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Abstract 

Investigation of Coal Syngas Impurity Tolerance of Alternative 

Cermet SOFC Anodes 

Phil Gansor 

Solid Oxide Fuel Cells (SOFC’s) have the potential for producing highly efficient energy 

through conversion of chemical energy to electrical energy at high temperatures (>600°C). Until 

recently, pure hydrogen fuel (H2) is the prime fuel used within these devices. However, the high 

processing costs associated with clean hydrogen production combined with the abundance of 

available fossil fuels within the United States has opened the door for research on alternative 

fuels to power these cells. Among the biggest obstacles associated with this concept are the 

contaminants that are present in raw fuels such as natural gas or coal. While gas-cleanup 

technology is continually improving, parts per million (ppm) concentrations of species such as 

hydrogen sulfide (H2S) and phosphine (PH3) prove to be harmful to the traditional nickel-yttrium 

stabilized zirconia (Ni/YSZ) anode due primarily to the interactions with the Ni catalyst. In this 

work, a nickel-gadolinium doped ceria (Ni/GDC) anode is processed with a GDC barrier layer 

between the anode and electrolyte for evaluation in H2S-laden H2 and coal derived synthesized 

gas (syngas).  Additionally, a novel Sr2MgMoO6-δ/GDC anode (both electrolyte supported and 

anode supported) is developed for testing in fuels containing both H2S and PH3. The central 

findings of this work are that the Ni/GDC anode with a GDC barrier layer can remain stable in 

syngas fuel with 100 ppm H2S.  The same cell showed relatively high stability in wet H2 fuel 

with up to 1000 ppm H2S without significant degradation and the barrier layer was shown to be 

essential to this stability. Specifically, the barrier layer helps to prevent nickel oxidation near the 

anode-electrolyte interface and to electrochemically oxidize the sulfur for additional power 

production. Also, the Sr2MgMoO6-δ/GDC composite anode showed much improved tolerance to 

10 ppm PH3 than the traditional Ni/YSZ cermet anode with the major cause of degradation being 

localized de-lamination at the anode/electrolyte interface and densification and de-lamination of 

the Pt contact from the anode. Unlike the Ni/YSZ anode, the SMM anode constituents were not 

found to be chemically reactive with P for our operating conditions. 
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Chapter 1- Introduction 

 

1.1  Background 

 With an ever increasing need for cheap, eco-friendly energy sources, fossil fuels have 

garnered a lot of attention over the past several decades.  Several billion government dollars have 

been allocated for clean coal research over the past ten years [1].  Most recently in August 2010, 

the US Department of Energy made public a new initiative known as the US-China Clean 

Advanced Coal Technology Consortium, where the primary emphasis will be on clean burning 

methods and clean coal technology [2].  A device that is capable of utilizing this clean coal and 

converting its energy from chemical to useable electrical energy is the Solid Oxide Fuel Cell 

(SOFC) [3]. 

The SOFC has several advantages over other energy systems.  For one, they convert the 

energy from fuel to electricity at high efficiencies [4].  Another positive is that the fuel cell does 

not require a combustion process which is good from both an emissions and safety standpoint.  

And arguably the biggest advantage is that they are capable of operating on several different 

types of fuel, including hydrogen, methane, natural gas, and perhaps most importantly from a 

geographic perspective, coal derived synthesized gas (syngas) [5]. The syngas is developed 

through a gasification process that takes the raw coal and converts it into an applicable gaseous 

form. Syngas varies in composition, but generally consists of H2, CO, CO2, H2O, and trace 

amounts of N2. In general, the respective ranges are 15-65% for H2, 20-50% for CO, 5-30% for 

CO2, and 0-40% H2O [46]. This particular fuel, though promising, presents issues that prevent 

the fuel cell from becoming a more widely accepted source of electrical generation. 

 One of these issues that will be a main area of focus of this research is the degradation of 

the SOFC anode upon exposure to the trace elemental impurities within syngas.  Some of the 

major harmful elements that syngas contains are arsenic (As), chlorine (Cl), mercury (Hg), 

phosphorus (P), and sulfur (S). These are elements that are incapable of being completely 

removed via gas cleanup [6].  While gas cleanup technologies are advancing, research has been 

conducted to show that as little as parts per billion (ppb) levels of phosphine (PH3) within the gas 
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stream are capable of degrading the typical Nickel-Yttrium Stabilized Zirconia (Ni/YSZ) anode
 

within a matter of hours [7]. Prior research has shown that there are multiple modes of anode 

degradation for phosphorus.  For one, the phosphorus can form secondary, non-conductive 

phases with nickel. Another reported mode of degradation for the Ni/YSZ anode is the migration 

of Ni to the anode surface thus limiting both gas diffusion and sites for electrochemical oxidation 

of the fuel.  Overall, the Ni/YSZ cell has shown no ability to resist cell degradation and 

depending on the type of cell support architecture (electrolyte vs. anode) or fuel (H2 vs coal 

syngas), total cell failure takes place in anywhere from 30 hours to 400 hours [8].   

In the case of another more abundant contaminant in gasified coal, hydrogen sulfide 

(H2S), both reversible and un-reversible damage has been observed through previous works [9-

12]. Sulfur surface adsorption has been shown to be reversible when cycling sulfur in and out of 

the fuel stream; whereas, irreversible changes have been seen primarily due to a loss of the 

percolation of the Ni particles nearest the anode/electrolyte interface at higher concentrations of 

H2S [13]. Unlike phosphorus, some tolerance to sulfur poisoning in the short term has been 

achieved with different catalysts, most notably doped cerias [14-16]. However, no such work has 

been done to suggest that a nickel-ceria anode can operate for several hundred hours in sulfur 

containing fuels without loss in performance.   
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1.2 Objectives 

 The primary emphasis of this research will be to investigate various anode materials that 

are potentially tolerant to ppm levels of and hydrogen sulfide and phosphine.  Fabrication and 

processing of these materials will all be done in-house and testing will be conducted on YSZ 

electrolyte supported cells. The long range goal of these efforts will be to identify anode 

composition(s) that do not lose electrical power capacity for over 10,000 hours while running 

with these impurities. Both nickel-based and non-nickel-based anodes will be evaluated in both 

hydrogen and syngas containing fuels with impurities to establish potential tolerance and/or 

tolerance levels. A novel anode-supported cell will also be processed for the non-nickel based 

composition to demonstrate the potential of running the cell in a fuel stream that contains both 

contaminates which has not been shown previously. In reality, an anode should be co-tolerant 

which is what would be required for commercial application of fuel cells running on coal. In-situ 

characterizations for all fuel cells will be made by monitoring the electrochemical impedance 

spectrum of the full cell and ex-situ characterizations will be made using scanning electron 

microscope (SEM), Energy Dispersive X-Ray (EDX), X-Ray Diffraction (XRD), and X-Ray 

Photoelectron Spectroscopy (XPS) techniques. 
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1.3 Technical Approach 

This project will first attempt to identify anode architectures that feature Ni as the 

primary metal catalyst. Several works in recent years have suggested that the substitution of the 

standard YSZ ion conductor in the anode cermet with gadolinium-doped ceria (GDC) may be a 

better option for cells operating on fuels other than pure H2, as it suppresses carbon coking [17] 

and offers better tolerance to H2S. This material exhibits much higher ionic conductivity than 

YSZ at our standard SOFC operating temperature (800°C) which increases cell performance. 

Additionally, the GDC has been suggested to catalyze the oxidation of sulfur, a process like H2 

oxidation that generates electrons. However, this material has shown to react with the adsorbed S 

species on the anode particles to form ceria oxy-sulfides which can cause degradation to the cell 

at high H2S concentrations [17].  

With this insight, the goal will be to develop a Ni/GDC anode on a YSZ electrolyte-

supported substrate.  Also, knowing that irreversible degradation to the cell in sulfur-containing 

fuels occurs primarily at the anode/electrolyte interface, incorporation of a dense GDC barrier 

layer between the electrodes and the electrolyte is believed to improve overall tolerance. 

Parametric studies on the effect of this barrier layer, the fuel composition, the level of Gd-

doping, and sulfur concentration will be carried out in a systematic fashion to assess the viability 

of this anode composition for fuels containing sulfur. Comparative work with the Ni/YSZ cell in 

this environment will help to demonstrate the improved performance of the Ni/GDC anode. 

Another composition evaluated for potential use as an SOFC anode that has never been 

reported on before is NiWO4. The advantage of this composition is that is has the potential to in-

situ form a homogeneous matrix of Ni + WOx as reduction from the wolframite structure occurs 

readily [18]. This homogeneous mix of ionic and electronically conductive particles could 

optimize triple phase boundary sites and thus maximize performance. An additional benefit for 

evaluating this material is that it has demonstrated ability to sense H2S and also de-sulfurize 

hydrocarbon fuels [19]. Polarization curves and post-test analysis will be used to determine what 

happens to the composition at SOFC operating temperature in reducing atmospheres as well as 

its functionality as an anode. Anode compositions incorporating YSZ and GDC will help to 

improve overall cell performance in a wet H2 atmosphere. Finally, this novel anode is tested in 

10 ppm PH3 to compare to the other Ni-based anodes investigated. 
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The next phase of the project will be to determine how the SOFC operates in fuels with 

PH3 contaminant for a relatively new anode material that does not utilize nickel. The 

Sr2MgMoO6-δ (SMM) anode is a double-perovskite that has achieved relatively high power 

densities with low degradation (<12%) in the presence of sulfur over a 200 h testing interval 

[20]. With this exists the possibility of an anode that can tolerate realistic levels of PH3 and H2S 

simultaneously without harming the microstructure and performance of the cell. Without 

thermodynamic analysis available for the possible interactions between phosphorus and each of 

the anode constituents, an experimental approach will be taken to assess this composition. The 

first will be to synthesize the powder using a solid-state method. Next will be the incorporation 

of GDC into the anode matrix to increase the overall ionic conductivity. With this new 

SMM/GDC composite, fuel cell tests will be carried out in clean fuels to demonstrate stability 

and fuels containing 10 ppm PH3 to see if this stability can be maintained.  

The final phase of this project will be to develop an anode-supported cell for this 

SMM/GDC composite and conduct similar testing. The motivation for this is primarily for 

performance purposes as this will make it possible to significantly reduce the thickness of the 

electrolyte which is responsible for most of the ohmic resistance of the cell. The difference 

between the electrolyte-supported cell and the novel anode support will be the electrolyte used. 

A GDC electrolyte will be used via a (screen-printing or spin-coating) method as to avoid 

possible reactions between the Sr and Zr that are likely at the 800°C operating temperature [21]. 
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Chapter 2- Literature Review 

This chapter summarizes recent work that has been published in this particular area of 

SOFC research.  The first section will provide an overview of the basic operation of the SOFC, 

important characteristics of an SOFC anode, and methods of cell evaluation. The next section 

will discuss previous impurities work that has been conducted on the standard Ni/YSZ anode for 

some of the key contaminants within coal syngas. Subsequent sections will overview alternative 

cermet anodes as well as mixed ion-electron conductors that have been developed to help 

mitigate the poisoning effects.  Finally, the two different cell architectures explored in this work 

will be reviewed. 

 

2.1 Basic SOFC Operation 

 The SOFC operates by supplying a given fuel to the anode and air to the cathode and 

separating the two electrodes by a dense ion-conducting electrolyte. At SOFC operating 

temperatures, the electrolyte is capable of efficiently supplying oxygen ions to the anode where it 

can react with the fuel and produce water and free electrons. The overall reaction of the fuel cell 

operating with pure hydrogen as the fuel can be seen in equation 1: 

             H2 + 1/2 O2 → H2O        (1) 

 

More telling however are the two half reactions that govern SOFC operation along with the 

associated enthalpy of formation, ΔH(T), at 800°C. 

 

Anode   H2 + O
2-

 → H2O + 2e
-
  ΔH(800°C) = -242 kJ/mol  (2)  

 

Cathode 1/2 O2 + 2e
-
 → O

2-  
ΔH(800°C) = 0 kJ/mol  (3) 

 

 

The cathode reaction represents the reduction of oxygen and consumption of electrons to form 

oxygen ions which migrate through the electrolyte.  The anode half-reaction represents the 
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oxidation of hydrogen to produce both water and two electrons [22].  This is often referred to as 

a Membrane Electrode Assembly (MEA) and when connected to an external load, the electron 

flow from these half-reactions can be captured to generate useable energy as seen in the diagram 

below. 

 

 

Figure 1: Basic Fuel Cell Schematic [22]. 

 

 The electrochemical oxidation of the fuel takes place in areas within the anode known as 

the triple phase boundaries (TPB). The TPB region represents the confluence of the three 

different species required to produce the electrons. These are the metal phase, the ion phase, and 

the gaseous phase. The metal phase serves two purposes. The first is to catalyze the reaction 

between the fuel and oxygen ions. This is where Ni metal is a great candidate due to its high 

catalytic potential and its relative affordability in comparison to other metals such as Pt or Au. It 

is important however that the Ni particles be fully reduced at the triple phase boundary locations 

as NiO is not nearly as catalytically active [23]. The second purpose is for electron transport out 

of the anode to the external source. Ni has an electronic conductivity upwards of 10
3 

S cm
−1

 at 

800°C in an oxygen depleted environment which allows for efficient export of electrons [24]. 

The ion phase present at the TPB is the YSZ for the traditional anode. It supplies the oxygen ions 

to the site and also helps to prevent Ni agglomeration over time at SOFC operating temperatures. 
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YSZ is a good ionic conductor and is also stable in different environments. The final phase is the 

fuel gas phase, which consists of fuel and reaction products. The best fuel cell anode will be the 

one that allows for the most places for these three to unite. A homogeneous mix of Ni and YSZ 

will result in the most available surface area in the matrix to carry out the reaction.  

Several previous research projects have been conducted on SOFC’s running on pure 

hydrogen, demonstrating very high power densities and long term stability. Power densities in 

excess of 1 W-cm
-2

 have been achieved by using a conventional Ni/YSZ anode, a YSZ 

electrolyte, and a LSM/YSZ cathode [25]. Long term stability has also demonstrated long term 

stability in humidified H2 for several hundred hours using galvanostatic measurement techniques 

for the same composition [26]. While these results are promising for the SOFC, the requisite of 

pure hydrogen leaves much to be desired. In order to make the SOFC a viable source of large-

scale power generation, those types of cell specifications will need to be achieved using cheaper 

and more readily available fuels. Sources such as natural gas, bio-mass, and gasified coal are of 

great abundance in the United States which makes it possible to have a cheap, endless supply of 

fuel.  

 The primary difference in operating the SOFC with alternative fuels is the presence of 

carbonic species. In the case of hydrocarbons, fuel is reformed catalytically to form carbon 

monoxide and hydrogen (syngas). The carbon monoxide acts as a fuel much like hydrogen to 

form CO2 via electrochemical oxidation and subsequently generate electrons. The CO oxidation 

equation and overall anodic reaction for a typical syngas composition is: 

CO Oxidation       CO + ½ O2 → CO2   ΔH(800°C) = -189 kJ/mol (4a) 

Net Fuel Cell Reaction     O2 + CO + H2 → CO2 + H2O  ΔH(800°C) = -431 kJ/mol (4b) 

 

One of the advantages of a high temperature SOFC is that there is no need for an 

expensive external reformer; rather, the fuel can be reformed inside the system which greatly 

increases overall efficiency. However, a major problem that exists with internal reforming is 

carbon deposition onto the anode surface from hydrocarbon pyrolysis. This is particularly 

devastating for the nickel-based anode. Carbon deposition has deleterious effects to the anode by 
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covering the surface and limiting both gas diffusion and electro-catalysis as well as causing 

physical destruction to the microstructure. This effect can be combated by injection of steam into 

the system. Equation 5 shows the reaction that governs carbon formation and Equation 6 shows 

how this formation is inhibited by introduction of steam into the system. These reactions are 

applicable for any order hydrocarbon, where n is a positive integer. 

 

Hydrocarbon Pyrolysis CnH2n+2 → nC + (n+1) H2    (5) 

Steam Reformation  CnH2n+2 + nH2O → nCO + (2n+1) H2   (6) 

 

Favorability towards syngas formation results in increased likelihood of long term stability 

without solid carbonaceous buildup. The ratio of steam to carbon is very important in 

maximizing H2 production and minimizing hydrocarbon pyrolysis and the Boudouard equation. 

Boudouard Reaction   2CO → C + CO2  ΔH(800°C) = -189 kJ/mol (7) 

H2 production is maximized by keeping the water-gas shift reaction to the right, which requires 

higher steam levels than stoichiometrically necessary. 

Water-Gas Shift Reaction CO + H2O → CO2 + H2 ΔH(800°C) = -38.6 kJ/mol (8) 

Though not practical, it has been suggested that the optimal steam to carbon ratio is at least 2:1 

for operation at temperatures in excess of 800°C [27].  

 The overall syngas composition is dependent on gasification methods and the source 

itself [28], but in literature they are generally reported in terms of the following content: H2, CO, 

CO2, and H2O. Seeing as the open circuit voltage (OCV) is dependent on the gradient of oxygen 

across the electrolyte, the lower PH2 present in the anode when running on syngas makes the 

OCV lower and ultimately the maximum performance lower. This makes optimization of the 

anode materials and microstructure even more of a necessity for these conditions. From a 

thermodynamic standpoint, the SOFC viewed in terms of the free enthalpy of reaction of the fuel 

with the oxidant, which is described in detail in a later section. Specifically at 800°C, the 
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theoretical OCV’s for the humidified hydrogen oxidation reaction (3% H2O) and the syngas 

reactions are 1.10 V and 0.978 V respectively.  

 

2.2 Requirements of an SOFC Anode 

The SOFC anode’s efficiency is dependent on several material and structural 

requirements. These include proper matching of coefficient of thermal expansions (CTE), 

porosity, electrical conductivity, catalytic activity, and chemical stability. Each of these play an 

integral role in optimizing the rates of reaction outlined above that generate electrical power. If 

any of these qualities are insufficient or become insufficient during operation, then the 

performance of the cell can become compromised. Unfortunately, in the case of SOFC operation 

with hydrocarbon fuel and impurities, these requirements are more difficult to sustain than 

operating with pure hydrogen fuel.   

 

2.2.1 Coefficient of Thermal Expansion (CTE)  

The first important quality of the SOFC anode is that the coefficient of thermal expansion 

(CTE) should be compatible for all components. This is because most SOFC applications have a 

need for cycling between ambient temperature and the operating temperature. A large mismatch 

between these coefficients can result in macroscopic damage to the cell either during fabrication 

or during operation. The CTE can be calculated using a dilatometer, which is a device that 

measures changes in volume of a material in response to a physical or chemical process. In this 

case that process is temperature variation. The coefficients should be compatible for not only the 

electrode and electrolyte, but also for the electrical contact, whether it be a metallic interconnect 

in the case of a stack or contact paste for a single cell test. A list of CTE’s for the conventional 

SOFC with some of the traditional interconnect materials can be seen in Table 1 [29].  
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Table 1: CTE's for SOFC Components from Room Temp to 1000°C [29]. 

 

It can be seen that pretty good matches exist between each of these components for the 

standard SOFC. Nickel itself has a high CTE of α = 13.3×10
−6

 K
−1

, which is not a good match to 

the CTE of YSZ.  The high CTE in comparison to YSZ is one of the many reasons for using a 

Ni-YSZ cermet anode. The mixture of the two provides a much more compatible CTE with the 

electrolyte which allows for much easier thermal processing. It is in the case of trying to 

incorporate more exotic electrode or electrolyte compositions where the CTE compatibility can 

become a significant problem. This is also a much larger problem in the case of fabricating an 

anode supported cell which involves the co-sintering of the anode and electrolyte. If the rate of 

volume shrinkage as a function of temperature for each component is not similar all the way up 

to the onset of sintering, then warping and cracking of the cells becomes inevitable. 

 

2.2.2 Porosity 

Another essential quality of the SOFC anode is that it be porous enough for easy gas 

diffusion to the active sites where the electrochemical oxidation of the fuel takes place. This 

takes place at the TPB locations within the anode matrix. Figure 2 provides a visual 

representation of a typical anode matrix and the passageway necessary for good fuel delivery, 

where the green represents the Ni, dark blue the YSZ, and light blue is porosity [30]. 
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Figure 2: Geometric Representation of SOFC Anode [30]. 

 

One way to limit this reaction would be if the pores were to become clogged. This is 

where the YSZ in the anode matrix plays another role in addition to creating a three-dimensional 

pathway for oxygen ion flow. The YSZ also helps to prevent coarsening of the Ni over time at 

SOFC operating temperatures. The first anodes ever investigated were pure metals like Ni and Pt 

that lost all porosity over time and ultimately delaminated completely from the electrolyte [31]. 

This agglomeration greatly decreases gas permeability through the anode and thus limiting cell 

efficiency. In addition to particle agglomeration, carbon deposition on the anode surface as well 

as possible contaminant interactions with nickel can cause a great decrease in the porosity. 

 

2.2.3 Electrical Conductivity  

In order for the fuel cell to generate electrical power, there must be a continuous pathway 

in three dimensions for the electrons to migrate from the chemical reaction site at the anode 

surface to the external source. With the long distance of travel for these electrons due to the high 

surface area of the electrolyte, a metallic mesh current collector is often used to minimize this 

travel time and thus decrease overall cell resistance [32]. The high electrical conductivity of Ni at 

SOFC operating temperatures minimizes the resistance of the cell towards electron transport. 

The issue of the electrical network is more important in the case of anode supported architecture 
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where macroscopically there is a larger distance (nearly 300-600 m mean free path) compared 

to roughly 30-70 m in an electrolyte-supported SOFC design. 

 

2.2.4 Catalytic Activity and Chemical Stability 

 In order to ensure rapid production of electrons at the TPB’s, a good catalyst is required. 

Ni metal is an excellent promoter of fuel oxidation for long periods of time. However, if the Ni 

were to become oxidized either during high current fluxes or as a result of impurity introduction, 

the reaction rates decrease significantly. Not only is it imperative that anode stability be 

maintained in highly reducing environments, but it also must hold with respect to the electrolyte 

and the current collection path. If over time the contact is altered between either of these two 

interfaces, then cell efficiency is compromised. This problem is avoided for the Ni/YSZ anode 

when utilizing YSZ as the electrolyte in pure H2 fuel. The chemical stability issues for the anode 

arise when using alternative fuels with different oxygen partial pressures and trace impurities. 

