
Graduate Theses, Dissertations, and Problem Reports

2010

Empirical analysis of BWT-based lossless image compression Empirical analysis of BWT-based lossless image compression

Kalyan Varma Bhupathiraju
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Bhupathiraju, Kalyan Varma, "Empirical analysis of BWT-based lossless image compression" (2010).
Graduate Theses, Dissertations, and Problem Reports. 2950.
https://researchrepository.wvu.edu/etd/2950

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2950&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2950?utm_source=researchrepository.wvu.edu%2Fetd%2F2950&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Empirical Analysis of BWT- Based Lossless Image

Compression

Kalyan Varma Bhupathiraju

Thesis submitted to the

College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Electrical Engineering

Donald A. Adjeroh, Ph.D, Associate Professor (chair)

Feruz Ganikhanov, Ph.D, Assistant Professor

Arun A. Ross, Ph.D, Associate Professor

Xin. Li, Ph.D, Associate Professor

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia

2010

Keywords: BWT, MTF, Image, Compression, lossless Context partitions

ABSTRACT

Empirical Analysis of BWT- Based Image Compression

Kalyan Varma Bhupathiraju

The Burrows-Wheeler Transformation (BWT) is a text transformation algorithm
originally designed to improve the coherence in text data. This coherence can be exploited by
compression algorithms such as run-length encoding or arithmetic coding. However, there is still
a debate on its performance on images. Motivated by a theoretical analysis of the performance of
BWT and MTF, we perform a detailed empirical study on the role of MTF in compressing
images with the BWT. This research studies the compression performance of BWT on digital
images using different predictors and context partitions. The major interest of the research is in
finding efficient ways to make BWT suitable for lossless image compression.

This research studied three different approaches to improve the compression of image

data by BWT. First, the idea of preprocessing the image data before sending it to the BWT
compression scheme is studied by using different mapping and prediction schemes. Second,
different variations of MTF were investigated to see which one works best for Image
compression with BWT. Third, the concept of context partitioning for BWT output before it is
forwarded to the next stage in the compression scheme.

For lossless image compression, this thesis proposes the removal of the MTF stage from the
BWT compression pipeline and the usage of context partitioning method. The compression
performance is further improved by using MED predictor on the image data along with the 8-bit
mapping of the prediction residuals before it is processed by BWT.

This thesis proposes two schemes for BWT-based image coding, namely BLIC and BLICx, the
later being based on the context-ordering property of the BWT. Our methods outperformed other
text compression algorithms such as PPM, GZIP, direct BWT, and WinZip in compressing
images. Final results showed that our methods performed better than the state of the art lossless
image compression algorithms, such as JPEG-LS, JPEG2000, CALIC, EDP and PPAM on the
natural images.

iii

ACKNOWLEDGMENTS

 I would like to express my sincere thanks to Dr. Donald Adjeroh for his support, advice,

and motivation during my research and study at West Virginia University. Without his constant

guidance, it would not have been possible to complete this thesis.

 I take this opportunity to express my heartfelt thanks to Dr. Feruz Ganikhanov, who has

guided and supported me over the past three years. Thank you very much for everything.

I would like to thank Dr. Arun Ross and Dr. Li Xin for agreeing to be on my thesis

committee and for their valuable time. I want to thank all members of my research group for

their valuable suggestions.

Finally, I would like to thank my family and all my friends for being there for me all the

time.

iv

Table of Contents
1. Introduction ... 1

1.1 Introduction ... 1

1.2 Major Contributions of the work .. 3

1.3 Thesis Organization .. 3

2. Background ... 4

2.1 Image Compression .. 4

2.1.1 Digital Image ... 4

2.1.2 Image Compression ... 4

2.1.3 Need for Image Compression .. 4

2.1.4 Types of Image Compression .. 5

2.1.5 Lossless Compression .. 5

2.2 Compression Ratio .. 6

2.3 Entropy and Image Compression .. 6

2.4 BWT Compression Pipeline ... 7

2.4.1 Burrows Wheeler Transform ... 8

2.4.2 Run-Length Encoding (RLE) ... 12

2.4.3 Arithmetic coding (ARI) .. 13

2.5 Preprocessing Stage .. 13

2.5.1 Predictive Coding... 13

2.5.2 Mapping ... 16

3. The MTF and Context Partitions in BWT-based Image Compression 18

3.1 Analysis of MTF in BWT-based Image Compression ... 18

3.1.1 The Move-To-Front algorithm ... 18

3.1.2 Variations of MTF. .. 19

3.1.3. Proposed Variants of MTF.. 20

3.1.4 Characterization of MTF outputs ... 21

3.1.5 Characterizing the Effect of MTF on Image Compression .. 33

3.1.6 Effect of range (r) and window size (w) in MTFW on Image Compression 35

3.1.7 Effect of range (r) and window size (w) in MTFW2 on Image Compression 37

3.2 Context Partitions for BWT Image Compression ... 38

4. Experimental results.. 41

4.1 Experimental Data and Experimental Environment ... 41

4.1.1 Data Sets .. 41

v

4.1.2 Experimental Environment .. 41

4.2 Results for different variations of MTF. ... 42

4.2.1 BWT Without mapping and without prediction .. 42

4.2.2 Performance Analysis for Different Predictors .. 42

4.3 Compression with and without MTF/RLE ... 46

4.4 Compression for context partitions with and without MTF/RLE 47

4.5 Comparitive Results with text Compression schemes .. 47

4.6 Comparitive Results with image Compression schemes .. 48

4.7 Coding Time ... 51

5. Conclusion and Future work ... 52

5.1 Conclusion .. 52

5.2 Future work ... 53

Reference .. 54

Appendix ... 57

1

1. Introduction

1.1 Introduction

Digital image compression is playing an important role despite the rapid progress in digital

communications and mass storage devices in the recent years. The efficient storage,

manipulation and transmission of digitized pictures still remain a major challenge. In

applications like video streaming, satellite imaging, medical imaging and high quality

photography the size of data to be transferred is incredibly large when compared to the

bandwidth available in the communication channel.

 Digital image compressions algorithms can reduce the size of digital images, thus reducing

the storage and transmission cost. Image compression is often more economical than increasing

bandwidth or storage capacity.

Image compression is a process in which the image data is transformed into a different form

which can be represented by less numbers of bits by taking advantage of the redundancy in the

image data and at the same time is able to decode back to the original image. Lossless image

compression schemes either treat the image as a 1-D text sequence, or make use of the 2-D

contexts to improve the coding performance. Using the Burrows Wheeler Transform (BWT)

[1,2,3,4] on images involves an initial stage of 2-D to 1-D conversion, and a text compression

algorithm for compressing the 1-D sequence. We use spatial prediction techniques to take

advantage of the 2-D context in an image before sending the data to the BWT.

2

They are two types of image compression schemes, namely lossy and lossless compression. In

lossless image compression the exact image is reproduced from the compressed data, no

information is lost in the compression process. This report describes lossless image compression

using the BWT which has been very popular for text compression. Linearized image data has

been used to make it suitable for compression using the BWT.

The Move - To - Front (MTF) stage is an important stage in the BWT compression pipeline

[5,6,7,21].

The main focus of this report was to observe the influence of prediction, mapping, variations of

MTF and context partitioning technique on the image compression capability of the BWT.

Different types of predictors such as DIFF, MEAN, MED and GAP were used. The main

objective of the predictors is to predict the next pixel by using the neighboring pixel values by

taking advantage of the redundancy in the image data. Different variations of MTF such as MTF,

TRANS, MHD, MTFW(w,r) etc have been used to see their impact on BWT-based image

compression. This work also proposed a new method for BWT image compression using context

partitions. In this method the BWT output is broken down into partitions and each of these

individual partitions is passed over to MTF, RLE and ARI. Results were compared with various

state-of-the-art lossless image compression algorithms, such as EDP[8], PPAM[9], JPEG 2000,

JPEG-LS[11], CALIC[12,13,18], SPIHT[14] etc.

3

1.2 Major Contributions of the work

This report presents the performance evaluation of the BWT on lossless image compression.

These results are based on a set of images containing natural, medical and rendered images. The

following are the major contributions of this report.

1. A comprehensive performance analysis of different BWT variants on image compression.

2. The key observation that, the MTF stage in the BWT compression pipeline should be

eliminated when the objective is improved performance in lossless image compression.

3. Development of a context partition based BWT image compression scheme for improved

performance on the image data.

1.3 Thesis Organization

Chapter 2 provides an introduction to the field of image compression, different coding

techniques and briefly describes the Burrows-Wheelers Transformation (BWT), Run Length

Encoding (RLE) and Arithmetic coding (ARI).

In Chapter 3, gives introduction to different ideas such as BWT based image compression on

predicted and non predicted data, compression with different variations of MTF and compression

with and without MTF. Also explains the scheme of context partitioning that is developed for

further improvement of image compression results.

Chapter 4, presents results, and discusses some implementation. Various results have been

analyzed to measure the performance of the researched method.

In Chapter 5, summarizes the results of the study and provide suggestions for future research.

4

2. Background
2.1 Image Compression

2.1.1 Digital Image

 A digital image can be considered as a matrix composed of pixels each of which holds the

information about the intensity at that point in the image. A digital image is obtained by

digitalizing an analog image. So a digital image can be considered as a matrix of integers where

each integer corresponds to the intensity level at a particular point in the image. The number of

intensity levels depends on the number of bits used to represent a particular intensity. For

example in this case 8-bit gray scale images are used, so there would be 28 = 256 distinct

intensity levels, i.e. from 0-255. Digital imaging has many advantages like transmission of

images across the networks and also post processing is made easier with digital images.

2.1.2 Image Compression

Image compression is the application of data compression on digital images. The main objective

of an image compression scheme is to produce a system which can encode an image to a format

which occupies less space by taking advantage of the redundancy in the image data, and at the

same time is able to decode back to the original image. There are different types of image

compression scheme like JPEG, JPEG 2000, TIFF, PNG, PGF etc.

