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ABSTRACT  
 

Empirical Analysis of BWT- Based Image Compression 
 

Kalyan Varma Bhupathiraju 
 
 

The Burrows-Wheeler Transformation (BWT) is a text transformation algorithm 
originally designed to improve the coherence in text data. This coherence can be exploited by 
compression algorithms such as run-length encoding or arithmetic coding. However, there is still 
a debate on its performance on images. Motivated by a theoretical analysis of the performance of 
BWT and MTF, we perform a detailed empirical study on the role of MTF in compressing 
images with the BWT. This research studies the compression performance of BWT on digital 
images using different predictors and context partitions. The major interest of the research is in 
finding efficient ways to make BWT suitable for lossless image compression.  

 
This research studied three different approaches to improve the compression of image 

data by BWT. First, the idea of preprocessing the image data before sending it to the BWT 
compression scheme is studied by using different mapping and prediction schemes. Second, 
different variations of MTF were investigated to see which one works best for Image 
compression with BWT. Third, the concept of context partitioning for BWT output before it is 
forwarded to the next stage in the compression scheme. 
 
For lossless image compression, this thesis proposes the removal of the MTF stage from the 
BWT compression pipeline and the usage of context partitioning method. The compression 
performance is further improved by using MED predictor on the image data along with the 8-bit 
mapping of the prediction residuals before it is processed by BWT. 
 
This thesis proposes two schemes for BWT-based image coding, namely BLIC and BLICx, the 
later being based on the context-ordering property of the BWT. Our methods outperformed other 
text compression algorithms such as PPM, GZIP, direct BWT, and WinZip in compressing 
images. Final results showed that our methods performed better than the state of the art lossless 
image compression algorithms, such as JPEG-LS, JPEG2000, CALIC, EDP and PPAM on the 
natural images. 
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1. Introduction 
 

1.1 Introduction 
 
Digital image compression is playing an important role despite the rapid progress in digital 

communications and mass storage devices in the recent years. The efficient storage, 

manipulation and transmission of digitized pictures still remain a major challenge. In 

applications like video streaming, satellite imaging, medical imaging and high quality 

photography the size of data to be transferred is incredibly large when compared to the 

bandwidth available in the communication channel. 

 

        Digital image compressions algorithms can reduce the size of digital images, thus reducing 

the storage and transmission cost. Image compression is often more economical than increasing 

bandwidth or storage capacity. 

 

Image compression is a process in which the image data is transformed into a different form 

which can be represented by less numbers of bits by taking advantage of the redundancy in the 

image data and at the same time is able to decode back to the original image. Lossless image 

compression schemes either treat the image as a 1-D text sequence, or make use of the 2-D 

contexts to improve the coding performance. Using the Burrows Wheeler Transform (BWT) 

[1,2,3,4] on images involves an initial stage of 2-D to 1-D conversion, and a text compression 

algorithm for compressing the 1-D sequence. We use spatial prediction techniques to take 

advantage of the 2-D context in an image before sending the data to the BWT. 

 



 

2 
 

They are two types of image compression schemes, namely lossy and lossless compression. In 

lossless image compression the exact image is reproduced from the compressed data, no 

information is lost in the compression process. This report describes lossless image compression 

using the BWT which has been very popular for text compression.  Linearized image data has 

been used to make it suitable for compression using the BWT. 

 

The Move - To - Front (MTF) stage is an important stage in the BWT compression pipeline 

[5,6,7,21]. 

 

The main focus of this report was to observe the influence of prediction, mapping, variations of 

MTF and context partitioning technique on the image compression capability of the BWT. 

Different types of predictors such as DIFF, MEAN, MED and GAP were used. The main 

objective of the predictors is to predict the next pixel by using the neighboring pixel values by 

taking advantage of the redundancy in the image data. Different variations of MTF such as MTF, 

TRANS, MHD, MTFW(w,r) etc have been used to see their impact on BWT-based image 

compression. This work also proposed a new method for BWT image compression using context 

partitions. In this method the BWT output is broken down into partitions and each of these 

individual partitions is passed over to MTF, RLE and ARI. Results were compared with various 

state-of-the-art lossless image compression algorithms, such as EDP[8], PPAM[9], JPEG 2000, 

JPEG-LS[11], CALIC[12,13,18], SPIHT[14] etc. 
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1.2 Major Contributions of the work  

This report presents the performance evaluation of the BWT on lossless image compression. 

These results are based on a set of images containing natural, medical and rendered images. The 

following are the major contributions of this report.  

1. A comprehensive performance analysis of different BWT variants on image compression.  

2. The key observation that, the MTF stage in the BWT compression pipeline should be 

eliminated when the objective is improved performance in lossless image compression. 

3. Development of a context partition based BWT image compression scheme for improved 

performance on the image data. 

 

1.3 Thesis Organization  
 
Chapter 2 provides an introduction to the field of image compression, different coding 

techniques and briefly describes the Burrows-Wheelers Transformation (BWT), Run Length 

Encoding (RLE) and Arithmetic coding (ARI).  

In Chapter 3, gives introduction to different ideas such as BWT based image compression on 

predicted and non predicted data, compression with different variations of MTF and compression 

with and without MTF. Also explains the scheme of context partitioning that is developed for 

further improvement of image compression results.  

Chapter 4, presents results, and discusses some implementation. Various results have been 

analyzed to measure the performance of the researched method.  

In Chapter 5, summarizes the results of the study and provide suggestions for future research.  
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2. Background 
2.1 Image Compression 
 

2.1.1 Digital Image 
 
  A digital image can be considered as a matrix composed of pixels each of which holds the 

information about the intensity at that point in the image. A digital image is obtained by 

digitalizing an analog image. So a digital image can be considered as a matrix of integers where 

each integer corresponds to the intensity level at a particular point in the image. The number of 

intensity levels depends on the number of bits used to represent a particular intensity. For 

example in this case 8-bit gray scale images are used, so there would be 28 = 256 distinct 

intensity levels, i.e. from 0-255. Digital imaging has many advantages like transmission of 

images across the networks and also post processing is made easier with digital images. 

 

2.1.2 Image Compression 
 
Image compression is the application of data compression on digital images. The main objective 

of an image compression scheme is to produce a system which can encode an image to a format 

which occupies less space by taking advantage of the redundancy in the image data, and at the 

same time is able to decode back to the original image. There are different types of image 

compression scheme like JPEG, JPEG 2000, TIFF, PNG, PGF etc. 

 

2.1.3 Need for Image Compression 
 
                    Now a day’s access of multimedia data through the Internet is growing enormously 

and a large amount of data is also transferred across the telecommunication networks in which, 
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images occupy a considerably large amount of space. The invention of a digital camera also 

made it easy to save the digital memories which are tending to occupy a large portion of our 

personal storage media like CDs, DVDs, and Hard Drives etc. By compressing the data and 

representing it in a more concise way, can cut storage and transmission costs by a significant 

factor. Thus development of efficient image compression techniques continues to be an 

important challenge both academically and industrially. For example a 10.1 megapixel camera 

can save around 969 JPEG compressed images on a 4GB memory card when compared to a 250 

RAW images. This shows a compression factor of about four. 

2.1.4 Types of Image Compression 
 
             Image compression can be of two types-lossy and lossless. In lossless Image 

compression the exact original image is reconstructed from the compressed image at the decoder. 

This is mainly used in applications like medical Images. Examples of lossless image 

compression methods are JPEG-LS, GIF, TIFF and PNG etc. In lossy image compression the 

reconstructed image from the compressed image is degrading in quality when compared to the 

original image only by an acceptable value so that it is useful in some way. This is used in 

applications where the compression is the major issue than the quality such as streaming media 

and internet telephony. Examples of lossy image compression methods are JPEG[15], 

JPEG2000[10]. There are different image compression schemes, but each of them tends to differ 

from one another in complexity, implementation, speed and performance.    

2.1.5 Lossless Compression 
 
Lossless compression is achieved mainly by reducing the redundancies in the image data and 

typically concentrates on more efficient ways of encoding the image data. This technique is used 

in applications where information loss is intolerable. The advantage is that the compressed file 
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will decompress to an exact duplicate of the original file, having the same quality. As no data is 

lost the compression ratio is not all that high when compared to lossy compression. 

2.2 Compression Ratio 
 
The performance of lossless image compression schemes can be specified in terms of 

compression efficiency. Compression efficiency is measured by the compression ratio or by the 

bit rate. Compression ratio is the ratio of the size of original image to the size of the compressed 

image. The bit rate is the number of bits required to represent each pixel in the compressed 

image. For example, a 512×512 pixel image with a bit depth of 8 requires 512×512×8 bits = 

2,62,144×8 bits = 2,62,144 bytes when stored in uncompressed form. If the size of the 

compressed image is 65536 bytes, then the compression ratio is 262144/65536 = 4.0. Since the 

image has 512×512 = 262144 pixels, the compressed file needs 65536×8/262144 = 2 bits per 

pixel, on average. Hence the bit rate is 2.  

