (52.6%) 7,461 (34.6%) 2,025 (37.5%) 1,937 (37.7%) 
+COPD Diagnosis 7948 (29.7%) 2,647 (35.5%) 2,538 (35.7%) 8,521 (39.5%) 2,568 (47.6%) 2,431 (47.6%) 
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   The distributions of COPD and other variables in the original model were assessed in patients 

with very long and very short survival, relative to other patients, to determine if certain characteristics 

were disparate between groups of patients with varied survival.  This was accomplished by partitioning 

patients based on survival time and status, then using a t-test or test of proportions to compare the 

distributions of variables between each group.  Again, only those patients who were treated with 

surgery without radiation or chemotherapy were included.  Long survival was defined as greater than 60 

months for the original 3rd Edition staging, and greater than 24 months for the 6th and recoded 7th 

Edition groups due to shortened follow-up.  Short survival was defined as less than 24 months for the 

original 3rd Edition staging, and less than 12 months for the 6th and recoded 7th Edition groups (Table 

3.3). 

Cox modeling was then used to estimate a proportional hazards model for use in quantitatively 

assessing patient risk given multiple variables.  Two separate models were estimated: a Full model 

containing information on patient age, race, sex, tumor grade and stage, and a COPD model containing 

the same variables with an additional indicator of the presence of COPD.  For both the Full and COPD 

models, a total of one-thousand Cox proportional-hazard models were estimated using bootstrapped 

samples equal in size to the original patient cohort.  The distributions of coefficients were assessed for 

normality, and the mean of each coefficient was taken.  This set of coefficients formed the final model 

for each approach. 

The models were then assessed on a total of four metrics; area under an ROC curve, Brier Score, 

Harrell’s c, and Nagelkerke’s R2.  The ROC measure represents the area under an integrated ROC curve 

out to 36 months for the original 3rd Edition AJCC staging, and 24 months for the 6th and recoded 7th 

Edition AJCC staging.  The Harrell’s c measure is similar to the ROC measure, but takes into account the 

aspect of time.  Nagelkerke’s R2 is a generalized form of the coefficient of determination (R2) suitable for 

survival models.  The ROC, c-statistic, and R2 measures all range from 0 to 1, with higher scores 

indicating better performance.  The Brier score is a measure of the accuracy of survival predictions, and 

ranges from 0 to 1 with lower scores being better.  Similar to the ROC measure, the Brier score was 

calculated at 36 months for the original AJCC staging and 24 months for the recoded AJCC staging.  

These estimations were performed on 100 bootstrapped patient cohorts with a two-tailed T test being 

used to assess significant differences between models on each test.  All model estimations and 

assessments were performed using R version x64 2.15.0, with the survival, risksetAUC, Design, rms, pec, 

and Hmisc packages.   
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The final models to be used in the online tool were constructed using the coefficients estimated 

earlier for the models containing tumor stage, grade, age, race, sex, and COPD status.  A total of six 

models, one for each AJCC Staging Edition and histology combination, were constructed.  Cutoffs for 

each AJCC Edition and histology group were determined by selecting two cutoffs to partition patients 

into High and Low-Risk groups across the range of Hazard Scores in the total patient population and 

testing the difference in survival between the Full and Stage Only models in an iterative manner.  The 

final cutoffs represent points at which the Full model shows the greatest improvement in selecting both 

High and Low-Risk patients in that group.  This stratification is represented in Figure 3.8.  For each new 

patient entered using the tool, the Hazard Score is estimated using the coefficients for each variable in 

the appropriate model.  The final coefficients and graphical representation of long-term survival as 

determined by Hazard Score are shown for each model in Figures 3.9 through 3.14.  A representative 

image of the web-based application of the final prognostic model can be seen in Figure 3.15. 

Results 
 COPD showed significant prognostic ability on multiple measures, both as an independent 

predictor and in the presence of other predictors.  Other co-morbid conditions also showed promise as 

independent predictors in a Cox model (Table 3.2).  As an independent predictor, COPD status alone was 

able to significantly stratify patients into high and low-risk groups (p<0.05) in four of six groups (Figure 

3.1), although small sample size in the newer squamous cell carcinoma groups may have impeded 

achieving a significant stratification.  The stratification in squamous cell carcinoma cases coded in the 

original 6th Edition and those recoded to the 7th Edition of AJCC staging was not significant despite a 

small degree of separation, with COPD patients having slightly diminished survival concordant with the 

other significant groups.  In the significant cases, those without COPD showed consistently and 

significantly better survival when compared to those with COPD across the entire length of available 

follow-up, indicating that the effects of COPD are manifested in both long and short-term survival 

(Figure 3.1). 
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Table 3.2. Result of modeling survival in a model with each comorbid condition as an independent predictor.  
Shown are conditions which confer significantly poorer survival in one or both of the histologies considered 
when the sample was restricted to patients receiving surgery without radiation or chemotherapy. 

 Adenocarcinoma Squamous Cell 
Condition Odds Ratio p-value Odds Ratio p-value 

Congestive Heart Failure 1.37 <0.0001* 1.27 0.0003* 
Peripheral Vascular Disease 1.22 0.0020* 1.03 0.7234 

Cerebrovascular Disease 1.16 0.0152* 1.06 0.3874 
COPD 1.24 <0.0001* 1.11 0.0140* 

Diabetes with sequelae 1.26 0.0186* 1.06 0.5964 
Chronic Renal Failure 1.18 0.4083 1.57 0.0002* 

Cirrhosis 0.74 0.3000 1.95 0.0024* 
Gastrointestinal Ulcers 1.33 0.0193* 1.22 0.1337 

 

Table 3.3. Methodology for assigning patients to outcome groups based on survival time and status, for use in 
comparing the prevalence of COPD in the AJCC 3rd Edition staging scheme (A) and AJCC 6th Edition and recoded 
7th Edition (B).  Survival status is based on disease (lung and bronchus cancer) specific criteria.   

A. Survival Time/Status Alive Deceased 
<24 Months Intermediate Short 

>=60 Months Long Long 
 

B. Survival Time/Status Alive Deceased 
<12 Months Intermediate Short 

>=24 Months Long Long 
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Figure 3.1.  Survival curves generated for patients with and without COPD among those treated with surgery 
alone.   
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Figure 3.2.  Effect of COPD in Adenocarcinoma AJCC 3rd Edition stage and treatment sub-groups.  For each group, 
a clear and significant difference between the survival curves for patients with and without COPD can be seen, 
with patients identified as having COPD experiencing significantly poorer survival compared to those without 
COPD. 
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Figure 3.3.  Effect of COPD in Adenocarcinoma AJCC 6th Edition stage and treatment sub-groups.  For each group, 
patients without COPD tend to experience longer survival when compared to patients with COPD, although the 
difference is not significant in some cases shown.   
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Figure 3.4.  Effect of COPD in Adenocarcinoma AJCC 7th Edition stage and treatment sub-groups.  For each group 
treated without chemotherapy, a clear and significant difference between the survival curves for patients with 
and without COPD can be seen, with patients identified as having COPD experiencing significantly poorer 
survival compared to those without the disease.  The difference in survival for patients treated with systemic 
therapy was not significant, but trended toward patients with COPD having poorer survival. 
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Figure 3.5.  Effect of COPD in Squamous Cell AJCC 3rd Edition stage and treatment sub-groups.  For each group, a 
clear and significant difference between the survival curves for patients with and without COPD can be seen, 
with patients identified as having COPD experiencing significantly poorer survival compared to those without 
the disease. 
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Figure 3.6.  Effect of COPD in Squamous Cell AJCC 6th Edition stage and treatment sub-groups.  For the group 
shown, a clear and significant difference between the survival curves for patients with and without COPD can be 
seen, with patients identified as having COPD experiencing significantly poorer survival compared to those 
without the disease. 
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Figure 3.7.  Effect of COPD in Squamous Cell AJCC 7th Edition stage and treatment sub-groups.  For each group, a 
clear and significant difference between the survival curves for patients with and without COPD can be seen, 
with patients identified as having COPD experiencing significantly poorer survival compared to those without 
the disease. 

 

The proportion of patients with COPD between those with relatively long and short survival was 

also assessed.  Two survival cutoffs were used to split patients into three groups of short, intermediate, 

and long survival in order to test for differences in the distribution of each prognostic factor between 

groups of patients with relatively different survival.  The difference in the prevalence of COPD between 

the short and long survival groups was assessed using a test of proportions.  This test showed that COPD 

was much more prevalent in patients with relatively short survival when compared to those surviving 

relatively longer (Table 3.4).  This was true for each histology and coding scheme, despite differences in 

cutoffs and length of follow-up between the original and recoded staging systems.  When the same test 

was performed for the other covariates similar results were seen, with factors previously seen to favor 

increased or diminished survival being disparate between the groups.  These results are summarized in 

Tables 3.4 through 3.9. 

 Patients were able to be split into high and low-risk groups with significantly different survival 

curves using COPD status alone in a variety of treatment and stage sub-groups.  For adenocarcinoma 

patients staged using the original 3rd Edition staging, there was a significant difference in the survival of 
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Stage I patients treated with surgery alone.  There was also a significant difference seen in Stage 2 and 

3a patients treated with surgery with a platinum and taxane or without systemic therapy (p<0.05).  A 

fourth stratification in Stage 2 and 3a patients treated with radiation and systemic therapy was also 

present (p<0.05, Figure 3.2). 

In the group of patients staged using the original 6th Edition, Stage 2 and 3a radiation patients 

treated both with and without systemic therapy trended toward a similar stratification but did not 

achieve significance (p>0.05).  A similar trend was observed for Stage 2 and 3a surgical patients treated 

with systemic therapy, although the degree of separation was again not significant (p>0.05).  The group 

of stage 1 surgical patients treated without systemic therapy did however achieve a significant 

stratification (p=0.0111, Figure 3.3). 

In the group of adenocarcinoma patients recoded to AJCC 7th Edition staging, there was a 

significant difference in survival between patients with and without COPD in Stage I surgical patients 

treated without systemic therapy (p=0.0374).  This same difference was also present in Stage 2 and 3a 

surgical patients treated without systemic therapy (p=0.0101).  There was a similar trend in the group of 

Stage 2 and 3a patients treated with surgery and systemic therapy, but the difference in survival was not 

significant for any of the systemic therapy groups (p>0.05).  The group of Stage 2 and 3a patients 

without COPD also experienced significantly better survival when treated with radiation without 

systemic therapy (p=0.0025, Figure 3.4). 

