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ABSTRACT 
 

Quantification of Stabilization Efforts of Shoulder Muscles using Surface 

Electromyography  
 

Hamad Nasser Alasim 

 

Shoulder musculoskeletal disorders (MSDs) put a huge burden on both employers and employees 

due to lost work days, healthcare costs and human suffering.  Static and heavy industrial work, 

submaximal repetitive movement and arm elevation are frequently associated with shoulder 

MSDs.  Previous studies indicated that factors such as force exertion levels, posture and hand 

gripping can influence the activation and fatigability of shoulder muscles.  In this study, we 

explored the inter-muscle difference in shoulder activation during isometric/static force exertions. 

We suspected that shoulder muscles’ attempt to stabilize the glenohumeral joint using the 

concavity compression mechanism may explain differences in the muscle activation pattern during 

shoulder exertions. Ten right-hand dominant male participants performed a 60 second static 

shoulder exertion using three force levels (10, 7.5 and 5 lbs.) in five directions (back, down, left, 

right and up).  Results showed that muscle activity and fatigability were affected by force level 

and force exertion direction.  Muscle exertion and fatigability were highly affected by 10lbs. force 

exertion.  The findings of this study suggest that, during static shoulder exertion, pulling in up and 

right directions result in the highest muscle activity and fatigability.     
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Chapter 1: Introduction 
  

Shoulder musculoskeletal disorders (MSDs) put a huge burden on both employers and 

employees due to lost work days, healthcare costs and human suffering.  The Bureau of Labor 

Statistics (BLS) reported that in 2012 over 27,000 shoulder-related occupational injuries and 

illnesses caused a day or more away from work, with a median of 12 lost days (BLS, 2014).  The 

cost per shoulder MSD claim varies from a few hundred to several thousand dollars.  In a recent 

report on worker compensation data in the state of Maryland, it was reported that the cost per 

shoulder injury was higher, averaging $25,378 per claim compared to the average cost of $22,447 

per lower back injury claim.  Several Permanent Partial Disability (PPD) awards due to shoulder 

injuries were also reported, with costs ranging between $253,230 (against Montgomery County 

Board of Education) and $307,286 (against Browning Ferris Industries) (Warnken, 2012).  The 

exact nature of the injuries was unknown for legal reasons. 

Static and heavy industrial work, submaximal repetitive movement and arm elevation are 

some of the activities which are frequently associated with shoulder MSDs (Alizadehkhaiyat et al., 

2011).  Specialty trade contractors, food manufacturing, building material and garden equipment 

and supplies dealers, air transportation, warehousing and storage, nursing and residential care 

facilities are the occupations with the highest number of workers suffering from shoulder MSDs 

(BLS, 2014).  

Most of the existing studies that deal with the prevention of shoulder MSDs primarily focus 

on evaluating the effects of stress (due to work-related factors such as force, posture and repetition) 

on internal shoulder strain measured using pain/discomfort, muscle activation and joint loading.  

A few such studies are reviewed in the next chapter.  The results of these studies indicate that the 
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shoulder strain is affected by a multitude of factors including the magnitude of force exertion, 

direction of force exertion, posture used, nature of exertion (static vs. dynamic) etc.  All these 

studies are valuable and add to the body of knowledge on shoulder MSD prevention.  However, 

there is a lack of research on workplace assessment/evaluation tools that can predict the risk of 

shoulder MSDs.  

Developing a workplace assessment/evaluation tool for shoulder joints is challenging for 

several reasons.  The shoulder is the most complex, yet most mobile, part of the human body, the 

joint is susceptible to injury due to repetitive submaximal exertion as well as heavy forceful arm 

exertion and there is a lack of research on how this joint is stabilized during physical workplace 

exertions.  One study, focused on concavity compression, a shoulder stabilizing mechanism, to 

develop a strain index (Cutlip, 2014).  A biomechanical model of the shoulder complex was used 

to develop the strain index.  Biomechanical models provide good approximations; however, they 

exhibit several limitations due to their lack of physiological realism.  Cutlip (2014) showed a 

reasonably strong relationship between the strain index and the ratings of perceived exertion.  The 

purpose of this study was to further evaluate the role of concavity compression in shoulder 

stabilization using physiological data. Specifically, the activation pattern of the shoulder muscles 

was studied by using surface electromyography.  
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Chapter 2: Background and Literature Review 
 

The shoulder complex consists of three joints including the glenohumeral joint (GHJ), 

acromioclavicular joint (ACJ) and sternoclavicular joint (SCJ) (Figure 1).  While most of these 

joints provide passive strength to the shoulder complex, the GHJ is responsible for the motion of 

the shoulder during workplace exertions.  The GHJ is a ball-and-socket joint between the humeral 

head and the scapula’s glenoid fossa.  The surface of the glenoid fossa is only one third of the 

humeral head, meaning a small part of the humeral head is in contact with the glenoid fossa in any 

position of the joint.  In order to maintain the stability of the GHJ, the humeral head must be held 

against the glenoid fossa.  The shoulder muscles compress the humeral head while providing forces 

to compensate the moment due to the application of external force.  This mechanism, which 

compresses the humeral head against the glenoid fossa, is called the concavity compression 

mechanism (Figure 2).  The muscles have to resist the translational forces which push the humeral 

head away from the glenoid fossa to facilitate concavity compression.  

 

Figure 1: Human shoulder complex (Cutlip, 2004). 
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Figure 2: Concavity compression mechanism (Cutlip, 2014). 

             

 

There are several muscles that are activated during exertions performed by the shoulder 

complex.  The deltoid muscles (anterior, middle and posterior) are considered primary shoulder 

movers during elevation and abduction.  The rotator cuff muscles include supraspinatus, 

infraspinatus, teres minor, teres major and subscapularis play a multifunctional role in achieving 

shoulder mobility and stability.  They are referred as the dynamic ligaments of the GHJ (Müntener, 

1982).  The infraspinatus and subscapularis play major roles in scapular plane abduction, 

generating forces equal to three times the supraspinatus force (Escamilla et al., 2009).  The biceps 

brachii and triceps brachii are the arm muscles that enter into the shoulder complex and facilitate 

upper and lower arm motions during shoulder exertions.  The trapezius is a shoulder elevator 

muscle that also participates in the rotation of the scapula to extend the reach upwards.  

Among these muscles, the rotator cuff muscles are considered the primary GHJ stabilizing 

muscles.  These muscles not only facilitate the dynamic motion of the GHJ, but also add to the 

passive stability of the shoulder due to their location and orientation around the GHJ.  The rotator 

cuff muscles are located closer to the center of GHJ rotation and act in association with the 
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underlying capsular ligament structures to resist GHJ shear stresses.  Individual rotator cuff 

muscles have independent actions that, in combination, contribute to the overall stability of the 

GHJ during the mid- and end-ranges of motion (Lugo et al., 2008).  Wuelker et al., (1998) found 

that when forces from rotator cuff muscles decreased by 50%, it will result in a roughly 50% 

increase in displacement of the humeral head anterior in response to external loading at all GHJ 

positions.  Itoi et al. (1993) found that biceps brachii muscle activity could also assist in GHJ 

stability.  Lee (2003) measured deltoid muscle activity interaction with GHJ stability.  He found 

that in the scapular plane, and with 60° of glenohumeral elevation, GHJ stability increased because 

of deltoid activity.  In the coronal plane, with 60° glenohumeral elevation, the GHJ stability 

decreased because of deltoid activity.   

A few studies have looked at the activity of shoulder muscles by simulating static 

workplace exertions.  Sporrong et al (1995, 1996) performed studies to evaluate the activity of 

shoulder muscles during hand gripping tasks.  The muscles studied were the supraspinatus, 

infraspinatus, the middle portion of the deltoid and the descending part of the trapezius.  Human 

participants performed hand gripping tasks at 30% and 50% of maximal voluntary contraction 

levels using a hand dynamometer in eight postures characterized by shoulder flexions of 30°, 60°, 

90° and 120° in the sagittal plane and abduction of 30°, 60°, 90° and 120° in the scapular plane.  

The EMG activity of the muscles was compared with and without hand gripping.  It was observed 

that the hand gripping significantly increased the activity of the supraspinatus muscle in humeral 

flexion from and above 60° degrees.  A similar but smaller increase was observed for the 

infraspinatus muscle.  For the deltoid muscles, an increase in activity was observed for positions 

lower than 90°; in higher arm positions, a decrease in activity was observed.  The gripping task 

had no effect on the activity of the trapezius muscle. 
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In a similar study, Antony and Keir (2010) evaluated the effect of load and gripping forces 

on the activity of shoulder muscles.  Fifteen postures, characterized by abduction angles of 0°, 30°, 

60°, 90° and 120° in the sagittal, frontal and mid-sagittal frontal planes, were studied.  It was 

observed that the load in the hand increased activity of most of the shoulder muscles.  During 

gripping exertion, an increase in activity was observed for the infraspinatus, trapezius, and biceps 

brachii muscles.  A decrease in activity was observed among anterior and middle deltoid muscles.  

A similar conclusion regarding an increase in activity of the supraspinatus and infraspinatus 

muscles during a gripping task was also reported by Alizadehkhaiyat et al. (2011).  In their study, 

muscle activity was measured in a standardized sitting and arm position using fine-wire electrodes 

during a controlled gripping task at 50% of maximum voluntary contraction (MVC). 

Brookham et al. (2010) studied the effect of different postures during light tool usage and 

forward pushing exertion on the activity of shoulder muscles.  Fifteen postures characterized by 

shoulder flexion angles of 0°, 60°, 70°, 80° and 90° in three shoulder rotations (humoral rotations), 

-45°, 0° and 45°, were evaluated.  The muscles studied were the right superior, middle and inferior 

trapezius, all deltoid portions, pectoralis major, infraspinatus and latissimus dorsi.  To simulate 

hand tool use, a gripping task at 30% MVC was performed and a force of 13 ± 2 N was used for 

the forward pushing exertion.  All tasks were performed in a seated position with shoulder 

abduction and elbow flexion maintained at 90°.  In general, an increase in the shoulder flexion 

angle was associated with an increase in muscle activation.  The postures with internal and external 

rotation influenced the activity of the inferior trapezius muscle more than other muscles.  

Several other studies on shoulder muscle activation looked at fatigue development due to 

workplace alike exertions.  Takala et al (1993) investigated the relationship between holding time 

and EMG changes.  The study participants held a suspended weight using 90° arm abduction in 
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the sagittal plane until exhaustion.  Male participants held a different weight than female 

participants (4 kg for men and 2.5 kg for women).  Larger EMG changes were observed in male 

participants than in female participants.  The infraspinatus and anterior deltoid muscles showed 

faster EMG changes and signs of fatigue than the upper trapezius.  Minning et al. (2007) also 

reported similar findings regarding faster fatigue development of the deltoid muscle compared to 

other shoulder muscles.  The upper trapezius, middle deltoid, serratus anterior and lower trapezius 

muscles were investigated in their study.  The participants performed static lifting tasks at 90° arm 

elevation using 60% MVC load until exhaustion.  Kai et al. (2012) compared the fatigability of the 

infraspinatus and deltoid muscles during resisted arm elevation (30% MVC) performed at various 

postures in the sagittal and scapular planes.  Faster fatigue development was observed for the 

infraspinatus in the sagittal plane than in the scapular plane.  

Arwert et al., (1997) studied the relation between electromyography of shoulder muscles 

and force direction while performing static exertions.  Fourteen muscles including supraspinatus, 

infraspinatus, teres major, all deltoid and latissimus dorsi were studied.  Three postures were used: 

90° scapular shoulder abduction with 90° elbow flexion and forearm in horizontal position; 90° 

anteflexion of the humerus shoulder abduction with 90° elbow flexion and forearm in horizontal 

position; 90° anteflexion of the humerus shoulder abduction with 90° elbow flexion and forearm 

in vertical position. 14 N was the exerted force for 3 seconds in all eight force directions (0° ,45° 

,90° ,135° ,180° ,225°,270°,315°).  A relationship found between teres major and latissimus dorsi 

muscles since they have been activated simultaneously.  Teres major and latissimus were active in 

downward and forward forces.  Rotator cuff muscles and all deltoid muscles role in stabilizing the 

gienohumeral joint was obvious from the continues activation during exertion.   
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In summary, existing studies indicate that factors such as force exertion level, posture and 

hand gripping influence the activation and fatigue of shoulder muscles.  Different muscles exhibit 

different activation and fatigue patterns depending on the conditions of posture, force and hand 

gripping used.  However, no previous study clearly explained the inter-muscle difference in the 

activation or fatigability pattern when subjected to different demands (work/exertion).  It was 

suspected that shoulder muscles’ attempt to stabilize the GHJ using concavity compression may 

explain the differences in muscle activation pattern during arm exertions.  This forms the basis for 

conducting this study.  In this study, the SEMG data recorded from shoulder muscles was 

examined to understand their role in stabilizing the shoulder using concavity compression.  
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Chapter 3: Study Rationale 
 

3.1 Problem Statement 

The socioeconomic impact of shoulder MSDs is huge in terms of lost work days, lost 

productivity and healthcare costs.  Shoulder MSDs are prevalent among workers in several 

occupations including, but not limited to, nursing, material handling, janitorial work, 

transportation and manufacturing.  Despite the high socioeconomic impact and widespread 

occurrence of shoulder MSDs, currently no workplace assessment/evaluation tool exists that can 

predict the risk of developing these MSDs.  Such a tool could prove beneficial to preventing work-

related shoulder MSDs.  However, development of a workplace assessment/evaluation tool is a 

long, multi-step process.  

The long-term goal of the research proposed in this study is to aid in the development of a 

workplace assessment/evaluation tool.  Results of a previous study (Cutlip, 2014) showed some 

promise in utilizing concavity compression, a shoulder stabilizing mechanism, as a governing 

mechanism in developing such a tool; however, the problem with the previous study (or problem 

statement for this study) is that the findings heavily relied on the outputs of a biomechanical model 

and lacked comparison with true physiological data.  Therefore, the purpose of this study is to 

further evaluate concavity compression as a suitable governing mechanism in developing a 

workplace assessment/evaluation tool by utilizing true physiological (muscle activation) data. 
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3.2 Objective and Hypotheses 

The main objective of this research is to study the shoulder muscle activation pattern during 

static arm exertions. The arm exertions were performed in five directions: pulling right (PR), 

pulling left (PL), pulling back (PB), pulling down (PD) and pulling up (PU).  Three force exertion 

levels were used: 5 lbs., 7.5 lbs. and 10 lbs.  The muscle activation pattern was used to quantify 

joint loading and fatigue development.  

The following hypotheses were tested in this study: 

Null hypotheses:  

H01: The direction of force exertion has no effect on the muscle activation pattern and fatigability. 

H02: The magnitude of force exertion has no effect on the muscle activation pattern and fatigability.  

H03: The direction and magnitude of force exertion have no interaction effect on the muscle 

activation pattern and fatigability. 

Alternate hypotheses: 

The results from a previous study (Cutlip, 2014) were summarized in Figure 3.  The vectors 

in this figure represent locations of the resultant force vectors at the GHJ in the frontal and 

transverse planes.  It can be observed from the figure that the orientation and magnitude of these 

vectors is affected by the direction of force exertion.  Thus, based on these findings, the following 

alternate hypotheses will be tested: 

HA1: The direction of force exertion has an effect on the muscle activation pattern.  Specifically, 

pulling exertions performed in the right direction will result in the highest muscle loading and 

faster fatigue development, followed by the exertions performed in the up and left directions. 
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Figure 3: Force magnitude for frontal and transverse plane. 
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The lowest muscle loading and slow fatigue development were observed for pulling exertions 

performed in the back and down directions. 

HA2: The magnitude of force exertion has an effect on the muscle activation pattern and fatigability. 

HA3: The direction and magnitude of force exertion have interaction effect on the muscle activation 

pattern and fatigability.
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Chapter 4: Methodology 
 

4.1 Approach 

A laboratory-based study was performed to quantify the effect of static arm exertions on 

the shoulder muscle activation pattern.  Human subjects performed static arm exertions in five 

directions using three different weights.  SEMG data was recorded from nine shoulder muscles.  

The SEMG data were used to quantify shoulder muscle loading and fatigue.  The relationship 

between muscle loading and fatigue and the concavity compression vector were evaluated by 

testing the SEMG data.  

 

4.2 Participants 

Ten healthy, right-hand dominant male participants between the ages of 18 and 40 were 

recruited for the study.  The primary inclusion criteria for this study required that the participants 

were free from any type of musculoskeletal, degenerative or neurological disorder and that they 

had neither a history of shoulder pain nor any current pain.  The Physical Activity Readiness 

Questionnaire (PAR-Q, Canadian Society for Exercise Physiology) (Appendix A) was used to 

screen participants for cardiac and other health problems (e.g., dizziness, chest pain and heart 

trouble).  Participants who met the inclusion criteria were asked to read and sign a consent form 

approved by the local Institutional Review Board (Appendix B).   
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4.3 Equipment 

4.3.1 Custom-Made Force Exertion Device 

This device consists of a wooden chair equipped with a four-point harness to secure 

participants in a standard sitting posture.  The chair was attached to a column and base assembly, 

and the column was fitted with a height-adjustable base.  A peripheral assembly consisting of a set 

of perforated steel tubes was attached to this base, and several pulleys were mounted on the 

perforated steel tubes.  Rope was used to hang weights of different magnitudes from the pulleys, 

and human participants pulled the other end of the rope using a D-handle.  A set of perforated steel 

tubes and pulleys allow the experimenter to control the direction of pulling.  Different weights can 

be attached to the rope to control the magnitude of force exertion. Figure 4 and Figure 5 can 

illustrate the experiment setup. 

 

 

Figure 4: Experiment device while performing pulling right (PR) task. 
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Figure 5: Upper view for experiment device shows (PR, PL and PB) tasks. 

 

4.3.2 Surface Electromyography (SEMG) system 

 

EMG signals were used to study muscle activation pattern by analyzing the electrical signal 

generated during muscular contractions (Acierno et al., 1995).  EMG data can be recorded using 

surface or intramuscular EMG electrodes.  The surface electrodes are employed when collecting 

data from superficial muscles.  In the current study, surface electrodes were used to record EMG 

data from shoulder muscles.  

 

Figure 6: Telemyo 2400 T G2 EMG system receiver and transmitter. 
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A Telemyo 2400 T G2 EMG system (Noraxon Inc., AZ, USA) was used for data collection.  

The system consists of a Telemyo 2400R G2 receiver (Figure 6), Telemyo 2400T G2 transmitter 

with 16 channels (Figure 6), pre-amplified lead wires (Figure 7) and disposable, self-adhesive 

Ag/AgCl snap/clips electrodes (Figure 7).  The bipolar Ag/AgCl pre-gelled surface electrodes were 

of 1 cm diameter, with an inter-electrode distance of 2 cm.  The pre amplifier on the lead wires 

has a band-pass of 10-1000 Hz (gain of 500), CMRR >100 dB and input impedance >100 MΩ.  

The electrodes were attached to the pre-amplified lead wires and then connected to the Telemyo 

2400T G2 transmitter.  The Telemyo 2400T G2 transmitter was mounted on the participants using 

a pouch and belt clip.  The G2 transmitter transmitted the EMG data wirelessly to the Telemyo 

2400R G2 receiver.  The system can sample EMG data at a frequency of up to 1500 Hz. 

 

Figure 7: Pre-amplified lead wires and Ag/AgCl snap/clips electrodes. 

 

4.4 Experimental Design 

 

A two-factor replicated block design was used in this research.  Factor 1, direction of force 

exertion, was treated at five levels: PR, PL, PB, PD and PU.  Factor 2, force exertion level, was 

treated at three levels: 5 lbs., 7.5 lbs. and 10 lbs. 
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The force exertion levels were obtained based on the findings of preliminary testing.  

During this testing we found that forces greater than 10 lbs. were very difficult to pull in certain 

directions.  We also found that forces not greater than 2 lbs. were not perceived differently by the 

human participants.  Therefore, a force difference of 2.5 lbs. was maintained between the force 

exertion levels.  The duration of each exertion was controlled at 60 seconds.  This trial length was 

determined based on the findings of the preliminary study.  Over 60 seconds, the participants had 

trouble pulling in certain directions. 

 Two repetitions were collected for each experimental condition.  Thus, each participant 

performed 30 experimental trials (5 directions × 3 weights× 2 repetitions).  The trial order was 

randomized.  Rest periods of up to two minutes were provided between experimental trials.  

