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Abstract 

Paradoxical Roles of Nanoparticles in Cancer Therapeutics and 
Carcinogenesis 

 
Emily Despeaux 

 
Nanoparticles (NPs) are becoming increasingly common in consumer goods and are 

under investigation for a variety of industrial and biomedical applications. However, 
challenges in determining NP toxicity may prevent them from reaching their full potential. 
NPs cannot be treated as single class for toxicity evaluations. Even among particles made 
from the same material, particle-specific physical properties, including size, shape, 
surface charge, agglomeration state, and surface modifications have a strong effect on 
the toxicity. Even so, the obstacles to conclusively and reproducibly evaluating toxicity 
span all NP classes. NP literature is riddled with confusing and often contradictory reports 
regarding the biocompatibility of both engineered NPs, designed with biocompatibility as 
a priority, and NPs from occupational or environmental exposures. Incomplete NP 
characterization and sample inhomogeneity represent major confounding factors in 
disparate results from seemingly comparable study setups.  Additionally, NPs can 
interfere with many conventional toxicity screening methods.  Inappropriate doses, 
exposure routes, and toxicity endpoints further diminish the utility of many published 
studies.  

 
Given the burgeoning interest in NP-based therapeutic agents, consistent, reliable 

standards are needed to ensure the biocompatibility of new formulations. To those ends, 
the synthesis, characterization, and in vitro toxicity of a multi-functional NP therapeutic 
were investigated (Chapter 2). Specifically, superparamagnetic iron oxide nanoparticles 
(SPIONs) were coated with amphiphilic polymer and functionalized with antisense 
oligonucleotides targeting survivin, an anti-apoptotic protein that is highly overexpressed 
in cancer. SPION physical properties, including particle size and composition, were 
characterized at each step of synthesis. Our results showed that the SPION platform is 
biocompatible and capable of delivering functional antisense oligonucleotides to regulate 
survivin expression; however, significant refinement of the DNA-to-SPION coupling step 
is needed. Applied clinically, antisense survivin coupled SPIONs can reduce the required 
dose of, adverse effects from, and resistance to, current cancer chemotherapy regimens.   

 
In contrast to engineered NPs for biomedical applications, where real-world exposures 

would involve careful control of both exposure time- and dose, occupational NP 
exposures are variable, chronic, and difficult to model in laboratory settings. Chapter 3 
focuses on identifying the mechanisms behind carbon nanotube (CNT)-induced 
malignant transformation of bronchial epithelial cells using a chronic in vitro exposure 
model. We specifically investigated the role of mesothelin (MSLN), a cell-surface protein 
that is highly overexpressed in many cancers, in the aggressive phenotype noted 
following chronic, low-dose CNT exposure. MSLN knockdown resulted in significantly 



  

decreased invasion, migration, colonies on soft agar, and tumor sphere formation. In vivo, 
MSLN knockdown cells formed smaller primary tumors and less metastases. The 
mechanism by which MSLN contributes to these more aggressive behaviors was 
investigated using Ingenuity Pathway Analysis, which predicted that increased MSLN 
could induce cyclin E, a cell cycle regulator known to be associated with human cancer. 
We found that MSLN knockdown cells had decreased cyclin E, and their proliferation rate 
was reverted to nearly that of untransformed cells. Cell cycle analysis results were 
consistent with the decreased rate of proliferation. Together, our results indicate a novel 
role of MSLN in the malignant transformation of bronchial epithelial cells following CNT 
exposure, suggesting its utility as a potential biomarker and drug target for CNT-induced 
malignancies.  

 
As demonstrated by the two studies presented here, NPs have the potential to function 

as both cancer therapeutics and carcinogens. Careful evaluation of toxicity, ensuring that 
appropriate doses, assays, exposure routes, and endpoints are used, is imperative. 
Elucidating the physical properties and functionalization that contribute to toxicity, and the 
mechanisms of that toxicity, will allow NP benefits to be fully exploited while minimizing 
the risk of widespread, detrimental public health effects
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Chapter 1: Introduction 

1.0 Cancer Therapeutics 

1.0.1 Cancer Development 

 

Cancer develops as a result of the accumulation of multiple damaging mutations to 

critical cell regulatory mechanisms.1 These changes typically occur in a step-wise fashion, 

with initial damage overriding either cell death pathways or cell replication damage 

checkpoints. Normally cells have a number of mechanisms in place to avoid propagating 

damaging genetic errors. During replication there are a number of checkpoints to ensure 

that only complete sets of intact genetic material are passed on and, if irreparable damage 

is present, the replication process is halted. Similarly, cells exposed to toxic substances, 

viral infections, or other damaging stimuli will often undergo apoptosis to prevent 

spreading the problem. Escaping these normal control mechanisms allows the damaged 

cell to replicate, and the propagation of these regulatory failures results allows mutations 

to accumulate.  

Although each cancer develops its own unique collection of mutations and aberrant 

behaviors, there are several characteristic features of malignancies.1,2 Cancerous cells 

tend to proliferate faster than normal cells, even in the absence of normal growth signals. 

They are also resistant to normal apoptotic stimuli, including chemotherapy drugs or 

radiation, and their drug resistance generally increases throughout the course of 

treatment due to selective pressure. Resistance to physiologic apoptotic stimuli allows 

the malignant cells to continue to thrive even if they detach from their biological matrix, 
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leading to circulating tumor cells and metastases.3 Additionally, rapidly growing tumors 

can stimulate angiogenesis to ensure a supply of oxygen and nutrients to support their 

increased metabolism.  

Traditional cancer therapies attempt to exploit the characteristic behaviors of cancer 

cells to kill the malignant cells at a greater rate than healthy cells. Many chemotherapeutic 

agents interfere with cellular replication and metabolism. Drugs aiming to inhibit tumor 

blood supply have also been developed. While these traditional therapies have greatly 

improved cancer outcomes, they have a number of dose-limiting side effects because the 

pathways they target are also present in normal cells. Improved targeting of cancer 

therapies, where the drugs are able to accumulate in or mechanistically act only on tumor 

cells, is expected to significantly increase drug efficacy while reducing off-target effects.  

  

1.0.2 Conventional Cancer Therapeutics 

 

Conventional cancer therapeutics interfere with cellular metabolism and replication. 

Cancer cells grow and divide faster than healthy cells, meaning drugs targeting cellular 

metabolic and reproductive functions should preferentially effect the cancer cells.  

However, this preferential effect is minimal because these drugs act on pathways that are 

present and functioning in all cells. These indiscriminate mechanisms of destruction and 

systemic drug administration make severe side effects an inevitable consequence of 

these conventional treatments. Cells whose physiological functions require rapid 

turnover, like hair follicles, bone marrow, and the lining of the GI tract, sustain the most 

damage from the off-target effects. This damage results in the side effects most 
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commonly associated with chemotherapy: hair loss, anemia, weakened immune system,4 

nausea, and vomiting. These ailments develop rapidly after treatment is initiated and are 

frequently accompanied by fatigue,5 impaired cognition,6–8 and loss of appetite.9 

Cardiovascular10 and reproductive system dysfunction often follow. Thus, conventional 

treatment strategies require clinicians to walk a fine line between killing the cancer and 

killing the patient. 

In addition to posing a direct threat to patients’ health,11 the indirect effects on patient 

quality of life and mental state can prolong recovery. Weight loss in cancer patients is 

associated with decreased survival, but lack of appetite and GI distress can make it 

difficult to maintain adequate nutrition.9 Fatigue, weakness, and other physical 

impairments interfere with tasks of daily living. Decreases in physical activity contribute 

to further immune impairment, increased pain perception, and longer hospitalizations.5 

Cognitive impairments worsen depression and decrease compliance with treatment.6,8 In 

addition, depression is associated with systemic increases in inflammatory mediators, 

which can stimulate tumor growth and metastasis.7 

While these off-target effects are not ideal, in fact they are often detrimental, 

conventional chemotherapy treatments still represent a substantial improvement in 

survival compared to no treatment. The challenges presented by treating fatal diseases 

with equally lethal drugs can only be overcome by improving the specificity of the drugs 

for the target tissues.  

1.0.3 Targeted Cancer Therapies 
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Targeted cancer therapies, which fall under the realm of personalized medicine, have 

the potential to dramatically improve the response to chemotherapy as well as patient 

quality of life during treatment. However, the development of these targeted therapies is 

often quite challenging. Ideally these therapies would “target” tumors by homing on a 

feature unique to the cancer cells, which would eliminate off-target and systemic effects. 

Since cancers originate from healthy tissues it can be difficult to identify drug targets that 

are not present elsewhere in healthy tissues, even if malignant cells use the target 

molecule or process for a different purpose or in a different amount than healthy tissues. 

Even most current successful targeted therapies, which have increased specificity over 

systemic chemotherapy, have off-target effects. Future targeted therapies will rely on the 

identification of tumor-specific markers and improvements in localized drug delivery.  

1.0.3a Pharmaceutical versus Physical Targeting 

 

Drug targeting can be considered in terms of both specificity of drug activity and 

specificity of in vivo drug localization.  From a mechanistic perspective, a drug is 

“targeted” when it acts specifically on a process of interest (Figure 1A).  However, even 

a drug whose action is limited may have widespread biological distribution.  Increasing 

the accumulation of a drug in a specific physical location is, therefore, also a critical 

component of drug targeting – particularly for drugs that require high local concentrations 

for effect or those with a high likelihood of off-target toxicity (Figure 1B).    
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1.0.3b Strategies for Targeting Tumors 

Targeted drugs, for conditions other than cancer, are already widely available but not 

commonly associated with the personalized medicine movement. Antibiotics, for 

example, are formulated to interact with bacteria-specific enzymes, which minimizes their 

effects on human cells. The strategies used for targeting bacteria, fungi, and viruses 

break down when it comes to fighting cancer because we are now faced with identifying 

“bad self” versus “good self” instead of self versus other.  

There are many challenges associated with identifying unique markers of cancer cells 

when they are located within a body full of normal tissue. Additionally, identifying these 

markers in vitro does not always translate well to in vivo, where there are often unintended 

consequences. For example, isotype specific COX blockers were designed to specifically 

treat pain while minimizing the dose-limiting GI side effects of non-specific COX blockers, 

but the unintended cardiovascular effects resulted in the drugs removal from the market.12  

Despite the challenges, some targeted therapies and treatment strategies have been 

developed and integrated into clinical practice. Current approaches include the use of 

hormone and hormone-receptor antagonists for estrogen or testosterone sensitive 

reproductive cancers,13–17 inhibitors targeting mutated growth factor receptors in non-

small cell lung cancer (NSCLC),18–20 and inhibitors of a cancer-specific tyrosine kinase 

fusion protein in chronic myelogenous leukemia (CML).21–23 

Leuprolide and goserelin are gonadotropin hormone releasing hormone (GnRH) 

agonists. GnRH stimulates the release of luteinizing hormone (LH) from the 

pituitary gland, which in turn simulates increases in testosterone, DHT, or 
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estrogen.13–15 Chemical castration, or the complete suppression of estrogen and 

progesterone production by the ovaries or testosterone production by the testes, 

can be achieved with both GnRH agonists and antagonists.13 GnRH agonists have 

been used to treat metastatic endometrial cancer, while antagonists have been 

used to fight ovarian cancer.13 Both agonists and antagonists are used to treat 

prostate cancer.14,15 

Tamoxifen is an estrogen receptor (ER) antagonist used to treat ER positive 

breast cancer in both men and women.16,17 Estrogen acts a growth factor in breast 

tissue, and blocking its effects can reduce tumor growth and reoccurrence. In 

patients with ER positive tumors, the addition of tamoxifen as an adjuvant therapy 

reduced the risk of disease reoccurrence by 47% and the overall risk of death by 

26%.17 

Imatinib (Gleevec) inhibits the constitutively active BRC-Abl fusion protein. BCR-

Abl, encoded by the Philadelphia chromosome t(9;22) reciprocal translocation, is 

found in over 90 percent of patients with chronic myeloid leukemia (CML) and its 

activity results in dysregulated cell growth.21–23 In CML patients who express BCR-

Abl, imatinib treatment resulted in 95% survival at 18 months, with 89% of patients 

showing no disease progression.21 A follow up study reported an 89% 5-year 

survival rate.22 

Gefitinib and Erlotinib are small molecule inhibitors that target the mutated 

epidermal growth factor (EGFR) tyrosine kinase in non-small cell lung cancer 

(NSCLC).18–20 In populations with a high predisposition for EGFR mutations, 
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erlotinib20 and gefitinib18,19 treatment are more effective than standard combination 

chemotherapy approaches. When patients are stratified by EGFR status, patients 

with the target mutation have significantly improved progression-free survival. 

Patients without the EGFR mutation, as expected, do not experience these 

benefits.  

 

1.0.4 Antisense Oligonucleotides as Cancer Therapeutics 

Antisense oligonucleotides (ASO) are powerful tools for regulating cellular protein 

expression. They allow the production of specific, target proteins to be temporarily turned 

off. Basic ASO are short fragments of single stranded DNA or RNA, typically 20-30 bases 

in length, which are complementary to a portion of target protein’s mRNA sequence.24,25  

Structural modification of the bases structure can enhance both the efficiency and 

stability. When ASO are present in the cytoplasm, they bind to the target mRNA and 

create a small area of double-stranded nucleic acid that stimulates enzymatic degradation 

of the mRNA strands as well as physically blocks the translocation of ribosomal 

machinery.26–29 

 

1.0.4a Regulation of Protein Expression with Antisense Oligonucleotides 

 

ASO inhibit protein production by binding to their complementary sequence on the 

mRNA for the target protein (Figure 2). Once bound, ASO work alter protein production 

by (1) stimulating enzymatic degradation of the double-stranded complex26–28 and (2) 

physically blocking the translocation of the ribosomal machinery along the mRNA.29 
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Double-stranded (ds) RNA complexes in the cytoplasm are rapidly detected and 

enzymatically degraded by RNase H.26–29 While the primary function of RNase H is to 

degrade dsRNA, it also recognizes and reacts with the RNA in DNA:RNA hybrids, like 

those formed by ASO and mRNA. RNase H interacts non-specifically in the minor groove 

of the RNA, where three carboxylates from the enzyme associate with the 2’-O-hydroxyl 

of RNA backbone during the cleavage process.30 RNA is then cleaved from the duplex 

via hydrolysis, leaving a 5’-phosphate and a 3’-OH at the cleavage site.27 Because the 

reaction relies on the enzyme’s interaction with the RNA 2’-O-hydroxyl group, RNase H 

will not react with DNA, which does not have the 2’-OH moiety. Theoretically this 

specificity would protect the DNA of the DNA:RNA complex from degradation, meaning 

that once the bound mRNA was cleaved the DNA could interact with another target 

mRNA. However, the ASO will eventually be metabolized by endo or exonucleases within 

the target cell.26 

 

1.0.4b Delivery of Antisense Agents in vitro 

 

As nucleic acids are hydrophilic and highly negatively charged, antisense 

oligonucleotides are generally not able to penetrate cell membranes on their own.31 

However, they are structurally and functionally similar to siRNA and can be introduced to 

cells in the same way (i.e. transfection or electroporation).  Transfection packages the 

DNA/RNA in a lipid wrapper, while electroporation utilizes an electric shock to help the 

oligonucleotide penetrate the cell membrane. 
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1.0.4c Delivery of Antisense Agents in vivo 

 

Challenges often arise when translating in vitro techniques to clinical settings and ASO 

are no exception.  In fact, the in vivo delivery of antisense agents has, to-date, been 

largely unsuccessful. However, the potential advantages of antisense agents are great 

enough that their in vivo delivery is still an area of active research.   

 

Many of the obstacles to clinical implementation are due to limitations of naked 

oligonucleotides and could be overcome with improved “packaging” for in vivo delivery.31–

34 For example, naked oligonucleotides are rapidly degraded by plasma nucleases upon 

intravenous injection.33,34 Those that escape degradation are rapidly cleared by the same 

immune surveillance mechanisms that detect other foreign DNA (like viruses).31,34,35 

Nucleic acids are generally easily broken down, and unmodified nucleic acids have been 

shown to have stability issues in salt solutions and aqueous media.36 Improved stability 

is possible with structural modifications to the nucleic acid backbone, including 

phosphorothioate modifications,31,32  locked nucleic acids,31,36 and 2’-O-methyl or 2’-

fluoro modifications.30,31  

 

Even if ASO remain intact once they enter the bloodstream, reaching the target tissue 

requires avoidance of interactions with plasma proteins, clearance by the kidneys, and 

extravasation at non-target locations.31 Assuming the ASO extravasates into the target 

tissue, naked ASO are not likely to enter cells unassisted. Some plasma protein 
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interactions may enhance uptake by stimulating receptor-mediated endocytosis, but 

typically delivery systems are required for in vivo purposes.31  

 

1.0.4d Clinically Relevant ASO. 

Although ASO have been investigated as treatments for a number of cancer and non-

cancer diseases, very few ASO are currently available. Currently only 2 ASO therapies 

have received full FDA approval. However, according to clinicaltrials.gov, there are 43 

open or active trials of antisense therapy in addition to the 80 completed trials.  

 

Mongersen is an oral ASO for the treatment of Crohn’s Disease that is currently 

in phase III clinical trials. The 21 base, single-stranded (ss) ASO has a 

phosphorothioate-modified backbone to increase in vivo half-life.32,37 Mongersen 

targets SMAD7, which is increased in Crohn’s disease resulting in suppression of 

normal anti-inflammatory and immune-suppressive mediators. A pH sensitive 

capsule is used to ensure the oral formulation is not released until it reaches the 

terminal ileum and right colon (the primary sites affected by Crohn’s disease).  

 

Fomivirsen (Vitravene) was the first ASO to receive FDA approval.38 It is an 

injectable, intravitreous ASO for the treatment of cytomegalovirus (CMV) retinitis 

in patients with AIDS/HIV.38,39 The ASO targets the major immediate-early 

transcriptional unit of CMV, thus interfering with viral replication.39 Fomiversen is 

no longer on the market, as improvements in antiretroviral therapy have reduced 

the incidence of opportunistic infections like CMV retinitis in HIV/AIDS, but it served 
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as in important proof-of-concept drug for the clinical applications of ASO 

technology.38 

 

Mipomersen (Kynamro) received FDA approval in 2013 for use in the treatment 

of homozygous familial hypercholesterolemia.40  The ASO inhibits the production 

of apopolipoprotein (apo) B-100 in the liver. In healthy patients, mipomersen 

results in dose-dependent LDL decreases, with a maximum reported LDL 

decrease of 44% of baseline. Structural modifications to the ASO give it a half-life 

of 30 days in circulation. Mipomersen does not interfere with other cholesterol 

lowering drugs like simvastatin and ezetimibe.  

 

1.0.5 Future Drug Targets 

 

Successfully targeted cancer therapies require the identification of molecules or 

cellular processes that are unique to malignancies. Since cancer develops from healthy 

tissues, the identification of these unique targets is challenging. Targeted therapies 

currently on the market, like imatinib (Gleevec),21–23 gefitinib,18,19 and erlotinib,20 exploit 

structural, and the resulting functional, changes in proteins crucial to cellular regulatory 

mechanisms. Another class of targets includes proteins that are highly expressed in 

cancer cells but are not present in most or all healthy cells. The regulation of two such 

proteins, survivin41–49 and mesothelin,50–54 has been the focus of many in vitro and in vivo 

studies in recent years. This work has presented strong evidence that both survivin and 

mesothelin, independently, contribute to chemotherapy and radiation resistance, more 



 

  12 

metastases, and overall decreased survival rates.43–48,51,52 As such, clinical trials have 

also been pursued for survivin55–65 and mesothelin regulating agents,50,51,66 although to-

date no such agents have proven efficacious in humans. Challenges of delivering gene 

regulatory agents in vivo have been exhaustively documented in relation to treating 

cancer as well as genetic diseases like muscular dystrophy and cystic fibrosis. As delivery 

methods improve, the identification and eventual regulation of over-expressed cancer-

related proteins will continue to be an important avenue for the development of targeted 

therapies.  

 

1.0.6 Survivin 

 

Survivin is a cell-cycle dependent inhibitor of apoptosis protein that is heavily 

overexpressed in nearly all types of cancer but largely undetectable in most healthy 

tissue.41,42 Survivin is overexpressed, to varying degrees, in cancers of the lung, 

pancreas, colon, prostate, breast, esophagus, liver, stomach, uterus, bladder, and skin, 

as well as in soft tissue sarcoma, osteosarcoma, melanoma and neuroblastoma.44–48,57,67–

75 Increased tumor survivin has been linked to an increased risk of chemotherapy 

resistance, more aggressive tumors, and overall worse outcomes.41–49,56,76 The 

prevalence of survivin across cancer types, combined with its association with more 

aggressive and harder to treat malignancies, makes it an attractive therapeutic target, at 

least conceptually.49 To date, several clinical trials have been carried out with survivin 

targeted therapies.55–60,77–82 Although no survivin-targeted therapies are currently 

available, therapeutic regulation of survivin is still being actively pursued.  
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Survivin Structure and Function 

 

Survivin is a 16.5 kDa inhibitor of apoptosis (IAP) protein.83–86 Structurally, survivin is 

the smallest member of the IAP family of proteins and contains only one copy of the IAP-

characteristic baculovirus IAP repeat (BIR) domain. In situ, survivin is often found as a 

homodimer. IAPs, including survivin, can inhibit apoptosis through a number of 

mechanisms, including direct inhibition of caspase activation87 and inhibition of 

mitochondrial cytochrome c release.88 Survivin also plays a role in stabilizing the 

chromosomes and mitotic machinery during cell division.83–85,89  

 

Under physiologic conditions, survivin plays a critical role in normal fetal and placental 

development, where it acts as a cell-cycle dependent inhibitor of apoptosis.41,42,90  

Survivin expression is increased beginning in the G1 phase of the cell cycle, reaching a 

max in the G2-M phase. Survivin interacts with polymerized tubulin, including 

centrosomes, microtubules, and mitotic spindles, as well as chromosomal kinetochores 

in metaphase, to stabilize the cell during division, thus inhibiting apoptosis.41,42 After cell 

division, survivin is degraded through the ubiquitin-proteasome pathway.41 After birth 

survivin expression is restricted to the thymus, CD34+ stem cells, and basal colonic 

epithelial cells.41 Most other healthy adult tissues, including peripheral blood leukocytes, 

lymph nodes, spleen, pancreas, kidney, lung, liver, brain, and heart, have no detectable 

survivin.43 
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In many human cancers, the cells have again acquired the ability to express 

survivin.41,42 Higher levels of survivin are correlated with worse prognosis, increased risk 

of recurrence and metastasis, and, for some types of cancer, a decreased response to 

chemotherapy.41–44,56,76 Increased survivin is often related to an increased risk of 

chemotherapy resistance, more aggressive tumors, and overall worse outcomes. A 

correlation between survivin and tumor aggression/ overall patient outcomes has been 

reported in colorectal cancer,48 bladder cancer,67 glioblastomas,68 melanoma,69 non-small 

cell lung cancer,57 breast cancers,70,71 diffuse large B-cell lymphoma,44 acute myeloid 

leukemia,44 pancreatic ductal cell cancer,72 hepatocellular carcinoma, gastric cancer,73 

malignant gliomas,74 soft tissue sarcoma,75 prostate cancer,45 osteosarcoma,46 and renal 

cell carcinoma.47 

 

Role of survivin in cancer 

 

Over-expression of survivin has consistently been associated with apoptosis 

resistance, reduced sensitivity to chemotherapy, and other markers of tumor 

aggressiveness both in vitro and in vivo.41–49,56,76,83,85 The anti-apoptotic role of survivin 

allows it to contribute strongly to the development and maintenance of malignant 

phenotypes.83,85 By blocking normal cell death pathways, cellular lifespans are 

lengthened, which allows mutations to accumulate. The inability of the cells to die 

contributes to cellular resistance to cytotoxic stimuli, like chemotherapy and radiation, and 

to metastasis, as the cells are able to survive in inappropriate locations. Conversely, 
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survivin inhibition induces increases in spontaneous apoptosis, caspase activation, and 

sensitivity to cytotoxic stimuli including chemotherapy and radiation.42,44,45,72,76,91 

 

Survivin’s anti-apoptotic effects are derived, in part, from its role in driving cells 

through the G2/M cell cycle checkpoint.42 Under physiologic conditions, survivin is 

expressed in cell cycle-dependent manner, with increased expression during the G2/M 

phase.86 In many malignancies, survivin is constitutively expressed but retains the cell 

cycle-dependent spike associated with the G2/M transition.44,83 In this context, survivin 

plays an important role in mitotic spindle assembly83–85,89 and proper chromosome 

segregation during mitosis.89 Specifically, survivin associates with microtubules, 

polymerized tubulin, centrosomes, and the mitotic spindles as well as Aurora B kinase, a 

mitotic regulator.83,84,89,92 Survivin inhibition in cancer cells results in multi-nucleation, 

failed cytokinesis, and multipolar mitotic spindles.83–85,91 Survivin drives cell cycle 

progression through interactions with CDK4 accelerate S phase, leading to increased 

cdk2/cyclin E activation and Rb phosphorylation.84,86 Cell-cycle dependent survivin 

expression is transcriptionally regulated.85  

 

While the stabilization of cell replication machinery is an important contributing factor 

to survivin-induced apoptosis resistance, the presence of survivin in all tumor cells, not 

just the mitotic fraction, was suggestive of additional anti-apoptotic mechanisms.44,83,85 In 

vitro, survivin expression inhibits apoptosis induced by chemotherapeutic drugs, like 

cisplatin and etoposide, TNF-α, Fas ligand, and caspase 3, 7, and 9.44,45,93 One 
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contributing mechanism is that survivin can directly inhibit the activation of caspase-3 and 

7.83–87 

  

A number of factors contribute to cell-cycle-independent survivin expression in cancer 

cells. The constitutive expression arises, in part, from alterations in the survivin promotor 

region.83 Mutation in the p53 tumor suppressor gene also contribute, as wild-type, but not 

mutated, p53 functions as a transcriptional repressor of survivin.83,86,94 The interaction 

between survivin and p53 is complex, as survivin can also regulate p53 expression.86 

Survivin expression can also be induced by dysregulated activation of growth factor 

receptors, including EGFR, Her2, and insulin-like growth factor-1 (IGF-1), various 

signaling cascades, and inflammatory cytokines. Aberrantly activated Stat3 and PI3/AKT 

signaling pathways are known to increase survivin expression, as do IL-11, angopoietin-

1, and hypoxia inducible factor-1 (HIF-1). Survivin expression can also be induced by 

environmental factors. Nicotine can activate survivin expression through an AKT pathway 

in A549 and non-malignant human bronchial epithelial cells. The nicotine-induced 

increase in survivin expression was noted within 12 hours and persisted for 3 months 

post-exposure.95  

 

Prevalence of Survivin in Cancers 

  

Histological examination of human tumors has revealed survivin expression in the vast 

majority of samples, across cancer types and degree of disease progression. For many 

cancers, tumor survivin expression increases as the disease progresses and higher 
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survivin levels are associated with more metastases, chemotherapy and radiation 

resistance, and overall reduced survival. A summary of survivin prevalence in human 

cancers is provided in Table 1. Survivin expression in sixty cancer cell lines was 

previously assessed by Tamm, et al..96 

 

Survivin as a Therapeutic Target 

  

The relative localization of survivin to tumor tissue, combined with the dramatic success 

of targeting survivin in vitro, makes survivin regulation seem like an ideal cancer 

treatment. Decreasing survivin, at least in vitro, results in timely and significant cancer 

cell death without affecting non-survivin expressing cells. However, replicating this 

success in a clinically-translatable formulation – or even in in vivo studies – has been 

challenging.  

 

Regulation of survivin in vitro 

 

In vitro regulation of survivin expression has primarily relied on ASO and siRNA.83 

Several effective ASO sequences have been identified, including one from Olie, et al. that 

has been highly referenced.42 Decreases in survivin expression are noted within 24-48 

hours of ASO treatment.42,76 Using these methods, survivin expression can be reduced 

to 30-70% of controls; this variation can be attributed to differences in the basal survivin 

expression of different cell lines and differences in the potency of the tested ASO. In vitro 

regulation of survivin with ASO consistently induces apoptosis and increases radiation 

and/or chemotherapy sensitivity in a variety of survivin-expressing cancer cells without 
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affecting non-survivin expressing controls.42,44,72,76 The consistent, strong anti-cancer 

effects seen with in vitro survivin inhibition make it an attractive target for in vivo therapies.  

 

Regulation of survivin in vivo: clinical trials        

 

Antisense oligonucleotide LY2181308 

 

LY2181308, the second generation of ISIS 23722, is a 2’-O-methyoxymethyl modified 

18-mer antisense oligonucleotide that decreases survivin expression by binding to the 

initiation codon of survivin mRNA, resulting in cleavage by RNase H and degradation of 

the survivin mRNA.55,60,91,97 The resulting decrease in survivin mRNA translates to a 

decrease in survivin protein expression, which restores sensitivity to normal apoptotic 

pathways.55,91,97 

 

LY2181308: Pre-Clinical Testing 

 

LY2181308 was identified as the most potent inhibitor of survivin following a screening 

of 117 2’-MOE phosphorothioate modified oligonucleotides.91 In vitro testing ensured that 

survivin was specifically inhibited, without any effect on other IAPs, in all tested cell lines. 