The compression ratio (CR) and bit rate (BR) are related. Let b be the number of bits per pixel 

(bit depth) of the uncompressed image. The compression ratio is given by 

 
 

2.3 Entropy and Image Compression 
 
Entropy is the measure of the amount of uncertainty or information in the data. The larger the 

uncertainty of a random variable the larger is the entropy.  Let I represent the self information of 

a random variable ak, whose  is the probability of ak. Then 

 
 
    If   = 1 then I =0, i.e., if it is certain that an event is going to happen then the 

information in that event is zero.  
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Where  is the probability that the symbol 
 
in S will occur. 

 
From the above equation we can observe that the entropy is going to be high if all the symbols 

are uniformly distributed.  The maximum entropy is obtained when all the symbols have equal 

probability i.e.  = , where k is the number of symbols. 

 

For example, in an image with uniform distribution of gray-level intensity, i.e. pi = 1/256, then 

the number of bits needed to code each gray level is 8 bits. The entropy of this image is 8 bits. 

 

Thus an image with smaller entropy can be compressed more than an image with higher entropy. 

The effectiveness of a lossless compressor is measured by determining how closely its bit rate 

approximates the entropy of the image calculated from the probability distribution. Therefore, if 

the entropy of an image is 4 bits/pixel and the bit-rate of the lossless compressor is 4 bits/pixel, 

then the lossless compressor did the best job possible. 

 

2.4 BWT Compression Pipeline  
 
The BWT compression pipeline is show in Figure 2.1 and consists of the following four 

algorithms:  

1. Burrows-Wheeler Transformation (BWT) 

2. Move-To-Front coding (MTF) 

3. Run-Length Encoding (RLE) 

4. Arithmetic encoder (ARI). 
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Encoding 
 
The basic encoding pipeline is as follows 
 

< inputfile | BWT | MTF | RLE | ARI > outputfile 

 This pipeline forms the transformation and the encoding phase. The algorithms in the pipeline 

scheme have been used in different combinations to study their influence on the overall 

compression performance.  

 

Decoding 
 
This pipeline forms the transformation and the decoding phase. 
 

< compressed-file | UNARI | UNRLE | UNMTF | UNBWT > raw-file 
 
 
 

 
 
 
 

2.4.1 Burrows Wheeler Transform 
 

Since its publication in 1994 by Michael Burrows and David Wheeler [1,4], the Burrows 

Wheeler transform has been employed in many different compression programs[23,24,25,26]. 

BWT is a block sorting compression algorithm used in data compression like Bzip2. Unlike most 

of the lossless compression algorithms which operate in streaming mode i.e. one byte at a time, 

BWT transform breaks the data into blocks, and compresses each block independent of the other. 

 
BWT 

 
MTF 

 
RLE 

 
ARI 

 
UNBWT 

 
UNMTF 

 
UNRLE 

 
UNARI 

COMPRESSED 
DATA 

ORIGINAL 
IMAGE 

Encoder 

Decoder 

Figure2.1: BWT compression pipeline. 
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Ideally larger the chunks of data available to operate the better it is, but it’s limited by the 

amount of memory that is available. This transformation tends to group symbols together so that 

the probability of finding a symbol close to another instance of the same symbol is increased 

substantially. Text of this kind can easily be compressed with fast locally-adaptive algorithms, 

like move-to-front coding in combination with Huffman or arithmetic coding. The BWT has 

been very popular in text compression; here different variations of the BWT are tried out to see 

its performance in image compression. 

 
How does it work? 
 
BWT transformation permutes the order of the symbols. If the original string had several 

substrings that occurred often, then the transformed string will have several places where a single 

symbol is repeated multiple times in a row. Let’s consider a small example dataset. 

M I S S I S S I P P I 
 

Figure 2.2: Sample data set. 
 
      
Sample data set shown in figure 2.2 contains ten symbols. Let N be the length of the data set. To 

perform BWT, first make N-1 rotated copies of the input data set. Represent each of the rotated 

copy with an index as shown in figure 2.3. 

S0 M I S S I S S I P P I 
S1 I S S I S S I P P I M 
S2 S S I S S I P P I M I 
S3 S I S S I P P I M I S 
S4 I S S I P P I M I S S 
S5 S S I P P I M I S S I 
S6 S I P P I M I S S I S 
S7 I P P I M I S S I S S 
S8 P P I M I S S I S S I 
S9 P I M I S S I S S I P 
S10 I M I S S I S S I P P 

 
Figure 2.3: N-1 rotated copies of the data set     
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These N-1 copies are rearranged in the lexicographic order as in figure 2.4. There are two 

important points to note here. First, the strings have been sorted, but we've kept track of which 

string occupied which position in the original set. So, we know that the string S0, the original 

unsorted string, has now moved down to row 5 in the array.  

 
S10 I M I S S I S S I P P 
S7 I P P I M I S S I S S 
S4 I S S I P P I M I S S 
S1 I S S I S S I P P I M 
S0 M I S S I S S I P P I 
S9 P I M I S S I S S I P 
S8 P P I M I S S I S S I 
S6 S I P P I M I S S I S 
S3 S I S S I P P I M I S 
S5 S S I P P I M I S S I 
S2 S S I S S I P P I M I 

 
Figure 2.4: Lexicographic order. 

      
Second, the first column contains all the characters in the original string in sorted order. So our 

original string "MISSISSIPPI" is represented in the first column as "IIIIMPPSSSS". The 

characters in the last column don't appear to be in any particular order, but in fact they have an 

interesting property. Each of the characters in the last column is the prefix character to the string 

that starts in the same row in the first column.  

 

The output of the BWT consists of two things: a copy of the last column, and the primary index, 

an integer indicating which row contains the original first character of the buffer B. So 

performing the BWT on our original string generates the output string in the last column which 

contains "PSSMIPISSII", and a primary index of 3.  
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The integer 3 is found easily enough since the original first character of the buffer will always be 

found in last column in the row that contains S1. Since S1 is simply S0 rotated left by a single 

character position, the very first character of the buffer is rotated into the last column of the 

matrix. Therefore, locating S1 is equivalent to locating the buffer's first character position in the 

last column.  

 

To get the original sequence, it must be possible to reconstruct the full table of lexicographically 

ordered cyclic shifts using only the last column of the table i.e. the BWT output. The key that 

makes this possible is that you can recreate the transformation vector   from the last column and 

the first column of the matrix. First column can be determined by simply sorting the last column. 

So all you need is the BWT output and the primary index (3 in this case). As each row is a cyclic 

shift of every other row, the last and first columns together provide a list of all consecutive pairs 

of symbols. 

0 P I 
1 S I 
2 S I 
3 M I 
4 I M 
5 P P 
6 I P 
7 S S 
8 S S 
9 I S 
10 I S 

 
Figure 2.5: Last (L) and first (F) columns. 

 
Since by definition the strings in first column must appear in sorted order, it means that all the 

strings that start with a common character in last column appear in the same order in first 

column, although not necessarily in the same rows. Because of this,  first 'S' encountered will be 



 

12 
 

followed by ‘I’, the next ‘S” encountered will also be followed by ‘I’, the next ‘S’ encountered 

will also be followed by ‘S’, the next ‘S’ encountered will also be followed by ‘S’. Similarly the 

first 'I' encountered will be followed by ‘M’, the next ‘I’ encountered will also be followed by 

‘P’, the next ‘I’ encountered will also be followed by ‘S’, the next ‘I’ encountered will also be 

followed by ‘S’.   

As the primary index is 3 we can obtain the decoded sequence as follows. 

M I          
M I S         
M I S S        
M I S S I       
M I S S I S      
M I S S I S S     
M I S S I S S I    
M I S S I S S I P   
M I S S I S S I P P  
M I S S I S S I P P I 

 
Figure 2.6: Decoding sequence. 

2.4.2 Run-Length Encoding (RLE)  
 
Run length encoding is one of the oldest compression methods. This mainly takes advantage of 

the repetitiveness of symbols in a stream of data.  Its performance depends mostly on the input 

data. It is most effective when a single character is repeated multiple times in a sequence. 

 

 For example, the string “ggggggdddddppppeeee” can be represented with run length encoding as 

“g6*d5*p4*e4*”. That saves us 9 symbols. This code contains a flag character, a count byte, and 

the repeated characters. We can also see that it doesn’t make any sense to code any symbols 

which are repeated less than four times. Therefore a sequence “aagggggghhhtttttt” can be 

encoded as “aag6*hhht6*”. 
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Due to the randomness in the natural images RLE may not be very effective on its own. But it’s 

observed to be effective when applied on the output sequence of the BWT. 

2.4.3 Arithmetic coding (ARI)  
 
Arithmetic coding [16] is one of the methods for lossless compression that encodes data by 

creating a code string which represents a fractional value on the number line between 0 and 1. 

This is a variable length code as different symbols are represented by different number of bits. 

The main objective of arithmetic coding is to use the minimum number of bits to represent a 

stream of symbol. The main logic is to use fewer bits for representing frequently occurring 

symbols and more bits to represent less frequently occurring symbols resulting in fewer bits in 

total.  