Most importantly for coal-based fuel is the changes to the chemical makeup that arise during 

when introducing small concentrations of impurities such as S or P. The changes to the SOFC 

anode in response to these are among the primary focuses of this thesis.  

 

2.3  Cell Evaluation Techniques 

 In order to assess the overall performance of the fuel cell and specifically the anode, there 

are two primary methods that are often used. Current-Potential-Power Density (I-V-P) curves 

and impedance spectroscopy are quantitative techniques that can offer valuable information on 

the efficiency of the cell as well as diagnose where the shortcomings in the circuit are located. 
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2.3.1  I-V-P Performance Curves 

 The most common method scientists use to measure SOFC performance is the I-V curve. 

To generate the curve, data points are collected from open circuit conditions (i.e. no current flux 

across the cell), through maximum current until all of the potential across the cell is depleted. A 

characteristic I-V curve can be seen in Figure 3. 

 

Figure 3: Characteristic SOFC I-V curve. 

 

The polarization, which is essentially the voltage loss corresponding to current density, 

can be broken down into three categories that scientists use to characterize a fuel cells’ operation.  

These three polarizations are: ohmic polarization, concentration polarization, and activation 

polarization.  Under open circuit conditions, the cell potential exists due to the low partial 

pressure of oxygen that exists on the anode side.  The equilibrium potential can be calculated 

from knowledge of the thermodynamics of the reaction in question. One first determines the 

change in Gibbs free energy, ΔG, for the given reaction. For the hydrogen oxidation reaction, the 

equilibrium potential is given by – ΔG/nF, where n is the number of electrons transferred in the 

reaction and F is Faraday’s constant. For this reaction, the Gibbs free energy is [22, 33-34]: 

                                         ∆G = ∆G°(T) + RTln((PH2*PO2
1/2

)/PH2O)  (9) 
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where ∆G°(T) is the Gibbs free energy of the reaction for the case when all species are in their 

standard states (atmospheric pressure, pure gas) and the pressures in the second term refer to the 

actural pressures in the fuel cell experiment. The ∆G°(T) is tabulated for most reactions of 

interest. For the hydrogen oxidation reaction, this value is -242 KJ/mol + (45.8 J/mol-K) x T, 

where T is the absolute temperature. This can calculate the standard Nernst potential, E°(T), for a 

specific reaction [22]: 

E°(T) = ∆G°(T)/nF   (10) 

For a SOFC under open circuit conditions where no current is run through the system, the 

measured potential should be the Nernst potential, with losses in this open circuit potential being 

attributed to leaks within the system. The other losses that are seen as a function current density 

are the ohmic polarization, the activation polarization, and the concentration polarization.   

 The ohmic polarization of a fuel cell is governed by Ohm’s law, which basically relates 

voltage drop and current linearly.  The drop in voltage as a result of ohmic polarization can be 

calculated directly by knowing the geometry and resistivities of the MEA components.  The 

primary contributor here is the electrolyte due to YSZ’s high ionic resistivity. However, the 

anode and cathode both contribute to the overall value and changes to the ohmic polarization 

over time are generally attributed to increases in the electrode resistance.  

The concentration polarization is based on the diffusion capabilities of the electrodes. 

One of the important parameters used to define this polarization is the limiting current density, 

which is the current density where the partial pressure of the fuel at the reactive sites is near zero 

[35]. These potentials are due to the depletion of charge carrying reactants caused by slowed 

diffusion of fuel through the porous electrodes. The value of this limiting current density is 

determined by MEA component thicknesses and the diffusivities of the fuel and oxidant. At this 

current density, the slope of the I-V curve increases as the voltage approaches zero (as seen in 

the far right portion of the curve in Figure 3). Fortunately, the current density at which this 

occurs is almost always higher than the operating current density of an SOFC stack.  

The activation polarization is related to the cells ability to promote charge transfer. These 

transfers involve either the conversion of a neutral species into an ion or vice versa both of which 

require the transfer of electrons. This portion of the overall resistance also describes ion or 
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electron transport into the electrolyte or current collector, respectively. This polarization is the 

resistance of the cell towards this transfer.  Essentially, it represents the problems that inhibit 

ideal reactions which occur at the TPB’s and the electrode/electrolyte interfaces. This 

polarization is very much dependant on the electrode materials and their microstructure [35-36].   

 

2.3.2 Electrochemical Impedance Spectroscopy  

 A better diagnostic tool for understanding SOFC efficiency is an impedance 

spectrometer. The strength of the method lies in the fact that by a small-signal perturbation, it 

reveals both the relaxation times and relaxation amplitudes of the various processes present in a 

dynamic system over a wide range of frequencies. Various polarizations exhibit different time 

dependence due to different origins of the kinetic processes involved. The response time for 

ohmic polarization is essentially zero, while the response time for concentration polarization is 

related to the relevant gas phase transport parameters, specifically diffusivity [36]. 

For a full SOFC test, the generic impedance spectra can be seen in a Nyquist plot. A 

characteristic Nyquist plot can be seen in Figure 4. 

 

 

Figure 4: Generic SOFC Nyquist plot [109]. 
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On this plot, there are several observations that can be made to come away with the most 

information. First, the x-axis represents the real axis and the y-axis the imaginary impedance. 

The intersection of the plot with the x-axis is analogous to the ohmic resistance for the cell, or a 

zero time response. As you move from the left to the right along the plot beyond the intersection, 

the type of mechanism that are causes the resistance and reactance responses change. Nearest to 

the left of the plot are the processes that occur at high frequency. In the case of the SOFC, this is 

primarily attributed to charge transfer processes during the electrochemical reaction as well as 

electron transport out of the system. These are specifically related to the activation overpotentials 

of the SOFC. The frequency values for this type of process can range from 10
3
-10

12
 Hz. The 

further to the right on the real axis, the slower the process speed. The spectra points there 

correspond primarily to concentration overpotentials associated with gas diffusion difficulties to 

the TPB locations. The frequencies associated with this process can range from as low as 0.05 

Hz to 10
3
 Hz [129-130]. The length along the x-axis of negative y-values corresponds to the 

overall polarization resistance. The total cell resistance is equal to the ohmic resistance plus the 

polarization resistance.  

 And while a single Nyquist plot at a given instant can provide useful information, it is 

the change in impedance at different points in time of a SOFC test that are significant when 

conducting impurity testing. The technique of measuring impedance at different times during a 

poisoning test can help to diagnose changes to the cell and assess possible degradation 

mechanisms. Additionally, an AC or DC bias can be applied to the cell to simulate cell resistance 

during fixed loading. This can help assess the effect the oxygen flux across the cell has on cell 

resistance. This tool is essential for accurate cell analysis in sulfur and phosphorus impurity.        

 

2.4 Conventional Ni/YSZ Anode Operating in Syngas Fuels  

2.4.1   Clean Syngas 

Cleanup methods for dirty fuels are improving all the time, making the concentrations of 

the impurities present more manageable as time passes. However, cleanup costs and the need for 

continual absorbent replacements in general make investigation of poison-tolerant anodes 
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worthwhile. Additionally, clean syngas without trace impurity presence still presents problems to 

the Ni/YSZ cermet.  

Trembly et al. [12,16]
 
conducted SOFC single cell and short stack (2 planar cells in 

series) testing with coal syngas as the fuel.  The single cell tests were run initially in a 50/50 

H2/N2 mixture at 850 C for 100 hours in order to establish that their cells’ performances were 

stable before introducing CO into the anode stream. Their results indicate that with their syngas 

mixture (20% H2, 33% N2, 29% CO, 18% H2O), only a 7% degradation was observed after 

nearly 300 hours of operation [12].  Similar experiments of the small stack testing indicate an 

area-specific resistance (ASR) rate increase nearly double that of a single cell test configuration.  

The authors attribute this increased rate of degradation to nickel or carbon buildup through the 

inlet passages of the manifold, as well as, the possible upstream fuel leakage, meaning that the 

MEA itself may be suitable for long-term syngas operation. 

Ye et al. [37] conducted single cell tests on Ni/YSZ anode supported cells using syngas 

as a fuel and determined that high carbon monoxide levels within the stream led to electrode 

cracking and carbon coking. The decreased mass diffusion from this ultimately slowed down the 

systems electrochemical reaction rate.  In an effort to counteract this, they coated the Ni/YSZ 

anode with Cu-CeO2.  This layer both served to catalyze the WGS reaction towards H2 

production as well as prevent coking.  The results for this impregnated cell showed stable 

operation in syngas for over 1000 hrs. 

 

2.4.2  Syngas with Impurities 

 In addition to the degradation that can occur to the Ni/YSZ anode from carbon 

deposition, problems also arise when subjecting the anode materials to trace impurities present in 

coal. With the testing capabilities at WVU, sulfur and phosphorus are of particular interest.   
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2.4.2.1 Sulfur (S) 

Sulfur is one of the primary trace contaminants in syngas and has been shown to have a 

detrimental impact on the performance of the traditional Ni/YSZ SOFC anode with 

concentrations less as low as 100 ppm [13].   The most common compound of sulfur formed on 

the product side of an SOFC gasifier is H2S [38]. And while current gas cleanup technology can 

reduce the concentrations of H2S in coal down to under 100 ppm, the expense is significant and 

could be avoided with the development of a sulfur tolerant anode. This would also eliminate the 

risk of possible cleanup stage failures or the need for absorbent replacement during operation. 

Upon introduction of H2S into the anode stream (regardless of concentration), there is an 

immediate increase in the cell’s polarization. Figure 5 is a representation of the change in cell 

potential for a fixed current after introduction of H2S into to the anode side of the SOFC.  

Specifically, this is the response of a Ni/GDC anode to 100 ppm H2S in syngas under fixed 0.2 

A-cm
2
 loading at 800°C. For the first 30000 seconds, the cell is at this fixed current in clean 

syngas. The sharp drop corresponds to H2S introduction into the fuel stream. Most of the drop in 

potential occurs within a matter of seconds, though it does take several minutes for the cell to 

completely level off.  
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Figure 5: Voltage vs time plot a Ni-GDC anode in response to 100 ppm H2S in syngas describing the process of 

sulfur adsorption to Ni-surface. 

 

Researchers have used the DC polarization techniques to show that this initial 

degradation step which takes place over a matter of minutes is due to surface adsorption of sulfur 

onto the catalytically active Ni particles [39]. This adsorption is only nanometers in thickness, 

but it decreases the catalytic potential of the Ni particles and also makes the particles more 

susceptible to re-oxidation during periods of high current flux. Fortunately, this initial 

degradation is recoverable upon removal of H2S from the anode stream up to a certain 

concentration. Cheng et al. [40] showed that the increase in anode polarization resistance, rather 

than the drop in cell power output, should be used to describe the extent of sulfur poisoning 

when investigating the influence of cell voltage or current. If the drop in power output is used, 

then there is an apparent contradiction in the effect of potential or current density on the extent of 

poisoning, depending on whether the cell is operated under galvanostatic or potentiostatic 

control. For longer-term (several hours or more) exposure to a sulfur-containing fuel, a slow 

irreversible increase in ohmic resistance is sometimes observed [39]. The researchers suggest 

that this increase to the ohmic resistance is caused by formation of solid Ni-S phases, which are 

not as catalytically active nor electronically conductive. According to thermodynamic 



21 
 

calculations, the most common phases to occur would be either NiS or Ni3S2 as seen in equations 

9 and 10. 

 

 

Ni(s) + S(g) → NiS(s)        (10) 

3Ni(s) + 2S(g) → Ni3S2(s)       (11) 

 

However, it has been shown that under usual SOFC operating conditions, i.e., pH2S < 

100 ppm at T > 600 ◦C, Ni3S2 would spontaneously decompose to Ni and H2S [41]. The authors 

have recently reported observations of surface reconstruction of Ni grains induced by S 

adsorption [42], causing step formation, which may be indicative of S dissolution in the surface 

of Ni.  [43]. Because of contradictions like this, the actual mechanism for irreversible 

degradation to the Ni/YSZ anode is not completely understood. Several proposed mechanisms 

have been proposed, but very little has been substantiated. 

To purely assess the impact of H2S (not C), some researchers have conducted testing in 

wet H2 environments rather than syngas. Experiments carried out by Lussier et al. [44] show that 

for levels of H2S ranging from 200-500 ppm, a decrease in cell performance can be detected in as 

little as one minute.  They report that for short exposure times (~1 hour), the anode can fully 

recover from the H2S but that the degradation to the cell for longer time periods (>10 hours) is 

irreversible. Their post-mortem analysis indicated that much of the active area of the anode had 

become depleted of Ni which decreases TPB length throughout and thus reduces performance. 

They found that the Ni migrated towards the surface of the bulk anode layer. This work also 

showed that sulfur was completely removed from their system upon cool down in an inert 

environment, suggesting that Ni-S solid phase formation did not occur. 

Kuhn et al. [45] showed that sulfur had a much larger impact on cells operating with H2O 

in the stream, though multiple anode reactions were evaluated.  Their findings also showed that 

for 500 ppm concentrations of H2S for 5 hours, losses in anode activity are attributable to anode 

surface reconstruction rather than a bulk Ni-S phase. The tests were carried out with varying 
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water contents and determined that increased water content has a more drastic impact on 

performance. 

Cheng et al. [40] suggested that at higher amperages, the resistance due to sulfur 

poisoning is better at higher current levels.  This was done by first measuring the anode 

polarization at open circuit conditions and measuring the change after 10 ppm H2S at various 

potential levels. Their reasoning for this phenomenon is that sulfur is capable of being 

electrochemically oxidized at the TPB by the following reaction [39]: 

S(ad) +2O2− = SO2(g) +4e−       (12) 

The theory is that for higher fluxes of oxygen, the adsorbed S acts as a fuel similar to H2 making 

it possible to remove sulfur from the system more readily.   

 

2.4.2.2 Phosphorus (P) 

 Phosphorus is another trace specie within direct syngas that is gaining a lot of attention 

for researchdue to several recent reports suggesting that the slightest presence of phosphorus in 

the anode stream results in extreme cell degradation. This means that significant consequences  

to an SOFC stack would result if a fuel cleanup mishap should ever occur.   This element is most 

commonly introduced to the anode as a part of phosphine (PH3).  However, thermodynamic 

calculations suggest that phosphorus can also appear as (P2O3)2 [46].  The phosphorus is capable 

of deteriorating the performance just as with H2S, however, the mechanisms for degradation 

appear to be different.  As such, the different mechanisms for degradation of the Ni/YSZ anode 

are briefly outlined.   

 Zhi et al. [47] investigated the way the diffusion and reaction rates were affected due to 

the presence of syngas containing ppm levels of PH3.  Their findings indicate that the porous 

network of the anode was reduced which slowed down mass transfer.  Their impedance 

measurements also showed a decrease in charge transfer during the same test.  Finally, their post-

mortem XRD analysis showed the formation of Ni3(PO)4 as well as ZrP2O7 which suggests that 

at as little as 10 ppm concentrations and standard SOFC operating temperatures, phosphorus 

thermodynamically reacts with nickel and zirconium. 
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Work by Marina et al. [48] identified several bulk nickel-phosphide phases for levels of 

PH3 as low as 500 parts per billion (ppb).  These secondary phases included Ni3P, Ni5P2, Ni2P, 

and Ni12P5.  At high temperatures, Ni3P was found to be the dominant phase.  In addition to 

secondary phase formation, phosphorus was also identified at the anode/electrolyte interface.  

Additionally, their study showed no evidence of phosphorus reacting to form phases with Zr.  

Anode electrode polarization was found to be the most significant reason for degradation of their 

anode supported cells. An additional fact is that the concentration level of PH3 had little impact 

on rates of degradation for the anode supported cell. They also reported a much more 

pronounced increase in overpotential for electrolyte supported cells when subjected to 

phosphine.  For the electrolyte supported cell, the entire anode was converted to Ni-P phases and 

the ohmic resistance increased significantly.  Another publication by Marina [49] showed that 2 

ppm PH3 levels led to irreversible damage, though some phosphorus poisoning was alleviated 

due to the oxidation of some phosphorus. 

 Most recently Xu et al. [8,50] conducted tests on anode supported cells and subjected 

these cells to 10 ppm PH3 for a 200 hr test.  The previous thermodynamic calculations state that 

phosphorus has larger impact on cell degradation at lower temperatures, but their work shows 

higher rates of cell failure at higher temperatures and they attribute this to higher PH3 diffusion 

rates to the TPB.  They also confirm that the composition of bulk phase formation is different 

depending on whether H2O was present.  If so, the main phase is Ni5P2, otherwise the Ni12P5 is 

dominant. 

  

2.5 Alternative Anode Approach for Mitigating Impurity Degradation 

 In recent years, several different groups have made efforts to address the fuel impurity 

problem through development of alternate anode materials. Most work has been focused on 

alternative anodes for sulfur, as it is contained in the highest concentrations in the most fuels. 

Many improvements have been made to the SOFC anode for H2S impurity, though the results of 

this thesis seem to supersede that which is available in literature. It should also be noted that at 

this point, little to no work has been published on alternative anode response to phosphorus 

impurity.   
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2.5.1 The Nickel/Gadolinium-doped Ceria (Ni/GDC anode) 

 Zhang et al. [10] make a comparison of the Ni/YSZ and Ni/GDC anode in the presence 

of H2S.  They demonstrate that varying the concentration of sulfur from 5ppm to 700ppm has a 

much greater impact on anode potential for the Ni/YSZ anode compared to the Ni/GDC.  They 

operated at a constant load of 0.2 mA/cm
2
 over two hours and the decrease in potential was from 

0.61 V to 0.37 V for Ni/YSZ and from 0.78 V to 0.72 V for Ni/GDC at 700 ppm. One key 

observation they make is that the poisoning effect is more pronounced at lower concentrations 

especially for the Ni/GDC composition, suggesting that sulfur oxidation may be supplying 

electrons through the GDC.  The authors suggest that the mixed ion-electronic nature of GDC is 

responsible for this improved tolerance to H2S.   

 The substitution for YSZ with GDC in the anode matrix does offer several potential 

advantages. For one, GDC offers superior ionic conductivity to YSZ. This helps to combat the 

sulfur poisoning by increasing the rate at which oxygen ions are supplied to the remaining triple 

phase boundary locations. Additionally, it has been suggested that the Ni/GDC cermet can 

suppress both carbon coking and irreversible degradation to the TPB network [51-52]. 

Degradation for Ni/GDC anodes operating in H2S laden fuels has been attributed to formation of 

ceria-oxysulfides [17]: 

2CeO2−x(s) + H2S(g) + (l − 2x)H2(g)   ↔ Ce2O2S(s) + 2(l − x)H2O(g) (x < 0.5) (13) 

This solid phase formation ultimately changes the microstructure and the electrochemical 

capabilities leading to cell failure. However, this formation does not occur at lower 

concentrations of H2S. Up until this critical concentration, the CeO2 essentially acts as an 

adsorbent to H2S fuel. And though this has been suggested, no literature exists on optimization of 

the GDC throughout the anode composition. At the anode electrolyte interface, oxygen flux is at 

its highest, and if sulfur interferes with the reduction of NiO and subsequent fuel oxidation 

process, then microstructural changes to the TPB can occur leading to irreversible damage to the 

cell. With the previous literature suggesting that GDC can suppress local oxidation of Ni as well 

as potentially promoting the electrochemical reaction of S and O
2-

, the theory proposed in the 

first part of this thesis is that processing of a thin (~5 µm) barrier between the bulk anode and the 

electrolyte will enhance the cells overall ability to tolerate higher concentrations of H2S.  
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2.5.2 The Fluorite-Structured GDC Anode  

Marina et al. [53] investigated SOFC performance of a pure gadolinium-doped ceria 

(GDC) anode.  They incorporated a thin layer of YSZ particles to aid in adhesion between the 

porous anode and the YSZ electrolyte. This also allowed for a lower sintering temperature of 

GDC to YSZ of only 1100°C With a standard lanthanum-doped strontium manganate (LSM) 

cathode and H2 as the fuel, they report a maximum power density of 470 mW/cm
2
 at 1000 ⁰C.  

The cells were also run in CH4 for 1000 hours and during that time no carbon deposition was 

detected on the anode surface. The only downside is that the electro-catalytic activity of the GDC 

towards oxidation of CH4 was pretty low.  The paper suggested that the fairly high performance 

levels seen in the work were attributed to the use of a porous platinum current collector and that 

without this the catalytic activity towards CH4 is much lower.  Overall, the low catalytic level 

makes it an unlikely candidate as an MEA that can run on syngas making the Ni/GDC composite 

essential for long term high energy output.   

 

2.5.3 Other Non Nickel-Based Anode Compositions 

 While many of the recent efforts in anode development have revolved around the nickel 

electro-catalyst due to its superior properties and affordability, some focus has been dedicated 

towards discovery of new anodes that either contain a different electrical conductor or are duel 

ion and electron conductors. There are multiple new compositions that do not contain nickel that 

have improved certain aspects of performance depending on the conditions. 

 

2.5.3.1 ABO3-δ perovskites 

 In the standard Ni/YSZ cermet, the fluorite structure of YSZ makes it easy to accept 

oxygen vacancies. Combining this with a transition metal with multiple valence states and you 

get a possible alternative anode composition that has the fluorite structure alone with a transition 

metal in the B site and a stable rare earth or alkaline earth metal in the larger A site location. 

There is one inherent advantage with this concept, specifically that the necessity of a triple phase 

boundary between a particle that is solely an electronic conductor (i.e. Ni) and YSZ in a 
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geometrically homogeneous matrix is not required. This potentially can eliminate a lot of 

problems with the ohmic resistance in the anode arising from poor contact between the two 

phases. With this mixed ion-electron conductor composition comes several constraints: 1) 

retention of electronic conductivity requires that the active redox couple on the M atom remain 

only partially reduced in the atmosphere at the anode, i.e. that the perovskite remains mixed-

valent; 2) the active redox couple must have a low enough energy to accept electrons from H2 or 

hydrocarbon fuel in order to induce its dissociative chemisorption on the oxide surface; 3) 

catalytic activity requires an easy release of oxidized products from the surface as well as rapid 

replenishment of O
2-

 ions to the surface; 4) the oxygen vacancies that allow for O
2-

 ion 

conduction must not be ordered at SOFC operating temperature; 5) the thermal expansion must 

be compatible with that of the electrolyte [32]. If these can be maintained, then efficient power 

generation can be sustained. 