It was noted that the decrease in survivin also caused an increase in the activation of 

caspase-3, a pro-apoptotic mediator.91 LY2181308 also inhibited survivin expression and 

sensitized tumors to gemcitabine, paclitaxel, and docetaxel in human melanoma and 

glioblastoma xenograft models.91 In an in vitro human leukemia model, LY2181308 

reduced survivin expression in a dose-dependent manner, with a maximum decrease of 
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40% within 24 hours and 60% within 48 hours.98 The decreases in survivin expression 

correlated with decreases in cell proliferation and a G2/M cell cycle block. In an in vivo 

model of non-Hodgkin’s lymphoma, the decrease in survivin expression corresponded 

with a significant decrease in proliferation, an increase in apoptosis (measured by 

caspase-3 activation), and smaller tumors.99 

 

LY2181308: Clinical Trials 

 

A first-in-human phase I clinical trial of the antisense oligonucleotide LY2181308 

was carried out to assess the biodistribution, tumor tissue penetration, impact on tumor 

mRNA and survivin protein levels, and dose/toxicity in humans.55 The study included 40 

participants across a variety of cancer types (GI, breast, melanoma, lung, sarcoma, ovary, 

and head and neck carcinoma). 39 out of 40 participants had received chemotherapy 

prior to the study. During the study, the only drug administered was LY2181308. For this 

trial, LY2181308 was diluted in 500mL of normal saline and administered IV. It was given 

daily for three days as a loading dose, and then weekly as a maintenance dose. Tumor 

biopsies were obtained prior to treatment and 48-96 hours after the third loading dose. 

While no conclusive results on the in vivo efficacy of LY2181308 were obtained from the 

study, a 21% decrease in tumor survivin protein, as determined by 

immunohistochemistry, and a 20% decrease in survivin mRNA was reported.  The 

primary adverse effects were flu-like symptoms, including fever, nausea, and 

musculoskeletal pain, anticoagulation, lymphopenia, thrombocytopenia, hypokalemia, 

and anemia.55 
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In an additional Phase I trial, the dose tolerability, pharmacokinetics, and anti-

cancer activity of LY2181308 were studied in 14 Japanese patients with solid tumors that 

had not responded to standard therapies.36 Japanese patients were studied chosen 

because the Japanese population, at large, possesses a number of genetic variations 

that affect the metabolism and safety of anti-cancer drugs, as well as alterations in the 

TNF gene that affect their response to inflammation. The drug was administered 

intravenously, in the same manner as in the previous Phase I trial. Adverse effects were 

in line with those previously reported, including flu-like symptoms during the loading dose 

phase, prolonged PT-INR and thrombocytopenia, and fatigue. No disease regression was 

noted in the course of this trial; however, the authors also state that disease regression 

was not the intention of this trial and that, in the future, this drug would be most likely to 

succeed when combined with other apoptosis-inducing agents.  

 

Several Phase II trials, investigating the efficacy of LY2181308 combination 

therapies against non-small cell lung cancer, prostate cancer, and acute myelogenous 

leukemia, have had similar disappointing results.58–60 The three trials described below 

relied on dosing methodology and schedule from the first-in-human trials of LY2181308.55 

None of the combination trials reported disease regression following treatment. Adverse 

effects were noted, but for at least two of the three studies the adverse effects were 

ultimately linked to the chemotherapy agents that were administered with the LY2181308 

rather than the LY2181308 itself.58,60 One major limitation of all three combination studies 

was the failure to enroll patients on the basis of their tumor survivin levels. The small 
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number of patients enrolled in each study, combined with the known variations in tumor 

survivin expression, would make it unlikely that a significant sub-population of drug-

responsive patients would emerge. An additional contribution to the lackluster response 

is that the dosing regimen used in all three studies was only shown to reduce solid-tumor 

survivin by approximately 20%,55 which may not be a strong enough response to restore 

apoptosis sensitivity.60    

 

YM155: small molecule transcriptional inhibitor of survivin 

 

YM155 (1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-

1H-naphtho[2,3-d] imidazolium bromide) is an imidazolium-based small molecule inhibitor 

of survivin (Figure 3).57,61,65,100,101 It acts on the promotor region of the survivin gene, 

through and unknown mechanism, to specifically decrease survivin protein expression 

without affecting other IAPs.100 Pre-clinical trials of the agent resulted in strong pro-

apoptotic and tumor suppressive effects both in vitro and in mouse xenograft models.100–

102 Phase I and II clinical trials of YM155 as a monotherapy, however, showed little anti-

tumor activity despite evidence that it accumulated in tumors and decreased intra-tumoral 

survivin expression.57,61–65 Future trials of YM155 in combination with other chemotherapy 

drugs are expected to demonstrate stronger anti-cancer activity than YM155 alone.  

 

YM155: Pre-Clinical Testing 
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During pre-clinical testing, YM155 activity was assessed in a panel of 119 tumor cell 

lines, including 5 known treatment-resistant lines, and a variety of xenograft tumor 

models.101 YM155 treatment, and the subsequent decrease in survivin expression, 

inhibited cell growth in the majority of the cancer cell lines tested the initial screening 

panel. Further in vitro studies in hormone-refractory prostate cancer and NSCLC showed 

that YM155 treatment alone increased spontaneous apoptosis.100,102 In vivo, the anti-

tumor effect of YM155 monotherapy was noted in NSCLC, melanoma, bladder, estrogen-

receptor-negative breast, and hormone-refractory prostate cancer xenograft 

models.100,101 Decreased intra-tumoral survivin and inhibition of tumor growth were found 

in all models. One study of NSCLC xenograft tumors found that YM155 inhibited tumor 

growth more than cisplatin or paclitaxel without affecting mouse weight, and that the anti-

tumor effects were still present three weeks post-treatment.101 The synergistic effects of 

YM155 and radiation were explored with two NSCLC lines, where it was found that 

treatment with YM155 and radiation together resulted in greater apoptosis in vitro and 

greater tumor suppression in vivo than either treatment alone.102 

 

YM155: Clinical Trials 

 

A phase I, first-in-human dose study of YM155 assessed the safety and efficacy of 

the drug in patients with solid tumors and non-Hodgkin’s lymphoma.61 YM155 was well 

tolerated and demonstrated a small, but significant, clinical effect. Three of the five non-

Hodgin’s lymphoma patients responded to the therapy, as did two of nine patients with 

hormone refractory prostate cancer. However, the tumor regression that was seen was 
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noted to have occurred at a slower rate than expected with other anti-cancer agents. As 

a consequence of the slow response rate, the authors urged caution in future trials.  

 

Between a second phase I study62 and four phase II trials, the major conclusion was 

that YM155 was well-tolerated, with the clinical effect appearing questionable at best. In 

the phase I study, YM155 was administered to 33 patients with various solid tumors and 

stable disease was achieved in 9 patients.62 One phase II study, conducted in patients 

with advanced, refractory, NSCLC reported “moderate efficacy” of the agent, although 

they go on to note that they were comparing it to current second-line therapies that also 

have abysmal response rates.57 Another trial, conducted in patients with refractory diffuse 

large B-cell lymphoma, was terminated early due to futility.64 In a third trial, only 2 out of 

32 patients with castration-resistant prostate cancer had a clinically measurable 

response, and 26 of the initial 32 participants withdrew due to treatment failure.63 A trial 

of YM155 in patients with advanced melanoma also failed.65  

 

 The failure of YM155 to suppress tumors in clinical trials was attributed primarily 

to the tests assessing its efficacy as a monotherapy, with the suggestion that it would 

likely be more effective as part of a combination treatment.61–65 Its mechanism involves 

sensitizing cells to cytotoxic stimuli or apoptosis from mitotic failures. Thus, without any 

additional stimuli, the treatment would only effect cells that were actively dividing.63 

Additionally, there are anti-cancer drugs currently used that are not effective as 

monotherapies.  
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Survivin Peptide Vaccine 

 

Survivin overexpression in human tumors elicits a T-cell immune response. 

Circulating anti-survivin antibodies and survivin-reactive T-cells have been documented 

in patients with leukemia, lung, colon, breast, and pancreatic cancers, but not in healthy 

control subjects.80,85,91,103 Processed survivin peptide fragments are displayed on human 

leukocyte antigen (HLA) class I molecules on the cell surface, where they interact with 

cytolytic T-cells. The presence of survivin reactive T-cells has generated interest in the 

development of survivin peptide vaccines.83,85,86,91 To those ends, survivin intracellular 

processing was studied and the immune-reactive peptide fragments were enumerated104 

and the identified fragments were used to generate survivin peptide vaccines.56,77–82 

While the survivin peptide fragment that generates the strongest T-cell response will vary 

by HLA type and other patient-specific factors, cancer type is not a limiting factor. 

Survivin-reactive cytotoxic T-cells isolated from leukemia patients reacted with other 

survivin-expressing tumors cells, including breast cancer, renal-cell carcinoma, colon 

cancer, melanoma, multiple myeloma, and primary malignant cells from other leukemia 

patients.80,105  

 
Survivin peptide vaccines have been tested in a number of late-stage cancers, 

including metastatic melanoma, lung cancer, and pancreatic cancer, to demonstrate their 

safety and ability to induce a survivin-specific T-cell response.56,77,79,81,82 In a case study 

of a HLA-A2 restricted survivin peptide, a single patient with advanced metastatic 

pancreatic cancer experienced complete tumor regression after 14 months of weekly 

vaccination. He remained disease free for an additional 8 months, at which point new 
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metastases were discovered and the patient rapidly declined.56 In patients with stage IV 

metastatic melanoma, HLA-type specific vaccines were developed for HLA-A1, -A2, and 

–B3 positive tumors.77 It was found that patients who developed the survivin-specific T-

cell response had longer survival times than patients that did develop survivin-specific 

reactivity (median survival 19.6 vs 8.6 months). In addition, patients who developed a 

post-vaccination inflammatory response, including fevers, had stronger T-cell reactivity 

and improved survival than patient who did not develop an inflammatory response.  

 

Although survivin-targeted vaccines appear safe and are able to induce a T-cell 

response, the clinical utility of these therapies is still unknown. Trials in heavily pre-treated 

patients with metastatic disease could mask the potential of vaccination-based therapies 

since many cancer treatments suppress the immune mechanisms required for effective 

vaccination. Also, most of the trials so far have utilized single-epitope vaccines, which 

were chosen based on patient HLA type.78 However, even patients with the same HLA 

type have dramatic variations in their responses to single survivin epitopes. It has been 

suggested that vaccines should contain multiple survivin epitopes to allow for 

personalized responses. 

 

1.0.7 Mesothelin 

 

Mesothelin is a cell-surface protein of unknown physiological significance106 that is 

overexpressed in approximately 30% of all cancers,50 including nearly all 

mesotheliomas50 and many lung,51,52 pancreatic,51,53 and ovarian51,107 carcinomas. 

Significant levels of mesothelin are not present in healthy tissues,53,54 although low levels 



 

  26 

are expressed in normal mesothelial cells & epithelial cells of the fallopian tubes, kidneys, 

trachea, and tonsils.107 While the specific function(s) of mesothelin are currently unknown, 

its presence in malignancies has been linked to more aggressive tumor behaviors and 

chemotherapy resistance.51,52  

 

Structure and Function.  

 

The mesothelin gene encodes a 71 kDa precursor protein that is cleaved in the 

cytoplasm to give two functional products: the 40 kDa mature mesothelin cell-surface 

protein (MSLN) and a 31 kDa soluble fragment that is released into the blood (SMRP).51 

The mechanisms behind MSLN’s contribution to cancer development and progression 

are not yet known; however, MSLN appears to affect a number of critical cell processes 

including cell adherence,51 proliferation,51–53 invasion and migration,52,108,109 and 

apoptosis resistance.51 The SMRP is clinically detectable in the plasma of patients with 

MSLN over-expressing malignancies, and serial measurements of SMRP is under 

investigation as a clinical tool for tracking response to treatments and monitoring for 

disease reoccurrences in lung adenocarcinoma, mesothelioma,110 pancreatic cancer,51,53 

and ovarian cancer.66  

 

Mesothelin over-expressing cancer cell lines proliferate faster than their mesothelin-

deficient counterparts, both in vitro and in vivo in mouse xenograft models. In lung cancer 

cell lines, mesothelin positive cells proliferated 2-3 times faster than mesothelin negative 

cells.51–53 IL-6, an inflammatory chemokine, is thought to be a mediator between 
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mesothelin and some of the associated aggressive behaviors. IL-6 promotes cell growth, 

chemo-resistance, anchorage-independent cell growth, and invasiveness111,112 and is 

over-expressed in MSLN-expressing pancreatic cancer cells.51,112 Cyclin E, a cell cycle 

regulator that promotes the G1/S phase transition, is frequently dysregulated in cancer 

cells,113 and mesothelin may contribute to increased proliferation rates by inducing cyclin 

E overexpression through an IL-6/Stat3 pathway.114 

 

Tumor mesothelin expression has also been linked to increased invasion and 

migration in vitro, which translates to increased metastatic ability in vivo. In vitro, induced 

overexpression of mesothelin increased invasion and migration in lung and pancreatic 

cancer cell lines,51–53 and mesothelin-induced increases in matrix metalloproteinase 

(MMP) expression have been linked to increased invasiveness in ovarian cancer cells.109  

 

Increases in invasion, migration, and metastases may be the result of mesothelin-

related changes in cellular adhesion.115,116 Interactions of mesothelin with the ovarian 

cancer antigen CA-125 have been described, and these interactions are thought to 

potentiate the spread of ovarian cancer to the peritoneal lining.51,117 In a mouse model of 

kidney tumors, mesothelin expression increased cell adherence to collagen coated 

plates, while mesothelin inhibition decreased adherence to collagen.115,118  

 

In both physiologic conditions and tumor samples, mesothelin expression has been 

primarily localized to the apical membrane of the cells.108,117,119–123 In invading tumor 

specimens, this can correlate to the leading edge of the tumor. Although the physiologic 
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function of mesothelin is not known, the apical localization, taken together with what is 

known about mesothelin over-expression, suggests that mesothelin could have a role in 

the barrier functionality of mesothelial linings.  

 

Prevalence in Cancer. MSLN is overexpressed in approximately 30% of human cancers; 

however, the prevalence varies depending on the cancer type.50 An excellent summary 

of MSLN expression in human cancers is presented in Mesothelin targeted cancer 

immunotherapy.124 

 

Lung Adenocarcinoma. MSLN is commonly expressed in lung adenocarcinomas, 

including stage 1 patients.52 In an analysis of 1252 patient samples, 69% of patients 

had detectable levels of MSLN in tumor, with no MSLN staining in normal lung tissue 

or tumor stroma.52 The same study found that MSLN was an independent predictor of 

relapse and overall survival, and higher MSLN expression was associated with both 

male sex and a positive smoking history.  

 

When patient tumors were analyzed, it was found that lung cancer samples 

seemed to have more intracellular MSLN than ovarian cancers, mesotheliomas, and 

normal mesothelial cells. The lung cancers were also noted to have more mesothelin 

precursor protein than other cancer types.54 Strong cytoplasmic and membranous 

staining was also noted by Kachala, et al.52 
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Mesothelioma. Mesothelin is highly expressed by nearly all mesotheliomas.50,51 

However, the SMRP is only detectable in 40-70% of patients,50,66 making it of 

questionable prognostic value. It has been noted that SMRP levels are higher in 

advanced-stage patients than early-stage patients.125,126  

 

Ovarian Cancer. Mesothelin is overexpressed in approximately 70% of ovarian 

cancers and contributes to decreased progression-free and overall survival.51,66,107,127 

Higher levels of tumor mesothelin expression have also been correlated with 

chemotherapy resistance.107 CA-125 is often co-expressed with mesothelin, and co-

expression results in worse outcomes than either antigen alone.110  

 

Other Cancers. Mesothelin overexpression has also been documented in uterine 

serous carcinoma,51 acute myeloid leukemia,51 cholangiocarcinoma,51 squamous 

carcinomas of the esophagus and cervix,128 pancreatic adenocarcinoma,50,51 and 

triple negative breast cancers.50  

 

Mesothelin as Therapeutic Target.  

 

SMRP as Cancer Biomarker.  

 

SMRP is released into systemic circulation when the mesothelin precursor protein is 

cleaved to generate mature mesothelin. Since it is easily detectable in patient plasma, 

using commercially available ELISA kits, its potential as a clinical cancer biomarker has 

been investigated.50,129  Serial SMRP levels could, theoretically, be used as a non-
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invasive tracking tool to monitor for response to treatment and disease 

relapse.50,51,53,66,110 SMRP has been detected in patients with mesothelioma,50,110,129  

pancreatic cancer,51,53  and ovarian cancer,66 but it is currently of debatable clinical 

utility.50,129,130  

 

Therapeutic Targeting: Mesothelin Antibodies and Vaccines 

 

Mesothelin-targeted immunotherapies have been developed using both immunotoxins 

and mesothelin vaccines.124,127 Ongoing clinical trials, targeting mesothelin through 

immunotherapies, have not resulted in adverse effects and the therapies have not 

damaged normal tissues.50  

 

SS1P: Mesothelin Immunotoxin 

 

The anti-mesothelin immunotoxin SS1P utilizes a recombinant anti-mesothelin 

antibody linked to a truncated Pseudomonas exotoxin to target cell-surface mesothelin.124 

SS1P binds to mesothelin on the cell surface, is internalized via clathrin-coated pits, and 

the exotoxin is freed during endosomal processing. The toxin migrates to the endoplasmic 

reticulum and inhibits elongation factor-2, leading to inhibition of protein synthesis and 

cell death. Initial studies demonstrated the in vitro cytotoxicity of SS1P against tumor cells 

from patients with mesothelioma and ovarian cancer.131–133 In mice, SS1P induced the 

complete regression of human epidermoid carcinoma tumor xenografts.131,134 Additional 
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mouse studies demonstrated that SS1P can act synergistically with radiation and 

chemotherapy, including paclitaxel, cisplatin, and cyclophosphamide.124,131,135,136 

 

In a phase I dose escalation study, minor tumor responses were noted in 4 patients 

while stable disease was achieved in 19 (56%) patients.124,131 The major adverse effect 

was minor, self-limiting pleuritis from SS1P binding to the mesothelin present on normal 

mesothelial cells. The limited success of SS1P in clinical trials was attributed to patients 

developing antibodies to the immunotoxin. A follow-up study treated patients with 

chemotherapy refractory mesothelioma with pentostatin and cyclophosphamide, in 

addition to SS1P, to delay the development of anti-SS1P antibodies.137  Of the ten 

patients in the study, 3 experienced major tumor regressions and 2 responded to 

chemotherapy after treatment with the immunotoxin. This improvement is considered 

significant in light of poor prognosis associated with the patients’ disease state. Stronger 

anti-tumor activity is possible if SS1P is given intraperitoneally, particularly when treating 

ovarian cancer or peritoneal mesothelioma, or given in combination with chemotherapy 

or radiation.131  

 

Mesothelin Vaccines 

 

Anti-mesothelin immune responses have been detected in cancer patients, leading to 

the hypothesis that an immune response to mesothelin could be induced via 

vaccination.124,138 Antibodies against mesothelin are present in many patients with 
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mesothelioma and ovarian cancer, while anti-mesothelin T-cell responses have been 

noted in patients with pancreatic cancer.66,124 

 

CRS-207, a mesothelin cancer vaccine using live attenuated Listeria monocytogenes 

as the vector, is in phase I testing in patients with carcinoma and liver metastases.124 

Vaccination of both mice and monkeys with CRS-207 elicits a human-specific T-cell 

response, and anti-tumor activity has been demonstrated in mice. 

 

MORAb-009 is a monoclonal antibody targeting mesothelin that induced a moderate 

response against mesothelin-expressing tumors in a phase I clinical trial.139 Of the 24 

patients enrolled, 11 achieved stable disease.  In vitro, MORAb-009 was cytotoxic as a 

single agent to mesothelin-expressing cancer cells and synergistic cytotoxicity was seen 

when it was used in combination with gemcitabine and paclitaxel.139,140 MORAb-009 also 

reduced the adhesion between mesothelin-expressing cells and CA-125.140  
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1.1 Evaluating Nanotoxicity  
 
1.1.1 Introduction to Nanoparticles 

 

Nanoparticles (NPs) are 1 to 100 nanometers (nm) in at least one dimension.141–145 

The small size of the NPs confers unique properties when compared to the same material 

in bulk, including changes in color, solubility, electrical conductivity, and magnetic 

properties.144–146 In addition, NPs have a large surface area to volume ratio, which 

increases their surface reactivity.141,144,146 The unique physical and chemical properties 

of NPs have resulted in their rapid incorporation into a variety of consumer goods. 

Additional industrial, technological, and biomedical applications are the focus of ongoing 

research.  

 

NPs used in commercial products include silver NPs in clothing,142 titanium dioxide 

(TiO2) in cosmetics, sunscreens, and food packaging,144 and carbon nanotubes (CNTs) 

in sports equipment and micro-electronics.147 Superparamagnetic iron oxide 

nanoparticles (SPIONs) received FDA approval for use as MRI contrast agents148–151 and 

for the treatment of anemia in patients with chronic kidney disease.150,152 The 

development of NP-based biosensors, imaging modalities, and targeted and 

multifunctional therapeutics is an area of active research.145,153,154 

 

Despite the widespread incorporation of NPs into consumer goods, their toxicity is 

not well understood.141–144,155,156 It has been demonstrated that bare NPs are often more 

toxic than equivalent doses of bulk material, perhaps as a result of the increased surface 
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area to volume ratio.141,144,146 For example, nano-sized TiO2 induces more pulmonary 

inflammation than larger particles at the same dose.144 However, coated or functionalized 

NPs, when appropriately designed for biological purposes, are considered 

biocompatible.143,145,154,157–161 

 

These contradictory safety reports have impeded the incorporation of NPs into 

additional goods and technologies. The ability to draw conclusions from much of the 

existing research into NP biocompatibility is limited because of a lack of standardization 

in NP characterization, doses, exposure routes, and toxicity metrics.141–144 NPs can also 

interfere with many of the standard toxicity assays.142,144,155,156,162,163 Understanding the 

relationship of particle NP composition and physical properties to toxicity, biodistribution, 

clearance, metabolism, and mechanisms of toxicity will pave the way for clear 

occupational safety standards and the introduction of biocompatible engineered NPs for 

clinical use. However, overcoming the obstacles associated with achieving this 

understanding will require a shift from traditional approaches to toxicity testing.  

 

1.1.2 Nanoparticle Toxicity  

 

Determination of NP toxicity introduces new challenges compared to evaluating the 

toxicity of small molecules or larger particles. Although NPs are not a singular class for 

toxicity purposes141 - in fact there are dramatic variations in the toxicity of NPs within the 

same class when physical properties are altered – the challenges of assessing 

nanotoxicity are consistent across all NP types and applications.141,143 The lack of 
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standardization in NP characterization and toxicity assessment has impeded the ability to 

compare and parse the often contradictory conclusions reported in the literature.141–

144,164,165 Additionally, NP toxicity studies are rarely reflective of real world exposure 

conditions.141,155,165 Relevant particle size distribution and impurities, doses, exposure 

routes, and incubation times are often difficult to discern141–143,166 and NPs can interfere 

with many standard toxicity assays.142,144,155,156,162,163 Although the need for validated 

models of NP characterization and toxicity assessment has become apparent,141,144,162,167 

such models do not yet exist.  

 

1.1.3 Role of NP Physical Properties 

 

NP toxicity, and the mechanism of that toxicity, is influenced by particle physical 

properties, including particle size, shape, aspect ratio, hardness, composition, surface 

area, surface chemistry, coatings and modification, and stability in solution.141,146,155,162,164 

When NPs are engineered for biomedical applications, the final system properties are 

chosen to direct in vivo distribution and accumulation while minimizing clearance and 

toxicity.153,168 On the other hand, NPs involved in occupational or environmental are 

engineered to maximize industrial performance and ease of synthesis, without regard for 

biocompatibility. As a result of the relationship between NP physical properties and 

toxicity, NPs used in toxicity assessments need to be fully characterized.141,146 The 

relationship of physical parameters to biocompatibility of biomedical NP platforms is 

discussed in Section 1.1.3 (Role of NP Physical Properties), while the relationship of CNT 
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physical properties to toxicity is discussed in 1.3.3 (Role of CNT Physical Properties in 

Toxicity).  

 

1.1.4 In Vitro Toxicity Assessment 

 

Much of the work evaluating the biocompatibility of NPs has been carried out in vitro. 

In vitro assessments are used as a first-line screening approach because they can be 

carried out faster, and with less expense, than in vivo studies.155 In vitro toxicity is often 

quantified by measuring changes in cell proliferation, viability, membrane integrity, and 

cell functions that would be impacted by the NPs mechanism of action, like ROS 

generation and DNA damage.141,143,155 In vitro studies also allow for quantification of NP 

uptake, determination of the mechanism of uptake, and intracellular localization.142,162,169 

However, NPs have been noted to interfere with a number of traditional toxicity assays, 

including the several widely utilized measures of cell viability and membrane integrity 

(Table 2).142,156,162 As a result, it is recommended that multiple assays are used to validate 

in vitro results.162  

 

Unfortunately in vitro test conditions are not always reflective of in vivo results or real 

world exposures.142,165 For example, unrealistically large NP doses are often used in 

single-dose treatments to simulate long-term occupational exposures and 

accumulation.146,155,166 Thus, many of the in vitro screenings are cursory looks at changes 

in cell viability, proliferation, or apoptosis after acute, high-dose exposures141,143,155,170,171 

When NPs are intended for use as therapeutics these measures might be reflective of 
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actual exposures (controlled dose of a well-described material), but for occupational 

exposures chronic, low-dose exposures are more likely.171 To overcome some of these 

limitations, chronic in vitro exposure models have been developed that account for longer 

term, lower dose occupational exposures like those associated with CNTs.172,173 

 

1.1.5 In Vivo Toxicity Assessment 

  

In vivo exposure models are used to determine NP biodistribution, clearance 

mechanisms, and systemic and target organ toxicity.155 In vivo models overcome the 

limitations that arise in vitro from the use of single-cell types, limited exposure times, and 

artificially high NP accumulation when NPs settle on cultured cells.142 NP distribution can 

be assessed from organ analysis or radiolabeled or fluorescently-tagged NPs can be 

used for real-time in vivo tracking.155 However, radio- or fluorescent labels can change 

the surface properties of the NPs and affect their distribution and clearance. Systemic 

toxicity can be monitored through changes in blood composition, changes in serum 

proteins that would signify target organ damage, or changes in inflammatory mediators. 

 

1.1.6 Dosing NPs for Toxicity Evaluations 

 

Determining appropriate NP dosing is problematic in both in vitro and in vivo studies. 

Complex, multi-functional NP systems challenge traditional dosing paradigms, as all 

components, and their relative amounts, orientations, and effects on the NP systems 

physical properties, must be taken into account. Thus, fully elucidating the composition 
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of complex NP systems is critical to obtaining meaningful, reproducible, dose-dependent 

toxicity data. CNT inhalation exposure is a major concern in industrial settings.146,174–176 

CNTs used in industrial applications are typically mixtures containing a variety of particle 

shapes, sizes, agglomeration states, and metal impurities.141,142,155,163,177 This variety is 

difficult to mimic during laboratory testing, but a thorough evaluation of the particles that 

are being tested will allow for more informed extrapolation to real world conditions. NP for 

use in biological systems as contrast agents, drug delivery vehicles, or biosensors, are 

often coated and functionalized to improve biocompatibility, circulation time, and 

therapeutic efficacy.143,145,153,154,177,178  The addition of these coatings and functional 

ligands creates a complex, multilayer system composed of combinations of surfactants, 

amphiphilic polymers, linker molecules, fluorescent dyes, and biomolecules surrounding 

the NP core. In this conditions, the relative amounts of the components become 

important. Ideally the components will combine in constant ratios, allowing consistency in 

dosing across batches regardless of the dosing measure, but such consistency is rare 

even in commercially available products.   

 

1.1.7 Dosing Considerations: NP Quantification & Dosing Metrics 

 
Many NPs for biological applications, including SPIONs, contain several organic 

layers built around a metal oxide core. While quantification of the various components 

within a given sample is possible, there is no way to ensure that each particle is uniformly 

coated or functionalized. Although the variation likely averages out over a large enough 

dose or sample size, the inherent heterogeneity and complex makeup necessitates 

careful consideration of the appropriateness of the chosen dosing measure. Commonly 



 

  39 

used dose measures include concentration of the metal in the core,179–181 particle 

mass,182,183 or molarity.157,159 When therapeutic ligands, such as ASO,184 aptamers,185 

antibodies,160 or targeting molecules like folate186–190 are present, their concentration 

should also be considered. In many situations, the most appropriate dosing measure will 

be a combination of two or more measures, ensuring that all relevant components are 

accounted for.  