Although arithmetic coding is more powerful than Huffman coding in compression ratio, 

arithmetic coding requires more computational power. 

2.5 Preprocessing Stage  
 

2.5.1 Predictive Coding  
 

Predictive coding has been extensively used in image compression. The correlation 

between the adjacent pixels is well exploited by the use of predictive image coding algorithms. 

They predict the value of a given pixel based on the values of the surrounding pixels. The use of 

a predictor can reduce the amount of information bits needed to represent an image, due to the 

correlation among the adjacent pixels. Images are considered to be a sequence of pixels in row 

major order in lossless image compression. As each pixel is handled, all pixels preceding it are 

available to the decoder and hence to the encoder too, and these already-known values provide 

useful information to suitably bias the prediction as to the next pixel value.  
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The processing of each pixel consists of two separate operations. The first step forms a 

prediction as to the numeric value of the next pixel. Typical predictors use a linear combination 

of neighboring pixel values. In the second step, the difference between the predicted pixel value 

and the actual intensity of the next pixel is coded using an entropy coder. 

We tested the BWT approach using four different prediction methods. Figure 2.7 shows a 

general schematic diagram of the prediction contexts used by the prediction algorithms. The 

symbols x, a, b, c, d, e, f, g in the following discussion refer to the figure. 

 

 

 
 

 

 

 

Prediction using Previous Pixel (DIFF) 

In this predictor the predicted value is assumed as the value of the adjacent left pixel. The 

difference between the predicted value and the original value is transmitted as the output value. 

 

Prediction using the mean (MEAN) 

In this predictor the predicted value is assumed as the mean of the adjacent left pixel and the top 

pixel. The difference between the predicted value and the original value is transmitted as the 

output value. 

 

  e d  

 c b f  

g a x   

     

Figure 2.7: Prediction context used by various prediction schemes. 
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Median Edge Detection (MED)[17] 

In this predictor the predicted value is assumed as the median of min(a, b), max(a, b), and 

. The difference between the predicted value and the original value is transmitted as 

the output value. MED is the spatial predictor used in the JPEG-LS[11] standard. 









−+
<=
>=

=
otherwisecba

bacifba
bacifba

x ),min(),max(
),max(),min(
  

Gradient-Adjusted Prediction (GAP)[18] 
 
The GAP predictor works by taking into account, the gradient variations of seven neighboring 

pixels of the current pixel. GAP is the predictor used in CALIC [ 12,13,18], one of the best 

performing lossless image compression schemes. The GAP algorithm is given below. 

 
 
 

 
IF   
Sharp horizontal edge   
 
ELSE IF  
Sharp vertical edge  
 
ELSE  

 
 
IF   
Horizontal edge  
 
ELSE IF  
Weak horizontal edge  
 
ELSE IF  
Vertical edge  
 
ELSE IF  
Weak vertical edge  
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2.5.2 Mapping 
 
       The 2-dimensional image data is converted to a linear sequence. After the image is linearized 

the sequence is further processed before being sent to the next stage – Transformation & 

encoding stage.  

The linear data has been subjected through several alterations to increase the suitability of the 

data for better processing by the transformation and compression algorithms. These are the 

different methods used. 

Method of differences  As most of the nearby pixels in an image tend to be similar, their 

differences will produce more runs of zeros or values close to zero, which will require fewer bits 

to represent.  

In a modified sequence B of an original sequence A is given by,  

 

  

Check the example in the following scan and the resulting scan after the differences method was 

applied.  

Scan: 128, 128, 128, 128, 128, 50, 50, 50, 50, 217, 217, 217, 216, 216, 216, 216  

Result: 128, 0, 0, 0, 0, 78, 0, 0, 0, -167, 0, 0, 1, 0, 0, 0  

 

We know that 8 bits are required to represent the 256 different grey levels. From the example 

shown above we can see the introduction of negative signs in the sequence, which require an 

extra bit to represent the signed numbers. The experimental analysis proved that preprocessing 

the data with the difference method resulted in a better performance than sending the linear data 
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unaltered to the transformation stage. The following methods have been implemented and tested 

in consideration of the extra bit required to represent the negative sign.  

 

8-Bit Mapping Method: This method allows the representation of the linear sequence, by 

eliminating the need for the extra sign bit. It is based on a very interesting mathematical 

observation on the linear sequence. The range of possible error values (differences) varies based 

on the predicted value  and cannot be more than distinct values. The possible range of 

error for  is , where  # of bits. Based on the above 

observation, given Î, the predicted value at the current position, the value of e must be within the 

following range:  

 

The index of the possible prediction errors mapped to the order  

, is calculated by the following equations.  

Case 1:   
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3. The MTF and Context Partitions in BWT-based Image Compression 

3.1 Analysis of MTF in BWT-based Image Compression  

3.1.1 The Move-To-Front algorithm 
 
The Move-To-Front (MTF) algorithm is used to improve the performance of entropy encoding 

techniques of compression.  The MTF [5,6,7] algorithm was originally proposed in [Benteley & 

Torjan 1986]. A Move-To-Front coder is used for preprocessing the input before it is fed to the 

actual compressor. Encoding works as follows: The coder maintains a list L containing an 

ordered list of all the 256 characters that can appear in the input. Whenever it receives an input 

character c it looks up the position i of c in the current ordered list of symbols L, outputs i and 

moves c to the front of L. Let’s see how MTF works 

Considering an input sequence 4136006042, the MTF coding is done as explained in the Table 

3.1. The encoder accepts the symbol and is translated into the index using the list. Then the list is 

updated by moving the symbol to the front of the list. This updated list is used as the lookup list 

for the next symbol. 

Table 3.1: MTF encoding. 
NUMBER SEQUENCE LIST 
4136006042 4 {0,1,2,3,4,5,6,7} 
4136006042 42 {4,0,1,2,3,5,6,7} 
4136006042 424 {1,4,0,2,3,5,6,7} 
4136006042 4246 {3,1,4,0,2,5,6,7} 
4136006042 42464 {6,3,1,4,0,2,5,7} 
4136006042 42464 {0,6,3,1,4,2,5,7} 
4136006042 424640 {0,6,3,1,4,2,5,7} 
4136006042 4246401 {6,0,3,1,4,2,5,7} 
4136006042 424640114 {0,6,3,1,4,2,5,7} 
4136006042 4246401145 {4,0,6,3,1,2,5,7} 
Final 4246401145 {2,4,0,6,3,1,5,7} 
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Let’s see how the decoding works now, here the input sequence is 4246401145. The decoder 

accepts the index in the list which is translated into the correct output symbol using the list. Then 

the list is updated by moving the symbol to the front. This updated list is used as the lookup list 

for the next index. Note that the same initial symbol list is used for both encoding and decoding, 

allowing perfect reconstruction of the data source. 

Table 3.2: MTF decoding 
NUMBER SEQUENCE LIST 
4246401145 4 {0,1,2,3,4,5,6,7} 
4246401145 41 {4,0,1,2,3,5,6,7} 
4246401145 413 {1,4,0,2,3,5,6,7} 
4246401145 4136 {3,1,4,0,2,5,6,7} 
4246401145 41360 {6,3,1,4,0,2,5,7} 
4246401145 413600 {0,6,3,1,4,2,5,7} 
4246401145 4136006 {0,6,3,1,4,2,5,7} 
4246401145 41360060 {6,0,3,1,4,2,5,7} 
4246401145 41360060 {0,6,3,1,4,2,5,7} 
4246401145 413600604 {4,0,6,3,1,2,5,7} 
Final 4136006042 {2,4,0,6,3,1,5,7} 

 

3.1.2 Variations of MTF. 
 
1. MTF 

 Upon an access for an item x move x to the front [5,6,7,22]. 

2. Transpose (TRANS) 

 Upon an access to an item x transpose x with the immediately preceding item [7,22]. 

3. MHD(k) 

 Upon a request for an item x, move x forward by k positions and if there are no k 

preceding items, move it forward to the first position. 

4. Move-One-From-Front (MTFF) 

If R(x) > 2 move x to the 2nd position, else move x to the front. R(x) is the position of x 

in the sequence [20,21]. 
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5. Move-One-From-Front 2 (MTFF2) 

If R(x) > 2 and the symbol at the front was requested at most 2 requests ago, move x to 

the 2nd position, else move x to the front. R(x) is the position of x in the sequence.[21] 

3.1.3. Proposed Variants of MTF  
 
 
1. Transpose (k) (TRANS ( k ) ) 

 Upon an access to an item x interchange x with the k th preceding item, if there are no k 

preceding items, interchange it with the first one. We experimented with different values of k, 

namely k=4,8,32,64,128. 

2. Modified Transpose (k) (MTRANS(k)) 

 Upon an access to an item x interchange x with the k th preceding item and if there are no 

k th preceding items don’t change it.  

3. Modified_MHD(k) (MMHD(k)) 

Upon a request for an item x, move x forward by k positions and if there are no kth 

preceding items don’t change it [19,22]. 