 Aguilar et al. [54] developed a La1-xSrxVO3-δ (LSV) perovskite as an SOFC anode that 

can run in fuels containing very high levels of H2S (up to 10%). Oddly enough, they show that 

this anode shows favorability towards H2S oxidation via equation 11 above rather than H2 

oxidation. This implies that lower concentrations of H2S that are more comparable to those found 

in gasified coal streams may not be suitable for this anode. The work also confirms low 

performance at for this fuel stream at 1000°C [55]. Also, LSV has poor redox stability due to the 

easy formation of V
5+

 valence state during oxidation which can ultimately lead to destruction of 

the perovskite structure [105]. This composition also readily forms SrV2O8, which is an 

insulator. Another perovskite that has shown promise as an SOFC anode is SrTiO3 [56-58]. 

Specifically, A-site donor doping with La has increased performance due to its trivalent stability 

and similar ionic radius to Barnett et al. [57] developed a Sr0.8La0.2TiO3 anode support with 

Ni/YSZ active layers with 100 ppm H2S in H2 and compared with the traditional Ni/YSZ anode 

and demonstrated stability for an 80 hr testing period whereas a 15% decrease was seen during 

this same time. They also ran the anode in natural gas and experienced no drop in potential, 

though the 6 hour exposure is rather short for verification of long-term tolerance. Marina et al. 

[58] showed that redox cycling did not adversely affect this anode of long periods but that the 

power density was rather low for their optimal La-doping concentration (x = 0.4 for Sr1-

xLaxTiO3). 
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2.5.3.2 The Double-Perovskite Anode 

 

 The double-perovskite Sr2MgMoO6 (SMM) was recently proposed as an efficient SOFC 

anode using directly methane and natural gas fuels. A high electronic, redox stability and 

tolerance to sulfur species were reported for this anode material [20-21,59]. Additionally, 

modification of the double-perovskite Sr2MgMoO6 by La
3+

 substitution has been reported to 

improve the electro-catalytic properties for fuel oxidation though it has reported to be less 

chemically stable for long term operation [21,60-61]. Another big problem with this anode and 

the YSZ electrolyte is cation diffusion at the anode/electrolyte interface. Specifically, this 

diffusion occurs between the Sr and Zr forming SrZrO3 at as little as 1000°C. 23 wt-% of this 

phase was present without incorporation of a barrier layer at this temperature, which is the 

minimum required temperature for electrode adhesion. Smaller interactions between the SMM 

and a GDC electrolyte material can occur at temperatures in excess of 1250°C, though they have 

not been quantified [21]. So, a GDC barrier layer between this anode and a YSZ electrolyte 

could be suitable for cells where the electrodes are adhered below this temperature. Power 

densities for this anode with a La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) in excess of 800 mW-cm
-2

 in 

humidified H2 as well as moderate tolerance to H2S have been achieved making the SMM anode 

a promising one for further investigation taking the above knowledge into consideration [32]. 

  

2.6  Basic Cell Architectures and Processing 

 With the focus of this thesis being the mitigation of SOFC’s anode degradation, it is 

important to understand the typical ways that the anode is configured within the MEA and the 

advantages and disadvantages of each. In academic research, most materials’ testing is confined 

to either an electrolyte-supported or anode-supported platform. In general, the electrolyte-

supported cell is preferred due to its simplistic fabrication process relative to the anode supported 

cell. However, the anode-supported cell offers the opportunity for superior performance using 

the same materials which makes it favorable for commercialization.   
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2.6.1 Electrolyte-supported Cell Architecture 

The simplest to fabricate is the electrolyte-supported cell. It has the advantage of being 

supported by the strongest and densest component of the MEA which minimizes the likelihood 

of failure due to mechanical cracking or leaking. The primary disadvantage is the increased 

thickness requirement of the electrolyte which prevents high power density production by 

increasing the ohmic resistance. Also, for the quick evaluation of many different anode 

compositions, this platform is best since a whole anode structure does not need to be re-

engineered to form the anode-support. This means that various anode compositions can be 

consistently tested without having to allocate a lot of time addressing ceramic processing 

difficulties. It is for these reasons that most experimental materials work is conducted on this 

platform, but commercialization of said materials are in configurations that allow for thinner 

electrolytes.  

 

2.6.1.1 Electrolyte Processing 

Tape Casting 

The most common method for creating the dense YSZ electrolyte is tape casting. This 

method involves the horizontal translation of a liquid slurry where the thickness is controlled by 

a thin blade. This standard slurry has 5 major components: (1) The YSZ powder; (2) solvents; (3) 

dispersants; (4) binders; (5) plasticizers. These components are typically brought together via a 

milling process. Each of these components plays an integral role in assuring a homogenous tape. 

 

Solvents 

The YSZ particles are first mixed in a solvent-based medium for several hours on a ball 

milling machine. There two primary functions of the solvent is to create fluidity for the powder 

during the casting process as well as to uniformly dissolve the other additives throughout the 

powder. The selection of solvent is between water or an organic liquid. Both offer advantages 

and disadvantages depending on the type of application. For instance, if safety is of utmost 
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concern than a water-based system would be preferred due to the high flammability of common 

organic solvents such as ethanol, toluene etc. Cost restrictions would also make water an 

attractive choice for a system solvent.  

However, there are several characteristics that organic solvents possess that make it 

favorable for many tape casting processes. When the tape is cast along a carrying polymer 

material (e.g. mylar), the evaporation rate of the slurry plays an integral role in the homogeneity 

of the sample. The ability of a liquid to wet a solid is defined by the surface tensions of all three 

phases (solid, liquid, vapor). Mathematically, it is seen as: 

Cos θ = (γsv-γsl)/γlv   (14) 

In order to achieve good wetting, a low angle is desired. Typically organic solvents are selected 

for they have much lower surface tensions, γlv, than a water based solvent. For this reason, the 

solvent system employed for all the ceramic processing in this thesis contains a 50-50 mix of 

ethanol and xylene by weight, which have surface tensions of 23 and 28 (10
-3

N/m) at room 

temperature respectively. These are both about one third the value of water 73 (10
-3

N/m) which 

makes them more attractive options due to their increased ability to free the system of bubbles 

and other imperfections during milling [62].     

 

Dispersants, Binders, and Plasticizers 

 Many times the particles in a solvent system have a tendency to aggregate or flocculate. 

This results in a heterogeneous matrix of particle sizes that will make 100% densification of the 

YSZ substrates upon sintering more difficult to achieve. To prevent this from occurring, most 

systems contain what is known as a dispersant, or an additive that helps increase the repulsive 

forces between two particles. These dispersants ultimately help to stabilize the systems particles 

and in general there are three different types that are considered for such an application: simple 

ions/molecules, low weight polymers, and surfactants.  

The ion dispersants are most commonly used for aqueous systems and they form by 

dissolving of electrolyte solutions. Examples of this type of dispersant are Na2SiO3 and HCl. 

These inorganic salts function by disassociating in water, where one charged ion adsorbs to the 
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particle surface in tandem with an opposite charged diffuse layer. The result is electrostatic 

stabilization due to the repulsion of this ‘double layer’ that forms around the particle. The low 

weight polymer dispersants are an option as well and they consist of carbon chains with 

molecular weights on the order of hundreds of grams. Polystyrene and polyvinyl alcohol are 

examples of this type of dispersant.  

 While both of these options could potentially disperse the YSZ particles in the electrolyte 

slurry, the surfactant is the most appropriate choice. The surfactant is a short chain of organic 

atoms with an end that contains either an ionic or anionic functional head depending upon 

whether the solvent system is water or alcohol based. Stabilization mostly occurs by steric 

repulsion between the organic tails in the solvent [62]. For this work, a menhaden fish oil is used 

as the dispersant as it is commonly used in many oxide materials such as Al2O3 and SrTiO3 [63].  

The last piece of the organic system is the binder, which is a long organic polymer chain that 

helps provide the mechanical strength for the green body before sintering. Poly-vinyl alcohol and 

poly-vinyl butyral are commonly used binders in SOFC electrolyte slurries. 

 

Doctor Blade Method 

 After appropriate mixing of the slurry components through a ball milling process, the 

slurry is cast along a moving piece of stick-free polymer material that translates along a 

horizontal axis. An automated roller is used to create the translation and control the speed and a 

device called a doctor blade controls the tape thickness.  

The tape thickness is very important in optimizing the subsequent thermal firing of the 

material. Most literature suggests individual layer thicknesses between 30-40 µm [64-65]. If the 

thickness increases beyond this then the more likely the slurry’s components are to redistribute 

and create gradients. These gradients can result in particle agglomeration, poor gas permeation 

during thermal firing, and ultimately lead to ineffective substrates.    

After casting, the tape is typically either punched or cut out into sheets for stacking. 

Multiple layers are often stacked together to create a single green substrate that is thick enough 

to adequately support the forces that result from sealing the cell. The solid electrolyte piece also 
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benefits from multiple layers in the event that one of the layers has holes or imperfections. This 

helps to ensure a sufficient seal to fully separate the fuel and oxygen streams. 

 

Hot Pressing of Samples 

When utilizing the tape-casting method, an important step in obtaining a flat, dense 

substrate is hot pressing. The ultimate goal is to meld together the multiple layers into 1 layer, 

and for a given composition there exists a condition of temperature and pressure that achieves 

this. The temperature is based on knowing the glass transition temperature of your organics. For 

the organic system utilized for all ceramic processing in this work, a pressing temperature of 210 

F with a 70 kip (99°C and 311 kN) applied force was sufficient for proper melding of the 

different layers.  It is important to not completely melt the organics as that will cause a 

heterogeneous distribution of organics and will change their properties causing problems during 

sintering.  

 

Sintering and Forging 

 Once the laminates are pressed they are cut into the appropriate green size based on the 

shrinkage of the material. In the case of the YSZ laminates developed in this work, the shrinkage 

is approximately 23%. In order to create a strong material that is fully dense, thermal treatment is 

required. It has been well documented that for full densification of YSZ, a 1450°C minimum 

sintering temperature is required [66]. This temperature allows for full escape of organic species 

(typically by 400°C-500°C) before sintering. Ideally, this evacuation of organics occurs without 

distorting the homogenized packing of the YSZ particles.  

After this step, the higher temperature regime is where the densification of the particles 

into a functional ceramic occurs. There are three primary driving forces for sintering which are 

chemical reaction, external pressure, and most importantly to this case the curvature of the 

particle surfaces. The free surface energy associated with the porous YSZ network of particles in 

a finite volume serves as the driving mechanism to achieve a dense body that contains no free 

surface energy. At 1450°C, this energy is dissipated and a dense substrate is the result. 
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 Although the substrate is fully dense, it might or might not be flat as additional frictional 

forces from the surface that the substrate sets on can cause different rates of shrinkage leading to 

potential bowing. If this bending occurs uniformly in a radial direction, then it can be salvaged 

by placing weights on the samples and heating to the sintering temperature which is a process 

known as forging. In this work, an identical Al2O3 setter to the one that the substrates were 

sintered on is used to flatten out the samples.  

       

2.6.1.2 Barrier-Layer/Electrode Application (Screen-printing) 

 With the flat electrolyte piece is fabricated, the deposition of the GDC barrier layer is the 

next important step in completing the MEA assembly. This layer is placed onto both sides of the 

electrolyte and densification is achieved similarly. A screen-printing technique helps to control 

the thickness of the layer. The mesh size of the screen dictates the overall layer thickness and a 

rubber blade is drug across the sample at a controlled force and speed to generate the coating. 

For a 400 mesh grid, the resultant thickness is approximately 5µm, which is the target thickness 

to serve its multiple purposes. The GDC layer on the cathode side serves to prevent interfacial 

diffusion between the strontium in the LSM cathode with the Zr in the electrolyte. On the anode 

side it has the additional function of helping to prevent degradation in response to coal 

impurities.  

 Much like the GDC barrier layer, the anode and cathode materials are screen-printed on 

using the same protocol. Only the thicknesses of the bulk layers are to be between 40 and 50 µm 

so multiple prints of each are required. Plus for both sides, a thinner active site containing higher 

amounts of ion conducting species is generally incorporated to maximize TPB surfaces near the 

barrier layer making the multiple print method convenient. In general, the layers are applied 

according to their required sintering temperature from highest to lowest.   

 

2.6.2 Anode-supported Cell Architecture and Processing Issues 

In contrast to the electrolyte-supported cell which utilizes the dense, strong YSZ ceramic 

as its mechanical spine, this type rather uses the porous anode as the primary support. Much of 
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the efforts in commercialization of fuel cells are being focused on this design for its increased 

power generating capabilities. This increased capability is primarily attributed to the decrease in 

required thickness of the electrolyte which decreases the overall ohmic resistance of the cell [36]. 

However, this architecture contains additional processing issues in comparison to the electrolyte-

supported configuration that need to be considered. 

The electrolyte material is fabricated using a variety of methods including tape casting, 

vacuum slip casting, and wet powder spraying have been used with success [67]. The tape 

casting method is similar to that of the electrolyte-supported architecture described previously.   

One big obstacle is that most of these membranes are fabricated by thermally treating the 

anode and electrolyte at the same time to create a half-cell. In order for this to work, the CTE 

values of the two materials must be similar. Sintering shrinkage is the biggest problem with this 

stage of ceramic processing. The thermodynamic driving forces associated with each material are 

related to their particle size and this variability leads to different shrinkage rates, the onset 

temperature for shrinkage, and the overall magnitude of shrinkage. Problems that arise from this 

include warping of the cell and/or micro-cracking both of which result in a useless cell. Utilizing 

the standard Ni/YSZ anode and YSZ electrolyte, several groups worldwide have developed 

firing protocols that leave the piece flat and free of micro-cracking.  

Among the most common processes to achieve the anode/electrolyte half-cell is to first 

create the green anode support, either by casting and laminating, uniaxial pressing etc. This is 

followed by a process known as bisquing, which is a thermal treatment step that takes the sample 

up to the onset of sintering to provide enough mechanical strength for electrolyte deposition. For 

the Ni/YSZ anode, this temperature ranges between 1000-1200°C [68-69]. With the bisqued 

sample, the electrolyte can then be applied by a spraying or printing technique. This composite 

structure is then sintered to the minimum temperature required for full electrolyte densification. 

With the co-sintering of the anode and electrolyte components, there are a couple of 

primary concerns. The first is that for good gas diffusion to the active sites, porosity needs to be 

maintained even after the high temperature required for full electrolyte densification. To fulfill 

this carbon pore formers are incorporated by amounts ranging from 40-60% by volume. Carbon 

black, graphite, and starches are among the most commonly used materials to obtain this porous 
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network [70-71]. The evacuation of this material leaves a porous, though uncontrolled 

microstructure that allows for appropriate mass transport all the while maintaining mechanical 

strength. A general processing methodology similar to this will be carried out for the SMM/GDC  

anode supported cell in Chapter 5. 

 

 

 

 

Chapter 3 – H2S Impurity Tolerance Evaluations of Ni/GDC Cermet 

Anodes 

3.1 Introduction 

Coal-derived syngas is a potential fuel source for the SOFC. However, the presence of 

volatile contamination containing H2S, PH3, HCl, AsH3, Sb, and Hg species in warm syngas can 

cause degradation of the SOFC performance [72]. Sulfur is one of the most abundant impurities 

in coal and after coal is gasified, with most of the sulfur appearing as H2S in the syngas. The 

concentration could range from 0.1 to 1.6% H2S by volume in raw coal syngas derived from 

typical gasification systems [38,73]. Although commercial desulfurization techniques, such as 

adsorption and wet absorption at ambient temperature can remove H2S down to 1 ppm (a level 

which may not lead to SOFC degradation) the hot syngas from the gasifier has to be cooled, 

thereby reducing the overall thermal efficiency of the system. Some transition metal oxide 

desulfurization sorbents, such as Cu2O, ZnO, NiO, CoO and MnO, have been reported to yield as 

high as 99% H2S removal efficiency at temperatures over 600
o
C [73]. However, the warm gas 

cleanup technique would leave some level of H2S in the syngas, perhaps as much as 50-100 ppm 

[74]. Therefore, the development of H2S resistance in the Ni-based anode is still a meaningful 

target for a highly efficient SOFC energy system fueled by coal-derived syngas.  

The poisoning mechanisms of H2S on the Ni-based anode have been discussed and 
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reported in the literature review. There are two primary mechanisms of H2S poisoning on a Ni-

based anode have been identified, an initial rapid degradation phase which is reversible followed 

by a slow nonstop degradation phase which is irreversible. The initial H2S poisoning mechanism 

is attributed to the adsorption of sulfur on the nickel which blocks the hydrogen reaction sites 

[75-77]. For the second degradation phase, there has been a discrepancy in the literature. Dong et 

al. reported that this degradation results from a chemical reaction which forms nickel sulfide and 

leads to the complete loss of Ni catalysis under typical SOFC operating conditions. Sasaki et al. 

proposed that the second degradation phase was associated with the oxidation of the Ni electrode 

catalysts. Thus, the goal of producing an H2S-tolerant, Ni-based anode is to minimize the initial 

phase of cell degradation and prevent the cell from undergoing the irreversible degradation. The 

addition of ceria to a Ni-based anode has shown some H2S resistance over that of the pure Ni-

YSZ anode under conventional SOFC operation conditions [51,78]. For example, Trembly 

reported a Ni-GDC anode cell exposed to 200~240 ppm H2S in syngas suffered only 10~12% 

degradation for a 570 h test [12]. The H2S tolerance of the Ni-GDC anode used in this case was 

not optimized by altering either the anode architecture or the GDC concentration. Changes of the 

GDC concentration and architecture of the cell anode may affect the overall cell resistance, the 

anode stability and the cell’s tolerance of H2S in the fuel. In the present work, different 

architectures of the Ni-GDC anode have been tested long-term at up to 1000 ppm H2S in wet H2 

and 100 ppm in syngas. According to the test results, the H2S poisoning mechanisms on the Ni-

based SOFC and the H2S tolerance afforded by the GDC barrier layer have been illustrated and 

discussed. 

 The work in this chapter begins with a brief confirmation of the previous literature that 

the standard Ni/YSZ cermet anode is not effective in sulfur or phosphorus containing fuels. An 

initial series of experiments optimizing the SOFC architecture are presented (both in text and 

appendices) to address a couple key problems that were initially encountered in this work: the 

significance of the barrier layer with both electrodes in regards to power density, adhesion of the 

anode materials to the YSZ electrolyte, the Ni/YSZ anode in fuels containing sulfur and 

phosphorus impurity.    

 The next section will address the viability of the Ni/GDC anode from above by testing 

several different parameters. First, the anode will be tested in H2S impurity with and without the 

GDC barrier layer. Next, concentration limits of H2S are established in both wet H2 and coal 
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syngas environments. Also, changes to the ASR in response to various levels of N2 content 

within the stream are assessed. This set of experiments will demonstrate the viability of this 

anode for SOFC operation containing H2S. Also the Ni/GDC anode will be assessed in terms of 

PH3 tolerance. 

  

 

 

3.2  Ni/YSZ Anode Testing 

3.2.1 Experimental Procedure  

The following section outlines the experimental procedures carried out in the fabrication 

and testing of the Ni/YSZ anode. It should be noted that subsequent experimental sections in this 

chapter will only highlight things not already covered in this section. 

3.2.1.1 Cell fabrication  

Button cells were fabricated by first taking 8-YSZ powder (Daiichi Kigenso Kagaku 

Kagyo Co. LTD) and preparing the electrolyte using standard tape-casting methods. First, one to 

two layers of alumina milling media were placed into a clean polystyrene bottle. The first 

additive to the bottle is the YSZ electrolyte powder. The solvent is then added, which consists of 

a 50/50 xylene/ethanol mixture by weight. Once added and lightly mixed by hand, the fish oil 

dispersant is added. The solvent + solid system without binders or plasticizers is then milled for 

4 hours. After this initial milling, the plasticizers (polyalkalene glycol and benzyl butyl 

phthalate) and binder (poly-vinyl butyral) are added and milled overnight. 

Tape casting using the doctor blade method was executed the following day. The 

thickness of the tape was controlled to ~40 µm and dried overnight. The samples were then cut 

into 4x4 inch sheets that are stacked into layers of 4 before being placed into vacuum seal bags 

for hot pressing. The hot pressing condition for YSZ is 70 kips force at 210°F for 15 minutes. 

This process creates a monolayer that is 150 µm in green thickness. With shrinkage of the YSZ 
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laminate being ~23%, the resultant substrates are between 100-120 µm for these experiments. 

The tapes were cut to ensure a dense 1 inch circle to fit the testing stand.  

The sintering schedule for YSZ densification was 2°C/min to 600°C for a 1 hour hold, 

then 3°C/min to 1450°C and a 2 hour hold, followed by a 5°C/min cool down to room 

temperature. In the event that forging was required, the same 1450°C max temperature was 

needed by heating at a constant rate of 3°C/min with appropriate weight in the form of Al2O3 

setters. 

The anode is next applied to the substrate. First, a 50/50 wt-% mixture of NiO and YSZ 

powder is printed down onto the electrolyte using a 325 mesh screen. This results in an active 

layer that is ~10 µm in thickness. This procedure was followed by a 40-µm thick 70/30 wt-% 

using a 230 mesh screen. The composite was fired on at 1350°C for good adhesion. Lastly, a 10-

µm thick LSM/GDC active cathode layer was printed and dried before adding a 40-µm thick 

LSM current collector layer. This cathode assembly was sintered at 1100°C for 2 hours. Figure 6 

shows a simple image of the electrodes on YSZ substrates after sintering.  

 

Figure 6: Ni/YSZ Anode (top) LSM Cathode (bottom). 

  

All of the samples contained a GDC barrier layer on the cathode side to prevent Sr-Zr 

interactions, and this layer was synthesized using a co-precipitation method. The same layer was 

applied to some of the anodes for comparative purposes. The layer was printed using a 400 count 

mesh for a thickness of 5 µm and was fired on at 1350°C.  
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3.2.1.2 Cell Testing Setup 

 Figure 7 below shows a picture of the testing stand used for this initial baseline testing in 

wet H2.  

 

Figure 7: Stand for baseline testing. 

 

The cells are mounted onto a 1 inch alumina tube and sealed with cement. Pt mesh and 

wires are used to draw current through the circuit and are contacted with Ni paste on the anode 

side and LSM paste on the cathode. These inks are porous in nature as they are only heated up to 

the 800°C testing condition as to not limit mass diffusion.  The Pt is required as the melting point 

of a cheaper metal like silver is just above 800°C and it is prone to oxidation. Bubblers are used 

to simulate a wet H2 fuel environment (3% H2O) which is monitored by a flow meter and house 

air supplies the oxidant to the cathode where a mass flow controller (MFC). These baseline tests 

were brought to temperature (800°C) in an inert environment over the course of 6 hours. Once at 
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temperature, the anode is slowly reduced in 25% increments until full reduction after 2 hours. At 

this point, electrochemical performance curves can be obtained. 