 

Although mass and molarity are the most obvious dosing methods, particularly from 

the viewpoint of conventional toxicity assessments, their use with complex, multi-

functional NP systems has a number of disadvantages. The major disadvantage to mass-

based dosing is that particle coating and functionalization has a significant impact on 

mass. As a result, equivalent masses of bare, coated, or differently functionalized NPs 

would contain drastically different numbers of particles. In one study dosed by mass, the 

bare NPs were 75% core and 25% surfactant by mass, while the coated particles were 

15% core and 85% surfactant/coating.182 Consequently, cells treated with the bare NPs 

were exposed to 5 times more particles than cells treated with coated particles. Thus the 

use of mass as a dosing metric makes it difficult to determine if any observed differences 

are the result of the change in composition or the vastly different number of particles 

between the two samples.   

 

Dosing by molarity assumes that the composition of the NP system is consistent, 

which it rarely is, and then the mass of a mole must be calculated or defined; however, 
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when molarity is used in NP toxicity assessments, it is almost never explained how a mole 

of the NP-platform was defined.  

 

When NP doses are calculated by the concentration of the metal in the particles core, 

the number of NPs is kept consistent regardless of the coatings. This overcomes one of 

the major limitations of dosing by mass. However, inconsistent amounts of coatings or 

ligands are not accounted for. In addition, determining the metal concentration of a 

sample is destructive and may require an impractically large sample size when NPs are 

functionalized in small batches.  

 

If NPs are functionalized with an easily quantifiable therapeutic ligand, like an ASO, 

the ligand concentration can be used to keep the expected effect constant. Dosing based 

on ligand concentration allows for comparisons to previous studies of the ligand alone, 

for example the efficacy and timing of a naked ASO can be compared to a NP-ASO 

conjugate. In cases where the ligand does not couple consistently to the NP platform, 

dosing in this manner can help normalize data to the actual amount of ligand.  

 

In an ideal scenario, several of these measures would be combined to allow for 

consistent, reproducible, and easily explained NP dosing. Consistent relationships 

between NP components would allow one measure to be used, while the relative amounts 

of the remaining components could be calculated for comparison across studies. For NPs 

with inconsistent ratios of components, measuring and reporting the relative amounts of 

all components will allow for more meaningful comparisons between studies and will 
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contribute to improved understanding of the roles of various components in toxicity and 

therapeutic effects. Fully described NP systems will help overcome initial limitations in 

interpreting nanotoxicity literature, where incomplete characterization reports144 and 

inconsistent dosing made it nearly impossible to compare experimental results.141,155,173  

 

1.1.8 Dosing Considerations: Modeling Real World Exposures 

 

For occupational exposures, dosing and exposure routes should be chosen to closely 

approximate real world human exposures.141,165 In determining test dosages, 

occupational exposure limits, documented human exposures, and the time course of the 

exposure should be considered. In addition, conversions from in vitro to in vivo exposures 

should account for exposed surface area rather than relying on solution concentrations.166 

When modeling chronic NP exposure in vitro, long-term exposure to low-doses172,173,175 

may be more representative than a single large dose.166  

 

1.1.9 Strategies for Evaluating NP Toxicity 

 

It is already impossible to avoid exposure to NPs and their incorporation into everyday 

products is rapidly increasing. Developing methods for thorough, reliable evaluation of 

NP acute and long-term toxicity is critical to harnessing their full potential for industrial 

and biomedical applications. However, evaluating the toxicity of NPs requires critical 

evaluation of suitability of standard approaches.  
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Quality control during NP synthesis and functionalization is of the utmost importance, 

as intra- and inter-batch variation can have a dramatic impact on observed toxicity. In 

addition, NPs are often synthesized under non-sterile conditions, resulting in frequent 

contamination with bacteria or endotoxin that can cause false positives or increases in 

observed toxicity and inflammatory responses.144,191  Once the NPs are properly 

formulated, their stability in storage solutions must be monitored.145,146 During biological 

testing, changes in NP aggregation or solubility can arise from changes in pH or 

interactions with biomolecules in culture media.191 The adsorption of proteins from culture 

media can also affect particle uptake or toxicity, meaning that culture conditions need to 

closely approximate actual exposure conditions.145,153,169 The interplay between the 

physical properties of the NPs and their storage or treatment conditions necessitates 

monitoring for quality control through the NPs entire laboratory lifespan. The optimal 

conditions for each NP formulation may vary, meaning a one size fits all approach to 

evaluating toxicity will have little relevance.  

 

The generation of meaningful, relevant nanotoxicity data will require approaches that 

integrate knowledge of the NP chemical and physical characteristics with the biological 

test conditions and the mechanisms behind toxicological assays. The current paradigm 

of purchasing a compound and testing it as is, which works for small molecules, needs to 

shift to one with improved access to and understanding of quality control measures and 

monitoring. The lack of characterization data is most apparent in NPs engineered for 

biomedical applications, where there is hand-off from the scientists who prepare the NPs 

to those who test them. It seems that there are well-characterized NPs where the 
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biological applications are an afterthought, or detailed biological experiments where little 

consideration is given to the NP design, properties, or dosing.  

 

Improvements in the determination and reporting of the physical properties of these 

complex NPs will require increased collaborations between fields. Continued 

communication between the scientists who make the NPs and those who test them can 

also help identify or resolve problems with assay interference before miscalculated results 

are released. The ongoing communication, full NP characterization, and ensuring 

formulation consistency will initially increase the time required for NP toxicity 

assessments; however, the improvements will eventually save time and money by 

reducing the conflicts and confusion surrounding published toxicity data.   
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1.2 SPION-Based Therapeutics 

 
1.2.1 NP Therapeutics 

 

There has been great interest in the development of NP-based agents for drug 

delivery and diagnostics, particularly in fields like oncology where there is an undeniable 

need for improved efficacy with reduced side effects.152,153 Many current therapeutic 

agents have low solubility, low stability, and are rapidly cleared from circulation. Rapid 

clearance necessitates frequent administration to maintain therapeutic concentrations.153 

Conjugation of these drugs to polymers can improve circulation half-life, reducing the 

frequency of administration. Generally, untargeted NPs will accumulate passively in 

tumors or areas of inflammation due to leaky vasculature and poor lymph clearance. The 

addition of biomolecules or targeting ligands can increase therapeutic efficacy or increase 

accumulation in target tissues.150,186,192–196 To those ends, NPs can be functionalized with 

DNA or RNA oligonucleotides, peptides, antibodies, fluorescent dyes, polymers, or 

drugs.145,150,186,192–196 However, NP functionalization changes particle size, surface 

charge, hydrophobicity, and biodistribution, so toxicity assessments will require the final, 

fully characterized NPs.  

 

1.2.2 Therapeutic NPs: Design Considerations 

 

NPs for therapeutic applications must be carefully designed to evade normal 

clearance mechanisms. Typically hepatic filtration removes large particles, while renal 

filtration removes small particles.152,153 In addition, NP interactions with various plasma 
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proteins can drive rapid clearance.142,144,145,162,191 NP coatings, including poly(ethylene 

glycol), and surface functionalization can be strategically chosen to minimize undesirable 

plasma protein interactions and maximize distribution to target tissues and cellular 

internalization.145,150,151,153 Thus careful engineering of particle size, shape, and surface 

charge improves biocompatibility and circulation half-life while contributing to increased 

therapeutic efficacy.  

 

1.2.2a NP Size  

 

When NPs are engineered for biomedical applications, the final system dimensions 

are chosen to direct in vivo distribution and accumulation while minimizing unwanted 

clearance.153,197 Ideally NPs for intravenous (IV) administration should be 10-100 nm. NPs 

that are less than 10 nm are rapidly filtered by the kidney, while those larger than 100 nm 

are cleared via the liver and spleen. When NPs are intended to accumulate in target 

tissues, their ability to exit circulation also needs to be considered. Normal blood vessels 

are tightly sealed, but the rapid growth and inflammation associated with tumors results 

in porous vasculature that allows NPs up to 400 nm to extravasate.  

 

1.2.2b Minimizing Plasma Protein Adsorption  

 

NPs are also rapidly cleared from the circulation by phagocytic cells such as 

macrophages. Phagocytic clearance is stimulated by the adsorption of specific plasma 

proteins to the NP surface.142,144,145,153,162 The addition of inert, biocompatible surface 
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coatings, like poly(ethylene glycol) (PEG), dextrans, or synthetic block co-polymers 

increases circulation half-life by reducing plasma protein interactions and, thus, 

minimizing clearance by macrophages.145,150,151,153,154 Without modification, most NP drug 

carriers are cleared from circulation within minutes.154 When neutral, hydrophilic coatings 

are employed, half-life can be extended to upwards of 2 hours.154 

 

1.2.2c NP Surface Charge 

 

NP surface charge also affects particle uptake, internalization mechanism, and 

intracellular distribution, even after controlling for NP size and shape.169 In general, 

positively charged particles have a higher rate of cell uptake compared to negative or 

neutral surface charges.153,169,198 However, positively charged NPs are also more 

cytotoxic than NPs with negative or neutral surface charges.157 Differences in uptake 

mechanism have been noted in vitro, where positively charged NPs accumulate quickly 

on cell surfaces, likely due to electrostatic interactions with the negatively charged cell 

surface proteins, and are taken up via adsorptive endocytosis in a concentration-

dependent manner.169 NPs with a negative surface charge, that were otherwise of similar 

size, shape, and composition to the positively charged ones, were taken up at a steady 

and constant rate, independent of their membrane concentration, by common 

endocytosis. In vivo, NPs with a positive surface charge have higher rates of non-specific 

internalization, perhaps due to their electrostatic attraction for the negatively charged cell 

membrane proteins, and have a shorter circulation half-life.153 NP surface charge also 

indirectly affects in vivo uptake and distribution, as positive and negatively charged NPs 
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have different plasma protein interactions. Negatively charged NPs are more likely to 

interact with proteins that have specialized cellular uptake mechanisms.169,191  

 

1.2.3 NP Targeting 

 

When no targeting mechanisms are employed, intravenously administered NPs that 

evade clearance will distribute primarily to the liver, spleen, kidneys, and tissues with 

leaky vasculature, which includes tumors and areas of inflammation.152,154,199 This 

passive distribution is affected by changes in NP size and surface charge, as the major 

driving force in the distribution pattern is size-dependent extravasation through vascular 

fenestrations and size-dependent clearance by the liver, spleen, and kidneys.150,192 

Improved control over NP localization can be achieved with surface functionalization.  

 

Conjugation of the NP with ligands targeting tumor specific cell-surface receptors, 

proteins, or uptake reduces non-specific uptake and enhances concentration at target 

tissues.145,153,192 For example, folate-conjugated NPs were taken up by tumors at a 

greater rate than surrounding tissue.160,186–190,200 The addition of an aptamer targeting 

prostate-specific membrane antigen (PSMA) to a doxorubicin-loaded SPION created a 

system that was cytotoxic only to PSMA-expressing cells.185 Antibodies are also highly 

specific and can significantly increase accumulation within target tissues.145,201,202 

However, antibodies require proper conformation and orientation to recognize their 

targets. Conformation and orientation are difficult to maintain or guarantee during the 

coupling process. In addition, antibodies are immunogenic and may stimulate an 
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undesirable increase in particle clearance.154 Consequently, whole antibodies are not 

typically used; rather, when antibodies are employed, small fragments containing the 

variable region are used instead.154 

 

1.2.4 NP Surface Modification Strategies 

 

NP therapeutics are generally complex, with multiple layers surrounding the NP core. 

For SPIONs, the NP core is typically coated in a surfactant, like oleic acid, which is then 

coated with an amphiphilic polymer to improve aqueous solubility and provide reactive 

sites for further functionalization.145,150,176,203,204 Commonly used coatings include 

poly(acrylic) acid,205–208 poly(ethylene) glycol (PEG),186,194,195 or dextran,209,210 all of which 

are hydrophilic and accepted as biocompatible.145,153,154,158,181,203,211 Targeting or 

therapeutic molecules can then be conjugated to the polymer coating.150,186,192–196 

Surface ligands are added to NPs through both covalent and non-covalent attachment 

mechanisms.145 Although the type of attachment can influence the biological effects, the 

preferred mechanism is highly dependent on the ligand being attached and the system in 

which it will be used.145,212,213 Protocols for NP functionalization vary wildly, as many 

particle-specific factors need to be considered, including stability of the NP, functional 

groups, conjugation catalyst, solvent choice, and the biomolecule being attached. For 

multi-functional NPs, hydrophobic drugs can be loaded into the hydrophobic surfactant 

layer surrounding the NP core.214,215 

 

Covalent Attachment 
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Covalent ligand attachment is often achieved via 1-ethyl-3-(3-dimethylaminopropyl)-

carbodiimide (EDC) catalyzed amide bond formation between an amine terminal ligand 

and an outward facing carboxylic acid on the NP coating.145 Carbodiimides activate 

carboxylate anions to an O-acylurea intermediate in the condensation reaction between 

amines and carboxylic acids. Then the amine can attack the intermediate to form an 

amide or another carboxylate can attack to generate an anhydride, which is then attacked 

by the amine.216  

 

EDC is a popular choice for NP modification because it is water soluble, the excess 

reagent is easy to remove, and the reaction can take place at room temperature.145,217–

220 However, despite being one of the most common strategies for NP functionalization, 

the protocols,221,210,222–225 and success rates, for EDC-mediated attachments vary 

significantly.145,218,221,226 Further complicating matters, EDC initially gained wide 

acceptance for its ability to form amide bonds on surfaces, and adaptation of the surface 

modification protocol for use with NPs in solution requires additional consideration.218,221 

For example, in many cases excess EDC causes NP aggregation or 

precipitation,222,145,208 possibly because the positively charged activated EDC molecules 

neutralize the negative charges of the carboxyl groups that are keeping the particles 

suspended.145  

 

The use of EDC for both surface and NP modification requires careful consideration of 

the reaction conditions. Controlling reaction pH is critical, as only the protonated form of 



 

  50 

EDC participates in reactions. With a pKa of 3.5, EDC is most active in acidic conditions 

(pH <4).217 The pKa and ideal reaction pH for the moieties being linked should also be 

considered. Once EDC is added to the reaction, timing is also critical as EDC rapidly 

hydrolyzes in aqueous solutions.216,217 Given the proclivity of EDC to hydrolyze in the 

presence of water, the use of properly stored reagent and freshly prepared EDC solutions 

is imperative. This could contribute to the reported inconsistencies in EDC efficiency and 

reaction concentrations. EDC is readily available in large quantities, particularly relative 

to the amounts needed for small-scale reactions, and the water sensitivity of the reagent 

would allow for degradation with time, repeated container opening, or improper storage 

conditions. As a result, larger quantities of reagent would be needed the longer the 

container is open.  

 

Non-Covalent Attachment 

 

Non-covalent attachments include electrostatic, hydrophobic, and affinity 

interactions.145 Although non-covalent interactions can be easier to induce than covalent 

linkages, they are less stable and offer less control of binding ratios and ligand orientation. 

Even so, hydrophobic interactions are frequently employed to orient polymer coatings on 

surfactant-coated NPs. When amphiphilic polymers are used, it is assumed that the 

hydrophobic side chains will associate with the NP surfactant, forcing the polymer 

backbone to form shell around the NP with the hydrophilic moieties facing outwards.208 

The hydrophobic surfactant layer can be loaded with hydrophobic drugs, like 

docetaxel.145,215  At the particle surface, the outward facing functional groups of the 
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polymer are charged in many aqueous solvents. The reactivity of these groups, typically 

carboxylic acids or amines, and thus their affinity for interacting with molecules of the 

opposite charge, can be mediated by adjusting the solvent pH.145 DNA, siRNA, and 

proteins can be adsorbed to the charged NP surface through electrostatic interactions. 

145,198 

 

1.2.5 SPIONs as Multi-Functional Therapeutics 

 

SPIONs, which are nano-sized maghemite (γ-Fe2O3) or magnetite (Fe3O4),143,145 have 

been investigated for a variety of biomedical applications, including many multi-functional 

platforms that exploit the magnetic properties of the particles in addition to their 

biocompatibility.148,152,154,157,158,227 Because SPIONs are superparamagnetic, they are 

magnetic when placed in a magnetic field, like an MRI, but do not retain that 

magnetization when the field is removed.228 Their strong magnetization when in a 

magnetic field allows them to function as MRI contrast agents, while the lack of 

magnetization in the absence of a magnetic field keeps the SPIONs from agglomerating 

during storage or circulation.143,145 

 

SPIONs have been investigated for a variety of biomedical applications, including roles 

in drug delivery platforms,152,195,227 MRI contrast agents,148,152,195 and magnetic 

hyperthermia.152,197 Ferumoxytol (FeraHeme), a dextran-coated SPION formulation, has 

received FDA approval for use a treatment for anemia in patients with chronic kidney 

disease.149,150,157,229 While there is some debate surrounding the biocompatibility of bare 
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SPIONs,143,154,157,181 coated SPIONs are considered biocompatible and are attractive 

platforms for biomedical technologies.143,150,152,154,181 In addition, SPIONs are considered 

easy to functionalize, making them an ideal base for multi-functional 

theranostics.152,160,192,195,214  

 

1.2.5a SPION Therapeutics 

 

SPION therapeutics are generally complex, with multiple layers surrounding the SPION 

core. Typically the SPION core is coated in a surfactant, like oleic acid, which is then 

coated with an amphiphilic polymer to improve aqueous solubility and provide reactive 

sites for further functionalization.145,150 The polymer coatings also improve circulation half-

life, as bare SPIONs are rapidly cleared,154 and enhance biocompatibility.33,154,158,181,211 

Targeting or therapeutic molecules are then conjugated to the polymer coating.150,186,192–

196 Hydrophobic drugs can be loaded into the hydrophobic surfactant layer surrounding 

the SPION core.160,185,214,215,230–233 

 

Intravenously administered SPIONs, without specific targeting ligands, primarily 

accumulate in the liver and spleen but can also be found in the heart, lungs, kidney, brain, 

stomach, small intestine, and bone marrow.152,161,199,234 The distribution of SPIONs 

through the body, including into the brain, demonstrates their ability to penetrate a variety 

of target tissues when used for drug delivery or diagnostic purposes. SPIONs also 

accumulate passively in tumors due to leaky vasculature and poor lymph clearance, and 
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the addition of targeting ligands can further enhance accumulation in target 

tissues.150,186,192–196 

 

Once SPIONs are taken up by cells, they are metabolized to elemental iron.150,152  

SPIONs are degraded within lysosomes to elemental iron, which is released to the 

cytoplasm and handled by normal iron regulatory mechanisms.152,154,235,236 There has 

been some concern that the elemental iron could contribute to target organ toxicity via 

the generation of ROS through the Fenton reaction or iron accumulation leading to iron 

overload.143,152 In reality, however, the amount of iron introduced from SPION 

therapeutics is small compared to the normal blood iron stores.154,235,236 The success of 

Ferumoxytol, an FDA-approved SPION-based intravenous treatment for chronic iron 

deficiency anemia, demonstrates the effective in vivo metabolism of SPIONs and their 

biocompatibility.149,229 

 

1.2.5b SPIONs as MRI Contrast Agents 

 

MRI is a sensitive imaging technique that does not involve radiation or radioactive 

tracer dyes, like PET or CT scans. However, MRI does not have cellular level resolution. 

Currently gadolinium (Gd) based contrast agents are used to improve resolution, but 

gadolinium causes severe complications, including nephrotoxicity, in a subset of 

patients.150 SPION-based contrast agents can act as T2-enhancing contrast agents to aid 

in the identification of lesions, like tumors and metastases, without the toxicity of 

gadolinium.154,160,161  
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SPIONs passively accumulate in the liver, spleen, tumors, and areas of inflammation, 

and their magnetic properties allow for easy, non-invasive detection of their in vivo 

distribution with MRI.154 T2 signal in the liver and spleen is decreased within minutes of 

intravenous SPION administration.150,154 As SPIONs leak out of circulation they drain to 

the lymphatic system, allowing for lymph node imaging.154 Dextran-coated SPIONs can 

remain in circulation for nearly 2 hours, lending utility as blood-pool contrast agents.154 

Conjugation of targeting ligands further increases SPION concentration, and thus contrast 

enhancement, in tumors and target tissues.150,154,192 However, the strong magnetic 

response of uncoated SPIONs can be reduced when organic coatings and surface 

modifications are present, which should be considered when designing heavily-modified 

multi-functional SPION platforms.158  

 

1.2.5c SPIONs as Drug Delivery Vehicles 

 

Systemic administration of drugs typically requires large drug doses to achieve 

therapeutic concentrations in target tissues. The inability of drugs to accumulate 

specifically in target tissue is a significant obstacle in cancer treatment because dose-

limiting systemic adverse effects can occur before therapeutic concentrations are 

reached.237 Delivery systems that direct drugs to, or facilitate drug release in, tumors can 

improve therapeutic efficacy and reduce off-target effects. SPIONs are biocompatible and 

passively distribute to tumors in vivo, making them a popular choice for drug delivery 

platforms.150,152,154,186,192–196 SPIONs are also compatible with a variety of coatings and 



 

  55 

functionalization techniques, allowing modifications that can improve targeting, 

biocompatibility, or deliver multiple drugs at once.152,160,192,195,214  

 

Therapeutic agents can be incorporated into SPIONs in a number of ways.192 

Antisense oligonucleotides (ASO), antibodies, or enzymes are often covalently linked to 

the outer surface of the particle.150,189,238–240 Lipophilic drugs like paclitaxel160,215 or 

doxorubicin185,230–233 can be loaded into a surfactant layer between the SPION core and 

the polymer coating. Drugs can also be attached through links that are readily cleaved in 

response to changes in pH230,231,233 or tissue-specific enzymes.237 Additionally, 

combinations of drugs can be used to target multiple cancer pathways simultaneously or 

one agent can be used to sensitive the cancer cells to the other.160  

 

SPIONs, and other NPs, functionalized with ASO are able to overcome many of the 

obstacles that preclude in vivo use of therapeutic oligonucleotides. When the surface of 

polymer coated SPIONs was decorated with covalently linked ssDNA in vitro cell uptake 

increased significantly.240 While very few polymer-coated SPIONs were internalized, even 

at high doses, the DNA-bearing SPIONs were taken up in a dose-dependent manner. 

This is consistent with reports that gold NPs functionalized with ASO are internalized in 

significantly larger quantities than non-functionalized or peptide-functionalized controls241 

and can decrease target protein expression more efficiently than commercially available 

transfection methods.213 ASO loading onto the gold NPs is more easily controlled than 

loading onto SPIONs, and this precise control allows for comparison of the uptake and 

protein regulatory effects of NPs with varied ASO densities. NPs with more densely 
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packed ASO were taken up at higher rates than those with less ASO per NP.213,241 Similar 

ASO-gold NP systems reach glioblastomas in vivo and sensitize the tumor cells to 

apoptotic stimulants; this system is now being testing in phase I clinical trials.242 Although 

many of the proof-of-concept studies for ASO-NP systems have been carried out using 

gold NP cores, it is believed that the core material is of little significance.34 Rather, the 

dense oligonucleotide packing on the surface of the NP drives the biological effects.  

 

1.2.5d Multi-functional SPION Systems 

 

Although the SPION-based agents currently on the market each serve a single purpose 

(iron replacement or providing MRI contrast), many of the research-stage formulations 

are multi-functional.192 Carefully engineered systems can serve, simultaneously, as drug 

delivery platforms and MRI contrast agents.150,152,215,227,232,233 Other multi-functional 

systems aim to sensitize tumor cells to a drug carried within the platform.201 When 

targeting molecules are used in conjunction with the aforementioned strategies, SPIONs 

can be used to label or track tumor cells with specific features. The ability to label specific 

cells, combined with the strong magnetic response of SPIONs, allows for identification of 

small metastases using MRI instead of radiation-based imaging.150,230,237 Potential for 

drug resistance could also be identified without the need for a tumor biopsy, as 

characteristic cell surface markers like Her2 or PSMA can be targeted with SPION-

antibody conjugates.201,202 
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1.3 Carbon Nanotubes 

 
1.3.1 Carbon Nanotubes 

 

Carbon nanotubes (CNTs) are hollow tubes formed from rolled up graphene sheets.177 

Single sheets of graphene form single-wall carbon CNTs (SWCNTs) while multi-wall 

CNTs (MWCNTs) have multiple, concentric graphene layers.142 CNTs of various lengths, 

widths, and surface chemistry can be obtained by varying synthesis methods.177 As CNTs 

are considered highly amenable to functionalization, further variety can be achieved 

through surface modifications. Pristine and functionalized CNTs possess unique physical 

and chemical properties that make them of interest to scientists, engineers, and industry. 

Specifically, their light weight, high tensile strength, thermal and chemical stability, and 

conductivity have led to the incorporation of CNTs into electrodes, lithium ion batteries, 

thin film flexible electrodes, and sports equipment.142,143,164,177 The use of CNTs in 

biomedical applications, including use in drug and gene delivery,243–245 vaccinations,246 

biosensors,164,247 and tissue scaffolding,142,248 has been a popular research endeavor. As 

CNTs find their way into an increasing variety of consumer products, concerns have 

arisen about their toxicity.171,249–251 In fact, concerns about CNT toxicity are considered a 

limiting factor for their use in biomedical applications.147,177 

 

1.3.2 Carbon Nanotube Toxicity 

 

The integration of CNT in an increasing number of consumer goods creates a high 

likelihood of industrial exposures. Because CNTs are small, light, and easily aerosolized, 
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inhalation exposures are a primary concern.141,252 The toxicity of CNTs depends heavily 

on the particle physical properties, dose, exposure route, and exposure time. However, 

there is little standardization of these variables, or their reporting, across studies from 

different groups.163,251 Despite conflicting reports, it is generally agreed that CNTs are 

toxic/harmful to cells, although the degree of damage depends on physical characteristics 

including residual catalysts, aggregation state, surface chemistry, and structural 

differences.142,164,171,253 

 

A lack of standardization in NP characterization, dose determination, and toxicity 

assessment has contributed to conflicting toxicity reports.164,165 As variations in CNT size, 

shape, surface chemistry, aggregation state, synthesis methods, and dispersal 

techniques all affect CNT toxicity, inconsistencies in these variables have made it difficult 

to compare toxicity studies performed by different groups.142,143,171,253 However, at this 

point it is largely accepted that CNTs are hazardous to human health, and the 

conversation has shifted towards determining the specific effects and elucidating the 

mechanisms and time course of the damage, as well as the influence of various particle 

properties.156,252,254 

 

Many initial toxicity studies were conducted with high-dose, short-term CNT 

exposures, which are poor models of real world conditions.171,250 Low dose, chronic 

exposure models are needed to simulate most likely exposure conditions. CNTs are 

small, light, and easily aerosolized, making occupational inhalation exposures are 

considered the most likely real world exposure route.165,252 In addition, CNTs have been 
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likened to asbestos in terms of their fibrous shape, bio-persistence, and ability to induce 

pulmonary inflammation and fibrosis.164,171,249,250,252 Miscalculation of the long-term risks 

of asbestos had devastating human health and financial implications. Unfortunately the 

rapid incorporation of CNTs into consumer goods, without a full understanding of the 

human health risks, may lead to down the same path.253 Thus, improved understanding 

of CNT toxicity is needed to remediate the introduction of a potential health hazard.  

 

Acutely, inhaled CNTs cause pulmonary irritation, inflammation, and 

fibrosis.170,171,175,251,255 However, CNT bio-persistence allows for accumulation over 

time.165,174,256,257 CNT accumulation can cause direct and indirect physical and chemical 

damage to bronchial epithelial cells and pulmonary macrophages and the full extent of 

the progressive damage, particularly to DNA, can take years, or decades, to 

manifest.171,174,175,250 Asbestos-related malignancies are often detected 30-40 years 

following exposure.258 Given their physical similarities, it is reasonable to extrapolate that 

CNT-related damage could occur over a similar time frame. Despite the likely health risks, 

there are currently few studies investigating the long-term effects of chronic, low-dose 

CNT exposures, although chronic CNT exposure has been shown to induce malignant 

transformation of lung epithelial cells in vitro172,259 and promote carcinogenesis in 

vivo.174,252  

 

1.3.3 Role of CNT Physical Properties in Toxicity 

CNT structure (length, width, and aspect ratio), functionalization, and aggregation 

state are strong determinants of toxicity.248,165 The size of inhaled particulates determines 
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how deep into the lung they are able to penetrate.248 Particles <100 nm bypass most of 

the lungs defense mechanisms and deposit at the broncho-alveolar junctions and in the 

alveoli themselves.141,165,175,174 After CNTs have deposited, normal lung clearance 

mechanisms are evoked. However, the high aspect ratio of CNTs impedes phagocytosis 

by macrophages.164,260 Consequently, CNTs can persist in the lungs for up to 11 

months.141,165,175,174 The persistent presence of foreign material stimulates an ongoing 

inflammatory response that can ultimately lead to granulomas, fibrosis, or 

carcinogenesis.164,260 CNT shape affects the extent of the damage. Longer, thinner CNTs 

are better able to penetrate lung cells and induce more granuloma formation and 

inflammation than shorter or wider CNTs.164,248,260 Agglomeration changes the shape, 

surface, and stiffness of the particles.143,164 Some studies have found that SWCNT 

bundles are less toxic than single SWCNTs,143 but others have reported that the 

increased stiffness of CNT aggregates resulted in greater cytotoxicity than dispersed 

CNTs.164  

 

CNT surface modifications can affect the size, surface charge, and biological activity 

of the particle.164 Pristine (non-functionalized) CNTs, which are primarily graphene 

(carbon) are hydrophobic and highly reactive.248,261 When CNTs are designed for 

biomedical applications, functionalization improves biocompatibility by reducing CNT 

immunogenicity and surface reactivity while increasing aqueous solubility.177,143,164,248,178 

Solubilized CNTs can be further decorated with therapeutic or targeting ligands, including 

antibodies, biomolecules, or nucleic acids.164,245,246,261 
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Reports of functionalized CNTs being biocompatible are carried out in different 

conditions than studies looking at toxicity from inadvertent exposures. One major 

difference is that functionalized CNTs for therapeutic applications are injected 

intravenously, resulting in different distribution, immune reactivity, and clearance 

mechanisms than those that drive pulmonary toxicity.178,183,262 Another difference is that 

therapeutic CNTs are more likely to have a narrow size distribution and to be uniformly 

suspended with few agglomerates.178,183 Additionally, evaluation of many of the 

therapeutic CNT platforms seems to primarily rely on short exposure times and fewer 

toxicity endpoints.143,183 These short (4-48 hours) exposure times may be relevant to the 

expected delivery to the platform, but the CNTs will likely persist in vivo and can have 

effects beyond those time points.  