4. Windowed MTF (MTFW(w,r)) 

          This variant of MTF was designed to capture the spatial correlation in natural images. Let 

R(x) is the position of x in the list L and µx the average of the values in a window of size w (i.e. 

using the preceding w symbols in the input sequence. Upon access to an item x move it to the 

front if R(x) < 2 or | x- µx | <= r else move x to the second position in the list. We observed 

MTFW for different values of w = 2, 3, 5, 10 and r = 1, 3, 5, 10. Here w is the window size and r 

is the range. 
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5. Windowed MTF2 (MTFW2(w,r)) 

Upon access to an item x move it to the front if R(x) < 2 or | x- µx | <= r else don’t do 

anything. We observed MTFW for different values of w = 2, 3, 5, 10 and r = 1, 3, 5, 10. Here w 

is the window size and r is the range.  

 

Table 3.3 shows the Final O/P sequence and the Final list obtained when different variations of 

MTF’s have been used on the input sequence is 4246401145. 

Table 3.3: O/P sequence and Final List for different MTF's when I/P sequence are 4246401145. 
 
 

 Final O/P Sequence Final list 
MTF 4136006042 {2,4,0,6,3,1,5,7} 
TRANS 4236203226 {0,4,1,2,3,5,6,7} 
TRANS(2) 4446221025 {4,0,1,5,6,3,2,7} 
MHD(2) 4336113126 {4,1,0,2,5,6,3,7} 
MTRAN(2) 4446221125 {4,1,0,5,6,3,2,7} 
MMHD(2) 4336103126 {4,0,1,2,5,6,3,7} 
MTFF 4326204126 {1,5,4,0,6,2,3,7} 
MTFF2 4306034116 {4,5,1,0,6,2,3,7} 
MTFW(3,1) 4316033016 {4,5,1,0,6,2,3,7} 
MTFW(3,1) 4316023015 {4,1,2,0,3,5,6,7} 

 

3.1.4 Characterization of MTF outputs  
 

1. For Images. 
 
Figure 3.1 shows the empirical distribution of the original image and the MTF output. The effect 

on the first distribution plots for three images BOAT, COUPLE and PARROT has been observed 

using MTF.  It also shows how MTF helps to improve the distribution. 
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Figure 3.1: First order distribution plots of original and after MTF for boat, couple, parrot. 
 

 Figures 3.2 to 3.4 show the empirical distribution of the MTF outputs for different predictive 

schemes and for different images. The effect on the first and second order distribution plots for 

three images BOAT, COUPLE and PARROT have been observed using MTF and the three different 

predictors DIFF, MED and GAP. It is observed that the distributions are narrow when a predictor 

is used. We can notice that when the MTF is used after a predictor it actually broadens the 

distribution, which means that this may degrade later compression using an entropy encoder. The 

MED predictor seems to be the best among the three predictors which can be observed from the 

distribution plots. The figures also show the first order and second order symbol distributions. In 

both distributions first the probability of each symbol is calculated and then sorted in decreasing 

order of their probability.   
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Figure 3.2: First and second order distribution plots of different predictors for boat. 
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Figure 3.3: First and second order distribution plots of different predictors for Couple. 
 



 

26 
 

 

 

Figure 3.4: First and second order distribution plots of different predictors for Parrot. 
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There are 256 symbols in first order where as they are 2562 symbols in the second order. The 

second order distribution is achieved by consider a pair of symbols as a single symbol. The 

scales on each of the plots have been adjusted in such a way to show the characteristics of the 

distribution plots for symbols with the highest probability. Only the first 20-30 symbols are 

shown in each plot. The log plots have also been included for better illustration. 

 
2. For text files. 

The distribution plots for text data have also been plotted to observe the reason why MTF does 

not help for BWT based Image compression. As expected the distribution is improve by MTF in 

the case of text data. We plotted the first and second order distribution plots for BIBLE.TXT, 

PROGL, TRANS and WORLD192.TXT which are seen in the figures 3.5, 3.6, 3.7 and 3.8 respectively. 

The text files have been obtained from the Canterbury corpus. 

 

3. For Laplace distribution sequence. 

A data sequence with laplace distribution having mean 128 and standard deviation 14 has been 

generated. The first and second order distribution plots for the original and MTF outputs have 

been plotted using this sequence in figure 3.9. It is observed that the MTF broadens the 

distribution of the input if it is laplacian, which doesn’t help for the compression. As known the 

predictive errors generally tend to have a laplacian distribution. Thus the improvement in the 

compression ratio with the removal of MTF from the BWT Pipeline makes sense.  



 

28 
 

 
 
 

 
 

Figure 3.5: First and second order distribution plots of different predictors for Bible.txt. 
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Figure 3.6: First and second order distribution plots of different predictors for Progl. 
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Figure 3.7: First and second order distribution plots of different predictors for Trans. 
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Figure 3.8: First and second order distribution plots of different predictors for World192.txt. 
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Figure 3.9: First and second order distribution plots of original and MTF for a Laplacian Distribution. 
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3.1.5 Characterizing the Effect of MTF on Image Compression 
 
3.1.5.1 Effect of Range (k) in MTF on Image Compression. 

The value of k has been varied from 1-255 for MHD, TRANS, Modified MHD and Modified 

TRANS, the average of the compression ratios for 9 images (i.e. BOAT, CAR, COUPLE, HOUSE, 

MAN, PARROT, TREE, WATERWHEEL and ZELDA) have been calculated and plotted as shown in 

figure 3.10. We can also observe the slight improvement in compression provided by the 

proposed modifications. As the value of the range parameter k increases towards the maximum 

of 256, it means that we are increasingly delaying the application of MTF stage. At k = 256, this 

effectively means that the MTF stage is no longer being applied. Therefore, it is very instructive 

to observe that each of the four variations produced their best result at k = 256, i.e effectively 

without MTF. We carry this observation even further, by investigating the performance of BWT 

based image compression with or without MTF, and with or without RLE for each case. 

 

 
Figure 3.10: Variation of CR for MHD, TRANS, MMHD and MTRANS with range k.  
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Figure 3.11: Variation of CR for MMHD with range k for different predictors. 

 
 

 
Figure 3.12: Variation of CR for MTRANS with range k for different predictors. 
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3.1.6 Effect of range (r) and window size (w) in MTFW on Image Compression 
 
Figure 3.13 shows how the compression ratio is affected both by range r and the window size w 

in MTFW. We can observe the periodic curves with an interval of 30, for each value of range r 

the window size w was varied from 1-30. There are 16 such curves as the range r value is varied 

from 1-16. The compression ratio improves as the value of range r is decreased and the value of 

window size w is increased. The variation of compression ratio with window size w also reduces 

as the value of range r increases. The CR calculated here is the average of the nine images 

referred in the previous section and also MED predictor has been used. 

 

Figure 3.13: Variation of CR for MTFW(w,r) with window size w =1-30 and r =1-16. 

 

Figure 3.14 shows the variation of CR in MTFW(w,r) for three values of range r = 1,2,3 and 

window size w varying from 1-100. As seen from the figure the compression ratio tends to be 

small as w increases and r decreases. 
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Figure 3.14: Variation of CR for MTFW(w,r) with window size w =1-100 and r =1,2,3. 

Surface plot for MTFW 

The plot above is redrawn using a surface plot, to give a 3-dimentional perspective. Figure 3.15 

shows how CR (average from 9 images) is affected by both the range r and the window size w in 

MTFW. The CR improves with decreasing r, or increasing w.  

 

Figure 3.15: 3D plot for Variation of CR for MTFW(w,r) with window size w =1-30 and r =1-16. 
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3.1.7 Effect of range (r) and window size (w) in MTFW2 on Image Compression 
 

Figure 3.16 shows the variation of CR in MTFW2(w,r) for three values of range r = 1,2,3 and 

window size w varying from 1-100. As seen from the figure the compression ratio tends to be 

small as w increases and r decreases but with some oscillations. The best compression is 

observed for r = 1 and w = 91.  

 

 

Figure 3.16 Variation of CR for MTFW2(w,r) with window size w =1-100 and r =1,2,3. 
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3.2 Context Partitions for BWT Image Compression  
 
Context-based lossless image compression algorithms exploit the two-dimensional spatial 

redundancy in natural images. They represent the most successful among lossless image coders. 

Examples algorithms in this group are CALIC [13], JPEG-LS[11] and PPAM[9]. For this class of 

algorithms, an initial step of spatial prediction is used to remove the spatial redundancy in the image. 

The prediction depends on a chosen context selection strategy for each given position in the image. 

Context modeling is then applied to estimate the conditional probability distribution of the prediction 

residues given their contexts. Finally, an entropy coder uses the estimated conditional probabilities to 

encode the prediction residues. The different lossless image coders vary in the details of one or more 

of the above basic steps.  