 

4.5 Muscle Selection 

Based on previous SEMG studies on the shoulder complex and the role of individual 

muscles in shoulder stabilization, the following nine shoulder muscles were tested in this study: 

the supraspinatus, infraspinatus, teres major, anterior deltoid, middle deltoid, posterior deltoid, 

biceps, triceps and latissimus dorsi were studied.  It is very important to select the appropriate 

muscles which have the highest activation in shoulder task.  According to few studies that include 

shoulder static exertions and shoulder stability, the supraspinatus and infraspinatus were the major 

rotator cuff muscles.  The deltoid, biceps and triceps muscles played important roles in stabilizing 

the shoulder joint during static arm exertions. (Hawkes et al., 2015; Itoi et al., 1993). 
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4.6 Experimental Data Collection Procedure 

After participants arrived to the laboratory, they were provided with a tour of the 

experimental setup.  Equipment, data collection procedures and specifics of the experimental tasks 

were explained to the participants, and their signatures were obtained on a consent form approved 

by the local Institutional Review Board (Appendix B).  A set of anthropometric measures such as 

height, weight and age were recorded for each participant.  After that, EMG data collection 

preparation began.  Participants prepared for EMG data collection by shaving the skin in the areas 

where SEMG electrodes were placed and then rubbing and cleaning the skin with 70% alcohol 

prior to the placement of the electrodes.  Table 1 shows the electrode location for the shoulder 

muscles.  Next, the MVCs were recorded for each muscle.  Table 2 describes the exertion used to 

record the MVC for each muscle.   

Participants then began the experimental trials.  They were seated and secured into the 

wooden chair of the force exertion device using the four-point harness.  A few practice trials were 

then performed to get the participants acquainted with the setup.  During the actual trials, the 

position of the pulley, rope and D-handle were adjusted such that the participant could grasp it 

using a 15- 20° flexed elbow joint and a 70- 80° flexed shoulder joint.  In each trial, participant 

was required to hold a D-shape handle attached to one of the weight levels which are (10, 7.5, 5 

lb.) for 60 second with a 15°- 20° flexed elbow joint and a 70°- 80° flexed shoulder joint.  

participant performed this task in five different directions which are right, left, front, up and down.  

Each trial had two repetitions.  A 2 minutes’ rest time was provided between trials.  A total of 30 

trials were performed.  The SEMG data was recorded continuously during the exertion.  In 

addition, after the completion of each exertion, the participants were asked to numerically rate 

their perceived exertion using Borg’s CR-10 scale (Appendix C).  The Borg CR-10 scale contains 
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two columns: one for subjective categories ranging from “nothing at all” to “extremely strong” 

and the other for numerical ratios ranging from 1 to 10 that are associated with the different 

categories. 

 

Table 1: EMG locations of shoulder muscles. 

 Muscle Electrodes position 

1 Supraspinatus 

 

Midpoint and two fingers-breadths anterior to the scapular spine. 

 

2 Infraspinatus 

 

Midpoint and two fingers-breadths below and parallel to the 

scapular spine. 

 

3 Teres Major 

 

Middle of the muscle belly. 

 

4 Anterior deltoid 

Two to three fingers- breadths below the acromion process, over 

the muscle belly, in line with the fibers. 

 

5 Middle deltoid 

 

Midline of the lateral surface of the arm, one fourth of the distance 

between the acromion and the elbow. 

 

6 Posterior deltoid 

 

Two fingers-widths behind the angle of the acromion, over the 

muscle belly, in line with the fibers. 

 

7 Biceps 

 

Midpoint between the acromioclavicular and elbow joint. 

 

8 Triceps 

 

Midpoint between acromion of the scapula and the ulna olecranon. 

 

9 Latissimus dorsi 

 

Approximately 4 cm below the inferior tip of the scapula, half the 

distance between the spine and lateral edge of the torso. 
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Table 2: MVC posture and action for each muscle. 

 

 Muscle MVC posture MVC action 

1 Supraspinatus 

 

Arm will be abducted at 20 degrees 

in frontal plane; elbow will be flexed 

at 90 degrees; and no shoulder 

flexion. 

 

Arm will be resisting the abduction, 

while subject will sit on a chair and 

will push against a wall. 

 

2 Infraspinatus 

 

Arm will be abducted at 50 degrees 

in frontal plane; elbow will be flexed 

at 90 degrees; and hand will be in 90 

degrees pronation. 

Arm will be resisting the External 

rotation of the shoulder. 

3 Teres major 

 

Arm will be abducted at 50 degrees 

in frontal plane; elbow will be flexed 

at 90 degrees; and hand will be in 90 

degrees pronation. 

Arm will be resisting the Internal 

rotation of the shoulder. 

4 

 

Anterior 

deltoid 

 

Arm will be abducted at 20 degrees 

in frontal plane; elbow will be flexed 

at 90 degrees; and no shoulder 

flexion. 

Arm will be resisting the horizontal 

flexion. 

5 
Medial 

deltoid 

 

Arm will be abducted at 90 degrees 

in frontal plane; elbow will be flexed 

at 90 degrees; and no shoulder 

flexion. 

Arm will be resisting the abduction. 

6 
Posterior 

deltoid 

 

Arm will be abducted at 20 degrees 

in frontal plane; elbow will be flexed 

at 90 degrees; and no shoulder 

flexion. 

Arm will be resisting the horizontal 

extension. 

7 Biceps 

 

No shoulder abduction; elbow will be 

flexed at 90 degrees; and hands will 

be supinated at 90 degrees. 

 

Arm will be resisting the vertical 

flexion. 

8 Triceps 

No shoulder abduction; elbow will be 

flexed at 90 degrees; and hands will 

be supinated at 90 degrees. 

Arm will be resisting the vertical 

extension. 

9 
Latissimus 

dorsi 

 

Arm straight, abduct 30 degrees in 

the coronal plane, and internally 

rotated 45 degrees. 

Extension and internal rotation. 
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4.7 Data Analysis 

 

The EMG data were processed to estimate the following dependent variables (muscle load, 

muscle fatigue and subjective discomfort rating): 

 

4.7.1 Muscle load 

 The raw SEMG data were filtered using 10 Hz to 400 Hz band pass filter and a 60 Hz 

notch filter to eliminate noise.  The signal was demeaned and full wave rectified.  The resulting 

signal were averaged to determine mean absolute values (MAV).  The MAV data were normalized 

using EMG recorded during MVC exertion to determine normalized MAV (NMAV).  The total 

muscle load during an exertion were estimated using the following equation: 

𝑁𝑀𝐴𝑉𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑁𝑀𝐴𝑉𝑖

9

𝑖=1

 

Where, NMAVi is the normalized activation of the ith muscle. A total of 9 muscles are 

evaluated in this study.  In addition to the total NMAV which is the summation of all muscles, 

each individual muscle load was considered as a dependent variable too. 

4.7.2 Muscle fatigue 

 The time domain EMG data were transformed to frequency domain using fast Fourier 

transformation.  Spectral analysis was performed using a window size of 5 seconds to estimate 

median frequency with a total of 12 windows.  The median frequency data for each exertion was 

assumed to follow a linear regression data and fitted with linear regression line to estimate the 



 22 

slope of the line (Mi) (Dedering et al., 1999; Strimpakos et al., 2005; Hummel et al., 2005; Oliveira 

et al., 2009; Alizadehkhaiyat et al., 2011).  Total muscle fatigue was estimated using the following 

equation: 

𝑀𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑀𝑖

9

𝑖=1

 

In addition to the total M which is the summation of all muscles, each individual muscle 

M was considered as a dependent variable too. 

For the dependent variable related to the subjective discomfort rating, data obtained from 

the individual participant after each trial was used.  

 

4.8 Statistical Analysis 

 

This research evaluates the total muscle load and fatigue of shoulder muscles during static 

arm exertions performed in five different directions under three weight conditions.  The following 

statistical model was used to study the effect of independent variables (direction) and load (weight) 

on the dependent variables: 

𝑦𝑖𝑗𝑘𝑙 = µ +  𝛼𝑖 +  𝛽𝑗 +  𝛾𝑘 + (𝛼𝛽)𝑖𝑗 + 𝜀𝑖𝑗𝑘  {

𝑖 = 1, … , 𝑎
𝑗 = 1, … , 𝑏
𝑘 = 1, … , 𝑛
𝑙 =       1,2

  , 
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Where: 

 𝑦 represents the dependent variables related to muscle load, fatigue and discomfort ratings. 

 𝜇 is the overall mean common to all treatments. 

𝛼𝑖 is the effect of exertion direction (PR, PL, PB, PD and PU), so 𝑖 = 1, 2, 3, 4, 5. 

𝛽𝑗 is the effect of load (weight) level at 5 lbs., 7.5 lbs., and 10 lbs., so 𝑗 = 1, 2, 3.  

𝛾𝑘 is the effect of participants (block), and represents the number of participants recruited in the 

study.  Ten participants were recruited in this study, so 𝑘 = 1, 2, 3…10.  

(𝛼𝛽)𝑖𝑗 is the interaction effect of exertion direction and load level. 

 𝜀𝑖𝑗𝑘 is a random error term. 

 

 In this model, the exertion direction (𝛼𝑖) and weight level (𝛽𝑗) are treated as fixed factors.  

It was assumed that each factor and the two-way interaction factors have no effect on the muscle 

load and fatigue.  That is: 

 

∑ 𝛼𝑖 = 0

𝑎

𝑖=1

,         ∑ 𝛽𝑗 = 0

𝑏

𝑗=1

, 

∑ ∑(𝛼𝛽)𝑖𝑗

𝑏

𝑗=1

= 0.

𝑎

𝑖=1
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Participants (𝛾𝑘) were treated as a random factor that was assumed to be a normally and 

independently distributed (NID) (0,𝜎𝑦
2) random variable.  The random error (𝜀𝑖𝑗𝑘) was also 

assumed to also follow NID (0,𝜎2). 

The appropriate F tests were applied in testing if the means of the fixed factor effects were 

equal to zero: 

𝐻0: 𝛼𝑖 = 0, 𝛽𝑗 = 0  and  (𝛼𝛽)𝑖𝑗 = 0, 

𝐻1: at least one  𝛼𝑖  ≠ 0, 𝛽𝑗 ≠ 0  and  (𝛼𝛽)𝑖𝑗 ≠ 0. 

In addition, F tests were performed in testing the hypotheses of the random factor, 

 𝐻0: 𝜎𝛾
2 . The Type I error probability, α = 0.05, and power of the test (1-β), which equals 0.90, 

were chosen for hypotheses testing and sample size determination.  These were previously 

discussed in section 4.2. 

Significant effects were further evaluated by conducting a comparison between means 

using Tukey’s Honestly Significant Difference (HSD) all-pairwise comparison test.  For fixed 

factors, such as direction of force exertion and load, when the null hypothesis was rejected then 

the factors’ effects were estimated using Minitab 17 statistical analysis software (Minitab Inc., PA, 

USA). 
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4.8.1 Data Normality  

The normality assumption for all dependent variables except for Msupraspinatus data was 

found to be not true.  Therefore, the equality of variance test was performed.  The equality of 

variance test was true for most of the dependent variables except for NMAVinfraspinatus, NMAVmiddle 

deltoid, NMAVanterior deltoid, NMAVposterior deltoid, NMAVbicep, Mteres major and TM.  See appendix (D).  

The dependent variables that met the equality of variance was analyzed using general linear 

ANOVA.  If the sufficiency of the linear model was not affirmed by using normal probability plots 

of residuals between the raw data and fitted values, the Johnson transformation was applied (Table 

3, Figure 8).  Minfraspinatus, Mmiddle deltoid, Mposterior deltoid, NMAVsupraspinatus, NMAVteres major, 

NMAVtricep, and NMAVlatissimus dorsi data did not meet the data normality distribution.  

Table 3: Johnson transformation family. 

Johnson Family Transformation Function 

 

SB 

 

𝜸 + 𝜼 × 𝐥𝐧[
(𝔁 − 𝜺)

(𝝀 + 𝜺 − 𝔁)
] 

 

 

SU 

 

 

𝜸 + 𝜼 × 𝐬𝐢𝐧𝐡−𝟏[
(𝔁 − 𝜺)

𝝀
] 

Where, 

𝐬𝐢𝐧𝐡−𝟏(𝔁) = 𝐥𝐧[𝔁 + √𝟏 + 𝒙𝟐] 
  

 

SL 

 

 

𝜸 + 𝜼 × 𝐥𝐧(𝔁 − 𝜺) 
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Figure 8: Illustration of the process used to perform statistical analysis. 

Finally, the Johnson transformation was applied to the Minfraspinatus, Mteres major, Mmiddle deltoid, 

Mposterior deltoid, TM, NMAVsupraspinatus, NMAVteres major, NMAVanterior deltoid, NMAVposterior deltoid, 

NMAVbicep, NMAVtricep and NMAVlatissimus dorsi data in order to achieve normality.  A bounded 

(SB) type distribution Johnson transformation achieved normality for Minfraspinatus, 

NMAVsupraspinatus, NMAVteres major, NMAVanterior deltoid, NMAVposterior deltoid, NMAVbicep and 

NMAVlatissimus dorsi data.  Also, a bounded (SU) type distribution Johnson transformation achieved 

normality for Mteres major, Mmiddle deltoid, Mposterior deltoid, TM and NMAVtricep data.  Table 4 shows the 

optimal transformation function and parameter values for all transformed raw data. 
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Table 4: Johnson transformation.  

 

Johnson 

transfor

m type 

Johnson transformation 

function 
γ η ε λ 

p-value 

before 

transfor

mation 

p-value after 

transformatio

n 

M 

Infraspinatus 
SB 

−1.5766 + 1.09558

× ln[
(𝓍 + 4.06686)

(0.366255 − 𝓍)
] 

 

-1.5766 1.09558 4.06686 0.366255 <0.005 0.959094 

M 

Teres major 
SU 

1.40006 + 1.26292

× sinh−1[
(𝓍 − 0.0521897)

0.380748
] 

 

1.40006 1.26292 0.0521897 0.380748 <0.005 0.439864 

M 

Middle 

deltoid 

SU 

1.22404 + 1.21468

× sinh−1[
(𝓍 − 0.00676503)

0.29702
] 

1.22404 1.21468 0.00676503 0.29702 <0.005 0.989716 

M 

Posterior 

deltoid 

 

SU 

1.28858 + 1.31359

× sinh−1[
(𝓍 − 0.00203363)

0.31806
] 

1.28858 1.31359 0.00203363 0.31806 <0.005 0.562281 

Total 

M 
SU 

2.347 + 1.39986

× sinh−1[
(𝓍 − 0.166531)

1.30482
] 

2.347 1.39986 0.166531 1.30482 <0.005 0.901577 

NMAV 

Supraspinat

us 

SB 

3.15424 + 0.933155

× ln[
(𝓍 − 0.131077))

(196.205 − 𝓍)
] 

3.15424 0.933155 0.131077 196.205 <0.005 0.622031 

 

NMAV 

Teres major 

 

SB 

1.43894 + 0.847714

× ln[
(𝓍 − 0.647975)

(60.7376 − 𝓍)
] 

1.43894 0.847714 0.647975 60.7376 <0.005 0.977591 

 

NMAV 

Anterior 

deltoid 

 

SB 

1.22166 + 0.481705

× ln[
(𝓍 − 0.319075)

(78.6941 − 𝓍)
] 

1.22166 0.481705 0.319075 78.6941 <0.005 0.12699 

 

NMAV 

Posterior 

deltoid 

 

SB 

1.53906 + 0.604884

× ln[
(𝓍 − 0.383474)

(69.8451 − 𝓍)
] 

1.53906 0.604884 0.383474 69.8451 <0.005 0.875149 

NMAV 

Bicep 

 

SB 

1.2986 + 0.590796

× ln[
(𝓍 − 0.303751)

(58.6284 − 𝓍)
] 

1.2986 0.590796 0.303751 58.6284 <0.005 0.473572 

NMAV 

Tricep 

 

SU 

−1.8708 + 0.825356

× sinh−1[
(𝓍 − 0.864504)

0.862481
] 

-1.8708 0.825356 0.864504 0.862481 <0.005 0.586 

NMAV 

Latissimus 

dorsi 

 

SB 

2.16552 + 0.987277

× ln[
(𝓍 − 1.68571)

(97.1743 − 𝓍)
] 

 

2.16552 0.987277 1.68571 97.1743 <0.005 0.893428 
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The transformed data met the normality and equality of variance assumption for most of 

the dependent variables.  The results of the Johnson transformation are presented in Appendix E.  

However, NMAV (infraspinatus) and NMAV (middle deltoid) could not be transformed to 

normality using a Johnson transformation.  Therefore, a nonparametric analysis was performed 

using Kruskall-Wallis test. 
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Chapter 5: Results 
 

 

Ten healthy, right-hand dominant male participants were recruited for this research.  The 

average height, weight and age of the participants were 173.5 ± 5.42 cm, 168.1 ± 18.19 lbs. and 

26.9 ± 2.424 years.  Table 5 shows this anthropometric data for each participant.  

 

Table 5: Participants anthropometric data. 

Subject 

number 

Height 

(cm) 

Weight 

(lbs.) 
Age 

1 175 163 31 

2 170 189 30 

3 170 150 27 

4 178 162 28 

5 173 180 24 

6 180 185 24 

7 182 195 27 

8 173 140 27 

9 164 162 27 

10 170 155 24 

Average 174 168 27 

STD 5.4 18.2 2.4 

 

5.1 Subjective discomfort data 

Data for the individual subjective discomfort ratings are summarized in Appendix I.  The 

mean scores of subjective discomfort for each force level showed an increasing trend towards the 

highest force level, which is 10 lbs (Figure 9).  The mean scores of subjective discomfort for 

direction showed that the PU and PR directions had the highest discomfort rating, followed by the 

PD direction.  The PL and PB directions had the lowest discomfort ratings of all directions.  A 

baseline discomfort of 1 (nothing at all) was recorded frequently at the 5 lbs. force level, and 

recorded in the PL and PB directions for different force levels.  A mean discomfort of 4 (slight 
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discomfort) was commonly reported at different force levels and different pulling directions.  A 

mean subjective discomfort of 10 (very severe) was reported in the PU and PR directions.  Some 

participants who reported a discomfort of 10 could not complete the trial, and stopped before 

reaching the 60 second mark.  This situation occurred when participant was pulling 10 lbs. in the 

up direction, and it also occurred when pulling the same force level in the right direction. 

 

Figure 9: Subjective discomfort scores at different force levels and directions. Error bars represent 
standard deviations. 

 
Further statistical analysis was performed on the subjective discomfort data to investigate 

whether the different force levels, different directions or the interaction between them had a 

significant effect on discomfort.  ANOVA analysis showed that the main effect of force level was 

significant for the discomfort rating (p-value ≤ 0.001), and the main effect of direction was 

significant for the discomfort rating (p-value ≤ 0.001) (Table 6).  In addition, the interaction effect 

of force level and direction was significant for the discomfort rating (p-value ≤ 0.001).  Discomfort 
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ratings for the PB, PD, PL, PR and PU directions increased by approximately 60%, 200%, 100%, 

60% and 80%, respectively, at the 10lbs. force level compared to the 5 lbs. force level.  Results of 

post hoc analysis showed that at 5 lbs. force level, PU and PR directions were higher than PB, PD 

and PL directions.  Similar results were found at the 7.5 lbs. force level.  However, at 10 lbs. force 

level, PU and PR directions were higher than PD and PL directions, and PB direction was lower 

than PD and PL directions.   

Table 6: ANOVA results table for discomfort rating. 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 119.86 13.318 18.51 0 

Force 2 216.17 108.087 150.25 0 

Direction 4 686.13 171.532 238.45 0 

Force*Direction 8 25.39 3.174 4.41 0 

Error 126 90.64 0.719   

Total 149 1138.19    

 

 

5.2 Electromyography  

 

 

Electromyography data for supraspinatus, infraspinatus, teres major, anterior deltoid, 

middle deltoid, posterior deltoid, biceps, triceps and latissimus dorsi muscles were expressed in 

terms of median frequency (M) and normalized mean absolute activation (NMAV) data.   

5.2.1 Median Frequency 

Median frequency data for each exertion was fitted with linear regression to estimate the 

slope of the line (Mi).  The slope values used for performing statistical analysis are presented in 

Appendix J.  Table 17 shows the median frequency slope values and standard deviations, and it 

also shows the main and interaction effects for each muscle.  Figure 10 shows the median 

frequency slope values for each muscle.   
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For the supraspinatus muscle, ANOVA analysis showed that the main effect of the force 

level was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-

value ≤ 0.001).  In addition, the interaction effect of force level and direction was significant (p-

value = 0.006) (Table 7).  In all force exertion directions except BP, the slope value decreased by 

100% or more at the 10 lbs. force level compared to the 5 lbs. force level.  Results of post hoc 

analysis showed that at 5 lbs. force level, no differences were found between all force directions.  