 

CNT functionalization for therapeutic applications necessitates dosing considerations 

similar to those discussed in 1.1.6 Dosing NPs for Toxicity Evaluations. The use of pristine 

CNTs, which have markedly different physical and chemical properties than the 

functionalized system, as a control introduces additional confounding factors. Particularly 

for in vitro testing, where the system is stationary and stagnant, the effects of improved 

solubility of the functionalized CNTs alone can contribute heavily to the decrease in 

observed toxicity.  

 

For example, improved biocompatibility of glycodendrimer-coated SWCNTs, versus 

pristine SWCNTs, has been reported.183 However, the improvements noted in vitro may 

not be as significant as they appear due to differences in the way the particles interact 



 

  62 

with the in vitro system. The coated SWCNTs reportedly stay homogenously suspended 

in aqueous solutions for many months, while the pristine SWCNT control precipitates 

almost immediately. In an in vitro test system with adherent cells on the bottom of the 

culture dish, many more of the rapidly precipitating pristine SWCNTs will be available to 

interact with the cells than the stably suspended coated particles.165   

 

In addition, cells were treated with equivalent masses of the coated and uncoated 

CNTs.183 Although the contribution of the coating to the particle mass was not reported, 

enough coating to confer stable suspension in aqueous solution would be expected to 

have a measureable contribution. Even if the coating was a small percentage of the total 

mass, there would inherently be fewer glycodendrimer-coated SWCNTs in a given mass 

than there would be in an equivalent mass of pristine SWCNTs. If concentration 

dependent effects are expected, adding different absolute numbers of particles negates 

the validity of the mass-equivalency dosing. The extreme differences in particle solubility 

would also change the dose the cells were ultimately exposed to. 

 

1.3.4 Modeling Real World Exposures 
 

CNTs are small, low-density particles are easily aerosolized. Thus, occupational 

inhalation exposures are the most pressing public health concern.141,252,165 However, the 

CNTs used for industrial applications are heterogeneous mixture of particle sizes, shapes, 

and agglomeration states.166 Approximating the composition of real world exposures is 

often challenging when designing toxicity assessments, and many evaluations instead 

utilize more homogeneous mixtures. Modeling the dose of real world CNT exposures for 
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in vitro or in vivo studies is also difficult.141,165 Following inhalation, CNTs deposit in small 

airways and alveoli, where they can remain for upwards of 11 months.141,165,175,174 Normal 

lung clearance mechanisms are invoked but are largely ineffective at degrading the 

CNTs.141,175,174 Consequently, the CNTs accumulate over time despite the low 

concentration of each individual exposure. In experimental systems, doses for are often 

calculated to (model) a lifetimes worth of exposures.166 This has led to the use of 

extraordinarily high bolus doses in both in vitro and in vivo studies.166 Acute toxicity is 

readily apparent when these large doses are applied, which has contributed to the 

continued use of unreasonable doses.165 In contrast, lower, more realistic doses induce 

much less overt toxicity in acute evaluations.166 The validity of life-time exposure dosing 

for assessing chronic toxicity has been questioned.165,166 Chronic in vitro CNT exposure 

models, in which cells are cultured with sub-acute concentrations of CNTs for 6 months, 

have been developed to overcome this limitation.172,263 
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1.3.5 Acute Toxicity of CNTs 

 
Acute exposure to CNTs results in dose- and time-dependent decreases in cell 

viability in vitro143,260 and inflammation and fibrosis in in vivo inhalation models.260  CNTs 

are internalized within 48 hours of exposure in vitro,260 which induces oxidative stress, 

release of IL-8, and overexpression of immune and inflammatory genes.143 Genotoxicity 

following acute CNT exposures, including aneuploidy, centrosome fragmentation, 

damage to mitotic spindles, and increased numbers micronuclei, has also been reported. 

174,256,264 

1.3.6 Chronic Toxicity of CNTs 
 

Health problems stemming from chronic occupational exposure to CNTs could 

take years, or decades, to become apparent, similar to asbestos induced mesothelioma, 

and short-term, high dose studies do not provide a full picture of the risks.171,250,175,258 The 

long latent period between exposure and disease onset can make it difficult to assess the 

potential carcinogenicity and carcinogenic mechanisms.174,260 Consequently, acute, high-

dose exposures are more widely studied even though they are not representative of most 

real world exposures.171,250 Over time, the particles cause continual inflammation, 

irritation, and immune system activation. In addition to the damage inflicted through 

physical interactions of the particles with cells, organelles, and genetic material, the 

ongoing inflammatory response also triggers changes in cell behavior.170,255,174,256,264 

Chronic inflammation is, by itself, a risk factor for the development of cancer, as 

evidenced by the increased risk of malignancy in patients with autoimmune diseases. 

174,256 Acutely, CNT genotoxic effects include the induction of aneuploidy, centrosome 

fragmentation, damage to mitotic spindles, and increased numbers micronuclei.174,256,264 
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Genetic damage accumulates over time and the impacts become evident long after the 

inciting event.250,258 CNT exposure in a mouse inhalation model resulted in K-ras 

oncogene mutations.255,256 Despite the evidence for CNT-induced DNA damage, their 

status as an oncogenic initiator is still unconfirmed.175 However, a murine inhalation study, 

using an initiator/promotor model, demonstrated that CNTs do act as tumor promotors.252 

 

In vitro chronic exposure models have been developed to better understand the 

effects of long-term, low dose CNT exposures.250,175,172,259,265 Many of these studies have 

examined the response of non-cancerous bronchial epithelial cells, which are the first 

layer of defense against inhaled CNTs in humans.172,266 When lung epithelial cells were 

exposed to sub-acute doses of CNTs for 6 months, they underwent malignant 

transformation, with obvious morphological changes appearing half way through the 

exposure period. Following the CNT exposure, the transformed lung epithelial cells 

proliferated more rapidly, were more invasive, demonstrated anchorage-independent 

growth, and were resistant to apoptosis.175,172,259 CNT-induced cell cycle dysfunction has 

been linked to decreases in p53 expression,267  while apoptosis resistance has been 

linked to increases in c-FLIP expression.268 Increases in transformed cell invasion and 

migration have been related to increases in matrix metalloproteinase (MMP) 

expression.259 
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1.4. Figures and Tables 

 
1.4.1 Figures 

 
 
 
FIGURE 1 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1. Specificity of NPs, in the form tissue specific effects, can be conferred through 

two distinct mechanisms.  (A) NPs that target a cell- or tissue specific pathway will be 

taken up by all cells but only effect cells that have the target feature. For the purposes of 

demonstration, the illustration shows NPs bearing antisense oligonucleotides that target 

a cancer specific protein. (B) NPs that recognize surface features of target cells will be 

internalized with greater specificity. Antibodies targeting cell surface features can be used 

to improve uptake specificity, as can molecules that are readily internalized, including 

folate.  

  

A B 
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Figure 2 

 
 
Figure 2. Mechanism of ASO protein synthesis inhibition. Binding of the ASO to the 

complementary sequence of the target protein mRNA occurs in the cytoplasm. Ribosomal 

translocation along the mRNA is physically blocked by ASO hybridization with its 

complementary sequence.   
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Figure 3 
 

 
 
Figure 3. Structure of YM155 (1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-

ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d] imidazolium bromide), a small molecule inhibitor 

of survivin. 
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1.4.2 Tables 
 

Table 1. Survivin expression in human tumor samples. 

 
Survivin Positive 

Survivin effect on survival, outcomes, tumor behavior, 
chemotherapy/radiation sensitivity 

Glioblastoma 31/39 (79%)68 n/a 

Pancreatic cancer n/a 
siRNA inhibition of survivin decreases radio-resistance and cell 

proliferation; increases apoptosis and G0/G1 cell cycle arrest72 

Non-small cell lung 
cancer 

>80%57 
Survivin expression correlated with worse prognosis and decreased 

survival57 

Acute myeloid 
leukemia 

80%44 
Survivin expression is considered a negative prognostic indicator even 

after adjusting for typical prognostic factors44 

CML n/a 
Survivin is detectable during CML blast crisis but not during chronic 

phase44 

B-Cell Lymphoma 134/222 (60.4%)44 Survivin expression associated with a significant decrease in survival44 

Anaplastic large cell 
lymphoma 

34/62 (55%)44 

In tumors positive for anaplastic lymphoma kinase (ALK), the 5 year 

failure free survival rate was 34% for survivin positive tumors, and 100% 

for survivin negative tumors. 

In tumors negative for ALK, the 5 year failure free survival rate was 46% 

for survivin positive tumors and 89% for survivin negative tumors.44 

Adult T-cell leukemia 100% 44 Higher survivin expression noted in more aggressive disease44 

Myelodysplastic 
syndrome 

11/12 (92%)44 n/a 

Melanoma “almost all” 
Reduction in survivin, in vitro results in increased spontaneous apoptosis 

and increased sensitivity to radiation and cisplatin.69 

Prostate Cancer ? 
Survivin levels increase as disease becomes more aggressive, and 

increase in survivin promotes flutamide resistance45 

Osteosarcoma ?/22 
Higher survivin levels in patients with metastatic disease; high survivin 

expression associated with significantly decreased 5 year survival.46 

Renal cell carcinoma n/a 

Retrospective studies linked survivin expression to decreased survival, 

more aggressive disease, resistance to therapy, poorly differentiated 

variants, and accelerated reoccurrence.47 

Head and neck 
squamous cell 

carcinoma 

n/a 
Only HNSCC cells that have high cytoplasmic survivin (versus nuclear 

survivin) are chemo- and radiation-resistant.260 

Colorectal cancer n/a 
High tumor survivin associated with significantly reduced survival and 

reduced apoptotic index.48 

Gastric carcinoma n/a 
Tumor survivin expression is associated with increased p53 and bcl-2 

expression and significantly reduced apoptosis.73 

Breast Cancer n/a Survivin contributes to tamoxifen70 and trastuzumab261 resistance 

Bladder Cancer n/a Reduction in survivin sensitized cells to cyototoxic stimuli262 

Neuroblastoma n/a 
Survivin expression is correlated with aggressive tumor behavior and poor 

prognosis43 

Soft tissue sarcoma n/a Survivin is a prognostic marker in soft-tissue sarcomas263 

 

 



 

  70 

Table 2. Interference of NPs with in vitro assessments of toxicity 
 Techniques/Reagents  Assay Mechanism Usage Considerations 

Cell 
Proliferation 

143,155,162,203 

MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl tetrazolium 
bromide) 
 

WST-1 (a water soluble 
tetrazolium salt) 
 

MTS (3-(4,5-dimethylthia- zol-2-
yl)-5-(3-carboxymethoxyphenyl) 
2-(4-sulfophenyl)- 2H-
tetrazolium) 

Colorimetric determination of 
mitochondrial viability 
 
Conversion of a tetrazolium salt to a 
formazan dye, resulting in a color 
change proportional to the number of 
metabolically active cells 

Fast, reproducible results155 
 

Interference from NPs: 

 Direct reactions of CNT, porous silica, and carbon black with tetrazolium 
salts – falsely increases measured viability142,155,156,264 

 Adsorption of formazan dye to CNT – measured viability is falsely 
low142,155,163 

 Spontaneous activation of MTT by graphene142,265 

 NP can physically block light transmission144 

Membrane 
Integrity 

 
 

Lactate dehydrogenase (LDH) 
release 10,14 
 
 
 
 
 
 

LDH is an intracellular enzyme that 
leaks into the culture media when cell 
membrane integrity is compromised. 
 

LDH in media oxidizes lactate to 
pyruvate, which triggers the 
conversion of a tetrazolium salt to a 
formazan dye.  
 

LDH has a half-life of 9 hours in media; timing of cell death relative to assay 
influences results.156  
 

Interference from NPs: 

 LDH can be inactivated by Cu or silver NPs or adsorb to TiO2
142,266 

 LDH is deactivated under low pH conditions, while a high pH stabilizes 
the substrate144 

 Metal ions can interfere with LDH assay, although SWCNT do not appear 
to interfere144,267 

 

Apoptosis Caspase activation144,155 Caspase-3 activation leads to cell 
death 
 
 

Caspase-3 is inhibited by trace metal ions, but is mostly unaffected by 
changes in pH144 
 

NP 
Intracellular 
Localization 

Transmission electron 
microscopy (TEM)142,155 
 

Visualization of electron dense 
materials, like metal NPs, and stained 
cellular structures allows for 
determination of precise intracellular 
localization 

Does not show organic coatings on NPs, so can only be used to determine 
location of NP core155 
 

Staining biological samples can introduce electron-dense artifacts that are 
similar in size to NPs155 
 

Quantification 
of NP Uptake 

Inductively Coupled Plasma 
(ICP)142,155,162 
 
Colorimetric quantification of iron  
(Prussian blue,268,269 
ferrozine,187,270 o-
phenanthroline)271,272 

Quantitative measure of metals, with 
sub-ppb limits of detection 
 
Reaction of iron with various reagents 
allows for colorimetric quantification of 
iron concentration using UV-vis 
 

Destructive technique requires acid digestion of samples 
 

Detects metal from physiological sources as well as from treatment 
 

Not useful for carbon-based NPs because of large carbon background in 
biological samples 
 

No insight into NP localization  

Fluorescence Spectroscopy142,155 Quantitative and qualitative 
assessment of the uptake and 
intracellular localization of 
fluorescently-tagged NPs 

Fluorescent dyes alter NP surface properties and can affect uptake and 
localization 
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2.1. Abstract 
 

Superparamagnetic iron oxide nanoparticles (SPIONs) can be used to improve the 

specificity of cancer drug delivery, thereby reducing the toxicity associated with systemic 

administration.  SPIONs can be easily conjugated to therapeutic agents, including 

antisense oligonucleotides. Survivin, an anti-apoptotic protein over-expressed in many 

types of cancer but undetectable in most healthy adult tissues, is an attractive therapeutic 

target. Increases in survivin expression are correlated with more aggressive cancers, 

treatment resistance, and greater patient mortality. Antisense agents alone are an 

effective means of reducing survivin expression in vivo, where they trigger apoptosis 

specifically in survivin expressing cells. In vivo, however, a platform is needed to deliver 

antisense agents to tumor cells. SPIONs coated in oleic acid were synthesized by thermal 

decomposition and coated with a biocompatible polymer, octylamine modified polyacrylic 

acid before conjugation with survivin antisense DNA. SPION physical properties, 

including particle size and composition, were characterized at each step of synthesis. 

A549 (human lung adenocarcinoma) cells, which have high baseline survivin expression, 

were exposed to DNA-coupled SPIONs for 24 or 48 hours. SPION uptake and localization 

was followed with confocal and fluorescent microscopy. Survivin expression was 

quantified with Western blots, while cytotoxicity was assessed with the colorimetric water 

soluble tetrazolium (WST-1) assay. Our results showed that the SPION platform is 

biocompatible and capable of delivering functional antisense oligonucleotides to regulate 

survivin expression; however, significant refinement of the DNA-to-SPION coupling step 

is needed.  Applied clinically, antisense survivin coupled SPIONs can reduce the required 

dose of, adverse effects from, and resistance to, current cancer chemotherapy regimens.    
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2.2. Introduction 
 

Many of the systemic toxicities of current cancer chemotherapeutic agents are the 

result of the drugs’ indiscriminate action on all rapidly dividing cells.  Drugs that specifically 

target cancer cells are difficult to design due to the considerable spatial and functional 

overlap between healthy and malignant cells.  One target that is ubiquitous in cancer 

cells, yet virtually undetectable in healthy cells, is the anti-apoptotic protein survivin.1–3 

Survivin overexpression has been identified in nearly all types of cancer, including lung 

adenocarcinoma,4 mesothelioma,5 anaplastic large-cell lymphoma,6 osteosarcoma,7 

glioblastoma multiforme,8 and prostate,9 endometrial,10 bladder, ovarian,11 and 

pancreatic12 carcinomas. Clinically, high tumor survivin levels correlate with 

chemotherapy and radiation resistance, increased metastases, and overall greater 

mortality.4,7,9,10,13–16 In vitro, antisense oligonucleotides decrease survivin expression and 

increase sensitivity to chemotherapy and radiation induced apoptosis without affecting 

the survival of non-survivin expressing cells.1,5,9,10,17–22 The specificity of survivin-targeted 

therapies and their striking in vitro success spawned a number of clinical trials, including 

YM155, a small-molecule inhibitor of survivin,23 a vaccination against a survivin peptide,24 

and LY2181308, a naked antisense survivin agent administered in saline.25 Although 

none of the tested therapies progressed in their initial states due to formulation issues or 

practical considerations, they demonstrated the viability of clinically targeting survivin.  

 

Specifically, nucleic acids are challenging to deliver in vivo. Naked nucleic acids are 

rapidly hydrolyzed upon entering the bloodstream, rendering them inactive.26,27 Then, 

even if a therapeutically relevant concentration of antisense agent is reached in the target 
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tissue, naked nucleic acids require coaxing to cross cell membranes. Their dense 

negative charge is repelled by the negative charge on the surface of cell membranes and 

in vitro strategies to increase uptake, including liposomes and electric shock, do not 

translate well to in vivo settings.28,29 Structural modifications to the nucleic acid bases 

have been employed to increase stability in circulation by reducing enzymatic 

degradation.26,28–31 Other delivery strategies have included encapsulation of the nucleic 

acids in a cationic polymer27–29 or pH sensitive coatings for controlled release.27,31,32 

Considering the strong in vitro response to survivin antisense agents, and the known 

limitations to the delivery of naked nucleic acids in vivo,26,28,33 a stable, biocompatible 

antisense delivery system is needed before their clinical potential can be realized.29  

 

Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely investigated 

for use as both drug delivery platforms34,35 and MRI contrast agents36 and, recently, 

Ferumoxytol (FeraHeme) has received FDA approval for use a treatment for anemia in 

patients with chronic kidney disease.37 SPIONs are readily metabolized to elemental iron 

in vivo,35,3737  making them an attractive platform for diagnostics and therapeutics. Ease 

of SPION functionalization allow for great versatility and the design of multipurpose 

particles.35,38 SPIONs will accumulate passively in tumors due to leaky vasculature and 

poor lymph clearance, and active targeting with tumor-specific antibodies or aptamers 

can further increase particle concentration in target tissue.37–43 

 

This work centers on the development of a SPION-based platform for the delivery of 

survivin antisense oligonucleotides to cancer cells. We anticipate that this platform wil l 
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result in selective toxicity to malignant, survivin expressing cells, leaving healthy, non-

survivin expressing cells unscathed.  

  

SPIONs coated in oleic acid were synthesized by thermal decomposition44 and coated 

with a biocompatible polymer, octylamine modified polyacrylic acid (Figure 1),45 to 

increase aqueous solubility and provide reactive sites for further functionalization.  

Polymer coated SPIONs were coupled to 3’- amine-modified survivin antisense1 or non-

targeting control DNA sequences.46 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC) was used to catalyze the formation the 3’-amide linkage.46 SPION physical 

properties, including particle size and composition, were characterized at each step of 

synthesis. A549 (human lung adenocarcinoma) cells, which have high baseline survivin 

expression,47 were exposed to DNA-coupled SPIONs for 24 or 48 hours. SPION uptake 

and localization was followed with confocal and fluorescent microscopy. Survivin 

expression was quantified with Western blots, while cytotoxicity was assessed with the 

colorimetric water soluble tetrazolium (WST-1) assay. Our results showed that the SPION 

platform is biocompatible and capable of delivering functional antisense oligonucleotides 

to regulate survivin expression; however, significant refinement of the DNA-to-SPION 

coupling step is needed.   

 

2.3. Results 
 

2.3.1. SPION Synthesis and Characterization.  
 

Oleic acid coated SPIONs (SPION-OA) were synthesized using thermal 

decomposition, as previously described.44 After washing, the synthesis consistently 
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yielded homogenous particles with 7.07 ± 0.74 nm SPION cores (Figure 2). SPION-OA 

readily disperse organic solvents, like hexane and toluene, even at high concentrations, 

resulting in opaque black solutions. We have previously described the full characterization 

of the elemental composition and magnetic susceptibility of SPION-OA.61 

 

An octylamine modified poly(acrylic) acid (PAA) coating45 was added to SPION-OA to 

allow transfer to aqueous solvents and to serve as a link to additional functionalization. 

Hydrophobic interactions are expected to drive the octylamine moieties to intercalate with 

the hydrophobic oleic acid tails, resulting in the formation of a hydrophobic layer 

encapsulated by the outward-facing carboxylic acids of the PAA backbone.62 The newly 

formed PAA coated SPION-OA (SPION-PAA) were washed, dried, and suspended in 

basic water (pH 9) before filtering to remove aggregates; without filtering, SPION-PAA 

was difficult to disperse and rapidly settled out of solution.   Unfortunately, much of the 

SPION-PAA characterization was carried out before we discovered the importance of 

filtering the samples.  

 

To verify the addition of the PAA coating, FT-IR was performed on SPION-OA and 

SPION-PAA. The SPION core is not expected to contribute greatly to the FT-IR spectra, 

but the interactions of the oleic acid with the core allow for differentiation of SPION-OA 

from oleic acid alone (Figure 3A). Specifically, oleic acid alone has a strong carboxyl 

(C=O) peak at 1750 cm-1. However, the carboxyl (1750 cm-1) peak is very small in SPION-

OA, which aligns with the expectation that the oleic acid carboxyl group is binding SPION.  

The small remaining carboxyl signal may be the result of oleic acid that is not covalently 
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bound.61 After coating SPIONs with PAA, a small carboxylic acid hydroxyl (OH) peak is 

present at (3333 cm-1) (Figure 3B). These hydroxyl groups are critical to further 

functionalization of the platform. The small size of the peak is expected as the hydroxyl 

groups are a small percentage of the total structure.  

 

Thermogravimetric analysis (TGA) was used to quantify the mass contributions of 

each coating in SPION-OA and SPION-PAA, while dynamic light scattering (DLS) was 

used to determine the contributions of the coatings to the hydrodynamic diameter of the 

particles (Figure 4). SPION-OA was found to be 20% oleic acid and 80% iron oxide, a 

ratio that remained consistent across samples and synthesis batches (Figure 4, A and 

C).61 SPION-PAA was found to be 75% PAA, 5% oleic acid, and 20% iron oxide (Figure 

4, B & C). SPION-PAA composition was also consistent across batches; however, this 

measurement was made on unfiltered SPION-PAA, and it is not yet known if the filtered, 

soluble SPION-PAA will have the same mass composition as the washed but unfiltered 

particles. 

 

DLS showed that SPION-OA had a hydrodynamic diameter of 11.27 nm, with a narrow 

size distribution indicative of a homogeneous, well-dispersed sample (Figure 4D). SPION-

OA hydrodynamic diameter was ~4 nm larger than the diameter determined from TEM, 

which was expected since TEM only allowed measurement of the metallic core while DLS 

accounted for the iron oxide core and oleic acid coating. SPION-PAA had a hydrodynamic 

diameter of 43.12 nm (Figure 4E). Although the DLS histogram shows a narrow size 

distribution, this measurement was performed on the poorly soluble, unfiltered SPION-



 

  119 

PAA. Large aggregates of SPION-PAA, visible to the naked eye, are present in nearly all 

suspensions of unfiltered SPION-PAA; however, these aggregates often settle out or 

float, which would result in less of an impact on the DLS measurement.  

 

2.3.2. Coupling DNA to SPION-PAA 

 

SPION-PAA forms the base of our delivery platform, with outward-facing carboxylic 

acids from the PAA providing covalent attachment sites for amine-terminal ligands like 

our survivin antisense (SASO) and non-targeting control (NTC) oligonucleotides. Our 

single-stranded DNA was synthesized with a 3’ C7-NH2 to allow for coupling via 

carbodiimide chemistry. Our intent was to use 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) to drive the reaction, as  EDC/carbodiimide 

chemistry is widely utilized for the formation of amide bonds, particularly between 

biological molecules.45,63,64,50,54 However, our coupling success varied dramatically, often 

varying by a factor of ten between reactions performed in parallel from identical starting 

materials. While a definitive procedure for this coupling application was not successfully 

discerned in the course of this work, a number of variables have been identified as targets 

for reaction optimization.  

 

Despite the issues with DNA coupling consistency, some characterization of SPION-

DNA was carried out. TEM was used to examine the SPION core of a batch of SASO-

SPION as well as a sample of the SPION-OA from which they were derived (Figure 5, A 

& B). Although the additional coating layers are not expected to change the core size, the 

core diameter of SPION-OA (7.07 ± 0.74 nm) was found to be 2 nm smaller than the 
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average core diameter of SASO-SPION (9.01 ± 0.72 nm). The difference may be due, at 

least in part, to the small sample size for the SASO-SPION. SASO-SPION was prepared 

from a very dilute solution and particles were sparse when imaged.  

 

DLS showed that SASO-SPION had a hydrodynamic diameter of 50.58 nm (Figure 

5C). Thus, the DNA makes up a small portion of the final SPION diameter (Figure 6). It is 

interesting to note that even though the amount of DNA coupling to the SPIONs was not 

consistent, the change in particle diameter when DNA was added is in line with what 

would be expected if the SASO covalently bound (Table 1). It is not clear at this point is 

if the biologically active DNA is the covalently bound portion or is, perhaps, made up of 

an additional layer of DNA attached through electrostatic interactions. 

 

2.3.3. SASO-SPION Decrease Survivin Expression and Reduce Survival in A549 

Cells, a High Survivin Human Lung Cancer Cell Line.  

 Although the reaction for coupling DNA to SPIONs is still in need of refinement, our 

preliminary in vitro results that suggest our SPION platform is not inherently toxic to cells 

and support the viability of this platform as a delivery system for antisense 

oligonucleotides.  

 

It is important to note that the following results were obtained by using multiple batches 

of SPION-DNA. Although every attempt has been made to standardize the dosing 

measures and presentation, the batch-to-batch variation of the current DNA coupling 

procedure is such that that results from different batches are not directly comparable. 
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Dosing evolution is addressed in the discussion, while dosing explanations are included 

in the procedure and results for each experiment. However, the results are, as a whole, 

supportive of the hypothesis that this SPION platform has potential as a drug delivery 

agent. This data is meant to serve as proof-of concept and will be presented with 

appropriate details on the SPIONs used in each study. In the future, once the DNA 

coupling/formulation issue has been addressed, in vivo studies will be repeated and 

expanded to determine the actual magnitude and time course of the biological effects.  

 

Early in the formulation development process, confocal microscopy was used to verify 

that SPION-DNA could enter our target A549 lung adenocarcinoma cells (Figures 7 and 

8A). For this study, SPION-PAA was coupled to a fluorescein-labeled antisense survivin 

oligonucleotide. Following a 24 hour incubation, cells were thoroughly washed and fixed 

before staining with DAPI and FM4-64FX cell membrane stain. 3D renderings confirmed 

that SPIONs were internalized and were within the cytoplasmic compartment. Since this 

was an early-stage study, the main purpose was to show that the SPIONs could enter 

cells, which was accomplished. In addition, the determination that the SPIONs were in 

the cytoplasm supports the use of this system in hindering protein production via 

antisense oligonucleotide interference with cytoplasmic mRNA.  

 

After determining that the SPIONs were entering the cells, we briefly investigated the 

mechanism of entry (Figure 8B). A549 cells were again incubated with fluorescently 

labeled SASO-SPION for 24 hours and cells were stained with DAPI and either a cell 

membrane stain (Cell Mask Orange) or a lysosome tracking dye (Lysotracker Deep Red). 
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Examination of fixed cells with fluorescent microscopy confirmed that SPIONs were 

entering the cells. Co-localization of the lysosome/membrane dyes with the SPIONs 

fluorescent tag suggests that the SPIONs are within vesicles, with many notable 

localization to the peri-nuclear region.  

 

While SPION internalization is likely a necessary step in delivering the therapeutic 

DNA to the cells, the lysosomal/vesicular localization of internalized SPIONs was 

concerning.27,29 Cytoplasmic localization of the SPIONs, or at least the therapeutic 

antisense ligands, is required for the downregulation of protein production through the 

intended mechanism.27–29 Since the goal of this specific SPION formulation is induce or 

sensitize cells to apoptosis through decreased survivin expression, changes in cell 

viability and survivin expression were then assessed. 