In squamous cell patients staged using the original 3rd Edition the difference in survival when 

stratifying on COPD status for Stage I surgical patients treated without systemic therapy was significant, 

with patients having COPD again experiencing poorer survival (p=0.0002).  There was also a significant 

stratification in the corresponding group of Stage I surgical patients treated with systemic therapy 

(p<0.05).  COPD Was able to produce a significant stratification in Stage 2 and 3a patients treated with 

systemic therapy in both the surgical and radiation groups (p<0.05, Figure 3.5).  In patients staged using 

the original 6th Edition, COPD was able to produce a single stratification in Stage 2 and 3a surgical 

patients treated without systemic therapy (p=0.0091, Figure 3.6). 

In the recoded 7th Edition staging, there were two groups where COPD was able to stratify 

patients.  The first was in Stage 2 and 3a patients treated with surgery without any systemic therapy, 

with COPD patients having poorer survival (p=0.0058).  The same pattern was observed in Stage 2 and 

3a patients treated with radiation without any systemic therapy (p=0.0350, Figure 3.5).   
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Table 3.4. Proportion of patients with COPD in long and short-survival groups.  A test of proportions was used to 
assess significant differences in the prevalence of COPD in the two survival groups created from patients treated 
with surgery without radiation or chemotherapy.  

 Cutoffs % COPD  
Group Short Long Short Long P-Value 

Adenocarcinoma 3rd <24 mo >= 60 mo 34.2% 24.2% <0.0001 
Adenocarcinoma 6th <12 mo >= 24 mo 39.0% 32.2% 0.0438 
Adenocarcinoma 7th <12 mo >= 24 mo 39.5% 32.2% 0.0326 

Squamous Cell 3rd <24 mo >= 60 mo 39.9% 34.0% 0.0005 
Squamous Cell 6th <12 mo >= 24 mo 53.5% 44.9% 0.0368 
Squamous Cell 7th <12 mo >= 24 mo 53.6% 44.8% 0.0344 

 

Table 3.5. Mean AJCC tumor stage in long and short-survival groups.  A t-test was used to assess significant 
differences in mean stage in the two survival groups created from patients treated with surgery without 
radiation or chemotherapy. 

 Cutoffs Mean Stage  
Group Short Long Short Long P-Value 

Adenocarcinoma 3rd <24 mo >= 60 mo 2.03 1.17 <0.0001 
Adenocarcinoma 6th <12 mo >= 24 mo 2.22 1.29 <0.0001 
Adenocarcinoma 7th <12 mo >= 24 mo 2.26 1.42 <0.0001 

Squamous Cell 3rd <24 mo >= 60 mo 1.91 1.26 <0.0001 
Squamous Cell 6th <12 mo >= 24 mo 1.97 1.28 <0.0001 
Squamous Cell 7th <12 mo >= 24 mo 2.12 1.42 <0.0001 

 

Table 3.6. Mean tumor grade in long and short-survival groups.  A t-test was used to assess significant 
differences in mean tumor grade in the two survival groups created from patients treated with surgery without 
radiation or chemotherapy. 

 Cutoffs Mean Grade  
Group Short Long Short Long P-Value 

Adenocarcinoma 3rd <24 mo >= 60 mo 2.46 2.08 <0.0001 
Adenocarcinoma 6th <12 mo >= 24 mo 2.38 2.03 <0.0001 
Adenocarcinoma 7th <12 mo >= 24 mo 2.40 2.03 <0.0001 

Squamous Cell 3rd <24 mo >= 60 mo 2.53 2.50 0.1486 
Squamous Cell 6th <12 mo >= 24 mo 2.49 2.42 0.1374 
Squamous Cell 7th <12 mo >= 24 mo 2.42 2.50 0.1201 
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Table 3.7. Mean patient age in long and short-survival groups.  A t-test was used to assess significant differences 
in patient age in the two survival groups created from patients treated with surgery without radiation or 
chemotherapy. 

 Cutoffs Mean Age  
Group Short Long Short Long P-Value 

Adenocarcinoma 3rd <24 mo >= 60 mo 73.80 72.30 <0.0001 
Adenocarcinoma 6th <12 mo >= 24 mo 75.03 73.40 0.0029 
Adenocarcinoma 7th <12 mo >= 24 mo 74.85 73.42 0.0084 

Squamous Cell 3rd <24 mo >= 60 mo 73.85 72.13 <0.0001 
Squamous Cell 6th <12 mo >= 24 mo 74.80 73.34 0.001 
Squamous Cell 7th <12 mo >= 24 mo 74.82 73.35 0.0101 

 

Table 3.8. Proportion of patients classified as API (top) or Black (bottom) in long and short-survival groups.  A 
test of proportions was used to assess significant differences in the prevalence of minority groups in the two 
survival groups created from patients treated with surgery without radiation or chemotherapy. 

 Cutoffs Race (API)  
Group Short Long Short Long P-Value 

Adenocarcinoma 3rd <24 mo >= 60 mo 4.70% 5.70% 0.1445 
Adenocarcinoma 6th <12 mo >= 24 mo 6.18% 6.58% 0.9219 
Adenocarcinoma 7th <12 mo >= 24 mo 6.32% 6.50% 1 

Squamous Cell 3rd <24 mo >= 60 mo 3.54% 3.51% 1 
Squamous Cell 6th <12 mo >= 24 mo 3.98% 2.95% 0.6176 
Squamous Cell 7th <12 mo >= 24 mo 4.00% 3.00% 0.606 

 

 Cutoffs Race (Black)  
Group Short Long Short Long P-Value 

Adenocarcinoma 3rd <24 mo >= 60 mo 6.40% 5.10% 0.0865 
Adenocarcinoma 6th <12 mo >= 24 mo 6.18% 4.96% 0.5221 
Adenocarcinoma 7th <12 mo >= 24 mo 6.32% 4.97% 0.4728 

Squamous Cell 3rd <24 mo >= 60 mo 8.03% 8.68% 0.5516 
Squamous Cell 6th <12 mo >= 24 mo 4.87% 6.69% 0.4324 
Squamous Cell 7th <12 mo >= 24 mo 4.91% 6.71% 0.4448 
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Table 3.9. Proportion of male patients in the long and short-survival groups.  A test of proportions was used to 
assess significant differences in sex in the two survival groups created from patients treated with surgery 
without radiation or chemotherapy. 

 Cutoffs Sex (Male)  
Group Short Long Short Long P-Value 

Adenocarcinoma 3rd <24 mo >= 60 mo 56.50% 39.90% <0.0001 
Adenocarcinoma 6th <12 mo >= 24 mo 52.12% 40.94% 0.0014 
Adenocarcinoma 7th <12 mo >= 24 mo 52.17% 40.92% 0.0014 

Squamous Cell 3rd <24 mo >= 60 mo 68.31% 59.08% <0.0001 
Squamous Cell 6th <12 mo >= 24 mo 64.16% 55.71% 0.03916 
Squamous Cell 7th <12 mo >= 24 mo 64.29% 55.62% 0.0350 
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Model Improvement in Adenocarcinoma 

 When using the original 3rd Edition staging system the addition of COPD to the model resulted in 

a significant improvement on the Harrell’s c-statistic in the total group of patients treated with any 

treatment and those treated with surgery alone (p<0.05).  This improvement on Harrell’s c persisted for 

those groups when only patients treated without indication of chemotherapy were considered.  There 

were also improvements with the addition of COPD on the ROC measure in patients treated without 

indication of chemotherapy (p<0.05).  There were no significant improvements in either the 

Nagelkerke’s R2 measure or the Brier score. 

In the group of patients coded using the 6th Edition staging, there was a significant improvement 

in on the Harrell’s c measure in the total group of patients (p=0.0480).  There was an additional 

improvement in patients treated with surgery regardless of indication of chemotherapy on the ROC 

measure (p=0.0475).  As was the case with the 3rd Edition staging system, there were no significant 

improvements in either the Nagelkerke’s R2 measure or the Brier Score. 

When patients were recoded to the 7th Edition staging, there was a significant improvement on 

the ROC measure in the total group of patients (p=0.0436) which persisted when only patients receiving 

surgery regardless of indication of chemotherapy were considered (p=0.0326).  These results strongly 

indicate that the greatest improvement in prognostication occurred in patients without indication of 

chemotherapy, with a concordant improvement in the entire patient sample.  The results for the three 

staging systems are summarized in Tables 3.10 through 3.13.  Patient survival and the final Cox model 

coefficients for each staging system can be seen in Figures 3.9 through 3.11. 
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Table 3.10. P-values estimated by comparing the Harrell’s c-statistics from 100 bootstrapped samples using the 
Cox model generated on the entire patient sample for the original Comprehensive model, and the same model 
estimated with a COPD indicator added.  Significant values are highlighted in yellow, with values showing 
degradation in prognostication with the addition of COPD bolded and italicized.  

 
Adenocarcinoma 3rd 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0016 0.0002 0.7142 0.7462 0.7217 0.5776 
Surgery Only 0.0043 0.0028 0.9519 0.7105 0.8789 0.8064 

Radiation Only 0.3493 0.2363 0.7388 0.8425 0.2166 0.6873 
Surg + Rad 0.8379 0.8601 0.7690 0.8968 0.9997 0.9028 

No Treatment 0.3143 0.0702 0.4461 0.3056 0.7928 0.1980 

 
Adenocarcinoma 6th 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0480 0.0856 0.3955 0.5910 0.9437 0.7413 
Surgery Only 0.3046 0.2051 0.8345 0.7036 0.9168 0.6176 

Radiation Only 0.1499 0.6973 0.2356 0.7225 0.5726 0.6144 
Surg + Rad 0.6971 0.7273 0.5079 0.4342 0.9827 0.6161 

No Treatment 0.0700 0.1956 0.4042 0.7254 0.4114 0.6656 

 
Adenocarcinoma 7th 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0500 0.0711 0.3876 0.6259 0.7937 0.6621 
Surgery Only 0.2257 0.1882 0.6936 0.6574 0.9999 0.7558 

Radiation Only 0.4322 0.9241 0.8388 0.7593 0.4598 0.9601 
Surg + Rad 0.6118 0.7944 0.6889 0.5453 0.7461 0.7422 

No Treatment 0.0857 0.3129 0.3658 0.4242 0.6381 0.4773 
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Table 3.11. P-values estimated by comparing the Nagelkerke’s R2 statistic from 100 bootstrapped samples using 
the Cox model generated on the entire patient sample for the original Comprehensive model, and the same 
model estimated with a COPD indicator added.  Significant values are highlighted in yellow, with values showing 
degradation in prognostication with the addition of COPD bolded and italicized. 