2.1.3 Need for Image Compression

 Now a day’s access of multimedia data through the Internet is growing enormously

and a large amount of data is also transferred across the telecommunication networks in which,

5

images occupy a considerably large amount of space. The invention of a digital camera also

made it easy to save the digital memories which are tending to occupy a large portion of our

personal storage media like CDs, DVDs, and Hard Drives etc. By compressing the data and

representing it in a more concise way, can cut storage and transmission costs by a significant

factor. Thus development of efficient image compression techniques continues to be an

important challenge both academically and industrially. For example a 10.1 megapixel camera

can save around 969 JPEG compressed images on a 4GB memory card when compared to a 250

RAW images. This shows a compression factor of about four.

2.1.4 Types of Image Compression

 Image compression can be of two types-lossy and lossless. In lossless Image

compression the exact original image is reconstructed from the compressed image at the decoder.

This is mainly used in applications like medical Images. Examples of lossless image

compression methods are JPEG-LS, GIF, TIFF and PNG etc. In lossy image compression the

reconstructed image from the compressed image is degrading in quality when compared to the

original image only by an acceptable value so that it is useful in some way. This is used in

applications where the compression is the major issue than the quality such as streaming media

and internet telephony. Examples of lossy image compression methods are JPEG[15],

JPEG2000[10]. There are different image compression schemes, but each of them tends to differ

from one another in complexity, implementation, speed and performance.

2.1.5 Lossless Compression

Lossless compression is achieved mainly by reducing the redundancies in the image data and

typically concentrates on more efficient ways of encoding the image data. This technique is used

in applications where information loss is intolerable. The advantage is that the compressed file

6

will decompress to an exact duplicate of the original file, having the same quality. As no data is

lost the compression ratio is not all that high when compared to lossy compression.

2.2 Compression Ratio

The performance of lossless image compression schemes can be specified in terms of

compression efficiency. Compression efficiency is measured by the compression ratio or by the

bit rate. Compression ratio is the ratio of the size of original image to the size of the compressed

image. The bit rate is the number of bits required to represent each pixel in the compressed

image. For example, a 512×512 pixel image with a bit depth of 8 requires 512×512×8 bits =

2,62,144×8 bits = 2,62,144 bytes when stored in uncompressed form. If the size of the

compressed image is 65536 bytes, then the compression ratio is 262144/65536 = 4.0. Since the

image has 512×512 = 262144 pixels, the compressed file needs 65536×8/262144 = 2 bits per

pixel, on average. Hence the bit rate is 2.

The compression ratio (CR) and bit rate (BR) are related. Let b be the number of bits per pixel

(bit depth) of the uncompressed image. The compression ratio is given by

2.3 Entropy and Image Compression

Entropy is the measure of the amount of uncertainty or information in the data. The larger the

uncertainty of a random variable the larger is the entropy. Let I represent the self information of

a random variable ak, whose is the probability of ak. Then

 If = 1 then I =0, i.e., if it is certain that an event is going to happen then the

information in that event is zero.

7

)(log)(
1

k

K

k
k aPaP∑

=

Where is the probability that the symbol

in S will occur.

From the above equation we can observe that the entropy is going to be high if all the symbols

are uniformly distributed. The maximum entropy is obtained when all the symbols have equal

probability i.e. = , where k is the number of symbols.

For example, in an image with uniform distribution of gray-level intensity, i.e. pi = 1/256, then

the number of bits needed to code each gray level is 8 bits. The entropy of this image is 8 bits.

Thus an image with smaller entropy can be compressed more than an image with higher entropy.

The effectiveness of a lossless compressor is measured by determining how closely its bit rate

approximates the entropy of the image calculated from the probability distribution. Therefore, if

the entropy of an image is 4 bits/pixel and the bit-rate of the lossless compressor is 4 bits/pixel,

then the lossless compressor did the best job possible.

2.4 BWT Compression Pipeline

The BWT compression pipeline is show in Figure 2.1 and consists of the following four

algorithms:

1. Burrows-Wheeler Transformation (BWT)

2. Move-To-Front coding (MTF)

3. Run-Length Encoding (RLE)

4. Arithmetic encoder (ARI).

8

Encoding

The basic encoding pipeline is as follows

< inputfile | BWT | MTF | RLE | ARI > outputfile

 This pipeline forms the transformation and the encoding phase. The algorithms in the pipeline

scheme have been used in different combinations to study their influence on the overall

compression performance.

Decoding

This pipeline forms the transformation and the decoding phase.

< compressed-file | UNARI | UNRLE | UNMTF | UNBWT > raw-file

2.4.1 Burrows Wheeler Transform

Since its publication in 1994 by Michael Burrows and David Wheeler [1,4], the Burrows

Wheeler transform has been employed in many different compression programs[23,24,25,26].

BWT is a block sorting compression algorithm used in data compression like Bzip2. Unlike most

of the lossless compression algorithms which operate in streaming mode i.e. one byte at a time,

BWT transform breaks the data into blocks, and compresses each block independent of the other.

BWT

MTF

RLE

ARI

UNBWT

UNMTF

UNRLE

UNARI

COMPRESSED
DATA

ORIGINAL
IMAGE

Encoder

Decoder

Figure2.1: BWT compression pipeline.

9

Ideally larger the chunks of data available to operate the better it is, but it’s limited by the

amount of memory that is available. This transformation tends to group symbols together so that

the probability of finding a symbol close to another instance of the same symbol is increased

substantially. Text of this kind can easily be compressed with fast locally-adaptive algorithms,

like move-to-front coding in combination with Huffman or arithmetic coding. The BWT has

been very popular in text compression; here different variations of the BWT are tried out to see

its performance in image compression.

How does it work?

BWT transformation permutes the order of the symbols. If the original string had several

substrings that occurred often, then the transformed string will have several places where a single

symbol is repeated multiple times in a row. Let’s consider a small example dataset.

M I S S I S S I P P I

Figure 2.2: Sample data set.

Sample data set shown in figure 2.2 contains ten symbols. Let N be the length of the data set. To

perform BWT, first make N-1 rotated copies of the input data set. Represent each of the rotated

copy with an index as shown in figure 2.3.

S0 M I S S I S S I P P I
S1 I S S I S S I P P I M
S2 S S I S S I P P I M I
S3 S I S S I P P I M I S
S4 I S S I P P I M I S S
S5 S S I P P I M I S S I
S6 S I P P I M I S S I S
S7 I P P I M I S S I S S
S8 P P I M I S S I S S I
S9 P I M I S S I S S I P
S10 I M I S S I S S I P P

Figure 2.3: N-1 rotated copies of the data set

10

These N-1 copies are rearranged in the lexicographic order as in figure 2.4. There are two

important points to note here. First, the strings have been sorted, but we've kept track of which

string occupied which position in the original set. So, we know that the string S0, the original

unsorted string, has now moved down to row 5 in the array.

S10 I M I S S I S S I P P
S7 I P P I M I S S I S S
S4 I S S I P P I M I S S
S1 I S S I S S I P P I M
S0 M I S S I S S I P P I
S9 P I M I S S I S S I P
S8 P P I M I S S I S S I
S6 S I P P I M I S S I S
S3 S I S S I P P I M I S
S5 S S I P P I M I S S I
S2 S S I S S I P P I M I

Figure 2.4: Lexicographic order.

Second, the first column contains all the characters in the original string in sorted order. So our

original string "MISSISSIPPI" is represented in the first column as "IIIIMPPSSSS". The

characters in the last column don't appear to be in any particular order, but in fact they have an

interesting property. Each of the characters in the last column is the prefix character to the string

that starts in the same row in the first column.

The output of the BWT consists of two things: a copy of the last column, and the primary index,

an integer indicating which row contains the original first character of the buffer B. So

performing the BWT on our original string generates the output string in the last column which

contains "PSSMIPISSII", and a primary index of 3.

11

The integer 3 is found easily enough since the original first character of the buffer will always be

found in last column in the row that contains S1. Since S1 is simply S0 rotated left by a single

character position, the very first character of the buffer is rotated into the last column of the

matrix. Therefore, locating S1 is equivalent to locating the buffer's first character position in the

last column.

To get the original sequence, it must be possible to reconstruct the full table of lexicographically

ordered cyclic shifts using only the last column of the table i.e. the BWT output. The key that

makes this possible is that you can recreate the transformation vector from the last column and

the first column of the matrix. First column can be determined by simply sorting the last column.

So all you need is the BWT output and the primary index (3 in this case). As each row is a cyclic

shift of every other row, the last and first columns together provide a list of all consecutive pairs

of symbols.

0 P I
1 S I
2 S I
3 M I
4 I M
5 P P
6 I P
7 S S
8 S S
9 I S
10 I S

Figure 2.5: Last (L) and first (F) columns.

Since by definition the strings in first column must appear in sorted order, it means that all the

strings that start with a common character in last column appear in the same order in first

column, although not necessarily in the same rows. Because of this, first 'S' encountered will be

12

followed by ‘I’, the next ‘S” encountered will also be followed by ‘I’, the next ‘S’ encountered

will also be followed by ‘S’, the next ‘S’ encountered will also be followed by ‘S’. Similarly the

first 'I' encountered will be followed by ‘M’, the next ‘I’ encountered will also be followed by

‘P’, the next ‘I’ encountered will also be followed by ‘S’, the next ‘I’ encountered will also be

followed by ‘S’.

As the primary index is 3 we can obtain the decoded sequence as follows.

M I
M I S
M I S S
M I S S I
M I S S I S
M I S S I S S
M I S S I S S I
M I S S I S S I P
M I S S I S S I P P
M I S S I S S I P P I

Figure 2.6: Decoding sequence.

2.4.2 Run-Length Encoding (RLE)

Run length encoding is one of the oldest compression methods. This mainly takes advantage of

the repetitiveness of symbols in a stream of data. Its performance depends mostly on the input

data. It is most effective when a single character is repeated multiple times in a sequence.

 For example, the string “ggggggdddddppppeeee” can be represented with run length encoding as

“g6*d5*p4*e4*”. That saves us 9 symbols. This code contains a flag character, a count byte, and

the repeated characters. We can also see that it doesn’t make any sense to code any symbols

which are repeated less than four times. Therefore a sequence “aagggggghhhtttttt” can be

encoded as “aag6*hhht6*”.