Similar results were found for the 7.5 lbs. force level.  However, at 10 lbs. force level, PU and PR 

directions were lower than PB, PD and PL directions.    

Table 7: ANOVA results table for Msupraspinatus 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 0.9284 0.10316 1.65 0.108 

Force 2 2.1716 1.0858 17.39 0 

Direction 4 2.0556 0.5139 8.23 0 

Force*Direction 8 1.4319 0.17899 2.87 0.006 

Error 122 7.6195 0.06246   

Total 145 14.2085    

 

For the infraspinatus muscle, ANOVA analysis showed that the main effect of force level 

was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-value ≤ 

0.001).  In addition, the interaction effect of force level and direction was significant (p-value = 

0.047) (Table 8).  The slope value for the PR and PU directions decreased by 50% and 150% 

respectively at the 10 lbs. force level compared to the 5 lbs. force level.  On the other hand, slope 

values for the other directions had a smaller change at the 10 lbs. force level compared to the 5 lbs. 

force level.  Results of post hoc analysis showed that at 5 lbs. force level, PU and PR directions 

were lower than PB, PD and PL directions.  Similar results were found for the 7.5 lbs. force level.  

However, in at 10 lbs. force level, PL, PU and PR directions were lower than PB and PD directions.    
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Table 8: ANOVA results table for Minfraspinatus 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 15.912 1.768 4.01 0 

Force 2 11.729 5.8643 13.3 0 

Direction 4 69.806 17.4514 39.56 0 

Force*Direction 8 7.211 0.9014 2.04 0.047 

Error 124 54.695 0.4411   

Total 147 160.145    

 

For the teres major muscle, ANOVA analysis showed that the main effect of force level 

was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-value ≤ 

0.001).  In addition, the interaction effect of force level and direction was significant (p-value = 

0.043) (Table 9).  Slope value for the PR and PU directions decreased around 60% and 175% at 

the 10 lbs. force level compared to the 5 lbs. force level.  On the other hand, slope values for the 

other directions had a smaller change at the 10 lbs. force level compared to the 5 lbs. force level.  

Post hoc analysis showed that at 5 lbs. force level, PL, PU and PR directions were lower than PB 

and PD directions.  However, at 7.5 lbs. force level, PU and PR directions were lower than PB, 

PD and PL directions.   Similar results were found for the 10 lbs. force level. 

Table 9: ANOVA results table for Mteres major 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 7.207 0.8008 2.03 0.042 

Force 2 10.899 5.4495 13.79 0 

Direction 4 77.787 19.4468 49.21 0 

Force*Direction 8 6.551 0.8189 2.07 0.043 

Error 123 48.608 0.3952   

Total 146 152.269    

 

For the middle deltoid muscle, ANOVA analysis showed that the main effect of force level 

was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-value ≤ 
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0.001).  In addition, the interaction effect of force level and direction was significant (p-value = 

0.015) (Table 10).  Slope value for the PR and PU directions was decreased by approximately 

350% and 125%, respectively, at the 10 lbs. force level compared to the 5 lbs. force level.  On the 

other hand, slope values for the other directions had a smaller change at the 10 lbs. force level 

compared to the 5 lbs. force level.  Post hoc analysis showed that at 5 lbs. force level, PB, PL, PU 

and PR directions were lower than PD directions.  At 7.5 lbs. force level, PB, PL, PU and PD 

directions were lower than PR directions.  Similar results were found for the 10 lbs. force level. 

Table 10: ANOVA results table for Mmiddle deltoid 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 27.051 3.0056 6.12 0 

Force 2 15.652 7.8262 15.94 0 

Direction 4 26.122 6.5305 13.3 0 

Force*Direction 8 9.861 1.2326 2.51 0.015 

Error 123 60.409 0.4911   

Total 146 138.597    

 

For the anterior deltoid muscle, ANOVA analysis showed that the main effect of force 

level was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-

value ≤ 0.001) (Table 11).  In addition, the interaction effect of force level and direction was 

significant (p-value = 0.006).  Slope value for the PD, PR and PU directions was decreased by 

approximately 200%, 400% and 200%, respectively, at the 10 lbs. force level compared to the 5 

lbs. force level.  On the other hand, slope values for the PB and PL directions had a smaller change 

at the 10 lbs. force level compared to the 5 lbs. force level.  Post hoc analysis showed that at 5 lbs. 

force level, PU direction was lower than PB, PD, PL and PR directions.  Similar results were found 

for the 7.5 and 10 lbs. force levels. 
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Table 11: ANOVA results table for Manterior deltoid 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 2.086 0.2317 1.72 0.091 

Force 2 6.326 3.163 23.49 0 

Direction 4 12.735 3.1838 23.64 0 

Force*Direction 8 3.099 0.3874 2.88 0.006 

Error 121 16.296 0.1347   

Total 144 40.3    

 

For the posterior deltoid muscle, ANOVA analysis showed that the main effect of force 

level was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-

value ≤ 0.001) (Table 12).  In addition, the interaction effect of force level and direction was 

significant (p-value = 0.001).  Slope value for the PD, PR and PU directions was decreased by 

approximately 100%, 400% and 90%, respectively, at the 10 lbs. force level compared to the 5 lbs. 

force level.  On the other hand, slope values for the PB and PL directions had a smaller change at 

the 10 lbs. force level compared to the 5 lbs. force level.  Results of post hoc analysis showed that 

at 5 lbs. force level, no differences were found between all force directions.  Similar results were 

found for the 7.5 lbs. force level.  However, at 10 lbs. force level, PR direction was lower than PB, 

PD, PL and PU directions. 

Table 12: ANOVA results table for Mposterior deltoid 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 11.05 1.228 2.3 0.02 

Force 2 16.28 8.1388 15.22 0 

Direction 4 12.04 3.0093 5.63 0 

Force*Direction 8 14.57 1.8212 3.41 0.001 

Error 121 64.69 0.5346   

Total 144 118.79    
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For the bicep muscle, ANOVA analysis showed that the main effect of force level was 

significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-value ≤ 

0.001).  However, the interaction effect of force level and direction was not significant (p-value = 

0.401) (Table 13).  Slope value for the PR, PD and PU directions was decreased by roughly 180%, 

100% and 100% for 10 lbs. force level compared to the 5 lbs. force level.  On the other hand, slope 

values for the other directions had a smaller change at the 10 lbs. force level compared to the 5 lbs. 

force level.  Post hoc analysis showed that at 10 lbs. force level was different than the other force 

levels.  In addition, it showed that the PR and PD directions were lower than PB, PL and PU 

directions.   

Table 13: ANOVA results table for Mbicep 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 1.6244 0.18049 1.87 0.064 

Force 2 1.633 0.8165 8.45 0 

Direction 4 2.9236 0.73091 7.56 0 

Force*Direction 8 0.8145 0.10181 1.05 0.401 

Error 116 11.2151 0.09668   

Total 139 18.318    

 

For the tricep muscle, ANOVA analysis showed that the main effect of force level was 

significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-value ≤ 

0.001).  In addition, the interaction effect of force level and direction was significant (p-value ≤ 

0.001) (Table 14).  Slope value for he PD, PR and PU directions was decreased by approximately 

200%, 250% and 150%, respectively, at the 10 lbs. force level compared to the 5 lbs. force level.  

On the other hand, slope values for the PB and PL directions had a smaller change at the 10 lbs. 

force level compared to the 5 lbs. force level.  Results of post hoc analysis showed that in the at 5 

lbs. force level, no differences were found between all force directions.  However, at 7.5 lbs. force 
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level, PU and PR directions were lower than PB, PD and PL directions.  At 10 lbs. force level, PD 

and PU directions were lower than PB and PL directions, and PR direction was lower than PD and 

PU directions. 

Table 14: ANOVA results table for Mtricep 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 5.966 0.66285 6.84 0 

Force 2 4.766 2.38285 24.58 0 

Direction 4 7.712 1.928 19.89 0 

Force*Direction 8 2.965 0.3706 3.82 0 

Error 124 12.021 0.09694   

Total 147 33.468    

For the latissimus dorsi muscle, ANOVA analysis showed that the main effect of force 

level was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-

value ≤ 0.001).  However, the interaction effect of force level and direction was not significant (p-

value = 0.09) (Table 15).  Slope value for the PR and PU directions decreased by around 100% 

and 150%, respectively, at the 10 lbs. force level compared to the 5 lbs. force level.  On the other 

hand, slope values for the other directions had a smaller change at the 10 lbs. force level compared 

to the 5 lbs. force level.  Post hoc analysis showed that the force level of 10 lbs. was different than 

the other force levels.  In addition, post hoc analysis showed that the PR and PU directions were 

lower than PB, PD and PL directions. 

Table 15: ANOVA results table for Mlatissimus dorsi 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 4.971 0.5523 5.08 0 

Force 2 1.814 0.9069 8.34 0 

Direction 4 4.535 1.1336 10.42 0 

Force*Direction 8 1.541 0.1926 1.77 0.09 

Error 117 12.727 0.1088   

Total 140 25.175    
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Finally, for total M, ANOVA analysis showed that the main effect of force level was 

significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-value ≤ 

0.001).  However, the interaction effect of force level and direction was not significant (p-value = 

0.377) (Table 16).  Slope value for the PR and PU directions was decreased by roughly 150% for 

both at the 10 lbs. force level compared to the 5 lbs. force level.  On the other hand, slope values 

for the PB, PD and PL directions had a smaller change at the 10lbs. force level compared to the 5 

lbs. force level.  Post hoc analysis showed that each force level was different than others.  

Moreover, post hoc analysis showed that PL direction was lower than PB and PD directions, and 

PR and PU were lower than PL direction.  

Table 16: ANOVA results table for TM 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 15.051 1.6723 5.8 0 

Force 2 27.483 13.7414 47.63 0 

Direction 4 60.351 15.0879 52.3 0 

Force*Direction 8 2.509 0.3136 1.09 0.377 

Error 126 36.353 0.2885   

Total 149 141.746    
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Table 17: Median frequency slope values mean, SD, main and interaction effect. 

M 
Load P - 

value 
Direction 

P-

value 

Interaction 

P-value 
5 lbs. 7.5 lbs. 10 lbs. PB PD PL PR PU   

 

Supraspinatus 

 

-0.1811 

(±0.2479) 

-0.3531 

(±0.2390) 

-0.4812 

(±0.3647) 
≤ 0.001 

-0.1958 

(±0.2914) 

-0.2981 

(±0.3075) 

-0.3076 

(±0.2610) 

-0.3422 

(±0.2978) 

-0.5490 

(±0.3090) 
≤ 0.001 0.006 

 

Infraspinatus 

 

-0.4239 

(±0.4434) 

-0.5957 

(±0.6116) 

-0.942 

(±0.817) 
≤ 0.001 

-0.2742 

(±0.2375) 

-0.1275 

(±0.2755) 

-0.503 

(±0.656) 

-1.107 

(±0.593) 

-1.245 

(±0.624) 
≤ 0.001 0.047 

 

Teres major 

 

-0.4303 

(±0.4781) 

-0.591 

(±0.713) 

-0.897 

(±0.809) 
≤ 0.001 

-0.1862 

(±0.2959) 

-0.2326 

(±0.2839) 

-0.3371 

(±0.3406) 

-1.167 

(±0.668) 

-1.314 

(±0.773) 
≤ 0.001 0.043 

 

Mid deltoid 

 

-0.2808 

(±0.3760) 

-0.4549 

(±0.4681) 

-0.6812 

(±0.5722) 
≤ 0.001 

-0.355 

(±0.552) 

-0.2030 

(±0.2354) 

-0.4442 

(±0.5087) 

-0.772 

(±0.599) 

-0.6029 

(±0.3713) 
≤ 0.001 0.015 

 

Ant deltoid 

 

-0.2613 

(±0.3669) 

-0.4572 

(±0.4619) 

-0.7709 

(±0.6087) 
≤ 0.001 

-0.1747 

(±0.3223) 

-0.2981 

(±0.3469) 

-0.4613 

(±0.2638) 

-0.4712 

(±0.5436) 

-1.025 

(±0.626) 
≤ 0.001 0.006 

 

Post deltoid 

 

-0.3025 

(±0.2668) 

-0.3919 

(±0.2796) 

-0.7373 

(±0.5841) 
≤ 0.001 

-0.3261 

(±0.2624) 

-0.3022 

(±0.3376) 

-0.4856 

(±0.2881) 

-0.718 

(±0.681) 

-0.5716 

(±0.4187) 
≤ 0.001 0.001 

 

Bicep 

 

-0.1331 

(±0.2826) 

-0.2508 

(±0.3223) 

-0.3911 

(±0.4226) 
≤ 0.001 

-0.1324 

(±0.2780) 

-0.3318 

(±0.3421) 

-0.1012 

(±0.2312) 

-0.5014 

(±0.4965) 

-0.2463 

(±0.2906) 
≤ 0.001 0.401 

 

Tricep 

 

-0.3144 

(±0.2676) 

-0.4978 

(±0.4385) 

-0.7485 

(±0.5732) 
≤ 0.001 

-0.2645 

(±0.2211) 

-0.4558 

(±0.3771) 

-0.3021 

(±0.3405) 

-0.821 

(±0.604) 

-0.7486 

(±0.4703) 
≤ 0.001 ≤ 0.001 

 

Latissimus dorsi 

 

-0.2079 

(±0.3430) 

-0.2741 

(±0.3901) 

-0.4565 

(±0.4883) 
≤ 0.001 

-0.1829 

(±0.2828) 

-0.1358 

(±0.3258) 

-0.2451 

(±0.4108) 

-0.4189 

(±0.3007) 

-0.601 

(±0.568) 
≤ 0.001 0.090 

 

Total M 

 

 

-2.455 

(±1.610) 

-3.723 

(±2.479) 

-6.020 

(±3.866) 
≤ 0.001 

-1.980 

(±1.330) 

-2.339 

(±1.944) 

-3.090 

(±1.371) 

-6.064 

(±3.606) 

-6.855 

(±3.178) 
≤ 0.001 0.377 
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Figure 10: Raw data charts for median frequency slope values. Error bars represents standard deviation. 
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5.2.2 Normalized mean absolute values 

 

The raw data used for performing statistical analysis are presented in Appendix K.  Table 

26 shows the NMAVs and deviations, as well as the main and interaction effects for each muscle.  

Figure 11 shows the changes in NMAVs for each muscle.   

For the supraspinatus muscle, ANOVA analysis showed that the main effect of the force 

level was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-

value ≤ 0.001).  However, the interaction effect of force level and direction was not significant (p-

value = 0.984) (Table 18).  Muscle activation for the PR and PU directions was increased by 

approximately 100% and 60%, respectively, at the 10 lbs. force level compared to the 5 lbs. force 

level.  On the other hand, muscle activation for the PB, PD and PL directions had a smaller change 

at the 10 lbs. force level compared to the 5 lbs. force level.  Post hoc analysis showed that each 

force level was different than other force levels.  In addition, post hoc analysis showed that the PR 

and PD directions were different than the PU and PL directions, and both of them were different 

than PB direction.  

Table 18: ANOVA results table for NMAVsupraspinatus 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 33.893 3.7659 10.72 0 

Force 2 16.855 8.4276 23.98 0 

Direction 4 58.538 14.6345 41.64 0 

Force*Direction 8 0.662 0.0828 0.24 0.984 

Error 126 44.282 0.3514   

Total 149 154.231    

 

For the infraspinatus muscle, Kruskall-Wallis one-way analysis showed that the main 

effect of force level was significant (p-value = 0.003), and the main effect of direction was also 
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significant (p-value ≤ 0.001).  Muscle activation for the PR and PU directions was increased by 

roughly 100% and 66%, respectively, at the 10 lbs. force level compared to the 5 lbs. force level.  

On the other hand, muscle activation for the PB, PD and PL directions had a smaller change at the 

10 lbs. force level compared to the 5 lbs. force level.   

For the teres major muscle, ANOVA analysis showed that the main effect of force level 

was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-value ≤ 

0.001) (Table 19).  However, the interaction effect of force level and direction was not significant 

(p-value = 0.88).  For all force exertion directions, muscle activation increased by roughly 100% 

at the 10 lbs. force level compared to the 5 lbs. force level.  Post hoc analysis showed that each 

force level was different than other force levels.  In addition, post hoc analysis showed that the 

PR, PB and PD directions were different than PU and PL directions.   

Table 19: ANOVA results table for NMAVteres major 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 56.054 6.2282 19.71 0 

Force 2 30.815 15.4075 48.76 0 

Direction 4 9.015 2.2536 7.13 0 

Force*Direction 8 1.171 0.1463 0.46 0.88 

Error 126 39.814 0.316   

Total 149 136.867    

 

For the middle deltoid muscle, Kruskall-Wallis one-way analysis showed that the main 

effect of force level was significant (p-value = 0.011), and the main effect of direction was 

significant (p-value ≤ 0.001).  Muscle activation for the PR and PU directions was increased by 

roughly 200% and 100%, respectively, at the 10 lbs. force level compared to the 5 lbs. force level.  

On the other hand, muscle activation for the PB, PD and PL directions had a smaller change at the 

10 lbs. force level compared to the 5 lbs. force level.   
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For the anterior deltoid muscle, ANOVA analysis showed that the main effect of force 

level was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-

value ≤ 0.001).  However, the interaction effect of force level and direction was not significant (p-

value = 0.703) (Table 20).  Muscle activation for the PR and PU directions was increased by 

roughly 150% and 50%, respectively, at the 10 lbs. force level compared to the 5 lbs. force level.  

On the other hand, muscle activation for the PB and PL directions had a smaller change at the 10 

lbs. force level compared to the 5 lbs. force level.  Post hoc analysis showed that the force level of 

5 lbs. was different than the other force levels.  In addition, post hoc showed that each force 

exertion direction was different than the others.  PU direction was the highest followed by PR 

direction, and PB and PD directions were lower than PL direction. 

Table 20: ANOVA results table for NMAVanterior deltoid 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 7.186 0.7985 4.24 0 

Force 2 3.85 1.9251 10.22 0 

Direction 4 117.778 29.4444 156.26 0 

Force*Direction 8 1.034 0.1293 0.69 0.703 

Error 125 23.554 0.1884   

Total 148 153.244    

 

For the posterior deltoid muscle, ANOVA analysis showed that the main effect of force 

level was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-

value ≤ 0.001).  However, the interaction effect of force level and direction was not significant (p-

value = 0.29) (Table 21).  Muscle activation for the PD, PR and PU directions was increased by 

roughly 100%, 150% and 70%, respectively, at the 10 lbs. force level compared to the 5 lbs. force 

level.  On the other hand, muscle activation for the PB and PL directions had a smaller change at 

the 10 lbs. force level compared to the 5 lbs. force level.  Post hoc analysis showed that each force 
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level was different than the other force levels.  In addition, it showed that PR direction was the 

highest followed by PU and PD directions, and PB and PL directions were the lowest. 

Table 21: ANOVA results table for NMAVposterior deltoid 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 19.467 2.163 8.61 0 

Force 2 10.787 5.3937 21.48 0 

Direction 4 93.375 23.3437 92.95 0 

Force*Direction 8 2.461 0.3077 1.23 0.29 

Error 125 31.392 0.2511   

Total 148 154.262    

 

For the bicep muscle, ANOVA analysis showed that the main effect of force level was 

significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-value ≤ 

0.001).  However, the interaction effect of force level and direction was not significant (p-value = 

0.141) (Table 22).  Muscle activation for the PL, PR and PU directions was increased by roughly 

100% for all at the 10 lbs. force level compared to the 5 lbs. force level.  On the other hand, muscle 

activation for the other directions had a smaller change at the 10 lbs. force level compared to the 

5 lbs. force level.  Post hoc analysis showed that the force level of 10 lbs. was different than other 

force levels.  In addition, it showed that PU direction was the highest followed by PL direction, 

and PB and PD directions were the lower than PR direction. 

Table 22: ANOVA results table for NMAVbicep 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 16.526 1.8362 12.32 0 

Force 2 6.643 3.3214 22.29 0 

Direction 4 96.475 24.1187 161.84 0 

Force*Direction 8 1.867 0.2334 1.57 0.141 

Error 126 18.778 0.149   

Total 149 140.288    
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For the tricep muscle, ANOVA analysis showed that the main effect of force level was 

significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-value ≤ 

0.001).  In addition, the interaction effect of force level and direction was significant (p-value = 

0.022) (Table 23).  Muscle activation for the PD, PR and PU directions was increased by roughly 

150%, 50% and 50%, respectively, at the 10 lbs. force level compared to the 5 lbs. force level.  On 

the other hand, muscle activation for the PB and PL directions had a smaller change at the 10 lbs. 

force level compared to the 5 lbs. force level.  Post hoc analysis showed that at a force level of 10 

lbs. the PB, PD and PL directions were different than the PR and PU directions.  At a force level 

of 7.5 lbs. PU direction was different than other directions.  At a force level of 5 lbs., no difference 

was found between the directions of force exertion.  Results of post hoc analysis for interaction 

effect showed that at 5 lbs. force level, PD direction was higher than PR and PU directions, and 

PB and PL were the lowest.  However, in the interaction between 7.5 lbs. force level and force 

directions, PD, PR and PU directions were higher than PL and PB directions.  Similar results were 

found for the 10 lbs. force level. 