 
Adenocarcinoma 3rd 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.1584 0.1201 0.9228 0.9007 0.9004 0.8727 
Surgery Only 0.0866 0.1202 0.8685 0.9079 0.8471 0.8309 

Radiation Only 0.5638 0.7560 0.4240 0.4644 0.2454 0.5246 
Surg + Rad 0.5914 0.6995 0.8545 0.8178 0.9995 0.8949 

No Treatment 0.4754 0.1228 0.5587 0.5011 0.5585 0.2461 

 
Adenocarcinoma 6th 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.2176 0.1477 0.6948 0.8449 0.9706 0.9137 
Surgery Only 0.0874 0.2201 0.5911 0.5291 0.9314 0.6899 

Radiation Only 0.1130 0.1663 0.8211 0.9646 0.5765 0.6126 
Surg + Rad 0.4996 0.9854 0.2297 0.1906 0.9444 0.9301 

No Treatment 0.3263 0.6722 0.7703 0.8269 0.4565 0.9344 

 
Adenocarcinoma 7th 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0814 0.3379 0.5324 0.6550 0.6325 0.5860 
Surgery Only 0.0679 0.1815 0.5138 0.3998 0.9427 0.4235 

Radiation Only 0.2211 0.3464 0.9340 0.7292 0.9713 0.3919 
Surg + Rad 0.5132 0.9514 0.4026 0.4431 0.9588 0.8120 

No Treatment 0.2814 0.5350 0.4753 0.6372 0.8534 0.6812 
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Table 3.12. P-values estimated by comparing the area under an Integrated ROC curve out to 36 months for the 
3rd  Edition and 24 months for the 6th and recoded 7th Edition from 100 bootstrapped samples using the Cox 
model generated on the entire patient sample for the original Comprehensive model, and the same model 
estimated with a COPD indicator added.  Significant values are highlighted in yellow, with values showing 
degradation in prognostication with the addition of COPD bolded and italicized. 

 
Adenocarcinoma 3rd 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.1453 0.0404 0.8635 0.7894 0.8856 0.7661 
Surgery Only 0.0980 0.0269 0.9158 0.7657 0.7520 0.8878 

Radiation Only 0.2674 0.3197 0.5190 0.5322 0.2366 0.4830 
Surg + Rad 0.6427 0.6579 0.9475 0.9902 0.9664 0.9147 

No Treatment 0.2912 0.0497 0.5786 0.4414 0.7798 0.3310 

 
Adenocarcinoma 6th 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0834 0.1222 0.5936 0.7844 0.9602 0.9752 
Surgery Only 0.0475 0.1127 0.5290 0.5653 0.9689 0.6005 

Radiation Only 0.0908 0.1167 0.6157 0.8712 0.8276 0.7574 
Surg + Rad 0.4155 0.9416 0.3495 0.2381 0.9486 0.7450 

No Treatment 0.2379 0.4202 0.7530 0.9481 0.6597 0.8425 

 
Adenocarcinoma 7th 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0436 0.1846 0.4478 0.7310 0.8017 0.7131 
Surgery Only 0.0326 0.0630 0.3348 0.3295 0.7815 0.5313 

Radiation Only 0.2037 0.4139 0.8399 0.9630 0.8433 0.6449 
Surg + Rad 0.6475 0.7967 0.4103 0.3634 0.8988 0.8784 

No Treatment 0.1568 0.2826 0.5004 0.7161 0.9540 0.5240 
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Table 3.13. P-values estimated by comparing the Brier score at 36 months for the 3rd Edition and 24 months for 
the 6th and recoded 7th Edition from 100 bootstrapped samples using the Cox model generated on the entire 
patient sample for the original Comprehensive model, and the same model estimated with a COPD indicator 
added.  Significant values are highlighted in yellow, with values showing degradation in prognostication with the 
addition of COPD bolded and italicized. 

 
Adenocarcinoma 3rd 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0801 0.1161 0.6341 0.7535 0.6077 0.6832 
Surgery Only 0.3738 0.3481 0.7197 0.7455 0.6505 0.7429 

Radiation Only 0.7452 0.7439 0.8391 0.8165 0.7534 0.8005 
Surg + Rad 0.9379 0.8855 0.8526 0.9518 0.9409 0.8444 

No Treatment 0.8303 0.7250 0.9825 0.9604 0.9445 0.8964 

 
Adenocarcinoma 6th 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.1731 0.1335 0.8574 0.7562 0.9032 0.6800 
Surgery Only 0.6337 0.6007 0.8431 0.9083 0.9250 0.8183 

Radiation Only 0.3224 0.2946 0.7990 0.8363 0.9905 0.7586 
Surg + Rad 0.6245 0.6985 0.9679 0.9779 0.9738 0.7066 

No Treatment 0.6505 0.6440 0.9686 0.7483 0.7406 0.9309 

 
Adenocarcinoma 7th 

 
Total 

No 
Chemo Any Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.1273 0.0677 0.9072 0.5518 0.9375 0.5797 
Surgery Only 0.5045 0.3737 0.8554 0.9413 0.9563 0.8841 

Radiation Only 0.3143 0.2295 0.8211 0.9512 0.8165 0.6344 
Surg + Rad 0.8202 0.8252 0.9340 0.9979 0.9321 0.7037 

No Treatment 0.5261 0.4674 0.8933 0.7485 0.7839 0.9535 
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Model Improvement in Squamous Cell Carcinoma 

 Using the original AJCC 3rd Edition coding scheme, there were multiple treatment groups which 

showed a significant improvement in prognostication with the addition of COPD to the model.  When 

any combination of surgical or radiological treatment was considered regardless of indication of 

chemotherapy, there was a significant improvement in the total sample on the Harrell’s c-statistic 

(p=0.0130).  This improvement persisted when only considering patients treated with any chemotherapy 

(p=0.0244) or with a platinum-based agent (p=0.0125, Table 3.14).  A similar improvement was seen in 

patients treated with a platinum-based agent or with a platinum-based agent and a taxane and any 

other surgical or radiological treatment for Nagelkerke’s R2 and ROC (p<0.05, Tables 3.15 and 3.16).  The 

addition of COPD to the model was able to significantly improve prognostication on Harrell’s c-statistic 

in surgical patients across the range of chemotherapy sub-groups (p<0.05).  There was also a significant 

improvement on the Brier score when all patients were considered (p=0.0239, Table 3.17). 

 In patients staged using the 6th Edition there was a significant degradation in model 

performance on Harrell’s c-statistic in patients without an indication of treatment (p=0.0089).  There 

were not any further differences in other measures for this staging system.  When the patients were 

recoded using the AJCC 7th Edition criteria the difference in survival was again less pronounced than 

when using the original 3rd Edition staging criteria.  There was a single significant improvement on the 

Brier score for patients treated without chemotherapy (p=0.0489).  These results are summarized in 

Tables 3.14 through 3.17.  The final model used and a representation of survival for squamous cell 

carcinoma patients can be seen in Figures 3.12 through 3.14. 
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Table 3.14. P-values estimated by comparing the Harrell’s c-statistics from 100 bootstrapped samples using the 
Cox model generated on the entire patient sample for the original Comprehensive model, and the same model 
estimated with a COPD indicator added.  Significant values are highlighted in yellow, with values showing 
degradation in prognostication with the addition of COPD bolded and italicized. 

 
Squamous Cell 3rd 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0130 0.0884 0.0244 0.0125 0.1852 0.0571 
Surgery Only 0.0006 0.0107 0.0058 0.0077 0.0333 0.0263 

Radiation Only 0.4007 0.8252 0.1644 0.0867 0.2864 0.2079 
Surg + Rad 0.3112 0.1602 0.7178 0.6892 0.5738 0.9322 

No Treatment 0.3427 0.2802 0.4459 0.2366 0.6742 0.3606 

 
Squamous Cell 6th 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.6265 0.4355 0.6450 0.6121 0.9647 0.6468 
Surgery Only 0.8196 0.9442 0.2354 0.1670 0.6093 0.1985 

Radiation Only 0.8807 0.9912 0.8581 0.7801 0.7409 0.9108 
Surg + Rad 0.8865 0.9543 0.6688 0.9064 0.9892 0.9165 

No Treatment 0.0089 0.3086 0.4642 0.2662 0.6188 0.4358 

 
Squamous Cell 7th 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.3653 0.1168 0.7176 0.4349 0.9719 0.4815 
Surgery Only 0.5885 0.3530 0.3557 0.1124 0.5362 0.1533 

Radiation Only 0.9159 0.8404 0.9850 0.9178 0.6276 0.8035 
Surg + Rad 0.9691 0.9854 0.6027 0.2893 0.1240 0.0891 

No Treatment 0.0686 0.4795 0.4162 0.0971 0.3220 0.2295 
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Table 3.15. P-values estimated by comparing the Nagelkerke’s R2 statistic from 100 bootstrapped samples using 
the Cox model generated on the entire patient sample for the original Comprehensive model, and the same 
model estimated with a COPD indicator added.  Significant values are highlighted in yellow, with values showing 
degradation in prognostication with the addition of COPD bolded and italicized. 