13

Due to the randomness in the natural images RLE may not be very effective on its own. But it’s

observed to be effective when applied on the output sequence of the BWT.

2.4.3 Arithmetic coding (ARI)

Arithmetic coding [16] is one of the methods for lossless compression that encodes data by

creating a code string which represents a fractional value on the number line between 0 and 1.

This is a variable length code as different symbols are represented by different number of bits.

The main objective of arithmetic coding is to use the minimum number of bits to represent a

stream of symbol. The main logic is to use fewer bits for representing frequently occurring

symbols and more bits to represent less frequently occurring symbols resulting in fewer bits in

total.

Although arithmetic coding is more powerful than Huffman coding in compression ratio,

arithmetic coding requires more computational power.

2.5 Preprocessing Stage

2.5.1 Predictive Coding

Predictive coding has been extensively used in image compression. The correlation

between the adjacent pixels is well exploited by the use of predictive image coding algorithms.

They predict the value of a given pixel based on the values of the surrounding pixels. The use of

a predictor can reduce the amount of information bits needed to represent an image, due to the

correlation among the adjacent pixels. Images are considered to be a sequence of pixels in row

major order in lossless image compression. As each pixel is handled, all pixels preceding it are

available to the decoder and hence to the encoder too, and these already-known values provide

useful information to suitably bias the prediction as to the next pixel value.

14

The processing of each pixel consists of two separate operations. The first step forms a

prediction as to the numeric value of the next pixel. Typical predictors use a linear combination

of neighboring pixel values. In the second step, the difference between the predicted pixel value

and the actual intensity of the next pixel is coded using an entropy coder.

We tested the BWT approach using four different prediction methods. Figure 2.7 shows a

general schematic diagram of the prediction contexts used by the prediction algorithms. The

symbols x, a, b, c, d, e, f, g in the following discussion refer to the figure.

Prediction using Previous Pixel (DIFF)

In this predictor the predicted value is assumed as the value of the adjacent left pixel. The

difference between the predicted value and the original value is transmitted as the output value.

Prediction using the mean (MEAN)

In this predictor the predicted value is assumed as the mean of the adjacent left pixel and the top

pixel. The difference between the predicted value and the original value is transmitted as the

output value.

 e d

 c b f

g a x

Figure 2.7: Prediction context used by various prediction schemes.

15

Median Edge Detection (MED)[17]

In this predictor the predicted value is assumed as the median of min(a, b), max(a, b), and

. The difference between the predicted value and the original value is transmitted as

the output value. MED is the spatial predictor used in the JPEG-LS[11] standard.

−+
<=
>=

=
otherwisecba

bacifba
bacifba

x),min(),max(
),max(),min(

Gradient-Adjusted Prediction (GAP)[18]

The GAP predictor works by taking into account, the gradient variations of seven neighboring

pixels of the current pixel. GAP is the predictor used in CALIC [12,13,18], one of the best

performing lossless image compression schemes. The GAP algorithm is given below.

IF
Sharp horizontal edge

ELSE IF
Sharp vertical edge

ELSE

IF
Horizontal edge

ELSE IF
Weak horizontal edge

ELSE IF
Vertical edge

ELSE IF
Weak vertical edge

16

2.5.2 Mapping

 The 2-dimensional image data is converted to a linear sequence. After the image is linearized

the sequence is further processed before being sent to the next stage – Transformation &

encoding stage.

The linear data has been subjected through several alterations to increase the suitability of the

data for better processing by the transformation and compression algorithms. These are the

different methods used.

Method of differences As most of the nearby pixels in an image tend to be similar, their

differences will produce more runs of zeros or values close to zero, which will require fewer bits

to represent.

In a modified sequence B of an original sequence A is given by,

Check the example in the following scan and the resulting scan after the differences method was

applied.

Scan: 128, 128, 128, 128, 128, 50, 50, 50, 50, 217, 217, 217, 216, 216, 216, 216

Result: 128, 0, 0, 0, 0, 78, 0, 0, 0, -167, 0, 0, 1, 0, 0, 0

We know that 8 bits are required to represent the 256 different grey levels. From the example

shown above we can see the introduction of negative signs in the sequence, which require an

extra bit to represent the signed numbers. The experimental analysis proved that preprocessing

the data with the difference method resulted in a better performance than sending the linear data

17

unaltered to the transformation stage. The following methods have been implemented and tested

in consideration of the extra bit required to represent the negative sign.

8-Bit Mapping Method: This method allows the representation of the linear sequence, by

eliminating the need for the extra sign bit. It is based on a very interesting mathematical

observation on the linear sequence. The range of possible error values (differences) varies based

on the predicted value and cannot be more than distinct values. The possible range of

error for is , where # of bits. Based on the above

observation, given Î, the predicted value at the current position, the value of e must be within the

following range:

The index of the possible prediction errors mapped to the order

, is calculated by the following equations.

Case 1:

>+
≤<−

≤

Î;Î
Î0;1||2

0;||2

ee
ee

ee

Case 2:

−>+−
<−

−≤≤

Î255||;||Î255
0;1||2

Î255||,0;||2

ee
ee

eee

18

3. The MTF and Context Partitions in BWT-based Image Compression

3.1 Analysis of MTF in BWT-based Image Compression

3.1.1 The Move-To-Front algorithm

The Move-To-Front (MTF) algorithm is used to improve the performance of entropy encoding

techniques of compression. The MTF [5,6,7] algorithm was originally proposed in [Benteley &

Torjan 1986]. A Move-To-Front coder is used for preprocessing the input before it is fed to the

actual compressor. Encoding works as follows: The coder maintains a list L containing an

ordered list of all the 256 characters that can appear in the input. Whenever it receives an input

character c it looks up the position i of c in the current ordered list of symbols L, outputs i and

moves c to the front of L. Let’s see how MTF works

Considering an input sequence 4136006042, the MTF coding is done as explained in the Table

3.1. The encoder accepts the symbol and is translated into the index using the list. Then the list is

updated by moving the symbol to the front of the list. This updated list is used as the lookup list

for the next symbol.

Table 3.1: MTF encoding.
NUMBER SEQUENCE LIST
4136006042 4 {0,1,2,3,4,5,6,7}
4136006042 42 {4,0,1,2,3,5,6,7}
4136006042 424 {1,4,0,2,3,5,6,7}
4136006042 4246 {3,1,4,0,2,5,6,7}
4136006042 42464 {6,3,1,4,0,2,5,7}
4136006042 42464 {0,6,3,1,4,2,5,7}
4136006042 424640 {0,6,3,1,4,2,5,7}
4136006042 4246401 {6,0,3,1,4,2,5,7}
4136006042 424640114 {0,6,3,1,4,2,5,7}
4136006042 4246401145 {4,0,6,3,1,2,5,7}
Final 4246401145 {2,4,0,6,3,1,5,7}

19

Let’s see how the decoding works now, here the input sequence is 4246401145. The decoder

accepts the index in the list which is translated into the correct output symbol using the list. Then

the list is updated by moving the symbol to the front. This updated list is used as the lookup list

for the next index. Note that the same initial symbol list is used for both encoding and decoding,

allowing perfect reconstruction of the data source.

Table 3.2: MTF decoding
NUMBER SEQUENCE LIST
4246401145 4 {0,1,2,3,4,5,6,7}
4246401145 41 {4,0,1,2,3,5,6,7}
4246401145 413 {1,4,0,2,3,5,6,7}
4246401145 4136 {3,1,4,0,2,5,6,7}
4246401145 41360 {6,3,1,4,0,2,5,7}
4246401145 413600 {0,6,3,1,4,2,5,7}
4246401145 4136006 {0,6,3,1,4,2,5,7}
4246401145 41360060 {6,0,3,1,4,2,5,7}
4246401145 41360060 {0,6,3,1,4,2,5,7}
4246401145 413600604 {4,0,6,3,1,2,5,7}
Final 4136006042 {2,4,0,6,3,1,5,7}

3.1.2 Variations of MTF.

1. MTF

 Upon an access for an item x move x to the front [5,6,7,22].

2. Transpose (TRANS)

 Upon an access to an item x transpose x with the immediately preceding item [7,22].

3. MHD(k)

 Upon a request for an item x, move x forward by k positions and if there are no k

preceding items, move it forward to the first position.

4. Move-One-From-Front (MTFF)

If R(x) > 2 move x to the 2nd position, else move x to the front. R(x) is the position of x

in the sequence [20,21].

20

5. Move-One-From-Front 2 (MTFF2)

If R(x) > 2 and the symbol at the front was requested at most 2 requests ago, move x to

the 2nd position, else move x to the front. R(x) is the position of x in the sequence.[21]

3.1.3. Proposed Variants of MTF

1. Transpose (k) (TRANS (k))

 Upon an access to an item x interchange x with the k th preceding item, if there are no k

preceding items, interchange it with the first one. We experimented with different values of k,

namely k=4,8,32,64,128.

2. Modified Transpose (k) (MTRANS(k))

 Upon an access to an item x interchange x with the k th preceding item and if there are no

k th preceding items don’t change it.

3. Modified_MHD(k) (MMHD(k))

Upon a request for an item x, move x forward by k positions and if there are no kth

preceding items don’t change it [19,22].

4. Windowed MTF (MTFW(w,r))

 This variant of MTF was designed to capture the spatial correlation in natural images. Let

R(x) is the position of x in the list L and µx the average of the values in a window of size w (i.e.

using the preceding w symbols in the input sequence. Upon access to an item x move it to the

front if R(x) < 2 or | x- µx | <= r else move x to the second position in the list. We observed

MTFW for different values of w = 2, 3, 5, 10 and r = 1, 3, 5, 10. Here w is the window size and r

is the range.

21

5. Windowed MTF2 (MTFW2(w,r))

Upon access to an item x move it to the front if R(x) < 2 or | x- µx | <= r else don’t do

anything. We observed MTFW for different values of w = 2, 3, 5, 10 and r = 1, 3, 5, 10. Here w

is the window size and r is the range.

Table 3.3 shows the Final O/P sequence and the Final list obtained when different variations of

MTF’s have been used on the input sequence is 4246401145.