 

For assessment of the toxic and/or therapeutic effects of DNA coupled SPIONs, 

SPIONs were dosed by DNA concentration. DNA concentration was chosen because it 

could be measured using non-destructive, reproducible methods and it allowed for 

comparison to previously reported studies on our chosen SASO. Ideally iron 

concentration would also be accounted for, perhaps in the form of a consistent 

relationship between iron and DNA concentrations. Unfortunately that was not possible 

in this study.  

 

To test our hypothesis was that SASO-SPIONs would contribute to cancer cell death 

by decreasing survivin expression, A549 cells were exposed to SASO- or NTC-SPION 
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(1000 nM) for 24 hours and survivin was detected by Western blot (Figure 9A). Our initial 

studies used a high DNA concentration (1000 nM) so that an effect, if present, would be 

readily apparent. We found that after 24 hours, SASO-SPIONS significantly reduced 

survivin expression to 66.14% (± 15.11%) of the untreated control, while NTC-SPIONs 

resulted in survivin expression that was 110.87% (± 9.67%) of the untreated control. Olie, 

et al. reported that the same SASO sequence, at 400 and 600 nM, reduced survivin 

mRNA to 35% of the untreated control when introduced to A549 cells with lipofectin.1  

 

While decreases in cell survivin expression have been correlated to increased 

sensitivity to chemotherapy drugs and radiation, decreasing an anti-apoptotic mediator 

does not inherently trigger apoptosis. Thus, the cytotoxic effects of SASO- and NTC-

SPIONs on A549 cells were assessed following 24 and 48 hour exposures.  

 

A lactate dehydrogenase (LDH) release assay (results not shown) was used to 

quantify cell necrosis and late-stage apoptosis, as LDH is released into the surrounded 

media when cells lyse. Metabolic viability of remaining live cells was determined from 

using WST-1, a colorimetric assay where functional mitochondria convert a formazan dye 

to a water soluble tetrazolium salt and the color change is proportional to the number of 

live cells. Since the LDH assay is performed on used cell culture media and WST is 

performed on the cells themselves, both assays were performed on the same exposed 

cells at the same time. 
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Although LDH is frequently used as a measure of cytotoxicity in SPION or 

nanoparticle-exposed cells, it is not always an appropriate choice for the quantification of 

cell death.65 In our case, many of our LDH results showed that treated cells experienced 

much less toxicity (cell lysis) than untreated controls even though the WST results (or 

simply viewing the wells through a microscope) indicated the opposite. It turns out that 

once LDH is released it has a half-life of 9 hours in solution. As a consequence, it is not 

well suited to capture cell death unless it is occurring relatively close the time of the assay. 

If the tested agent is causing rapid cell death or growth restriction, the LDH released from 

the dying cells will not be picked up by the assay. Since cells have a small level of baseline 

LDH release, using LDH as the only measure of cytotoxicity will show a well with no cells 

as “healthier” than a control well with a healthy cell population.  

 

Metabolic viability of the cells was assessed after 24 and 48 hour SPION exposures. 

After 24 hours, no significant changes in viability were noted at any dose of SASO- or 

NTC-SPION (Figure 9B). However, our 48 hour incubation (Figure 9, C & D) revealed 

that the effects of the SASO-SPIONs were strongly batch dependent. In comparison, no 

changes in viability were noted at any dose, or for any batch, of NTC-SPION, indicating 

that they are innocuous. The two coupling batches tested in Figure 9 C & D were prepared 

from the same starting materials and prepared and tested in parallel. However, UV-vis 

analysis immediately after coupling suggested that batch 1 (Figure 9C) had twice as much 

DNA per SPION as batch 2 (Figure 9D). Although the batch-to-batch variation was high, 

replicates within each batch were remarkably consistent (± 4%). This SASO sequence, 

when introduced to A549 cells by lipofectin, reduced cell viability to 50% (300 nM SASO) 
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and 10% (600 nM SASO) after 72 hours.1 Once our SPION-DNA coupling procedure has 

been optimized, assessing cell viability at 72 hours will allow us to compare the efficacy 

of our delivery platform to the current delivery standard.    

 

While more studies are needed to fully understand the does- and time-dependent 

effects of the SASO-SPIONs, this batch dependence does support the biocompatibility of 

the SPIONs. Specifically, the less effective batch had less DNA per SPION, meaning that 

significantly more poorly-coupled SPIONs were required to achieve each DNA dose. 

Additionally, no significant toxicity is noted with NTC-SPIONs at any dose or from any 

batch.  

 

2.4. Discussion  

In this work, we demonstrated that a biocompatible SPION scaffold can be reliably 

synthesized and coated. The functionalization of our SPION platform has been 

inconsistent; however, our preliminary data supports the use of this system to deliver 

antisense oligonucleotides to alter cell behavior. Specifically we have chosen to target 

the anti-apoptotic mediator survivin, which is heavily expressed in cancer cells but 

virtually undetectable in healthy tissue.1–4,7,9,10,13–16 

The overexpression of survivin in malignant tissue has been well established, as have 

the benefits of reducing survivin expression in vitro.1,5,9,10,17 Unfortunately there has been 

great difficulty in translating those in vitro successes to clinically useful treatments. One 

major obstacle in clinical translation has been the difficulty of delivering therapeutic 

oligonucleotides in vivo.26,28–31 Thus we proposed the use of a SPION-based platform to 
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chaperone the nucleic acids, in our case an antisense oligonucleotide, to their in vivo 

destinations.  

The magnetic properties of SPIONs make them particularly appealing for clinical 

applications. In addition to delivering therapeutic agents, SPIONs can act as MRI contrast 

agents, outlining a tumor or metastasis. Their strong response in magnetic fields means 

that a low concentration of SPIONs is needed to detect a lesion. The use of 

superparamagnetic particles, whose magnetism disappears when the magnetic field is 

removed, reduces the risk of agglomerations forming in small vessels.66  

 

SPIONs are widely regarded as biocompatible; however, there is still some debate 

as to their safety for use in humans.34,35,66–68 Lack of standardization in the reporting of 

nanoparticle characterization, dosing, toxicity measures, etc. makes it difficult to draw 

conclusions about the safety of various individual SPION formulations.39,54 However, 

general parameters contributing to nanoparticle biocompatibility have been delineated 

and new formulations can be designed within these parameters to enhance both safety 

and biological efficacy. For instance, particle diameters between 10 and 100 nm increase 

circulation time by minimizing clearance by both the renal and the reticuloendothelial 

systems.34,35 Additionally, a diameter of less than 150 nm is needed to extravasate.34  

Since SASO-SPION, our therapeutically active formulation, is 50.28 nm, it is the ideal 

size to extravasate easily as well as to maximize its half-life in circulation.  

 

Typically SPIONs in circulation interact with plasma proteins, which reduces their 

bioavailability.68–71 However, the negative surface charge of the SASO-SPIONs, resulting 
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from the highly-negatively charged DNA backbones, will help to minimize these 

interactions. Additionally, negatively charged particles will undergo less renal excretion 

since they will be repelled by the similarly negatively charged glomerular basement 

membrane.35 Decreased renal filtration will enhance circulation time and lessened SPION 

interactions with the glomerular basement membrane will reduce kidney toxicity. 

 

SPION biocompatibility, including toxicity, half-life, and eventual uptake by target 

tissues, is heavily influenced by the particles coating.37 Our freshly synthesized SPIONs 

are coated with a layer of oleic acid, which serves as a surfactant to separate the particles 

during synthesis.44 A water-soluble coating is needed for the platform to function as a 

therapeutic, and this coating often serves as the attachment point for therapeutic and 

targeting ligands.  Commonly used coatings include poly(acrylic) acid,45,72,73 

poly(ethylene) glycol (PEG),40,41,43 or dextran,51,74 all of which are hydrophilic and 

accepted as biocompatible.37,38 Therapeutic and targeting ligands, including nucleic 

acids, antibodies, and aptamers, can the conjugated to the SPION coating. Covalent 

attachment of these ligands, in the form of EDC-catalyzed amide bond formation linking 

amine-terminal biological molecules to surface carboxylic acid moieties, is common but 

the procedures for doing so are not well defined.  

 

Carbodiimides activate carboxylate anions to an O-acylurea intermediate in the 

condensation reaction between amines and carboxylic acids. Then the amine can attack 

the intermediate to form an amide or another carboxylate can attack to generate an 

anhydride, which is then attacked by the amine.75 EDC is popular for these reactions 



 

  128 

because it is water soluble, the excess reagent is easy to remove, and the reaction can 

take place at room temperature.50,54,55 Despite its popularity, the mechanics and 

necessary parameters of EDC-driven amide formation are not well understood,63,54,55,76 

leading to dramatic variations in reported procedures51,53,49,76–78 and, frequently, low 

coupling efficiencies.63,54,55,76 Further complicating matters, EDC initially gained wide 

acceptance for its ability to form amide bonds on surfaces, and adaptation of the surface 

modification protocol for use with nanoparticles in solution requires additional 

consideration.55,76 For example, in many cases excess EDC causes nanoparticle 

aggregation or precipitation,54,77,79 possibly because the positively charged activated EDC 

molecules neutralize the negative charges of the carboxyl groups that are keeping the 

particles suspended.54  

The use of EDC for both surface and nanoparticle modification requires careful 

consideration of the reaction conditions. Controlling reaction pH is critical, as only the 

protonated form of EDC participates in reactions. With a pKa of 3.5, EDC is most active 

in acidic conditions (pH <4).50 In our SPION-DNA coupling reaction, the pKa of the 

carboxylic acid and amine groups to be linked must also be considered. The timing is also 

critical, as EDC rapidly hydrolyzes in aqueous solutions.50,75 Given the proclivity of EDC 

to hydrolyze in the presence of water, the use of properly stored reagent and freshly 

prepared EDC solutions is imperative. This could contribute to the reported 

inconsistencies in EDC efficiency and reaction concentrations. EDC is readily available 

in large quantities, particularly relative to the amounts needed for small-scale reactions, 

and the water sensitivity of the reagent would allow for degradation with time, repeated 
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container opening, or improper storage conditions. As a result, larger quantities of reagent 

would be needed the longer the container is open.  

 

Despite the challenges in obtaining SASO-SPIONs with consistent DNA coatings, we 

found that our SASO-SPIONs had a measurable effect on cell viability. Although this is 

what the platform was designed for, it led to some questions as to the mechanism of 

SPION entry into the cell and how the SASO was ending up in the cytoplasm. Our imaging 

results suggested that the SASO-SPIONs were internalized via endosomes, which tend 

to acidify and degrade their contents.29 The successful use of SPIONs as an iron source 

for patients with iron deficiency anemia would also support the theory that SPIONs are 

taken up and degraded.35,37 Although other studies have also visualized SPION80 and 

antisense-loaded gold nanoparticles uptake through endocytosis,81–83 it is possible that 

SPIONs are internalized via multiple routes. Another possibility is that it is not the 

covalently bound DNA that is responsible for the changes in cell behavior; rather, a layer 

of non-covalently bound DNA may form on the particle surface through electrostatic 

interactions. This weakly bound DNA would be freed in response to environmental 

changes, like the drop in pH encountered in the endocytic vesicles, and the free DNA 

could migrate into the cytoplasm.37,84,85  

To fully exploit either the drug delivery or imaging potential of our particles, we first 

need to demonstrate selective uptake by the target cells. Our present uptake studies 

demonstrated that SPIONs entered a survivin expressing cell line. The current SPION 

formulation lacks active targeting ligands and is expected to passively distribute 

throughout the body, with a preference for tumors or areas of inflammation due to the 
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leaky vasculature in those regions. As such, the potential for high levels of non-specific 

SPION accumulation, particularly in hepatic and splenic tissue, remains a concern. To 

these ends, a method for actively targeting the SPIONs specifically to survivin-expressing 

cells would improve their clinical utility.  Although passive targeting may allow SPIONs to 

accumulate in some tumors as is, specific targeting will increase their effectiveness. 

Active targeting of the SPIONs would also allow us to utilize the oleic acid layer that 

exists between the SPION core and the polymer coating as drug reservoir. Lipophilic 

drugs, such as doxorubicin, can be loaded into the oleic acid to allow for targeted delivery 

of high drug concentrations with decreased risk of systemic toxicity. Many drugs are 

known to act synergistically with the sensitization from decreased survivin levels to 

combat resistant cancers1,15 and delivering such chemotherapeutic agents with the 

SPION:DNA platform could improve outcomes in patients with aggressive or resistant 

malignancies.  

Although more studies, both in vitro and in vivo, are needed to sufficiently demonstrate 

the safety of our SPION platform, these initial studies suggest that low doses of our 

SASO-SPIONs decrease survival of survivin expressing cells. If utilized to their full 

potential, our SPIONs are capable of dramatically improving cancer diagnostics and 

therapeutics. Specifically, their multi-functional nature allows a single well-designed 

SPION to be used for cancer diagnostics, treatment, and non-invasive monitoring of 

response to therapy.  
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2.5. Materials and Methods 
 
 
2.5.1 SPION Synthesis. Oleic acid coated SPIONs were synthesized following a 

previously described thermal decomposition method.44 Octyl ether (10 ml, 0.033 mmol) 

(Sigma-Aldrich, Milwaukee, WI) and oleic acid (1.43 ml, 4.56 mmol) (Santa Cruz, Dallas, 

TX) were heated to 100°C. Iron pentacarbonyl (0.2 ml, 1.52 mmol) (Sigma-Aldrich, 

Milwaukee, WI) was added and the solution was refluxed for 1 hour (solution turned 

black). After cooling to room temperature, trimethyl amine N-oxide (0.34g, 4.56 mmol) 

(Sigma-Aldrich, Milwaukee, WI) was added and temperature was increased to 130°C for 

2 hours, at which point the solution was brown. The solution was then heated to reflux for 

1 hour. The resulting black solution was allowed to cool to room temperature.  

 

To remove excess oleic acid, small aliquots of reaction mixture were transferred to a 

beaker over a strong magnet. Ethanol (200 proof) (Sigma-Aldrich, Milwaukee, WI) was 

added until the SPIONs precipitated.  Liquid was decanted and the oleic acid coated 

SPIONs (SPION-OA) were suspended in toluene (500 µl). Each aliquot was washed a 

total of three times and the final product was collected in toluene.   

 

2.5.2 Octylamine-modified Polyacrylic Acid (PAA) Synthesis.45 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) (5.33g, 28 mmol) (Sigma-Aldrich, Milwaukee, 

WI) was added to 1800 MW polyacrylic acid (5.0 g, 70 mmol) in DMF (70 ml) (Alfa Aesar, 

Ward Hill, MA) and stirred for 30 minutes.  Octylamine (4.6 ml, 28 mmol) (Sigma-Aldrich, 

Milwaukee, WI) was added and stirred overnight at room temperature. Solvent was 

removed under vacuum. Distilled water was added and the resulting precipitate was 
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isolated by centrifugation (300g, 3h). Aqueous NaOH (1M) (Fisher Scientific, Pittsburgh, 

PA) was added and the mixture shaken overnight.  Solution was washed with ethyl 

acetate (3 x 20ml). Dilute HCl (10% HCl) (Fisher Scientific, Pittsburgh, PA) was added to 

the aqueous layer until the pH was less than 5 to give a white precipitate.  Precipitate was 

collected following centrifugation (300 g, 3h) and dried. NaOH (0.1M) was used to 

neutralize dry product.  Final product was dried over P2O5 and a PerkinElmer Spectrum 

One FT-IR spectrometer was used in transmission mode under ambient conditions to 

verify the structure of the modified polymer.   

 

Octylamine-modified PAA (50 mg) was added to dry SPIONs (10 mg) in chloroform (5 ml) 

(Fisher Scientific, Pittsburgh, PA) and methanol (3 ml) (Fisher Scientific, Pittsburgh, PA). 

The mixture was sonicated for 3 hours and dried under vacuum. Basic water (pH 9) was 

added and the solution was filtered through 0.2 µM PVDF centrifuge filters (VWR, Radnor, 

PA) to remove aggregates. Suspended particles were dialyzed with distilled water in 

Amicon Ultra 15 100K molecular weight cutoff (MWCO) filters (Millipore, Billerica, MA). 

PAA coated SPIONs (SPION-PAA) were collected and diluted with distilled water. FT-IR 

of dried PAA-SPIONs was used to verify that the coupling had occurred.  

 

2.5.3 Oligonucleotide Synthesis and Purification. Oligonucleotides were prepared 

using 1 µmol 3'-PT-Amino-Modifier C3 CPG column (Glen Research, Sterling, VA) on an 

ABI-394 DNA and RNA Synthesizer (Applied Biosciences Incorporated, Foster City, CA).  

Single-stranded survivin antisense (3' – C6-amino link - GTT CCT CGA CCT TCC GAC 

CC - 5')1 or non-targeting control (NTC) (3’ – C6-amino link – TTT CCT TTG TGA TCT 
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TGC CCT – 5’)48 DNA was prepared with and without a 5’ fluorescein (Glen Research, 

Sterling, VA).  Concentrated ammonium hydroxide (28-30%, 1 ml) (Sigma-Aldrich, 

Milwaukee, WI) was used to cleave the oligonucleotides from the column. Cleaved 

oligonucleotides were incubated at 55°C for 15 hours and then dried under vacuum. 

Oligonucleotides were purified with fast protein liquid chromatography using a Waters 510 

pump, a Waters 2487 Dual λ absorbance detector, and a Bio-Rad TSK DEAE-5-PW 

column and a linear gradient (10-70% B over 60 min, Buffer A: 10 mM NaOH, pH 11.8, 

Buffer B: 10 mM NaOH, 1 mM NaCl, pH 11.8, flow rate 6 ml/min, UV detection, 260 nm).  

Reverse phase Waters Sep-Pack (C-18) (Waters, Milford, MA) cartridges were used for 

desalting following purification. Absorbance of diluted oligonucleotide solutions was 

measured on a Beckman DU-600 spectrophotometer (Beckman Coulter Inc., Brea, CA) 

at 260 and 280 nm.  

 

2.5.4 Oligonucleotide-SPION Coupling. SPION-DNA coupling was inconsistent and the 

procedures were modified throughout this work with the goal of improving coupling 

efficiency and reproducibility. No finalized, reproducible coupling parameters were 

identified, which has led to the inclusion of results from SPIONs coupled under varying 

conditions. While this is not ideal, the ability to obtain optimistic results even with 

formulation difficulties supports the potential of this platform. The general procedure for 

oligonucleotide-SPION coupling is outlined below, followed by notes on procedural 

changes. The reaction, and possible alternatives, are discussed in greater detail in the 

results and discussion sections.  
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EDC (19 mg, 100 mmol) was added to dry SPION-PAA (1 ml, 1 mg). Dry DNA 

(SASO or NTC) (1.5 mg, 40 OD) was dissolved in MilliQ water (500 mL) and added to the 

mixture. Additional MilliQ water was added to bring the total volume to 1 ml. Mixture was 

heated at 50°C for 3 hours, with vortexing every 15 minutes. Excess DNA was removed 

by filtration through a Vivaspin 2 100 kDa Molecular Weight Cut-off Filter (10 min, 250 g) 

(Vivaproducts, Littleton, MA) using distilled water to wash three times. Washed 

SPION:DNA was collected in distilled water. The absorbance of SPION solutions at 260 

and 280 nm was measured on a Beckman DU-600 spectrophotometer (Beckman Coulter 

Inc., Brea, CA) to quantify DNA coupled to SPION.  

A number of reaction conditions were modified, at various points, to optimize the 

reaction. Due to timing and logistical constraints, this analysis was not as thorough or 

methodical as was needed. One major challenge was that the freshness of the EDC had 

a strong impact on the reaction, primarily in the form of fresh EDC causing rapid particle 

precipitation at concentrations similar to, as well as several times less than, those used 

with older EDC. The difference was so dramatic that the use of fresh EDC nearly negated 

any prior work on this reaction. SPION-PAA concentration was held constant while EDC 

concentrations from 0.01 to 19 mM were tried, and DNA concentration was varied from 

10 to 100 OD.  

Initially, the reaction was performed by adding EDC (powder) to dry DNA, then 

adding dry SPION-PAA and MilliQ water. Dry SPION-PAA did not disperse well in the 

solution and attempts to improve its solubility included adding SPION-PAA in a well-

sonicated solution of MilliQ water and, later, slightly basic milliQ water. While increasing 

the pH of the solution did help to keep the SPIONs in solution, it did not enhance the 
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overall reaction efficiency, probably due to inactivating the EDC.49,50 To address the pH 

sensitivity of EDC, the reaction was next attempted in MES buffer (25 mM) at pH 6.0.51–

53,49 However, this reintroduced the SPION-PAA solubility issue.  

The reaction time and temperature were also modified throughout this work 

because the initial conditions frequently resulted in sample destruction. That is, if SPIONs 

settled at all during the 3 hour incubation at 50 °C, they would decompose and stick to 

the bottom of the reaction vessel. After consulting additional protocols, the incubation was 

carried out at room temperature with constant gentle agitation.50,52,54–56 As EDC 

decomposes within the first 15 minutes of the reaction in an aqueous solvent,50 so the 

reaction time was reduced to 1 hour. To encourage SPION suspension throughout the 

entirety of the reaction, some trials were conducted in an ice bath to allow for continuous 

sonication.  

 

2.5.5 Transmission Electron Microscopy. A drop of dilute SPION solution was placed 

on a carbon coated 200-mesh copper grid (Ted Pella Inc, Redding, CA) and allowed to 

dry at room temperature.  A JOEL JEM-2100 transmission electron microscope 

(Peabody, MA) with an accelerating voltage of 200 kV was used. NIH Image J software 

(http://rsbweb.nih.gov/ij/) was used to analyze images for size of iron oxide core.   

 

2.5.6 Dynamic Light Scattering. SPION hydrodynamic diameter was measured in 

toluene (SPION-OA) or water (all other SPION solutions) with dynamic light scattering 

(DLS) at a scattering angle of 90° at 25 °C using a Malvern Zetasizer Nano (Malvern, 

UK).  
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2.5.7 Thermogravimetric Analysis. Thermogravimetric analysis (TGA) was carried out 

for powder samples (3-10 mg) from 20 to 700 °C with a heating rate of 5 °C/min in flowing 

N2 gas using a TA Instruments Model Q50 (New Castle, DE).  

 

2.5.8 Inductively Coupled Plasma (ICP). ICP-OES was used to determine the iron 

concentration of SPION solutions.  SPION solutions were sonicated in HNO3 (3 ml, 3.47 

M) overnight. Samples were diluted with water to 50 ml final volume prior to analysis.  

Analysis was conducted on a Perkin Elmer Optima 7300 V ICP-OES by the West Virginia 

University National Research Center for Coal and Energy. All samples were prepared in 

replicates of 6, and the mean and standard deviation of the sets were calculated.  

 

2.5.9 General Cell Culture.  A549 (human lung adenocarcinoma) cells were maintained 

in 5% DMEM (Sigma-Aldrich, Milwaukee, WI) supplemented with 5% heat inactivated 

FBS (Sigma-Aldrich, Milwaukee, WI), 1% Penicillin/Streptomycin (Sigma-Aldrich, 

Milwaukee, WI), and 5% L-glutamine.  Cells were incubated at 37°C in a 5% CO2 

environment.  Cells were washed with DPBS (Thermo Scientific HyClone, Logan, UT), 

trypsinized (SAFC Biosciences, Lenexa, KS), and stained with Trypan Blue (Thermo 

Scientific HyClone, Logan, UT) prior to counting. Cell viability was measured with Cell 

Proliferation Reagent WST-1 (Roche, Indianapolis, Indiana). Cytotoxicity was measured 

with Cytotoxicity Detection Kit Plus (LDH) (Promega, Madison, WI). Absorbance 

measurements were made with a Biotek Epoch Microplate Spectrophotometer (Winooski, 

VT).  
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Note on SPION dosing for in vitro experiments: SPION-DNA doses were 

initially calculated relative to mass. Later, attempts were made to dose SPION-DNA by 

iron concentration to deliver similar numbers of SPIONs to each sample, regardless of 

the ligands. Challenges in determining the iron concentration of small sample volumes in 

a timely manner led to the use of DNA concentration as the primary dosing measuring. 

As the therapeutic ligand, the DNA concentration is the measure that best relates to the 

literature. However, an ideal dosing measure would include both iron concentration and 

DNA concentration. 

 

2.5.10 Cell Cytotoxicity.  For viability studies, SPION-DNA doses were calculated to 

deliver specified DNA concentrations, which theoretically would overcome the differences 

in DNA coupling efficiencies. A549 were plated at a density 5 x 103 cells/well in a 96 well 

plate. DMEM (10% FBS) (200 µL) was added to all wells. Cells were allowed to adhere 

overnight and media was replaced with 150 ul fresh media plus a total of 50 µl of SPION-

DNA in PBS (30, 50, 80, 100, 200, 500, 500, 1000 nM DNA)1,57 and PBS. As nanoparticle 

interference with many toxicity assays is not well understood and particle interference has 

been reported under some conditions,58–60 cell-free substance controls were set up in the 

same manner, using the highest dose of SPION-DNA being tested, to ensure SPIONs 

were not interfering with the assay. All sample sets were run in at least triplicate. Cells 

were incubated with SPIONs for 24 or 48 hours, after which the plate was placed on a 

bar magnet for 2 minutes to draw SPIONs to bottom of dish. Supernatant (100 µl) from 

each well was transferred to a clean 96 well plate and freshly prepared LDH assay 

reaction mixture (100 μL) was added to each well. The plate was incubated for 15 minutes 
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at room temperature (20°C). Absorbance was measured at 490 and 620 nm. The 

cytotoxicity of cells was calculated relative to unexposed cells (all absorbance values 

used in calculations were at 490 nm): 

(𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠)− (𝑏𝑙𝑎𝑛𝑘 𝑎𝑏𝑠)− (
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
))∗𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑏𝑠

(𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑏𝑠 )−(𝑏𝑙𝑎𝑛𝑘 𝑎𝑏𝑠 )
×  100%.  

 

2.5.11 Cell Metabolic Viability.  For viability studies, SPION-DNA doses were calculated 

to deliver specified DNA concentrations, which theoretically would overcome the 

differences in DNA coupling efficiencies. A549 were plated at a density 5 x 103 cells/well 

in a 96 well plate. DMEM (10% FBS) (200 µL) was added to all wells. Cells were allowed 

to adhere overnight and media was replaced with 150 ul fresh media plus a total of 50 µl 

of SPION-DNA in PBS (30, 50, 80, 100, 200, 500, 500, 1000 nM DNA)1,57 and PBS. As 

nanoparticle interference with many toxicity assays is not well understood and particle 

interference has been reported under some conditions,58–60 cell-free substance controls 

were set up in the same manner, using the highest dose of SPION-DNA being tested, to 

ensure SPIONs were not interfering with the assay. All sample sets were run in at least 

triplicate. Cells were incubated with SPIONs for 24 or 48 hours, after which media was 

removed for use in cell cytotoxicity assays, as described above, and remaining adherent 

cells were washed with PBS (x3, 100 uL) to remove unbound SPIONs. Fresh media (10% 

FBS, 100 μL) and WST-1 reagent (10 μL) were added to each well. Absorbance at 450 

and 630 nm was measured after 90 minute incubation at 37°C. Cell viability was 

calculated relative to untreated cells with the following equation (all absorbance values 

used in calculations were at 450 nm): 
(𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠)− (𝑏𝑙𝑎𝑛𝑘 𝑎𝑏𝑠)

(𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑏𝑠)− (𝑏𝑙𝑎𝑛𝑘 𝑎𝑏𝑠)
.  
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2.5.12 Western Blots. A549 cells were incubated with SASO-SPION or SPION-NTC (0 

or 1000 nM DNA) for 24 hours. The media was removed and cells were washed three 

times with PBS.  Cells were lysed with a lysis buffer (50 mM Tris-HCl , pH 8.0 (Sigma-

Aldrich, Milwaukee, WI), 0.1% wt/vol SDS (Sigma-Aldrich, Milwaukee, WI), 1% wt/vol 

glycerol (Sigma-Aldrich, Milwaukee, WI)) and total protein content was measured with 

Micro BCA kits (Thermo Scientific, Rockford, IL).  A total of 60 µg protein was loaded into 

each lane of a tray for SDS-PAGE with 10% wt/vol separating gel and 5% wt/vol stacking 

gel. Protein was transferred to a polyvinyliene fluoride (PVDF) membrane (30 mA, 2 

hours) (Sigma-Aldrich, Milwaukee, WI), which was blocked for 3 hours with a blocking 

solutions (1 % wt/vol bovine serum albumin, 0.05% Tween-20 (Sigma-Aldrich, Milwaukee, 

WI), 0.9% NaCl, 0.1 M PBS pH 7.2).  Rabbit anti-survivin antibody (1:200, v/v) (Sigma-

Aldrich, Milwaukee, WI) was used to hybridize protein overnight at 4°C. The membrane 

was then rinsed with PBS and hybridized with HRP conjugated goat anti-rabbit secondary 

antibody (1:1000, v/v) (Sigma-Aldrich, Milwaukee, WI) for 2 hours at 37°C.  The signal 

was detected using ECL western blotting detection reagents and images were acquired 

on an ImageMaster VDS-CL (Amersham Biosciences, Pittsburgh, PA). 