Table 23: ANOVA results table for NMAVtricep 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 29.812 3.3124 12.25 0 

Force 2 11.037 5.5185 20.4 0 

Direction 4 64.21 16.0524 59.35 0 

Force*Direction 8 5.082 0.6352 2.35 0.022 

Error 126 34.078 0.2705   

Total 149 144.218    

 

For the latissimus dorsi muscle, ANOVA analysis showed that the main effect of force 

level was significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-

value ≤ 0.001).  However, the interaction effect of force level and direction was not significant (p-
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value = 0.262) (Table 24).  Muscle activation for the PB, PD, PR and PU directions was increased 

by roughly 100%, 175%, 100% and 50%, respectively, at the 10 lbs. force level compared to the 

5 lbs. force level.  On the other hand, muscle activation for the PL direction had a smaller change 

at the 10 lbs. force level compared to the 5 lbs. force level.  Post hoc analysis showed that each 

force level was different than the other force levels.  In addition, it showed that the PL direction 

was lower than the PB, PU, PR and PD directions. 

Table 24: ANOVA results table for NMAVlatissimus dorsi 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 65.097 7.233 22.52 0 

Force 2 28.879 14.4397 44.96 0 

Direction 4 29.594 7.3986 23.04 0 

Force*Direction 8 3.279 0.4099 1.28 0.262 

Error 126 40.467 0.3212   

Total 149 167.316    

 

Finally, for TNMAV, ANOVA analysis showed that the main effect of force level was 

significant (p-value ≤ 0.001), and the main effect of direction was also significant (p-value ≤ 

0.001).  In addition, the interaction effect of force level and direction was significant (p-value ≤ 

0.001) (Table 25).  Muscle activation for the PD, PR and PU directions was increased by roughly 

100%, 100% and 60%, respectively, at the 10 lbs. force level compared to the 5 lbs. force level.  

On the other hand, muscle activation for the PL direction had a smaller change at the 10 lbs. force 

level compared to the 5 lbs. force level.  Results of post hoc analysis showed that at 5 lbs. force 

level and force directions, PU and PR directions were higher than PB, PD and PL directions.  

Similar results were found for the 7.5 and 10 lbs. force levels.   
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Table 25: ANOVA results table for TNMAV 

Source DF Adj SS Adj MS F-Value P-Value 

Subject 9 70774 7863.7 12.47 0 

Force 2 144207 72103.5 114.32 0 

Direction 4 347382 86845.5 137.69 0 

Force*Direction 8 35327 4415.9 7 0 

Error 126 79470 630.7   

Total 149 677160    
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Table 26: Normalized mean absolute values, SD, main and interaction effect. 

NMAV 
Load P-

value 
Direction P-

value 
P-value for 

Interaction 5 lbs. 7.5 lbs. 10 lbs. PB PD PL PR PU 

 

Supraspinatus 

 

10.72 

(±9.71) 

12.40 

(±11.48) 

16.85 

(±17.93) 
≤ 0.001 

6.009 

(±3.306) 

3.165 

(±2.184) 

2.500 

(±2.476) 

29.85 

(±11.89) 

25.09 

(±9.21) 
≤ 0.001 0.984 

 

 

Infraspinatus 

 

13.93 

(±13.55) 

18.92 

(±17.77) 

24.72 

(±23.41) 
0.003 

6.006 

(±2.635) 

6.968 

(±3.463) 

4.226 

(±1.986) 

41.56 

(±13.96) 

37.73 

(±14.40) 
≤ 0.001 - 

 

Teres major 

 

6.713 

(±5.392) 

10.79 

(±8.33) 

16.57 

(±12.87) 
≤ 0.001 

9.27 

(±6.56) 

13.58 

(±7.78) 

6.55 

(±5.46) 

14.54 

(±13.58) 

12.86 

(±12.99) 
≤ 0.001 0.880 

 

Mid deltoid 

 

6.01 

(±6.36) 

8.61 

(±9.10) 

13.50 

(±15.31) 
0.011 

1.390 

(±0.701) 

4.410 

(±4.306) 

2.456 

(±1.751) 

23.25 

(±13.97) 

15.34 

(±7.69) 
≤ 0.001 - 

 

Ant deltoid 

 

11.84 

(±13.55) 

15.07 

(±18.17) 

16.68 

(±19.83) 
≤ 0.001 

1.201 

(±0.975) 

1.903 

(±1.202) 

9.40 

(±6.66) 

19.71 

(±13.41) 

42.58 

(±12.28) 
≤ 0.001 0.703 

 

 

Post deltoid 

 

5.521 

(±5.925) 

8.11 

(±9.04) 

12.18 

(±14.69) 
≤ 0.001 

3.159 

(±2.301) 

6.74 

(±5.57) 

1.581 

(±1.602) 

23.98 

(±12.47) 

8.05 

(±9.12) 
≤ 0.001 0.290 

 

Bicep 

 

8.34 

(±7.28) 

10.59 

(±10.22) 

15.05 

(±14.45) 
≤ 0.001 

4.324 

(±2.418) 

1.823 

(±1.020) 

15.55 

(±6.54) 

6.281 

(±3.063) 

28.66 

(±9.93) 
≤ 0.001 0.141 

 

Tricep 

 

4.863 

(±4.478) 

7.16 

(±6.70) 

10.32 

(±8.67) 
≤ 0.001 

2.706 

(±2.004) 

16.45 

(±9.70) 

3.867 

(±2.336) 

9.70 

(±5.40) 

5.136 

(±2.471) 
≤ 0.001 0.022 

 

Latissimus dorsi 

 

7.824 

(±6.015) 

10.516 

(±6.271) 

15.26 

(±9.22) 
≤ 0.001 

13.16 

(±8.18) 

12.27 

(±7.86) 

4.697 

(±1.626) 

13.20 

(±8.95) 

12.68 

(±7.39) 
≤ 0.001 0.262 

 

Total NMAV 

 

75.76 

(±50.41) 

102.0 

(±66.9) 

138.9 

(±89.7) 
≤ 0.001 

47.23 

(±17.50) 

65.94 

(±29.73) 

50.82 

(±18.76) 

180.7 

(±66.0) 

183.0 

(±51.9) 
≤ 0.001 ≤0.001 
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Figure 11: Raw data charts normalized mean absolute values. Error bars represents standard deviation. 
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Chapter 6: Discussion and Conclusion 
 

In this study, the activation pattern of the shoulder muscles was examined using SEMG 

under different force exertion demands.  We suspected that shoulder muscles’ attempt to stabilize 

the GHJ using concavity compression may explain the differences in muscle activation pattern 

during arm exertions.  The results indicate that the level of force exertion had an effect on the 

muscle activation pattern.  The 5 lbs. force level had the smallest effect on muscle activation and 

fatigability, followed by the 7.5 lbs. force level.  The 10 lbs. force level had the highest effect on 

muscle activation and fatigability.  In fact, several of the participants could not complete all 10 lbs. 

force level exertions trials.  The discomfort ratings were also affected by the level of force exertion.  

The 5 lbs. force level had the smallest effect on discomfort rating, followed by the 7.5 lbs. force 

level.  The 10 lbs. force level had the highest effect on discomfort ratings. 

The results also indicate that the direction of force exertion had an effect on the muscle 

activation pattern.  The PB and PL directions of force exertion had the smallest effect on muscle 

activation, followed by the PD direction.  The PR and PU directions of force exertion had the 

largest effect on muscle activation.  In addition, the directions of force exertion had an effect on 

muscle fatigability.  The PB direction of force exertion had the smallest effect on muscle 

fatigability, followed by the PD and PL directions.  The PR and PU directions of force exertion 

had the highest effect on muscle fatigability.  In fact, several of the participants could not complete 

all PR and PU direction force exertion trials.  The discomfort ratings were also affected by the 

direction of force exertion.  The PB and PL directions of force exertion had the smallest effect on 

discomfort rating, followed by the PD direction.  The PR and PU directions of force exertion had 



 
 

53 

the highest effect on discomfort rating.  The interaction between direction and level of force 

exertion was also significant for the muscle activation, muscle fatigability, and discomfort rating. 

High muscles activation on PR and PU directions were common in both rotator cuff 

muscles and non-rotator cuff muscles.  Among rotator cuff muscles, PR and PU directions caused 

the highest muscle activation for all force levels.  On the other hand, PB, PD and PL caused almost 

the same lower muscle activation for all force levels.  In 10 lbs. force level, supraspinatus and 

infraspinatus muscle activation at PR and PU directions was higher than muscle activation at PB, 

PD and PL directions by a range of 350% to 500%.  In addition to PR and PU directions, PD 

direction caused high muscle activation for teres major muscle.  Teres major muscle activation in 

PR, PU and PD force directions and 10 lbs force levels increased by 100% compared to the muscle 

activation in PR, PU and PD directions and the 5 lbs. force level.  Among non-rotator cuff muscles, 

PR and PU directions (or at least one of them) caused the highest muscle activation for all force 

levels.  On the other hand, PB, PD, PL caused in general the lowest muscle activation for all force 

levels.  In 10 lbs. force level, middle deltoid and anterior deltoid muscle activation at PR and PU 

directions was higher than muscle activation at PB, PD and PL directions by a range of 200% to 

500%.  Posterior deltoid muscle activation at PR direction was higher than muscle activation at 

PB, PD, PL and PU directions by 300%.  For bicep and tricep muscles, muscle activation was high 

at PU and PD directions, respectively. And it was higher than muscle activation at other force 

directions by 150%.  Latissimus dorsi muscle activation was the same for all directions except the 

PL direction.  Findings of study, in terms of muscle activation for different direction is comparable 

with a study performed by Arwert et al., 1997.  Similar to our findings Arwert et al., (1997) also 

reported the highest activation of teres major and latissimus dorsi muscles in pulling down 

direction.  On the other hand, Arwert et al., (1997) found that supraspinatus’ highest activation 
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was in pulling up direction compared to the pulling right direction found in our study.  Also, they 

found that infraspinatus was activated in all direction and in our study, infraspinatus was found to 

be mainly activated in pulling up and pulling right directions.  This difference in experimental 

setup could be the reason for this.  In the study performed by Arwert et al., (1997), they did not 

use a hand grip instead they directly connected strain-gauge two-dimensional force transducer to 

participants’ elbow.   

Similarly, high muscles fatigability on PR and PU directions were common in both rotator 

cuff muscles and non-rotator cuff muscles.  Among rotator cuff muscles, PR and PU directions 

caused the highest muscles fatigue for all force levels.  On the other hand, in general PB, PD and 

PL caused almost the same small muscles fatigue for all force levels.  In 10 lbs. force level, 

supraspinatus and teres major muscles fatigue at PR and PU directions was higher than PB, PL 

and PD directions by a range of 100% to 200%.  For infraspinatus muscle, PL, PR and PU 

directions was higher than PB and PD directions by 200%.  Among non-rotator cuff muscles, PR 

and PU directions (or at least one of them) caused the highest negative slope for all force levels.  

On the other hand, PB, PD, PL caused in general the small negative slope for all force levels.  

middle deltoid, posterior deltoid and tricep muscles fatigue at PR direction was higher than PB, 

PL, PD and PU directions by 200%.  For anterior deltoid, muscle fatigue at PR and PU directions 

was higher than PB, PL and PD directions by a range of 100% to 200%.  Finally, latissimus dorsi 

muscle fatigue in PU direction was higher than PB, PL, PD and PR directions by 200%.   

The alternate hypotheses tested in this study were based on a biomechanical modelling 

study performed by Cutlip (2014). When the biomechanical results were compared with the 

physiological result from this study, they are found to be in good agreement.  The results in Cutlip 

(2014) were that the PL exertion direction had the highest muscle biomechanical demand followed 
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by the PU and PL directions.  The lowest muscle biomechanical demand was observed in the PD 

and PB directions.  The relationship between the direction of force exertion and muscle fatigability 

was also affected by the level of force exertion. 

It is clear that the PR and PU exertion directions had the highest muscle activation and 

caused the largest negative slopes.  In the PR and PU directions, rotator muscles have to resist the 

translational forces which push the humeral head away from the glenoid fossa to facilitate 

concavity compression.  In other words, while participants were trying to pull in left direction, the 

reaction forces pushed their humeral head away from the glenoid fossa.  To prevent joint 

instability, rotator cuff muscles contribute to pulling the humeral head back to the glenoid fossa.  

Blasier et al. (1992) reported that each of the rotator cuff muscles significantly contributed to GHJ 

stability, with no significant difference between one another.   

Rotator cuff muscles in the PR and PU directions had higher muscle activation compared 

to other directions of force exertion at the same force level.  It is well-known that glenohumeral 

joint stability is a primary job for the supraspinatus and infraspinatus muscles; therefore, in order 

to maintain joint stability and to contribute to concavity compression, muscle activity is expected 

to increase with hand exertions.  Sigholm et al. (1984) and Sporrong et al. (1995, 1996) had similar 

findings regarding the supraspinatus and infraspinatus muscle activation during hand exertions.  In 

Sporrong et al. (1995, 1996), it was observed that hand gripping significantly increased the activity 

of the supraspinatus muscle in humeral flexion from and above 60o.  A similar, but lesser, increase 

was observed for the infraspinatus muscle.   However, in the latter case there were no signs of 

muscles fatigue during hand gripping tasks.  

Some of the non-rotator cuff muscle such as middle deltoid and posterior deltoid muscles 

had high muscle activation and exhibited the largest negative slopes in the PR and PU exertion 
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directions.  However, the anterior deltoid’s largest muscle activation and largest negative slope 

were in the PU direction.  The activation of deltoid muscle was affected by the exertion direction, 

and thus contributed to concavity compression in stabilizing the GHJ.  This is in agreement with 

the findings of Sigholm et al. (1984).  They found that, while holding a 2 kg load in the shoulder 

abduction posture or shoulder flexion posture, deltoid muscle activity increased.  Even though the 

deltoid muscles play an important role in shoulder abduction (Kronberg et al., 1990), they also 

contribute to GHJ stability, especially the middle deltoid and posterior deltoid muscles.  On the 

other hand, some studies have found a muscle activity reduction for deltoid muscles in correlation 

with the increase in infraspinatus muscle activity (MacDonell and Keir, 2005).  However, those 

previous studies tested the muscles in different shoulder flexion angles and/or different shoulder 

abduction angles, which could affect the muscle activation (Sporrong et al., 1996).  Also, bicep 

muscle activation in the PR direction supports the findings of Itoi et al. (1993).  They found that 

biceps brachii muscle activity could also assist in GHJ stability.    

The action of shoulder muscles can be characterized into three vectors which are 

compressive force, anterior-posterior shear force and superior-inferior shear force.  Despite the 

fact that compressive forces work to push the humeral head into the glenoid fossa for stabilizing 

the GHJ, anterior-posterior shear force and superior-inferior shear force can contribute to stabilize 

the GHJ or destabilize it (Labriola et al., 2005).  That means that not all activated muscles in 

pulling up and pulling right directions are contributed in GHJ stability.  Some of shoulder muscles 

may be considered as destabilized muscles such as deltoid muscles.   Lee and An (2002), have 

found out that deltoid muscle activity contributes to GHJ stability based on shoulder abduction 

plane.  Deltoid muscle activity contributed to increase GHJ stability in a 60 degree of shoulder 

abduction in mid-sagittal frontal plane. On the other hand, deltoid muscle activity contributed to 
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decrease GHJ stability in a 60 degree of shoulder abduction in the frontal plane.  Labriola et al., 

(2005) studied the contribution of individual shoulder muscle in GHJ stability by using a model.  

When supraspinatus, infraspinatus, or teres minor muscles magnitude was increased, the action 

vectors were less anteriorly directed, which contribute to improve GHJ stability. On the other hand, 

GHJ stability tend to decrease when activation vector was more anteriorly directed with increases 

in deltoid muscle activation.  However, subscapularis, teres major and latissimus dorsi muscles 

had no effects on activation vector for the resultant force. 

 The highest fatigue for all muscles was found to be in PR and PU exertion directions at 

the 10 lbs. force level, where the negative slope value was equal to -11.  This was followed by the 

PR and PU exertion directions and the 7.5 lbs. force level, which produced a negative slope value 

of -6.  The slope values for other exertion directions at the 10 lbs. force level were almost the same 

as the slope value in the PR and PU exertion directions at the 5 lbs. force level, which was equal 

to -4.  The slope value for the PD and PL exertion directions at the 10 lbs. force level was equal to 

-3, followed by the PB exertion direction at the 10 lbs. force level, which had a negative slope 

value equal to -1.  In addition, the highest fatigue for a specific muscle found was for the teres 

major.  The slope value for the teres major was roughly equal to -2 for interactions at both the PR 

and PU exertion directions at the 10 lbs. force level.  This was followed by the infraspinatus 

muscle’s slope value, which was approximately equal to -1.75 for interactions in the PL, PR and 

PU exertion directions at the 10 lbs. force level.  The middle deltoid, posterior deltoid and tricep 

had their highest negative slope value (-1.5) in the PR exertion direction at the 10 lbs. force level.  

For the tricep, the slope value for the PD exertion direction at the 10 lbs. force level was equal to 

-0.8, smaller than the PR and PU fatigues.  This means that, even though muscles exert more in 

other directions, the PR and PU directions had the highest fatigability.  The anterior deltoid and 
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latissimus dorsi had almost the same negative slope values, at -1.5 and -1.1 respectively, for the 

PR exertion direction at the 10 lbs. force level.   

A relationship was found between muscle fatigability and MVC in different directions for 

several of the muscles.  However, fatigability cannot be predicted based on muscle activation.  For 

example: the posterior deltoid muscle had the highest negative slope value for the PR direction, 

followed by the PU direction.  At the same time, this muscle had the highest muscle activity in the 

PR direction, followed by the PU direction.  On the other hand, the tricep muscle had the highest 

negative slope value in the PR direction, followed by the PU direction, but it had the highest muscle 

activity in the PD direction.   

A relationship was also found between subjective (discomfort) and objective (EMG) data.  

Participants’ discomfort ratings supported both the muscle activation and fatigability results, and 

they considered the PR and PU directions at the 10 lbs. force level to be the most strenuous 

exertion.  In fact, some of the participants could not complete some of the PR and PU direction 

force exertion trials.  The PR and PU directions at the 7.5 lbs. force level were considered to be 

the second most strenuous exertions.  Furthermore, participants’ discomfort ratings show that the 

PD and PL directions at the 10 lbs. force level and the PR and PU directions at the 5 lbs. force 

level produced almost the same level of discomfort. A similar finding was made in muscle 

activation and fatigability results. 

In occupational application, an MVC of 30% or more is considered to be occupationally 

hazardous.  Only two exertion directions resulted in this level of activation.  The PR and PU 

exertion directions had 30% muscle activation or more, and can thus be considered the most 

hazardous directions.  In the PR direction at the 10 lbs. force level, the supraspinatus, infraspinatus, 

middle deltoid and posterior deltoid muscles exert more than 30% MVC.  In the PU direction at 
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10 lbs. force level, the supraspinatus, infraspinatus and bicep muscles exert more than 30% MVC.  

In the PU direction at each of the force levels, the anterior deltoid muscles exert more than 30% 

MVC.  In the PR and PU directions at the 7.5 lbs. force level, the infraspinatus muscle exerted 

more than 30% MVC.   

Muscle co-contraction improves joint stability in the human body, especially during in 

dynamic force exertions (Xu, 2014).  Some studies (Van der Helm, 1994; Happee and Van der 

Helm, 1995) indicate that the concavity compression mechanism in the GHJ is basically muscle 

co-contraction, particularly when the reaction/resultant force of shoulder muscles is pushing the 

humeral head to the glenoid fossa to stabilize the GHJ and prevent it from dislocating.  Forster et 

al. (2004) define muscle co-contraction as the occurrence of antagonistic muscle activity. The 

activity of agonist and antagonistic muscle groups and arm abduction angle play important roles 

in muscle co-contraction during dynamic exertions; however, the shoulder elevation plane has no 

influence on muscle co-contraction (Xu et al., 2014; Antony et al., 2010).  Muscle co-contraction 

is hard to predict in static muscle exertions and therefore cannot be used to explain findings of this 

current study. 
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6.1 Future work and limitation 

 

Shoulder muscles’ action can be characterized into three vectors which are compressive 

force, anterior-posterior shear force and superior-inferior shear force.  The compressive forces 

work to push the humeral head into the glenoid fossa for stabilizing the GHJ.  Future studies should 

investigate the exact compressive forces direction that provide GHJ stability by pushing 

glenhumeral head to the glenoid fossa.   