Table 3.3: O/P sequence and Final List for different MTF's when I/P sequence are 4246401145.

 Final O/P Sequence Final list
MTF 4136006042 {2,4,0,6,3,1,5,7}
TRANS 4236203226 {0,4,1,2,3,5,6,7}
TRANS(2) 4446221025 {4,0,1,5,6,3,2,7}
MHD(2) 4336113126 {4,1,0,2,5,6,3,7}
MTRAN(2) 4446221125 {4,1,0,5,6,3,2,7}
MMHD(2) 4336103126 {4,0,1,2,5,6,3,7}
MTFF 4326204126 {1,5,4,0,6,2,3,7}
MTFF2 4306034116 {4,5,1,0,6,2,3,7}
MTFW(3,1) 4316033016 {4,5,1,0,6,2,3,7}
MTFW(3,1) 4316023015 {4,1,2,0,3,5,6,7}

3.1.4 Characterization of MTF outputs

1. For Images.

Figure 3.1 shows the empirical distribution of the original image and the MTF output. The effect

on the first distribution plots for three images BOAT, COUPLE and PARROT has been observed

using MTF. It also shows how MTF helps to improve the distribution.

22

23

Figure 3.1: First order distribution plots of original and after MTF for boat, couple, parrot.

 Figures 3.2 to 3.4 show the empirical distribution of the MTF outputs for different predictive

schemes and for different images. The effect on the first and second order distribution plots for

three images BOAT, COUPLE and PARROT have been observed using MTF and the three different

predictors DIFF, MED and GAP. It is observed that the distributions are narrow when a predictor

is used. We can notice that when the MTF is used after a predictor it actually broadens the

distribution, which means that this may degrade later compression using an entropy encoder. The

MED predictor seems to be the best among the three predictors which can be observed from the

distribution plots. The figures also show the first order and second order symbol distributions. In

both distributions first the probability of each symbol is calculated and then sorted in decreasing

order of their probability.

24

Figure 3.2: First and second order distribution plots of different predictors for boat.

25

Figure 3.3: First and second order distribution plots of different predictors for Couple.

26

Figure 3.4: First and second order distribution plots of different predictors for Parrot.

27

There are 256 symbols in first order where as they are 2562 symbols in the second order. The

second order distribution is achieved by consider a pair of symbols as a single symbol. The

scales on each of the plots have been adjusted in such a way to show the characteristics of the

distribution plots for symbols with the highest probability. Only the first 20-30 symbols are

shown in each plot. The log plots have also been included for better illustration.

2. For text files.

The distribution plots for text data have also been plotted to observe the reason why MTF does

not help for BWT based Image compression. As expected the distribution is improve by MTF in

the case of text data. We plotted the first and second order distribution plots for BIBLE.TXT,

PROGL, TRANS and WORLD192.TXT which are seen in the figures 3.5, 3.6, 3.7 and 3.8 respectively.

The text files have been obtained from the Canterbury corpus.

3. For Laplace distribution sequence.

A data sequence with laplace distribution having mean 128 and standard deviation 14 has been

generated. The first and second order distribution plots for the original and MTF outputs have

been plotted using this sequence in figure 3.9. It is observed that the MTF broadens the

distribution of the input if it is laplacian, which doesn’t help for the compression. As known the

predictive errors generally tend to have a laplacian distribution. Thus the improvement in the

compression ratio with the removal of MTF from the BWT Pipeline makes sense.

28

Figure 3.5: First and second order distribution plots of different predictors for Bible.txt.

29

Figure 3.6: First and second order distribution plots of different predictors for Progl.

30

Figure 3.7: First and second order distribution plots of different predictors for Trans.

31

Figure 3.8: First and second order distribution plots of different predictors for World192.txt.

32

Figure 3.9: First and second order distribution plots of original and MTF for a Laplacian Distribution.

33

3.1.5 Characterizing the Effect of MTF on Image Compression

3.1.5.1 Effect of Range (k) in MTF on Image Compression.

The value of k has been varied from 1-255 for MHD, TRANS, Modified MHD and Modified

TRANS, the average of the compression ratios for 9 images (i.e. BOAT, CAR, COUPLE, HOUSE,

MAN, PARROT, TREE, WATERWHEEL and ZELDA) have been calculated and plotted as shown in

figure 3.10. We can also observe the slight improvement in compression provided by the

proposed modifications. As the value of the range parameter k increases towards the maximum

of 256, it means that we are increasingly delaying the application of MTF stage. At k = 256, this

effectively means that the MTF stage is no longer being applied. Therefore, it is very instructive

to observe that each of the four variations produced their best result at k = 256, i.e effectively

without MTF. We carry this observation even further, by investigating the performance of BWT

based image compression with or without MTF, and with or without RLE for each case.

Figure 3.10: Variation of CR for MHD, TRANS, MMHD and MTRANS with range k.

4

4.5

5

5.5

6

6.5

1 32 63 94 125 156 187 218 249

CR

Range k

MHD(k)

TRANS(k)

MMHD(k)

MTRANS(k)

34

Figure 3.11: Variation of CR for MMHD with range k for different predictors.

Figure 3.12: Variation of CR for MTRANS with range k for different predictors.

4

4.5

5

5.5

6

6.5

1 32 63 94 125 156 187 218 249

C
R

Range k

MMHD DIFF

MMHD MEAN

MMHD MED

MMHD GAP

4.1

4.3

4.5

4.7

4.9

5.1

5.3

1 32 63 94 125 156 187 218 249

C
R

Range k

MTRANS DIFF

MTRANS MEAN

MTRANS MED

MTRANS GAP

35

3.1.6 Effect of range (r) and window size (w) in MTFW on Image Compression

Figure 3.13 shows how the compression ratio is affected both by range r and the window size w

in MTFW. We can observe the periodic curves with an interval of 30, for each value of range r

the window size w was varied from 1-30. There are 16 such curves as the range r value is varied

from 1-16. The compression ratio improves as the value of range r is decreased and the value of

window size w is increased. The variation of compression ratio with window size w also reduces

as the value of range r increases. The CR calculated here is the average of the nine images

referred in the previous section and also MED predictor has been used.

Figure 3.13: Variation of CR for MTFW(w,r) with window size w =1-30 and r =1-16.

Figure 3.14 shows the variation of CR in MTFW(w,r) for three values of range r = 1,2,3 and

window size w varying from 1-100. As seen from the figure the compression ratio tends to be

small as w increases and r decreases.

4.59

4.6

4.61

4.62

4.63

4.64

4.65

4.66

4.67

4.68

4.69

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451

C
R

Varing window size (w) from 1-30 and range (r) from 1-16

36

Figure 3.14: Variation of CR for MTFW(w,r) with window size w =1-100 and r =1,2,3.

Surface plot for MTFW

The plot above is redrawn using a surface plot, to give a 3-dimentional perspective. Figure 3.15

shows how CR (average from 9 images) is affected by both the range r and the window size w in

MTFW. The CR improves with decreasing r, or increasing w.

Figure 3.15: 3D plot for Variation of CR for MTFW(w,r) with window size w =1-30 and r =1-16.

4.59

4.6

4.61

4.62

4.63

4.64

4.65

4.66

4.67

1 11 21 31 41 51 61 71 81 91

CR

Window size (w)

r = 1
r = 2
r = 3

37

3.1.7 Effect of range (r) and window size (w) in MTFW2 on Image Compression

Figure 3.16 shows the variation of CR in MTFW2(w,r) for three values of range r = 1,2,3 and

window size w varying from 1-100. As seen from the figure the compression ratio tends to be

small as w increases and r decreases but with some oscillations. The best compression is

observed for r = 1 and w = 91.

Figure 3.16 Variation of CR for MTFW2(w,r) with window size w =1-100 and r =1,2,3.

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

1 11 21 31 41 51 61 71 81 91

C
R

Window size (w)

r=1

r=2

r=3

38

3.2 Context Partitions for BWT Image Compression

Context-based lossless image compression algorithms exploit the two-dimensional spatial

redundancy in natural images. They represent the most successful among lossless image coders.

Examples algorithms in this group are CALIC [13], JPEG-LS[11] and PPAM[9]. For this class of

algorithms, an initial step of spatial prediction is used to remove the spatial redundancy in the image.

The prediction depends on a chosen context selection strategy for each given position in the image.

Context modeling is then applied to estimate the conditional probability distribution of the prediction

residues given their contexts. Finally, an entropy coder uses the estimated conditional probabilities to

encode the prediction residues. The different lossless image coders vary in the details of one or more

of the above basic steps.

Consider an image represented by a sequence 1 2 nt t t with symbols taken from a fixed

alphabet 1 2, , ,σ σ σ ΣΣ = , where n T= is the image size. Here, Σ is typically the set of distinct

pixel gray levels in the image, or the set of distinct prediction errors, after prediction. Let the

corresponding probability of the symbols in the image be () , 1,...,ip iσ = Σ , () 1ii
p σ =∑ . The

entropy ()H T gives the minimum number of bits per symbol required to encode the image without

context modeling:

() () ()2log
i

i iH T p p
σ

σ σ
∈Σ

= −∑ .

Now, consider the contexts for each symbol it in the image. Let jS ′ be the set of symbols with the

context jC in T. Suppose we know the conditional probability distribution ()| , 1,...,i j jp t C i S ′= .

In this case, ()|H T C the conditional entropy gives the minimum number of bits per symbol needed

to encode the image:

39

() () () ()()()21
| | log |

i j

K
j i j i jj s S

H T C p C p t C p t C
′= ∈

= −∑ ∑ () ()()2, log |
i

i j i jj s
p t C p t C= −∑ ∑

Where K is the total number of contexts. Since () ()|H T C H T≤ , (see [29]), the average code

length (per symbol) needed to describe the image is also reduced using context modeling. This is

significant, as it provides an important connection between image compression and the contexts

induced by the BWT. While traditional image compression schemes use preceding (reverse) pixel

contexts, the BWT uses succeeding (forward) contexts. We will exploit the sorted contexts induced

by the BWT in our approach to image compression.