 

2.5.13 Confocal Microscopy.  SPIONs doses in this experiment were based on particle 

mass, with SPION-PAA used as a control rather than NTC-SPION. A549 cells were plated 

at a density of 2 x 105 cells/well in DMEM (10% FBS) (1500 μL) on glass cover slips in a 

6 well plate. After 24 h, the media in the wells was replaced with fresh DMEM (1500 μL) 

containing 0 µg/ml, 20 µg/ml or 200 µg/ml of SPION-PAA, SASO-SPION or fluorescein-

labeled SASO-SPION. Cells were incubated for 24 hours at 37°C, washed three times 
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with PBS (100 μl/wash), and stained with FM4-64FX Lipophilic Styryl Dye (Invitrogen, 

Carlsbad, CA) dye before fixing with 3.7% paraformaldehyde. Fixed cells were mounted 

onto slides with ProLong Gold Antifade Reagent with Dapi (Invitrogen, Carlsbad, CA). 

Cells were viewed with Zeiss LSM 510 laser scanning confocal microscope (Zeiss).  

Image processing was done in Zeiss LSM Image Browser Ver. 4.2.0.121. 

 

2.5.14 Fluorescent Microscopy.  SPIONs doses in this experiment were based on iron 

concentration, as determined by ICP analysis, and SPION-PAA was used as a control 

rather than NTC-SPION. A549 cells were plated at 1 x 105 cells/well on glass cover slips 

in a 6 well plate. DMEM (10% FBS) (1500 μL) was added to each well and plates were 

incubated at 37°C. After 24 hours, the media in the wells was replaced with fresh 10% 

FBS media containing SPION-PAA, SASO-SPION or fluorescein-labeled SASO-SPION 

(0, 3, or 33 µg Fe/ml). Cells were incubated for an additional 24 hours at 37°C. Media 

was removed and cells were washed three times with DPBS. Endosomes were stained 

with Lysotracker deep red (250 nM, 20 min, 37 °C) (Invitrogen, Carslbad, CA). Cells 

were fixed in 3.7% paraformaldehyde and mounted with ProLong Gold Antifade 

Reagent with Dapi (20 µl). Slides were viewed with Leica DMI 6000 inverted fluorescent 

microscope with a DFC300FX camera (Leica, Buffalo Grove, IL). All images were 

acquired using the same L5 channel settings.  
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2.7. Figures and Tables  
 

2.7.1 Figures 
 
Figure 2.1. Schematic of SPION platform.  

 
 
Figure 2.1. Schematic of SPION platform. (Left) SPION-OA is synthesized via thermal 

decomposition synthesis, (center) coated with octylamine modified PAA, and (left) amine-

modified DNA is coupled to the outward-facing carboxylic acid groups of the PAA coating. 

The hydrophobic layer formed by alkyl tails of the oleic acid and octylamine could be 

loaded with lipophilic drugs (red dots).  
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Figure 2.2. Diameter of SPION-OA by TEM and DLS.  

 

Figure 2.2. (A) Representative TEM image of SPION-OA. SPIONs are well dispersed 

and have uniform iron oxide cores. (B) SPION-OA iron oxide core diameter, measured 

across three separately prepared syntheses, is 7.05 ± 0.08 nm.   
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Figure 2.3. FT-IR spectra of SPION-OA and SPION-PAA.   

 

 

Figure 2.3. (A) FT-IR spectra for SPION-OA and (B) SPION-PAA. Analysis was 

performed on desiccator-dried powder samples.  
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Figure 2..4 TGA of SPION-OA and SPION-PAA.  

 

 

Figure 2.4. A) Representative TGA of SPION-OA and (B) SPION-PAA. Red line shows 

percent of original mass remaining as temperature was increased (5° C/minute). Black 

line is the derivative of the red line, showing the rate of change of the mass as temperature 

was increased. (C) Graphical representation of the composition of SPION-OA and 

SPION-PAA. Composition was determined by TGA and was based on the analysis of 

three samples from three separate batches. (D) Hydrodynamic diameter of SPION-OA in 

toluene and (E) SPION-PAA in distilled water.  
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Figure 2.4. Diameter of SASO-SPION by TEM and DLS.  

 

 

Figure 2.5. (A) Representative TEM image of SASO-SPION. SASO-SPION is well 

dispersed and has uniform iron oxide cores. (B) Graphical comparison of iron oxide core 

diameter of a single batch of SPION-OA (7.07 ± 0.74 nm) and SASO-SPION (7.07 ± 0.74 

nm) prepared from that batch. (C) Hydrodynamic diameter of SASO-SPION in distilled 

water, as determined by DLS, is 50.58 nm.  
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Figure 2.6. To-scale diagram of contribution of SPION layers to final particle 

diameter.  

 

Figure 2.6. To-scale diagram of contribution of various SPION layers to hydrodynamic 

diameter (determined by DLS). 
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Figure 2.. SASO-SPION is internalized by A549 cells.  

 

Figure 2.7. SASO-SPION is taken up by A549 cells following 24 hour incubation. Cells 

were incubated with SASO-SPION or fluorescein- SASO-SPION (0, 20, 200 µg/mL) for 

24 hours, washed to remove free SPIONs, and stained with FM4-64X cell membrane 

stain before fixation. Fluorescein- SASO-SPION is visible inside the cells, particularly at 

the high (200 µg/mL) dose, as shown in the insets.  
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Figure 2,8 SASO-SPION is detectable in endosomes of A549 cells after 24 hour 

exposure.   

 

Figure 2.8. (A) Fluorescently-labeled SASO-SPION is taken up by A549 cells following a 

24 hour incubation. Cells were incubated with SASO-SPION or fluorescein-SASO-SPION 

(200 µg/mL) for 24 hours, washed to remove free SPIONs, and stained with FM4-64X cell 

membrane stain before fixation.3D reconstruction from confocal microscopy z-stack 

images shows that fluorescein-SASO-SPIONs (green) are inside of the FM4-64X stained 

cells (red).  (B) Fluorescent microscopy shows co-localization (yellow) of fluorescein-

tagged SASO-SPION (green) and endosomes (red) after staining with Lysotracker Deep 

Red (left) or Cell Mask Orange (right). Cells were incubated with fluorescein-labeled 

SASO-SPION (33 µg Fe/mL) for 24 hours, washed to remove free SPIONs, and stained 

with either Lysotracker Deep Red or Cell Mask Orange cell membrane stain before 

fixation.  
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Figure 2.9. SASO-SPION decreases survivin expression in A549 cells.  

 

Figure 2.9. (A) Survivin expression in A549 cells following 24 hour incubation. Results 

from 2 trials.  (B) Metabolic viability, determined by WST-1 assay, of A549 cells was 

assessed after 24 hour incubation with SASO-SPION or NTC-SPION (0, 50, 100, 200, 

500, 1000 nM DNA). Results are expressed as a percentage of the untreated control 

viability. Results of 4 independent trials. No significance (p < 0.05, by Student’s T-test) 

was noted. (C, D) Metabolic viability, determined by WST-1 assay, of A549 cells was 

assessed after 48 hour incubation with SASO-SPION or NTC-SPION (0, 50, 100, 200, 

500, 1000 nM DNA). Results are expressed as a percentage of the untreated control 

viability. (C) and (D) show the variation in biological effects resulting from inconsistencies 

in the DNA coupling process, despite treating cells with the same DNA concentration.   
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2.7.2 Tables 

 
 

Table 2.1. Contribution of various SPION layers to total particle diameter.   

 SPION SPION-OA SPION-PAA SPION:DNA 

Diameter 
(DLS) 

7.00 nm 11.27 nm 43.12 nm 50.28 nm 

Change from 
previous 

step 
------- 4.27 nm 32.05 nm 7.46 nm 

Length of 1 
addition 

------- OA: 1.97 nm ?? 
DNA: 3.2 nm 
C6NH: 0.5 nm 

Expected 
change 

------- 4 nm ?? 7.4 nm 

 

Table 2.1. Contribution of various SPION layers to total particle diameter. Particle 

diameters were determined using DLS. Expected changes were calculated based on a 

single layer of covalently bound coating for both oleic acid and DNA.   
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Chapter 3 
 

Role of Mesothelin in Carbon Nanotube-Induced 
Carcinogenic Transformation of Human 

Bronchial Epithelial Cells 
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3.1. Abstract 
 

Carbon nanotubes (CNTs) have been likened to asbestos in terms of morphology and 

toxicity. CNT exposure can lead to pulmonary fibrosis and promotion of tumorigenesis. 

However, the mechanisms underlying CNT-induced carcinogenesis are not well defined. 

Mesothelin (MSLN) is over-expressed in many human tumors, including mesotheliomas 

and pancreatic and ovarian carcinomas. In this study, the role of MSLN in the 

carcinogenic transformation of human bronchial epithelial cells chronically exposed to 

single-walled CNT (BSW) was investigated. MSLN overexpression was found in human 

lung tumors, lung cancer cell lines, and BSW cells.  The functional role of MSLN in the 

BSW cells was then investigated using stably-transfected MSLN knockdown (BSW 

shMSLN) cells. MSLN knockdown resulted in significantly decreased invasion, migration, 

colonies on soft agar, and tumor sphere formation. In vivo, BSW shMSLN cells formed 

smaller primary tumors and less metastases. The mechanism by which MSLN contributes 

to these more aggressive behaviors was investigated using Ingenuity Pathway Analysis, 

which predicted that increased MSLN could induce cyclin E expression. We found that 

BSW shMSLN cells had decreased cyclin E, and their proliferation rate was reverted to 

nearly that of untransformed cells. Cell cycle analysis showed that the BSW shMSLN cells 

had an increased G2 population and a decreased S phase population, which is consistent 

with the decreased rate of proliferation. Together, our results indicate a novel role of 

MSLN in the malignant transformation of bronchial epithelial cells following CNT 

exposure, suggesting its utility as a potential biomarker and drug target for CNT-induced 

malignancies. 
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3.2. Introduction 
 

Carbon nanotubes (CNTs) have unique physical and chemical properties that make 

them suitable for a variety of consumer and biomedical applications. Their electrical 

conductivity and strength are exploited with their integration into consumer products, 

including electronics and sports equipment. The ease of functionalization make CNTs 

ideal candidates for biosensors and drug-delivery platforms (10, 32, 38). CNTs are fibrous 

in shape and resistant to chemical and high-temperature degradation. Therefore, CNTs 

exhibit asbestos-like properties (44). Due to the rapid growth of production, worker 

exposure to CNTs is increasingly likely, creating a potential human health hazard (10, 

42).  

Pulmonary toxicity following CNT exposure is of particular concern, as CNTs are 

small, low density, and easily aerosolized (32). As with other nanoparticles, the toxicity of 

CNTs depends heavily on the dose, exposure route, and particle physical properties (38, 

42). Variations in these parameters often make it difficult to compare published outcomes. 

However, the consensus is that inhalation of CNTs are likely detrimental to human health, 

but the full scope and mechanisms of the damage are still unclear (11).  

Much of what is known about CNT toxicity comes from acute, high-dose exposures, 

which result in transient inflammation and fibrosis (7, 42). In reality, chronic, low-dose 

exposures are more likely (42), meaning that chronic exposure models are needed to 

determine meaningful occupational exposure limits. Additionally, CNTs are not degraded 

in vivo and their persistent presence, even at very low doses, can cause oxidative stress 

(42) and DNA damage (7). Over time, this damage could contribute to the development 
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of cancer. However, the molecular mechanisms underlying this transformation are 

currently unknown.  

To better understand the mechanism of CNT-induced carcinogenesis, we previously 

generated an in vitro chronic CNT exposure model by culturing human bronchial epithelial 

(BEAS-2B) cells with single-wall carbon nanotubes (SWCNTs; 0.02 µg/cm2) for 6 months 

(21, 47). These chronic SWCNT-exposed (BSW) cells had greater malignant morphology 

and behavior than their passage-matched parental cells, including increased proliferation 

rates, increased resistance to apoptosis (30, 47), and increased tumor formation in vivo 

(21, 47).   

The malignant phenotype noted after chronic exposure to sub-acute doses of 

SWCNTs results from the interaction of many factors, including changes in regulation of 

a variety of cell processes (apoptosis, invasion/attachment, cell cycle regulation, etc.). 

The mechanisms causing these changes have not been fully described, but, given the 

similarities between CNTs and asbestos, it is possible that the pathologies could develop 

through similar mechanisms. 

Mesothelin (MSLN), a 40 kD cell-surface protein of unknown physiological 

significance, is found in very few normal tissues. The MSLN gene encodes a 70 kD pre-

cursor protein that is cleaved into the 40 kD cell-surface mature MSLN fragment and a 30 

kD soluble fragment. Mature MSLN is detectable in nearly all mesotheliomas and 

approximately 30% of all cancers (29). Over-expression of MSLN in lung 

adenocarcinomas is correlated with decreases in both overall and relapse-free survival 

(16). Although neither the normal or pathological role of MSLN is explicitly known, it has 

been suggested that MSLN may promote the development of malignancy by affecting cell 
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adherence (41), cell survival and proliferation (16, 19, 41), invasion and migration (16), 

apoptosis resistance, and chemosensitivity (41). The soluble MSLN fragment is 

detectable in the serum of many cancer patients, and its presence has been investigated 

as a potential biomarker for lung adenocarcinoma, mesothelioma (37), pancreatic cancer 

(19, 41), and ovarian cancer (12). 

Since MSLN is thought to play a role in carcinogenesis, this study was designed to 

determine the functional role of MSLN in SWCNT-transformed bronchial epithelial cells 

(BSW). A stably-transfected MSLN knockdown line (BSW shMSLN) was generated and 

used to evaluate the effects of MSLN knockdown on cell migration, invasion, colony 

formation, and tumor sphere formation in vitro, as well as tumorigenesis and metastasis 

in vivo. A MSLN overexpressing BEAS-2B line, B2B/MSLN, was also generated to 

determine if MSLN overexpression alone could induce the same in vitro malignant 

phenotypic changes as those previously noted in the BSW cells. The mechanism by 

which MSLN could contribute to these behaviors was investigated using Ingenuity 

Pathway Analysis, which suggested that MSLN induced cyclin E, leading to cell cycle 

dysregulation. The effects of MSLN on cyclin E and cell cycle regulation were verified 

experimentally.   

 

3.3. Results 

 
 
2.3.1. Mesothelin expression is increased in human lung tumors and lung cancer 

cell lines. As reports on the pervasiveness of MSLN in human cancers vary widely, we 

first verified that MSLN was detectable in human lung tumors lysates. MSLN expression 

was assessed in ten human lung tumor samples and corresponding adjacent, healthy 
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tissue controls (Fig. 1A). Samples included six large cell carcinomas, three squamous 

cell carcinomas, and one adenocarcinoma. None of the control samples had notable 

MSLN expression. However, five of the ten tumor samples had increased MSLN 

expression, ranging from two to tenfold more MSLN than the corresponding normal 

controls (Fig. 1B).   

To validate the differential expression of MSLN in malignant versus non-malignant 

cell lines, MSLN expression was assessed in non-cancerous BEAS-2B cells, two lung 

cancer lines (A549, H460), and BSW cells, the previously generated SWCNT-

transformed human bronchial epithelial line (47) (Fig. 1C). BEAS-2B cells had a lower 

level of MSLN expression than both the BSW cells and the lung cancer lines, A549 

(adenocarcinoma) and H460 (large cell carcinoma) (Fig. 1D). Even though the BSW cells 

originated from the non-cancerous BEAS-2B cells, their MSLN expression was on par 

with the cancer cell lines.  

 

2.3.2. MSLN knockdown BSW cells are less aggressive than BSW cells in 

vitro and in vivo. To determine the functional role of MSLN in the expression of a more 

malignant phenotype by BSW cells, BSW cells were stably transfected with either MSLN 

short-hairpin (sh)RNA (shMSLN) or a vector control (shC). Western blot analysis (Fig. 2, 

A and B) showed that MSLN was decreased substantially in the shMSLN-transfected cells 

(BSW shMSLN). MSLN was decreased to nearly undetectable levels in two clones (BSW 

shMSLN-1 and BSW shMSLN-5) and these clones were selected for further study.  

Colony formation on soft agar is used to assess anchorage-independent cell 

growth in vitro, a hallmark of malignant transformation (5). MSLN knockdown cells (BSW 
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shMSLN) formed significantly fewer colonies on soft agar than BSW controls (BSW shC) 

(23.7 ± 5.1 vs. 53.0 ± 9.9) and the colonies that did form were smaller than those formed 

by the BSW controls (Fig. 2, C and E). Although non-cancerous cells are not usually 

expected to form colonies on soft agar, it has been noted that BEAS-2B cells form small, 

slow-growing colonies despite their non-malignant origins (40, 45). Previously, it was 

shown that BSW cells formed eight times more colonies than passage-matched BEAS-

2B cells (47).  

Tumor spheres form from the proliferation of cancer stem cells and the number of 

tumor spheres that form is indicative of the relative amount of cancer stem cells in the 

culture (2). BSW shMSLN cells formed significantly fewer tumor spheres than BSW shC 

(50.2 ± 10.9 vs. 81.0 ± 9.7) and the spheres formed by the BSW shMSLN cells were 

overall smaller than those formed by BSW ShC (Fig. 2, D and F).  

To determine if the reduction in colony formation was due specifically to the 

decrease in MSLN, the experiments were repeated with a MSLN-overexpressing line. 

BEAS-2B cells were transiently transfected to overexpress MSLN (B2B/MSLN) (Fig. 2G). 

After MSLN overexpression was verified, B2B/MSLN colony formation on soft agar was 

assessed. B2B/MSLN formed substantially more colonies than B2B cells (6.5 ± 2.17 vs 

0.17 ± 0.51), and the colonies that formed were overall much larger than those seen with 

B2B cells (Fig. 2, H and I). Next, the effects of MSLN on cell migration and invasion were 

assessed. Migration was quantified using a Transwell® system with 8 µm pores in the 

barrier. Cells that crossed the pores in the barrier were stained and counted (Fig. 3, A 

and C). The BSW vector control cells (BSW shC) had 2.6 times as many migrated cells 
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as the MSLN knockdown cells (BSW shMSLN). Previously, BSW cells were shown to 

migrate twice as much as passage-matched BEAS-2B controls (47).  

Invasion was quantified in a similar manner to migration, except a thin layer of 

extra-cellular matrix was added to form a barrier over the pores in the Transwell® insert. 

In order for cells to cross through the barrier, they must first break down the extra-cellular 

matrix (18). BSW shMSLN demonstrated significantly (2.8 times) less invasion than BSW 

shC (Fig. 3, B and D). Previously, BSW cells were shown to invade three times as much 

as passage-matched BEAS-2B controls. Overall, the invasion and migration assays show 

that the reduction in MSLN significantly reduces the invasion and migration abilities of the 

BSW cells.  

Next, the effect of MSLN overexpression on migration and invasion was assessed 

using B2B/MSLN cells. B2B/MSLN cells demonstrated significantly increased migration 

and invasion relative to B2B controls. Migration was increased 6-fold (Fig. 3, E and G) 

relative to B2B controls, while invasion was increased 4-fold (Fig. F and H).  

Since decreasing MSLN reduced the aggressiveness of BSW cells in vitro, we next 

assessed whether this translated to less severe in vivo behavior. While non-cancerous 

cells, including the parental BEAS-2B line, are not expected to form tumors in nude mice 

(30), the transformed BSW cells have been shown to form injection-site tumors in vivo 

(47). In our study, both BSW shMSLN and BSW shC cells formed injection-site tumors in 

mice after 30 days, with the BSW shC cells forming tumors three times larger than those 

resulting from BSW shMSLN cells (Fig. 4, A and B).   

We also assessed the ability of BSW tumors to metastasize by measuring surface tumor 

nodules in the abdominal and thoracic cavities. BSW shMSLN cells formed 15 times fewer 
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metastatic nodules (average of 1 per mouse) than BSW shC cells (Fig. 4C). Mice injected 

with BSW shC had significantly greater tumor surface area in pulmonary and hepatic 

cross sections (56 ± 31.27 vs 2.25 ± 4.5 cm2) (Fig. 4D). Examination of hematoxylin and 

eosin stained liver and lung slices confirmed these findings, with tumor nodules present 

in the liver and lungs of mice treated with BSW shC cells but not in mice treated with BSW 

shMSLN cells (Fig. 4E). Tissue sections were stained with anti-human mitochondrial and 

anti-human MSLN antibodies to ensure that the tumors had originated from the injected 

human cells (Fig. 4, F and G). Tissue staining results indicate that liver and lung 

metastatic lesions were of human origin and high in MSLN expression. 

 

2.3.3. Mesothelin increases cyclin E, which drives more rapid cell 

proliferation. Possible mechanisms behind MSLN-driven malignancies were 

investigated by using Ingenuity Pathway Analysis (IPA) to determine the overlap between 

gene expression changes in BSW cells, as previously determined by whole-genome 

mRNA microarray (23), and known relationships with over-expressed MSLN (Fig. 5). The 

prediction suggests that activated TNF, and K-ras (Z = 2.03), mediators commonly 

increased with lung cancer, coupled with decreased and inhibited cyclin A, cyclin B and 

cyclin-dependent kinase 1 (CDK1) expression contribute to the induction of MSLN. Once 

MSLN has increased, it may increase the expression of matrix metalloproteinase (MMP) 

-7 and MMP-9, contributing to increased invasion, as well as stimulating increases in IL-

6, Stat3, and cyclin E, which contribute to cell cycle dysfunction. MSLN is predicted to 

have an inhibitory effect on both p53 and the pro-apoptotic mediator BAX. Inhibition of 

p53 would complement the dysfunctional cell cycle progression resulting from the 
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increase in cyclin E. Suppression of the anti-apoptotic mediator BAX may shift the cells 

towards a more apoptosis-resistant state.  

From the IPA data, it appears that MSLN induces cyclin E, which regulates cell 

cycle progression by acting as a gatekeeper at the G1/S phase transition. The IPA 

prediction was verified using Western blotting, which confirmed that cyclin E was highly 

expressed in BSW shC cells but barely detectable in either BSW shMSLN clone (Fig. 6, 

A and B), indicating that MSLN is an upstream regulator of cyclin E in these cells.   

Increases in cyclin E, and the subsequent decreases in time spent in G1, can result 

in more rapid cell cycle progression and ultimately increased proliferation rates. The 

change in proliferation rate can be used to determine the functional significance of the 

changes in cyclin E and cell cycle distribution. A colorimetric proliferation assay, which 

allows for the determination of the number of metabolically active cells based on their 

conversion of the reagents tetrazolium salt to a water-soluble formazan dye, was used to 

quantify cell proliferation (Fig. 6C). By day 3, BSW shMSLN cells proliferated at half the 

rate of the BSW shC cells. In addition, BSW cells proliferate 2-3 times faster than 

passage-matched BEAS-2B controls (47). Thus, knocking down MSLN nearly reverts 

cells to their original growth rate.  

Flow cytometry was carried out to determine if the change in cyclin E levels 

correlated with a change in cell cycle distribution. Compared to the BSW shC cells, the 

BSW shMSLN cells had a greater percentage of the population in G2 phase and fewer 

cells progress to S phase (Fig. 7). Since cyclin E regulates the G1/S phase transition, the 

increased S population in the BSW shC cells serves as supporting evidence that the 
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increase in cyclin E translates to a change in behavior. In addition, the decrease in the 

G2 population also indicates more rapid cell cycle progression.  

 

3.4. Discussion  
 

Cancer develops from continuous dysregulation of the mechanisms controlling 

critical cell behaviors. Chemical and physical stimuli can contribute to both the initial 

cellular damage and the propagation of those effects. Assessing the potential 

carcinogenicity and carcinogenic mechanisms of new materials is often challenging due 

to the long latent periods between exposure and disease onset and the intricate molecular 

pathways regulating cell behavior (22). Rapid assessment of toxicity, as is possible with 

acute exposure models, does not always capture the full range of toxicological 

implications, particularly when used to assess bio-persistent materials like asbestos and 

CNTs (42, 48).  

CNTs have been likened to asbestos in terms of their fibrous structure and 

durability. As their integration into consumer products grows, understanding their toxicity 

has become a pressing public health matter (10, 42, 44). Their small, light, easily 

aerosolized structure makes inhalation exposures, and thus eventual lung toxicity, a 

primary concern (32). Once inhaled, SWCNTs can deposit in the deepest regions of the 

lung, the broncho-alveolar junctions and the alveoli themselves, where they persist for up 

to several months (22, 48). After an initial inflammatory response and the generation of 

reactive oxygen species (ROS), SWCNT persistence in the lung leads to the formation of 

granulomas and interstitial fibrosis (7, 35, 42, 48). Prolonged pulmonary inflammation and 

fibrosis increase the risk of developing lung cancer (22, 34). Additionally, SWCNTs may 
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further increase the risk by damaging DNA and interfering with cell replication (7, 22, 34). 

Reported SWCNT genotoxicity, in in vitro and in vivo models, includes aneuploidy, 

centrosome fragmentation, damage to mitotic spindles, and increased numbers of 

micronuclei (22, 34, 36). Moreover, long term exposure to CNTs induced malignant 

transformation of bronchial and small airway epithelial cells (47, 48). SWCNT exposure 

in a mouse inhalation model also resulted in K-ras oncogene mutations, which have been 

implicated in carcinogenesis (34, 35). Despite the evidence for SWCNT-induced DNA 

damage, their status as an oncogenic initiator is still unconfirmed (48). However, a murine 

inhalation study, using an initiator/promotor model, demonstrated that MWCNTs, 

specifically Mitsui-7 MWCNT, do act as tumor promotors (32). 

To better understand the molecular mechanisms contributing to CNT 

carcinogenicity, we investigated the role of MSLN in the malignant transformation of lung 

epithelial cells chronically exposed to SWCNT. MSLN was historically associated with 

mesothelioma (37), which is primarily an asbestos-induced malignancy (48). MSLN has 

since identified in nearly 30% of all cancers, including a large number of lung (16), 

pancreatic (19, 41) and ovarian carcinomas (12).  

The role of MSLN in lung cancer is not well defined, at least in part because its 

expression is highly variable even among patients with the same type and grade of tumor. 

For lung adenocarcinomas, MSLN has been detected in 39-83% of tumors (13, 16, 25–

27), and tumor MSLN expression may be an independent predictor of relapse-free and 

overall survival (16). Increased MSLN expression is thought to be involved in cell 

adherence and chemotherapy resistance, as well as increased invasion and migration, 

cell proliferation, and anchorage-independent growth (41). However, as neither the 
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physiologic role of MSLN nor its pathological mechanism is known, the varied prevalence 

of MSLN in tumors has made it difficult to discern whether or not MSLN has a functional 

role in the development of cancer. 

Our BSW line, generated by exposing BEAS-2B cells to low doses of SWCNTs for 

6 months (47), offers a model to study the molecular and behavioral changes associated 

with malignant transformation of lung epithelial cells. This exposure model has been used 

to study the effects of chronic heavy metal exposures (28, 39) as well as chronic 

exposures to single (20, 21, 47, 48) and multiwall CNTs (44, 48). In addition, this model 

was used to discern the differences in the toxicological effects of chronic in vitro exposure 

of lung epithelial cells to SWCNTs, MWCNTs, and asbestos, all of which are known to 

accumulate and trigger inflammation and fibrosis in vivo, versus ultrafine carbon black, 

which exhibits lower in vivo toxicity and is not highly fibrogenic (48). Chronic in vitro 

exposure to non-toxic levels of SWCNTs, MWCNTs, and asbestos triggered neoplastic 

transformation, while cells exposed to ultrafine carbon black maintained a non-neoplastic 

phenotype with reduced cell proliferation, fewer colonies on soft agar, and an increase in 

genome-wide cell death signaling. 

In the case of BSW cells, abnormal cell morphology was noted within the first 4 weeks 

of exposure and abnormal cell behavior was characterized after 6 months of exposure 

(47). Although the mechanisms behind some aspects of this transformation, including the 

acquired apoptosis resistance (30, 47) and stem-like characteristics (21, 23), have been 

investigated, they do not account for all of the changes seen in the BSW cells, suggesting 

that there are likely additional, currently unidentified, contributing mechanisms. In this 

study, we found that BSW cells have greater MSLN expression than the parental BEAS-
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2B cells and this model provided a unique platform to study the role of MSLN in malignant 

transformation and subsequent aggressive behavior. 

BSW cells are morphologically and behaviorally distinct from the parental BEAS-2B 

line. These changes trend towards an overall more aggressive phenotype, including 

increased cell proliferation, invasion, migration, colony formation on soft agar, acquired 

resistance to apoptosis, induction of angiogenesis, and the ability to form tumors in vivo 

(47). These changes are consistent with those seen in other in vitro chronic CNT 

exposures (20, 44, 48). Interestingly, many of the changes seen in BSW cells correspond 

with previously suggested roles of MSLN.  

In the present study, MSLN appears to contribute significantly to the increased 

metastatic potential of BSW cells. Metastases are responsible for the overwhelming 

majority of cancer deaths, because they are difficult to prevent or treat. After MSLN-

knockdown, invasion and migration were reduced significantly. Conversely, migration and 

invasion were increased when MSLN overexpression was induced in BEAS-2B cells. 