 

3.2.2  Results and Discussion  

3.2.2.1 Baseline Testing for the Ni/YSZ Anode 

 Multiple tests for the Ni/YSZ anode were carried out without a GDC barrier layer on the 

anode side of the fuel cell and then with a 5 µm layer. Table 2 shows the comparison of several 

SOFC tests in terms of power production at 800°C in a humidified H2 environment with a fuel 

flow of 50 standard cubic centimeters per minute (SCCM) and 100 SCCM air. 

Table 2: Matrix of baseline Ni/YSZ anode tests in 3% wet H2. 

 

After multiple tests for each condition, it was clear that the GDC barrier layer played an 

integral role in increasing power production. Samples 1-6, which did not have a barrier layer had 

power densities of between 196 and 230 mW-cm
-2

. Samples 7-9 however contained the same 

bulk anode composition with a 5µm GDC barrier and the average power density was closer to 

260 mW-cm
-2

. The theory is that the superior ionic conductivity allows for quicker fuel oxidation 

at the triple phase boundary locations leading to more efficient electron flow. Figure 8 shows a 

comparison of the ionic conductivities of YSZ and GDC.  

Sample Active Anode Anode Current Collector Barrier Layer (Y/N) OCV (V) Max Power Density(mWcm-2)

1  Ni/YSZ (50/50 wt%) Ni/YSZ (70/30 wt%) No 1.08 202

2  Ni/YSZ (50/50 wt%) Ni/YSZ (70/30 wt%) No 1.078 222

3  Ni/YSZ (50/50 wt%) Ni/YSZ (70/30 wt%) No 1.077 224

4  Ni/YSZ (50/50 wt%) Ni/YSZ (70/30 wt%) No 1.069 196

5  Ni/YSZ (50/50 wt%) Ni/YSZ (70/30 wt%) No 1.078 230

6  Ni/YSZ (50/50 wt%) Ni/YSZ (70/30 wt%) No 1.077 200

7  Ni/YSZ (50/50 wt%) Ni/YSZ (70/30 wt%) Yes 1.07 260

8  Ni/YSZ (50/50 wt%) Ni/YSZ (70/30 wt%) Yes 1.077 255

9  Ni/YSZ (50/50 wt%) Ni/YSZ (70/30 wt%) Yes 1.074 266

10 Ni/GDC (50/50 wt%) Ni/YSZ (70/30 wt%) Yes 1.068 336

11 Ni/GDC (50/50 wt%) Ni/YSZ (70/30 wt%) Yes 1.068 312

12 Ni/GDC (50/50 wt%) Ni/YSZ (70/30 wt%) Yes 1.066 305
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Figure 8: Comparison of ionic conductivities between YSZ and GDC [125]. 

 

Samples 10-12 in Table two were different in that they had an active layer comprised of a 

Ni/GDC mixture rather than Ni/YSZ. The result was maximum power densities in excess of 300 

mW-cm
-2

. It is important to note that the electrolyte thickness, and thus initial ohmic resistance, 

were essentially the same for each test. The target thickness of 100 µm was targeted during YSZ 

processing to ensure that changes to the performance were related to the electrodes and barrier 

layer. The reason GDC is avoided as the sole electrolyte material is that it has some electrical 

conductivity in reducing atmospheres which could result in electrical leaking across the 

membrane. This makes the strong YSZ electrolyte-support, which exhibits no electrical 

conductivity at 800°C, plus a thin GDC layer an attractive architecture.   

 

3.2.2.2 Impurity Testing for the Ni/YSZ Anode  

 With good performance demonstrated for the baseline composition, confirmation of 

previous literature in regards to impurity testing was needed to validate our methods. The first 

check was to see that this cell could in fact produce sufficient power in clean syngas, which 

contains lower partial pressures of H2 for the anode side and thus making the electrochemical 

reactions less efficient. Figure 9 shows that for our clean syngas blend (H2 34%, CO 31%, CO2 

19%, 16% H2O), about 210 mW-cm
-2

 of power was produced which is more than enough for our 

purposes and competitive when taking the electrolyte thickness into account. This curve was 
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taken at a time 2 h after reducing to syngas. The OCV of 0.965 is similar to other Ni/YSZ cells 

tested within the group using the same syngas blend. 

 

 

Figure 9: Power Density for Ni/YSZ anode in clean syngas. 

 

 The next check is to confirm the degradation of the Ni/YSZ anode in response to H2S 

impurity. To do this, an identical cell was loaded first in wet H2O at 0.2 A-cm
-2

 and 800°C and 

after a couple hours, 20 ppm H2S was introduced into the stream. This can be seen in Figure 10. 

Also, the electrochemical impedance spectra for this cell at a point 10 hours after introduction of 

20 ppm H2S can be seen in Figure 11. The ohmic resistance of 0.555 Ω cm
2
 is higher than the 

0.48-0.50 Ω cm
2
 resistance that would be expected given the electrolyte thickness and YSZ 

material. This increase to the ohmic resistance is cause for the secondary irreversible degradation 

that Figure 11 displays. 
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Figure 10: Ni/YSZ anode response to syngas+ 20 ppm H2S. 

 

 

Figure 11: EIS plot for Ni/YSZ anode in syngas +20 ppm H2S. 

 

The initial drop corresponds to the adsorption of S onto the Ni particles, which occurs in 

a matter of a minute or two. The gradual secondary loss over the following 20 hours could be 

attributed to a few possible mechanisms. One could be carbon coking, which seems to be present 

based on the EDS plot in Figure 12 where a well defined, though small peak is seen. 
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Additionally, local oxidation of the Ni near the anode-electrolyte interface could destroy the 

geometry of the triple phase boundary sites. Figure 13a shows a clean Ni/YSZ anode and Figure 

13b a Ni/YSZ anode after testing in syngas with 20 ppm H2S. The change in the microstructure 

is indicative of either Ni-S interactions or Ni oxidation. The flattening of the curve at the end 

could be explained by the decreased catalytic activity of NiO that stabilized throughout portions 

of the microstructure over this time. However, if Ni migration to the bulk anode surface were to 

have occurred as reported elsewhere, all TPB’s would be lost and this stability towards the end 

would not be seen. Moreover, the formation of secondary Ni phases was not attributed to the 

overall cell degradation. Figure 13b shows that a porous microstructure is maintained after 

exposure and Figure 12 shows that no sulfur peak was detected post-test which suggests that no 

chemical reaction with Ni was ever formed.  

 

 

Figure 12: EDS spectra of the Ni-particle of an H2S poisoned Ni/YSZ anode. 
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Figure 13: SEM images of Ni/YSZ anode in top) clean syngas and bottom) syngas +20 ppm H2S.  

  

The Ni/YSZ anode was finally tested in 10 ppm PH3 with an identical cell. Unlike sulfur 

which has that initial steep drop off in potential due to surface adsorption, phosphorus has a 

steady drop off upon introduction. This sort of response is confirmed by the test seen in Figure 

14. 
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Figure 14: Ni/YSZ anode in response to 10 ppm PH3. 

 

With this test, degradation to the cell was observed immediately following introduction 

of 10 ppm PH3. This is a similar trend to those described in the literature review where complete 

failure is seen within a matter of hours for the electrolyte supported platform. 

 

3.2.3 Conclusions 

 There are a few conclusions for the baseline Ni/YSZ anode testing that can be drawn. The 

first is the importance of a barrier layer for our thick electrolyte supported platform to generate 

adequate power. Power densities in excess of 300 mW-cm
-2

 in wet H2 were seen with the 5 µm 

barrier layer which is competitive with other fuel cell groups given the cell geometry. Power 

densities in excess of 200 mW-cm
-2

 were also achieved in a clean syngas environment, though 

low concentrations of H2S and PH3 impurities have irreversible impact on the anode as 

anticipated. This line of testing successfully served to validate findings from previous work and 

to establish that the testing protocol was sound.  
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3.3 Ni/GDC Anode Testing 

3.3.1 Experimental Procedure  

3.3.1.1 Cell Fabrication 

Cell fabrication and layer dimensions for the Ni/GDC cell were similar to that of the 

Ni/YSZ anode with the following exceptions: the anode sintering condition was found to be 

1250°C for 2 hours and two different GDC compositions Gd0.1Ce0.9O2 (GDC-10) and 

Gd0.2Ce0.8O2 (GDC-20) were synthesized using a co-precipitation method for comparative 

purposes. The first layer for the anode was a 5µm GDC barrier (printed with a 400 mesh screen) 

that was sintered onto the YSZ electrolyte at 1400°C for 2 h. The active layer was a 50/50 wt-% 

mixture of Ni and GDC-10 that was mixed in a polypropylene jar on a mill for 2 hours, dried and 

sieved, and finally printed as a 10 µm layer using a 325 mesh screen. The same procedure was 

carried out for the current collection layer, which was a 70/30 wt-% mixture of Ni and GDC. A 

230 mesh screen was used and 2 layers were printed and dried to obtain a 40 µm total thickness. 

 

3.3.1.2 Cell Test Setup  

For testing H2 fuel with the H2S impurity, H2 was humidified with 3% water (wet H2). 

For testing syngas fuel with the H2S impurity, the syngas was blended with a composition of H2 

34%, CO 31%, and CO2 19% from commercial cylinders. The H2 passed through a temperature-

controlled water humidifier where it adds up to 16% H2O to the syngas. Prescribed amounts of 

2000 ppm H2S in H2 were blended with the syngas or wet H2 to achieve the desired H2S 

concentration. A platinum reference electrode was incorporated in one of the cell tests. Platinum 

ink was printed on the cathode side of the electrolyte about 0.5 mm away from the edge of the 

cathode electrode. The reference electrode was approximately 0.5 mm wide and 2 mm long.  The 

cell contacts were made by using 6×50 mm platinum mesh (80 mesh woven) strips fastened with 

platinum paste on the cathode and nickel paste on the anode (Figure 15a). The cell was mounted 

between two alumina flanges with mica washes serving as pressed seals on either side of the cell 

(Figure 15b).  
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Figure 15: (a) The cell contact configuration and (b) the cell testing setup diagram [112]. 

 

Each end of the Pt mesh on an electrode was soldered to a thick sliver wire for the 

current-collection lead and to a thin silver wire for the voltage-sensing lead. A thin gold wire was 

contacted with gold paste to the Pt reference electrode pad at the edge of the electrolyte.  

The cell was heated to 800
o
C at a heating rate of 2

o
C per minute while flowing 50 SCCM 

N2 on the anode and air on the cathode. After the cell temperature reached 800
o
C, the flow to the 

cell anode was shifted to 10% H2 in N2 for 1 h, then 50% H2 and N2 for another 2 h. A constant 

current density of 200 mA cm
-2

 was loaded on the reduced cell with a flow of either 100 SCCM 

wet H2 or 150 SCCM syngas (H2 34%, CO 31%, CO2 19% and H2O 16%) to the anode and 200 

SCCM air flow to the cathode. After the cell voltage stabilized for 24~100 h, the cell polarization 

curve (V-I curve) and electrochemical impedance spectrum (EIS) were taken as a record of the 

baseline cell performance. The EIS was collected using a Solartron SI-1287 electrochemical 

interface and an SI-1252 frequency response analyzer with an AC amplitude of 10 mV at 

frequencies ranging from 200 kHz to 0.05 Hz. The constant DC current load was supplied by a 

solid-state load cell (TDI Transistor Devices SD-1103). H2S was added to the syngas fuel 

immediately upstream of the furnace. The fuel transport tubes were heat-traced to over 120°C to 
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prevent H2O condensation. After testing, the cell was cooled to room temperature while purging 

20% H2 in N2 to the anode. 

The microstructure and chemical composition of the cell anode were examined with a 

Hitachi S-4700 SEM / EDS. To determine the composition of the anode, an XPS (PHI 5000 

VerasProbe XPS Microprobe) with a monochromatic Al K-alpha radiation source (8.34118Å) 

was employed. Depth profiling was performed over an area of 1×1 mm by means of 2 keV 

Argon ion sputtering. High-resolution XPS spectra were subsequently obtained by using a 

focusing X-ray monochromator with a 100 μm spot size. The sputtering rate was determined to 

be 20 nm min
-1

 with reference to a Ta2O5 layer [79]. The actual sputtering rate may differ for the 

Ni samples studied here. Thus, it should be noted that the change in depth (nominal depth) rather 

than the absolute depth of the surface chemical trace layer was the meaningful metric. A MSK 

Instruments Inc. Cirrus (LM99) residual gas analysis mass spectrometer was connected to the 

fuel exhaust to monitor the low concentration of exhaust species.  

 

3.3.2  Results 

3.3.2.1  Ni-GDC-10 Anode with/without a GDC Barrier Layer  

A YSZ electrolyte-supported Ni-GDC-10 anode cell with a 5 μm GDC-10 barrier layer 

(cell-1) between the YSZ electrolyte and the anode active layer was tested in syngas with 100 

ppm H2S impurity. Cell-1 showed excellent stability and performance in syngas. The voltage of 

cell-1 was about 0.756 V under 200 mA cm
-2

 constant current loading in clean syngas. After 

adding 100 ppm H2S impurity, the voltage of cell-1 quickly dropped to 0.686 V and was stable 

for 220 h. Cell-1 was recovered by removing the H2S and flowing wet H2 for about 30 h. Once 

the cell voltage returned to 0.756 V, it suddenly dropped to 0.740 V (see the circled area in 

Figure 16).  
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Figure 16: Performance of cell-1 and its area specific resistances (ASR) in clean syngas and syngas with 100 ppm 

H2S [112]. 

 

When the cell voltage leveled off, a second cycle with 100 ppm H2S in syngas was 

initiated. The cell voltage dropped to 0.678V and stabilized at that point for 40 h (Figure 16). 

The ohmic resistance and the polarization resistance of cell-1 derived from impedance spectra are 

also plotted in Figure 16. The cell ohmic resistance slightly increased with testing time. The cell 

polarization resistance increased significantly during the periods when H2S was added to the 

fuel. However, it returned to the original value of 0.685 Ω cm
2
 after the H2S was removed 

indicating full cell recovery. 

An identical YSZ electrolyte-supported cell with a Ni-GDC-10 anode, but without the 

GDC-10 barrier layer (cell-2), was tested under similar conditions. As seen in Figure 17, the 

performance of cell-2 was relatively lower than that of cell-1. 
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Figure 17: Performance of cell-2 and its area specific resistances (ASR) in clean syngas and synags with 100 ppm 

H2S [112]. 

 

After adding 100 ppm H2S in syngas, the voltage of cell-2 decreased from 0.716 V to 

0.636 V during the initial poisoning phase, and then slowly dropped to 0.585 V over the next 60 

h. These two tests confirmed that cell-1, which contained the barrier layer, had significantly 

higher H2S tolerance than cell-2. Cell-3 which was identical to cell-1 was used to check the 

limits of the H2S tolerance. Under the same testing conditions as cell-1 and cell-2, cell-3 showed 

resistance to 100 ppm H2S in syngas for 6 h, whereupon the cell voltage was recovered after 

stopping the H2S flow in the syngas for 10 h. (see Figure 18)  
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Figure 18: Performance of cell-3 and its ASR in clean syngas and syngas with 100 ppm H2S [112]. 

 

When the H2S concentration was increased to 200 ppm in the syngas, the cell continually 

lost voltage at a rate of 0.319 mV h
-1 

during the next 9 h. Although the cell was recovered to the 

original voltage of 0.728 V, the cell suddenly dropped 15 mV at the end of test (see the circled 

area in Figure 18). The cell ohmic resistance rapidly increased from 0.432 to 0.570 Ω cm
2
 during 

the final recovery period. The Ni-GDC-10 anode with the GDC-10 barrier layer has excellent 

tolerance for 100 ppm H2S in syngas. However, when the H2S concentration was increased to 

200 ppm, the cell tolerance to H2S reached its limit.  

To measure the impedance change of the anode, cathode and full cell, cell-4, identical to 

cell-1 except for the reference electrode on the cathode side as discussed above, was tested both 

in wet H2, and syngas with/without 100 ppm H2S. The cell voltage is shown during the different 

periods-a, b, c of testing in Figure 19.  
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Figure 19: Performance of cell-4 in (a) wet H2, (b) wet H2 + 100 ppm H2S, and (c) syngas with/without 100 ppm 

H2S during the first 100 h, then the cell was recovered in H2, and (d) H2+N2, H2+200 ppm H2S,(e) H2+500 ppm H2S 

and (f) H2+1000 ppm H2S testing [112]. 

 

Once the cell was recovered from using syngas with 100 ppm H2S in period-d for 24 h, 

impedance data were obtained from the cell tested in dry H2 with 100, 200, 500 and 1000 ppm 

H2S concentration and 84%, 75%, 50%, 25% and 16% H2 diluted with N2 at 130 hours and 140 

hours respectively. Finally, cell-4 exhibited stable operation for 40 h. in dry H2 with 500 ppm 

H2S which is an H2S impurity level 5 times higher than that tested in syngas (Figure 19e). When 

the H2S level was raised to 1000 ppm in dry H2, the cell started gradually to lose its performance 

(Figure 19f). Details of the behavior of this cell are discussed below. 

 

3.3.2.2 Ni-GDC-20 Anode with a GDC Barrier Layer 

Increasing the gadolinium doping level in the GDC may change the H2S tolerance of the 

Ni-GDC anode. GDC-20 was used to modify the Ni-GDC anode in both the active layer and the 

current collector. A cell (cell-5) with a Ni-GDC-20 anode and a GDC-10 barrier layer was tested 

by exposure to wet H2 with up to 1000 ppm H2S at 800
o
C under 200 mA cm

-2 
current density 

load. The results showed that the cell could resist up to about 500 ppm H2S in wet H2 fuel. The 

cell voltage started its constant decline after the addition of 1000 ppm H2S (Figure 20).  
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Figure 20: The voltage and ASR of cell-5 versus testing time [112]. 

 

The cell ohmic and polarization resistances remained constant at all H2S levels. Another 

cell (cell-6) with an identical Ni-GDC-20 anode and a GDC-20 barrier layer was tested in wet H2 

for comparison. This cell showed a relatively higher tolerance to 1000 ppm H2S in wet H2. The 

cell ohmic resistance was stable after adding H2S for the entire 220 h period. The cell 

polarization resistance increased slightly after adding 1000 ppm H2S for 70 h which caused a 20 

mV voltage drop in the cell (Figure 21).  
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Figure 21: The cell voltage and ASR versus testing time of cell-6 (with the Ni-GDC-20 barrier layer in the anode) 

[112]. 

 

These two tests have a common result which is that the cell ohmic resistance did not 

significantly increase as a result of H2S addition. There are however a few important differences 

between cell-5 and cell-6. Cell-5, with a GDC-10 barrier layer, exhibited superior performance 

than that of cell-6. Additionally, the initial drop in voltage upon 100 ppm H2S introduction is 

greater for cell-6. The increase in polarization resistance seen from adding 100 ppm H2S was 

only ~0.25 Ω cm
2
 for cell 5, while cell-6 saw an increase in polarization resistance of ~0.5 Ω cm

2
. 

The changes to the cell polarization resistance are not unlike those seen by Zhang et al [10] and 

Zha et al [39] with similar anode architectures. This suggests that while there is slightly 

improved tolerance to high levels of H2S for the GDC-20 barrier layer, the tradeoff comes in the 

form of decreased power density. After the tests, each cell was cooled to room temperature with 

a purge of 30% H2 in N2 over 4 h and then subjected to post-mortem examination.  
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3.3.2.3 Reference Electrode and Cell Impedance 

A reference electrode was incorporated in cell-4 to monitor the change of anode and 

cathode impedances with and without 100 ppm H2S in the fuels. The impedance of the cathode 

electrode was measured between the platinum reference on the cathode side of the electrolyte 

surface and the cathode current collector. The impedance of the anode electrode and YSZ-

electrolyte was measured between the same platinum reference and the anode current collector. 

Figures 22 and 23 show the resulting impedance data for the entire cell with the Ni-GDC-10 

anode and the GDC-10 barrier layer of cell-4 with and without 100 ppm H2S in wet H2 (curve-e 

and curve-a). 

 

 

Figure 22: The impedance spectra of cell-4 under 200 mA cm-2 current bias in wet H2.  
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Figure 23: The impedance spectra of cell-4 under 200 mA cm-2 current bias in wet H2 with 100 ppm H2S. 

 

The anode polarization resistance in the low frequency range from 50 Hz to 0.05 Hz 

(curve-f and curve-b) significantly increased after the addition of 100 ppm H2S to the wet H2. 

The cell cathodic impedance did have a notable change in the high frequency range as seen in 

curve-g and curve-c (>10000 Hz). The impedance data of curve-h and curve-d are the sum of the 

anodic and cathode impedances under the exact same frequency for the case of wet H2 with and 

without H2S respectively. From Table 3, it can be seen that the change of the cell ohimc 

resistance, RΩ, is relatively small compared to that of the total polarization resistance, Rtotal, 

before and after adding 100 ppm H2S in wet H2 for 24 h.  
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Table 3: Summary of the impedance spectra for cell-4 in H2 and clean syngas [112] 

 

 

The change of Rtotal is mainly attributed to the change in the cell polarization portion, Rp, 

(Rp = Rtotal– RΩ) of the total resistance. According to the impedances of each electrode, about 

64.5% and 33.5% of the overall increase of the cell Rtotal is contributed by the increase of anodic 

and cathodic polarization, respectively. There is about 2% error introduced from the reference 

electrode. For the case of syngas, the impedance spectra in figures 24 and 25 with and without 

100 ppm H2S showed a similarly increasing behavior as that for the wet H2 as displayed in 

Figures 22 and 23.  
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Figure 24: The impedance spectra of cell-4 under 200 mA cm-2 current bias in clean syngas. 

  

 

Figure 25: The impedance spectra of cell-4 under 200 mA cm-2 current bias in syngas with 100 ppm H2S. 
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The increase of Rtotal in syngas was larger than the wet H2 case. Both the anodic and 

cathodic impedances still showed a significant increase of polarization resistance at the lower 

frequency range which was mostly attributed to an increase of mass transport polarization. This 

is because the slower processes correspond to lower frequency responses and the large arc in the 

0.1-0.5 Hz range would suggest mass diffusion limitations as it is among the slowest processes in 

a fuel cell. 