An important property of the BWT is the introduction of sorted order on nearby contexts in the

output string. Given the similarity of nearby symbols in the image (even after spatial prediction), we

tried to use context partitions on the image sequence to see it this could lead to improved results. The

general procedure is shown in Figure 3.17.

The BWT output string is divided into blocks which are determined by sorting the output string in

alphabetic order. These individual blocks are processed by MTF, RLE and ARI individually and the

outputs are combined to form the final compressed data. All these individual files are reused while

decoding the original image. Let’s see how this works with an example, if the output BWT sequence

is ASDFSADSFSASFGHFDS, the sorted sequence will be AAADDDFFFFGHSSSSSS, so the

output BWT sequence is broken into blocks ASD, FSA, DSFS, A, S, FGHFDS. These blocks are

then sent individually to MTF, RLE and ARI blocks.

40

Figure 3.17: BWT compression with context partitions.

Guided by the foregoing, we obtain two variations for the proposed BWT-based image

compression scheme. We call the first variation BLIC (BWT-based lossless image coder), which

corresponds to the BWT compression pipeline but without MTF and without RLE. The second

method is BLICX (BWT-based lossless image coder with context partitions). Thus, BLICX

corresponds to BWT compression using context partitions, but without MTF and RLE.

41

4. Experimental results

4.1 Experimental Data and Experimental Environment

4.1.1 Data Sets

The following images sets have been used

• Standard images- SET-1

1.BRIDGE, 2.AIRPLANE, 3.BABOON, 4.BALLON, 5.BARB, 6.CAMERA, 7.COUPLE, 8.GOLDHILL,
9.LENA, 10.PEPPERS, 11.SHAPES are used as first image set.

• Standard images- SET-2

1.BOAT, 2.CAR, 3.COUPLE, 4.HOUSE, 5.MAN, 6.PARROT, 7.PLANT, 8.TREE, 9.WATERWHEEL,
10.ZELDA is the second image set.

• NEURITE SET

1.NEURITE01, 2. NEURITE02, 3. NEURITE04, 4. NEURITE05, 5. NEURITE06, 6. NEURITE07, 7.
NEURITE09, 8. NEURITE10, 9. NEURITE11, 10. NEURITE14 is the third image set.

• SLICE SET

1.SLICE00, 2. SLICE01, 3. SLICE02, 4. SLICE03, 5. SLICE04, 6. SLICE05, 7. SLICE06, 8.
SLICE07, 9. SLICE08, 10. SLICE09 is the fourth image set.

• RETINAL SET

1.RETINAL00, 2.RETINAL03, 3.RETINAL04, 4.RETINAL09, 5.RETINAL11, 6.RETINAL12,
7.RETINAL14, 8.RETINAL15, 9.RETINAL17, 10.RETINAL18 is the fifth image set.

 These sets have been used in the recently published work on lossless image compression [

Zhang [9]]. The images are shown for reference in appendix A.

 4.1.2 Experimental Environment

The experiments were carried out using MATLAB 7 on a system having Pentium core 2 duo

processor, running at 1.83 GHz with 3GB RAM. We used MATLAB for image analysis and

spatial prediction. The source codes for BWT the compression algorithms are based on Mark

Nelson’s codes [2], and are compiled using VC++ in Windows XP.

42

4.2 Results for different variations of MTF.

4.2.1 BWT Without mapping and without prediction

Table 4.1 shows the compression ratios for different variations of the MTF without the use of

any mapping or any prediction. These results are obtained by applying the basic BWT which is

famous for text compression. As debated it doesn’t have the best performance in image

compression. Observing this we have tried different variations like mapping and prediction

which comes under preprocessing the image data to see whether it might improve the image

compression capability of the BWT algorithm.

Table 4.1: BWT compression with different variations of MTF (without any mapping or prediction).

MTF TRANS MTFF MTFF2 MTRANS

(8)
MTRANS

(128)
MTFW

(2,1)
MTFW
(10,1)

MTFW2
(84,1)

MTFW2
(87,1)

BRIDGE 6.899 6.445 6.831 6.890 6.783 6.678 6.901 6.881 5.612 5.677

AIRPLANE 5.871 5.499 5.823 5.866 5.561 5.396 5.882 5.869 5.553 5.553

BABOON 7.847 7.461 7.833 7.846 7.592 7.443 7.848 7.834 6.683 6.683

BALLON 4.475 4.287 4.434 4.472 4.197 4.148 4.496 4.497 5.642 5.642

BARB 6.068 5.854 6.044 6.068 5.899 5.781 6.087 6.072 6.576 6.576

CAMERA 6.419 5.989 6.225 6.248 6.030 5.887 6.427 6.423 6.625 6.628

COUPLE 5.791 5.406 6.225 6.248 5.474 5.281 5.804 5.793 5.720 5.685

GOLDHILL 6.166 5.842 6.225 6.248 6.023 5.798 6.180 6.159 5.942 5.942

LENA 6.198 5.878 6.225 6.248 6.046 5.820 6.223 6.198 6.374 6.374

PEPPERS 6.250 5.903 6.225 6.248 6.067 5.840 6.268 6.247 6.249 6.249

SHAPES 1.943 1.878 1.898 1.910 1.910 1.937 1.914 1.923 2.295 2.295

AVERAGE 5.812 5.495 5.817 5.845 5.598 5.455 5.821 5.809 5.752 5.755

4.2.2 Performance Analysis for Different Predictors

Prediction using the neighboring pixels had a significant effect on the performance of BWT

based image compression algorithm. We used different prediction schemes such as DIFF, GAP,

MED and MEAN. The value underlined in each row indicates the lowest for a particular image.

In each of these cases we have used the 8-bit mapping.

43

4.2.2.1 DIFF Predictor

Table 4.3 shows the compression ratios for different variations of MTF using 8-bit mapping and

DIFF predictor. Here 8-bit mapping method which allows for the representation of the linear

sequence, by eliminating the need for the extra sign bit has been used. This resulted in a 1-bit

gain for each symbol. That’s the reason why we observe a better compression when compared to

the above other two techniques.

Table 4.2: BWT compression with different variations of MTF using 8-bit mapping and DIFF
predictor.

MTF TRANS MTFF MTFF2 MTRANS

(8)
MTRANS

(128)
MTFW

(2,1)
MTFW
(10,1)

MTFW2
(84,1)

MTFW2
(87,1)

BRIDGE 5.977 5.704 5.947 5.974 5.684 5.618 5.974 5.964 7.632 7.768

AIRPLANE 5.149 4.765 5.115 5.148 4.889 4.711 5.149 5.130 6.563 6.585

BABOON 7.053 6.686 7.046 7.054 6.771 6.790 7.052 7.045 8.033 7.616

BALLON 3.796 3.566 3.760 3.794 3.624 3.469 3.810 3.796 4.604 4.604

BARB 5.451 5.299 5.438 5.451 5.432 5.271 5.460 5.446 6.695 6.651

CAMERA 5.626 5.177 5.589 5.617 5.326 5.177 5.621 5.605 6.363 6.822

COUPLE 4.993 4.596 4.948 4.983 4.705 4.516 4.987 4.971 5.978 6.252

GOLDHILL 5.565 5.219 5.551 5.564 5.364 5.185 5.566 5.554 6.709 6.686

LENA 5.478 5.138 5.463 5.478 5.307 5.121 5.483 5.469 6.434 6.326

PEPPERS 5.494 5.138 5.481 5.492 5.331 5.167 5.498 5.488 6.462 6.577

SHAPES 1.457 1.423 1.408 1.421 1.566 1.655 1.421 1.427 2.103 2.170

AVERAGE 5.094 4.792 5.068 5.089 4.909 4.789 5.093 5.081 6.143 6.187

4.2.2.2 Mean Predictor

Table 4.4 shows the compression ratios for different variations of MTF using 8-bit mapping and

mean predictor. Here the mean value of the preceding pixel and the above pixel has been used as

the predicted value and the difference between the predicted and original pixel value has been

mapped and transmitted.

44

Table 4.3: BWT compression with different variations of MTF using 8-bit mapping and MEAN
predictor.

MTF TRANS MTFF MTFF2 MTRANS

(8)
MTRANS

(128)
MTFW

(2,1)
MTFW
(10,1)

MTFW2
(84,1)

MTFW2
(87,1)

BRIDGE 6.719 6.255 6.698 6.719 6.324 6.253 6.713 6.701 6.220 6.220

AIRPLANE 4.896 4.507 4.860 4.896 4.616 4.415 4.897 4.880 4.883 4.765

BABOON 6.678 6.319 6.669 6.678 6.421 6.353 6.676 6.669 6.300 6.300

BALLON 3.731 3.505 3.698 3.729 3.548 3.413 3.749 3.736 3.872 4.002

BARB 5.702 5.408 5.688 5.703 5.534 5.375 5.709 5.697 5.813 5.732

CAMERA 5.513 5.047 5.476 5.508 5.163 5.018 5.506 5.495 5.510 5.509

COUPLE 4.934 4.586 4.899 4.928 4.701 4.509 4.934 4.919 5.129 4.949

GOLDHILL 5.294 4.956 5.277 5.294 5.108 4.905 5.298 5.283 5.381 5.067

LENA 5.402 5.054 5.386 5.403 5.229 5.033 5.407 5.395 5.122 5.141

PEPPERS 5.325 4.974 5.308 5.324 5.189 5.002 5.330 5.318 4.996 4.996

SHAPES 1.702 1.707 1.649 1.667 1.796 1.866 1.666 1.672 2.156 2.075

AVERAGE 5.081 4.756 5.055 5.077 4.875 4.740 5.080 5.069 5.035 4.978

4.2.2.3 MED Predictor

Table 4.5 shows the compression ratios for different variations of MTF using 8-bit mapping and

MED predictor. The median predictor achieved the best overall compression ratio when

compared with the other predictors tested. MED is the spatial predictor used in the JPEG-LS

standard.

Table 4.4: BWT compression with different variations of MTF using 8-bit mapping and MED
predictor.