Lung cancer cells transduced to overexpress MSLN have previously been shown to have 

a two-fold increase in both migration and invasion (16), which is similar to the 2.6 and 2.8 

fold increase we noted in the BSW shC cells relative to the BSW shMSLN cells. MSLN-

related increases in invasion and migration have also been reported in pancreatic cancer 

(16), ovarian cancer (6), and mesothelioma (24) cell lines.  

Anchorage-independent growth, an in vitro hallmark of carcinogenic transformation, 

was also affected by changes in MSLN expression. We found that knocking down MSLN 

decreased soft agar colony and tumor sphere formation, while MSLN overexpression 

increased soft agar colony formation. This is in line with previous reports that MSLN-
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expressing breast cancer cells formed 1.5 times more colonies, and the colonies were 

twice the size, compared to non-MSLN expressing controls (43). Similarly, silencing 

MSLN in mesothelioma cells result in reductions in both the number and size of colonies 

that form on soft agar (24). 

A reduction in the aggressiveness of malignant cells in vitro should correlate with 

reduced tumor formation, both local and metastatic, in vivo. Our results show that 

knockdown of MSLN in our BSW cells did translate to significantly less metastases and 

reduced (but not eliminated) primary tumors in vivo. Immunohistochemistry indicated that 

metastatic lesions in BSW shC treated mice were of human origin and expressed human 

MSLN. A previous study using pancreatic cancer cells that stably overexpressed MSLN 

showed that the MSLN overexpressing cells resulted in larger tumors than the parental 

line (3). In rats with tuberous sclerosis, knocking out MSLN reduced the formation of 

kidney tumors, a change that was partially attributed to the MSLN-knockdown cells being 

less able to bind to collagen (50).  

Although elucidation of the specific mechanism for the decrease in metastases is 

beyond the scope of this study, it is likely that MSLN mediates cell-cell adhesion, and its 

overexpression aids the circulating tumor cells in attaching to new locations. This has 

been previously described in the context of ovarian cancer metastases attaching to the 

peritoneal lining via interactions between MSLN and the ovarian cancer antigen CA-125 

(31). Additionally, in a kidney tumor model, MSLN knockout cells were less adherent to 

collagen (50). How this translates to other forms of cancer is not yet known, but further 

studies of this interaction in other lines, including BSWs, have the potential to enhance 

our understanding of the metastatic process.  
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The mechanism by which MSLN mediates metastasis may be related to its normal 

function. MSLN is typically found on the apical surface of mesothelial linings (27, 31) and 

is often (but not exclusively) seen on the apical surface or leading edge of tumors (1, 8, 

9, 33). This is similar to the localization and effects of CA-125, the ovarian cancer antigen, 

and may explain why the co-expression of MSLN and CA-125 results in worse outcomes 

than either alone (31). This might also point towards MSLN having a similar function to 

CA-125.  

Predictions as to the molecular mechanisms underlying MSLN-driven changes in 

BSW cell behavior were investigated using IPA. These predictions were based on 

increased MSLN in BSW cells and fit well with our experimental observations as well as 

previously reported effects of MSLN in other cancer cell lines. Many of the predictions 

correlated with the observed aggressive behaviors, such as increases in MMP-9, which 

would contribute to the increased invasiveness of our SWCNT-transformed BSW cells. 

MSLN-induced increases in MMP have previously been linked to increased invasiveness 

in ovarian cancer cells (6).  

One notable relationship is that TNF appears to induce MSLN, which in turn 

increases IL-6. IL-6 is known to stimulate TNF, creating a potential positive feedback loop 

that could markedly increase both MSLN and IL-6. IL-6 is an inflammatory chemokine 

that may serve as an important intermediate between MSLN over-expression and MSLN-

induced aggressive behaviors. Specifically, IL-6 promotes cell growth, chemo-resistance, 

anchorage-independent cell growth, and invasiveness (4, 17) and is over-expressed in 

MSLN-expressing pancreatic cancer cells (4, 41). It appears likely that MSLN does not 
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directly induce IL-6; rather, MSLN activates NF-kB, which in turn induces IL-6 production 

(3).  

Additionally, higher levels of MSLN tend to correlate with signs of inflammatory 

responses, including the induction of IL-6 (3), degradation of extracellular matrix by matrix 

metalloproteinases (6), and changes in attachment mediators (15, 50). Our IPA analysis 

also suggests that MSLN induces TNF-a, a key pro-inflammatory cytokine with an 

important role in lung cancer development. Typically an immune or inflammatory 

response to tissue damage or foreign particles will resolve as the particles clear and the 

environment returns to normal. The bio-persistence of CNTs, however, would trigger a 

continuous inflammatory response, which can form a positive feedback loop to further 

increase MSLN expression. The similar bio-persistence of CNTs and asbestos could also 

explain why MSLN is increased in nearly all mesotheliomas.  

Increases in MSLN expression were also predicted, by IPA, to increase cyclin E, 

a cell cycle regulator that promotes the G1/S phase transition and is frequently 

dysregulated in cancer cells (14). We demonstrated that MSLN induced cyclin E in BSW 

cells. Elevated cyclin E has been found in pancreatic cells transformed to over-express 

MSLN, where it was suggested that MSLN induces cyclin E through an IL-6/Stat3 

pathway (3). This is a plausible mechanism for the increase in cyclin E in the BSW cells 

as well, particularly considering that IPA predicted MSLN-induced increases in both IL-6 

and cyclin E.  

In addition to verifying that MSLN knockdown did exhibit decreased cyclin E 

expression, we found that knockdown of MSLN shifted the proportion of cells in G2 and 

S phase of the cell cycle. After MSLN and, by extension, cyclin E knockdown, the 
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expected decrease in S phase population was coupled with an increase in the G2 

population. MSLN knockdown in mesothelioma cells also resulted in a decrease of the S 

phase population (24). IPA suggests that decreased cyclins A and B expression coupled 

with inhibited CDK1, which promotes G1/S and G2/M transition, found in the BSW line 

independent of MSLN expression, potentially contributed to increases in G2 population. 

The increased cyclin E in the MSLN overexpressing cells may overcome the inhibitory 

effects of decreased cyclins A and B. This effect would be reversed when MSLN, and 

consequently cyclin E, expression is reduced.  

As cyclin E drives cell cycle progression via G1/S transition, increased cyclin E is 

expected to increase cell proliferation. We found that, while BSW cells proliferate three 

times faster than BEAS-2B cells, knocking down MSLN in the BSW cells reduced their 

proliferation rate 2.5 times, nearly to the rate of the BEAS-2B cells. Similarly, H1299 lung 

cancer cells transduced to express MSLN proliferated 1.6 times faster than controls (16). 

MSLN overexpression has also been shown to increase the proliferation rate of 

pancreatic cancer cells (3, 24).  

While we focused primarily on the contribution of cyclin E to the cell cycle 

dysregulation seen in BSW cells, our IPA results suggest that MSLN overexpression can 

affect additional cell proliferation and survival regulatory mechanisms. Specifically, MSLN 

may inhibit both p53 and the pro-apoptotic mediator BAX. Dysregulation of p53, a critical 

cell cycle regulator, is common in cancers. Typically p53 regulates G1/S cell cycle 

checkpoint, halting entry into the cell cycle when genetic damage is present (46). 

Inhibition of p53, such as that induced by MSLN, would allow cell proliferation regardless 

of genetic integrity. We have previously found that p53 is dysregulated in BSW cells (21, 
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47). The combined loss of p53-mediated damage control and cyclin E-driven increases 

in proliferation is amenable to the rapid accumulation of further mutations, which could 

manifest in vivo as more aggressive or treatment-resistant disease.  

Additionally, inhibition of pro-apoptotic mediators, such as BAX, shifts the cell 

towards an anti-apoptotic state. Although our analysis did not indicate changes in 

apoptotic regulators other than BAX, studies in pancreatic cancer cells suggest that 

MSLN overexpression leads to the decreases in both BAX and Bad (also pro-apoptotic), 

as well as increases in the anti-apoptotic mediators Bcl-2 and Mcl-1 (41). BSW cells also 

exhibit apoptotic resistance, particularly in response to extrinsic mediators of apoptosis 

with BAX playing a potentially important signaling role  (30). 

Overall, we found that knocking down MSLN in the BSW cells reduced the severity 

of the malignant behaviors tested but did not completely eliminate them. This suggests 

that MSLN is important in the formation of both primary tumors and metastases but is not 

the sole mechanism behind their formation. Even though MSLN may not be the primary 

driver of cancerous transformation, it appears to be heavily involved in a number of 

processes contributing to the final malignant phenotype and may make an attractive 

target for cancer therapeutics.  
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3.5. Materials and Methods 
 
 

3.5.1 Patient tumor samples. Human lung tissue lysates were purchased from Protein 

Biotechnologies (Ramona, CA). Samples from lung tumors and adjacent healthy tissue 

were provided as pairs. Six large cell carcinomas, two squamous carcinomas, and one 

adenocarcinoma were tested. 

 

3.5.2 Cell Culture. Non-tumorigenic human bronchial epithelial BEAS-2B cells were 

cultured with SWCNT (0.02 µg/cm2) for 6 months to generate CNT-transformed bronchial 

epithelial cells (BSW), as previously described (21, 47). This cell model has been reported 

to be an appropriate model for in vitro lung carcinogenesis studies (28, 48). BSW cells 

were maintained in Dulbecco’s modified Eagle medium (DMEM) supplemented with 5% 

fetal bovine serum (FBS), 2 mM L-glutamine, 100 units/mL penicillin and 100 μg/mL 

streptomycin (Gibco, Gaithersburg, MA). A549 cells, human lung carcinoma alveolar type 

II epithelial cells, were cultured in DMEM supplemented with 5% fetal bovine serum 

(FBS), 2 mM L-glutamine, 100 units/mL penicillin and 100 μg/mL streptomycin (Gibco, 

Gaithersburg, MA). Non-small cell lung cancer H460 cells were cultured in RPMI 1640 

medium supplemented with 5% FBS, 2 mM L-glutamine, and 100 units/mL 

penicillin/streptomycin. With the exception of laboratory-generated BSW and passage 

control BEAS-2B cells, all cells were purchased from ATCC (Manassas, VA). All cells 

were maintained in a humidified atmosphere of 5% CO2 at 37 °C. 
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3.5.3 Generation of stable MSLN knockdown cells. Stable MSLN knockdown BSW 

cells and vector-transfected control cells were generated by using shMSLN lentiviral 

plasmid vector or scrambled shRNA vector (OriGene Technologies, Inc, Rockville, MD) 

and transfected using the Amaxa Nucleofector II electroporation method (Lonza, 

Walkersville, MD). Stable transfected single clones were selected with 5 µg/mL of 

puromycin. MSLN knockdown was verified by Western blotting. 

 

3.5.4 Transient MSLN overexpression in B2B cells. MSLN overexpression was 

transiently induced in BEAS-2B cells using plasmid DNA (pEasy-MSLN-iCre-HA-Flag, 

plasmid #31305, Addgene, Cambridge, MA) and FuGENE HD transfection reagent 

(Promega, Madison, WI), according to the manufacturers protocol. At 24 h after the 

transfection, MSLN protein expression levels were assessed by Western blotting. MSLN-

overexpressing BEAS-2B cells (B2B/MSLN) were used in migration, invasion, and colony 

formation assays.  

 

3.5.5 Cell proliferation. MSLN knockdown and vector control cells were seeded at a 

density of 1.5×104 cells per well in 100 µL of media in a 96-well plate (Fisher, Waltham, 

MA). After 24, 48, or 72 hours, 20 μL of CellTiter 96 Aqueous One Solution (Promega, 

Madison, WI) were added to each well, and the cells were incubated at 37 °C for an 

additional 3 hours. Viable cells cleave the reagent’s tetrazolium salt to a soluble formazan 

dye, resulting in a color change proportional to the number of live cells. Absorbance was 

measured at 490 nm, with a reference wavelength at 630 nm, using a BioTek Plate 

Reader (BioTek, Winooski, VT).   

 



 

  185 

3.5.6 Soft agar colony formation assay. BSW shMSLN and BSW shC cells (2500 cells) 

were suspended in 0.5 mL of culture medium and mixed with equal amount of 0.7% agar 

to a final agar concentration of 0.35%. The 1 mL cell/agar suspensions were immediately 

plated onto a 6-well plate coated with 0.5% agar in culture medium (1 mL/well). Colonies 

were examined under a light microscope after 2 weeks of culture. Colonies were counted 

if >50 cells.  In order to assess the self-renewing property of cells, colonies were collected 

by gentle centrifugation, dissociated into single cell suspensions, filtered and cultured 

under conditions described above (second colony formation). 

 

3.5.7 Tumor sphere formation assay. Tumor sphere assay was performed under stem-

cell selective (non-adherent and serum-free) conditions as previously described (49). 

Briefly, 5×103 cells were suspended in 0.8% methylcellulose (MC)-based serum-free 

medium (Stem Cell Technologies, Vancouver, Canada) supplemented with 20 ng/mL of 

epidermal growth factor (BD Biosciences, San Jose, CA), basic fibroblast growth factor 

and 4 mg/mL of insulin (Sigma, St. Louis, MO) in an ultra-low adherent 6-well plate. Cells 

were then cultured for two weeks. Tumor spheres were examined under a light 

microscope. In order to assess the self-renewing property of cells, spheres were collected 

by gentle centrifugation, dissociated into single cell suspensions, filtered and cultured 

under conditions described above (second sphere formation). 

 

3.5.8 Cell migration and invasion assays. In vitro cell migration was determined using 

a 24-well Transwell® unit with polycarbonate (PVDF) filters (8 μm pore size). In vitro cell 

invasion was performed with a BD Matrigel® invasion chamber (BD Biosciences, San 

Jose, CA). Briefly, cells at the density of 1.5×104 cells per well (migration) or 3×104 cells 
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per well (invasion) were seeded into the upper chamber of the Transwell® unit in serum-

free medium. The lower chamber of the unit was filled with a normal growth medium 

containing 5% FBS. Chambers were incubated at 37 °C in a 5% CO2 atmosphere for 48 

hours. The non-migrating or non-invading cells were removed from the inside of the insert 

with a cotton swab. Cells that migrated or invaded to the underside of the membrane were 

fixed and stained with Diff-Quik (Dade Behring, Newark, DE). Inserts were visualized and 

scored under a light microscope (Leica DM, IL). Number of migrating and invading cells 

were counted. Results represent the mean ± SD from 10 fields evaluated. 

 

3.5.9 Immunoblotting. Cells were washed twice with ice-cold PBS and lysed on ice with 

modified RIPA buffer containing protease and phosphatase inhibitor mixture (Roche 

Molecular Biochemicals, Indianapolis, IN) for 30 minutes. The lysate was sonicated briefly 

and centrifuged at 14,000g for 20 minutes. Cell lysates (40 μg of protein) were 

fractionated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and transferred onto polyvinylidene difluoride membranes (PVDF) (Bio-Rad 

Laboratories, Hercules, CA). The transferred membranes were blocked for 1 hour with 

5% nonfat dry milk in TBST (25 mM Tris-HCl, pH 7.4, 125 mM NaCl, 0.05% Tween 20) 

followed by MSLN (ab96869, Abcam, Cambridge, MA) or cyclin E (Cell Signaling, 

Danvers, MA) primary antibody at 4 °C overnight with gentle shaking. Membranes were 

washed three times with TBST for 10 minutes each followed by incubation with a 

horseradish peroxidase- -actin secondary antibody (A5441, Sigma, St. 

Louis, MO) for 1 hour at room temperature. Protein bands were visualized using 

enhanced chemiluminescence detection reagents from Millipore (Millipore Corporation, 
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Billerica, MA). Actin was blotted to ensure equal loading of the samples, and data were 

quantified using image J densitometry software.  

 

3.5.10 Flow cytometry. MSLN-knockdown and scrambled shRNA control cells were 

seeded overnight in 6 well plates (Fisher, Waltham, MA) at a concentration of 3×105 

cells/well. The cells were trypsinized, collected, washed twice with PBS, and fixed 

overnight in 70% ethanol (Fisher, Waltham, MA) at −20 °C. Subsequently, the cells were 

washed and suspended in 0.2% Tween 20 (Sigma, St. Louis, MO) PBS solution for 15 

minutes at 37 °C, followed by RNase A (180 µg/mL) for 15 minutes at room time 

temperature. The cells were then stained with propidium iodide PBS (50 µg/mL; Sigma) 

for 15 minutes at room temperature. Changes in DNA content were determined using a 

BD LSR Fortessa Flow cell analyzer (BD Biosciences, San Jose, CA) and BD FACS 

express 5 software. The forward scatter (FSC) and side scatter (SSC) were used to gate 

the majority of the cell population; 20,000 events were collected for each sample. The 

selection of the cells was based on knowing that in the G0/G1 phase (before DNA 

synthesis) cells have a defined amount of DNA (i.e., a diploid chromosomal DNA content) 

and double that amount in the G2 or M phase (G2/M, i.e., a tetraploid chromosomal DNA 

content). During the S phase (DNA synthesis), cells contain between one to two DNA 

levels. 

 

3.5.11 Tumor xenograft mouse models. Animal care and experimental procedures 

described in this study were performed in accordance with the Guidelines for Animal 

Experiments at West Virginia University with the approval of the Institutional Animal Care 
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and Use Committee (IACUC # 15-0702). Immunodeficient NOD/SCID gamma mice, 

strain NOD Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG; Jackson Laboratory, Bar Harbor, ME) were 

maintained under pathogen-free conditions within the institutional animal facility. Food 

and tap water were given ad libitum. Mice (6 per group) were subcutaneously injected 

with 5×105
 cells of BSW with shMSLN or shControl stable knockdown cells suspended in 

100 μL of ExtraCel® hydrogel (Advanced BioMatrix, San Diego, CA). Mice were inspected 

daily for any signs of distress such as weight loss, hunching, failure to groom, or red 

discharge from the eyes. After 30 days, mice were euthanized and tumors were dissected 

and weighted. Metastatic nodules were counted from the surface on the intestine, liver 

and lungs. Liver and lung tumor specimens were dissected into 5 μm sections and stained 

with hematoxylin and eosin (H&E) to confirm cancer histology and metastasis in organs. 

All tissue sectioning and staining were performed at the West Virginia University 

Pathology Laboratory for Translational Medicine. 

 

3.5.12 Immunostaining. Lung and liver sections in paraffin were deparaffinized and 

rehydrated. Antigens were retrieved with 10 mM sodium citrate solution in the microwave 

for 20 minutes. The slides were then blocked with 3% BSA/ 0.1% Tween in 1X PBS 

blocking buffer for 1 h and were incubated with anti-human MSLN antibody (Abcam, 

Cambridge, MA) at a dilution of 1:500 or anti-human mitochondria antibody (EMD 

Millipore Corporation, Temecula, CA ) at a dilution of 1:100 overnight at 4 °C. After 

washing with PBS three times, the slides were incubated with biotinylated secondary 

antibodies for an hour, followed by avidin-biotin complex (ABC) reagent (Vector 

Laboratories, Inc, Burlingame, CA), and detected with DAB kit (Vector Laboratories, Inc, 
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Burlingame, CA). After color development, the slides were counterstained with 

hematoxylin, dehydrated, and mounted with Permount mounting medium (Fisher 

Scientific, Waltham, MA). Images were taken using a light microscope with the SimplePCI 

6 software (Compix Inc, Cranberry, PA). 

 

3.5.13 Ingenuity Pathway Analysis. To further understand MSLN’s role in promoting the 

observed cancer cell phenotype, we examined the potential signaling pathways within 

BSW cells. Whole genome mRNA microarray data from our previous work (NCBI GEO 

Accession #GSE56104) was uploaded into Ingenuity Pathway Analysis (Qiagen). All 

known mRNA and miRNA signaling associations with MSLN were plotted along with 

differential gene expression of BSW vs. passage control BEAS-2B cells (30). Genes and 

miRNA were excluded from the network if the relationship with MSLN was not reported in 

lung tissue. Due to the complexity of the network and aggressive, metastatic ability of 

BSW cells, genes only known to play a role in metastatic and Stage IV lung cancer were 

kept in the MSLN network. Lastly, predictive activation/inhibition analysis of both 

upstream and downstream genes from MSLN was conducted using Z-scores. Based on 

the observed significant MSLN protein over-expression, we evaluated upstream and 

downstream targets with a predicted MSLN activation. These predictions were overlaid 

on the MSLN signaling network if Z ±2.  

 

3.5.14 Statistics. Results were expressed as means ± SD. All values were derived from 

at least three independent experiments. Differences between groups were assessed by 
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analysis of variance (ANOVA) followed by Student’s t test. For all analyses, two-sided P 

values of ≤ 0.05 were considered statistically significant. 
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3.7. Figures and Tables 
 
Figure 3.1 
 

 
 
 

Figure 3.4. MSLN is overexpressed in lung cancer. (A) Western blot for MSLN in pairs 

of lung tumor lysates (T) and normal tissue controls (N) from the same patients. Pairs 1-

6 are large cell carcinomas, pairs 7-9 are squamous cell carcinomas, and pair 10 is 

adenocarcinoma. (B) Quantification of tumor MSLN expression, relative to actin. (C) 

Western blot and (D) quantification of MSLN in non-cancerous bronchial epithelial cells 

(BEAS-2B), CNT-transformed BSW cells, and in two established lung cancer cell lines 

(A549 and H460). *P < 0.05 vs. BEAS-2B. 
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Figure 3.2 

 
Figure 3.5. Knockdown MSLN reduces soft agar colony and tumor sphere 

formation. (A) Western blot and (B) quantification of MSLN in several stable knockdown 

clones. (C) Representative images showing colony formation on soft agar of BSW shC 

and BSW shMSLN cells. (D) Representative images of tumor sphere formation of BSW 

shC and BSW shMSLN cells. (E) Quantification of colonies formed by BSW shC and BSW 

shMSLN cells. (F) Quantification of tumor spheres formed by BSW shC and BSW 

shMSLN cells. *P < 0.05 vs. BSW shC. (G) Western blot of MSLN expression in B2B and 

B2B/MSLN cells. (H) Quantification and (I) representative images of colonies formed by 

B2B and B2B/MSLN cells. *P < 0.05 vs. B2B.  
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Figure 3.3 

 

 
Figure 3.6. MSLN expression increases migration and invasion in vitro. (A) 

Representative images of BSW shC and BSW shMSLN migration and (B) invasion, 

stained with Diff-Quik. (C) Quantification of migrating BSW shC and BSW shMSLN cells. 

(D) Quantification of invading BSW shC and BSW shMSLN cells. *P < 0.05 vs. BSW shC. 

(E) Representative images of B2B and B2B/MSLN migration and (F) invasion, stained 

with Diff-Quik. (G) Quantification of migrating B2B and B2B/MSLN cells. (H) 

Quantification of invading B2B and B2B/MSLN cells. *P < 0.05 vs. B2B.  
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Figure 3.4 

 

Figure 3.7. MSLN regulates tumor growth and metastasis in vivo. (A) Injection site 

tumors. (B) Graphical representation of injection-site tumor weights. (C) Number of 

thoracic and abdominal surface metastatic nodules. (D) Surface area of hepatic and 

pulmonary metastases. (E) Representative pulmonary and hepatic tissues with 

hematoxylin and eosin (H&E) staining. Arrows denote metastatic tumor nodules. (F) 

Immunostaining of human mitochondria and (G) human MSLN in representative liver and 

lung sections of mice injected with BSW shC or BSW shMSLN. Arrows denote metastatic 

tumor nodules. *P < 0.05 vs. BSW shC.   
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Figure 3.5 

 

Figure 3.8.  Changes in gene expression when MSLN is increased in BSW cells. 

Ingenuity Pathway Analysis (IPA) was used to predict differentially expressed genes. 

Yellow to orange colors represent up-regulation, while blue represent down-regulation, 

compared to BEAS-2B passage-matched controls. Color intensity signifies fold change. 
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Figure 3.6 

 
 

Figure 3.9. MSLN regulates cyclin E and cell proliferation. (A) Western blot and (B) 

quantification of cyclin E in BSW shC and two MSLN knockdown clones. (C) Proliferation 

of BSW shC and BSW shMSLN cells, determined using Promega Aqueous One-Step 

viability assay, which measures mitochondrial metabolic rate, at 24 and 48 hours after 

seeding. *P < 0.05 vs. BSW shC.  
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Figure 3.7  

 

Figure 3.10. Cell cycle progression is affected by MSLN. (A) Representative flow 

cytometry plot for propidium iodide stained BSW shC and (B) BSW shMSLN cells. (C) 

Graphical representation of cell cycle distribution, determined from flow cytometry. FACS 

Express 5 software was used for analysis and proliferation statistics (green and red 

traces). *P < 0.05 vs. BSW shC.  
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Chapter 4 
 

Project Insights and Future Directions 
 

4.1 Design and Evaluation of Multi-functional SPION Platform 
 

 
Well-designed, multi-functional SPION platforms have the potential to improve cancer 

diagnostics and treatment.1–3 Initial studies of our therapeutic SPION platform, presented 

in Chapter 2, demonstrated the biocompatibility of our formulation and its potential for 

delivering ASO. Although these results were in line with previous reports on both 

accounts, our inability to consistently functionalize our platform presented a significant 

obstacle to biological testing.  

 

Further work is needed to improve the reproducibility of the SPION-ASO coupling 

reaction (4.1.1 Optimization of SPION-DNA Coupling Procedure). The current procedures 

employ EDC, a carbodiimide coupling reagent that is widely used for biological coupling 

reactions. Despite its widespread use, EDC-mediated coupling reactions are notoriously 

difficult to optimize.4–9 More recently, other amide-forming biological linking agents have 

been developed to help overcome the limitations of EDC.10–15 Because consistent 

coupling methods are needed to move the SPION platform forward,16 these newer linking 

agents should also be considered.  

 

Once the coupling process is consistent, the composition and physical properties of 

the conjugated SPIONs need to be fully characterized (4.1.2 Characterization of 

Functionalized SPION Platform). Our freshly synthesized SPIONs have been thoroughly 
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evaluated,17 as have several batches of PAA-coated SPIONs. However, the final, ASO-

SPIONs have not been available in large enough quantities to evaluate.  

 

Fully characterized SPIONs can then be introduced to biological systems (4.1.3 

Evaluation of Biological Effects of SPION-ASO) and additional targeting mechanisms can 

be investigated (4.1.4 Selection of a Targeting Ligand to Improve the Selectivity of SPION 

Uptake by Survivin-Expressing Cancer Cells).  

 

4.1.1 Optimization of SPION-DNA Coupling Procedure  

 

There is little tolerance for formulation inconsistencies of therapeutic agents. Toxicity 

testing, and eventual clinical use, require careful control and characterization of all drug 

parameters.16 The proof-of-concept preliminary data presented in Chapter 2 supports the 

biocompatibility and therapeutic potential of our SPION-ASO conjugate. However, the 

attachment our amine-terminal ASO to the PAA coated SPION was inefficient and highly 

variable. ASO coupling efficiency was also directly related to the therapeutic efficacy of 

the SPION-ASO, even when doses were calculated to ensure equivalent ASO 

concentrations. The impact of the loading density of similarly arranged nucleic acids on 

NP biological effects has been previously described.25,26 Therefore, it is critically important 

that the SPION synthesis, preparation, and ligand loading be highly reproducible.  

 

The development of a consistent, well-characterized SPION system will provide a 

platform that can be customized for other biological and research purposes. Although this 
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specific SPION formulation was chosen as a cancer therapeutic, and thus targets the 

production of a cancer-specific protein, any number of amine-modified ligands can be 

conjugated to the PAA-coated SPION using similar methods. Combinations of targeting 

and therapeutic ligands would allow for highly specific in vivo delivery of drug-bearing 

SPIONs.27,28  Alternatively, ASO-SPIONs could be used for in vitro gene regulation, where 

they could serve as a gentler alternative to transfection.25 

 

Therapeutic SPION platforms typically incorporate a polymer coating around SPION 

core to enhance biocompatibility and to provide functional groups for further 

functionalization.15,29–35 Our platform incorporates a 40% octylamine modified PAA, 

synthesized in-house, to serve this purpose.36 Hydrophobic interactions are expected to 

drive an association between the PAA octylamine groups and the oleic acid surfactant 

that surrounds freshly synthesized SPIONs. The unmodified carboxylic acids of the PAA, 

which are hydrophilic, are expected to face outward and provide reactive sites for further 

modification. The SPION-PAA platform is intended to provide a versatile base to which 

biomolecules, including nucleic acids, aptamers, and antibodies, can be conjugated. Due 

to the role of the PAA coating in SPION functionalization, the first step in optimizing the 

coupling reaction will assess SPION-PAA consistency (4.1.1a Ensuring Particle 

Homogeneity). 

 

Amide bonds, which are commonly used to covalently attach biomolecules, are 

possible when primary-amine containing ligands are introduced to the PAA surface. A 

coupling reagent is needed to drive amide bond formation, as direct condensation of the 
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amine and carboxylic acid would require destructively high temperatures.37  Although 

there are a variety of coupling reagents available, the majority are not compatible with 

biomolecules. Many methods require the use of halogenated reagents, take place in 

organic solvents, or result in hazardous byproducts that are difficult to remove. 