The changes of overall impedance for cell-4 with increasing H2S concentration (by ppm) 

in the H2 fuel were measured and plotted in Figure 26.  

 

Figure 26: The impedance spectra of cell-4 under 200 mA cm-2 current bias in H2 with 0, 100 ppm, 200 ppm, 500 

ppm and 1000 ppm H2S impurity [112]. 

 

Similarly the changes of cell impedance with increasing N2 concentration (by percentage) 

in the H2 fuel were measured and plotted in Figure 27 for comparison. Both increasing H2S and 

N2 concentration in the H2 fuel led to an increase in the total polarization resistance, Rtotal, of the 

cell. However, the increase of Rtotal with the increasing H2S concentration exhibited a non-linear 
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trend which is different from the increase of Rtotal observed by diluting the H2 fuel with N2 (see 

Figure 28).  The importance of dilution is to try and establish which contribution is related to 

diffusion in the anode polarization. A comparison of these curves shows that for N2 dilution 

increases to the polarization are seen primarily with the second arc, which corresponds to 

concentration or diffusion problems. Whereas for H2S poisoning the changes to the polarization 

curve are more pronounced with the first arc, or higher frequency processes. In this case, charge 

transfer problems are likely. So while the quantitative impact of these two variables to the fuel 

cell performance is similar, the qualitative reasons behind the drops in performance are vastly 

different.  

 

 

Figure 27: The impedance spectra of cell-4 under 200 mA cm-2 current bias in H2 with 0, 16%, 25%, 50%, 75% and 

84% N2 [112]. 
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Figure 28: The total polarization resistance Rtρ of the cell-4 versus H2S concentration (ppm) and N2 (mol%) 

concentration in H2 fuel [112]. 

 

3.3.2.4 Morphology, Structural and Chemical Analysis  

Because cell-6 had been exposed to 1000 ppm H2S in wet H2 for a long-term test without 

recovery, it was selected for post-mortem analyses. Fig. 13 shows the SEM images of the anode 

active layer for the H2S- poisoned cell-6 (Figure 29a) compared to a clean reduced anode active 

layer (Figure 29b).  
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Figure 29: SEM images for cell-6 of (a) the poisoned Ni-GDC in the anode interface, (b) the clean reduced Ni-GDC 

in the anode interface [112]. 

 

The larger particles are Ni and the small particles are GDC, with approximate particle 

sizes of 10 µm and 2 µm respectively. The microstructure in these two images does not show any 

notable difference. The SEM images of the Ni contact paste of cell-6 on the top of the cell anode 

for observing the Ni particle size, grain boundary and Ni metal surface texture are seen in 

Figures 30a and 30b. The particle size of the Ni in the Ni paste is about 10 μm which matches the 

size on the H2S-poisoned cell image.  

 

Figure 30: SEM images for cell-6 of the Ni particles in the contact paste on the top surface of the anode: (a) at 1k 

magnification and (b) at 20k magnification [112]. 
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The clear Ni grain boundary and surface texture imply that there is no significant surface 

reconstruction on the Ni particle surface. The EDS spectra of the poisoned cell-6 showed that 

there are sulfur peaks at the cell active layer and GDC particles (Figures 31c and d), but there are 

no detectable sulfur signals at 2.307 keV on the Ni particles in both the contact paste and the cell 

anode interface (Figure 31a & 31b). This h indicates that the sulfur signal is coming from the 

GDC particles. To detect sulfur traces and changes on the surface of the Ni particles of the 

poisoned cell, a depth profile of the XPS spectra from the top surface was obtained by using Ar 

ion sputtering. These pieces of data are shown in Figure 32. Both oxidized S and un-oxidized S 

signals appeared on the Ni at the top surface (Figure 32a). But at a distance of 1 nm under the top 

surface, the oxidized S peak at 168-170 eV did not exist in the spectrum (Figure 32b).  

 

 

Figure 31: EDS spectra of (a) the Ni paste, (b) Ni particles in the anode interface, (c) Ni-GDC anode interface and 

(d) GDC particles in the anode interface [112]. 
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Figure 32: The depth profile of XPS spectra on the Ni surface of the H2S poisoned cell. The oxidized S peak at 169-

170 eV is only significant on the top Ni surface. The un-oxidized S peak is detectable at 8 nm depth from the Ni 

surface [112]. 

 

Furthermore, Figure 32e shows that the un-oxidized S peak disappeared at about 16 nm 

below the top surface. The XPS spectra displayed were smoothed by means of a third-order 

polynomial. The XPS spectra for the Ni peaks only, Ni 2p1/2 and 2p3/2, are significant at 869.50 

eV and 852.35 eV, respectively. The intensity of the Ni peaks increased with the depth from the 

top surface (Figure 33).  
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Figure 33: The depth profile of XPS spectra of the H2S poisoned cell Ni surface [112]. 

 

However, there was only an oxidized S 2p peak on the GDC barrier layer (Figure 34b). 

From the observation of the SEM image, and the EDS and XPS spectra of the Ni particles in the 

anode and the paste, it can be seen that sulfur did not significantly react with Ni. The un-oxidized 

S signal existed only in the shallow level about 8 to 16 nm from the Ni surface. The un-oxidized 

S is most likely chemisorbed S rather than nickel sulfide. The oxidized S trace only existed on 

the top several mono-layers (1 nm) which could result from the oxidation of adsorbed sulfur after 

the sample was exposed to ambient air.  
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Figure 34: XPS spectra of the H2S poisoned top surface of the Ni paste and (b) GDC-20 barrier layer on the cell. 

The oxidized S peak at 169.85 eV is only significant on the GDC-20 barrier layer [112]. 

 

3.3.3 Discussion  

Ceria (CeO2) is a mixed electronic and ionic conductor in the temperature range of 

600°C– 1300°C. The electronic conductivity is contributed by small polaron transport and is 

proportional to the concentration of reduced defects (CeO2-x) Ce
3+ 

from CeO2. In a reducing 

environment (PO2 <10
-6

), it is an n-type semiconductor and its conductivity can be as high as 2.5 

S cm
-1

 at 1000°C [80]. Also the CeO2 grain boundaries do not impede electron transport [81-82]. 

For Gd doped CeO2, there are more Ce
3+

 defects in GDC than CeO2 which in turn contribute to 

higher electronic conductivity. GDC is a mixed ionic and electronic conductor.  

According to the observed cell degradation for the Ni-GDC anode under H2S (>100 ppm) 

poisoning, the initial degradation which caused the rapid loss of cell voltage of about 60 to 100 

mV is inevitable. The Ni-GDC anode, especially when used in concert with the GDC barrier 

layer can suppress the continuous cell degradation phase for up to 100 ppm H2S in syngas and 

1000 ppm H2S in wet H2 fuel. From the XPS examination, sulfur traces were identified on the 

1000 ppm H2S poisoned anode. The oxidized S signal at 168.00 -170.00 eV on the Ni particles 
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may be attributed to traces of sulfate produced from adsorbed sulfur on the Ni particles at the top 

surface of the anode when exposed to ambient air at room temperature after the cell was tested. It 

only existed in the very shallow top surface layer and was not observed in the XPS spectrum 

deeper into the anode (see Fig. 16a and b). The unoxidized S signal at 162.00-163.00 eV may 

belong to two possible traces: chemisorbed sulfur and nickel sulfides, such as NiS, Ni2S3 etc. The 

consistency of the XPS spectrum of Ni 2p1/2 at 869.50 eV and 2p3/2 at 852.40 eV by the depth 

profiles suggests that Ni was not in an oxidized state. So the sulfur trace should not be from 

nickel sulfide. Moreover, nickel sulfide formation is not significant under the prevailing cell 

working conditions. The un-oxidized S trace can only be detected up to approximately 8 nm 

from the Ni particle surface. If nickel sulfides were formed on the Ni particles during cell 

operation, they should cause a change in the surface structure of the Ni particles considering the 

melting point of Ni2S3 is lower than 800
o
C. However, no such change in structure was observed. 

So the most probable cause of the unoxidized S is that it came from the chemisorbed sulfur on 

the Ni surface.  This conclusion is in agreement with the thermodynamic calculation reported by 

Sasaki et al. and experimental reports by Rasmussen and Hagen [9,77].  If the H2S concentration 

in the fuel becomes very high, say over 10,000 ppm, nickel sulfide phases could be produced on 

the Ni-based anode according to Sasaki’s thermodynamic equilibrium calculation. For less than 

1000 ppm H2S in wet H2, the cell initial degradation phase results from the chemisorption of 

sulfur which partially blocks active sites for H2 oxidation on the Ni surface. This is analogous to 

a reduction of the H2 partial pressure on the Ni-based anode. Thus, it would appear that the initial 

degradation phase is inevitable and reversible for the Ni-based anode under exposure to a certain 

level of H2S impurity. The test results of cells-1, 4 and 5 with the GDC barrier layer indicated 

that the second phase of the observed continual degradation by H2S poisoning was highly 

suppressed by the GDC barrier layer. It implies that the mechanism of the second phase 

degradation should not be related to nickel sulfide formation on the cell anode. It should be 

caused by electrochemical changes at the cell anode/electrolyte active interface or the triple 

phase boundary (TPB).  

Using H2 with a certain level of H2S impurity, sulfur is chemisorbed on the Ni particles 

of the anode. The diagram in Figure 35a exhibits a Ni particle (without the GDC) that is oxidized 

by O
2-

 at the TPB when sulfur is partially blocking the active sites on the Ni particle.  
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Figure 35: A conceptualization of the cell anode and electrolyte active interface showing that (a) the Ni is slowly 

oxidized by O2- at the active interface and (b) the GDC layer is suppressing the NiO formation at the active interface 

[112]. 

 

If the H2 does not quickly reverse the NiO formation, more NiO would be produced at the 

local area near the active interface. Under the presence of the H2S impurity, H2 can only be 

adsorbed on certain planes of nickel with a relatively high adsorption coefficient. On these sites, 

the reaction H2 + O
2-

 →H2O + 2e
-
 is still active. However, some active Ni sites are occupied by 

sulfur (S). The contact area between Ni and the YSZ electrolyte adjacent to the sites occupied by 

sulfur becomes inert for hydrogen reduction which leads to the increase in the anode 

overpotential. Under a constant current load of 200 mA cm
-2

 on the cell, there is a constant O
2- 

flux across the electrolyte. The O
2-

 ions could potentially oxidize Ni particles at the TPB, 

especially at the interface of the electrolyte and Ni-YSZ anode (Figure 35a). Once NiO is 

formed, the TPB could be damaged by the microstructural changes caused by the Ni oxidation. 

The low conductivity of NiO and the loss of electrical contact between the Ni and the YSZ 

electrolyte can cause permanent damage thereby increasing the cell’s ohmic resistance, RΩ, 

which is a possible mechanism for the irreversible cell degradation. However, the GDC barrier 

layer (Figure 35b) could suppress the direct transport of O
2-

 to the active interfacial area of the 

Ni or the TPB. Under highly reducing conditions, CeO2 in the Ni-GDC and the GDC barrier 

layer could be reduced to Ce2O3 which will react with H2S to become cerium oxy-sulfide Ce2O2S 

at 800°C [83-84]. These reactions are presented in the following equations:  
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2CeO2(s) + H2 (g) → Ce2O3 (s) + H2O (g)      ΔH = -1820.8 (kJmol
-1

) (15) 

2Ce2O3(s) + H2S (g) → Ce2O2S(s) +H2O(g)     ΔH = -1667.8 (kJmol
-1

)  (16) 

 

The GDC layer is porous with relative high electronic conductivity at 800°C in the 

reducing environment [85-86]. According to the analyses of the fuel exhaust by the Cirrus Mass 

Spectrometer, a small concentration of SO2 is observed in the exhaust gas. Within the GDC 

barrier layer, the O
2-

 ion flux transported through the YSZ electrolyte has been held constant 

under the constant current load.  

 

Ce2O3 + O
2-

 → 2CeO2 + 2e
- 
                         (17) 

Ce2O2S + 2O
2-

→2CeO2 + SO2 + 2e
-
                   (18) 

0.2Ce2O2S + O
2-

 →0.1 Ce(SO4)2 + 0.3CeO2 + 2e
-
       (19) 

H2 + O
2-

 →H2O + 2e
-
                               (20) 

2Ce(SO4)2 + 5H2 →Ce2O3 + 4SO2 + 5H2O             (21) 

 

When adsorbed sulfur partially blocks the local H2 oxidation active sites in the Ni-GDC 

anode, the electrochemical reactions (17), (18), and (19) could be favored in the GDC barrier 

layer (see Figure 35b). Moreover, the H2 concentration could be further reduced by the hydrogen 

oxidation reaction (6) in the GDC barrier layer. Indeed another test reported in the next chapter 

showed that a pure GDC anode in an SOFC can produce about one third of the power density of 

a Ni-GDC anode.  

Ceria actually is acting as a regenerative catalyst for the oxidation of H2S in these 

reactions.  Reaction rates of (17), (18) and (19) are possibly limited not only by the reaction rates 

of (15) and (16), but the GDC electronic conductivity and electron transport between the nickel 

and GDC boundary as well. Reactions (17), (18), (19), and (20) in the barrier layer basically 

suppress the Ni oxidation processes by reducing the O
2-

 ion flux in GDC barrier layer. If either 

the current loading on the cell or the H2S impurity level in the fuel is too high, Ni still can be 

oxidized by O
2-

 and/or sulfur. The XPS and EDS spectra of GDC in Fig. 31d and Fig. 34b reveal 

that the sulfur trace in the GDC is oxidized sulfur which could indicate the formation of 

Ce(SO4)2 via reaction (19). Reaction (21) could partially regenerate the Ce2O3 in a reducing 

environment.  
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The test of cell-6 with the GDC-20 barrier layer showed a relatively higher tolerance for 

H2S than that seen with the GDC-10 barrier layer. This may be a result of the GDC-20 barrier 

layer having a higher electronic conductivity with a higher Ce2O3 concentration in the reducing 

environment. This is clearly seen from the data for cell-3 and cell-4 wherein cell-4 had much 

higher H2S tolerance in H2 fuel than cell-3 in syngas. This could be explained by the difference 

of O2 partial pressure (PO2) and H2 partial pressure (PH2) in the fuels. In the syngas, there is about 

16 % H2O in the fuel. It is higher than that of wet H2 which is only about 3% H2O. Also, PH2 in 

syngas is 0.34 atm compared to nearly 1 atm in the H2 fuel and the product H2O partial pressure 

is 0.16 atm. The reaction rates of (15) and (20) are reduced by a lower PH2 and higher PH2O . 

Reaction (21) may be largely suppressed by the lower PH2 in the syngas fuel too. From 

experimental observation, the cell overpotential increased about 70 to 100 mV using syngas 

compared to wet H2. Eventually when the H2S concentration gets as high as 200 ppm in syngas, 

the formation of Ce2O2S is favored over that of Ce(SO4)2 from the equation (19) thereby 

reducing the sulfur oxidation processes leading to the formation of NiO at the Ni and GDC active 

interface.  

The observation of the sudden drop in cell voltage after the recovery of the H2S-poisoned 

cell to the maximum voltage in the circled areas in Figures 16 and 18 could be explained by NiO 

formation during H2S poisoning on the active interface or TPB.  Reduction of this NiO to Ni 

during recovery could damage the contact between the Ni and GDC and result in a change in 

microstructure with an increase in ohmic resistance RΩ. Compared to GDC, YSZ is more stable 

in H2, and the analogous reactions (15) and (16) for ZrO2 hardly occurs; thus, the YSZ 

electrolyte-supported Ni-YSZ anode cell has very poor tolerance for H2S. But YSZ is still the 

most stable and cost effective electrolyte in clean fuel at 800°C. The GDC coating on the YSZ 

electrolyte-supported Ni-GDC anode is a new architecture for an H2S-tolerant cell. The barrier 

layer of ceria with different doping materials, such as Sm, Nd, Dy, Er and La, may afford H2S 

protection as well.  

The reference electrode placement and configuration used for cell-4 may introduce some 

error in the anode and cathode impedance measurements [87-89]. But this reference electrode 

setup is practical to monitor the changes in the anode and cathode impedance before and after 

introducing the H2S impurity. The sum of the anode and cathode impedances (Z" and Z') in the 
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same frequency range is very close to that seen for the full cell impedance for both the wet H2 

and syngas fuel cases. This implies that the error introduced by the reference electrode is small. 

The anode polarization appeared in the low frequency range from 50 Hz to 0.05 Hz. The cathode 

polarization covered the range from 50 kHz to 0.05 Hz. The increase of cell polarization is 

contributed by increases both at the anode and cathode after the addition of 100 ppm H2S in the 

fuel. The contribution to the increased Rtotal is proportional to the total polarization of each 

electrode in the clean fuel. The anode had about 63% - 67% of the Rtotal, and the cathode had 32% 

- 37%  of the Rtotal of the full cell (see Table-3). The proportional contributions to the increased 

polarization of the cell by both the anode and cathode electrodes indicate that the electrodes have 

an interaction during H2S poisoning. The electrochemical measurements cannot separate the 

processes from the two electrodes of the cell. The increase of the ohmic resistance is less than 5% 

and mainly comes from the increase of the anode ohmic resistance. This implies that the charge 

transport polarization resistance was only slightly increased by the H2S poisoning of the cell 

anode. 

Because the ohmic resistance did not significantly change, the increase of the polarization 

resistance (Rp= Rtotal – RΩ) with the increase of H2S concentration showed an exponential rise to 

a maximum (fitted by equation (22)) which means that the chemisorbed sulfur on Ni-GDC anode 

becomes saturated for H2S concentrations over 1000 ppm. 

Rp = 0.747+ 0.305 [1– exp(–0.014 CH2S)]                 (22) 

Here CH2S is the H2S concentration in ppm. It also implies that as Rp exponentially rises, and the 

number of active sites for the H2 and O
-2 

reaction
 
is decreasing. This observation agrees with the 

initial degradation behavior of H2S poisoning on the Ni-based anode. For the case of the varying 

N2 concentrations in the H2 fuel, both the ohmic resistance (RΩ), and the polarization resistance, 

(Rp) were observed to increase. The increase of ohmic resistance should be attributed to the 

proposed Ni oxidation in the Ni-GDC anode due to decreasing local H2 partial pressure. 

However, in this case, the total polarization Rtotal change displays almost a linear trend. Although 

the initial effect for H2S poisoning and N2 dilution are caused by different mechanisms, the 

resulting changes in the cell resistance are comparable.  
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3.3.4 Conclusion 

A Ni-GDC anode with a GDC barrier layer has been developed for increased tolerance of 

H2S in fuels. The test data show that the anode could resist up to 1000 ppm H2S in wet H2 fuel 

and 100 ppm H2S in synags fuel. The cell polarization resistance, Rp, increased whenever the H2S 

impurity was added to the fuel. The polarization increase came from changes both in the cell 

anode and cathode polarization resulting from sulfur chemisorption on the Ni catalyst surface in 

Ni-GDC anode. The cell ohmic resistance, RΩ, remained nearly constant for the cells with the 

GDC barrier layer. The initial cell degradation phase after adding H2S is caused by sulfur 

chemisorption and is recoverable. The continual degradation phase of the cell after the initial 

voltage loss is caused by an increase of RΩ due to Ni oxidation forming NiO at the TPB. Traces 

of chemisorbed sulfur were observed on the Ni particles at the very top surface of H2S-poisoned 

Ni-GDC anode by XPS. The formation of nickel sulfide was not detectable on the Ni surface and 

had nothing to do with the second phase of cell degradation. The YSZ electrolyte-supported cell 

with a Ni-GDC anode and a GDC barrier has high H2S tolerance both in wet H2 and syngas.  
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Chapter 4:  Phosphine Impurity Evaluations of Alternative Composite SOFC 

Anodes  

4.1 Introduction 

Solid Oxide Fuel Cell’s (SOFC’s) have garnered a great deal of attention in recent years 

as a potential source of emission-free energy for both small mobile auxiliary power as well as for 

megawatt scale stationary power [22,36]. Most commercialized SOFC’s operate on hydrogen 

fuel; however, operating SOFC’s with fossil fuels is highly desirable due to their low cost and 

availabilitiy. For example, the use of coal syngas produced through various efficient gasification 

processes could push energy generation efficiency upwards of 60% [90]. The most commonly 

used SOFC anode, a nickel/yttrium-stabilized zirconia (Ni/YSZ) cermet, exhibits an ability to 

run in various clean syngas compositions [28, 91-92], which has resulted in countless research 

efforts attempting to demonstrate actual functionality and stability in “dirty” gasified coal. 

Gasified coal contains H2, CO, and residual CH4 which serve as the primary fuel for the SOFC. 

The major limitation is that this same fuel stream is loaded with contaminants such as S, P, Sb, 

Cl, Zn, As, and HCl that react with the Ni-based anodes and quickly degrade the performance of 

the SOFC at standard operating temperatures. The reaction of nickel with these impurities can 

ultimately lead to resistive secondary phase formation or other microstructural changes that can 

hinder the electrochemical reaction rates.  

Among the most reactive with nickel is phosphorus. Krishnan et al. [93] and Trembly et 

al. [94] reported that their loss in cell performance is brought on from zirconia phosphate 

formation at the anode/electrolyte active interface. Both papers suggest that this results in a loss 

of the overall electrolyte ionic conductivity. Zhi et al. [95] report total cell degradation within 20 

h of introducing 20 ppm PH3 into the anode stream of an anode-supported cell. They attributed 

this failure to phosphorus reactions with both Zr and Ni. Marina et al. [48] conducted similar 

work, but expanded it to show clear boundaries between reacted and un-reacted Ni particles and 

also determined that Ni-P formation can occur at impurity concentrations less than 1 ppb. This is 

valuable information since current cleanup technologies display difficulties in removing 

phosphorus to this level in an economic manner. 
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Sulfur has also shown to be harmful to cell performance, though the failure mechanisms 

were shown to be different than that of phosphorus.  The sulfur affects the Ni/YSZ anode first 

through a surface adsorption process that occurs within a matter of seconds which raises the 

overall work function of nickel [44,96-97]. That process has been shown to be somewhat 

reversible upon removal of sulfur from the anode stream.  However, solid Ni-S phase formation 

is also found during long-term operation in fuels containing sulfur, and this process has been 

proven to be irreversible [10,98].   