One of the limitation we had in this study is gender diversity.  Only male participants were 

used for data collection in this study.  Inclusion of female participant could provide additional 

insight into the gender specific strategies used by the shoulder muscles to stabilize the joint.  

Resting time of 2 minutes was provided between trials. It is possible that 2 minutes may not have 

been enough for participants to fully recover from the preceding exertion. Future studies should 

better control/study the effect of gender and rest period on fatigability and overall stability of the 

shoulder complex.  
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Only Minimal Risk 
Consent Information and HIPAA Form 

Principal Investigator  Dr. Ashish Nimbarte 

Department   ENGINEERING-Industrial and Management Systems Engineering 

Protocol Number  1511900923 

Study Title   Effect of force and direction on shoulder complex 

Co-Investigator(s)  Hamad Alasim 

Sponsor (if any)  N/A 

 

Contact Persons 

In the event you experience any side effects or injury related to this research, you should contact Dr. Ashish Nimbarte at 
(304) 293-9473.  If you have any questions, concerns, or complaints about this research, you can contact Dr. Ashish 
Nimbarte (304)293-9473. 
 
For information regarding your rights as a research subject, to discuss problems, concerns, or suggestions related to the 
research, to obtain information or offer input about the research, contact the Office of Research Compliance at (304) 
293-7073. 

In addition, if you would like to discuss problems, concerns, have suggestions related to research, or would like to offer 
input about the research, contact the Office of Research Integrity and Compliance at 304-293-7073. 

Introduction 

You, ______________________, have been asked to participate in this research study, which has been explained to you 
by Mr. Hamad.  This study is being conducted by Dr. Ashish Nimbarte (PhD) and Hamad Alasim in the Department of 
Industrial and Management System Engineering at West Virginia University. 

Purpose(s) of the Study 

The purpose of this study is to find out if static hand load exertions in five different directions, which are front, right, left, 
up and down direction, can develop shoulder fatigue and shoulder instability. 

Description of Procedures 

Upon arrival, the procedures of the experiment will be explained to you in detail and you will be asked to sign an informed 
consent form.  Next, basic anthropometric data including age, body weight, height and elbow height will be measured.  
You will be then given a ~10 minutes training session in order to become familiar with the tasks to be performed and also 
to warm-up your shoulder muscles.  Surface EMG electrodes will be placed over the skin at the following muscles: 
supraspinatus, infraspinatus, teres major, anterior deltoid, middle deltoid, posterior deltoid, biceps and triceps.  You will 
be asked to perform maximum voluntary contraction (MVC) exertions in order to measure the maximum exertion using 
EMG from all selected muscles.  Each maximum voluntary contraction trial will be five seconds long and a one-minute rest 



 

Human Research Protocol 

Only Minimal Risk Consent Form 

(With HIPAA) 

 

 

period will be provided between exertions in order to reduce the chance of fatigue and injury.  Then you will move to the 
testing area and perform designated tasks. In each trial you are required to hold a D-shape handle attached to one of the 
weight levels which are (10, 7.5, 5 lb.) for 60 second with a 15°- 20° flexed elbow joint and a 70°- 80° flexed shoulder joint.  
You will perform this task in five different directions which are right, left, front, up and down.  Each trial will have two 
repetitions.  A 3 minutes’ rest time is will be provided between trials.  A total of 30 trials will be performed.  After the 
completion of each task, you will be asked to numerically rate your perceived exertion caused by the hand load exertion 
using Borg's CR-10 scale.  The Borg CR-10 scale contains two columns, one for subjective categories ranging from "nothing 
at all" to "extremely strong" and the other for numerical ratios ranging on a scale of 0 to 10 that are associated with the 
different categories.  The purpose of performing static hand load exertions during those trials was to generate fatigue in 
the shoulder muscles.  During performing static hand load exertions, you will be seated in the wooden chair in upright 
position and buckle up with the four-point harness to prevent any upper body movement which could interfere with the 
data collection. 

 

Discomforts 

There is a minimal risk for shoulder muscles strain and fatigue while performing the maximum exertions.  Therefore, you 
will be required to complete a warm up before these tasks and sufficient rest between trials.  

Alternatives 

You do not have to participate in this study. 

Benefits 

You may not receive any direct benefit from this study.  The knowledge gained from this study may eventually benefit 
others. 

Financial Considerations 

You will not receive any compensation for participation in the study and will not incur any costs related to the study.  It is 
very important for you to understand that neither the investigator nor WVU or it associated affiliates has the funds set 
aside to pay for the cost work wages or any care or treatment that might be necessary because you get hurt or sick taking 
part in this study.  Any injuries that may result from this study would not be eligible for workers’ Compensation as this is 
not a job related injury.  Understand that any treatments necessary will be billed to the participant or to your personal 
health insurance, and you may wish to consult your insurance provider before participating in this study.  

 

Confidentiality 

Any information about you that is obtained as a result of your participation in this research will be kept as confidential as legally 
possible.  Your research records and test results, just like hospital records, may be subpoenaed by court order or may be inspected 
by the study sponsor or federal regulatory authorities (including the FDA if applicable) without your additional consent. 

 

Voluntary Participation 
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Participation in this study is voluntary.  You are free to withdraw your consent to participate in this study at any time. 
 
Refusal to participate or withdrawal will not affect [your class standing or grades, as appropriate] and will involve no 
penalty to you.  Refusal to participate or withdrawal will not affect your future care, or your employee status at West 
Virginia University. 

In the event new information becomes available that may affect your willingness to participate in this study, this 
information will be given to you so that you can make an informed decision about whether or not to continue 
your participation. 
 
You have been given the opportunity to ask questions about the research, and you have received answers 
concerning areas you did not understand. 
 
Upon signing this form, you will receive a copy. 
 
I willingly consent to participate in this research. 

Signatures 

Signature of Subject 

______________________________________________________________________________ 

Printed Name                                                                                Date                           Time 

______________________________________________________________________________ 

 

The participant has had the opportunity to have questions addressed.  The participant willingly 

agrees to be in the study. 

 

Signature of Investigator or Co-Investigator 

______________________________________________________________________________ 

Printed Name                                                                                Date                           Time             

______________________________________________________________________________ 



 

71 
 

 



 72 

 



 

73 
 

 

 

 

 

 

 

 

 

Appendix C: Borg’s CR-10 scale 
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Table 27: Borg’s CR-10 scale 

Number Severity 

 

1 

 

Nothing at all 

 

2 Just Noticeable 

 

3 Very Slight 

 

4 Slight 

 

5 Slight Moderate 

 

6 Moderate 

 

7 Some difficulty 

 

8 Moderate Severe 

 

9 Severe 

 

10 Very Severe 
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Appendix D: Equality of variance 
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Equality of variance test for discomfort rating 

 

 

 

Equality of variance test for M (supraspinatus) 



 

77 
 

 

Equality of variance test for M (infraspinatus) 

 

 

 

Equality of variance test for M (teres major) 
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Equality of variance test for M (middle deltoid) 

 

 

 

Equality of variance test for M (anterior deltoid) 
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Equality of variance test for M (posterior deltoid) 

 

 

 

Equality of variance test for M (bicep) 
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Equality of variance test for M (tricep) 

 

 

 

Equality of variance test for M (latissimus dorsi) 
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Equality of variance test for TM 

 

 

 

Equality of variance test for NMAV (supraspinatus) 
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Equality of variance test for NMAV (infraspinatus) 

 

 

 

Equality of variance test for NMAV (teres major) 
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Equality of variance test for NMAV (middle deltoid) 

 

 

 

Equality of variance test for NMAV (anterior deltoid) 



 84 

 

Equality of variance test for NMAV (posterior deltoid) 

 

 

 

Equality of variance test for NMAV (bicep) 
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Equality of variance test for NMAV (tricep) 

 

 

 

Equality of variance test for NMAV (latissimus dorsi) 
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Equality of variance test for TNMAV 
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Appendix E: Johnson transformation 
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Johnson transformation for M (infraspinatus) 

 

Johnson transformation for M (Teres major) 
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Johnson transformation for M (middle deltoid) 

 

Johnson transformation for M (posterior deltoid) 
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Johnson transformation for TM 

 

 

Johnson transformation for NMAV (supraspinatus) 
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Johnson transformation for NMAV (trese major) 

 

Johnson transformation for NMAV (anterior deltoid) 
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Johnson transformation for NMAV (posterior deltoid) 

 

 

Johnson transformation for NMAV (bicep) 
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Johnson transformation for NMAV (tricep) 

 

 

 

Johnson transformation for NMAV (latissimus dorsi) 
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Appendix F: Analysis of variance 
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Table 28: Expected mean squares for A and B as fixed variables and C as a random variable 

 
 

General Linear Model: discomfort rating versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   119.86   13.318    18.51    0.000 

  Force              2   216.17  108.087   150.25    0.000 

  Direction          4   686.13  171.532   238.45    0.000 

  Force*Direction    8    25.39    3.174     4.41    0.000 

Error              126    90.64    0.719 

Total              149  1138.19 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.848154  92.04%     90.58%      88.71% 
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General Linear Model: MF (Supraspinatus) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   0.9284  0.10316     1.65    0.108 

  Force              2   2.1716  1.08580    17.39    0.000 

  Direction          4   2.0556  0.51390     8.23    0.000 

  Force*Direction    8   1.4319  0.17899     2.87    0.006 

Error              122   7.6195  0.06246 

Total              145  14.2085 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.249910  46.37%     36.26%      23.34% 

 

 

 

 

 

 

General Linear Model: MF (Infraspinatus) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   15.912   1.7680     4.01    0.000 

  Force              2   11.729   5.8643    13.30    0.000 

  Direction          4   69.806  17.4514    39.56    0.000 

  Force*Direction    8    7.211   0.9014     2.04    0.047 

Error              124   54.695   0.4411 

Total              147  160.145 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.664148  65.85%     59.51%      51.39% 
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General Linear Model: MF (Teres major) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9    7.207   0.8008     2.03    0.042 

  Force              2   10.899   5.4495    13.79    0.000 

  Direction          4   77.787  19.4468    49.21    0.000 

  Force*Direction    8    6.551   0.8189     2.07    0.043 

Error              123   48.608   0.3952 

Total              146  152.269 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.628639  68.08%     62.11%      54.37% 

 

 

 

 

 

 

 

 

General Linear Model: MF (Mid deltoid) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS  Adj MS  F-Value  P-Value 

  sub                9   27.051  3.0056     6.12    0.000 

  Force              2   15.652  7.8262    15.94    0.000 

  Direction          4   26.122  6.5305    13.30    0.000 

  Force*Direction    8    9.861  1.2326     2.51    0.015 

Error              123   60.409  0.4911 

Total              146  138.597 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.700804  56.41%     48.26%      37.91% 
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General Linear Model: MF (Ant deltoid) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF  Adj SS  Adj MS  F-Value  P-Value 

  sub                9   2.086  0.2317     1.72    0.091 

  Force              2   6.326  3.1630    23.49    0.000 

  Direction          4  12.735  3.1838    23.64    0.000 

  Force*Direction    8   3.099  0.3874     2.88    0.006 

Error              121  16.296  0.1347 

Total              144  40.300 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.366981  59.56%     51.88%      41.96% 

 

 

 

 

General Linear Model: MF (Post deltoid) versus sub, Force, Direction  
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF  Adj SS  Adj MS  F-Value  P-Value 

  sub                9   11.05  1.2280     2.30    0.020 

  Force              2   16.28  8.1388    15.22    0.000 

  Direction          4   12.04  3.0093     5.63    0.000 

  Force*Direction    8   14.57  1.8212     3.41    0.001 

Error              121   64.69  0.5346 

Total              144  118.79 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.731167  45.54%     35.19%      22.02% 
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General Linear Model: MF (Bicep) versus sub, Force, Direction  
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   1.6244  0.18049     1.87    0.064 

  Force              2   1.6330  0.81650     8.45    0.000 

  Direction          4   2.9236  0.73091     7.56    0.000 

  Force*Direction    8   0.8145  0.10181     1.05    0.401 

Error              116  11.2151  0.09668 

Total              139  18.3180 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.310937  38.78%     26.64%      10.77% 

 

 

 

 

 

 

 

 

 

 

 

General Linear Model: MF (Tricep) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF  Adj SS   Adj MS  F-Value  P-Value 

  sub                9   5.966  0.66285     6.84    0.000 

  Force              2   4.766  2.38285    24.58    0.000 

  Direction          4   7.712  1.92800    19.89    0.000 

  Force*Direction    8   2.965  0.37060     3.82    0.000 

Error              124  12.021  0.09694 

Total              147  33.468 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.311353  64.08%     57.42%      48.94% 
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General Linear Model: MF (Latissimus dorsi) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF  Adj SS  Adj MS  F-Value  P-Value 

  sub                9   4.971  0.5523     5.08    0.000 

  Force              2   1.814  0.9069     8.34    0.000 

  Direction          4   4.535  1.1336    10.42    0.000 

  Force*Direction    8   1.541  0.1926     1.77    0.090 

Error              117  12.727  0.1088 

Total              140  25.175 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.329811  49.45%     39.51%      27.00% 

 
 
 
 
 
 

General Linear Model: TM versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   15.051   1.6723     5.80    0.000 

  Force              2   27.483  13.7414    47.63    0.000 

  Direction          4   60.351  15.0879    52.30    0.000 

  Force*Direction    8    2.509   0.3136     1.09    0.377 

Error              126   36.353   0.2885 

Total              149  141.746 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.537135  74.35%     69.67%      63.65% 
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General Linear Model: NMAV (Supraspinatus) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   33.893   3.7659    10.72    0.000 

  Force              2   16.855   8.4276    23.98    0.000 

  Direction          4   58.538  14.6345    41.64    0.000 

  Force*Direction    8    0.662   0.0828     0.24    0.984 

Error              126   44.282   0.3514 

Total              149  154.231 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.592827  71.29%     66.05%      59.31% 

 

 

 

 

General Linear Model: NMAV (Teres major) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   56.054   6.2282    19.71    0.000 

  Force              2   30.815  15.4075    48.76    0.000 

  Direction          4    9.015   2.2536     7.13    0.000 

  Force*Direction    8    1.171   0.1463     0.46    0.880 

Error              126   39.814   0.3160 

Total              149  136.867 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.562122  70.91%     65.60%      58.77% 
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General Linear Model: NMAV (Ant deltoid) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9    7.186   0.7985     4.24    0.000 

  Force              2    3.850   1.9251    10.22    0.000 

  Direction          4  117.778  29.4444   156.26    0.000 

  Force*Direction    8    1.034   0.1293     0.69    0.703 

Error              125   23.554   0.1884 

Total              148  153.244 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.434092  84.63%     81.80%      78.17% 

 

 

 

 

 

 

General Linear Model: NMAV (Post deltoid) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   19.467   2.1630     8.61    0.000 

  Force              2   10.787   5.3937    21.48    0.000 

  Direction          4   93.375  23.3437    92.95    0.000 

  Force*Direction    8    2.461   0.3077     1.23    0.290 

Error              125   31.392   0.2511 

Total              148  154.262 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.501132  79.65%     75.91%      71.06% 
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General Linear Model: NMAV (Bicep) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   16.526   1.8362    12.32    0.000 

  Force              2    6.643   3.3214    22.29    0.000 

  Direction          4   96.475  24.1187   161.84    0.000 

  Force*Direction    8    1.867   0.2334     1.57    0.141 

Error              126   18.778   0.1490 

Total              149  140.288 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.386042  86.61%     84.17%      81.03% 

 

 

 

 

 

 

 

 

General Linear Model: NMAV (Tricep) versus sub, Force, Direction  
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   29.812   3.3124    12.25    0.000 

  Force              2   11.037   5.5185    20.40    0.000 

  Direction          4   64.210  16.0524    59.35    0.000 

  Force*Direction    8    5.082   0.6352     2.35    0.022 

Error              126   34.078   0.2705 

Total              149  144.218 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.520057  76.37%     72.06%      66.51% 
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General Linear Model: NMAV (Latissimus dorsi) versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  sub                9   65.097   7.2330    22.52    0.000 

  Force              2   28.879  14.4397    44.96    0.000 

  Direction          4   29.594   7.3986    23.04    0.000 

  Force*Direction    8    3.279   0.4099     1.28    0.262 

Error              126   40.467   0.3212 

Total              149  167.316 

 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.566715  75.81%     71.40%      65.72% 

 

 

 

 

 

 

 

 

 

 

General Linear Model: TNMAV versus sub, Force, Direction  

 
 

Factor     Type    Levels  Values 

sub        Random      10  1, 2, 3, 4, 5, 6, 7, 8, 10, 11 

Force      Fixed        3  5.0, 7.5, 10.0 

Direction  Fixed        5  PB, PD, PL, PR, PU 

 

 

Analysis of Variance 

 

Source              DF  Adj SS   Adj MS  F-Value  P-Value 

  sub                9   70774   7863.7    12.47    0.000 

  Force              2  144207  72103.5   114.32    0.000 

  Direction          4  347382  86845.5   137.69    0.000 

  Force*Direction    8   35327   4415.9     7.00    0.000 

Error              126   79470    630.7 

Total              149  677160 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

25.1140  88.26%     86.12%      83.37% 
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Appendix G: Kruskal-Wallis test 
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Kruskal-Wallis Test: NMAV (Infraspinatus) versus Force  

 
149 cases were used 

1 cases contained missing values 

 

 

Kruskal-Wallis Test on Infraspinatus 

 

Force      N  Median  Ave Rank      Z 

 5.0      50   5.852      60.3  -2.95 

 7.5      50   9.049      74.9  -0.02 

10.0      49  12.373      90.1   2.99 

Overall  149              75.0 

 

H = 11.82  DF = 2  P = 0.003 

 

  

 

 

 

Kruskal-Wallis Test: NMAV (Infraspinatus) versus Direction  

 
149 cases were used 

1 cases contained missing values 

 

 

Kruskal-Wallis Test on Infraspinatus 

 

Direction    N  Median  Ave Rank      Z 

PB          30   5.526      53.5  -3.06 

PD          30   7.377      55.7  -2.74 

PL          30   3.705      27.7  -6.72 

PR          30  38.300     122.0   6.67 

PU          29  36.337     117.6   5.92 

Overall    149              75.0 

 

H = 113.38  DF = 4  P = 0.000 
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Kruskal-Wallis Test: NMAV (Middle deltoid) versus Force  

 
Kruskal-Wallis Test on Mid deltoid 

 

Force      N  Median  Ave Rank      Z 

 5.0      50   2.849      62.7  -2.55 

 7.5      50   4.828      75.0  -0.10 

10.0      50   7.610      88.8   2.65 

Overall  150              75.5 

 

H = 9.00  DF = 2  P = 0.011 

 

  

 

 

 

Kruskal-Wallis Test: NMAV (Middle deltoid) versus Direction  

 
Kruskal-Wallis Test on Mid deltoid 

 

Direction    N  Median  Ave Rank      Z 

PB          30   1.150      33.0  -5.99 

PD          30   2.965      63.4  -1.70 

PL          30   1.781      44.6  -4.36 

PR          30  19.127     123.3   6.73 

PU          30  15.216     113.2   5.31 

Overall    150              75.5 

 

H = 105.05  DF = 4  P = 0.000 
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Appendix H: Tukey Pairwise comparisons 
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Comparisons for MF (Supraspinatus)  
  

Tukey Pairwise Comparisons: Response = MF (Supraspinatus), Term = 

Force*Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force*Direction   N       Mean     Grouping 

5.0 PD            9   0.010713  A 

5.0 PR           10  -0.135945  A  B 

10.0 PB          10  -0.163085  A  B 

5.0 PL            9  -0.170668  A  B  C 

7.5 PB           10  -0.182940  A  B  C 

5.0 PB           10  -0.241495  A  B  C 

7.5 PR           10  -0.259485  A  B  C  D 

7.5 PL            9  -0.320884  A  B  C  D 

5.0 PU           10  -0.352615  A  B  C  D  E 

10.0 PL          10  -0.407525     B  C  D  E 

7.5 PD           10  -0.420215     B  C  D  E 

10.0 PD           9  -0.450856     B  C  D  E 

7.5 PU           10  -0.561455        C  D  E 

10.0 PR          10  -0.631245           D  E 

10.0 PU          10  -0.732980              E 

 

Means that do not share a letter are significantly different. 