 
Squamous Cell 3rd 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.1014 0.4553 0.1107 0.0229 0.1063 0.0286 
Surgery Only 0.1290 0.2859 0.1533 0.0674 0.1132 0.0873 

Radiation Only 0.6920 0.6309 0.0984 0.0986 0.2469 0.3527 
Surg + Rad 0.5961 0.2976 0.8073 0.8086 0.2950 0.5920 

No Treatment 0.7813 0.5202 0.5303 0.3370 0.9604 0.4286 

 
Squamous Cell 6th 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.2640 0.3448 0.8813 0.9451 0.7800 0.9195 
Surgery Only 0.5186 0.3857 0.7070 0.6605 0.9333 0.6305 

Radiation Only 0.8845 0.8187 0.6258 0.6304 0.9511 0.8436 
Surg + Rad 0.6827 0.6423 0.7827 0.9323 0.9947 0.9845 

No Treatment 0.5641 0.7819 0.8843 0.8359 0.8421 0.9833 

 
Squamous Cell 7th 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.2618 0.3960 0.9129 0.7735 0.7144 0.7504 
Surgery Only 0.4343 0.2752 0.8333 0.5224 0.9445 0.5179 

Radiation Only 0.9445 0.9359 0.8108 0.8063 0.7989 0.7206 
Surg + Rad 0.4112 0.6121 0.6994 0.9492 0.7472 0.8845 

No Treatment 0.8134 0.8734 0.6067 0.4735 0.7184 0.8235 
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Table 3.16. P-values estimated by comparing the area under an Integrated ROC curve out to 36 months for the 
3rd Edition and 24 months for the 6th and recoded 7th Edition from 100 bootstrapped samples using the Cox 
model generated on the entire patient sample for the original Comprehensive model, and the same model 
estimated with a COPD indicator added.  Significant values are highlighted in yellow, with values showing 
degradation in prognostication with the addition of COPD bolded and italicized. 

 
Squamous Cell 3rd 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0823 0.3764 0.0694 0.0383 0.1061 0.0412 
Surgery Only 0.0141 0.0718 0.0719 0.0553 0.0837 0.0811 

Radiation Only 0.9420 0.5654 0.0445 0.0600 0.1807 0.1807 
Surg + Rad 0.4149 0.2187 0.8758 0.9028 0.5063 0.7268 

No Treatment 0.7607 0.5585 0.5663 0.3072 0.7893 0.5403 

 
Squamous Cell 6th 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.4187 0.3237 0.8530 0.8345 0.7866 0.9525 
Surgery Only 0.3426 0.2310 0.7967 0.6588 0.9824 0.6829 

Radiation Only 0.9241 0.7226 0.5262 0.5636 0.9425 0.8440 
Surg + Rad 0.6037 0.6105 0.6826 0.9929 0.9136 0.9764 

No Treatment 0.3139 0.6181 0.9072 0.7603 0.7930 0.8559 

 
Squamous Cell 7th 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.5050 0.3799 0.8761 0.7701 0.8408 0.8796 
Surgery Only 0.2684 0.1335 0.8804 0.5706 0.8931 0.5738 

Radiation Only 0.9690 0.8683 0.6810 0.7237 0.8795 0.9022 
Surg + Rad 0.3648 0.5810 0.6488 0.9048 0.9345 0.9024 

No Treatment 0.5305 0.9266 0.6311 0.4731 0.7956 0.6966 
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Table 3.17. P-values estimated by comparing the Brier score at 36 months for the 3rd Edition and 24 months for 
the 6th and recoded 7th Edition from 100 bootstrapped samples using the Cox model generated on the entire 
patient sample for the original Comprehensive model, and the same model estimated with a COPD indicator 
added.  Significant values are highlighted in yellow, with values showing degradation in prognostication with the 
addition of COPD bolded and italicized. 

 
Squamous Cell 3rd 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0239 0.1278 0.2410 0.1933 0.3010 0.2519 
Surgery Only 0.4963 0.6791 0.4563 0.3227 0.5379 0.3675 

Radiation Only 0.8111 0.8972 0.7258 0.7170 0.7838 0.8460 
Surg + Rad 0.2956 0.1504 0.9136 0.7881 0.6282 0.6697 

No Treatment 0.9588 0.9889 0.9258 0.9154 0.9958 0.9171 

 
Squamous Cell 6th 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.1250 0.0973 0.8682 0.9657 0.9154 0.8012 
Surgery Only 0.6225 0.5191 0.9971 0.9447 0.9593 0.9295 

Radiation Only 0.7891 0.9429 0.9727 0.9776 0.9543 0.8708 
Surg + Rad 0.5036 0.4595 0.6109 0.8677 0.8574 0.8006 

No Treatment 0.9887 0.8279 0.8543 0.8139 0.8145 0.8024 

 
Squamous Cell 7th 

 
Total 

No 
Chemo 

Any 
Chemo Platinum Paclitaxel Plat+Tax 

Any Treatment 0.0958 0.0489 0.8356 0.9966 0.8708 0.8285 
Surgery Only 0.5874 0.4013 0.9734 0.8271 0.8533 0.8546 

Radiation Only 0.7728 0.8855 0.9251 0.9958 0.9410 0.9411 
Surg + Rad 0.3010 0.4205 0.6278 0.8229 0.7921 0.7954 

No Treatment 0.9410 0.7603 0.8705 0.7998 0.8941 0.7836 
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Figure 3.8.  Improvement in the Full model using COPD over Stage Alone.  For each Kaplan-Meier plot, the three 
pairs of lines represent the High, Intermediate, and Low-Risk groups defined for each of the two models shown.  
The model using only AJCC Stage is shown in orange, while the Full model with COPD status added is shown in 
blue.  For each plot shown, the Full model with COPD status was able to produce a Low-Risk group with better 
survival and a High-Risk group with poorer survival, with most cases being significant (p<0.05). 
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Figure 3.9.  Final model for Adenocarcinoma AJCC 3rd Edition.  Model coefficients used to determine the Hazard 
Score for each patient are shown on the forest plot (right).  Patient survival at 60 months for the total 
population sample is shown for the range of Hazard Scores (left), with the risk-groups delimited by vertical bars. 

 

 

Figure 3.10.  Final model for Adenocarcinoma AJCC 6th Edition.  Model coefficients used to determine the Hazard 
Score for each patient are shown on the forest plot (right).  Patient survival at 24 months for the total 
population sample is shown for the range of Hazard Scores (left), with the risk-groups delimited by vertical bars. 



59 
 

 

 

Figure 3.11.  Final model for Adenocarcinoma AJCC 7th Edition.  Model coefficients used to determine the Hazard 
Score for each patient are shown on the forest plot (right).  Patient survival at 24 months for the total 
population sample is shown for the range of Hazard Scores (left), with the risk-groups delimited by vertical bars. 

 

 

Figure 3.12.  Final model for Squamous Cell AJCC 3rd Edition.  Model coefficients used to determine the Hazard 
Score for each patient are shown on the forest plot (right).  Patient survival at 60 months for the total 
population sample is shown for the range of Hazard Scores (left), with the risk-groups delimited by vertical bars. 
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Figure 3.13.  Final model for Squamous Cell AJCC 6th Edition.  Model coefficients used to determine the Hazard 
Score for each patient are shown on the forest plot (right).  Patient survival at 24 months for the total 
population sample is shown for the range of Hazard Scores (left), with the risk-groups delimited by vertical bars. 

 

 

Figure 3.14.  Final model for Squamous Cell AJCC 7th Edition.  Model coefficients used to determine the Hazard 
Score for each patient are shown on the forest plot (right).  Patient survival at 24 months for the total 
population sample is shown for the range of Hazard Scores (left), with the risk-groups delimited by vertical bars. 
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Figure 3.15.  Sample output from the web-based version of the final model.  Given the patient values submitted 
by the user (left), the web-based model will estimate survival for each treatment category using the survival 
observed for patients of a particular treatment modality and similar Hazard Score (right). 

 

Discussion 
 It was shown that co-morbidities derived from administrative data contribute to a significant 

improvement in prognostication.  Specifically, the inclusion of a COPD variable was able to significantly 

improve prognostication in several of the treatment groups considered as measured by metrics of 

model fit and accuracy in controlled analyses and as an independent predictor.  The presence of COPD 

appears to have a strong effect on survival across the length of follow-up, with COPD patients having 

significantly worse survival curves in four of the six groups considered.  This was reflected in the 

proportional test of COPD prevalence, where the group of patients with relatively shorter survival had a 

significantly higher prevalence of COPD.  Because a COPD designation was based on treatment of the 

disease, the increased prevalence in patients with relatively shorter survival may reflect a higher degree 

of COPD severity as a result of more severe cases having a higher likelihood of clinical diagnosis and 

treatment.  However, a quantitative determination of that effect is outside the scope of this analysis. 

Additionally, splitting the patients further by the type of chemotherapy administered did not 

reduce the prognostic ability of the covariate model previously described when compared to a model 

using tumor stage alone(Putila et al., 2011), indicating that variable administration of chemotherapy 

does not confound the benefit seen from the inclusion of other pathologic and demographic variables.  

The relatively stronger effect of COPD in the squamous cell carcinoma patients in models controlling for 

other variables may be indicative of the role of smoking on both survival and the presence of COPD 

itself, given differences in the proportion of smokers between histologies (Papi et al., 2004; Kenfield et 
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al., 2006; Bryant & Cerfolio, 2007), with squamous cell carcinomas being more closely associated with 

smoking than adenocarcinomas.   

Assessment of the effect of COPD is also important due to potential shared origins in the 

development of the disease (Engels, 2008; Yao & Rahman, 2009; Houghton et al., 2008) and its role as a 

potential confounder (Young et al., 2008) in prognostic models.  It is hypothesized that inflammation 

may initiate or promote tumorigenesis in the lung.  This action is thought to center around the induction 

of immune dysfunction and the destruction of the extra-cellular matrix.  While it is difficult to 

demonstrate quantitatively given the data available in this set, there was no evidence found which 

would suggest that the trajectory or treatment of COPD after diagnosis will affect survival estimation in 

lung cancer patients when using disease-specific survival.  It is however necessary to examine the role of 

COPD within treatment and stage sub-set, in order to account for known confounders such as treatment 

candidacy and complication rate (Janssen-Heijnen et al., 1998; Rancati et al., 2003).  After considering 

the effects of COPD in influencing treatment selection, there is no compelling statistical reason to avoid 

the use of a proportional hazards model or COPD status despite possible shared origins between COPD 

and lung cancer in vivo.  Conversely, other co-morbid conditions such as heart or cerebro-vascular 

disease are more likely to derive their prognostic value from confounding or artifactual influences such 

as socio-economic status or lifestyle differences, as there are only tenuous causal pathways for their 

effects on disease-specific survival.  Thus, their inclusion, while potentially beneficial from a statistical 

standpoint, is imprudent when attempting to model factors directly influencing patient survival.  For 

these reasons, and as a matter of simplicity and generalizability, COPD alone was added to the previous 

model in lieu of multiple conditions. 