Some progress has been made in regards to the prevention of sulfur poisoning of the 

nickel-based anode with the introduction of doped ceria into the anode either in conjunction with 

or in place of YSZ.  In fact, a Ni/GDC (gadolinium doped ceria) anode was observed to 

withstand up to 200 ppm H2S in syngas with 10-12% cell degradation after about 570 h of 

operation, which is an improvement over the Ni/YSZ anode but not a proven solution [12]. The 

GDC and other doped ceria compositions have been shown to be  good H2S absorbents for the 

SOFC [51], and GDC appears to react with sulfur to form ceria-sulfides at concentrations higher 

than 450 ppm from thermodynamic calculations [52,99-101]. This means that a Ni/GDC anode 

may be suitable for gasified coal as current technologies containing sulfur scrubbers display 

concentrations much lower than 450 ppm.  

Another way to address the anode contaminant issue is to remove nickel from the anode 

entirely.  Many different anodes have been developed previously for the investigation of fuel 

flexibility and impurity tolerance. A popular all-ceramic anode that has demonstrated stability in 

fuels containing low levels of H2S is SrTiO3. Pillai et al. [57] reported on an anode-supported 

SrTiO3 anode capable of withstanding up to 100 ppm H2S without appreciable degradation. 

Kurokawa et al. [102] demonstrated stable cell performance in upwards of 40 ppm H2S with A-

site doping with Y and Ce and Ru infiltration.  La0.75Sr0.25Cr1-xMnxO3 is another anode that has 

been shown by Zha et al. [103] to resist sulfur poisoning, however the level of H2S tolerance is 

strongly dependent upon the amount of Cr in the anode matrix.   A WS2 anode, developed by 

Yates et al. [104] has shown short term tolerance (~24 h) to direct H2S fuel. Cheng et al. have 

recently developed a strontium-doped lanthanum vanadate anode (La1−xSrxVO3) that exhibited 

sulfur tolerance and favorability to a sulfur-containing environment for upwards of 48 h. 
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However, the perovskite structure of this anode tends to lose its integrity over longer operation 

times and secondary phases form which inhibit the cells ability to perform [105].  

Several double perovskite structured anode materials (A2BB’O6) have been investigated 

with Sr2MgMoO6-δ being among the best in terms of resistance to sulfur poisoning. Goodenough 

et al. [32] and Huang et al. [20,59] have applied this anode to a La0.8Sr0.2Ga0.83Mg0.17O2.815 

(LSGM) electrolyte with the use of a lanthanum-doped ceria (LDC) interlayer to prevent 

interfacial reactions between the electrodes and electrolytes. They have achieved power densities 

of 500 mW cm
-2

 in CH4 and 840 mW cm
-2

 in H2 at 800°C using SrCo0.8Fe0.2O3−δ (SCF) as a 

cathode. This anode also is capable of operating in up to 50 ppm H2S in H2 with minimal 

performance loss after 200 h (~5% voltage loss).  

Since the SMM anode has been shown to perform well in a variety of fuels and withstand 

realistic levels of H2S, a logical progression would be to investigate how this anode responds to 

other coal contaminants.  Specifically, this study will investigate the response of the cell upon 

introducing 10 ppm PH3 into the H2 anode stream. One issue with this anode is that the SMM 

alone exhibits relatively low ionic conductivity in reducing atmospheres [106]; thus, GDC is 

incorporated into the anode to improve the ionic conduction of the cell.  

Additionally, as a means of useful comparison to the Ni-based anode, the last section of 

this chapter investigates a novel anode composition that is still Ni-based. The wolframite NiWO4 

composition will be evaluated to understand the phase evolution upon reduction, its 

electrochemical performance alone and with different ionic conduction contributors, and its 

response to PH3 impurity.  
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4.2  PH3 Impurity Tolerance of Sr2MgMoO6-δ/GDC Composite Anodes  

4.2.1 Experimental Procedure 

4.2.1.1 Sr2MgMoO6-δ Powder Preparation 

Sr2MgMoO6-δ powders were synthesized using a standard solid-state method with SrCO3, 

MgO, and MoO3 (Alfa Aesar, 99.9% purity for each) as starting reagent materials. The powders 

were first mixed and then ball milled in ethanol and calcined at 1000⁰C for 4 h in air to burn off 

the carbonates.  After the initial heat treatment, the powder was sieved and attrition-milled for 4 

h. The powder was then calcined at the same temperature and time under a reducing atmosphere 

(5% H2/N2) to form the single-phase SMM material.  Previous work on this material suggests 

that the low melting temperature and high volatility of Mo make it problematic for high thermal 

treatment temperatures [106], so the lowest possible calcination temperature was sought to 

minimize this effect.  

X-ray diffraction (XRD) spectra were recorded for samples fired at 1000⁰C, 1100⁰C, and 

1200⁰C for 4 h in 5% H2/N2 and are shown in Figure 36.   

 

Figure 36: XRD spectra for the Sr2MgMoO6-δ anode calcined at different temperatures in a 5% H2/N2 atmosphere. 

(*) denotes the secondary SrMoO4 phase [113]. 
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At 1000⁰C and 1100⁰C, a secondary scheelite phase (SrMoO4) was detected at 27.5° 

(2θ).  A single phase material was formed at 1200°C and the bulk of the powder was calcined at 

this temperature. Recent work by Vasala et al. [107] suggests that the SrMoO4 phase is an 

insulator, but that it becomes SrMoO3 in atmospheres with low partial pressures of oxygen and 

the reduced structure is conductive. Thus, at 1200°C, a nearly single phase was achieved, and 

what traces of SrMoO4 were present (<1%) were deemed insignificant in regards to electrode 

performance. The final step in powder synthesis was attrition milling to achieve unimodal 

particle size distribution. The BET surface area of this calcined powder was found to be 4.711 m
2 

g
-1

, which is greater than SMM powders prepared elsewhere [21]. 

 

4.2.1.2 Electrolyte/GDC Preparation and Processing 

Most of the previous fuel cell experiments carried out with the SMM anode utilized 

LSGM as the electrolyte due to its higher ionic conductivity [21].  However, the material is quite 

brittle and still highly reactive; thus, 8 mol% Y203-ZrO2 (YSZ) electrolyte substrates were used 

for our anode evaluations.  YSZ powder (Daiichi Kigenso Kagaku Kogoyo Co., LTD) was first 

mixed into a slurry using the appropriate amounts of a 50/50 wt % xylene/ethanol solvent system 

and a fish-oil dispersant.  After milling for 4 h the plasticizers (benzyl butyl phthalate and poly-

alkalene glycol) and poly-vinyl butyral binder were added to the system and milled for 12 h.  

The slurry was then tape casted onto mylar sheets to a dried thickness of approximately 

50 µm. Pieces of this tape were cut and layered so that a green thickness of 150 µm was 

achieved. The stacked YSZ sheets were laminated at 100°C and 0.4 GPa. Laminates were cut 

into 1 cm diameter button cells generated by sintering at 1450⁰C for 2 h. The final thickness of 

the YSZ electrolytes was approximately 120µm, which provides a structurally sound support and 

allows for qualitative and quantitative anode performance comparisons. The GDC used in this 

study was prepared using a conventional co-precipitation method [108].  
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4.2.1.3 Button Cell Assembly 

Button cells were produced by first taking the YSZ electrolytes and applying a GDC 

buffer layer onto both sides and sintering at 1400⁰C for 2 h for optimal density. The first set of 

cells contained an anode approximately 40 µm in thickness of SMM and was fired on at 1100°C 

for 2 h. The second set of cells had a different anode composition, where the anode was 

composed of a 40 µm composite anode (50 wt%. SMM and 50 wt%. GDC). The composite 

anode was applied to one side and fired at 1150⁰C for 2 h. For both sets, a La0.85Sr0.15MnO3 

(LSM) based cathode was used. The cathode consists of a 10 µm LSM/GDC active cathode layer 

which was printed and then dried before adding a 40 µm LSM current collector layer. This 

cathode assembly was sintered at 1100⁰C for 1 h. 

 

4.2.1.4 Fuel Cell Testing  

Prior to testing, a pair of 6×50 mm platinum mesh (80 mesh woven) strips were attached 

with platinum paste to serve as the current collector. The cells were then mounted between two 

alumina flanges with mica washers for a compressed seal configuration shown in Figure 37.  

 

Figure 37: Fuel cell fixture schematic used in current-voltage-power (J-V-P) testing in this work [113]. 



79 
 

Each end of Pt mesh at both electrodes was connected to a thick sliver wire for the 

current lead and a thin wire for the voltage lead. The cell was heated to 800
o
C at a rate 2

o
C min

-1
 

in 50 sccm N2 on the anode and air on the cathode. After the target 800
o
C was reached, the fuel 

stream was slowly converted to the wet H2 fuel. A 0.25 A cm
-2

 constant current was loaded on 

the cell with 100 sccm wet H2 (97% H2, and 3% H2O) to the anode and 150 sccm air flow to the 

cathode. After the cell voltage stabilized for 20 h, the cell polarization curve (J-V curve) and 

electrochemical impedance spectrum (EIS) were taken to establish the cell baseline performance. 

The EIS were collected using a Solartron SI-1287 electrochemical interface and an SI-1252 

frequency response analyzer. An AC amplitude of 20 mV at frequencies ranging from 200 kHz 

to 0.1 Hz was applied for the EIS testing. The constant DC current load was supplied by a solid-

state load cell (TDI Transistor Device SD-1103). PH3 was added in the fuel downstream before 

the furnace. The fuel transport tubes were per-heated to over 150
o
C. After testing, the cell was 

cooled to room temperature by purging 30% H2 and 70% N2 to the anode. 

 

4.2.2 Results and Discussion 

4.2.2.1 Initial Performance of the SMM Anode in Clean H2 Fuel 

The goal of the initial tests was to establish a baseline performance for the pure SMM 

anode in order to later assess the effects of the phosphine additions on the degradation of the 

anode. Table 4 shows the cell performance for various anode sintering temperatures and 

indicates that the performance of the cell increases as the sintering temperature decreases.  

Table 4: Max power densities for both SMM and GDC anode. 
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This would suggest that the higher sintering temperature may alter the porosity level and 

triple-phase boundary area, and/or may result in potential interfacial reactions between the anode 

and electrolyte, even with a dense GDC interlayer. Sintering studies at temperatures below 

1100°C were investigated, but these temperatures were not found to be high enough for proper 

adherence of the anode to the electrolyte. The cells were found to be stable over the course of 48 

h, but the maximum power density achieved was only 110 mW cm
-2 

for the cell with the anode 

fired at 1100°C. Figure 38 shows an I-V-P plot for the GDC anode in the sample 6 condition. 

The OCV for each test in 3% wet H2 was 1.06 V, which was consistent throughout the 

experiments outlined in Table 4 indicating consistency in sealing.  

 

Figure 38: Performance of the pure GDC anode in 3% wet H2. 

 

This data was recorded at a time 12 h after reduction where maximum power density was 

observed. Under reducing environments, the GDC does exhibit low electronic conductivity, 

which means that it alone could potentially function as an anode. However, this test confirms 

low performance for a pure GDC anode indicating that it is either primarily an ionic conductor 

even in a reduced atmosphere or has low catalytic activity towards hydrogen oxidation. In either 
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case, these tests confirm that the compositions alone are not sufficient, but that as a composite 

high performance could be achieved.  

 

4.2.2.2 Performance of SMM/GDC Anode in Clean H2 Fuel and Clean Coal Syngas Blend 

In an effort to enhance the performance of the cell, the GDC was added to the anode 

matrix to form a 50/50 wt% mixture with SMM. The addition of the GDC within the anode to 

the baseline cell resulted in a cell performance of ~280 mW cm
-2

 in wet H2. This cell also 

remained stable for over 4 days without significant degradation (~0.008 %/hr, time not shown). 

Previous investigations suggest that structural changes to the ceria in the reducing atmospheres 

can decrease cell performance over time. The testing conducted in this study showed essentially 

no loss in performance when operating on pure H2 with the SMM/GDC composite anode. This 

was important to establish so that the possibility of the cell not deteriorating in the presence of 

H2 alone might be eliminated.  For an electrolyte-supported cell, this performance and stability 

was found suitable for the contaminant investigation.  Figure 39 shows the I-V performance 

curve for the baseline SMM/GDC cell in wet H2. 

 

Figure 39: (I-V-P) performance for SMM/GDC composite anode in wet H2 (3% H2O) [113]. 
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To establish the SMM/GDC anode as suitable for long term power generation in a coal 

syngas-based fuel stream, the anode must demonstrate reasonable performance in wet syngas 

with trace levels of impurities. To test the viability of this anode in a coal-based fuel 

environment, a cell was loaded and stabilized in wet H2. After power stabilization, the cell was 

exposed to a fuel environment with 34% H2, 31% CO, 19% CO2, and 16% H2O, which simulates 

a standard coal syngas composition. In Figure 40 the expected decrease in the cell potential can 

be seen as a result of the syngas fuel composition.  

 

Figure 40: Voltage vs. time for the electrolyte-supported SOFC with a SMM/GDC anode tested at constant current 

density (0.25 A cm-2) in a) H2 +3% H2O and b) clean syngas at 800°C [113]. 

 

The maximum power density of this cell in syngas was under 200 mW cm
-2

. The cell 

demonstrated stability in this syngas blend, which is promising for future application of this 

composite anode. However, the initial drop in potential upon switching over to syngas is almost 

200 mV. This is significantly higher than what is seen with the Ni/YSZ or Ni/GDC cermets, 

which typically experience voltage losses from switching to syngas fuel ranging from 20 to 80 

mV, leaving room for future studies on optimizing the performance of this cell in syngas through 

catalyst incorporation (other than Ni) to make the anode commercially competitive. 
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4.2.2.3 Performance of SMM/GDC Anode in H2 with 10 ppm PH3 

An identical SMM/GDC cell was brought to the 800⁰C testing temperature and 100 sccm 

wet H2 and 150 sccm air were delivered to the anode and cathode respectively. Once the cell 

reached temperature, the slow anode reduction in 3% wet H2 ensued until the open circuit 

voltage was observed. This voltage was found to be 1.046 V in wet H2 upon full reduction. A 

constant current load of 0.25 A cm
-2

 was then applied to the cell. With the load, the 

corresponding voltage was measured as 0.766 V. Figure 41 shows the initial cell stability in wet 

H2 for almost 20 h at this load level without 10 ppm PH3. After the initial 20 h break-in period, 

10 ppm PH3 was introduced into the fuel stream without unloading the cell. Figure 42 also shows 

a plot of the SMM/GDC composite anode in wet H2 for a period of ~160 h to demonstrate that 

changes to the potential are not a result of the anode degrading in a clean environment. The 

figure shows stability during this time period which means the changes to the voltage seen in 

Figure 41 are a direct result of phosphine inclusion into the fuel stream. 

 

Figure 41: Cell voltage and resistance vs. time for the electrolyte-supported SOFC with a SMM/GDC anode tested 

at 800°C and at constant current density (0.25 A cm-2) in a) H2+ 3% H2O fuel and b) H2+ 3% H2O with the addition 

of 10 ppm PH3 [113]. 
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Figure 42: Voltage vs. Time plot for the SMM/GDC composite anode in wet H2 for ~160 h. 

 

The 10 ppm PH3 introduction resulted in an initial 1-2 mV drop in the cell potential. 

However, the cell quickly re-stabilized and remained at that potential for approximately 40 h. 

During that time, the ohmic resistance remained constant at 0.47 Ω cm
2
, but the polarization 

resistance increased from 0.55 Ω cm
2
 to 0.70 Ω cm

2
, as quantified by the loaded EIS 

measurement that can been seen in Figure 41.  

The values of the ohmic resistance and polarization resistance can be determined through 

visual inspection of a Nyquist plot. Much research has been done in correlating the geometry of 

these curves to the individual electrical and electrochemical processes that occur during SOFC 

operation [109-111]. Using the fundamental theory from these previous works, the ohmic 

resistance was determined by the intersection of the first arc with the real impedance axis. For 

thick electrolyte membranes, such as those used in this work, the majority of the ohmic 

resistance is aligned with the electrolyte membrane, which accounts for the movement of ions 

across the electrolyte. The magnitude of the polarization resistance was determined by measuring 

the distance between the first and second intersections with the real axis. This resistance may be 

attributed to both the high and low frequency processes, such as charge transfer and mass 

diffusion, respectively. Equation 1 below shows the total resistance of the circuit: 
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∆Rtotal = ∆Ract + ∆Rconc +∆RΩ     (23) 

Where ∆Ract is the activation polarization, ∆Rconc is the concentration polarization, and ∆RΩ is the 

ohmic resistance. This fundamental theory was applied to the results to formulate initial 

conclusions about the performance of the cell over time. 

After the initial 40 h of stability in 10 ppm PH3, the cell potential decreased at a rate of 

about 2.8 mV h
-1

 over the course of the next 30 h. The series resistance increased to 0.16 Ω cm
2
 

and the polarization resistance continued to rise as well over this span. However, after 70 h in 10 

ppm PH3, the rate of cell degradation decreased to about 1 mV h
-1

 and the series resistance 

remained nearly constant while the polarization resistance increased about another 10%. The cell 

never re-stabilized beyond this time and continued to degrade at a similar rate. By the time the 

test was concluded, a 47% decrease in maximum power density was observed, as displayed in 

Figure 43. Because the cell failed to re-stabilize over a significant range of time, the test was 

concluded. 

 

Figure 43: J-V-P performance of SOFC with SMM/GDC anode in wet H2 before PH3 introduction and after 120 h 

of operation of 10 ppm PH3 [113]. 
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While degradation to this SMM/GDC anode was shown in these tests, it shows much 

higher resistance to phosphine poisoning compared to the standard Ni/YSZ anode on an 

electrolyte-supported cell. Of course, we differentiate between anode-supported and electrolyte- 

supported designs, since the rate of anode degradation as a result of poisoning is dependent upon 

anode thickness. The electrolyte-supported platform was used in this study in order to accelerate 

degradation of the anode (due to minimal anode thickness) for rapid evaluation purposes. In 

Figure 44, the voltage versus time comparison can be seen which indicates much stronger 

tolerance to PH3 for the SMM/GDC anode.  

 

Figure 44: Comparison of the performance at constant current density (0.25 A-cm-2) in wet H2 and with addition of 

10 ppm PH3 between Ni-YSZ anode cell and SMM/GDC anode cell [113]. 

 

Within 30 h, the Ni/YSZ cell voltage drops to 0 V (~3.1% h
-1

) using the same testing 

protocol and conditions. Extrapolation of the performance curve for the SMM/GDC anode would 

result in complete cell failure after approximately 750 h. The complete cell failure in this context 

indicates the point where the cell potential will reach a zero value. Figure 45 shows the detailed 

progression of the Nyquist plots through the duration of the testing.   
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Figure 45: EIS curves at 0.746 V bias before and after introducing 10 ppm PH3 impurity into the H2 fuel stream 

[113]. 

 

After 50 h, no change in the ohmic resistance and the high frequency arc was observed. 

The only change during this time was an increase to the second arc. This increase in the second 

arc did not however affect the cell performance during this time. The images suggest small 

changes in the bulk anode microstructure throughout the duration of the testing. However, this 

microstructure is a far contrast from what is typically seen for poisoning of the Ni/YSZ anode, 

where the formation of phosphide and/or phosphate phases throughout the bulk of the anode 

results in vast microcracking, anode densification, and microstructural failure [8,50]. Figure 46 

shows the microstructural morphology of a Ni/YSZ anode in syngas containing 10 ppm PH3. 

Both particle coarsening and nickel migration to the anode surface are observed.  
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Figure 46: Ni/YSZ anode in left) clean syngas  and right) syngas + 10 ppm PH3 [8]. 

 

Figure 47 shows the difference in bulk anode microstructures between the poisoned and 

unpoisoned sample. The images suggest small changes in the bulk anode microstructure 

throughout the duration of the testing. Therefore, the effect of anode microstructural changes 

must not be the sole culprit for the performance degradation for the SMM/GDC composite 

anode. It was identified after post-mortem investigation that the microstructure of the Pt contact 

was vastly altered. Figure 47 shows that the Pt contact material densified extensively and 

delamination was shown along the contact area between the anode and the lead wires. Both 

densification and delamination of these leads may contribute significantly to the restriction of 

fuel diffusion to the anode surface and current collection.  
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Figure 47: SEM micrographs of the SMM/GDC anode after testing in A) wet H2 and B) wet H2 with 10 ppm PH3. 

There appears to be no significant change to the microstructure of the bulk of the anode [113]. 

  

 

 

Figure 48: Pt contact paste after exposure to 10 ppm PH3. The Pt layer densified throughout the course of this test 

[113]. 

 

During the next 20 h, a 34% increase in the ohmic resistance and another increase in the 

second arc were observed. From this point to the conclusion of the test, increases to the 

polarization and series resistance were minimal. Figure 49 indicates that the reasoning for the 
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increase in series resistance may be due to slight delamination at the electrode/electrolyte 

interface, which would suggest that ion and/or current flow is being hindered.  

 

Figure 49: SEM micrograph of the active anode/electrolyte interface after PH3 poisoning test for the SMM/GDC 

composite anode [113]. 

 

By the end of the test, the magnitude of the resistance from the first arc remains about the 

same, meaning that low frequency processes and increases to the ohmic resistance are ult imately 

responsible for the decrease in performance of the cell.  

 

4.2.2.4 XPS/EDS Analysis 

The XPS spectrum along the anode/electrolyte interface from a cross-sectioned sample 

was completed to identify the formation of secondary phases, such as phosphide or phosphate 

compositions. One possibility would be for phosphorus to exist at the interface as either a 

phosphide or phosphate. Xu et al. [8] showed distinct peaks for P 2s and P 2p at 192 eV and 134 

eV, respectively, where the 134 eV peak from their work corresponded to possible phosphate 

presence in the form of either P2O5 or PO4
3-

. Their XPS analysis also indicated potential nickel-

phosphide phase formation from their Ni 2p 3/2 peaks. These results were obtained using similar 

testing conditions to the work performed in this study; the only difference being that Xu et al. 
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completed the testing in syngas with PH3, which will be a focal point of future work for this 

SMM anode. 