 

 

 

 

 

 

 

Comparisons for MF (Infraspinatus)  

  

Tukey Pairwise Comparisons: Response = MF (Infraspinatus), Term = 

Force*Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force*Direction   N      Mean     Grouping 

10.0 PD          10   0.90079  A 

5.0 PD            9   0.88430  A 

5.0 PL           10   0.82605  A 

7.5 PD           10   0.82327  A 

5.0 PB           10   0.58284  A  B 

7.5 PB           10   0.48366  A  B  C 

7.5 PL            9   0.38001  A  B  C 

10.0 PB          10   0.27721  A  B  C 

5.0 PU           10  -0.32877     B  C  D 

7.5 PR           10  -0.48898        C  D  E 

10.0 PL          10  -0.52363        C  D  E 

5.0 PR           10  -0.52470        C  D  E 

7.5 PU           10  -0.94880           D  E 

10.0 PR          10  -1.13420           D  E 

10.0 PU          10  -1.47205              E 

 

Means that do not share a letter are significantly different. 
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Comparisons for MF (Teres major)  

  

Tukey Pairwise Comparisons: Response = MF (Teres major), Term = 

Force*Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force*Direction   N      Mean      Grouping 

5.0 PB           10   1.20377  A 

5.0 PD           10   0.93964  A  B 

7.5 PB           10   0.85334  A  B 

7.5 PD           10   0.81414  A  B 

7.5 PL           10   0.69517  A  B 

10.0 PL          10   0.36103  A  B  C 

10.0 PB          10   0.22225     B  C 

10.0 PD          10   0.13602     B  C  D 

5.0 PL            9   0.12432     B  C  D 

5.0 PU           10  -0.37869        C  D  E 

5.0 PR            9  -0.50045        C  D  E  F 

7.5 PR            9  -0.84745           D  E  F 

7.5 PU           10  -0.94708              E  F 

10.0 PR          10  -1.05360              E  F 

10.0 PU          10  -1.48249                 F 

 

Means that do not share a letter are significantly different. 

 

 

 

 

 

 

Comparisons for MF (Mid deltoid)  

  

Tukey Pairwise Comparisons: Response = MF (Mid deltoid), Term = 

Force*Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force*Direction   N      Mean     Grouping 

5.0 PD           10   0.76916  A 

7.5 PD           10   0.76779  A  B 

5.0 PB            9   0.63942  A  B 

5.0 PR           10   0.42243  A  B  C 

7.5 PB           10   0.37583  A  B  C 

5.0 PL           10   0.29503  A  B  C  D 

10.0 PD          10   0.19662  A  B  C  D 

10.0 PL          10   0.10493  A  B  C  D 

10.0 PB          10   0.04143  A  B  C  D 

5.0 PU           10  -0.05313  A  B  C  D 

7.5 PL           10  -0.21094  A  B  C  D 

7.5 PU           10  -0.31798     B  C  D 

7.5 PR            9  -0.55037        C  D  E 

10.0 PU          10  -0.78973           D  E 

10.0 PR           9  -1.48400              E 

 

Means that do not share a letter are significantly different. 
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Comparisons for MF (Ant deltoid)  

  

Tukey Pairwise Comparisons: Response = MF (Ant deltoid), Term = 

Force*Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force*Direction   N      Mean   Grouping 

5.0 PB            9   0.01545  A 

5.0 PD           10  -0.04919  A  B 

7.5 PB            8  -0.08074  A  B 

5.0 PR           10  -0.13935  A  B 

7.5 PD           10  -0.32398  A  B 

7.5 PR           10  -0.34801  A  B 

10.0 PB           9  -0.37319  A  B  C 

10.0 PL           9  -0.42822  A  B  C 

5.0 PL           10  -0.48104  A  B  C 

7.5 PL           10  -0.48150  A  B  C 

10.0 PD          10  -0.52110  A  B  C 

5.0 PU           10  -0.59753     B  C 

10.0 PR          10  -0.92636        C 

7.5 PU           10  -0.94284        C 

10.0 PU          10  -1.53530           D 

 

Means that do not share a letter are significantly different. 

 

 

 

 

 

 

 

Comparisons for MF (Post deltoid)  

  

Tukey Pairwise Comparisons: Response = MF (Post deltoid), Term = 

Force*Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force*Direction   N      Mean  Grouping 

5.0 PR           10   0.60565  A 

5.0 PD           10   0.55851  A 

7.5 PB            9   0.51196  A 

7.5 PD           10   0.46300  A 

5.0 PB           10   0.16162  A   B 

5.0 PU           10   0.16046  A   B 

10.0 PB          10   0.09331  A   B 

10.0 PD          10   0.02424  A   B 

5.0 PL            9  -0.01892  A   B 

7.5 PR            9  -0.09842  A   B 

7.5 PL            9  -0.16745  A   B 

7.5 PU           10  -0.29779  A   B 

10.0 PL          10  -0.31509  A   B 

10.0 PU          10  -0.68075      B  C 

10.0 PR           9  -1.60083         C 

 

Means that do not share a letter are significantly different. 
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Comparisons for MF (Bicep)  
  

Tukey Pairwise Comparisons: Response = MF (Bicep), Term = Force  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force   N       Mean  Grouping 

5.0    47  -0.134849  A 

7.5    44  -0.249179  A      B 

10.0   49  -0.395608         B 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 
  

Tukey Pairwise Comparisons: Response = MF (Bicep), Term = Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Direction   N       Mean  Grouping 

PL         30  -0.101177  A 

PB         26  -0.121537  A   B 

PU         29  -0.244540  A   B 

PD         28  -0.331466      B  C 

PR         27  -0.500673         C 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 

 
 

Comparisons for MF (Tricep)   

Tukey Pairwise Comparisons: Response = MF (Tricep), Term = Force*Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force*Direction   N      Mean      Grouping 

5.0 PL           10  -0.20272  A 

7.5 PB            9  -0.23251  A  B 

5.0 PD           10  -0.25496  A  B 

5.0 PB            9  -0.25758  A  B  C 

10.0 PB          10  -0.28936  A  B  C 

10.0 PL          10  -0.34235  A  B  C  D 

7.5 PL           10  -0.36126  A  B  C  D 

7.5 PD           10  -0.37273  A  B  C  D 

5.0 PR           10  -0.41253  A  B  C  D 

5.0 PU           10  -0.43148  A  B  C  D 

7.5 PR           10  -0.69980     B  C  D  E 

10.0 PD          10  -0.73976        C  D  E 

7.5 PU           10  -0.79315           D  E 

10.0 PU          10  -1.02117              E  F 

10.0 PR          10  -1.35000                 F 

 

Means that do not share a letter are significantly different. 
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Comparisons for MF (Latissimus dorsi)  

  

Tukey Pairwise Comparisons: Response = MF (Latissimus dorsi), Term = Force  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force   N       Mean  Grouping 

5.0    46  -0.186679  A 

7.5    46  -0.285607  A 

10.0   49  -0.462065         B 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 

 
  

Tukey Pairwise Comparisons: Response = MF (Latissimus dorsi), Term = Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Direction   N       Mean  Grouping 

PD         30  -0.135752  A 

PB         25  -0.135913  A 

PL         30  -0.245063  A   B 

PR         28  -0.438098      B  C 

PU         28  -0.602424         C 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 
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Comparisons for TM  
  

Tukey Pairwise Comparisons: Response = TM, Term = Force  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force   N       Mean  Grouping 

5.0    50   0.496373  A 

7.5    50   0.058270      B 

10.0   50  -0.547624         C 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 

 
  

Tukey Pairwise Comparisons: Response = TM, Term = Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Direction   N       Mean  Grouping 

PB         30   0.701540  A 

PD         30   0.626073  A 

PL         30   0.147412      B 

PR         30  -0.598959         C 

PU         30  -0.864369         C 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 

 
 

 

 

 

 

Comparisons for NMAV (Supraspinatus)  
  

Tukey Pairwise Comparisons: Response = NMAV (Supraspinatus), Term = Force  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force   N       Mean  Grouping 

10.0   50   0.430612  A 

7.5    50  -0.006792      B 

5.0    50  -0.389893         C 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs  

 
  



 

115 
 

Tukey Pairwise Comparisons: Response = NMAV (Supraspinatus), Term = Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Direction   N       Mean  Grouping 

PD         30   0.914883  A 

PR         30   0.521204  A 

PU         30  -0.171670      B 

PL         30  -0.398637      B  C 

PB         30  -0.809235         C 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs  
 

 

 

 

 

 

 

Comparisons for NMAV (Teres major)  
  

Tukey Pairwise Comparisons: Response = NMAV (Teres major), Term = Force  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force   N       Mean  Grouping 

10.0   50   0.538699  A 

7.5    50  -0.036756      B 

5.0    50  -0.571275         C 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs  

 
  

Tukey Pairwise Comparisons: Response = NMAV (Teres major), Term = Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Direction   N       Mean  Grouping 

PD         30   0.304687  A 

PR         30   0.177918  A   B 

PB         30  -0.068040  A   B  C 

PU         30  -0.135591      B  C 

PL         30  -0.394527         C 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 
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Comparisons for NMAV (Ant deltoid)  
  

Tukey Pairwise Comparisons: Response = NMAV (Ant deltoid), Term = Force  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force   N       Mean  Grouping 

10.0   49   0.160551  A 

7.5    50   0.018308  A 

5.0    50  -0.229064         B 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 

 
  

Tukey Pairwise Comparisons: Response = NMAV (Ant deltoid), Term = Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Direction   N      Mean     Grouping 

PU         29   1.37235  A 

PR         30   0.51992     B 

PL         30  -0.11363        C 

PD         30  -0.70663           D 

PB         30  -1.15569              E 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 
 

 

 

 

 

 

 

Comparisons for NMAV (Post deltoid)  
  

Tukey Pairwise Comparisons: Response = NMAV (Post deltoid), Term = Force  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force   N       Mean  Grouping 

10.0   49   0.306044  A 

7.5    50  -0.063939      B 

5.0    50  -0.353388         C 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 
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Tukey Pairwise Comparisons: Response = NMAV (Post deltoid), Term = Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Direction   N      Mean   Grouping 

PR         29   1.23899  A 

PU         30   0.15407     B 

PD         30   0.08820     B 

PB         30  -0.49693        C 

PL         30  -1.16981           D 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 

 

 
 

Comparisons for NMAV (Bicep)  
  

Tukey Pairwise Comparisons: Response = NMAV (Bicep), Term = Force  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force   N       Mean  Grouping 

10.0   50   0.317852  A 

7.5    50  -0.040809         B 

5.0    50  -0.182116         B 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 

 
  

Tukey Pairwise Comparisons: Response = NMAV (Bicep), Term = Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Direction   N      Mean   Grouping 

PU         30   1.26617  A 

PL         30   0.61139     B 

PR         30  -0.18959        C 

PB         30  -0.62740           D 

PD         30  -0.90236           D 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 
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Comparisons for NMAV (Tricep)  
  

Tukey Pairwise Comparisons: Response = NMAV (Tricep), Term = Force*Direction  
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force*Direction   N      Mean           Grouping 

10.0 PL          10   1.33180  A 

7.5 PL           10   1.04777  A  B 

10.0 PB          10   0.98464  A  B  C 

5.0 PL           10   0.65185  A  B  C  D 

7.5 PB           10   0.36537     B  C  D  E 

5.0 PD           10   0.21681        C  D  E  F 

10.0 PR          10   0.11908           D  E  F  G 

10.0 PD          10   0.06900           D  E  F  G 

5.0 PB           10  -0.10904           D  E  F  G 

7.5 PD           10  -0.21854              E  F  G  H 

7.5 PR           10  -0.36123              E  F  G  H 

10.0 PU          10  -0.48143                 F  G  H 

5.0 PR           10  -0.68027                    G  H  I 

7.5 PU           10  -0.98531                       H  I 

5.0 PU           10  -1.31854                          I 

 

Means that do not share a letter are significantly different. 

 

 

Comparisons for NMAV (Latissimus dorsi)  
  

Tukey Pairwise Comparisons: Response = NMAV (Latissimus dorsi), Term = Force  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force   N       Mean  Grouping 

10.0   50   0.530913  A 

7.5    50  -0.040747      B 

5.0    50  -0.543134         C 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% CIs 

 
  

Tukey Pairwise Comparisons: Response = NMAV (Latissimus dorsi), Term = 

Direction  
Grouping Information Using the Tukey Method and 95% Confidence 

 

Direction   N       Mean  Grouping 

PB         30   0.285739  A 

PU         30   0.251095  A 

PR         30   0.170686  A 

PD         30   0.100879  A 

PL         30  -0.896679         B 

 

Means that do not share a letter are significantly different. 

 

  

Tukey Simultaneous 95% Cis 
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Comparisons for TNMAV  
  

Tukey Pairwise Comparisons: Response = TNMAV, Term = Force*Direction  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Force*Direction   N     Mean         Grouping 

10.0 PR          10  237.569  A 

10.0 PU          10  216.100  A 

7.5 PU           10  173.272     B 

7.5 PR           10  143.604     B  C 

5.0 PU           10  129.642        C  D 

10.0 PD          10  119.761        C  D  E 

5.0 PR           10  100.209           D  E  F 

10.0 PB          10   86.189              E  F  G 

10.0 PL          10   86.058              E  F  G 

7.5 PD           10   75.181                 F  G  H 

7.5 PL           10   67.367                 F  G  H 

7.5 PB           10   53.804                    G  H 

5.0 PL           10   51.474                    G  H 

5.0 PD           10   47.639                    G  H 

5.0 PB           10   40.429                       H 

 

Means that do not share a letter are significantly different. 
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Appendix I: Subjective discomfort ratings raw data 
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Table 29: Subjective discomfort ratings 

Force 10 lbs. 7.5 lbs. 5lbs. 
Subject number PU PB PR PL PD PU PB PR PL PD PU PB PR PL PD 

 

1 

 

10 2 10 4 7 10 3 9 3 5.5 7 1 7.5 2 2 

 

2 

 

10 3.5 10 5.5 7 8 2 8 4.5 4 6.5 1 7 1.5 3 

 

3 

 

9 3 8.5 5 6 5.5 2 6 4.5 5 5.5 1 4.5 2 1 

 

4 

 

7.5 2.5 8 3 5 6 1.5 6 1 2.5 4 1 3.5 1 1 

 

5 

 

7.5 2 7 2.5 3.5 5.5 2 5.5 2 2.5 4 1 4 1 1.5 

 

6 

 

10 3 8.5 5 6 8.5 3 7.5 3 4.5 6 2.5 6 3 3 

 

7 

 

8 1.5 7 4 4 5.5 1.5 4.5 1 1 2.5 1 1.5 1 1 

 

8 

 

10 2 9 2 6 9 2 8 1 2 7 1 7 2 1 

10 10 4 9.5 6.5 7 7.5 3 8 4 4 6 2.5 6 2.5 3 

11 10 2 8 6 5 8.5 2 6.5 3.5 3.5 5.5 1 5 2.5 2 

 

Avg. 

 

9.2 2.55 8.55 4.35 5.65 7.4 2.22 6.9 2.75 3.45 5.4 1.3 5.2 1.85 1.85 

 

STD 

 

1.11 0.79 1.09 1.51 1.25 1.66 0.586 1.41 1.42 1.42 1.47 0.63 1.87 0.7 0.88 
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Appendix J: Median frequency slope raw data 
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S: Subject.  F: Force.  D: Direction.  SS: Supraspinatus.  IS: Infraspinatus.  TM: Teres major.  MD: Middle deltoid.  

AD: Anterior deltoid.  PD: posterior deltoid.  Bi: Bicep,  Tri: Tricep.  LD: Latissimus dorsi. 

S F D SS ID TM MD AD PD Bi Tri LD TM 

1 10 PU -0.7393 -1.5786 -2.9191 -0.8274 -2.3762 -0.3560 -0.4869 -1.1822 -1.9810 -12.4465 

1 10 PB 0.1909 -0.1014 -0.7007 -0.7552 * -0.3854 -0.0021 -0.2563 -0.1413 -2.1515 

1 10 PR -0.0764 -1.2091 -1.3313 * 0.2091 * * -0.8127 * -3.2204 

1 10 PL -0.1175 -0.3832 0.0354 -0.1717 -0.4990 -0.1742 -0.1749 -0.3140 -0.2713 -2.0703 

1 10 PD * -0.0011 -0.3144 -0.4861 -0.1336 0.1818 -0.0755 -0.1812 -0.0518 -1.0616 

1 7.5 PU -0.6893 -1.2310 -2.5762 -0.2702 -1.5405 -0.5345 -0.3560 -1.4703 * -8.6678 

1 7.5 PB 0.2252 -0.2406 0.0853 -0.2119 * -0.1703 * -0.3878 0.2395 -0.4605 

1 7.5 PR -0.2580 -1.1142 * * -0.0476 * -0.0109 -0.2013 * -1.6320 

1 7.5 PL * -0.2594 0.0679 -0.3720 -0.3336 -0.2462 0.1241 -0.3721 -0.6895 -2.0808 

1 7.5 PD -0.4416 0.1843 0.1322 -0.0238 0.2598 0.1207 -0.0521 0.2133 0.0853 0.4781 

1 5 PU 0.1039 -0.2637 -0.4584 0.0095 -1.2563 -0.1759 -0.2899 -0.3577 -1.0906 -3.7790 

1 5 PB -0.0049 -0.0615 -0.0727 -0.1469 -0.0168 -0.3182 -0.2350 -0.1175 -0.2657 -1.2392 

1 5 PR 0.0626 -0.6853 -0.9979 0.1102 0.1944 -0.0934 0.1318 -0.2664 -0.2416 -1.7857 

1 5 PL -0.3776 -0.2025 -0.5790 -0.4178 -0.5325 -0.3717 -0.0955 0.0469 -0.1826 -2.7122 

1 5 PD 0.1084 -0.2035 -0.4559 -0.3423 0.1588 -0.3738 -0.1336 -0.0755 -0.5637 -1.8811 

2 10 PU -1.2429 -3.1571 -2.8557 -0.8500 -2.0693 -1.4536 -0.4179 -1.4936 -2.1393 -15.6793 

2 10 PB -0.1347 -0.1860 -0.0825 -0.0769 -0.2308 -0.0888 -0.0948 -0.2672 0.0601 -1.1015 

2 10 PR -0.6867 -1.0167 -0.7455 -1.4313 -1.2567 -1.6312 -0.2418 -0.9615 -0.7703 -8.7416 

2 10 PL -0.1469 -0.8888 -0.1168 -0.4168 -0.5878 -0.4923 -0.0815 -0.3144 -0.7007 -3.7458 
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2 10 PD -0.0238 -0.1395 -0.1752 -0.1493 -0.2714 -0.1399 -0.2577 -0.4965 0.1423 -1.5109 