The SEER portion of the data is composed of a geographically and demographically diverse 

group of patients by design and thus allows for a more accurate analysis of the effect of multiple 

variables on survival.  The large size and scope of the data also allow for assessing the accuracy of the 

model across a wide range of treatments and patient profiles.  This is especially relevant when studying 

the effects of race or comorbidity, factors which have previously been shown to influence survival due 

to differences in treatments administered (Bach et al., 1999).  Given the assessment of disease-specific 

survival stratified by treatment modality, it is highly likely that the effect of COPD represents an 

additional source risk to the patient beyond that attributable to reduced candidacy, complication rate, 

or reduced lung function after treatment.  The model also accounts for recoding of cancer cases to the 

newest version of the AJCC staging schema, where possible, and includes both major non-small cell 
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histologies although the utility of COPD is less pronounced in the 6th Edition and recoded 7th Edition 

samples.  A possible explanation for this is that the newer patient groups have both a smaller sample-

size and a shorter period of follow-up.  It is possible that important manifestations of differences in 

survival due to COPD may occur beyond the three-year mark or that more recent improvements in the 

clinical management of COPD cases may alleviate some of the disparity in survival, but this was not 

assessed. 

A limitation of the data is that Medicare coverage is limited to those over the age of 65, with 

some exceptions, and thus the age distribution of patients included is likely biased toward the upper 

end of what would be seen in clinical practice.  Additionally, the administration of chemotherapeutics or 

other treatments not covered by Medicare is not recorded in the data, although Medicare covers a 

significant portion of cancer care in patients who are eligible (Thorpe & Howard, 2003).  As the 

treatments administered to each patient were non-random, it is also difficult to accurately assess the 

relative benefit of each type of treatment with a high degree of certainty and thus for this and other 

reasons the results should not be interpreted as a measure of comparative treatment effectiveness.  It 

should also be noted that although administrative data is adequate for assessing co-morbidities and the 

use of chemotherapeutics (Deyo et al., 1992; DHoore et al., 1996), these ascertainments may have 

limited generalizability to more refined  clinical or functional measures capturing the severity or 

duration of disease.  The absence of information on smoking status may also limit the model, as smoking 

has been seen to influence survival independent of co-morbidities (Tammemagi et al., 2004).  While the 

metrics used to assess model performance indicate that the proposed model has a high degree of 

internal validity, an external validation set was not used and thus caution must be exercised when 

generalizing to other populations.  Conversely, this type of prognostic model shows the greatest 

individual-level improvement in survival when identifying high-risk patients who would otherwise have 

been misclassified and treated as a lower-risk patient when using stage alone.  In that regard, the 

assessments used bias the results toward the null, as potential large improvements in a single patient 

are averaged over the group. 

Our results suggest that the addition of co-morbid conditions, specifically COPD, to a 

comprehensive prognostic model improves prognostication over similar models without that 

information.  This represents an additional improvement over the use of stage alone, even in a 

statistically rigorous manner, which was shown previously.  Additionally, stratifying patients by the 

administration of chemotherapeutic agents does not affect the performance of the model.  The 
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presence of COPD in patients may have an effect on survival independent of the effect attributable to 

disparate treatment candidacy or quality of life.  Thus, this approach and the resulting model have value 

in identifying high-risk patients who may benefit from more aggressive therapies or enhanced follow-up. 
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Chapter4:  
Projection of prognostic and chemo-predictive microRNA 
markers from a squamous cell lung cancer cohort to linked 
SEER-Medicare data 
Joseph Putila, Nancy Lan Guo 

 

Abstract 
Introduction: MiRNA are potentially important moderators of chemoresponse in human cancer due to 

their widespread regulatory function.  Identification of a set of clinically validated and biologically 

relevant miRNA could serve as potential markers for prognosis, chemoresponse prediction, and novel 

therapeutic targets.  The objective of this study was to utilize population, clinical, and cell-line data as an 

integrative approach to identifying miRNA showing a consistent association with chemoresponse. 

Materials and Methods:  Patients diagnosed with squamous cell carcinomas of the lung between 1991 

and 2005 were retrieved from the linked SEER-Medicare database with data on tumor TNM markers, 

grade, survival, and treatment information (N=33,897).  Medicare HCPCS and Revenue codes were used 

to identify patients receiving cisplatin (N=873), carboplatin (N=4,267), etoposide, (N=318), and paclitaxel 

(N=3,098).  The AJCC TNM markers and grade were used to partition patients into disjoint groups 

indicative of tumor progression, with the average survival being calculated for each group.  A second set 

of clinical data containing miRNA expression (N=57, GSE 16025) was partitioned in the same manner, 

with significant miRNA being selected by Cox and Kaplan-Meier modeling.  Linear regression was used to 

estimate the association between average miRNA expression in the clinical cohort and survival in the 

population sample treated without chemotherapy across groups with similar tumor characteristics.  The 

same analysis was performed on the population set of patients receiving one of the four 

chemotherapies, and compared to the results using the clinical cohort.  A third analysis utilizing the NCI-

60 anti-cancer screen estimated the association between miRNA expression and drug activity in an 

experimental setting.  MiRNA which showed a significant association in the population set and 

concordance in all others were considered for further analysis using IPA software. 

Results: Multiple miRNA, including miR-433 and miR-520d* showed consistent associations with survival 

across analytic approaches and treatments in the non-chemotherapy group.  In patients treated with 

chemotherapy, miR-199b and miR-142-3’ showed associations with chemoresponse in the clinical and 
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cellular analyses. These and other significant miRNA formed networks which included experimentally 

validated links with mediators of tumor growth, apoptosis, and cell-cycle control. 

 

Introduction 
Lung cancer is currently the leading cause of cancer-related death in the U.S., due in part to the 

minimal response to chemotherapy and potential for recurrence (Hoffman et al., 2000; Naruke et al., 

1989; Vogt et al., 1999).  Patients with similar clinical and pathological profiles may have markedly 

different responses to a given treatment, indicating that classical markers of progression or tumor type 

alone are not sufficient for the selection of an appropriate course of therapy.  The use of biomarkers to 

enhance treatment selection is a promising avenue for improving patient outcomes. 

Numerous studies have shown that mRNA biomarkers can be used for predicting survival in lung 

cancer patients (Wan et al., 2012; Raponi et al., 2006; Chen et al., 2007; Beer et al., 2002).  Similar 

studies have shown that miRNA can also be used in the diagnosis and prognosis of lung cancer (Wang et 

al., 2009; Rabinowits et al., 2009; Yu et al., 2008; Markou et al., 2008; Fabbri et al., 2007; Raponi et al., 

2009).  The development of a biomarker model of chemoresponse is particularly valuable due to the 

high degree of chemoresistance in lung cancer (Vogt et al., 1999).  Such a model has the potential to 

both enhance response rates seen in patients treated with chemotherapy and to highlight the potential 

regulatory networks which influence patient survival and mediate chemoresponse. 

The variation in response to chemotherapy between patients is likely mediated, at least in part, 

by micro-RNA (miRNA).  These miRNA are short non-coding RNA sequences which have been shown to 

be promising markers for both prognosis and response to therapeutics in multiple cancer types (Raponi 

et al., 2009; Yan et al., 2011; Yu et al., 2008).  There are a number of advantages to using miRNA such as 

their presence in circulating plasma (Chen et al., 2012; Mitchell et al., 2008), and greater stability in 

prepared tissue samples relative to mRNA (Jung et al., 2010; Mraz et al., 2009) including formalin 

fixation (Xi et al., 2007).  The use of miRNA markers in the selection of a biologically appropriate 

treatment has the possibility of improving patient outcomes by determining the best application of 

existing drugs, and the elucidation of pathways which may aid in the development of novel treatments 

(Iorio & Croce, 2012; Avraham & Yarden, 2012).   
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In selecting miRNA targets, many approaches have limited power to consider the effects of 

surgical or radiological treatment due to sample size issues prompted by cost and recruitment barriers.  

This problem is compounded by assignment to differing treatments based on traditional clinical 

markers, confounding the use of survival time as an outcome.  One potential solution is to utilize data 

from larger clinical populations found in cancer registries to model the effects of miRNA expression on 

patient outcomes in groups with similar surgical and radiological treatments.  This approach allows for 

the selection of miRNA markers which have promise for prognostication and prediction in a large and 

diverse patient population.  Similar approaches have had success identifying genes associated with 

patient survival based on aggregate measures taken from population data (Stein et al., 2004).  

Additionally, the approach more appropriately takes into account the effects of surgical and radiological 

treatments in combination when assessing the role of miRNA in mediating chemoresponse as 

represented by patient survival.  Careful analysis of the known, experimentally validated biological 

networks provides insight into the cellular processes which may be mediating this response, and several 

interaction networks are presented as potential mediators of chemoresponse. 

 

Materials and Methods 
Patient cohorts 

Two separate groups of patients were used in the analysis.  The first is a cohort of 57 squamous 

cell carcinoma patients originally published by Raponi et al. (Raponi et al., 2009).  Included in this cohort 

is expression data on 328 human miRNA determined by MirVana miRNA Bioarrays, with corresponding 

follow-up information on survival time and status, tumor grade, and AJCC tumor T, N, and M markers.  

Tumor grade for this cohort was converted from a descriptive measure of tumor differentiation to 

numerical grade to match descriptors used in the second set. 

The second patient group was derived from the linked SEER-Medicare (SM) database (Warren et 

al., 2002b).  This database combines the clinical, demographic, pathological, and survival information 

from the NCI SEER registry system with claims data for individual patients found in the Medicare claims 

database.  Briefly, patients in the SEER portion were linked according to identifying information such as 

social security number, census tract, age, and other identifying criteria to records found in the Medicare 

claims database (Potosky et al., 1993).  Criteria for inclusion in this study were a diagnosis of squamous 

cell carcinoma of the lung or bronchus between 1991 and 2005, as well as valid information on survival 
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time and status, tumor grade, and AJCC T, N, and M markers.  A total of 33,897 patients fit these criteria, 

with this sample being stratified according to treatment modality in subsequent analyses.  Patient 

demographics for this group are detailed in Table 4.1.  The T, N, and M markers for patients diagnosed 

prior to 2004 were derived from EOD10 coding, where possible, and according to established conversion 

algorithms (Seiffert, 1993).  Four specific chemotherapeutic agents, cisplatin, carboplatin, paclitaxel, and 

etoposide were considered.  The administration of chemotherapy was determined through the use of 

Healthcare Common Procedure Coding System (HCPCS) codes (Warren et al., 2002a).  First, the use of 

chemotherapy was determined by searching individual patient claims histories for entries with an HCPCS 

code corresponding to the agent in question.  The ICD-9 diagnosis codes for these records were then 

checked to ensure that the agent was administered for the treatment of lung cancer.  Curative surgery 

and radiation therapy were determined using variables in the SEER portion of the data.  These variables 

were used to stratify patients into a group receiving any surgical procedure but not pre-operative 

radiation, a group with any type of radiation but not surgery, a group with both surgery and radiation, 

and lastly a group with any combination of treatments.   Survival estimates are represented as disease-

specific survival for the SM cohort and overall for the clinical cohort.  