The XPS results from this fuel cell test show that no P 2s peak was detected near the 

active interface. Figure 50 shows the overall spectra near the active interface with distinct peaks 

for each of the key anode components. Figure 51 shows an enhanced view of the range where the 

P 2s peak would be expected. This lack of a peak is evidence to suggest that the phosphorus is 

not residing in the active interface.  The P 2p peak however is more difficult to classify. Figure 

52 is the magnified XPS spectra corresponding to the P 2p peak.  

 

 

 

Figure 50: XPS spectra of the anode/electrolyte interface following exposure to 10 ppm PH3 [113]. 
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Figure 51: An enhanced view of the XPS spectra with no change in signal at 192 eV where the P 2s peak would be 

expected [113]. 

 

 

Figure 52: An enhanced view of the XPS signal in the 134 eV range corresponding to the Sr 3d signal. This signal 

also corresponds to the P 2p peak and thus is not adequate for elemental qualification [113]. 
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A fairly well-defined peak is present in the range of 132-134 eV, which could suggest 

that phosphate compounds were present in our sample. The problem is that this peak coincides 

with the Sr 3d peak, making it difficult to identify this peak using XPS alone. To help rectify this 

diagnostic problem, an EDS analysis was conducted in a similar location to distinguish between 

the two elements. The spectral plot in Figure 53 shows a very distinct Sr peak and a very weak 

signal for P.  

 

Figure 53: EDS scan of the anode/electrolyte interface. The scan has a well defined Sr peak and a very weak signal 

for P [113]. 

 

This along with the lack of a P 2s peak cannot rule out that phosphorus is responsible for 

the degradation, but these results indicate a low P presence in the active region, thus diminishing 

the potential for microstructural alteration at the anode/electrolyte as the sole degradation 

mechanism.  

 Without thermodynamic analysis available, an experimental approach was taken for our 

testing condition to determine whether or not each of the raw constituents in the SMM structure 

have any noticeable interaction with P. This set of testing was carried out through exposure tests 

in the same testing chamber as the fuel cell experiments. The raw powders used in the solid-state 

synthesis of the SMM powder were all heated to 800°C to get them in a state free of carbonates. 

The powders were then mixed into an ink and coated onto a YSZ substrate, so that the powders 



94 
 

can be sealed. They were then heated up to the testing temperature of 800°C using the identical 

heating protocol as for the fuel cell tests. Samples in clean H2 and H2 with 10 ppm PH3 were 

compared to the raw powders using XPS to observe any potential interactions with P. Each of the 

XPS survey scans for Sr, Mg, and Mo in clean H2 can be seen in Figures 54, 55, and 56 

respectively. These plots all identify the C1s peak at ~284 eV indicating that the peaks were 

properly shifted. The Sr 3d5/2 peak can be seen in a range between 132-135 eV for the clean 

sample. The fact that 2 peaks are present in this region suggest that both elemental Sr and SrO 

are present in the clean reduced sample. 

 

Figure 54: XPS peaks of the clean reduced raw Sr powder. 

 

 The peak corresponding to the Mg 2p orbital is seen in Figure 55 at a binding energy of 

~49.2 eV. This peak is very broad and the presence of a second peak can potentially be detected. 

Like Sr, this is indicative of a mixture of elemental Mg and MgO for the sample after reduction 

for 48 h.  
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Figure 55: XPS peaks of the clean reduced raw Mg powder. 

 

 In the case of the reduced MoO3 powder, there are three peaks present. The peak 

locations are 236.2 eV, 232.5 eV, and 229.2 eV. According to the NIST XPS database, these are 

closest to MoO2, which is a reduced form of MoO3. While this is not the same redox couple, 

Mo(VI)/Mo(V), that is seen for the Mo in the SMM structure due to its 6-fold oxygen 

coordination, this is the type of evolution that would be expected in a wet H2 environment for a 

pure MoO3 sample. 
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Figure 56: XPS peaks of the clean reduced raw Mo powder. 

 

 The peaks in the above figures represent the baseline case where no PH3 impurity is 

added. These exposure tests were done to 48 h, which is beyond the point where degradation 

began to set in for the SMM/GDC anode. The same exposure time was carried out for the 

samples for wet H2+10 ppm PH3. The changes that are seen in the peak positions after this time 

could help assess interactions between each of the raw constituents and the P. In the case of the 

Sr exposure, the Sr 3d5/2 peak and the P2p peaks overlap so it is difficult to classify. Figure 57 

shows the two apparent peaks corresponding to P 2p which both appear to be phosphates. To 

classify the Sr, the 3p spectra can be used. The Sr peak for this can be seen in Figure 58. This 

peak is located at a slightly lower binding energy than carbon but they do not overlap. The peak 

position for SrO is ~270-271 eV, which this peak lies right between (270.8 eV). This combined 

with the P 2p peaks suggests that interactions between Sr and P are limitied to surface 

phosphates, which could easily have been formed during exposure to the ambient. 
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Figure 57: XPS for the overlapped Sr 3d and P 2p peak region. 

 

Figure 58: XPS for the Sr 3p spectra for the poisoned sample. 

 

For Mg, there was no observed peak shift between the samples exposed to clean and P-

laden fuel. Figure 59 displays the Mg 2P peak. The peak position to of 49.2 eV is nearly identical 
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to that of the clean sample in Figure 55. Additionally, the only peak detectible in the P 2p region 

is at 134 eV (Figure 60), that of phosphate rather than phosphide formation with Mg.  

 

Figure 59: Mg 2p peak for the poisoned MgO sample. 

 

 

Figure 60: P 2p peak for the poisoned MgO sample. 
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 Lastly, changes to the MoO3 sample peaks were compared with and without PH3 

impurity. Figure 61 shows that 3 peaks exist for the sample exposed to 10 ppm PH3 in wet H2 at 

236.2 eV, 232.8 eV, and 229.3 eV.  

 

Figure 61: Mo 3d spectra for the poisoned PH3 samples. 

 

Almost no shifts to the 3 peaks were seen when comparing the clean and poisoned 

samples. Also, a similar phosphate peak was observed as with the Sr and Mg samples. To get an 

idea of what type of XPS peak would form should the Mo and P react chemically to form a solid 

Mo-P phase, a recent publication by Bai et al. shows their P 2p spectra for their Mo-P hydro-

desulfurization catalyst [131]. 
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Figure 62: XPS spectra for the Mo 3d and P 2p regions for a solid MoP hydro-desulfurizaiton catalyst [131]. 

. 

If the Mo were to chemically react with the P to form a Mo-P phase, a strong peak would 

be seen at a binding energy around 129 eV. This is similar for the other SMM constituents, as 

this energy range (128-130 eV) corresponds to P bonding with another metal. This lack of any P 

2p peak in that range for any of the raw powders indicates that for our testing conditions 

interactions between the P and the other metals are limited to surface phosphate formation which 

is consistent with the fuel cell test carried out previously.   

 

4.2.3 Conclusions 

A SMM/GDC composite SOFC anode composition was fabricated and tested on an 

electrolyte-supported platform in humidified H2 and coal syngas fuels. The GDC was found to 

greatly improve the performance of the cell and is primarily aiding in the anode’s ionic 

conduction. The cell exhibited stability in wet hydrogen and the performance of the cell 

remained the same after the first 50 h in 10 ppm PH3. After this however, the cell potential 

decreased and never fully re-stabilized. The rate of degradation of this composite anode was 

much lower than that of the standard Ni/YSZ anode, which signifies the value of this work. The 

XPS and EDS spectra of the anode/electrolyte interface did not distinctly confirm the presence of 

secondary phase formation. This result is in far contrast to that seen for typical Ni/YSZ anodes 
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exposed to phosphine. We are initially attributing power degradation to slight anode de-

lamination and mass diffusion limitations from contact paste densification. However, due to the 

initial stability of this cell in 10 ppm PH3, future work will focus on modifications to the anode 

architecture and current collection in order to optimize performance and demonstrate increased 

contact stability. In addition, fundamental mechanistic studies are required to better understand 

the lower rate of electrochemical and microstructural degradation for this ceramic composite 

compared to the typical Ni/YSZ cermet anode. Better understanding of the interaction of the 

phosphine with this all-ceramic anode will provide valuable information in the pursuit of 

developing a high-performance anode that may function on coal-syngas fuel with reasonable 

levels of H2S and PH3 contaminants. 

 

 

4.3 In Situ Formation of a Solid Oxide Fuel Cell (SOFC) Cermet Anode by 

NiWO4 Reduction 

The Ni-cermet compositions, typically Ni combined with YSZ, are the traditionally used 

anode for solid oxide fuel cell (SOFC) applications over the past few decades.  This cermet is 

conventionally processed by initially creating a composite mixture of micron-sized NiO and the 

electrolyte oxide powders.  After incorporation within the SOFC microstructure, the Ni-cermet is 

formed by reduction during the operation of the fuel cell.  Although this general process for 

forming the Ni-cermet SOFC anodes have proven to be economical and resulted in fuel cells 

with adequate performance characteristics, the overall final anode microstructure can be further 

optimized.  In the end, the stated process results in an inhomogenous mixture of micron-size 

agglomerates of Ni and YSZ particles throughout the anode, which limits the overall cell 

performance by failing to maximize the triple-phase boundary (TPB) sites that control the 

electrochemical oxidation processes.   

In order to improve the dispersion of the metal catalyst throughout the cermet anode 

structure, researchers developed processes of impregnating porous electrolyte structures with 

aqueous and non-aqueous solutions containing Ni, Co, Cu, and/or precious metals dissolved 
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species (or dispersed nano-particulates) to form the cermet [114-116]. After multiple 

impregnation steps, the anode structure is dried and potentially fired to higher temperatures 

resulting in the formation of metal precipitates throughout the porous electrolyte structure.  

Researchers have shown that the incorporation of metal nano-catalyst into the anode structure by 

impregnation methods resulted in enhanced SOFC performance [117].  Unfortunately, the 

solution impregnation process typically does not result in homogeneous distribution of the nano-

precipitate due variations in solution wetting and drying characteristics.  The final structure 

usually results in a concentration gradient from the surface into the porous anode interior 

consisting of agglomerated nanomaterials.  Therefore, although the anode performance is 

increased by the incorporation of the nano-catalyst, the anode structure and cermet homogeneity 

is still not optimized or ideal.      

Catalyst researchers have shown methods of in situ reduction of complex ternary oxide 

solid-solution to form oxide-supported nano-metal catalyst for various reforming applications.  

This process is dependent upon forming an oxide compound with base and/or precious metals 

dissolved into one of the structures sites.  For example, Goldwasser et al. formed a perovskite 

solid solution of La1−xCaxRu0.8Ni0.2O3 [118].  During the methane reforming application, a 

homogenous mixture of 9-17 nm Ni catalyst particles precipitated over the lanthanum ruthenate 

support particles to enhance catalytic activity.  A similar strategy could be utilized for the 

formation of nano-enhanced SOFC anode structure, where a ternary oxide composition 

containing Ni could be in situ reduced to form a Ni cermet composition.  An interesting 

candidate for this potential process is the NiWO4 composition. The NiWO4 composition has a 

general wolframite structure that can be readily reduced to Ni-WO3-x mixtures at various oxygen 

partial pressures.  The defective WO3 composition is a known mixed ion-electron conductor 

(MIEC), which can potentially substitute for the use of doped-ZrO2 and CeO2 typically used 

within the SOFC anode.  At high H2 content and low oxygen partial pressures, the WO3-x 

composition can reduce to WO2 and finally to elemental W. Therefore, depending upon the H2 

fuel concentration and current load, the anode may consist of a mixture of nano-Ni supported 

upon a mixture of WO3/WO2/W.   

A few researchers tested SOFCs containing tungsten within the anode structure with 

varying results [119,120]. A cermet Ni-WO3 anode composition for SOFC applications has not 
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been reported in literature, although similar Ni-W-O compositions were used as a catalyst for 

dehydrogenation [121], catalyst for polymer fuel cells [122], H2S and PH3 sensing material 

[123], and hydro-desulfurization (HDS) [124].  

The objective of this work was to evaluate the viability of in situ reducing the NiWO4 

composition to form a Ni/WOx cermet composition for application as a potential SOFC anode. 

Fuel cell tests (current-voltage-power measurements) were used to measure the electrochemical 

performance of the initial trial of this anode composition. The incorporation of finite amounts of 

YSZ and Gd-doped CeO2 (GDC) electrolytes within the NiWO4 composition were also 

investigated in order to access effects on thermo-mechanical stability and electrochemical 

performance. Finally, due to previous demonstration by other researchers to increase hydro-

treating catalyst performance by incorporation of phosphorus into Ni-W composites, the 

electrochemical stability of the NiWO4 derived anode was tested as a function of time in H2 fuel 

with 10 ppm PH3 impurity.  

 

4.3.1  Experimental procedure 

Although the overall performance of the fuel cell is known to be low, an electrolyte-

supported SOFC architecture was utilized in order to provide a simple platform to alter the anode 

composition without requiring alterations to the electrolyte and cathode microstructures.  In this 

work, the active anode layer is considered to be the first ~15-20 m layer (of one specific 

composition and microstructure) in contact with the electrolyte.  The active anodes tested in this 

work were: 1) pure Ce0.9Gd0.1O2 (GDC), 2) pure NiWO4, 3) NiWO4/YSZ composite, and 4) 

NiWO4/GDC composite.   A NiWO4 current collection layer was printed over all active layers 

accept the pure GDC layer.  Commercial NiWO4 powder (Alfa Aesar, USA) with an average 

particle size of ~5 m was used within the anode experiments.    

The electrolyte-support membranes were fabricated from 8 mol% YSZ powder (Daiichi 

Kigenso Kagaku Kogoyo Co., LTD, Japan) by a tapecasting and lamination process.  The 1 cm 

diameter YSZ button cell membranes were sintered at 1450 °C for 2 hr to full densification. A ~3 

m thick Ce0.9Gd0.1O2 (GDC) buffer layer was incorporated between the electrolyte and 

electrodes by screenprinting for both the anode and cathode in an effort to prevent potential 
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interfacial reactions with the Zr. The GDC was processed using a co-precipitation method [10]. 

This material was then screen-printed and fired onto the electrolyte at 1350°C.  Each of the 

subsequent anode compositions were sintered at the minimum temperature necessary for 

adhesion to the electrolyte. A standardized La0.85Sr0.15MnO3 (LSM) based cathode was used for 

each test to keep the anode composition as the primary variable. The cathode consisted of a 10 

µm LSM/GDC active cathode layer which was printed and dried before adding a 40 µm LSM 

current collector layer. The cathode assembly was sintered at 1100⁰C for 1 h.  

The current collection contact layer for the anode was comprised of Pt paste on top of a 

Pt mesh. And upon sealing the system with virgin mica rings and sufficient compression, the cell 

was heated up to 800°C over 4 h with 50 sccm N2 flow for the anode side and 50 SCCM air for 

the cathode. Once the operating temperature was achieved, the anode stream was slowly reduced 

over 2 h by incrementally increasing the flow of H2. 100 sccm wet H2 was used as the anode 

testing condition (97% H2, 3% H2O) with 100 sccm air for the cathode. Cell polarization curves 

(I-V curves) and electrochemical impedance spectra were taken for during the test to establish 

baseline cell performances. This data was collected using a solid state load cell for constant DC 

load (TDI Transistor Device SD-1103) and a Solatron SI-1287 interface and an SI-1252 

frequency response analyzer for the EIS data.  

 

4.3.2  Results and discussion   

As previously stated, the NiWO4 was deposited by screenprinting onto an electrolyte-

support consisting of a ~100 m thick YSZ-supported membrane with a thin, dense GDC 

coating.  The porous NiWO4 was bonded onto the membrane at a temperature of 1000 C for 1 h, 

which is ~300 C lower in temperature than typical NiO/YSZ mixtures.  This adhesion 

temperature is close to that utilized for typical lanthanum ferrite and cobaltite cathode 

compositions, potentially allowing for co-firing of anode and cathode compositions for specific 

SOFC architectures.  After full reduction of the anode in the 3% wet H2, the anode remained 

firmly attached to the electrolyte membrane.  Figures 63 and 64 display the XRD patterns taken 

from the top surface of the NiWO4 anode before and after full reduction at the 800 C testing 

conditions.   



105 
 

 

 

Figure 63: XRD of the NiWO4 anode surface before reduction. 

 

Figure 64: XRD of the reduced anode surface after 48 h in 3% wet H2. (.) corresponds to α-W, (*) to Ni, and (■) 

WO3. 
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Figure 63 is that of the pure NiWO4 anode as anticipated after sintering in an oxidizing 

environment. In Figure 64 however, the peaks corresponded to that of BCC α-W, Ni, and small 

peaks corresponding to WO3. Unfortunately, the peak intensities for the mixed-conducting WO3 

phase are rather weak indicating that the metallic W was most prominent near the anode surface. 

This plot does suggest however that there is some mixed conducting nature to the bulk anode 

during reduction with a constant current flux.  

Figure 65 displays an SEM micrograph of the anode structure before reduction and 

Figure 66 is after testing in H2 for 48 h.  Figure 65 shows that the anode consists of singular 

phase with well-dispersed porosity throughout the microstructure.  As shown in Figure 66, after 

testing, the level of porosity has decreased. Additionally, some changes to the particle geometry 

are observed.  

 

Figure 65: SEM image of a clean un-reduced NiWO4 anode.  
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Figure 66: The NI-W anode after 48 h run in clean H2. 

 

It seems that a dispersion of particulates (Ni particulates), though inhomogeneous, 

decorates the surface of larger granular phase (Figure 66).  This micrograph demonstrates that 

the method of in situ reduction could be utilized to form a cermet anode structure consisting of 

dispersed nano-metal particulates over a MIEC oxide support structure, but that the high partial 

pressure of hydrogen makes it difficult to control the microstructure and phase evolution.      

The current density-voltage-power (I-V-P) measurement was completed on the fuel cell 

down to a current density of ~0.3 A cm
-2

 at 800°C.  All fuel cells were test with the same 

protocol previously described, and after reduction, all cells showed a similar OCV value of ~1.06 

V.  Figure 67c shows the I-V-P data collected for one of the electrolyte-supported SOFCs with 

the reduced NiWO4 anode. 



108 
 

 

Figure 67: Cell potential -power density-current density performance for an electrolyte-supported SOFC button cell 

at 800°C for the following defined compositions. 

 

From this current sweep, a respectable maximum power density of ~104 mW cm
-2

 was 

attained.  Subsequent tests with this anode composition (and microstructure) yielded similar 

performance.  The power achieved from this cell shows the potential of in situ forming a cermet 

anode from a singular ternary oxide composition.  

In order to compare against the typical NiO/YSZ compositions, a 50/50 vol% 

NiWO4/YSZ mixture within the active layer was tested.  The use of the pure NiWO4 current 

collection layer was retained for these experiments.  Figure 67b displays the I-V-P data collected 

for the testing of this composite anode.  The NiWO4/YSZ mixture showed a slight increase in 

performance, with a maximum power density of 116 mW cm
-2

 achieved with this modification. 

One potential explanation for this slight performance increase would be due to the increase in 

ion-conducting sites (due to the increase in electrolyte material); but, the increase may also be 

attributed to a general modification in the microstructure that may affect anything from charge 

transfer to fuel/steam transport.   For this NiWO4/YSZ composite, a higher adhesion temperature 

(150°C higher) was required to bond the active layer to the GDC barrier layer.  This increased 
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temperature led to further densification of the anode which would limit diffusion, and thus, limit 

electrochemical reaction rates. 

In an effort to reduce the sintering temperature needed for sufficient adhesion, the YSZ 

was replaced in the active anode layer with a nano/micro-GDC mixture. The resultant 50/50 

vol% NiWO4/GDC mixture anode sintered onto the electrolyte at 1050°C. This composite anode 

generated a maximum power density of ~164 mW-cm
-2 

at 800 C using wet H2 fuel (Figure 67a).  

In order to better understand the contribution of the GDC, a similar fuel cell consisting of only a 

porous GDC anode (with no NiWO4 component) was tested at the same conditions.  The GDC 

layer was fired onto the GDC-coated YSZ membrane (of the same thickness) at 1100 C for 1 h.  

Figure 67d shows the I-V-P data collected from testing this cell at the same conditions 

previously used for the other anode architectures.  The cell showed relatively low performance 

with a maximum power density of ~82 mW cm
-2

 at 800 C in H2 fuel.  Although the power was 

relatively low, the pure GDC anode demonstrated ~70% of the performance of the reduced 

NiWO4 composition, and nearly 50% of the NiWO4/GDC anode mixture.  Therefore, it may be 

concluded that the reduced NiWO4 anode significantly lacks the contribution of an ionic carrier 

phase and that the present W-oxide phases are not sufficient for oxygen transport and/or 

exchange.       

Extended loading testing of the NiWO4/GDC anode was completed by holding the pre-

reduced sample at a constant load of 0.15 A-cm
-2

 for approximately 20 h at 750 C to confirm 

stability of the anode in pure H2 (Figure 68). The sample shows <0.2% power loss over this 

testing period.  The slight fluctuation in the cell voltage during the initial 20 h run was attributed 

to the drastic change in temperature and humidity of the ambient overnight. 
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Figure 68: Cell voltage as function of time for an electrolyte-supported SOFC button cell with a NiWO4/GDC 

anode tested at a current density of 0.15 A-cm-2at 800°C. 

 

After 24 h, 10 ppm PH3 was added into the H2 fuel stream. Within a matter of minutes, 

the cell voltage began to decrease. During the first 5 h of impurity testing, the rate of degradation 

was approximated at 0.006 V-h
-1

. Beyond that time, the degradation rate increased to 0.015 V-h
-

1
. The cell voltage decreased at this rate until it reached 0.05 V, after which the PH3 impurity was 

cutoff and the cell was cooled. 

The EIS spectrum of the cell in clean H2  showed an ohmic resistance of ~1 Ω cm
2
, which 

is rather high but can be attributed primarily to the thick electrolyte (~100 µm). Additionally, the 

increased ohmic resistance could also be attributed to the poor contact between the ion carriers 

and the Ni and W particles. The initial total polarization resistance was found to be 2.4 Ω cm
2
. 

This elevated resistance in comparison to the traditional Ni/YSZ electrolyte supported cell was 

attributed to both diffusion limitations and a lack of a homogeneous anode matrix resulting from 

our in situ reduction process. After running the cell for 45 h in 10 ppm PH3, the total cell 

resistance increased to over 10 Ω cm
2
. The EIS data for the cell in clean H2 and H2 + 10 ppm PH3 

under 300 mV DC bias can be seen in Figure 69. 
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Figure 69: EIS data for the NiWO4/GDC anode before and after impurity addition. 