2 7.5 PU -0.7131 -1.8350 -1.9901 -0.8215 -0.9575 -0.8481 -0.1675 -1.2659 * -8.5985 

2 7.5 PB -0.3227 -0.2937 -0.2595 -0.0067 -0.3559 -0.1297 -0.0521 -0.4937 0.2091 -1.7048 

2 7.5 PR -0.2696 -0.7689 -0.8161 -0.3616 -0.2032 -0.3256 * -0.1934 -0.6860 -3.6243 

2 7.5 PL -0.2315 -0.3301 -0.2913 -0.4343 -0.6322 -0.1196 -0.0920 -0.4280 -1.0357 -3.5945 

2 7.5 PD -0.1808 0.0626 0.0465 -0.1532 -0.0339 -0.0273 -0.1581 -0.2116 -0.1490 -0.8046 

2 5 PU -0.4039 -1.0025 -1.2007 -0.7479 -0.6734 -0.5728 -0.0444 -0.7734 -0.3910 -5.8098 

2 5 PB -0.2196 -0.0322 0.2552 -0.2084 -0.5853 -0.1084 -0.0623 -0.3266 * -1.2876 

2 5 PR -0.0042 -0.8081 -0.7140 0.0713 -0.1252 0.0591 0.1738 0.1294 -0.3514 -1.5693 

2 5 PL -0.2451 0.0612 -0.0490 -0.4860 -0.6101 -0.4248 -0.0347 -0.2290 0.1937 -1.8238 

2 5 PD 0.1650 * -0.1916 -0.2727 -0.0161 -0.1021 -0.5990 -0.4559 0.0140 -1.4584 

3 10 PU -0.7070 -1.5643 -1.5577 -1.7525 -2.2189 -0.3983 -0.1469 -1.1025 -0.9413 -10.3892 

3 10 PB 0.1657 -0.4203 -0.4430 -0.3290 -0.6888 -0.8231 0.3517 -0.4143 -0.5042 -3.1053 

3 10 PR -0.5801 -1.1336 -0.7441 -1.1021 -0.7073 -1.1459 -0.9259 -0.8892 -0.4434 -7.6715 

3 10 PL -0.2438 -0.9909 -0.2280 -0.5846 -0.5350 -0.8189 -0.3881 -0.3196 -0.0839 -4.1927 

3 10 PD -0.5070 0.1881 -0.3650 -0.4070 -0.5238 -0.5109 -0.6298 -0.7406 -0.2220 -3.7178 

3 7.5 PU -0.5650 -1.3738 -1.2693 -0.9728 -1.0144 -0.4112 -0.0784 -0.7458 -0.1469 -6.5774 

3 7.5 PB -0.1906 -0.7913 -0.5238 -0.3133 -0.4361 -0.3494 0.0455 * 0.2140 -2.3448 

3 7.5 PR -0.2430 -0.9903 -1.1133 -0.6777 0.1339 -0.6707 -1.1825 -0.8007 -0.3889 -5.9330 

3 7.5 PL -0.3619 -0.2724 0.2291 -0.6231 -0.0200 -0.8937 -0.2336 -0.2843 -0.2168 -2.6765 

3 7.5 PD -0.6091 -0.2455 -0.2518 -0.0871 -0.7049 -0.2227 0.1322 -0.6472 0.1091 -2.5269 

3 5 PU -0.6374 -0.6193 -1.0382 -0.6462 -0.7699 -1.1053 0.0518 -0.2832 -0.0682 -5.1158 
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3 5 PB -0.8002 -0.2500 -0.0771 * 0.0527 -0.1079 -0.0651 -0.0354 0.3200 -0.9628 

3 5 PR -0.1598 -0.4766 -0.6706 -0.1511 0.3601 -0.2962 0.1647 -0.3126 0.0049 -1.5371 

3 5 PL -0.0951 -0.2028 -0.3580 -0.2350 -0.3056 * -0.2469 -0.1755 0.0360 -1.5829 

3 5 PD -0.2161 0.0678 -0.0524 -0.2238 0.2503 -0.2615 -0.3685 -0.3420 -0.8392 -1.9854 

4 10 PU -0.1206 -1.8636 -2.6311 -0.4053 -0.9734 -0.7081 -0.9102 -0.3850 -0.4469 -8.4441 

4 10 PB 0.0958 -0.6011 -0.6574 -0.4238 -0.8140 -0.4227 -0.6899 -0.7214 -0.3731 -4.6073 

4 10 PR -0.7556 -2.5615 -2.5049 -0.9818 -0.8434 -0.7350 -0.6909 -1.6042 -0.2860 -10.9633 

4 10 PL -0.5983 -2.1483 0.1028 -0.1525 -0.0483 -0.4227 0.0437 -0.3696 -0.1329 -3.7260 

4 10 PD -0.6322 -0.1175 -0.3654 0.0748 -0.3280 -0.2238 -0.2011 -0.7392 -0.4063 -2.9386 

4 7.5 PU -0.3147 -1.5224 -1.8542 -0.3969 0.0476 -0.7745 -0.4193 -0.3042 -0.7658 -6.3042 

4 7.5 PB -0.4594 0.0797 -0.3252 -0.8025 0.0256 -0.0633 -0.2095 -0.1140 0.2028 -1.6657 

4 7.5 PR -0.5325 -1.7249 -1.7406 -0.2542 -0.5484 -0.1182 -0.4141 -1.1652 -0.2618 -6.7598 

4 7.5 PL -0.3825 * -0.1833 -0.2458 -0.8493 -0.4333 -0.1874 -0.0997 -0.1476 -2.5288 

4 7.5 PD -0.5633 -0.6122 -0.3717 -0.2532 -0.6640 -0.4329 * -0.1906 -0.2133 -3.3011 

4 5 PU -0.2228 -1.1539 -0.9448 -0.4214 0.2091 -0.2846 -0.0769 0.0633 0.1063 -2.7256 

4 5 PB -0.0937 -0.3559 0.0853 -0.0280 0.0413 -0.1594 0.3545 * -0.2280 -0.3839 

4 5 PR -0.4004 -1.2441 -1.7266 -0.2168 -0.4665 -0.2507 -0.4389 -0.2371 -0.2811 -5.2620 

4 5 PL -0.0434 -0.7892 -0.5909 -0.1018 -0.3993 -0.4007 0.0574 -0.4930 -0.0679 -2.8287 

4 5 PD -0.1920 -0.0780 0.0797 -0.0231 -0.0014 0.1577 -0.5280 -0.1598 -0.2693 -1.0141 

5 10 PU -0.5748 -1.3843 -1.1682 -0.2497 -0.5902 -0.1350 -0.2329 0.0416 -0.1217 -4.4151 

5 10 PB -0.4350 -0.1752 -0.4090 -0.2819 0.0260 -0.7494 -0.6497 0.0204 0.1149 -2.5389 

5 10 PR -0.3769 -1.0703 -0.6336 -0.9252 -0.6745 -0.9493 -0.7497 -1.0698 -0.1418 -6.5911 
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5 10 PL -0.1374 0.2055 -0.6650 -0.1170 -0.1126 -0.9168 0.0073 0.2801 -0.2564 -1.7123 

5 10 PD 0.0294 0.0056 0.0336 -0.1025 -0.1126 -0.2161 -0.2920 -0.3011 -0.0133 -0.9689 

5 7.5 PU -0.3560 -1.0965 -0.5920 -0.2916 -0.5056 -0.2472 0.1549 -0.0046 -0.3007 -3.2392 

5 7.5 PB -0.6396 -0.5199 0.1997 0.1119 * * * 0.0744 * -0.7735 

5 7.5 PR -0.1105 -0.8028 -0.4895 -0.3969 -0.3014 -0.2839 -0.7137 -0.2374 -0.2098 -3.5458 

5 7.5 PL -0.2413 -1.1427 -0.3517 0.0748 -0.2916 * 0.2664 0.6371 -0.1231 -1.1721 

5 7.5 PD -0.1357 0.0399 0.1783 -0.0343 -0.0591 -0.2637 0.1713 -0.1948 0.4490 0.1511 

5 5 PU -0.2559 -0.8032 -0.3140 -0.3402 -0.3532 -0.1713 -0.2797 -0.3707 0.0368 -2.8513 

5 5 PB -0.3119 -0.4168 0.1797 0.2804 * -0.4958 * 0.2615 * -0.5029 

5 5 PR -0.1266 -1.2217 -0.4210 -0.1955 -0.1707 -0.1574 -0.4860 -0.6413 0.1350 -3.2850 

5 5 PL 0.1804 0.1455 -1.5248 -0.0367 -0.4700 -0.8371 -0.1269 -0.0895 -0.0098 -2.7689 

5 5 PD 0.0175 0.0154 -0.0315 -0.1899 0.0252 -0.1231 0.1213 0.0843 -0.0874 -0.1681 

6 10 PU -0.9500 -1.6221 -1.1976 -1.2284 -1.3689 -0.8913 -0.7151 -1.4574 -1.6311 -11.0616 

6 10 PB -0.2374 -0.0938 -0.0825 -0.4951 0.0119 -0.5168 -0.3354 -0.1168 -0.5287 -2.3945 

6 10 PR -0.4682 -1.1098 -1.2560 -1.6556 -1.4133 -1.7769 -0.8196 -1.3479 -0.6039 -10.4511 

6 10 PL -0.7615 -0.4021 -0.3899 -0.5269 -0.7546 -0.4007 -0.1598 0.1546 0.0399 -3.2010 

6 10 PD -0.3661 0.0699 -0.5431 -0.2871 -0.5067 -0.2577 -0.8305 -0.6032 -0.6178 -3.9421 

6 7.5 PU -0.4804 -0.9360 -0.6007 -0.8895 -1.4811 -0.8315 -0.5277 -0.6829 -0.5682 -6.9979 

6 7.5 PB -0.0221 0.0668 -0.1091 -0.3018 -0.2997 -0.1920 -0.3616 -0.2559 -0.1567 -1.6319 

6 7.5 PR -0.3769 -0.3734 -0.2608 -0.5909 -0.7095 -0.5920 -0.0986 -0.4643 -0.5598 -4.0261 

6 7.5 PL -0.6801 -0.0091 -0.3720 -0.6256 -0.2325 -0.5451 -0.2888 -0.3472 -1.6318 -4.7322 

6 7.5 PD -0.4423 -0.2612 -0.2203 -0.3021 -0.0577 -0.2532 -0.5028 -0.1276 0.1088 -2.0584 
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6 5 PU -0.4804 -1.1112 -0.7046 -0.7207 -0.4941 -0.2773 -0.2962 -0.1990 -0.8896 -5.1728 

6 5 PB -0.2696 -0.1395 -0.2290 -0.3060 -0.1930 -0.4444 -0.2934 -0.4983 -0.4357 -2.8088 

6 5 PR -0.1014 -0.5615 -0.2888 -0.3259 -0.2221 -0.1581 -0.0199 -0.2203 -0.7119 -2.6098 

6 5 PL * 0.2406 -0.1895 -0.2074 -0.3290 -0.1860 -0.1493 -0.3231 -1.0451 -2.1887 

6 5 PD -0.0203 0.1437 -0.2095 -0.0784 -0.0035 -0.1245 * -0.1476 0.1280 -0.3119 

7 10 PU -0.3231 -0.9643 -1.3147 -0.5637 -1.0343 -1.0329 -0.1741 -0.9706 -0.2780 -6.6556 

7 10 PB -0.4825 -0.4881 -0.3878 0.0004 -0.3112 0.1479 -0.3535 -0.5731 -0.4039 -2.8518 

7 10 PR -0.7823 -1.0294 -1.7028 -2.3014 -1.8005 -2.1330 -1.5892 -2.4449 -0.5787 -14.3622 

7 10 PL -0.5955 -1.8294 -0.3741 -0.8741 * -0.9514 -0.2469 -1.1084 -0.0189 -5.9986 

7 10 PD -0.8524 -0.7456 -0.6453 -0.6021 -0.6363 -0.7877 -0.1939 -0.6637 -0.7337 -5.8605 

7 7.5 PU -0.6671 -0.6609 -1.2301 -0.6238 -0.8476 -0.7969 0.0598 -0.9221 -0.5102 -6.1986 

7 7.5 PB -0.1595 -0.3301 0.0742 0.0133 0.4343 -0.3738 * -0.3413 -0.4276 -1.1104 

7 7.5 PR -0.4309 -1.5246 -1.6518 -1.1791 -1.0528 -0.8791 -1.0127 -1.6437 -0.6327 -10.0072 

7 7.5 PL -0.2647 0.0685 -0.6088 -0.6371 -1.0629 -0.6171 -0.2682 -0.9221 0.0329 -4.2793 

7 7.5 PD -0.4826 -0.2703 -0.0990 -0.0643 -0.1063 -0.2787 0.0531 -0.6322 -0.3339 -2.2140 

7 5 PU -0.5049 -0.4598 -0.9427 -0.3570 -0.7039 -0.5060 * -0.5269 -0.3171 -4.3181 

7 5 PB -0.2283 -0.5112 -0.2598 -0.1451 0.2532 -0.4294 -0.2794 -0.4203 * -2.0203 

7 5 PR -0.1483 -0.8140 -0.8602 -0.8161 -0.5206 -0.6913 -0.6269 -1.0727 -0.2406 -5.7904 

7 5 PL -0.3343 -0.4906 -0.4413 -0.5350 -0.7241 -0.6182 -0.1542 -0.4392 -0.0955 -3.8322 

7 5 PD -0.0049 -0.0566 0.1028 -0.0769 -0.1028 -0.5077 0.1231 -0.3308 -0.1322 -0.9860 

8 10 PU -0.8067 -1.5497 -2.5689 -0.8808 -1.5518 -1.5385 -0.7958 -1.5619 -0.2832 -11.5371 

8 10 PB -0.0360 -0.1186 -0.0192 -0.0759 -0.1322 0.0650 -0.0143 -0.0819 -0.3441 -0.7570 
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8 10 PR -0.6651 -1.6549 -2.3511 -1.6818 -1.1958 -1.8500 -1.1336 -1.7210 -0.3385 -12.5917 

8 10 PL 0.0017 -0.8566 -0.4675 -0.6700 -0.3811 -0.9199 -0.2154 -0.4287 0.0133 -3.9241 

8 10 PD -0.3601 0.3028 -0.2640 -0.9182 -0.7556 -1.6203 -0.6231 -0.9472 0.1752 -5.0105 

8 7.5 PU -0.7518 -1.2427 -1.2675 -0.2780 -1.2969 -0.9116 -0.6378 -0.8490 -0.1741 -7.4091 

8 7.5 PB -0.1007 -0.1490 0.2315 -0.2154 -0.0857 -0.7011 -0.0483 -0.1706 -0.1661 -1.4052 

8 7.5 PR -0.1843 -1.1199 -1.6692 -1.1196 0.2074 -0.1552 -0.5916 -1.3853 -0.2343 -6.2521 

8 7.5 PL -0.3060 -0.1469 0.0916 -0.4308 -0.6563 -0.5311 -0.0423 -0.3832 0.1112 -2.2937 

8 7.5 PD -0.6091 0.1297 -0.1913 0.2070 -0.6130 -0.5105 -0.3455 -0.5227 0.2825 -2.1728 

8 5 PU -0.4591 -0.3693 -0.2755 -0.1686 -1.0570 -0.6511 -0.1403 -0.5403 -0.0864 -3.7474 

8 5 PB -0.6119 0.1413 -0.1049 -0.1441 0.4091 -0.7483 0.0329 -0.4937 * -1.5196 

8 5 PR -0.2171 -0.9465 * -0.2479 0.0042 -0.1108 -0.1710 -0.6357 0.3608 -1.9641 

8 5 PL 0.1895 0.1056 * -0.1801 -0.7608 -0.0514 0.5476 -0.0581 0.0382 -0.1695 

8 5 PD -0.0469 -0.1399 0.1990 0.0336 -0.4060 -0.2535 -0.2993 -0.6196 0.4545 -1.0780 

10 10 PU -0.7306 -2.3167 -1.7747 -0.5434 -1.3436 -0.6588 0.2800 -1.1594 -0.6838 -8.9309 

10 10 PB 0.0636 -0.5822 -0.7326 -0.4259 -0.6280 -0.6175 -0.2070 -0.1140 -0.1063 -3.3497 

10 10 PR -0.8195 -2.5613 -1.9424 -1.3466 -0.4114 -1.5909 0.4933 -1.6324 -0.9912 -10.8023 

10 10 PL -0.9326 -2.2269 -0.7049 0.5503 -0.1846 -0.0108 0.3636 -0.4601 -0.6378 -4.2438 

10 10 PD -0.7021 -0.8556 -0.9979 -0.0035 -1.0038 -0.3011 -0.8997 -1.6553 -0.2018 -6.6206 

10 7.5 PU -0.2109 -2.0305 -1.2934 -0.5605 -0.6507 -0.4486 -0.0259 -0.9871 -0.7238 -6.9311 

10 7.5 PB -0.3336 -0.3063 -0.6588 0.0476 -0.1305 -0.0294 -0.0874 -0.1046 -0.5301 -2.1330 

10 7.5 PR -0.3769 -1.9301 -2.4888 -0.6720 -0.1168 -0.5874 * -0.7035 -0.7105 -7.5860 

10 7.5 PL -0.1587 -0.1930 -0.0899 -0.4486 -0.0493 -0.5934 -0.0455 -0.7252 -0.0018 -2.3053 
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10 7.5 PD -0.2469 -0.1333 -0.4843 -0.2238 -0.6311 -0.1514 -0.4776 -0.7091 -0.3727 -3.4301 

10 5 PU -0.0028 -1.2365 -0.9210 -0.5145 -0.0855 -0.3381 0.2119 -0.9334 -0.3805 -4.2002 

10 5 PB -0.1287 -0.1203 0.2706 -0.0381 -0.0538 -0.1717 0.5238 -0.5538 -0.1140 -0.3860 

10 5 PR 0.0203 -1.6238 -1.6539 -0.2378 -0.3892 -0.0763 -0.7759 -0.6735 -0.5584 -5.9683 

10 5 PL -0.2962 -0.0315 -0.2591 0.3608 -0.5332 -0.0371 -0.0776 -0.2657 -0.2042 -1.3437 

10 5 PD * -0.4388 -0.3742 0.0224 -0.2664 -0.1696 -0.1028 -0.1297 0.0657 -1.3934 

11 10 PU -1.1350 -1.3196 -1.1503 -1.1874 -1.8266 -0.6256 -0.3249 -0.9409 -1.1182 -9.6284 

11 10 PB -0.8214 -0.7713 -0.4388 -1.4969 -0.6567 -0.6378 -0.4172 -0.3692 -0.6941 -6.3032 

11 10 PR -1.1018 -0.8913 -0.6916 -1.5277 -1.1700 -2.1608 -0.9703 -1.0165 -0.7532 -10.2829 

11 10 PL -0.5438 -0.7755 -0.5965 -1.1135 -0.6490 -0.5161 -0.2200 -0.5434 -0.3172 -5.2748 

11 10 PD -0.8154 -0.4210 -0.8070 -0.6192 -0.9395 -0.8301 -1.1238 -1.0700 -0.6224 -7.2482 

11 7.5 PU -0.8665 -0.6416 -0.3049 -0.2871 -1.1819 0.1867 -0.2497 -0.7000 -0.4042 -4.4490 

11 7.5 PB 0.1734 -0.1322 -0.2311 -2.5168 -0.1367 -0.0549 -0.2906 -0.3305 -0.3182 -3.8375 

11 7.5 PR 0.1878 0.2588 -0.7011 -0.8428 -0.8418 -0.5651 -0.7591 -0.2033 -0.7240 -4.1906 

11 7.5 PL -0.4333 -0.3528 -0.5315 -1.5619 -0.6874 -0.2504 -0.1860 -0.6881 0.0350 -4.6563 

11 7.5 PD -0.4909 -0.1668 -0.2224 -0.3700 -0.6298 -0.3108 -0.8668 -0.7049 -0.1749 -3.9371 

11 5 PU -0.6629 -0.4388 -0.5105 -0.3004 -0.7913 0.3500 -0.1067 -0.3937 -0.5206 -3.3747 

11 5 PB 0.2538 -0.3256 -0.1626 -1.0049 -0.0420 -0.3808 -0.0035 -0.2046 -0.1944 -2.0644 

11 5 PR -0.2846 -0.5074 -0.5126 -0.5724 -0.0581 -0.1804 -0.0790 -0.1951 -0.5315 -2.9209 

11 5 PL -0.4567 -0.4769 -0.3413 -2.1060 -0.1458 -0.8154 -0.7304 -0.0011 0.0182 -5.0552 

11 5 PD 0.2731 -0.0224 -0.1164 -0.1336 -0.1301 -0.2714 -0.3315 -0.3731 -0.0825 -1.1877 
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Appendix K: Normalized mean absolute values raw data 
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S: Subject.  F: Force.  D: Direction.  SS: Supraspinatus.  IS: Infraspinatus.  TM: Teres major.  MD: Middle deltoid.  

AD: Anterior deltoid.  PD: posterior deltoid.  Bi: Bicep,  Tri: Tricep.  LD: Latissimus dorsi. 