Table 4.1. Summary of demographic and clinical variables for patients in the linked SEER-Medicare and Clinical 
cohorts. 

Variable SEER-Medicare Patients Clinical Cohort (Raponi et al) 
Cancer Stage   

Stage I 12,651 (37.3%) 34 (59.6%) 
Stage II 2,662 (7.8%) 11 (19.3%) 

Stage III 11,514 (34%) 12 (21.1%) 
Stage IV 5,813 (17.1%) 0 (0.0%) 

Unstaged/Other 1,257 (3.7%) 0 (0.0%) 
Tumor Grade   

Grade 1 1,462 (4.3%) 1 (1.8%) 
Grade 2 13,573 (40.0%) 28 (49.1%) 
Grade 3 18,202 (53.7%) 28 (49.1%) 
Grade 4 660 (1.9%) 0 (0.0%) 

Mean Age (σ) 71.1 (7.9) 66.8 (10.7) 
Sex    

Male 22,218 (65.5%) 39 (68.4%) 
Female 11,679 (34.5%) 18 (31.6%) 
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Cellular Data 

The cellular data against which the predictive markers are checked was derived from the NCI-60 

cell panel (Shoemaker, 2006; Gaur et al., 2007) and contains miRNA expression levels of 209 miRNA 

markers determined by quantitative-PCR across 59 cancer-derived cell lines of diverse tissue origin.  The 

data also contain the drug activity at three clinically relevant end-points: 50% Growth Inhibition (GI50), 

Total Growth Inhibition (TGI), and 50% Lethal Concentration (LC50), used here to refine the set of 

significant miRNA and assess meaningful biological context. 

Identification of prognostic miRNA using a clinical cohort 

Patients in the Raponi and SEER-Medicare sets were assigned to disjoint tumor progression 

groups according to unique combinations of tumor grade and T, N, and M markers.  This tumor 

progression group membership served as a link between the two patient sets in subsequent analyses.  In 

total, there were 16 groups common between the clinical and population data sets, including tumor 

grades 1 through 3, tumor T 1 through 4, and tumor N 0 through 2.  There were no metastatic or grade 4 

groups common between the two sets.  A Leverage analysis was performed to test for undue influence 

from any one group.  None of the groups were seen to have a disproportionate effect on model 

coefficients or significance; therefore all 16 groups were included. 

The set of prognostic miRNA was determined by selecting miRNA which showed a significant 

association with survival in the original clinical cohort, then validating these miRNA in the population 

cohort.  Cox modeling and Kaplan-Meier estimation were used to assess the association between 

expression and survival in the original clinical cohort.  Cox model coefficients and p-values were 

estimated for each miRNA in independent models.  In the Kaplan-Meier analysis, cutoff values ranging 

from the 5% to 95% quantile were used to split the patients into high and low survival groups.  The 

degree of separation between the resulting survival curves was estimated as a log-rank p-value, with a 

value less than 0.05 being deemed as significant separation between the groups. 

Validation of prognostic miRNA markers using linked SEER-Medicare data 

Validation of the results of the clinical analysis on the population data was done using linear 

regression, Cox modeling, and Kaplan-Meier estimation.  Multiple methods of assessment were chosen 

due to limitations associated with using a single measure (Pepe et al., 2004).  The linear regressions used 

the average miRNA expression from the clinical set and average disease-specific survival from the 
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population set for each tumor progression group.  Average survival in the population cohort was 

calculated as a function of the area under the curve produced by Kaplan-Meier estimation.  Each miRNA 

was evaluated in each of the four surgical and radiological treatment modalities.  In order to enter the 

final set of prognostic miRNA, each miRNA found to be significant in the original cohort had to show a 

concordant and significant association with average survival in the population cohort.  Individual 

patients in the population cohort were then assigned the average miRNA expression for that progression 

group from the clinical cohort and the Cox and Kaplan-Meier models were re-evaluated.  Any miRNA 

which failed to achieve a significant and concordant association with survival in one of either the Cox or 

Kaplan-Meier models were removed. 

Identification of predictive miRNA using linked SEER-Medicare data  

In order to select for miRNA which were predictive of chemoresponse, as represented by 

improved or diminished disease-specific survival, linear regression was again used to estimate the 

association between average miRNA expression in the clinical cohort and disease-specific survival in the 

population cohort by tumor progression group.  Next, each patient in the population set was assigned 

the average expression for each miRNA corresponding to the same tumor progression group in the 

clinical cohort.  This combined set of patient expression and survival data was then used to estimate a 

Cox proportional hazards model.  A Kaplan-Meier model was also estimated and assessed on the log-

rank P-values.  Significance and concordance on the linear model and one of either the Cox or Kaplan-

Meier models was sufficient evidence in the population analysis.  Selection of a particular miRNA as a 

prognostic marker was not a requirement for selection as a predictive marker.  

Validation of predictive miRNA using the NCI-60 anti-cancer screen 

The miRNA which were significant in the predictive analyses were then compared to data from 

the NCI-60 anti-cancer screen (Boyd & Pauli, 1995; Gaur et al., 2007; Weinstein, 2006).  Linear regression 

was used to estimate the association between expression on a specific miRNA marker in each cell line 

and drug activity in the same cell line for each of the previously described end-points.  Cell-lines which 

did not have informative values, specifically those which did not achieve the end-point in question at 

any dosage, were removed from the analysis.  Significance and concordance on any one of the three 

drug activity measures was considered support of meaningful biological context, and these miRNA 

formed the final of predictive set. 

Evaluating Predictive miRNA using Pathways Analysis 
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For each agent, the final set of significant miRNA were also examined for interactions with 

molecular species known to play a role in lung cancer or relevant cellular processes such as apoptosis, 

proliferation, cell-cycle regulation, or metastasis through the use of Ingenuity Pathways Analysis (IPA) 

(Ingenuity® Systems, www.ingenuity.com).  In short, IPA is a functional pathway analysis tool 

incorporating genes, cellular species such as proteins, and chemical compounds with data on their 

interactions and involvement in diseases derived from scholarly publications.  Using this data, it is 

possible to map interactions between biomarkers on any given criterion.  The list of significant miRNA 

from each treatment was used to create networks based on experimentally validated interactions 

between miRNA and molecular components with known biological function.  These networks were 

created using the Core Analysis feature of IPA, and can be seen in Figures 4.5 through 4.8.  The Core 

Analysis compares the set of miRNA markers with molecules with known roles in human disease in order 

to select a set of networks in which the interactions between the miRNA set and IPA-defined functional 

set are statistically over-represented.  

 

Results 
Prognostic miRNA 

Prognostic analyses were performed in the group of patients without indication of having 

received chemotherapy.  In patients treated with surgery and without chemotherapy miR-520d*, miR-

433, miR-134, and miR-382 were positively and three others were negatively associated with survival.  In 

the sub-set of patients receiving radiation without surgery or chemotherapy, a single miRNA, miR-433 

was positively associated with survival.  In patients receiving both surgery and radiation without 

chemotherapy, there were 3 positive and 1 negative associations, with miR-520d* again being positively 

associated with survival.  For patients receiving any surgical or radiation treatment without 

chemotherapy, 9 miRNA including miR-520d* and miR-433 were positively associated, with miR-384 and 

two others negatively associated with survival.  The specific miRNA and their relationship with disease-

specific survival are outlined in Table 4.2.  Multiple miRNA were significant across surgical and radiation 

modalities.  Two miRNA, miR-433 and miR-520d*, were positively associated in multiple treatment 

combinations considered, indicating a strong but non-specific effect on survival.  The results of the 

analyses on miR-433 and miR-520d* are detailed in Figures 4.1 and 4.2, respectively. 

http://www.ingenuity.com/�
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Table 4.2. Total number of significant miRNA when considering variable administration of surgery, 
chemotherapy, and radiation in the SEER-Medicare and clinical cohort. 

Treatment  
No Chemotherapy 

Positive Correlation Negative Correlation 

Surgery miR-520d*, miR-433,  
miR-134, miR-382 

miR-328, miR-384, 
miR-525* 

Radiation miR-433 - 
Surgery and 

Radiation 
miR-453, miR-520d*, 

miR-134 miR-197 

Any 
Treatment 

miR-453, miR-372, 
miR-142-3’, miR-329, 
miR-520d*, miR-433,  

miR-134, miR-382,  
miR-493-3’ 

miR-328, miR-197, 
miR-384 
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Figure 4.1. Relationship between expression of miR-433 and survival in patients from the population set treated 
without chemotherapy, and the original clinical cohort.  Treatment groups shown are surgery without 

chemotherapy (top left), radiation without chemotherapy (top right), any treatment without chemotherapy 
(bottom left), and the clinical cohort regardless of treatment (bottom right). 
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Figure 4.2. Relationship between expression of miR-520d* and survival in patients from the population set 
treated without chemotherapy, and the original clinical cohort.  Treatment groups shown are surgery without 
chemotherapy (top left), both surgery and radiation without chemotherapy (top right), any treatment without 

chemotherapy (bottom left), and the clinical cohort regardless of treatment (bottom right). 
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Predictive miRNA 

In addition to those found to be prognostic, numerous miRNA were found to predictive of 

survival when patients treated with any chemotherapy or a specific agent were considered independent 

of those patients not receiving chemotherapy.  The results of these analyses are summarized in Tables 

4.3 and 4.4, with the significant sets being split into chemo-sensitive and chemo-resistant for 

presentation. 