Consider an image represented by a sequence 1 2 nt t t  with symbols taken from a fixed 

alphabet 1 2, , ,σ σ σ ΣΣ =  , where n T=  is the image size. Here, Σ  is typically the set of distinct 

pixel gray levels in the image, or the set of distinct prediction errors, after prediction. Let the 

corresponding probability of the symbols in the image be ( ) , 1,...,ip iσ = Σ , ( ) 1ii
p σ =∑ .  The 

entropy ( )H T   gives the minimum number of bits per symbol required to encode the image without 

context modeling:  

( ) ( ) ( )2log
i

i iH T p p
σ

σ σ
∈Σ

= −∑ . 

Now, consider the contexts for each symbol it in the image.  Let jS ′ be the set of symbols with the 

context jC in T. Suppose we know the conditional probability distribution ( )| , 1,...,i j jp t C i S ′= . 

In this case, ( )|H T C  the conditional entropy gives the minimum number of bits per symbol needed 

to encode the image: 
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( ) ( ) ( ) ( )( )( )21
| | log |

i j

K
j i j i jj s S

H T C p C p t C p t C
′= ∈

= −∑ ∑ ( ) ( )( )2, log |
i

i j i jj s
p t C p t C= −∑ ∑  

Where K is the total number of contexts. Since ( ) ( )|H T C H T≤ , (see [29]), the average code 

length (per symbol) needed to describe the image is also reduced using context modeling. This is 

significant, as it provides an important connection between image compression and the contexts 

induced by the BWT. While traditional image compression schemes use preceding (reverse) pixel 

contexts, the BWT uses succeeding (forward) contexts. We will exploit the sorted contexts induced 

by the BWT in our approach to image compression. 

 

An important property of the BWT is the introduction of sorted order on nearby contexts in the 

output string. Given the similarity of nearby symbols in the image (even after spatial prediction), we 

tried to use context partitions on the image sequence to see it this could lead to improved results. The 

general procedure is shown in Figure 3.17.  

 

The BWT output string is divided into blocks which are determined by sorting the output string in 

alphabetic order. These individual blocks are processed by MTF, RLE and ARI individually and the 

outputs are combined to form the final compressed data. All these individual files are reused while 

decoding the original image.  Let’s see how this works with an example, if the output BWT sequence 

is ASDFSADSFSASFGHFDS, the sorted sequence will be AAADDDFFFFGHSSSSSS, so the 

output BWT sequence is broken into blocks ASD, FSA, DSFS, A, S, FGHFDS. These blocks are 

then sent individually to MTF, RLE and ARI blocks.   
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Figure 3.17: BWT compression with context partitions. 
 
 

Guided by the foregoing, we obtain two variations for the proposed BWT-based image 

compression scheme. We call the first variation BLIC (BWT-based lossless image coder), which 

corresponds to the BWT compression pipeline but without MTF and without RLE. The second 

method is BLICX (BWT-based lossless image coder with context partitions). Thus, BLICX 

corresponds to BWT compression using context partitions, but without MTF and RLE. 
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4. Experimental results 
 

4.1 Experimental Data and Experimental Environment 

4.1.1 Data Sets 
 
The following images sets have been used  

 
• Standard images- SET-1 

1.BRIDGE, 2.AIRPLANE, 3.BABOON, 4.BALLON, 5.BARB, 6.CAMERA, 7.COUPLE, 8.GOLDHILL, 
9.LENA, 10.PEPPERS, 11.SHAPES are used as first image set. 

 
• Standard images- SET-2 

1.BOAT, 2.CAR, 3.COUPLE, 4.HOUSE, 5.MAN, 6.PARROT, 7.PLANT, 8.TREE, 9.WATERWHEEL, 
10.ZELDA is the second image set. 

 
• NEURITE SET 

1.NEURITE01, 2. NEURITE02, 3. NEURITE04, 4. NEURITE05, 5. NEURITE06, 6. NEURITE07, 7. 
NEURITE09, 8. NEURITE10, 9. NEURITE11, 10. NEURITE14 is the third image set. 

 
• SLICE SET 

1.SLICE00, 2. SLICE01, 3. SLICE02, 4. SLICE03, 5. SLICE04, 6. SLICE05, 7. SLICE06, 8. 
SLICE07, 9. SLICE08, 10. SLICE09 is the fourth image set. 

 
• RETINAL SET 

1.RETINAL00, 2.RETINAL03, 3.RETINAL04, 4.RETINAL09, 5.RETINAL11, 6.RETINAL12, 
7.RETINAL14, 8.RETINAL15, 9.RETINAL17, 10.RETINAL18 is the fifth image set. 
 

 These sets have been used in the recently published work on lossless image compression [ 

Zhang [9]]. The images are shown for reference in appendix A. 

 4.1.2 Experimental Environment  
 
The experiments were carried out using MATLAB 7 on a system having Pentium core 2 duo 

processor, running at 1.83 GHz with 3GB RAM. We used MATLAB for image analysis and 

spatial prediction. The source codes for BWT the compression algorithms are based on Mark 

Nelson’s codes [2], and are compiled using VC++ in Windows XP.             
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4.2 Results for different variations of MTF. 
 

4.2.1 BWT Without mapping and without prediction 
 
Table 4.1 shows the compression ratios for different variations of the MTF without the use of 

any mapping or any prediction. These results are obtained by applying the basic BWT which is 

famous for text compression. As debated it doesn’t have the best performance in image 

compression. Observing this we have tried different variations like mapping and prediction 

which comes under preprocessing the image data to see whether it might improve the image 

compression capability of the BWT algorithm.  

Table 4.1: BWT compression with different variations of MTF (without any mapping or prediction). 
 

 
MTF TRANS MTFF MTFF2  MTRANS 

(8) 
MTRANS 

(128) 
MTFW 

(2,1) 
MTFW 
(10,1) 

MTFW2 
(84,1) 

MTFW2 
(87,1) 

BRIDGE 6.899 6.445 6.831 6.890  6.783 6.678 6.901 6.881 5.612 5.677 

AIRPLANE 5.871 5.499 5.823 5.866  5.561 5.396 5.882 5.869 5.553 5.553 

BABOON 7.847 7.461 7.833 7.846  7.592 7.443 7.848 7.834 6.683 6.683 

BALLON 4.475 4.287 4.434 4.472  4.197 4.148 4.496 4.497 5.642 5.642 

BARB 6.068 5.854 6.044 6.068  5.899 5.781 6.087 6.072 6.576 6.576 

CAMERA 6.419 5.989 6.225 6.248  6.030 5.887 6.427 6.423 6.625 6.628 

COUPLE 5.791 5.406 6.225 6.248  5.474 5.281 5.804 5.793 5.720 5.685 

GOLDHILL 6.166 5.842 6.225 6.248  6.023 5.798 6.180 6.159 5.942 5.942 

LENA 6.198 5.878 6.225 6.248  6.046 5.820 6.223 6.198 6.374 6.374 

PEPPERS 6.250 5.903 6.225 6.248  6.067 5.840 6.268 6.247 6.249 6.249 

SHAPES 1.943 1.878 1.898 1.910  1.910 1.937 1.914 1.923 2.295 2.295 

AVERAGE 5.812 5.495 5.817 5.845  5.598 5.455 5.821 5.809 5.752 5.755 

 

4.2.2 Performance Analysis for Different Predictors 
 

Prediction using the neighboring pixels had a significant effect on the performance of BWT 

based image compression algorithm. We used different prediction schemes such as DIFF, GAP, 

MED and MEAN. The value underlined in each row indicates the lowest for a particular image. 

In each of these cases we have used the 8-bit mapping. 



 

43 
 

4.2.2.1 DIFF Predictor 
 

Table 4.3 shows the compression ratios for different variations of MTF using 8-bit mapping and 

DIFF predictor. Here 8-bit mapping method which allows for the representation of the linear 

sequence, by eliminating the need for the extra sign bit has been used. This resulted in a 1-bit 

gain for each symbol. That’s the reason why we observe a better compression when compared to 

the above other two techniques.  

 

Table 4.2: BWT compression with different variations of MTF using 8-bit mapping and DIFF 
predictor. 
 

 
MTF TRANS MTFF MTFF2  MTRANS 

(8) 
MTRANS 

(128) 
MTFW 

(2,1) 
MTFW 
(10,1) 

MTFW2 
(84,1) 

MTFW2 
(87,1) 

BRIDGE 5.977 5.704 5.947 5.974  5.684 5.618 5.974 5.964 7.632 7.768 

AIRPLANE 5.149 4.765 5.115 5.148  4.889 4.711 5.149 5.130 6.563 6.585 

BABOON 7.053 6.686 7.046 7.054  6.771 6.790 7.052 7.045 8.033 7.616 

BALLON 3.796 3.566 3.760 3.794  3.624 3.469 3.810 3.796 4.604 4.604 

BARB 5.451 5.299 5.438 5.451  5.432 5.271 5.460 5.446 6.695 6.651 

CAMERA 5.626 5.177 5.589 5.617  5.326 5.177 5.621 5.605 6.363 6.822 

COUPLE 4.993 4.596 4.948 4.983  4.705 4.516 4.987 4.971 5.978 6.252 

GOLDHILL 5.565 5.219 5.551 5.564  5.364 5.185 5.566 5.554 6.709 6.686 

LENA 5.478 5.138 5.463 5.478  5.307 5.121 5.483 5.469 6.434 6.326 

PEPPERS 5.494 5.138 5.481 5.492  5.331 5.167 5.498 5.488 6.462 6.577 

SHAPES 1.457 1.423 1.408 1.421  1.566 1.655 1.421 1.427 2.103 2.170 

AVERAGE 5.094 4.792 5.068 5.089  4.909 4.789 5.093 5.081 6.143 6.187 

 
 
4.2.2.2 Mean Predictor 

 
Table 4.4 shows the compression ratios for different variations of MTF using 8-bit mapping and 

mean predictor. Here the mean value of the preceding pixel and the above pixel has been used as 

the predicted value and the difference between the predicted and original pixel value has been 

mapped and transmitted. 
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Table 4.3: BWT compression with different variations of MTF using 8-bit mapping and MEAN 
predictor. 
 