MTF TRANS MTFF MTFF2 MTRANS

(8)
MTRANS

(128)
MTFW

(2,1)
MTFW
(10,1)

MTFW2
(84,1)

MTFW2
(87,1)

BRIDGE 5.927 5.487 5.878 5.923 5.490 5.413 5.923 5.898 5.391 5.391

AIRPLANE 4.775 4.399 4.741 4.771 4.526 4.310 4.778 4.760 4.766 4.794

BABOON 6.710 6.339 6.704 6.709 6.441 6.384 6.710 6.705 6.323 6.323

BALLON 3.678 3.424 3.642 3.678 3.467 3.309 3.696 3.680 3.699 3.726

BARB 5.541 5.214 5.522 5.540 5.353 5.172 5.544 5.532 5.291 5.570

CAMERA 5.417 4.971 5.381 5.417 5.106 4.933 5.414 5.398 5.408 5.094

COUPLE 4.612 4.257 4.570 4.606 4.372 4.159 4.610 4.591 4.479 4.661

GOLDHILL 5.188 4.854 5.172 5.187 5.020 4.809 5.192 5.178 4.901 4.821

LENA 5.402 5.069 5.387 5.402 5.237 5.039 5.407 5.393 5.459 5.212

PEPPERS 5.364 5.070 5.353 5.363 5.280 5.112 5.373 5.363 5.110 5.110

SHAPES 1.448 1.363 1.388 1.403 1.351 1.358 1.415 1.423 1.619 1.681

AVERAGE 4.915 4.586 4.885 4.909 4.695 4.545 4.915 4.902 4.768 4.762

45

4.2.2.4 GAP Predictor

Table 4.5 shows the compression ratios for different variations of MTF using 8-bit mapping and

GAP predictor. Gradient-Adjusted Prediction is the prediction algorithm which is used in

CALIC. The GAP predictor was better than the MEAN predictor, but was not as effective as the

MED predictor.

Table 4.5: BWT compression with different variations of MTF using 8-bit mapping and GAP
predictor.

MTF TRANS MTFF MTFF2 MTRANS

(8)
MTRANS

(128)
MTFW

(2,1)
MTFW
(10,1)

MTFW2
(84,1)

MTFW2
(87,1)

BRIDGE 6.943 6.543 6.932 6.944 6.636 6.588 6.938 6.932 6.524 6.524

AIRPLANE 4.746 4.375 4.710 4.744 4.488 4.278 4.748 4.731 4.901 4.931

BABOON 6.670 6.288 6.661 6.670 6.390 6.329 6.670 6.661 6.267 6.267

BALLON 3.585 3.346 3.546 3.582 3.361 3.229 3.601 3.586 3.719 3.598

BARB 5.416 5.126 5.399 5.415 5.263 5.090 5.422 5.410 5.450 5.371

CAMERA 5.380 4.933 5.342 5.376 5.044 4.871 5.372 5.352 5.340 5.320

COUPLE 4.656 4.308 4.616 4.650 4.428 4.226 4.661 4.637 4.719 4.740

GOLDHILL 5.173 4.837 5.156 5.172 4.997 4.788 5.175 5.160 5.034 5.058

LENA 5.265 4.940 5.251 5.264 5.099 4.893 5.272 5.256 5.058 5.058

PEPPERS 5.274 4.954 5.259 5.275 5.149 4.954 5.281 5.269 4.952 4.952

SHAPES 1.725 1.636 1.660 1.685 1.743 1.749 1.686 1.697 1.923 1.897

AVERAGE 4.985 4.662 4.957 4.980 4.782 4.636 4.984 4.972 4.899 4.883

Comments

Overall the MTRANS and its variants provided the best results. The overall best of the MTF

variants was MTRANS(k) with k=128. Similar results were observed with higher values of k. See

figure 3.11. The other proposed variants were generally better than the traditional MTF (Column

2), but, in general, did not do better than MTRANS(128). With respect to spatial predictors, the

MED seemed to provide the best results when used as the preprocessor before the BWT

compression pipeline.

46

Figures 3.10 and 3.11, shows the variation of the performance for various values of k, and for

different prediction schemes. Once again, these results show that, when the objective is image

compression using the BWT, better performance could be produced by eliminating the stage of

MTF. Following these results, we also investigated the impact of the RLE stage (without MTF)

in BWT-based compression.

4.3 Compression with and without MTF/RLE

The results in Table 4.6 show the effect of removal of both MTF and RLE from the BWT

pipeline scheme in lossless image compression for different types of predictors. It has been

observed that the use of MED predictor and the removal of both the MTF and RLE have resulted

in the best CR. We have proposed a new compression scheme BLIC which corresponds to BWT

compression pipeline without MTF, RLE or context partitions.

Table 4.6: Compression with and without MTF/RLE using different predictors.

IMAGE
Without predictor MEAN MED GAP

BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle

AIRPLANE 5.533 5.552 4.874 4.415 4.411 4.254 4.310 4.308 4.149 4.278 4.278 4.118

BABOON 6.589 6.683 6.953 6.353 6.299 6.208 6.384 6.322 6.230 6.329 6.267 6.175

BALLOON 5.558 5.642 3.548 3.413 3.414 3.233 3.309 3.309 3.127 3.229 3.230 3.051

BARB 6.513 6.576 5.293 5.375 5.364 5.230 5.172 5.164 5.025 5.090 5.083 4.941

GOLDHILL 5.888 5.942 5.272 4.905 4.905 4.804 4.809 4.809 4.702 4.788 4.787 4.679

LENA 6.283 6.374 5.318 5.033 5.026 4.871 5.039 5.035 4.891 4.893 4.890 4.741

LENNAGREY 6.125 6.205 4.969 4.718 4.714 4.548 4.693 4.692 4.533 4.544 4.543 4.382

PEPPERS 6.187 6.249 5.323 5.002 4.995 4.835 5.112 5.110 4.949 4.954 4.951 4.792

REF12B 2.026 2.027 1.276 1.196 1.196 0.925 1.163 1.162 0.852 1.173 1.173 0.884

SHAPES 2.209 2.295 1.959 1.866 1.862 2.066 1.358 1.352 1.263 1.749 1.745 1.786

AVERAGE 5.291 5.354 4.478 4.227 4.218 4.097 4.134 4.126 3.972 4.102 4.094 3.954

47

4.4 Compression for context partitions with and without MTF/RLE

Also the effect of removal of both MTF and RLE from the context partitions based BWT

pipeline scheme in lossless image compression for different types of predictors has been tested.

The results have been shown in the table 4.7. It has been observed that without the use of any

predictor and the removal of both the MTF and RLE have resulted in the best CR. We have

proposed a new compression scheme BLICx which corresponds to BWT compression pipeline

without MTF, RLE and context partitions.

Table 4.7: Compression for context partitions with and without MTF/RLE using different predictors.

IMAGE
Without predictor MEAN MED GAP

BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle

AIRPLANE 0.155 0.155 4.323 4.398 4.395 4.238 4.398 4.267 4.109 4.334 4.332 4.167

BABOON 5.837 5.773 6.482 6.543 6.508 6.414 6.543 6.551 6.456 6.535 6.496 6.401

BALLOON 4.640 4.635 2.293 3.290 3.290 3.107 3.290 3.065 2.894 3.071 3.071 2.896

BARB 6.179 6.133 4.815 5.454 5.448 5.304 5.454 5.263 5.114 5.146 5.142 4.988

GOLDHILL 5.470 5.452 4.725 4.992 4.991 4.869 4.992 4.898 4.767 4.883 4.882 4.750

LENA 4.966 4.937 4.706 5.168 5.161 5.002 5.168 5.200 5.052 5.002 5.001 4.842

LENNAGREY 4.641 4.602 4.286 4.870 4.867 4.693 4.870 4.838 4.671 4.686 4.685 4.512

PEPPERS 5.760 5.710 4.619 5.126 5.122 4.958 5.126 5.247 5.084 5.101 5.101 4.938

REF12B 1.762 1.762 1.098 0.565 0.565 0.494 0.565 0.525 0.426 0.510 0.510 0.426

SHAPES 1.703 1.706 1.718 1.930 1.927 2.072 1.930 1.438 1.350 1.792 1.790 1.777

AVERAGE 4.111 4.087 3.907 4.234 4.227 4.115 4.234 4.129 3.992 4.106 4.101 3.970

4.5 Comparitive Results with text Compression schemes

The performance of our new researched method BLIC and BLICx with and without MED

predictor for lossless compression of images using the BWT algorithm was compared with other

standard text compression algorithms like PPM, WinZip, Bzip, Gzip, RAR. Table 4.8, gives the

compression performance of the different coding methods in bits per pixel.

48

Table 4.8: Comparative results with standard text compression methods.

Image PPM WinZip Bzip Gzip RAR
Proposed methods

With MED predictor Without Predictor
BLICx BLIC BLICxnomed BLICnomed

AIRPLANE 4.59 5.74 4.97 5.73 4.62 4.10 4.14 4.32 4.87

BABOON 6.52 7.26 6.74 7.26 6.61 6.45 6.23 6.48 6.95

BALLOON 3.9 5.53 4.28 5.52 3.77 2.89 3.12 2.29 3.55

BARB 6.13 7.1 6.52 7.09 6.19 5.11 5.02 4.81 5.29

GOLDHILL 5.46 6.64 5.79 6.63 5.08 4.76 4.70 4.72 5.27

LENA 5.56 7.16 5.84 7.15 5.43 5.05 4.89 4.70 5.32

LENNAGREY 5.23 6.82 5.55 6.82 5.10 4.67 4.53 4.28 4.97

PEPPERS 5.31 7.1 5.63 7.09 5.65 5.08 4.94 4.61 5.32

REF12B 0.86 1.32 1.15 1.25 1.15 0.42 0.85 1.09 1.28

SHAPES 1.25 1.48 1.42 1.43 1.35 1.35 1.26 1.71 1.96

AVERAGE 4.48 5.61 4.79 5.6 4.5 3.99 3.97 3.90 4.48

From the results shown in table above, we can see that our variation of BWT for lossless image

compression performed better than all the other text compression algorithms that were used in

the analysis. Also, the comparative results between bzip and our method show that the

preprocessing of image data enhanced the performance of this BWT based compression method.