  

  Cross-sectional SEM images taken from the cell showed that the realtaively uniform 

anode microstructure in the clean, reduced environment was replaced with numerous coarse 

particulates after poisoning. Previous research has shown that this concentration of PH3 in the 

fuel stream leads to different attack mechanisms for the traditional Ni/YSZ cell. Xu et al [11] 

found that for an anode supported Ni/YSZ cell operating in syngas with 10 ppm PH3, Ni 

migration to the anode surface in the form of liquid Ni-P phases was the predominant feature of 

the micro-structure and that Ni2P5 was the most probable resultant based on post-test 

characterization and thermodynamic analysis.   X-ray photoelectron spectroscopy (XPS) of the 

anode surface contained strong peaks for the phosphorus 2s and 2p core levels as seen in Figures 

70 and 71. Furthermore, and EDS scan of the anode-electrolyte interface of this anode seen in 

Figure 72 also indicates a strong P peak. 
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Figure 70: XPS survey scan for the NiWO4 poisoned sample. 

 

Figure 71: XPS scan for the P2p peak. 
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Figure 72: EDS scan of the anode-eletrolyte interface. 

 

The phosphorus 2p peak positioned at about 133.5 eV suggests that phosphate presence 

exists on the electrode surface. However, the lack of a peak in the 126-128 eV range indicates 

that Ni-P and W-P chemisorption did not occur for this fuel condition.  The PH3 did however 

change the microstructure and therefore, it is reasonable to state that the 10 ppm concentration of 

PH3 for the NiWO4-based anode experiences a similar degradation mechanism to the Ni-YSZ 

cermet. 

 

4.3.4  Conclusions 

The work demonstrated the method of in situ reduction of a ternary oxide composition to 

form cermet composition that may be utilized as a SOFC anode.  In this work, the NiWO4 

composition was chosen since the reduced oxide would result in a mixture of Ni metal and a 

MIEC oxide, which is the typical cermet combination required for the electrochemical reaction 

within SOFC anodes.  The proposed NiWO4 composition successfully demonstrated adequate 

performance for an un-optimized microstructure on a rather thick YSZ membrane utilizing LSM 
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as the cathode.  Additionally, the anode sintering temperatures were compatible with 

conventional SOFC cathodes making co-sintering of the anode with high-performance ferrite and 

cobaltite cathodes possible.  Further testing of the reduced NiWO4 anode indicated that there 

may be a deficiency in ionic carrier paths and reaction sites within the anode structure, where the 

performance of the formed cermet was improved with the incorporation of both YSZ and GDC 

into the anode matrix. GDC in particular increased the power output of a single cell by almost 

58%.  Although the NiWO4 composition did not result in the optimal performance, the technique 

of utilizing an in situ reduction process of a ternary oxide (containing base or precious metals) 

showed great promise and further ternary compositions that result in cermets containing more 

redox stable MIECs will be attempted.  This work also verified that a Ni-WOx-GDC anode 

demonstrated similar problems to the Ni/YSZ cermets in regards to PH3 tolerance; specifically, a 

coarsened microstructure and surface phosphate/nickel-phosphate presence caused cell failure 

within 45 h. 
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Chapter 5- A Sr2MgMoO6-δ/Gd0.1Ce0.9O2 Anode Supported SOFC 

 

5.1 Introduction 

 With improved tolerance to 10 ppm PH3 demonstrated for this composition compared to 

the Ni/YSZ anode in the previous chapter, further investigation is warranted. However, there are 

quite a few things that can be done to the original cell architecture to increase the commercial 

potential. One issue is the electrolyte-supported platform. As previously described, the ohmic 

resistance of the cell is comprised of contributions from three parts, the anode, cathode, and 

electrolyte. For the traditional Ni/YSZ, LSM/YSZ, YSZ electrolyte supported configuration, the 

anode and cathode ohmic resistances are negligible in comparison to the electrolyte. Part of this 

is attributable to the material, YSZ, but primarily it is due to the thickness needed for adequate 

mechanical support from sealing and thermal cycling.  

One method to alleviate this is to change the electrolyte material. Most previous literature 

on this anode has utilized a LSGM electrolyte, which exhibits far superior ionic conductivity at 

800°C and also has better chemical compatibility than that of YSZ [21]. However, the 

mechanical strength of this material is only 30% of YSZ, making it impractical for use [126]. 

The same composition that has been used as the barrier for H2S tolerance, GDC, has also been 

used for SOFC electrolytes at intermediate temperatures. It to has higher ionic conductivity than 

YSZ and also has less likelihood of interactions with the Sr in the anode. The only drawback to 

this material is its propensity to reduce from CeO2 to Ce2O3 in environments containing high 

partial pressures of H2 at 800°C resulting in potential leaking, partial direct combustion, and 

ultimately cell failure. This fact makes syngas or CO fuel a far more attractive option than 

humidified H2. If the reduction of Ce can be managed through proper fuel selection and reduced 

operating temperatures, then this electrolyte could prove to be a better fit.  

The other way to increase performance is to consider an anode supported configuration. 

An anode with enough thickness (>500 µm in most cases) can serve as the mechanical support, 

making it possible to apply an electrolyte between 10 and 30 µm that results in a decrease of the 

overall ohmic resistance and thus an increase in maximum power density. Specifically, the 
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ohmic resistance is linearly related to the thickness of the electrolyte, so an order of magnitude 

decrease to the electrolyte thickness should greatly improve the overall power production. Leng 

et al. [127] developed a SOFC with a 10 µm GDC electrolyte that was made via solid-state 

synthesis. Using a Ni/GDC type anode and a LSCF cathode, they showed a maximum power 

density of 578 mW-cm
-2

 at 600°C in 3% wet H2. However, they do note significantly lower OCV 

at 600°C, 0.86V, than for the YSZ electrolyte at that temperature and fuel condition which 

suggests electronic leaking is an issue for their design. For comparison to a GDC electrolyte 

supported cell, Zha et al. [128] show an increased OCV of 0.95 V at the same 600°C and a 

performance of only 220 mW-cm
-2

 with a 210 µm thick electrolyte. While long term stability 

analysis has not been conducted for this electrolyte, these two works make it seem that the 

tradeoff for increased performance with the anode support is the increased likelihood of leaking.    

There are a few concerns that must be considered with the new SMM/GDC anode and 

GDC electrolyte setup. First is the CTE match between the SMM and the GDC during co-firing. 

The further apart the CTE’s are the more difficult it will be to preserve a structure that is free of 

bends and/or cracks. The next is to make sure that sufficient porosity of the support for gas 

diffusion is maintained after the co-firing stage. As outlined previously, there are several 

different pore forming options that help to preserve this porous network through all of the firing 

cycles. The last major concern is the chemical stability of the materials during the high 

temperature processing. At the typical GDC sintering temperatures (1350-1450°C), the volatility 

of Mo is such that it can be lost from the material [21]. The high vapor pressure of MoO3, the 

raw starting material for SMM synthesis, at its melting point (~800°C) makes it possible to 

vaporize at temperatures higher than this and thus escape the structure.  As such, the maximum 

sintering temperature before significant losses in Mo in the double-perovskite structure will have 

to be identified. However, reducing the maximum allowable sintering temperature comes with a 

decrease in density of the GDC. So, infiltration techniques using GDC nanopowders that 

densifies at lower temperatures will be incorporated after initial firing in order to achieve full 

densification of the electrolyte. The work in this chapter will first define a sound protocol for 

anode-supported cell fabrication including support processing, electrolyte densification, and 

cathode application.  Future work will include cell sealing and testing using a wide range of fuels 

as well as coal contaminants. 
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5.2 Experimental Procedure 

 The following sections outline the several processing steps required to obtain a full cell 

that can be evaluated for electrochemical performance and stability. 

 

5.2.1 Anode Support Fabrication 

5.2.1.1 Tape Casting and Hot Pressing 

 The raw powders were prepared in an identical fashion to those synthesized in Chapter 4. 

These materials were each used in a 50/50 volume percent mixture for the tape casting 

formulation. The pore former selected for this process was Pencook 30 rice starch (surface area 

of 0.8 m
2
g

-1
). This organic makes up 50 volume percent of the overall solids loading of the 

slurry. The rest of the system is the same as was used for YSZ tape casting from Chapter 3 

utilizing the same volume percentages. The slurry was milled overnight and cast using the doctor 

blade to approximately 40 µm in thickness. 25 layers were then stacked until a green thickness of 

1 mm was achieved. The sample was finally vacuum sealed in preparation for lamination of the 

layers. Once sealed, the samples can then be pressed. The only difference between the YSZ 

pressing procedure and this is the role that the pore former has on the lamination process. A 

study was performed to identify the optimum pressing condition for these samples.   

 

5.2.1.2 Sample Bisquing 

 With a laminated green support, samples can be cut out and thermally treated to remove 

organics and increase mechanical strength. This process is known as bisquing, which occurs at a 

temperature at the onset of particle sintering. To identify the temperature at which all organics 

are removed from the system, a thermogravimetric analysis (TGA) run was carried out. This 

made it possible to determine the right heating rates and holds to remove the organics without 

distorting the sample geometry. After organic removal, the additional temperature increases help 

to form a substrate strong enough to withstand pressures from electrolyte deposition.      
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5.2.3 Electrolyte/Cathode Application 

 With sufficient strength, the bisqued supports can withstand printing of the electrolyte 

coating. The deposition of the electrolyte ink was completed stensilling the ink over the substrate 

using a 230 count mesh screen.  A rubber blade was used to spread the ink across the sample so 

that a layer with an approximate thickness of 15 µm could be generated. This layer was dried in 

an oven at 60°C and then fired at 1250°C for 2 hours in air. This firing step provided sufficient 

bonding to the anode support, but left some significant porosity within the structure that must be 

filled in before testing. 

 To fill in these pores within the electrolyte, a ceria sol gel suspension was developed. The 

gel was made by mixing appropriate amounts of ethanol, DI H2O, citric acid, and glycerol. The 

mixture was then milled for 1 hour then gadolinium and cerium chloride were added and milled 

for an additional hour. The sol gel coatings were deposited by using a spin coater. Each 

deposition consisted of 1 drop of the sol gel solution onto the substrate with a pipette. The 

rotational speed of the spin coater was 2500 RPM and the settling time for each application was 

20 seconds. Each sample was dried at 50°C in an oven for 5 minutes for each coat. This low 

temperature helps to prevent nano/micro-cracking throughtout the several deposition iterations. 

After 5 iterations, the samples were fired to the 800°C temperature required for full densification 

of these coatings. Comparison of the electrolyte density for 5 coatings and 15 coatings was 

carried out to determine the impact of additional coatings on filling in the porosity. 

 The last step in cell processing was the cathode application. A standard LaxSr1-xCoyFe1-

yO3-δ (LSCF) MIEC cathode was printed onto the electrolyte and fired on at 1100°C. Though this 

cathode composition is a mixed ion-electron conductor, additional ionic carrier capability for the 

electrode can be incorporated by mixing GDC into an active layer. This is mixed into the LSCF 

in a similar manner to other electrode inks described previously.  Both the active layer, 

consisting of 50/50 vol% of LSCF/GDC and the LSCF current collector were hand-printed using 

325 mesh and 230 mesh screens respectively. The cathode was fired onto the cell at 1100°C for 2 

h in air.  
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5.3 Results and Discussion 

 The first iterative process that was carried out in processing the anode support was the 

hot pressing condition. The glass transition temperature of the organic system dictates the 

required pressure/temperature setting for the press. In this scenario, the limiting component is the 

Pencook 30 starch, which has a glass transition temperature of ~45°C. Temperatures in excess of 

this value were tried first and the result was a lamination that melted and did not hold its form. 

Figure 73 shows the sample pressed at 70°C and 70 kips for 15 minutes. Most significant is that 

the cut sample was a 4” x 4” square and the pressed sample became ovular in shape with more 

width and less thickness. 

 

Figure 73: Lamination pressed at 70°C and 70 kips for 15 minutes. 

 

The sample thickness shrunk from the 1 mm starting thickness to ~200 µm. Nonetheless, 

these samples were burned out and bisqued to 1100°C to determine if this condition would 

produce a smooth substrate sample. Unfortunately, the result was a sample full of pillowing, as 

seen in Figure 74. The excessive pressing temperature caused a redistribution of the organic 

materials which led to inhomogeneous escape of gases during burnout. The pressure gradients 

that arose from this redistribution caused changes to the inorganic particle arrangement making 

them unsuitable for further use. 
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Figure 74: Macroscopic view of 'pillowed' anode support. 

  

At a 40°C temperature with the other pressing conditions constant, the sample laminated 

without significant change to the green thickness. A thickness of approximately 950 µm was 

maintained after the samples were pressed at this condition. Figure 75 shows a macroscopic 

image of the pressed sample that demonstrates good lamination. 

 

Figure 75: Anode support cross-section demonstrating good lamination. 

 The samples were then run up to 1100°C for bisquing. The same burnout temperature 

schedule for this lamination was initially used as for the YSZ electrolyte laminations. This 

burnout schedule was 2°C per minute to 600°C with a 1 hour hold and then 3°C per minute to 
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1100°C with a 2 hour hold and finally a 5°C per minute cool down rate. After this thermal 

process, the substrates had a very similar look to those that were pressed at excessive 

temperature. The TGA run seen in Figure 76 helps to explain why this distortion to the samples 

occurred. 

 

Figure 76: TGA curve for anode support burnout. 

 

In general, when thermal treatment schedules are developed for ceramic processing, TGA 

analysis is essential in identifying temperature regimes that require slow heating rates or holds. 

The TGA plot shows locations where the mass of the sample decreases as a function of 

temperature. Right at the onset of the major losses it is important to hold the temperature for a 

period of time to initiate the gas release from the sample in a controlled manner. And as the 

temperature is the driving force for gas release, the temperature ramp rate should be very slow 

points on the TGA curve where a non-zero slopes are seen. With these considerations, Table 5 

shows the final temperature schedule clear up through bisquing.  
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Table 5: Final burnout temperature profile for the SMM/GDC anode support. 

 

 

Figure 77 shows the bisqued sample free of pillowing or macroscopic imperfections. It is 

noteworthy that temperatures lower than 1100°C did not produce a substrate with the proper 

mechanical strength to withstand the electrolyte deposition pressure.   As seen in Figure 78, there 

was not enough mechanical strength to handle the substrate without macroscopic fracture when 

only fired to 1050°C. 

 

 

Figure 77: Bisqued anode support at 1100°C. 

Rate (°C-min-1) Temperature (°C) Hold (hours)

1 60 1

0.5 150 1

0.5 225 1

0.5 400 1

1 600 2

1.5 1100 2

5 25 -
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Figure 78: Sample Bisqued to 1050°C. 

  

With the samples bisqued, the initial GDC print can be deposited. As previously stated, 

Mo loss at high temperatures prevents a single layer of GDC from achieving full density. 

Experimentally, this was determined by simply obtaining initial weights of samples bisqued to 

1100°C and then incrementally weighing them from temperatures ranging from 1150-1400°C in 

50°C intervals. Four samples were examined to establish some statistical significance. The 

percent loss of mass can be seen in Table 6.  

Table 6: Mass loss of molybdenum (%) in the anode for different bisquing temperatures. 

  Temperature (°C) 

Sample 1150 1200 1250 1300 1350 1400 

1 0 0.176 0.352 1.76 6.5122 13.0243 

2 0 0.1083 0.2166 1.949 6.0636 12.3437 

3 0 0.1231 0.3692 1.5999 6.2767 12.7996 

4 0 0.1608 0.3217 1.9302 6.5947 14.1546 

 

With all of the organic material out of the system by 700°C, any loss in mass at higher 

temperatures must be from an inorganic within the system. Magnesium oxide exhibits good 
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stability at temperatures up to 3600°C, which corresponds to its boiling point. Likewise, 

strontium oxide remains stable up to 3200°C before any type of decomposition takes place. 

Knowing that GDC does not fully sinter until between 1350°-1400°C from our previous work, it 

can be assumed that losses would not be from this part of the composite. This leaves only the 

molybdenum oxide. Though the molybdenum has 6-fold oxygen coordination within the double 

perovskite structure, molybdenum oxide itself has a boiling point of ~1200°C. The results in 

Table 6 suggest that this double perovskite coordination prevents the vaporization of Mo until 

higher temperatures. Specifically, at temperatures below 1250°C, molybdenum losses to the 

samples were less than 0.5% and not deemed too significant for processing considerations. 

However, by 1300°C losses approaching 2% are seen and by 1400°C the losses are around 13%. 

While these findings suggest that the 6-fold coordination suppresses molybdenum volatility, it 

shows that processing temperatures for the anode support should be limited to 1250°C at to 

prevent alterations to the composition. 

 After establishing the processing criteria, the initial 15 µm GDC electrolyte layer can be 

printed onto the substrate. Hand-printing was selected over screen-printing to ensure that 

excessive pressures on the bisqued sample were prevented. Figure 79 is an SEM image of the 

initial GDC electrolyte layer onto the anode support after firing at 1250°C for 2 hours. 
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Figure 79: The handprinted GDC electrolyte layer after firing to 1250°C for 2 h. 

  

A lack of density is evident from this image. In chapter 3, it was established that 1400°C 

was required for full densification of the GDC. Another issue with this hand printed layer is 

diffusion into the anode support. Figures 80 a and b show the change in porosity of the anode 

support at different locations from the electrolyte.  
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Figure 80: The SEM images showing density of the anode support at a) the interface (left) and b) the bulk of the 

support (right). 

 

Figure 80a is the area at the anode/electrolyte interface and Figure 80b is at a distance 

400 µm from the interface which corresponds to the middle of the support. The decreased 

porosity near the interface can be attributed to either electrolyte material diffusion during the 

drying/firing process or the first couple of sol-gel depositions seeping through the open porosity 

before the drying stage. Figure 81 shows the densification of the GDC electrolyte after the first 5 

deposition iterations. The bridging of the particles is clearly demonstrated for this procedure, 

however, additional coatings are needed to fully densify. When comparing Figure 81 with Figure 

79, it can be seen that the sol-gel coatings are in fact filling the gaps that are needed to fully seal 

the cell. There are still some micro-cracks visible after 5 coatings and firing to 800°C, which can 

be filled with further sol-gel depositions and sintering stages. 
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Figure 81: SEM image of the GDC electrolyte after 5 sol-gel coatings and firing to 800C. 

 

Figure 82 shows full densification of the electrolyte after 10 additional coatings and an 

additional thermal sintering run to 800°C for 2 h. This complete densification allows for a good 

electrical seal which could ultimately result in enhanced electrochemical properties. 
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Figure 82: Electroyte after 15 coatings and 2 sintering runs to 800°C. 

 

5.4 Conclusions 

 The work in this chapter helped to develop a sound processing protocol for a novel 

SMM/GDC anode-supported cell. The potential volatility of molybdenum made thermal 

processing at lower temperatures a necessity. The sol-gel GDC solution helped to sufficiently 

bridge the gaps between the pores of the initial hand-printed layer. The porosity resulted from the 

1250°C electrolyte sintering temperature, which prevented significant loss of molybdenum in the 

supports. It was found that 15-20 depositions with 2 sintering stages resulted in a sample dense 

enough to prevent direct combustion in the fuel cell testing chamber. The next stage of this work 

will be to test this anode in different fuels to determine performance, stability, the cells 

propensity towards electronic leaking, and impurity tolerance.    
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Chapter 6 - Thesis Conclusions and Future Work 

  

The work presented in this thesis resulted in several new pieces of information for the 

fuel cell community with regards to anode materials. The Sr2MgMoO6-δ anode, when combined 

with a GDC ion conductor, generates power densities approaching 300 mW-cm
-2

 using a YSZ 

electrolyte-supported platform. This is quire a reasonable value considering the thick electrolyte 

platform that contributes a high ohmic resistance. Additionally, it shows much improved 

tolerance to 10 ppm PH3 than the traditional Ni/YSZ cermet. While full cell failure occurs within 

30 h for the Ni/YSZ anode, extrapolation predicts that cell failure will not occur for the 

SMM/GDC anode until almost 750 h and this anode was stable in this impurity for the first 40 

hours. Rather than changes to the bulk anode microstructure being the cause for degradation, 

losses in potential are assigned to slight delamination at the anode/electrolyte interface and 

densification of the contact paste. Also, to potentially increase the commercial potential of this 

anode for operation on coal-derived fuels, a processing procedure was experimentally developed 

using GDC as the electrolyte material. A novel sol-gel method was used to fully densify the 

electrolyte without using excessive sintering temperatures as to suppress molybdenum volatility. 

The other portion of this thesis focused on assessing the importance of a GDC barrier 

layer on H2S impurity tolerance for a Ni/GDC anode. Without the barrier layer, performance of 

the cell in both wet H2 and syngas was lower and gradual losses to the cell potential under fixed 

loading were observed. However with the GDC barrier layer, the cell exhibited good stability in 

syngas plus 100 ppm H2S for over 400 h. The limit for H2S impurity was found to be between 

100 and 200 ppm and degradation has been assigned to microstructural changes to the triple 

phase boundary sites as a result of Ni-oxidation. The tolerance level was found to be between 

500 and 1000 ppm in wet H2.  Increasing the gadolinium doping level slightly improved H2S 

tolerance, but resulted in lower power performance. Lastly, a novel NiWO4 composition was 

evaluated as a potential SOFC anode and generated over 160 mW-cm
-2

 when combined with 

GDC in wet H2 fuel, though problems similar to the Ni/YSZ anode with PH3 impurity were seen.  

In the future, knowing that an anode with much improved tolerance has been identified, 

the anode supported architecture will need to be further explored through testing to analyze its 
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viability in terms of testing in fuels containing multiple coal contaminants. Unlike the Ni/YSZ 

cermet, this composition did not form solid phases with phosphorus nor did its microstructure 

drastically change suggesting that reactions between the constituents are not favorable for our 

testing conditions. A sound series of thermodynamic models would be important in the future to 

see what, if any, ranges of temperatures and oxygen partial pressures would result in reaction 

between the Sr, Mg, or Mo in the SMM structure. The ultimate goal is to better understand why 

the SMM anode showed some tolerance to PH3 and then utilize the electrochemical reaction and 

method of stability to other energy-related oxide systems. Also, knowing the propensity for 

electronic leaking of GDC across the cell in environments containing higher partial pressures of 

hydrogen, evaluations of this anode in CO fuel would be of interest.  
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