 
MTF TRANS MTFF MTFF2  MTRANS 

(8) 
MTRANS 

(128) 
MTFW 

(2,1) 
MTFW 
(10,1) 

MTFW2 
(84,1) 

MTFW2 
(87,1) 

BRIDGE 6.719 6.255 6.698 6.719  6.324 6.253 6.713 6.701 6.220 6.220 

AIRPLANE 4.896 4.507 4.860 4.896  4.616 4.415 4.897 4.880 4.883 4.765 

BABOON 6.678 6.319 6.669 6.678  6.421 6.353 6.676 6.669 6.300 6.300 

BALLON 3.731 3.505 3.698 3.729  3.548 3.413 3.749 3.736 3.872 4.002 

BARB 5.702 5.408 5.688 5.703  5.534 5.375 5.709 5.697 5.813 5.732 

CAMERA 5.513 5.047 5.476 5.508  5.163 5.018 5.506 5.495 5.510 5.509 

COUPLE 4.934 4.586 4.899 4.928  4.701 4.509 4.934 4.919 5.129 4.949 

GOLDHILL 5.294 4.956 5.277 5.294  5.108 4.905 5.298 5.283 5.381 5.067 

LENA 5.402 5.054 5.386 5.403  5.229 5.033 5.407 5.395 5.122 5.141 

PEPPERS 5.325 4.974 5.308 5.324  5.189 5.002 5.330 5.318 4.996 4.996 

SHAPES 1.702 1.707 1.649 1.667  1.796 1.866 1.666 1.672 2.156 2.075 

AVERAGE 5.081 4.756 5.055 5.077  4.875 4.740 5.080 5.069 5.035 4.978 

 
 
4.2.2.3 MED Predictor 

 
Table 4.5 shows the compression ratios for different variations of MTF using 8-bit mapping and 

MED predictor. The median predictor achieved the best overall compression ratio when 

compared with the other predictors tested. MED is the spatial predictor used in the JPEG-LS 

standard. 

Table 4.4: BWT compression with different variations of MTF using 8-bit mapping and MED 
predictor. 
 

 
MTF TRANS MTFF MTFF2  MTRANS 

(8) 
MTRANS 

(128) 
MTFW 

(2,1) 
MTFW 
(10,1) 

MTFW2 
(84,1) 

MTFW2 
(87,1) 

BRIDGE 5.927 5.487 5.878 5.923  5.490 5.413 5.923 5.898 5.391 5.391 

AIRPLANE 4.775 4.399 4.741 4.771  4.526 4.310 4.778 4.760 4.766 4.794 

BABOON 6.710 6.339 6.704 6.709  6.441 6.384 6.710 6.705 6.323 6.323 

BALLON 3.678 3.424 3.642 3.678  3.467 3.309 3.696 3.680 3.699 3.726 

BARB 5.541 5.214 5.522 5.540  5.353 5.172 5.544 5.532 5.291 5.570 

CAMERA 5.417 4.971 5.381 5.417  5.106 4.933 5.414 5.398 5.408 5.094 

COUPLE 4.612 4.257 4.570 4.606  4.372 4.159 4.610 4.591 4.479 4.661 

GOLDHILL 5.188 4.854 5.172 5.187  5.020 4.809 5.192 5.178 4.901 4.821 

LENA 5.402 5.069 5.387 5.402  5.237 5.039 5.407 5.393 5.459 5.212 

PEPPERS 5.364 5.070 5.353 5.363  5.280 5.112 5.373 5.363 5.110 5.110 

SHAPES 1.448 1.363 1.388 1.403  1.351 1.358 1.415 1.423 1.619 1.681 

AVERAGE 4.915 4.586 4.885 4.909  4.695 4.545 4.915 4.902 4.768 4.762 
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4.2.2.4 GAP Predictor 

 
Table 4.5 shows the compression ratios for different variations of MTF using 8-bit mapping and 

GAP predictor. Gradient-Adjusted Prediction is the prediction algorithm which is used in 

CALIC. The GAP predictor was better than the MEAN predictor, but was not as effective as the 

MED predictor.  

 

Table 4.5: BWT compression with different variations of MTF using 8-bit mapping and GAP 
predictor. 
 

 
MTF TRANS MTFF MTFF2  MTRANS 

(8) 
MTRANS 

(128) 
MTFW 

(2,1) 
MTFW 
(10,1) 

MTFW2 
(84,1) 

MTFW2 
(87,1) 

BRIDGE 6.943 6.543 6.932 6.944  6.636 6.588 6.938 6.932 6.524 6.524 

AIRPLANE 4.746 4.375 4.710 4.744  4.488 4.278 4.748 4.731 4.901 4.931 

BABOON 6.670 6.288 6.661 6.670  6.390 6.329 6.670 6.661 6.267 6.267 

BALLON 3.585 3.346 3.546 3.582  3.361 3.229 3.601 3.586 3.719 3.598 

BARB 5.416 5.126 5.399 5.415  5.263 5.090 5.422 5.410 5.450 5.371 

CAMERA 5.380 4.933 5.342 5.376  5.044 4.871 5.372 5.352 5.340 5.320 

COUPLE 4.656 4.308 4.616 4.650  4.428 4.226 4.661 4.637 4.719 4.740 

GOLDHILL 5.173 4.837 5.156 5.172  4.997 4.788 5.175 5.160 5.034 5.058 

LENA 5.265 4.940 5.251 5.264  5.099 4.893 5.272 5.256 5.058 5.058 

PEPPERS 5.274 4.954 5.259 5.275  5.149 4.954 5.281 5.269 4.952 4.952 

SHAPES 1.725 1.636 1.660 1.685  1.743 1.749 1.686 1.697 1.923 1.897 

AVERAGE 4.985 4.662 4.957 4.980  4.782 4.636 4.984 4.972 4.899 4.883 

 
 
Comments 

 
Overall the MTRANS and its variants provided the best results. The overall best of the MTF 

variants was MTRANS(k) with k=128. Similar results were observed with higher values of k. See 

figure 3.11. The other proposed variants were generally better than the traditional MTF (Column 

2), but, in general, did not do better than MTRANS(128). With respect to spatial predictors, the 

MED seemed to provide the best results when used as the preprocessor before the BWT 

compression pipeline. 
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Figures 3.10 and 3.11, shows the variation of the performance for various values of k, and for 

different prediction schemes. Once again, these results show that, when the objective is image 

compression using the BWT, better performance could be produced by eliminating the stage of 

MTF. Following these results, we also investigated the impact of the RLE stage (without MTF) 

in BWT-based compression. 

4.3 Compression with and without MTF/RLE 
 

The results in Table 4.6 show the effect of removal of both MTF and RLE from the BWT 

pipeline scheme in lossless image compression for different types of predictors. It has been 

observed that the use of MED predictor and the removal of both the MTF and RLE have resulted 

in the best CR. We have proposed a new compression scheme BLIC which corresponds to BWT 

compression pipeline without MTF, RLE or context partitions. 

 

Table 4.6: Compression with and without MTF/RLE using different predictors. 
 

IMAGE 
Without predictor MEAN MED GAP 

BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle 

AIRPLANE 5.533 5.552 4.874 4.415 4.411 4.254 4.310 4.308 4.149 4.278 4.278 4.118 

BABOON 6.589 6.683 6.953 6.353 6.299 6.208 6.384 6.322 6.230 6.329 6.267 6.175 

BALLOON 5.558 5.642 3.548 3.413 3.414 3.233 3.309 3.309 3.127 3.229 3.230 3.051 

BARB 6.513 6.576 5.293 5.375 5.364 5.230 5.172 5.164 5.025 5.090 5.083 4.941 

GOLDHILL 5.888 5.942 5.272 4.905 4.905 4.804 4.809 4.809 4.702 4.788 4.787 4.679 

LENA 6.283 6.374 5.318 5.033 5.026 4.871 5.039 5.035 4.891 4.893 4.890 4.741 

LENNAGREY 6.125 6.205 4.969 4.718 4.714 4.548 4.693 4.692 4.533 4.544 4.543 4.382 

PEPPERS 6.187 6.249 5.323 5.002 4.995 4.835 5.112 5.110 4.949 4.954 4.951 4.792 

REF12B 2.026 2.027 1.276 1.196 1.196 0.925 1.163 1.162 0.852 1.173 1.173 0.884 

SHAPES 2.209 2.295 1.959 1.866 1.862 2.066 1.358 1.352 1.263 1.749 1.745 1.786 

AVERAGE 5.291 5.354 4.478 4.227 4.218 4.097 4.134 4.126 3.972 4.102 4.094 3.954 
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4.4 Compression for context partitions with and without MTF/RLE 
 

Also the effect of removal of both MTF and RLE from the context partitions based BWT 

pipeline scheme in lossless image compression for different types of predictors has been tested. 