4.6 Comparitive Results with image Compression schemes

Comparison results have been observed for four image sets Natural, Neurite, Slice, and Retinal.

Tables 4.9, 4.10, 4.11 and 4.12 show the comparative performance of variations of BWT on

different image sets, when compared with state of the art lossless image compression schemes

such as CALIC, JPEG-LS, EDP, JPEG2000, SPIHT and PPAM. BWTnomtf correspond to BWT

compression pipeline without MTF. BLIC corresponds to BWT compression pipeline without

MTF, RLE and context partitions. BLICx corresponds to BWT compression pipeline without

MTF and RLE with context partions. As seen from the table BLIC seems to give the best reults

among the propossed methods. All the values except the once based on BWT have been obtained

49

from Zhang [9] paper for comparison. MED predicted data has been used in all the BWT based

methods.

Table 4.9: Comparative compression performance on natural image set.

Image Entropy EDP PPAM1 PPAM2 CALIC
JPEG

LS
SPIHT

JPEG

2000
BWT

Proposed Methods

Without Context
Partitions Context Partitions

BWTnomtf BLIC BWT BWTnomtf BLICx

BOAT 6.132 4.358 4.33 4.01 4.181 4.271 4.37 4.465 4.065 4.064 3.803 4.187 4.187 3.921
CAR 6.251 4.196 4.27 3.797 3.946 4.068 4.236 4.285 3.924 3.923 3.677 4.061 4.062 3.797
COUPLE 6.359 4.772 4.735 4.497 4.618 4.698 4.829 4.903 4.378 4.375 4.151 4.532 4.532 4.305
HOUSE 5.638 5.272 5.29 5.044 4.983 5.138 5.396 5.435 4.717 4.711 4.557 4.887 4.883 4.719
MAN 6.37 5.038 4.985 4.891 4.808 4.928 5.058 5.218 4.741 4.728 4.536 4.921 4.910 4.710
PARROT 6.178 3.565 3.544 3.245 3.327 3.48 3.532 3.695 3.381 3.387 3.061 3.607 3.612 3.265
PLANT 5.118 5.129 5.040 5.224 5.108 5.176 5.161 5.343 5.610 5.607 5.483 6.114 6.117 5.983
TREE 5.535 5.441 5.373 5.141 5.141 5.271 5.362 5.520 4.868 4.865 4.695 5.057 5.055 4.879
WATERW

5.948 5.178 5.152 4.914 4.793 4.963 5.206 5.3 4.628 4.623 4.429 4.793 4.789 4.584
ZELDA 6.267 4.03 3.839 3.746 3.908 4.029 3.971 4.054 3.760 3.760 3.487 3.875 3.876 3.596
Average 5.980 4.698 4.656 4.451 4.481 4.602 4.712 4.822 4.407 4.404 4.188 4.603 4.602 4.376

Table 4.10: Comparative compression performance on neurite image set.

Image Entropy EDP PPAM1
PPAM1

(function)
CALIC

JPEG

LS
SPIHT

JPEG

2000
BWT

Proposed Methods

Without Context
Partitions Context Partitions

BWTnomtf BLIC BWT BWTnomtf BLICx

NEURITE01 3.394 3.259 2.817 2.975 2.932 3.101 2.997 3.118 3.773 2.971 2.605 4.076 3.165 2.771
NEURITE02 3.46 3.503 3.23 3.381 3.299 3.4 3.342 3.445 3.963 3.223 2.874 4.212 3.411 3.031
NEURITE04 3.05 2.946 2.594 2.728 2.561 2.839 2.792 2.889 3.512 2.811 2.426 3.786 2.986 2.575
NEURITE05 3.768 3.822 3.601 3.776 3.702 3.811 3.675 3.79 3.453 2.771 2.377 3.691 2.935 2.513
NEURITE06 3.299 3.21 2.835 3.054 2.95 3.106 2.994 3.114 4.294 3.558 3.249 4.653 3.792 3.461
NEURITE07 3.637 3.672 3.442 3.621 3.553 3.661 3.533 3.627 3.716 2.980 2.609 3.985 3.165 2.766
NEURITE09 3.158 3.104 2.658 2.809 2.77 3.008 2.94 3.035 4.184 3.391 3.061 4.488 3.601 3.242
NEURITE10 3.212 3.111 2.737 2.922 2.768 3.013 2.932 3.016 3.859 3.123 2.766 4.151 3.320 2.930
NEURITE11 3.583 3.407 3.291 3.45 3.326 3.542 3.481 3.56 3.471 2.736 2.363 3.572 2.816 2.438
NEURITE14 3.442 3.38 3.104 3.287 3.128 3.315 3.297 3.392 3.471 2.746 2.373 3.572 2.828 2.449

Average 3.400 3.341 3.031 3.200 3.099 3.280 3.198 3.299 3.770 3.031 2.670 4.019 3.202 2.818

50

From the tables we can observe that our proposed method BLIC has outperformed all the other

lossless image compression schemes used for compression in Natural and Neurite image sets. It

was comparable in the retinal image set case. It didn’t do quite good in the slice image sets.

Table 4.11: Comparative compression performance on slice image set.

Image Entropy EDP PPAM1
PPAM1

(function)
CALIC

JPEG

LS
SPIHT

JPEG

2000
BWT

Proposed Methods

Without Context
Partitions Context Partitions

BWTnomtf BLIC BWT BWTnomtf BLICx

SLICE00 2.63 2.18 1.507 1.626 1.764 1.842 2.12 2.053 2.760 2.763 2.633 3.114 3.127 2.900
SLICE01 2.606 2.155 1.576 1.693 1.757 1.821 2.1 2.043 2.771 2.773 2.641 3.124 3.138 2.912
SLICE02 2.773 2.343 1.626 1.832 1.928 1.995 2.14 2.188 2.936 2.945 2.819 3.315 3.329 3.109
SLICE03 2.76 2.375 1.736 1.947 2.069 2.166 2.14 2.314 3.183 3.193 3.056 3.580 3.594 3.379
SLICE04 2.908 2.601 2.019 2.215 2.438 2.59 2.37 2.621 3.636 3.647 3.499 4.074 4.086 3.878
SLICE05 2.898 2.518 1.942 2.128 2.295 2.409 2.41 2.471 3.429 3.439 3.305 3.852 3.865 3.663
SLICE06 2.607 2.155 1.655 1.871 1.898 2.01 2.22 2.169 2.981 2.989 2.840 3.362 3.375 3.127
SLICE07 2.399 2.01 1.609 1.804 1.725 1.86 1.87 2.034 2.765 2.768 2.583 3.094 3.107 2.839
SLICE08 1.882 1.608 1.397 1.524 1.443 1.59 1.5 1.77 2.397 2.404 2.183 2.685 2.699 2.420
SLICE09 1.637 1.441 1.304 1.477 1.225 1.402 1.39 1.591 2.102 2.108 1.826 2.335 2.347 2.019
Average 2.510 2.139 1.637 1.812 1.854 1.969 2.026 2.125 2.896 2.903 2.739 3.253 3.267 3.025

Table 4.12: Comparative compression performance on retinal image set.

Image Entropy EDP PPAM1
PPAM1

(function)
CALIC

JPEG

LS
SPIHT

JPEG

2000
BWT

Proposed Methods

Without Context
Partitions Context Partitions

BWTnomtf BLIC BWT BWTnomtf BLICx

RETINAL00 3.444 3.522 3.318 3.412 3.362 3.463 3.46 3.498 3.823 3.826 3.634 3.981 3.988 3.785
RETINAL03 3.35 3.406 3.174 3.337 3.222 3.313 3.334 3.374 3.704 3.707 3.513 3.853 3.860 3.654
RETINAL04 3.246 3.329 3.135 3.209 3.162 3.235 3.26 3.282 3.615 3.618 3.422 3.753 3.760 3.551
RETINAL09 3.297 3.384 3.191 3.245 3.232 3.321 3.331 3.369 3.692 3.695 3.499 3.838 3.845 3.637
RETINAL11 3.352 3.445 3.244 3.36 3.288 3.398 3.381 3.419 3.753 3.757 3.561 3.903 3.910 3.702
RETINAL12 3.346 3.419 3.213 3.298 3.264 3.358 3.363 3.392 3.728 3.732 3.536 3.877 3.884 3.676
RETINAL14 3.395 3.476 3.251 3.346 3.31 3.413 3.417 3.456 3.793 3.797 3.602 3.947 3.954 3.748
RETINAL15 3.326 3.405 3.192 3.312 3.24 3.33 3.341 3.376 3.704 3.707 3.512 3.851 3.859 3.651
RETINAL17 3.254 3.325 3.118 3.205 3.152 3.223 3.247 3.28 3.610 3.614 3.418 3.753 3.760 3.551
RETINAL18 3.359 3.435 3.211 3.366 3.266 3.367 3.365 3.399 3.733 3.736 3.542 3.882 3.889 3.683

Average 3.337 3.415 3.205 3.309 3.250 3.342 3.350 3.385 3.715 3.719 3.524 3.864 3.871 3.664

51

4.7 Coding Time

The table 4.13 gives the coding time for various images with sizes 256x256 and 512x512 using

the different proposed methods with MED predictor.

Table 4.13: Coding time.