Cisplatin 

In patients who received surgery with cisplatin, 9 miRNA were negatively associated, with one miRNA 

positively associated.  Two of the negatively associated miRNA in that group, miR-181b and miR-181c 

have highly similar mature sequences.  For patients receiving radiation with cisplatin a single miRNA, 

miR-384, was negatively associated.  In patients receiving both surgery and radiation there were no 

significant associations in the cisplatin group.  For those receiving cisplatin in combination with any 

surgical or radiation treatment there were 8 positive and 8 negative associations.  

Carboplatin 

When patients receiving surgery with carboplatin were considered miR-134, miR-142-3’, and 

two others were positively associated.  An additional 4 were negatively associated.  In patients receiving 

radiation with carboplatin there were not any significant associations.  In patients receiving both surgery 

and radiation miR-134 and miR-142-3’were positively associated and 2 others negatively associated.  

When patients receiving carboplatin in combination with any treatment were considered, a total of 6 

miRNA were positively associated with survival, with a further 4 miRNA being negatively associated.  

Tables 4.3 and 4.4 detail the identities of the significant miRNA by treatment modality. 

Paclitaxel 

In patients receiving paclitaxel with surgery there were 5 miRNA positively and 7 negatively 

associated with survival.  Two miRNA, miR-154 and miR-302a*, were positively associated with survival 

in patients receiving radiation with paclitaxel with one negative association.  In patients who received 

both surgery and radiation miR-142-3’ and miR-220 were positively associated with 5 others negatively 

so.  In patients receiving paclitaxel in combination with any other treatment there were 5 miRNA 

positively associated and 6 miRNA negatively associated with survival.  Both miR-142-3’ and miR-199b 
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were also significant in the clinical and cellular analyses, the results of which are outlined in Figures 4.3 

and 4.4, respectively.   

Etoposide 

For patients receiving etoposide in combination with any treatment, 9 miRNA were positively 

and 9 negatively associated with survival.  There were no miRNA significantly associated with survival in 

patients receiving only surgery.  A single miRNA, miR-223 was negatively associated with survival in 

patients receiving both surgery and radiation.  For patients receiving radiation with etoposide, there 

were 9 positive and 5 negative associations. 

Non-specific Chemotherapy 

The last group considered consisted of patients with an indication of having received any 

chemotherapy, including any of the four previously listed.  Patients in this group having received surgery 

with chemotherapy had 2 positive and 2 negative associations, including miR-142-3’ being positively 

associated as was the case for the specific treatment groups.  In the radiation group there was 1 positive 

and 1 negative association.  In the group receiving both surgery and radiation there was 1 positive 

association, miR-142-3’, along with 2 negative associations.  When any treatment with chemotherapy 

was considered, there were 14 positive associations, including both miR-520d* and miR-433, and 7 

negative associations. 
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Figure 4.3. Relationship between expression of miR-142-3’ and survival in the population analysis, and 
expression and LC50 in the cellular panel when treated with paclitaxel.  Average expression of miR-142-3’ 

showed a positive correlation with survival in the population analysis (A), which was corroborated in the cellular 
panel by a decrease in the dosage required for LC50 (B).  This effect was also apparent when stratifying the 

groups based on expression level in all patients treated with paclitaxel (C), and persisted when only the surgical 
group was considered (D). 
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Figure 4.4. Relationship between expression of miR-199b and survival in the population analysis, and expression 
and LC50 in the cellular panel when treated with paclitaxel.  Average expression of miR-199b showed a positive 

correlation with survival in the population analysis (A), which was corroborated in the cellular panel by a 
decrease in the dosage required for LC50 (B).  This effect was also apparent when stratifying the groups based 
on expression level in all patients treated with paclitaxel (C), and persisted when only the surgical group was 

considered (D). 
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Table 4.3. Total number chemosensitive miRNA when considering administration of specific chemotherapeutic 
agents in combination with variable administration of surgery and radiation, as evidenced by prolonged disease-
specific survival.  The miRNA which produced a significant stratification in the SEER population samples in 
addition to significance on one or more measures of drug activity in the NCI-60 panel are bolded. 

Treatment Cisplatin Carboplatin Paclitaxel Etoposide Any Chemo 

Surgery miR-29b 

miR-134, 
miR-142-3’, 

miR-188, 
miR-380-5’ 

miR-134, 
miR-138, 

miR-142-3’, 
miR-188, 

miR-380-5’ 

- miR-142-3’, 
miR-433 

Radiation - - miR-154, 
miR-302a* 

miR-141, 
miR-17-3’, 
miR-17-5’, 
miR-182, 
miR-183, 
miR-19b, 
miR-200c, 
miR-222, 
miR-23b 

miR-134 

Surgery 
and 

Radiation 
- miR-134, 

miR-142-3’ 
miR-142-3’, 

miR-220 - miR-142-3’ 

Any 
Treatment 

miR-129,  
miR-134, 

miR-142-3’,  
miR-184, 
miR-198, 
miR-370, 
miR-373, 
miR-379 

miR-134, 
miR-142-3’, 

miR-206, 
miR-33, 

miR-370, 
miR-372 

miR-134, 
miR-142-3’, 
miR-199b, 
miR-370, 
miR-382 

miR-129, 
miR-141, 

miR-142-3’, 
miR-184, 
miR-218, 
miR-220, 
miR-335, 
miR-373, 
miR-96 

miR-33, miR-453, 
miR-372, miR-142-3’, 
mir-299-3’, miR-329, 

miR-520d*, miR-519a, 
miR-494, miR-433, 

miR-134, miR-485-5’, 
miR-518c*, miR-493-3’ 
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Table 4.4. Total number chemoresistant miRNA when considering administration of specific chemotherapeutic 
agents in combination with variable administration of surgery and radiation, as evidenced by shortened disease-
specific survival.  The miRNA which produced a significant stratification in the SEER population samples in 
addition to significance on one or more measures of drug activity in the NCI-60 panel are bolded. 

Treatment Cisplatin Carboplatin Paclitaxel Etoposide Any Chemo 

Surgery 

miR-126*, 
miR-136, 

miR-181b, 
miR-181c, 
miR-196a, 
miR-331, 
miR-375, 
miR-424, 
miR-92 

miR-126, 
miR-192, 
miR-195, 
miR-384 

miR-189, 
miR-192, 
miR-197, 
miR-301, 
miR-328, 
miR-331, 
miR-384 

- miR-197, 
miR-384 

Radiation miR-384 - miR-189 

miR-150, 
miR-155, 
miR-192, 
miR-337, 
miR-98 

miR-328 

Surgery 
and 

Radiation 
- miR-192, 

miR-384 

miR-192, 
miR-197, 
miR-328, 
miR-331, 
miR-384 

miR-223 
miR-328, 
miR-197, 
miR-384 

Any 
Treatment 

miR-132, 
miR-181b, 
miR-30c, 

miR-30e-3’, 
miR-324-3’, 

miR-331, 
miR-339, 
miR-384 

miR-126, 
miR-195, 
miR-224, 
miR-384 

miR-126, 
miR-224, 
miR-328, 
miR-331, 
miR-361, 
miR-384 

miR-132, 
miR-133b, 
miR-155, 
miR-197, 
miR-208, 
miR-214, 

miR-324-3’, 
miR-374, 
miR-423 

miR-328, 
miR-361, 
miR-511, 
 miR-197, 
miR-125a, 
miR-384, 
miR-126 
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Discussion 
These results demonstrate that, based on similarities in tumor progression, extrapolation of 

miRNA expression from smaller cohorts to larger population-based data can serve both as an additional 

confirmatory tool where novel cohorts are unavailable and as an independent source of prognostic and 

predictive markers.  Specifically, it was shown that multiple miRNA were selected as strong predictors of 

chemoresponse though analysis of disease specific survival in cohorts with similar treatment strategies.  

The miRNA selected for also have a strong biological context relative to cellular processes important to 

cancer progression and patient survival such as apoptosis, suggesting that they play a role in mediating 

the effectiveness of chemotherapeutic agents through their regulatory function. 

In patients treated with paclitaxel, miR-199b was positively associated with survival, an effect 

which may be indicative of a number of potential regulatory actions.  In particular, miRNA-199b may 

decrease translation of LAMC2, a key growth factor for non-small cell lung cancer, and may confer a 

protective effect due to a reduction in metastatic potential (Manda et al., 2000) and loss of protection 

against anoikis (Kodama et al., 2005).  The same miRNA also increases inhibition of PAK4, a protein 

kinase suspected of promoting tumor survival, proliferation, and metastasis in a variety of cancers (Mak 

et al., 2011; Liu et al., 2008).  Similarly, miR-29b was seen to be protective and may also reduce 

metastatic potential by acting as a DNMT inhibitor and reverting aberrant methylation patterns (Chang 

et al., 2006; Fabbri et al., 2007).  The miRNA in the significant sets also had known associations with one 

or more functional networks pertinent to chemoresponse.  Additionally, cancer was the top disease for 

three of four specific chemotherapy groups considered based on the degree of overlap between the 

significant miRNA and molecules identified in IPA as being related to cancer.  A summary of these 

networks is provided in Tables 4.5 through 4.7.  The networks resulting from the Core Analysis 

performed in IPA are shown in Figures 4.5 through 4.8.  
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Table 4.5. Networks derived from a Core Analysis performed in Ingenuity Pathway Analysis.  The corresponding 
networks are detailed in Figures 4.5 through 4.8.  Focus molecules represent miRNA from the original set which 
demonstrated a high degree of interconnectivity, and were subsequently used to establish the network score.  A 
significant p-value indicates a low probability of the miRNA set being selected at random. 

Treatment Group Network ID Focus Molecules p-value 
Cisplatin Connective Tissue Disorders, Inflammatory Disease, 

Inflammatory Response 
14 <0.0001 

Carboplatin Connective Tissue Disorders, Inflammatory Disease, 
Inflammatory Response 

11 <0.0001 

Paclitaxel Genetic Disorder, Skeletal and Muscular Disorders, 
Developmental Disorder 

17 <0.0001 

Etoposide Respiratory Disease, Inflammatory Response, 
Connective Tissue Disorders 

14 <0.0001 

 

Table 4.6.  Top Diseases and Disorders derived from a Core Analysis performed in Ingenuity Pathway Analysis.  
The corresponding diseases or disorders were selected based on the degree of overlap between the miRNA 
selected in that treatment group and those defined in the IPA database as being associated with that disease 
beyond random chance (p<0.05).  These results, unlike those represented in Table 4.5, do not factor the degree 
of connectivity. 