The results have been shown in the table 4.7.  It has been observed that without the use of any 

predictor and the removal of both the MTF and RLE have resulted in the best CR. We have 

proposed a new compression scheme BLICx which corresponds to BWT compression pipeline 

without MTF, RLE and context partitions. 

 
 
Table 4.7: Compression for context partitions with and without MTF/RLE using different predictors. 
 

IMAGE 
Without predictor MEAN MED GAP 

BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle BWT BWTnomtf BWTnomtf,norle 

AIRPLANE 0.155 0.155 4.323 4.398 4.395 4.238 4.398 4.267 4.109 4.334 4.332 4.167 

BABOON 5.837 5.773 6.482 6.543 6.508 6.414 6.543 6.551 6.456 6.535 6.496 6.401 

BALLOON 4.640 4.635 2.293 3.290 3.290 3.107 3.290 3.065 2.894 3.071 3.071 2.896 

BARB 6.179 6.133 4.815 5.454 5.448 5.304 5.454 5.263 5.114 5.146 5.142 4.988 

GOLDHILL 5.470 5.452 4.725 4.992 4.991 4.869 4.992 4.898 4.767 4.883 4.882 4.750 

LENA 4.966 4.937 4.706 5.168 5.161 5.002 5.168 5.200 5.052 5.002 5.001 4.842 

LENNAGREY 4.641 4.602 4.286 4.870 4.867 4.693 4.870 4.838 4.671 4.686 4.685 4.512 

PEPPERS 5.760 5.710 4.619 5.126 5.122 4.958 5.126 5.247 5.084 5.101 5.101 4.938 

REF12B 1.762 1.762 1.098 0.565 0.565 0.494 0.565 0.525 0.426 0.510 0.510 0.426 

SHAPES 1.703 1.706 1.718 1.930 1.927 2.072 1.930 1.438 1.350 1.792 1.790 1.777 

AVERAGE 4.111 4.087 3.907 4.234 4.227 4.115 4.234 4.129 3.992 4.106 4.101 3.970 

 

4.5 Comparitive Results with text Compression schemes 
 

The performance of our new researched method BLIC and BLICx with and without MED 

predictor for lossless compression of images using the BWT algorithm was compared with other 

standard text compression algorithms like PPM, WinZip, Bzip, Gzip, RAR. Table 4.8, gives the 

compression performance of the different coding methods in bits per pixel. 
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Table 4.8: Comparative results with standard text compression methods. 
 

Image PPM WinZip Bzip Gzip RAR 
Proposed methods 

With MED predictor Without Predictor 
BLICx BLIC BLICxnomed BLICnomed 

AIRPLANE 4.59 5.74 4.97 5.73 4.62 4.10 4.14 4.32 4.87 

BABOON 6.52 7.26 6.74 7.26 6.61 6.45 6.23 6.48 6.95 

BALLOON 3.9 5.53 4.28 5.52 3.77 2.89 3.12 2.29 3.55 

BARB 6.13 7.1 6.52 7.09 6.19 5.11 5.02 4.81 5.29 

GOLDHILL 5.46 6.64 5.79 6.63 5.08 4.76 4.70 4.72 5.27 

LENA 5.56 7.16 5.84 7.15 5.43 5.05 4.89 4.70 5.32 

LENNAGREY 5.23 6.82 5.55 6.82 5.10 4.67 4.53 4.28 4.97 

PEPPERS 5.31 7.1 5.63 7.09 5.65 5.08 4.94 4.61 5.32 

REF12B 0.86 1.32 1.15 1.25 1.15 0.42 0.85 1.09 1.28 

SHAPES 1.25 1.48 1.42 1.43 1.35 1.35 1.26 1.71 1.96 

AVERAGE 4.48 5.61 4.79 5.6 4.5 3.99 3.97 3.90 4.48 

 
From the results shown in table above, we can see that our variation of BWT for lossless image 

compression performed better than all the other text compression algorithms that were used in 

the analysis. Also, the comparative results between bzip and our method show that the 

preprocessing of image data enhanced the performance of this BWT based compression method. 

4.6 Comparitive Results with image Compression schemes 
 

Comparison results have been observed for four image sets Natural, Neurite, Slice, and Retinal. 

Tables 4.9, 4.10, 4.11 and 4.12 show the comparative performance of variations of BWT on 

different image sets, when compared with state of the art lossless image compression schemes 

such as CALIC, JPEG-LS, EDP, JPEG2000, SPIHT and PPAM. BWTnomtf correspond to BWT 

compression pipeline without MTF. BLIC corresponds to BWT compression pipeline without 

MTF, RLE and context partitions. BLICx corresponds to BWT compression pipeline without 

MTF and RLE with context partions. As seen from the table BLIC seems to give the best reults 

among the propossed methods. All the values except the once based on BWT have been obtained 
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from Zhang [9] paper for comparison. MED predicted data has been used in all the BWT based 

methods. 

 
Table 4.9: Comparative compression performance on natural image set. 

 

Image Entropy EDP PPAM1 PPAM2 CALIC 
JPEG

LS 
SPIHT 

JPEG 

2000 
BWT  

Proposed Methods 

Without Context 
Partitions Context Partitions 

BWTnomtf BLIC BWT BWTnomtf BLICx 

BOAT 6.132 4.358 4.33 4.01 4.181 4.271 4.37 4.465 4.065 4.064 3.803 4.187 4.187 3.921 
CAR 6.251 4.196 4.27 3.797 3.946 4.068 4.236 4.285 3.924 3.923 3.677 4.061 4.062 3.797 
COUPLE 6.359 4.772 4.735 4.497 4.618 4.698 4.829 4.903 4.378 4.375 4.151 4.532 4.532 4.305 
HOUSE 5.638 5.272 5.29 5.044 4.983 5.138 5.396 5.435 4.717 4.711 4.557 4.887 4.883 4.719 
MAN 6.37 5.038 4.985 4.891 4.808 4.928 5.058 5.218 4.741 4.728 4.536 4.921 4.910 4.710 
PARROT 6.178 3.565 3.544 3.245 3.327 3.48 3.532 3.695 3.381 3.387 3.061 3.607 3.612 3.265 
PLANT 5.118 5.129 5.040 5.224 5.108 5.176 5.161 5.343 5.610 5.607 5.483 6.114 6.117 5.983 
TREE 5.535 5.441 5.373 5.141 5.141 5.271 5.362 5.520 4.868 4.865 4.695 5.057 5.055 4.879 
WATERW

 

5.948 5.178 5.152 4.914 4.793 4.963 5.206 5.3 4.628 4.623 4.429 4.793 4.789 4.584 
ZELDA 6.267 4.03 3.839 3.746 3.908 4.029 3.971 4.054 3.760 3.760 3.487 3.875 3.876 3.596 
Average 5.980 4.698 4.656 4.451 4.481 4.602 4.712 4.822 4.407 4.404 4.188 4.603 4.602 4.376 

 
 

 
 

Table 4.10: Comparative compression performance on neurite image set. 
 

Image Entropy EDP PPAM1 
PPAM1 

(function) 
CALIC 

JPEG

LS 
SPIHT 

JPEG 

2000 
BWT  

Proposed Methods 

Without Context 
Partitions Context Partitions 

BWTnomtf BLIC BWT BWTnomtf BLICx 

NEURITE01 3.394 3.259 2.817 2.975 2.932 3.101 2.997 3.118 3.773 2.971 2.605 4.076 3.165 2.771 
NEURITE02 3.46 3.503 3.23 3.381 3.299 3.4 3.342 3.445 3.963 3.223 2.874 4.212 3.411 3.031 
NEURITE04 3.05 2.946 2.594 2.728 2.561 2.839 2.792 2.889 3.512 2.811 2.426 3.786 2.986 2.575 
NEURITE05 3.768 3.822 3.601 3.776 3.702 3.811 3.675 3.79 3.453 2.771 2.377 3.691 2.935 2.513 
NEURITE06 3.299 3.21 2.835 3.054 2.95 3.106 2.994 3.114 4.294 3.558 3.249 4.653 3.792 3.461 
NEURITE07 3.637 3.672 3.442 3.621 3.553 3.661 3.533 3.627 3.716 2.980 2.609 3.985 3.165 2.766 
NEURITE09 3.158 3.104 2.658 2.809 2.77 3.008 2.94 3.035 4.184 3.391 3.061 4.488 3.601 3.242 
NEURITE10 3.212 3.111 2.737 2.922 2.768 3.013 2.932 3.016 3.859 3.123 2.766 4.151 3.320 2.930 
NEURITE11 3.583 3.407 3.291 3.45 3.326 3.542 3.481 3.56 3.471 2.736 2.363 3.572 2.816 2.438 
NEURITE14 3.442 3.38 3.104 3.287 3.128 3.315 3.297 3.392 3.471 2.746 2.373 3.572 2.828 2.449 

Average 3.400 3.341 3.031 3.200 3.099 3.280 3.198 3.299 3.770 3.031 2.670 4.019 3.202 2.818 
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From the tables we can observe that our proposed method BLIC has outperformed all the other 

lossless image compression schemes used for compression in Natural and Neurite image sets. It 

was comparable in the retinal image set case. It didn’t do quite good in the slice image sets. 