Image BWT
Proposed Methods

Without Context Partitions Context Partitions

BWT-mtf BLIC BWT BWT-mtf BLICx
LENA (256x256) 4.330 6.081 3.327 13.769 19.931 10.621

CAMERA (256x256) 2.579 2.877 1.342 10.008 20.841 13.743
BRIDGE (256x256) 1.556 2.622 2.486 18.541 27.137 11.234

AIRPLANE (512x512) 5.755 4.994 4.821 11.568 23.158 11.564
BABOON (512x512) 5.251 5.424 4.974 13.724 22.412 13.386
PEPPERS (512x512) 5.614 8.148 4.834 14.326 29.340 10.092

52

5. Conclusion and Future work

5.1 Conclusion

 Motivated by the results of a theoretical analysis of the BWT, we performed a detailed empirical

investigation of the impact of the MTF stage in BWT-based lossless image compression. We

proposed different parameterized variants of the MTF, which showed how the performance

varied with these certain algorithmic. In general, these variants produced limited improvement in

image compression. However, they showed the general impact of MTF on image compression

using the BWT. Guided by our empirical and theoretical analyses, we propose to eliminate the

MTF and RLE in the BWT pipeline, when the objective is lossless image compression. Also the

usage of predictors before BWT pipeline has helped to improve the performance in the case of

lossless image compression. Further, based on the context ordering property of the BWT, we

proposed to use BWT context partitions as the basis for lossless image compression. We thus

presented two BWT-based coders for images, namely BLIC and BLICx. Both use neither the

MTF nor RLE stages in compressing the image. BLICx differs from BLIC only in the use of

BWT context partitions. Empirical results on standard test images show that the both BLIC and

BLICx outperformed current state-of-the-art lossless image coders, such as JPEG-LS, CALIC

and PPAM. The results therefore show that, contrary to popular belief the BWT cannot compress

images; the BWT can indeed deliver superior performance in image compression. The culprit has

been the MTF, and to some extent the RLE stages. The results also show the power of the

context modeling ability of the BWT for images, even without initial prediction. We have used

simple MED for prediction, and order-1 arithmetic coding.

53

5.2 Future work

The time efficiency of the BWT compression Scheme can be improved. Different kinds of

predictors can be tested to obtain a better data that may be more suitable for the BWT

compression. The results could be further improved by using more powerful spatial predictors,

and improved entropy coders. The parameters range r and window size w in MTFW(w,r),

MTFW2(w,r) may be tuned adaptively based on the image to obtain a better compression ratio.

Higher order contexts can be tested to see the performance of the context based method. The

performance of BLIC and BLICx should be observed for large images as BWT tends to work

better as the data size is large.

54

Reference

1. Burrows M and Wheeler D (1994), A block sorting lossless data compression algorithm,
Technical Report 124, Digital Equipment Corporation.

2. Mark Nelson, [online] http://marknelson.us/1996/09/01/bwt/

3. M.R. Nelson, Data Compression with Burrows Wheeler Transformation, Dr. Dobb’s
Journal, pp. 46-50, September 1996.

4. The Burrows-Wheeler Transform: Data Compression, Suffix Arrays, and Pattern
Matching Adjeroh, Donald, Bell, Timothy, Mukherjee, Amar 2008, XII, 352 p. 102 illus.

5. J. L. Bentley, D. D. Sleator, R. E. Tarjan, V. K. Wei, A Locally Adaptive Data
Compression Scheme, Communications of the ACM-Vol. 29, No. 4, 1986.

6. S. Irani, Two results on the list update problem, Information Processing Letters, v.38 n.6,
p.301-306, June 28, 1991

7. D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202-208, 1985.

8. X. Li and M. T. Orchard, “Edge-directed prediction for lossless compression of natural
images,” IEEE Trans. Image Process., vol. 10, no. 6, pp. 813–817, Jun. 2001.

9. Zhang, Y., Adjeroh, D.A., Prediction by Partial Approximate Matching for Lossless
Image Compression, IP(17), No. 6, June 2008, pp. 924-935.

10. M. Boliek, “New work item proposal: JPEG2000 image coding system,” ISO/IEC
JTC1/SC 29/WG1 N390, June 1996.

11. M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression
algorithm: Principles and standardization into JPEG-LS,” IEEE Trans. Image Process.,
vol. 9, no. 8, pp. 1309–1324, Aug. 2000.

12. N. Memon and X.Wu, “Recent developments in context-based predictive techniques for
lossless image compression,” The Computer J., vol. 40, pp. 127–136, 1997.

13. X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE Trans.
Commun., vol. 45, no. 4, pp. 437–444, Apr. 1997.

14. A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set
partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no.
3, pp. 243–250, Jun. 1998.

http://marknelson.us/1996/09/01/bwt/�

55

15. William B. Pennebaker and Joan L. Mitchell (1993). JPEG still image data compression
standard (3rd ed.). Springer. p. 291. ISBN 9780442012724.

16. H. Witten, M. Neal and G. Cleary, Arithmetic Coding for data Compression,
Communications of the ACM, vol. 30, no. 6, pp. 520-540, June 1987.

17. H. Murakami, S. Matsumoto, Y. Hatori, and H. Yamamoto, “15/30 Mbit/s universal
digital TV codec using a median adaptive predictive coding method,” IEEE Trans.
Commun., vol. 35, pp. 637–645, June 1987.

18. Wu, X., Memon, N. D. and Sayood, K. (1995) A contextbased, adaptive, lossless/nearly-
lossless coding scheme for continuous-tone images. ISO Working Document ISO/IEC/
SC29/WG1/N256.

19. R. Rivest. On self-organizing sequential search heuristics. Communications of the ACM,
19, 2:63-67, February 1976.

20. Bernhard Balkenhol, Stefan Kurtz, Yuri M. Shtarkov. “Modifications of the Burrows and
Wheeler Data Compression Algorithm, " Proc. Data Compression Conf., pp. 188-197,
1999.

21. Switching Between Two On-line List Update Algorithms for Higher Compression of
Burrows-Wheeler Transformed Data," dcc, pp.183, Data Compression Conference (DCC
'00), 2000

22. Bachrach, R. and El-Yaniv, R. (1997). Online list accessing algorithms and their
applications: Recent empirical evidence. In Proc. Eighth Annual Symp. Discrete
Algorithms (New Orleans, LA), ACM, New York, pp. 53--62.

23. Adjeroh, D. and Nan, F. (2008). Suffix sorting via Shannon-Fano-Elias codes. In DCC,
page to appear. IEEE Computer Society.

24. Adjeroh, D., Zhang, Y., Mukherjee, A., Powell, M., and Bell, T. (2002). DNA sequence
compression using the Burrows-Wheeler transform. In IEEE Com- puter Society
Bioinformatics Conference, pages 303–313.

25. Fenwick, P. M. (1996b). The Burrows-Wheeler Transform for block sorting text
compression: Principles and improvements. Computer Journal, 39(9):731–740.

26. Ferragina, P. and Manzini, G. (2001b). An experimental study of an opportunistic index.
In 12th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 269–278.

27. Elias, P. (1987). Interval and recency rank source coding: Two on-line adaptive variable-
length schemes. IEEE Trans. Inf. Theory, IT-33(1):3–10.

56

28. Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theory, 21(2):194–203.

29. Cover T. M. and Thomas J. A. (1991). Elements of Information Theory: Wiley-
Interscience, NY.

30. Arimura, M. and Yamamoto, H. (1998). Asymptotic optimality of block sorting data
compression algorithm. IEICE Trans. Fundamentals, E81-A(10):2117–2122.

31. Effros, M., Visweswariah, K., Kulkarni, S. R., and Verdu, S. (2002). Universal lossless
source coding with the Burrows Wheeler transform. IEEE Transactions on Information
Theory, 48(5):1061–1081.

32. Wirth, A. I. and Moffat, A. (2001). Can we do without ranks in Burrows Wheeler
transform compression? In IEEE DCC, 2001, pp. 419–428.

33. Krichevsky, R. E. and Trofimov, V. K. (1981). The performance of universal encoding.
IEEE Transactions on Information Theory, 27(2):199–206.

57

Appendix

1. Standard images- SET-1

Bridge Airplane Baboon

Ballon Barb Camera

Couple Goldhill Lena

Peppers Shapes

58

2. Standard images- SET-2

Boat Car Couple

House Man Parrot

Plant House Waterwheel

Zelda

59

3. SLICE SET

Sequence10000 Sequence10010 Sequence10020

Sequence10030 Sequence10040 Sequence10050

Sequence10060 Sequence10070 Sequence10080

Sequence10090

60

4. NEURITE SET

Neurite01 Neurite02 Neurite03

Neurite04 Neurite05 Neurite06

Neurite07 Neurite08 Neurite09

Neurite10

61

5. RETINAL SET

Retinal00 Retinal03 Retinal04

Retinal09 Retinal11 Retinal12

Retinal14 Retinal15 Retinal17

Retinal18

	Empirical analysis of BWT-based lossless image compression
	Recommended Citation

	Introduction
	1.1 Introduction
	1.2 Major Contributions of the work
	1.3 Thesis Organization

	2. Background
	2.1 Image Compression
	2.1.1 Digital Image
	2.1.2 Image Compression
	2.1.3 Need for Image Compression
	2.1.4 Types of Image Compression
	2.1.5 Lossless Compression

	2.2 Compression Ratio
	2.3 Entropy and Image Compression
	2.4 BWT Compression Pipeline
	2.4.1 Burrows Wheeler Transform
	2.4.2 Run-Length Encoding (RLE)
	2.4.3 Arithmetic coding (ARI)

	2.5 Preprocessing Stage
	2.5.1 Predictive Coding
	2.5.2 Mapping

	3. The MTF and Context Partitions in BWT-based Image Compression
	3.1 Analysis of MTF in BWT-based Image Compression
	3.1.1 The Move-To-Front algorithm
	3.1.2 Variations of MTF.
	3.1.3. Proposed Variants of MTF
	3.1.4 Characterization of MTF outputs
	3.1.5 Characterizing the Effect of MTF on Image Compression
	3.1.6 Effect of range (r) and window size (w) in MTFW on Image Compression
	3.1.7 Effect of range (r) and window size (w) in MTFW2 on Image Compression

	3.2 Context Partitions for BWT Image Compression

	4. Experimental results
	4.1 Experimental Data and Experimental Environment
	4.1.1 Data Sets
	4.1.2 Experimental Environment

	4.2 Results for different variations of MTF.
	4.2.1 BWT Without mapping and without prediction
	4.2.2 Performance Analysis for Different Predictors

	4.3 Compression with and without MTF/RLE
	4.4 Compression for context partitions with and without MTF/RLE
	4.5 Comparitive Results with text Compression schemes
	4.6 Comparitive Results with image Compression schemes
	4.7 Coding Time

	5. Conclusion and Future work
	5.1 Conclusion
	5.2 Future work

	Reference
	Appendix

		2010-04-21T13:50:23-0400
	John H. Hagen