Treatment Group Disease or Disorder # Molecules 
Cisplatin Cancer 34 

Carboplatin Cancer 20 
Paclitaxel Cancer 26 
Etoposide Inflammatory Response 24 

 

Table 4.7.  Top Molecular and Cellular functions derived from a Core Analysis performed in Ingenuity Pathway 
Analysis.  The corresponding functions were selected based on the degree of overlap between the miRNA 
selected in that treatment group and those defined in the IPA database as being associated with that function 
beyond random chance (p<0.05).  These results, unlike those represented in Table 4.5, do not factor the degree 
of connectivity. 

Treatment Group Function # Molecules 
Cisplatin Cell Death 9 

Carboplatin Cell Cycle 3 
Paclitaxel Cellular Growth and Proliferation 10 
Etoposide Cellular Development 26 
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Figure 4.5. Overview of network derived from IPA Core analysis, representing interactions between miRNA 
found to be chemopredictive for cisplatin and species relevant to the significant functions and diseases listed in 
Table 4.5.  Canonical Pathways (CP:) and Functions and Diseases (Fx:) as defined by IPA are overlaid to highlight 
the interconnectedness of the set with molecular processes relevant to chemoresponse.  Predictive miRNA 
whose expression was positively associated with survival are shown in green, and those who expression was 
negatively associated are shown in red. 
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Figure 4.6. Overview of network derived from IPA Core analysis, representing interactions between miRNA 
found to be chemopredictive for carboplatin and species relevant to the significant functions and diseases listed 
in Table 4.5.  Canonical Pathways (CP:) and Functions and Diseases (Fx:) as defined by IPA are overlaid to 
highlight the interconnectedness of the set with molecular processes relevant to chemoresponse.  Predictive 
miRNA whose expression was positively associated with survival are shown in green, and those who expression 
was negatively associated are shown in red. 
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Figure 4.7. Overview of network derived from IPA Core analysis, representing interactions between miRNA 
found to be chemopredictive for paclitaxel and species relevant to the significant functions and diseases listed in 
Table 4.5.  Canonical Pathways (CP:) and Functions and Diseases (Fx:) as defined by IPA are overlaid to highlight 
the interconnectedness of the set with molecular processes relevant to chemoresponse.  Predictive miRNA 
whose expression was positively associated with survival are shown in green, and those who expression was 
negatively associated are shown in red. 
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Figure 4.8. Overview of network derived from IPA Core analysis, representing interactions between miRNA 
found to be chemopredictive for etoposide and species relevant to the significant functions and diseases listed 
in Table 4.5.  Canonical Pathways (CP:) and Functions and Diseases (Fx:) as defined by IPA are overlaid to 
highlight the interconnectedness of the set with molecular processes relevant to chemoresponse.  Predictive 
miRNA whose expression was positively associated with survival are shown in green, and those who expression 
was negatively associated are shown in red. 
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In most cases miRNA had a similar association with survival across the surgery and radiation 

treatment groups, although some miRNA gained or lost significance depending upon the treatment.  

This may be due to moderation of the effect by treatment type, but is likely due at least in part to 

differing sample sizes between treatment modalities.  In general, miRNA with highly similar sequences 

had a similar association with survival, even if one or more of the similar miRNA failed to achieve 

significance in a given analysis, i.e. the miR-181b/c group and the 3’ and 5’ strands of miR-17.  This may 

indicate that targets shared by these miRNA may be more central to the observed mediation than those 

affected by only a single miRNA.  Additionally, many of the results from the IPA analyses indicate that 

these sets of miRNA, and their corresponding networks, play a role in apoptosis, cellular growth, and 

proliferation.  All four of the significant sets from the analyses on individual agents had aspects of 

cellular growth or death as their top biological function.  In addition, an overlay of canonical pathways 

and cellular functions shows that many of the networked molecules derived from the same sets are also 

related to apoptosis or cell-cycle regulation (Figures 4.5 to 4.8).  This suggests that the significant miRNA 

may act in a broad pattern of expression to modulate the response of tumor cells to chemotherapeutic 

agents, as indicated by improved or diminished survival by patients treated with those agents. 

There are however multiple limitations to this approach.  The first is the assumption that miRNA 

expression patterns in patients in the Raponi cohort are representative of those in other patients with 

similar disease status.  The accuracy to which these expression patterns can be estimated is also limited 

by the smaller sample size.  Adequate sample size is a problem inherent to similar studies to date. In 

addition, the Raponi cohort lacks patients with stage 4 tumors.  Although the benefit of chemotherapy 

in Stage 4 cases is better characterized than in earlier stages, the absence of stage 4 data for our method 

nonetheless affects the generalizability of the results. 

The use of administrative data also has some important implications.  Although the SEER data 

are in general highly accurate, it is not fully inclusive of all treatments a patient may receive.  

Treatments not covered by Medicare or covered by other forms of insurance would not appear in the 

database.  Additionally, eligibility requirements for Medicare coverage artificially limit the patient 

sample to those over the age of 65, with notable exceptions such as eligibility due to disability benefits.  

However, as lung cancer occurs primarily in older populations the effect is limited relative to other 

cancer types which are common in comparatively younger populations.   

By design, the SEER registry represents a more demographically and clinically diverse group of 

patients when compared to cohorts limited to a specific geographic area or healthcare system.  Finally, it 
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should be noted that many of the miRNA found to be predictive or prognostic lacked any significant 

annotation which would allow for their potential biological roles to be ascertained, so the exclusion of a 

particular miRNA does not necessarily indicate a null effect. 

Despite these limitations, this approach allowed for the identification of miRNA which were 

useful for both prognostication and prediction of response to chemotherapy through consideration of 

both clinical and population-based measures of survival, in addition to cellular response and biological 

context.  Stratification of the analyses on treatment modality mitigates the effect of differential 

treatment assignment on the length of survival.  This allows for ascertainment of the contribution of 

miRNA markers to survival and chemoresponse independent of treatment effects.  Further refinement 

and validation of this approach holds the potential for identification of miRNA regulatory pathways 

which may mediate chemoresponse and survival in a large number of patients. 
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Chapter 5:  

Conclusion 
 Two unresolved issues in the treatment of lung cancer, assessment of risk of recurrence and the 

selection of an effective chemotherapeutic agent for patients with similar tumor morphology, were 

identified as potential areas for the application of prognostic and predictive models of patient survival.  

It was shown that given an appropriate theoretical framework, each of the major unresolved issues can 

be approached through the use of comprehensive prognostic and predictive models incorporating 

demographic, clinical, and biomarker information. 

 The second chapter developed an analytical framework for using registry information to develop 

a prognostic model for lung cancer patients.  Information on tumor stage, grade, patient age, race, and 

sex was used to construct a comprehensive model of patient survival which was shown to be superior to 

a similar model using tumor stage alone.  The model which was developed offered measurable 

improvements in prognostication across a wide variety of patients and was able to be translated into an 

intuitive tool suitable for use in clinical practice. It was shown that reliable information on tumor 

morphology, demographic information, and follow-up can be derived for a larger set of patients than 

would be feasible to enroll in a prospective study.  The larger patient sample allowed for a more robust 

assessment of internal validity and assessment within treatment modality.  The analytical framework 

established in Chapter 2 also served as a basis for further extending the comprehensive prognostic 

model in the third chapter. 

 The third chapter expanded the prognostic ability of the previously defined model by assessing 

the role of co-morbidity in affecting disease-specific survival and the effect of chemotherapy on 

prognostication.  It was found that a variety of co-morbid conditions can affect survival.  Of these, COPD 

was chosen due to its strong independent effect on survival, improvements in prognostication in a 

comprehensive model, and persistence of these effects within treatment sub-groups.  The results show 

that COPD has a dual effect both as a confounder for treatment candidacy and as a driver of both long 

and short-term patient survival.  Because of this, COPD was chosen to be added to the previously 

defined model.  Through the use of linked Medicare data, it was also possible to assess the effect of 

COPD status on survival and the prognostic ability of the previously defined comprehensive model in 

groups of patients receiving chemotherapy. 

 The web-based application of the models developed in Chapters 2 and 3 demonstrated how the 

comprehensive prognostic model can be translated into a useful and intuitive tool for clinicians.  The 
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comprehensive model of patient survival presented In Chapters 2 and 3 incorporated multiple 

demographic and clinicopathologic variables to create a single measure of patient risk, a Hazard Score, 

used in estimating expected survival at various timepoints.  This single Hazard Score was also used to 

estimate survival relative to other patients, and as a factor for the selection of high-and low-risk patients 

assesed using the web-based prognostic model. 

The fourth chapter demonstrated that the projection of miRNA expression onto a population 

cohort from a comparatively smaller group of patients can be a useful approach to validating and 

selecting miRNA indicative of influencing chemoresponse and prognosis.  The large, well-annotated, and 

diverse population of patients in the linked SEER-Medicare database served as a secondary source of 

patient survival data.   By linking the clinical and population cohorts through the use of shared tumor 

progression categories it was possible to select a set of miRNA which showed a strong association with 

survival in patients receiving a variety of chemotherapeutic, surgical, and radiological treatments.  These 

miRNA sets were then further validated using cell-line data, resulting in a set of miRNA which exhibited 

strong interconnectivity with molecules known to play a role in processes pertinent to response to a 

chemotherapeutic agent. 

 Future analyses using this framework would benefit from the refinement of COPD and 

treatment variables.  Examining the role of COPD in biasing the type of surgery performed, i.e. lobe or 

wedge resection, and the effect of COPD after receiving each of these treatments will give better insight 

into how the disease influences survival due to treatment candidacy and as a prognostic factor.  

Similarly, the specific type of radiation administered and the associated outcomes may also be 

influenced by COPD.  New procedures such as Stereotactic Radioablation or Cyber-Knife offer improved 

outcomes over traditional radiotherapy (Brown et al., 2007a; Brown et al., 2007b), and may greatly 

benefit patients whose tumor may be inoperable due to COPD.  It may also be possible to gauge the 

severity of COPD in patients identified as having the condition.  One proposed method would use 

oxygen dependence status to split COPD patients into two groups; an oxygen dependent group with 

presumably more advanced disease, and another group not dependent on oxygen with presumably less 

advanced disease.  This refinement in COPD status paired with determining the specific type of surgery 

and radiation received may help to further elucidate the role of COPD in influencing treatment 

candidacy and survival. 
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