S F D SS IS TM MD AD PD Bi Tri LD 
TNMA

V 

1 10 PU 11.2707 46.2376 38.5113 32.1507 * 20.8333 36.7188 8.7735 24.8096 
219.305

5 

1 10 PB 6.3425 7.2772 21.0032 0.7665 0.7299 0.5585 5.6250 6.2320 21.5452 70.0801 

1 10 PR 14.4751 41.3366 38.5113 18.6765 11.5166 28.3918 10.5469 10.0442 23.2318 
196.730

8 

1 10 PL 9.2044 4.8960 21.6181 2.3015 7.2275 1.1345 21.0156 5.7238 7.1328 80.2542 

1 10 PD 17.6796 11.4851 22.0388 1.8585 0.8412 5.2924 4.4043 6.5967 13.2699 83.4665 

1 7.5 PU 6.8177 36.3366 30.2265 21.4890 57.8199 13.6404 24.7266 3.1271 16.9750 
211.158

7 

1 7.5 PB 3.9116 5.8960 19.6278 0.8585 2.6682 0.7485 5.6445 6.4862 10.7835 56.6249 

1 7.5 PR 7.7348 29.7525 31.1003 11.2684 6.8246 18.9474 8.4375 2.9061 22.1980 
139.169

6 

1 7.5 PL 3.2707 3.3267 14.6764 1.6397 8.3531 0.7149 12.0313 8.7735 4.9238 57.7101 

1 7.5 PD 10.1436 7.1634 12.5566 1.2610 2.7275 2.3173 2.5859 5.2707 9.7443 53.7704 

1 5 PU 5.3481 24.4059 22.8155 18.1066 44.9052 9.7076 20.0586 1.6022 15.0163 
161.966

1 

1 5 PB 2.1878 5.4257 14.0777 0.9522 4.1588 0.4868 6.4063 3.6906 3.4712 40.8571 

1 5 PR 4.1657 20.9901 20.5825 7.6103 3.4479 13.3626 5.7188 2.3757 12.3504 90.6039 

1 5 PL 3.2707 2.1683 7.2977 1.2794 2.9739 0.5848 10.4297 5.7569 4.5647 38.3262 

1 5 PD 6.0331 3.0644 9.0291 1.0625 1.7014 1.6140 2.5391 8.3099 4.0424 37.3959 

2 10 PU 9.0845 * 26.0749 31.8421 68.4028 39.8381 32.4380 2.6338 10.8037 
221.117

9 

2 10 PB 2.8451 6.3938 6.1997 1.8158 0.8073 5.3198 7.3760 22.3944 15.3299 68.4819 

2 10 PR 27.1831 60.0237 41.6089 40.4135 32.6910 * 8.0992 3.4577 10.7107 
224.187

8 

2 10 PL 3.6761 5.5872 6.6782 4.0996 16.0590 3.1964 19.3802 17.1271 4.4078 80.2115 
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2 10 PD 19.6479 7.4259 20.6657 1.3853 1.2049 2.8806 1.4773 4.6197 13.9594 73.2666 

2 7.5 PU 6.0000 49.3476 17.3370 19.1729 47.2222 22.8543 20.4752 1.7465 10.1354 
194.291

1 

2 7.5 PB 2.3099 5.1186 6.6990 1.4323 0.6997 4.1316 6.2190 13.5211 7.9780 48.1092 

2 7.5 PR 13.7324 47.8055 30.6519 23.1391 21.4931 39.1700 5.0661 2.6338 8.8917 
192.583

5 

2 7.5 PL 3.4507 7.6453 6.5742 6.3158 19.6354 5.4251 15.6198 13.2394 5.2876 83.1934 

2 7.5 PD 14.0845 3.8553 9.6879 0.9962 0.9045 2.0830 1.1260 3.9648 5.6684 42.3707 

2 5 PU 4.3099 40.6880 10.4022 15.2632 38.8889 18.8866 17.7479 1.5563 6.8782 
154.621

2 

2 5 PB 1.7887 4.3060 6.3037 0.9098 0.5347 2.7611 4.0909 7.7465 7.0474 35.4889 

2 5 PR 8.2394 39.4425 14.7018 13.4774 12.9340 23.3401 3.3182 2.9507 6.9459 
125.350

0 

2 5 PL 3.1268 4.6679 3.9667 7.1992 19.7917 7.2874 16.5083 7.9577 4.1709 74.6766 

2 5 PD 8.8732 2.8055 5.4785 0.7068 0.6510 1.1619 0.7748 7.9245 5.1269 33.5032 

3 10 PU 14.2138 51.7574 19.5413 30.1347 43.3884 7.7902 38.7847 2.7673 32.4332 
240.811

1 

3 10 PB 7.9874 10.2970 14.5872 2.1094 1.1570 4.9888 4.2118 23.5849 32.9198 
101.843

5 

3 10 PR 24.5283 50.6436 52.0183 50.3367 36.6116 53.7946 8.7500 8.4277 17.6718 
302.782

6 

3 10 PL 8.4277 3.8540 10.3211 1.9731 5.7521 0.8415 23.5069 17.3944 19.1031 91.1737 

3 10 PD 40.5031 9.9257 30.2752 12.1549 3.1074 17.5000 3.8715 8.5535 40.9351 
166.826

5 

3 7.5 PU 10.4403 37.8218 16.0550 22.6431 77.9339 5.7143 30.4861 1.9874 28.8168 
231.898

7 

3 7.5 PB 2.0189 7.8960 9.6330 1.0488 0.9091 2.5536 5.4896 15.3459 15.0095 59.9045 

3 7.5 PR 17.1069 36.4604 32.5229 33.9394 26.7355 35.5357 5.1840 7.0440 13.9218 
208.450

7 

3 7.5 PL 7.7987 3.3094 3.8106 1.7391 5.8182 0.8549 20.8681 23.2704 14.3130 81.7823 

3 7.5 PD 25.4088 8.8119 19.8165 7.8451 2.1777 12.8571 3.0104 6.2516 26.0496 
112.228

8 

3 5 PU 6.7296 25.5198 11.8807 15.1684 63.5950 3.8460 24.4097 1.4151 20.6107 
173.175

0 
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3 5 PB 1.4340 4.7723 5.5688 0.7525 0.9380 2.2612 3.9722 7.0440 7.3092 34.0522 

3 5 PR 10.0000 25.6436 15.5963 17.0202 12.7273 15.0446 6.8299 4.1258 10.0477 
117.035

4 

3 5 PL 4.3899 1.9010 2.3312 1.1953 3.1405 0.9844 16.9444 16.7296 11.8130 59.4293 

3 5 PD 19.0566 4.0446 11.8349 2.1700 1.2066 3.4509 2.8576 4.8102 11.4790 60.9104 

4 10 PU 5.7664 58.9200 5.7763 28.5714 53.9200 4.8753 23.6644 2.5036 29.4521 
213.449

5 

4 10 PB 2.5036 4.8800 13.8584 3.1217 1.8120 6.2742 4.8288 9.1241 35.1884 81.5912 

4 10 PR 14.4526 62.8000 9.5205 45.9259 35.8000 39.4737 10.8390 3.3869 43.4932 
265.691

8 

4 10 PL 3.8102 5.5280 5.6438 2.9339 12.0000 1.0928 14.0411 34.2138 5.0428 84.3065 

4 10 PD 26.4964 8.8440 14.8858 16.7989 5.7840 20.0000 1.7363 2.9197 29.6233 
127.088

4 

4 7.5 PU 3.8978 40.6000 3.8014 16.8254 32.9200 2.7909 18.9384 1.6715 27.8168 
149.262

1 

4 7.5 PB 1.7664 3.1400 4.2603 1.9868 1.7520 2.0512 3.5514 7.0292 18.3219 43.8592 

4 7.5 PR 7.5182 38.0000 4.7352 25.3439 23.9600 20.6510 3.4332 3.1387 21.5753 
148.355

5 

4 7.5 PL 3.3212 3.5400 3.0068 2.1376 3.5440 0.8075 11.0616 23.5036 5.8990 56.8213 

4 7.5 PD 25.4015 4.8480 10.2740 11.0847 3.8680 14.2105 1.4229 2.7007 23.9726 97.7829 

4 5 PU 3.0438 33.3200 3.1393 13.4656 26.9200 2.2936 18.4247 1.8321 26.8836 
129.322

6 

4 5 PB 2.2336 4.4760 6.8493 2.4497 1.5000 4.6537 2.7637 4.4161 24.2295 53.5716 

4 5 PR 5.1314 38.6000 4.3174 19.5767 20.9200 14.1551 6.5428 2.5839 22.6884 
134.515

7 

4 5 PL 3.5839 3.0000 2.4795 3.3492 13.6600 0.9183 14.1438 14.0876 7.2517 62.4740 

4 5 PD 17.5912 4.4560 5.6826 5.5079 2.3160 9.1413 1.0445 4.3653 14.4606 64.5656 

5 10 PU 4.9461 31.5909 5.8116 14.0525 53.7267 12.6173 26.3324 3.1101 5.1392 
157.326

8 

5 10 PB 3.6534 18.4091 24.4863 0.9662 1.0652 5.2963 0.8983 8.7963 31.4561 95.0272 

5 10 PR 11.3349 31.2879 8.6986 29.3058 18.1677 41.8765 1.6877 19.0164 10.5996 
171.975

1 
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5 10 PL 19.7658 3.6439 27.8082 1.3358 1.7391 2.2494 7.7650 24.1606 18.2441 
106.712

1 

5 10 PD 33.9110 10.8333 22.5000 7.8612 2.7888 17.7284 0.9327 3.4567 23.4690 
123.481

0 

5 7.5 PU 3.9719 25.8333 4.4075 12.4765 45.4658 11.3333 18.9398 2.3981 5.3961 
130.222

6 

5 7.5 PB 5.9672 14.3939 16.6438 0.8630 0.9845 4.1235 1.6447 7.2787 11.0921 62.9914 

5 7.5 PR 9.3677 22.1212 5.2158 22.7580 11.0559 31.3086 1.2364 4.7588 5.5396 
113.361

9 

5 7.5 PL 9.0211 2.6780 23.3562 0.9812 1.3851 2.4543 4.9857 26.0422 18.0086 88.9123 

5 7.5 PD 33.6300 8.5985 14.4521 4.6379 1.8261 12.0741 0.7736 2.7166 6.7024 85.4112 

5 5 PU 2.7541 21.4773 3.8082 10.2814 31.5217 9.5062 14.3266 1.9953 4.9422 
100.613

1 

5 5 PB 2.0328 13.5985 10.3425 0.9118 0.8820 3.5580 1.4670 3.3349 8.9936 45.1211 

5 5 PR 5.7611 19.8864 4.5171 14.9343 8.0745 21.1852 0.9814 2.4075 4.9379 82.6854 

5 5 PL 2.7166 1.9053 8.3527 0.8462 1.1646 1.3481 5.5014 14.3326 3.8630 40.0305 

5 5 PD 17.1429 4.9583 6.5548 2.4146 1.1149 7.2099 0.7908 7.1250 5.2184 52.5296 

6 10 PU 7.5625 59.6667 27.6052 15.5130 52.2936 8.1849 44.3709 5.5500 10.2147 
230.961

5 

6 10 PB 6.5625 12.3733 20.3407 1.5043 2.2018 4.3445 0.9056 20.5625 20.9509 89.7463 

6 10 PR 21.2500 65.4667 23.6974 19.9130 36.0321 29.2437 6.2748 7.0000 13.4356 
222.313

3 

6 10 PL 7.2500 6.8533 19.5391 0.9730 5.5275 0.8319 11.8709 32.2248 8.5583 93.6289 

6 10 PD 16.0625 13.6000 23.7475 1.8452 2.7317 5.1681 2.1325 3.9688 13.2209 82.4770 

6 7.5 PU 5.9500 39.4000 16.1824 10.3913 34.6789 4.5546 34.6854 5.7813 9.5092 
161.133

1 

6 7.5 PB 7.8750 14.1000 16.8337 2.6930 3.1376 6.6807 1.1921 9.4375 22.7301 84.6796 

6 7.5 PR 9.6875 39.2667 13.2265 9.3043 18.0275 14.0924 3.6093 4.2250 5.7301 
117.169

3 

6 7.5 PL 4.3750 5.7133 12.6253 0.8209 3.6399 0.5655 8.6589 8.2500 5.7853 50.4341 

6 7.5 PD 11.3125 10.5067 15.5812 1.7748 2.2339 4.6723 1.4172 3.3438 12.0552 62.8975 
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6 5 PU 3.5375 25.9333 11.0721 5.8783 27.3165 2.3950 24.1060 3.0250 5.6227 
108.886

4 

6 5 PB 4.5000 9.7467 10.5461 1.0739 1.3280 3.0916 1.0596 5.8813 17.4847 54.7118 

6 5 PR 7.9375 29.6667 10.5711 6.3652 12.9587 9.6303 4.0894 2.4250 6.3865 90.0304 

6 5 PL 2.9625 3.7667 6.9790 0.5870 3.1422 0.4412 6.7053 7.5000 2.8773 34.9611 

6 5 PD 7.6875 8.0667 12.6253 1.1322 1.4404 3.1849 0.9983 4.4027 9.1411 48.6790 

7 10 PU 4.5734 18.5169 6.2264 5.9540 45.8861 3.4821 49.8599 0.8464 10.2574 
145.602

7 

7 10 PB 0.8703 5.6271 9.7170 0.5818 0.6535 0.8584 6.8207 9.0102 18.9338 53.0729 

7 10 PR 9.3174 55.0847 10.7311 28.5349 21.5981 40.3061 6.8768 2.4642 21.5441 
196.457

5 

7 10 PL 3.4812 8.8941 5.6604 2.0426 5.3639 2.1301 33.8375 15.4375 4.9853 81.8326 

7 10 PD 23.9932 8.5551 21.5330 3.4157 2.4652 7.9464 2.8852 2.8396 21.5441 95.1774 

7 7.5 PU 3.0068 18.4322 5.5967 5.4600 42.8006 3.6888 31.9328 0.6382 8.4926 
120.048

7 

7 7.5 PB 0.7065 4.8729 6.3443 0.5187 0.7310 1.2844 4.7759 3.6519 10.9265 33.8122 

7 7.5 PR 7.4403 31.8220 6.1321 15.3578 12.0411 22.1556 3.8473 1.6519 12.8309 
113.279

0 

7 7.5 PL 1.7816 4.0805 2.5495 1.3203 4.7152 1.1964 21.5126 9.7952 3.4007 50.3521 

7 7.5 PD 9.9659 5.0085 9.4575 1.1354 1.1693 2.9592 1.6008 1.9488 11.6912 44.9366 

7 5 PU 1.9590 16.5254 3.7830 5.2215 33.7025 3.4439 20.4202 0.4505 6.8162 92.3222 

7 5 PB 0.5870 4.6525 1.6509 0.4855 0.6408 1.6365 4.4958 2.8430 6.5993 23.5914 

7 5 PR 3.0648 19.7458 3.3703 9.3952 7.1203 13.1122 2.4202 1.1195 7.6985 67.0468 

7 5 PL 1.6007 2.3983 2.6014 0.8535 2.8022 0.7806 13.2493 3.1877 2.6875 30.1612 

7 5 PD 3.7201 2.0508 3.4104 0.4514 0.6772 0.9477 0.9468 2.6030 2.2537 17.0612 

8 10 PU 2.8464 46.3576 2.5606 15.3933 25.3036 4.5546 43.4870 0.4494 10.1244 
151.076

9 

8 10 PB 0.9120 4.8013 6.2976 1.1133 0.3603 7.6580 0.6453 9.3446 12.3632 43.4956 
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8 10 PR 11.6667 67.5497 4.3339 38.2022 16.7713 56.8966 4.5691 1.8071 8.9801 
210.776

7 

8 10 PL 2.3034 1.7406 5.3806 1.2022 4.2206 1.4914 12.8357 16.6212 3.5050 49.3007 

8 10 PD 32.2097 7.3289 11.0813 7.3596 2.1660 20.3736 1.9339 1.7566 12.5871 96.7966 

8 7.5 PU 2.0787 32.3400 1.8962 10.9082 57.3887 3.2241 26.4529 0.6685 6.4925 
141.449

8 

8 7.5 PB 1.6948 4.5585 4.5934 1.1863 0.3664 7.5862 0.3367 5.4869 9.7761 35.5853 

8 7.5 PR 6.5169 53.2009 2.7768 17.0412 9.1296 26.1207 2.0150 1.1479 6.4925 
124.441

5 

8 7.5 PL 1.2903 1.2561 2.3875 0.9597 3.2389 1.0991 6.0721 13.9700 2.7960 33.0698 

8 7.5 PD 17.1348 4.2936 5.8910 5.0187 1.1235 12.8592 0.8287 1.1985 6.7910 55.1390 

8 5 PU 1.2416 16.6336 1.1782 6.6199 32.0850 2.2514 15.9920 0.2715 4.1269 80.4000 

8 5 PB 0.3427 4.1280 2.0502 0.8034 0.3239 5.1149 0.7285 3.4831 5.8706 22.8454 

8 5 PR 3.6330 31.7881 1.8287 10.9738 5.5870 15.2155 1.4529 1.0899 4.0498 75.6186 

8 5 PL 1.1948 0.9857 1.2820 0.8493 3.2186 1.0129 8.2565 8.9513 2.6244 28.3754 

8 5 PD 10.5993 2.9139 2.9585 2.7154 0.7004 8.4770 0.4960 10.0000 5.3980 44.2584 

10 10 PU 36.9565 60.4723 10.6494 20.9655 54.3253 4.5801 31.4953 3.4261 15.2212 
238.091

6 

10 10 PB 5.7950 7.4025 12.5649 2.2897 0.7336 1.8268 6.2617 32.6957 16.7257 86.2954 

10 10 PR 41.4286 49.8973 16.2987 37.6897 15.8478 24.5144 10.1090 9.3913 16.8142 
221.990

9 

10 10 PL 3.5714 6.3912 9.1916 5.2310 10.6903 1.5682 28.2710 28.2772 4.6681 97.8601 

10 10 PD 8.5714 14.1684 33.5065 10.3103 2.3201 7.6640 3.0078 7.8783 32.2124 
119.639

2 

10 7.5 PU 29.7516 60.0103 8.2143 15.6552 36.5052 3.2415 20.4984 2.1043 12.6991 
188.679

8 

10 7.5 PB 6.8323 5.9959 12.6623 1.7586 0.6886 1.1772 5.6698 15.6522 13.2301 63.6669 

10 7.5 PR 24.1615 39.2710 10.6818 20.3793 10.2076 12.6247 7.2586 4.1391 11.3717 
140.095

3 

10 7.5 PL 2.6149 4.1632 4.2662 2.9241 6.0052 0.8753 19.0498 44.5217 3.3451 87.7658 
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10 7.5 PD 5.7453 9.2864 22.0779 6.0276 1.3875 4.2257 3.9097 5.9739 14.7345 73.3686 

10 5 PU 23.4161 45.4312 7.0130 12.6897 26.4360 2.6614 14.4860 1.4957 11.0177 
144.646

7 

10 5 PB 5.4845 4.0349 4.1591 1.2517 0.5796 0.6181 3.6044 6.9826 5.6018 32.3166 

10 5 PR 20.1863 31.9815 7.1591 12.8276 8.2180 7.2178 5.3427 4.0522 9.7788 
106.764

0 

10 5 PL 3.6522 3.5883 2.3149 2.9828 10.9343 0.8097 16.7913 22.6957 3.7035 67.4726 

10 5 PD 4.6770 6.7710 11.6558 3.2138 0.8581 2.5696 0.9735 5.2016 8.8717 44.7922 

11 10 PU 5.8065 48.7023 15.6034 21.0811 48.4333 22.7461 56.0729 27.4597 72.8302 
343.257

0 

11 10 PB 47.1774 16.5649 28.3333 8.3398 6.6000 23.0570 3.9615 31.8952 43.8994 
172.257

1 

11 10 PR 32.2581 75.9542 18.3621 33.6486 40.7667 63.7306 16.4170 8.3468 64.0881 
362.784

2 

11 10 PL 21.0484 6.4542 28.9368 1.8649 4.2067 2.3420 14.7368 78.8696 20.3145 95.3022 

11 10 PD 76.6129 21.2214 35.3448 8.8803 7.8000 22.2539 9.8583 76.6129 41.6352 
229.388

1 

11 7.5 PU 4.0726 25.8397 9.0517 11.7375 27.4333 12.5648 37.8745 3.3185 44.4025 
204.570

7 

11 7.5 PB 3.4153 4.7481 9.1379 1.6583 1.3533 7.2539 1.2348 2.6169 18.6164 48.8085 

11 7.5 PR 14.2339 33.0916 6.2069 10.7915 12.1667 21.1658 5.5061 13.7097 29.1195 
139.135

2 

11 7.5 PL 17.8629 4.6412 25.2011 1.9498 2.7267 1.7435 15.6275 11.4516 15.5975 83.6242 

11 7.5 PD 39.9597 11.1450 17.1552 4.2085 4.1933 14.5855 4.1134 38.4274 26.0377 
123.901

4 

11 5 PU 2.3911 21.7557 7.2414 7.0849 19.9667 6.9171 23.1377 2.3427 36.0377 
150.469

7 

11 5 PB 12.2581 4.3969 9.8276 1.8417 1.5067 8.3679 1.2510 2.8871 25.1572 61.7377 

11 5 PR 10.1210 30.1145 5.3017 7.8764 8.3867 17.0207 3.7166 7.4597 23.9623 
112.440

9 

11 5 PL 17.9032 2.8359 12.8448 1.8224 1.9600 1.7746 27.2874 15.6855 12.5346 78.8301 

11 5 PD 24.4355 6.2786 8.2759 2.4749 2.5367 10.1036 2.3684 18.0242 17.0440 72.6954 
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