 

Table 4.11: Comparative compression performance on slice image set. 
 

Image Entropy EDP PPAM1 
PPAM1 

(function) 
CALIC 

JPEG

LS 
SPIHT 

JPEG 

2000 
BWT  

Proposed Methods 

Without Context 
Partitions Context Partitions 

BWTnomtf BLIC BWT BWTnomtf BLICx 

SLICE00 2.63 2.18 1.507 1.626 1.764 1.842 2.12 2.053 2.760 2.763 2.633 3.114 3.127 2.900 
SLICE01 2.606 2.155 1.576 1.693 1.757 1.821 2.1 2.043 2.771 2.773 2.641 3.124 3.138 2.912 
SLICE02 2.773 2.343 1.626 1.832 1.928 1.995 2.14 2.188 2.936 2.945 2.819 3.315 3.329 3.109 
SLICE03 2.76 2.375 1.736 1.947 2.069 2.166 2.14 2.314 3.183 3.193 3.056 3.580 3.594 3.379 
SLICE04 2.908 2.601 2.019 2.215 2.438 2.59 2.37 2.621 3.636 3.647 3.499 4.074 4.086 3.878 
SLICE05 2.898 2.518 1.942 2.128 2.295 2.409 2.41 2.471 3.429 3.439 3.305 3.852 3.865 3.663 
SLICE06 2.607 2.155 1.655 1.871 1.898 2.01 2.22 2.169 2.981 2.989 2.840 3.362 3.375 3.127 
SLICE07 2.399 2.01 1.609 1.804 1.725 1.86 1.87 2.034 2.765 2.768 2.583 3.094 3.107 2.839 
SLICE08 1.882 1.608 1.397 1.524 1.443 1.59 1.5 1.77 2.397 2.404 2.183 2.685 2.699 2.420 
SLICE09 1.637 1.441 1.304 1.477 1.225 1.402 1.39 1.591 2.102 2.108 1.826 2.335 2.347 2.019 
Average 2.510 2.139 1.637 1.812 1.854 1.969 2.026 2.125 2.896 2.903 2.739 3.253 3.267 3.025 

 

 

Table 4.12: Comparative compression performance on retinal image set. 
 

Image Entropy EDP PPAM1 
PPAM1 

(function) 
CALIC 

JPEG

LS 
SPIHT 

JPEG 

2000 
BWT  

Proposed Methods 

Without Context 
Partitions Context Partitions 

BWTnomtf BLIC BWT BWTnomtf BLICx 

RETINAL00 3.444 3.522 3.318 3.412 3.362 3.463 3.46 3.498 3.823 3.826 3.634 3.981 3.988 3.785 
RETINAL03 3.35 3.406 3.174 3.337 3.222 3.313 3.334 3.374 3.704 3.707 3.513 3.853 3.860 3.654 
RETINAL04 3.246 3.329 3.135 3.209 3.162 3.235 3.26 3.282 3.615 3.618 3.422 3.753 3.760 3.551 
RETINAL09 3.297 3.384 3.191 3.245 3.232 3.321 3.331 3.369 3.692 3.695 3.499 3.838 3.845 3.637 
RETINAL11 3.352 3.445 3.244 3.36 3.288 3.398 3.381 3.419 3.753 3.757 3.561 3.903 3.910 3.702 
RETINAL12 3.346 3.419 3.213 3.298 3.264 3.358 3.363 3.392 3.728 3.732 3.536 3.877 3.884 3.676 
RETINAL14 3.395 3.476 3.251 3.346 3.31 3.413 3.417 3.456 3.793 3.797 3.602 3.947 3.954 3.748 
RETINAL15 3.326 3.405 3.192 3.312 3.24 3.33 3.341 3.376 3.704 3.707 3.512 3.851 3.859 3.651 
RETINAL17 3.254 3.325 3.118 3.205 3.152 3.223 3.247 3.28 3.610 3.614 3.418 3.753 3.760 3.551 
RETINAL18 3.359 3.435 3.211 3.366 3.266 3.367 3.365 3.399 3.733 3.736 3.542 3.882 3.889 3.683 

Average 3.337 3.415 3.205 3.309 3.250 3.342 3.350 3.385 3.715 3.719 3.524 3.864 3.871 3.664 
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4.7 Coding Time 
 

The table 4.13 gives the coding time for various images with sizes 256x256 and 512x512 using 

the different proposed methods with MED predictor.   

 

Table 4.13: Coding time. 
 

Image BWT  
Proposed Methods 

Without Context Partitions Context Partitions 

BWT-mtf BLIC BWT BWT-mtf BLICx 
LENA (256x256) 4.330 6.081 3.327 13.769 19.931 10.621 

CAMERA (256x256) 2.579 2.877 1.342 10.008 20.841 13.743 
BRIDGE (256x256) 1.556 2.622 2.486 18.541 27.137 11.234 

AIRPLANE (512x512) 5.755 4.994 4.821 11.568 23.158 11.564 
BABOON (512x512) 5.251 5.424 4.974 13.724 22.412 13.386 
PEPPERS (512x512) 5.614 8.148 4.834 14.326 29.340 10.092 
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5. Conclusion and Future work 

5.1 Conclusion 
 

 Motivated by the results of a theoretical analysis of the BWT, we performed a detailed empirical 

investigation of the impact of the MTF stage in BWT-based lossless image compression. We 

proposed different parameterized variants of the MTF, which showed how the performance 

varied with these certain algorithmic. In general, these variants produced limited improvement in 

image compression. However, they showed the general impact of MTF on image compression 

using the BWT. Guided by our empirical and theoretical analyses, we propose to eliminate the 

MTF and RLE in the BWT pipeline, when the objective is lossless image compression. Also the 

usage of predictors before BWT pipeline has helped to improve the performance in the case of 

lossless image compression. Further, based on the context ordering property of the BWT, we 

proposed to use BWT context partitions as the basis for lossless image compression. We thus 

presented two BWT-based coders for images, namely BLIC and BLICx. Both use neither the 

MTF nor RLE stages in compressing the image. BLICx differs from BLIC only in the use of 

BWT context partitions. Empirical results on standard test images show that the both BLIC and 

BLICx outperformed current state-of-the-art lossless image coders, such as JPEG-LS, CALIC 

and PPAM. The results therefore show that, contrary to popular belief the BWT cannot compress 

images; the BWT can indeed deliver superior performance in image compression. The culprit has 

been the MTF, and to some extent the RLE stages. The results also show the power of the 

context modeling ability of the BWT for images, even without initial prediction. We have used 

simple MED for prediction, and order-1 arithmetic coding.  
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5.2 Future work 
 

The time efficiency of the BWT compression Scheme can be improved. Different kinds of 

predictors can be tested to obtain a better data that may be more suitable for the BWT 

compression.  The results could be further improved by using more powerful spatial predictors, 

and improved entropy coders. The parameters range r and window size w in MTFW(w,r), 

MTFW2(w,r) may be tuned adaptively based on the image to obtain a better compression ratio. 

Higher order contexts can be tested to see the performance of the context based method. The 

performance of BLIC and BLICx should be observed for large images as BWT tends to work 

better as the data size is large. 
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Appendix 
 

1. Standard images- SET-1 
 
 

Bridge Airplane Baboon 

   

Ballon Barb Camera 

   

Couple Goldhill Lena 

   

Peppers Shapes  
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2. Standard images- SET-2 
 
 

Boat Car Couple 

   

House Man Parrot 

   

Plant House Waterwheel 

   

Zelda 
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3. SLICE SET 
 
 

Sequence10000 Sequence10010 Sequence10020 

   

Sequence10030 Sequence10040 Sequence10050 

   

Sequence10060 Sequence10070 Sequence10080 

   

Sequence10090 
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4. NEURITE SET 
 
 

Neurite01 Neurite02 Neurite03 

   

Neurite04 Neurite05 Neurite06 

   

Neurite07 Neurite08 Neurite09 

   

Neurite10 
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5. RETINAL SET 
 
 

Retinal00 Retinal03 Retinal04 

   

Retinal09 Retinal11 Retinal12 

   

Retinal14 Retinal15 Retinal17 

   

Retinal18 
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