Carbodiimide reagents, predominantly in the form of EDC, overcome many of the 

limitations of other coupling reagents and have become popular for covalent attachment 

of biological amines. However, EDC coupling is far from efficient and protocols often 

require extensive refinement (4.1.1b EDC-Mediated Amide Bond Formation). Newer 

carbodiimide reagents, including DMTMM, have emerged as more efficient and easier to 

use alternatives (4.1.1c Alternative Coupling Reagent: DMTMM).  

 

4.1.1a Ensuring Particle Homogeneity  

 

Based on our preliminary results, the inconsistency in our SPION-DNA platform was 

largely due to the DNA attachment reaction. The SPION platform is designed so that 

amine-terminal ligands, including ASO, can be covalently attached to the reactive 

carboxyl moieties on the surface of the PAA coated SPION.  Thus, the issues with DNA 

attachment have two probable sources: improper orientation of the polymer coating used 

to transfer the SPIONs to aqueous solutions and ineffective coupling conditions.  

 

To pinpoint the source of error, freshly synthesized and PAA-coated SPIONs were 

characterized determine their homogeneity. Uncoated SPIONs were had homogenous 

size distributions, as determined by TEM and DLS, and consistent composition by TGA. 

Composition analysis of PAA-coated SPIONs revealed that PAA consistently accounts 
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for 75% of the mass of the coated SPIONs. Although the intention was to have the PAA 

form a single layer coating around the SPION, the composition analysis suggests that 

there are multiple layers of PAA, creating a thick coating. The orientation of this thick, 

multi-layer coating may contribute to the difficulty in attaching the DNA ligands as, if the 

carboxylic acids of the PAA are not facing outward, they will not be able to participate in 

the EDC-mediated covalent attachment of the DNA. However, it is likely that this is not 

the entire problem as some portion of the carboxylic acids in the outer layer of the polymer 

are facing outward since the PAA-coated SPIONs were dispersed in aqueous solutions, 

and alternative PAA orientations would result in exposed hydrophobic alkanes. Although 

it is not likely that the PAA coating is completely unable to be functionalized, further 

analysis may be required to ensure that it is reactive. 

 

4.1.1b EDC-Mediated Amide Bond Formation 

 

EDC is widely used for the formation of amides between biological molecules because 

it is water soluble, the excess reagent is easy to remove, and the reaction can take place 

at room temperature.15,38–42 Despite its widespread use, EDC reactivity and ideal 

conditions are poorly understood and some of its limitations contradict the major 

advantages of its use.42 For example, EDC can be used in aqueous systems, but 

interaction with water also leads to rapid hydrolysis of the EDC to inactive byproducts.13,38 

In addition, EDC can cause rapid NP precipitation even at concentrations needed for the 

reaction to proceed.6,15,36 There is no standard protocol for EDC-mediated amide 

formation, and published procedures vary dramatically in terms of reaction time, 
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temperature, EDC concentration, and coupling efficiency.4,10,15,39,42,43 Until recently, a lack 

of suitable alternatives contributed to the popularity of EDC in spite of its often poor 

coupling efficiency4,15,39,42,43 and the difficulty of optimizing reaction conditions.4–10 

 

Optimization of the coupling reaction will first require PAA-coated SPIONs with 

consistent composition. The PAA-SPIONs should be fully coated, washed, filtered, and 

suspended in distilled water, PBS, or the chosen reaction buffer. It is important that 

SPIONs remain stably suspended in the reaction solution, both to improve coating 

efficiency and to reduce particle aggregation. SPION suspension can be improved initially 

by filtering the PAA-SPIONs and, later, by adjusting the reaction pH.36 However, pH 

adjustments should be used with caution to avoid creating unfavorable reaction conditions 

for the amine or inactivation of EDC. EDC coupling reactions have been carried out in 

distilled water,44 PBS,45 MES buffer,5,7,46–48 and borate buffer,49,50 with the pH maintained 

at 4.5-8.0.5,7,46–49,51 The reaction has the best chance of succeeding if the pH is 

maintained between 4.5 and 6.5, which balances EDC stability with maintaining the 

reactivity of the carboxy groups.51   

 

After identifying a solvent that will complement all of the reaction components, a 

systematic evaluation of reaction conditions, including time, temperature, and reactant 

concentrations, can be carried out. Ideally this information can be used to graphically 

describe the relationship between parameters like EDC, SPION, or DNA concentration 

and the coupling efficiency.7 EDC concentrations of 30-50 mM may be required for DNA 

coupling5,7,45 although the coupling efficiency will need to be balanced with minimizing 
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EDC-induced particle precipitation.36 A sampling of published procedures for similar 

coupling setups describe EDC concentrations of 0.04 mM,47 30 mM,5,45 and 4 M.46 One 

optimization study assessed oligonucleotide binding to carboxylic acid functionalized 

glass beads using 0-100 mM EDC, which revealed maximum binding at >50 mM EDC.7 

Other reports suggest that the ratio of EDC to carboxylic acid and/or amine groups may 

be more important than the absolute EDC concentration.44 Reported reaction times vary 

from 20 minutes to 18 hours.5,7,44–47,49 Realistically the reaction has occurred within the 

first 20 to 30 minutes, at which point the carboxyl groups have been activated51 and the 

majority of the EDC has hydrolyzed.13,38 Most protocols perform the coupling at room 

temperature (25° C),5,7,45–47,49 although temperatures from 0-60° C have been reported.44 

For this specific SPION formulation, heat should be approached with caution as it causes 

the oleic acid surrounding the SPION to core to melt, destroying the SPIONs.  

 

Reactions performed during the optimization procedures should be performed in at 

least triplicate, using SPIONs from the same batch, identical DNA sequences and 

concentrations, and EDC from the same container. To reduce variability due to EDC 

degradation during storage, EDC should either be purchased in small quantities (>1 gram) 

or aliquoted into single-use storage containers when the container is first opened. 

Reaction controls with SPIONs and DNA, but no EDC, should be included in the 

optimization process to control for DNA binding through non-covalent mechanisms. 

Additional controls include SPIONs with EDC, without DNA, and EDC with DNA, without 

SPIONs.  
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4.1.1c Alternative Coupling Reagent: DMTMM 

 

Considering the issues with EDC-mediated amide bond formation, perhaps the 

simplest approach to improving the reproducibility of the SPION-DNA coupling reaction 

is to utilize an alternative attachment method. DMTMM (4-(4,6-dimethody-1,3,5-triazin-2-

yl)-4-methylmorpholinium chloride) is a commercially available, easier to use alternative 

that overcomes many of the limitations of EDC while retaining the major advantages.10–

12 Specifically, DMTMM is stable over a wider pH range than EDC and has higher reaction 

yields. DMTMM has been used to conjugate amine-containing ligands to PAA,10,11,13 and 

is may be more efficient than EDC for doing so.14,15 Like EDC, however, high 

concentrations of DMTMM can also result in particle precipitation. Reported DMTMM 

coupling protocols are less varied than EDC-mediated procedures. DMTMM protocols 

are available for coupling amine-terminal ligands to PAA-coated NPs,10,11,13 which should 

allow for faster optimization of reaction conditions. However, minor modifications to the 

reagent concentrations or buffer pH may still be needed, as the system still needs to allow 

the reactants to the dissolve or suspend.10 

 

4.1.2 Characterization of Functionalized SPION platform 

 

The SPION platform is intended to be used as therapeutic, and thus it is required to 

have a safety profile compatible with systemic administration. That is, the underlying 

SPION platform should be biologically inert and therapeutic effects of the survivin ASO 

are expected to be tumor-specific. SPION toxicity is heavily dependent on particle 
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composition and surface properties.19,23,52–56 These effects are described in greater detail 

in (1.2.2 Therapeutic NPs: Design Considerations). Briefly, the size and surface charge 

of the final SPION-ASO conjugate affect particle internalization in vitro and distribution, 

clearance, and half-life in vivo.15,23,54,57–62 Choice of ligand or ASO can also impact uptake, 

biodistribution, or biological effects.1,16,24,63–67 For ASO specifically, greater surface 

density enhances protein regulatory effects.25 Additionally, coatings can affect the 

magnetic properties of the SPION, which would in turn affect their utility as MRI contrast 

agents.32 Thus, obtaining reproducible toxicity results requires consistently formulated 

SPION conjugates.30,52,55,58,59,68 

 

SPIONs are prepared in a step-wise fashion, and it is important to characterize the 

platform at each step of the synthesis. The addition of each layer is expected to change 

the overall diameter, surface charge, composition, and, ultimately, biocompatibility. 

Thermal decomposition is used to obtain the oleic acid coated SPION core,69 which is 

then coated with octyl-amine modified PAA to impart aqueous solubility36 before surface 

functionalization. Oleic acid coated SPIONs have been thoroughly characterized, 

providing a baseline for comparison.17 The chosen synthesis method consistently yields 

SPIONs with a narrow size distribution. Although the SPION core diameter is consistently 

homogeneous, modifications to the procedure, like changing the ratio of oleic acid to iron 

pentacarbonyl, affect the mean particle size.69 Thus, the uncoated SPIONs should be 

regularly assessed. SPION-PAA has also been characterized, as presented in Chapter 

2. However, the final, functionalized SPIONs have not yet been analyzed. Because 
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SPION physical properties are dependent on the particle’s composition and surface 

functionalization, each specific formulation will require independent analysis.  

 

Functionalized SPIONs should be analyzed to ensure consistent formulation, to 

ensure that physical properties are optimized for biological use, and to allow for 

appropriate, reproducible dosing for further testing. Ideally the physical properties and 

composition of functionalized SPIONs will remain consistent within and across batches 

of similarly prepared particles; however, previous experience has shown that this is not 

always the case. Consequently, all measurements should be made on replicate samples 

from independently coupling reactions.  

 

Thorough analysis of particle properties, including composition, size, charge, ligand 

density, will allow SPIONs from different batches to be compared (4.1.2a Characterization 

of Functionalized SPIONs: Size, Surface Charge, and Composition), while platform 

stability can be assessed by monitoring the physical properties over time (4.1.2b 

Characterization of Functionalized SPIONs: Environmental Interactions). Understanding 

of particle components will contribute to the determination, and reporting, of relevant, 

reproducible dose schemes.30 It will also allow for comparison across experiments and 

formulations, allowing the effects of various modifications to be teased out. With full 

characterization and detailed reporting, platforms can be compared on the basis of 

number of particles, iron concentration, ligand concentration, or other measures, 

regardless of which parameter is used to determine the platform dose.  
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4.1.2a Characterization of Functionalized SPIONs: Size, Surface Charge, and 

Composition 

 

Particle Size and Surface Charge 

Size and surface charge are limiting factors in the biocompatibility, metabolism, and 

biodistribution of NP constructs in vivo. 61 SPION synthesis via thermal decomposition 

results in homogeneous particle cores,17,69 but the addition of subsequent organic layers 

is subject to greater variability. Analysis of SPION diameter and surface charge at each 

step of synthesis is needed to determine the effects of each additional layer. 

Understanding the contribution of each layer will be critical to the presentation of this 

formulation as a proof-of-concept platform that can be modified with other ligands or 

loaded with drugs. SPION core diameter is easily assessed using transmission electron 

microscopy (TEM).19,58 However, TEM does not provide information about the organic 

coatings, which are not expected to affect the diameter of the metallic core. To determine 

the diameter of the entire coated SPION system, dynamic light scattering (DLS) can be 

used.58 DLS measures the hydrodynamic diameter of NPs in solution, which does require 

that the SPIONs be stably suspended in solution. Ideally the combination of TEM and 

DLS will reveal changes in diameter that are consistent with the expected thickness of 

the coatings. Changes that are much greater than are expected may indicate particle 

agglomeration or issues with the coating and functionalization protocols. A narrow size 

distribution, in the expected diameter range, will be indicative of successful, 

homogeneous surface modifications.  
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SPION surface charge, or z-potential, can be assessed using the DLS 

instrumentation.20,70 PAA-coated SPIONs need a slightly negative surface charge to 

remain suspended in aqueous solutions. The negative charge, arising from deprotonation 

of the surface carboxylic acid groups, is also required for formation of the amide bond 

during the coupling reaction.15 SPION-ASO is expected to have a significantly more 

negative surface charge due to the phosphate backbone of the nucleic acids. Under most 

conditions, the significant negative surface charge of the particles would be considered a 

hindrance to their eventual clinical use;23,61,62 however, it has been demonstrated the 

negative surface charge arising from densely packed ASO on a NP surface actually 

enhances particle internalization.25,26  

 

Overall Composition 

 

Platform composition can be analyzed in a variety of ways, all of which provide 

information about the composition of the entire sample being analyzed rather than the 

individual particles. To overcome this limitation, inter- and intra- batch replicates should 

be assessed. Thermogravimetric analysis (TGA) can be used to determine the 

contribution of each component to the total mass.17,32,71,72 We have previously found that 

SPION-OA is 20% oleic acid and 80% iron oxide,17 while SPION-PAA is 75% PAA, 5% 

oleic acid and 20% iron oxide. Analysis of composition by mass can be used to determine 

the number of particles in a given mass and the consistency of the formulation over time.  

 

Iron Quantification 
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For SPION platforms, the iron concentration is an important factor in clinical 

utility16,29,72,73 and toxicity potential.30,57 While TGA can give an approximation of the iron 

content of a sample, as a percentage of the total mass, analytical techniques like 

inductively coupled plasma (ICP),19,61,74,75  atomic absorption spectroscopy (AA),76,77 and 

colorimetric detection methods allow quantification accurate to parts per million (ppm) or 

parts per billion (ppb). Iron concentration can also be determined from magnetic 

relaximetry61,72,78,79 or with commercially available assay kits like the Quantichrome iron 

assay.80  

 

ICP is the most sensitive iron quantification method, with limits of detection for iron in 

the ppb to ppt range.19 ICP also has a detection range over several orders of magnitude, 

which is helpful when the solution concentration is entirely unknown. An alternative to ICP 

is AA, which is mechanistically similar to ICP but requires slightly higher concentrations 

of analyte. AA can only be used to quantify a single element per sample/run while ICP 

can quantify a number of elements simultaneously. A third method of quantifying iron, 

which can be performed with more commonly available equipment, is the use of an 

indicator dye that changes color upon reacting with iron. The resulting color change can 

be quantified with UV-vis spectrometers, including the forms commonly found in biological 

labs, like a plate reader or Nano Drop. A number of colorimetric iron indicators have been 

described, including Prussian blue,81,82 ferrozine,83–85 and o-phenanthroline. The major 

limitation of colorimetric methods is that they are expected to have a much more limited 
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linear range of detection than ICP or AA, meaning it could require several trials to dilute 

the SPION sample of unknown starting concentration to the appropriate range.  

 

One unfortunate limitation of all the iron quantification techniques mentioned is that 

they detect soluble iron, which requires acid digestion of the sample to fully dissolve all 

particulates. The sample is then diluted for analysis, and the iron concentration of the 

final, diluted sample must be within the detection limits of the instrument being employed. 

When synthesis and coupling steps are carried out on a small scale, as they are during 

optimization studies, iron analysis can destroy most or all of the prepared SPIONs. 

However, with consistently formulated SPIONs, iron content could be correlated to a less 

intrusive measure, such as ligand concentration, rather than carrying out iron analysis on 

each batch. 

 

Ligand (ASO) Quantification 

 

This SPION platform is functionalized with a survivin ASO,86 a ligand chosen for the 

specificity of its therapeutic effects. Quantifying the SPION-bound ASO is a critical step 

characterization, as it will allow doses to be calculated based on the therapeutic ligand. 

Then, the degree to which a given concentration of ASO alters protein expression when 

introduced as SPION-bound, free, and through traditional transfection methods can be 

compared. ASO are expected to have time- and concentration dependent effects on 

protein expression87 and comparing the efficacy our formulation to existing ASO 

technologies will require a measure of equivalent exposure. Additionally, ligand density 
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on the SPION surface may impact biological effects, even at the same ASO 

concentrations. When gold nanoparticles are similarly loaded with ASO, greater surface 

density of the ASO resulted in stronger protein regulatory effects in vitro.25,26 The 

concentration of SPION-bound ASO can be determined indirectly by collecting unbound 

from the coupling reaction.7 SPION-ASO conjugates can also be directly evaluated via 

UV-vis88 or gel electrophoresis.45,89 Incorporation of fluorescently labeled ASO can be 

quantified using flow cytometry or a fluorimeter.90,91   

 

4.1.2b Characterization of Functionalized SPIONs: Environmental Interactions 

 

Interactions with Plasma Proteins 

 

NPs interact with biological molecules and salts in media and storage 

solutions.26,58,60,61 Although these interactions are primarily electrostatic, as opposed to 

covalent, they can still have a significant impact on the particle size, shape, and surface 

charge. Protein adsorption, then, can have a direct and drastic impact on NP uptake in 

vitro and distribution and clearance in vivo.21 NP surface chemistry affects particle 

interactions with plasma proteins.26,58 Negatively charged NPs are more likely to interact 

with proteins that have specialized cellular uptake mechanisms.60,61 With spherical 

nucleic acids, increased ASO density on the particle surface increased interactions with 

plasma proteins, resulting in a more positive (but still negative) zeta potential and leading 

to increased uptake.26 In vivo, many NPs are rapidly coated with opsinins, or proteins that 

recruit macrophages to initiate clearance of the foreign material.15,23,54,58,59 Inert, 
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biocompatible surface coatings like poly(ethylene glycol) (PEG), dextrans, or synthetic 

block co-polymers increases circulation half-life by reducing plasma protein interactions 

and, thus, minimizing clearance by macrophages.15,16,23,29,92 However, nucleic acids, 

including the ASO used in our platform, have a strong negative charge and are expected 

to interact with plasma proteins.26 In addition to directing SPION uptake and clearance, 

plasma protein interactions can have the unintended, and often unaccounted for, 

consequence of binding to the soluble nutrients in in vitro setups and effectively starving 

the cells.20  

 

To account for the interaction of SPIONs with biological media, the physical properties 

of SPION-ASO should be re-characterized after incubation with cell culture media or 

plasma and these properties should be reported with the properties of the platform prior 

to the incubation.58  If further analysis is desired, protein-particle interactions can be 

quantified and adsorbed proteins can separated and identified using gel electrophoresis 

and mass spectrometry.70 SPIONs can be incubated with cell-free media prior to in vitro 

experiments to avoid unintentionally inducing toxicity through nutrient depletion.20,90 

 

Solution stability 

 

SPION size, surface charge, and composition will be evaluated after several days, 

several weeks, and several months in the storage solution. Changes in particle size, due 

to particle agglomeration or interaction with solution components, will impact 

biocompatibility and cellular uptake.93 Solution pH can affect surface charge, as can 
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interactions with salts in the storage solution that effectively screen surface charges.21,93 

Composition will be assessed to ensure that the particle coating, ligand binding, and, if 

relevant, drug loading, remain stable.  

 

4.1.3 Evaluation of Biological Effects of SPION-ASO 

 

In order for SPION-ASO to progress towards eventual clinical use, biocompatibility 

and therapeutic efficacy of the SPION-ASO platform must be demonstrated both in vitro 

and in vivo. The biological effects will first be assessed in vitro (4.1.3a Evaluation of the 

Toxicity of SPION-ASO In Vitro), where the specificity of the therapeutic effects can be 

validated. The SPION platform is expected to be inherently non-toxic, and 

functionalization with the survivin ASO should limit toxicity to survivin expressing cells. 

Cells with varied basal survivin expression will be exposed to SPION-ASO and toxicity 

will measured through multiple endpoints, including particle uptake, changes in metabolic 

viability, apoptosis, and sensitization to chemotherapy drugs. In vivo murine and (rat) 

models will then be employed to assess biodistribution, clearance, systemic toxicity, MRI 

contrast enhancement, and anti-tumor effects (4.1.3b Evaluation of the Toxicity of SPION-

ASO In Vivo).  

 

4.1.3a Evaluation of the Toxicity of SPION-ASO In Vitro 

 

Appropriate Cell Lines 
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The survivin ASO was chosen to impact survivin expressing cancer cells without 

impacting healthy cells. Thus, the aim of the in vitro studies is to demonstrate specificity 

of therapeutic action. The first step of the in vitro evaluation involves demonstrating that 

SPION-ASO has a measurable effect on a survivin-expressing cell line. Controls for these 

studies should include SPIONs conjugated to a non-targeted DNA sequence of equivalent 

length (NTC). Preliminary studies were carried out on A549 lung adenocarcinoma cells. 

A549 cells have been used for many previous studies on the effects of regulating survivin 

expression in vitro,86,94–97 which serves to both validate the choice of cell line and to provide 

resources for comparing results.  

 

Once effects therapeutic effects have been demonstrated, the specificity of the effects 

can be evaluated in cell lines with varied basal survivin expression.95 ASO targeting 

survivin have previously been found to have little to no effects on cell lines that do not 

express survivin;86,98 however, validating this specificity will also provide further evidence 

that the SPION-ASO construct is not inherently toxic. Survivin expression has been 

quantified in many commonly used cancer cell lines.94,95 Differences in survivin 

expression between parental and modified, including drug resistant or transformed, cells 

of the same origin would also provide interesting comparisons on the effects of basal 

survivin expression level.  

 

SPION Uptake and Intracellular Localization 
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Monitoring of SPION uptake and intracellular localization will provide insight into the 

mechanisms of therapeutic effect and, if relevant, toxicity. SPION uptake can be tracked 

both qualitatively and quantitatively. Qualitatively, TEM can be used to visualize the 

locations of the SPION cores relative to intracellular structures.19 Detailed intracellular 

images can be obtained with TEM, although laborious sample preparation is required for 

visualization of biological samples. TEM is most valuable for viewing metals, like the 

SPION core, and does not provide information on the state of the particles coatings or 

ligands. Thus TEM images of complex SPION platforms should be used in conjunction 

with other techniques to draw conclusions about particle intracellular localization. 

Alternatively, the ASO can be fluorescently tagged prior to conjugation with the SPION 

and uptake can be tracked with fluorescent microscopy.58 While this technique is 

commonly used, there is a possibility that the fluorescent dyes will change the uptake and 

distribution patterns by altering particle size, surface charge, and plasma protein 

interactions. However, tracking SPION uptake using fluorescent microscopy can 

complement TEM localization data. While TEM is reliable for locating the SPION core, 

fluorescent microscopy is only able to convey the location of the tracer dye, which in our 

setup is covalently linked to the ASO ligand. If fluorescent images conflict with TEM 

images, the possibility that the ASO has been cleaved from the SPION core or the dye 

has been cleaved from the ASO should be considered.  

 

Particle uptake can be determine quantitatively using measures on intracellular iron. 

The analytical techniques are the same as those used to determine the iron concentration 

during particle characterization, which is discussed in greater detail in 4.1.2a 
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Characterization of Functionalized SPIONs: Size, Surface Charge, and Composition. 

However, modifications to the procedures may be needed to remove cellular debris. It is 

also important to note that the iron quantification techniques measure all soluble iron, 

including iron that was present in the cell before treatment. Thus, untreated controls are 

needed to determine the baseline iron concentration the cells. Additionally, these iron 

quantification methods require acid digestion of the entire sample prior to analysis. As a 

result, they do not provide any information about intracellular particle degradation prior to 

analysis.  

 

Changes in Cell Behavior 

 

Changes in cellular behavior and function will give further insight into the 

biocompatibility and mechanisms of action of ASO-SPIONs. Viability assays are an 

efficient way to rapid assess a range of doses and time points. The results can then be 

used to direct the dosing and time points for additional studies. Cell viability can be 

quantified colorimetrically by incubating cells with tetrazolium reagents like MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), MTS (Cell Titer 96 Aqueous One 

Solution Cell Proliferation Assay from Promega, or WST-1.19,30,58 Mitochondrial enzymes 

convert the reagent to a formazan dye, resulting in a color change proportional to the 

number of metabolically active cells. SPION-ASO is expected to reduce the viability of 

survivin expressing cells but should not alter the viability of non-survivin expressing cells. 

SPION-NTC is not expected to affect the viability of any cell line, which will confirm that 

the platform is not inherently toxic. In preliminary studies, none of the SPION-NTC doses 
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tested decreased cell viability. Changes in viability should be assessed, at a minimum, 

after 24, 48, and 72 hour exposures.86 In our preliminary studies, changes in viability were 

not apparent following the 24 hour exposure. By 48 hours, however, significant changes 

were noted. One measure of the therapeutic efficacy of the SPION-ASO will be the cell 

viability following a 72 hour exposure, which can be compared to the effects of our specific 

ASO alone.86  

 

Decreased cell membrane integrity, measured by lactate dehydrogenase (LDH) 

release, can serve as an indicator of cell death.19,30 LDH is in an intracellular enzyme that 

is released when the cell membrane integrity is compromised, as it is in necrosis and the 

late stages of apoptosis. Like viability assessments, LDH is a rapid, colorimetric assay 

that can be used to screen a variety of conditions. However, LDH has a half-life of 9 hours 

once released from the cells and assays must be carefully timed to capture LDH within 

this window.99 Improperly timed assays of treatments that cause rapid cell lysis, and thus 

fewer viable cells will detect less LDH in the treated cells.100 Examination of cells prior to 

conducting the assay will help validate results, as will comparing the LDH results to the 

number of viable cells determined by MTT, MTS, or WST-1.   

 

Cell viability assays function as a rapid indicator of changes in cell proliferation, but 

changes in viability alone do not give a complete picture of toxic effects. The combination 

of viability assays and an indicator of cell death, like LDH release, allows for comparison 

of live, metabolically active versus dead cell populations. Although that is an improvement 
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over either measure alone, cells that are in intermediate states, like those that are in the 

process of dying, are still not captured.  

 

Apoptosis is the process of orderly cell death. The cell membrane remains intact until 

late in the process, meaning that the cell will not contribute LDH during early stages 

despite the cells inevitable demise. Induction of cell death through apoptosis, as opposed 

to necrosis, is particularly relevant to our SPIONs, as the SPION-ASO platform was 

designed for eventual clinical use. In addition, the target protein, survivin, is anti-apoptotic 

and decreases in survivin expression, as would be seen with SPION-ASO, are expected 

to induce apoptosis. Apoptosis can be assessed by Hoescht staining, flow cytometry 

(FACS), or caspase activation assays.19,58,93,101 

 

Survivin ASO Specific Effects 

 

Ligand specific effects should also be monitored. With the SPION-ASO platform, 

changes in survivin expression are the intended mechanism of therapeutic benefit. 

Downstream effects of the decrease in survivin expression, including changes in cell cycle 

distribution, proliferation, and sensitivity to chemotherapeutic drugs and other apoptotic 

stimuli, are also quantifiable.  

Changes in survivin expression can be directly assessed via Western blots. With ASO 

introduced through transfection, changes in survivin expression are notable at 24 hours 

and progress until at least 48 hours post-treatment.102 Changes in survivin expression 

should not occur when cells are treated with SPION-NTC.  
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Changes in cell cycle distribution are expected when survivin is overexpressed or 

inhibits. Survivin overexpression is correlated with increased proliferation rates, while 

survivin inhibition has been linked with cell cycle disruptions. The increased proliferation 

rates were associated with accelerated S phase and resistance to G1 arrest.101 Survivin 

inhibition, and the resulting increase in apoptosis, were associated with G2/M phase 

arrest.101,103 Cell cycle distribution can be assessed using flow cytometry.104,105 

 

Survivin expression is correlated with chemotherapy and radiation resistance in vitro 

and in vivo.86,98,103,106–116 When survivin expression is knocked out, with ASO or small 

molecule inhibitors, these effects are reversed. The ability of SPION-ASO to sensitize 

cancer cells to treatments will contribute to improvements in quality of life during 

chemotherapy treatment, as lower systemic doses will be needed to kill sensitized cells. 

SPIONs can also be loaded with chemotherapeutic agents, like doxorubicin or cisplatin, 

allowing for simultaneous sensitization and treatment.34,46,117–121  Cell viability, assessed 

with WST-1 or MTS, can be used to demonstrate sensitization. 

 

To best demonstrate the tumor sensitization potential, the timing of ASO-induced 

survivin downregulation will need to be considered when establishing a treatment 

schedule. The strongest sensitization effects are most likely to be noted while survivin 

expression is at a minimum, which may require SPIONs to be added 24 to 48 hours before 

the cells are treated with the chemotherapy drug. Survivin inhibition has been shown to 

increase cell sensitivity to cisplatin,86,106,122 gemcitabine,107 taxols,123 and tamoxifen.124 
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Cisplatin sensitivity would be a good starting measure, as cisplatin resistant A549 cells 

are readily available and the results could be easily compared to the initial toxicity studies. 

Previous reports show significant differences in cell proliferation between the parental and 

cisplatin-resistant lines of both A549 and H460 at cisplatin concentrations from 0.1 µM to 

100 µM.125  

 

Mechanisms of Toxicity 

 

SPION-ASO is not expected to be associated with significant toxicity to non-survivin 

expressing cells, and the toxicity in survivin expressing cells should be a consequence of 

the ASO rather than inherent SPION toxicity. If toxicity is discovered, efforts should be 

redirected to reformulating the platform. However, demonstrating an understanding NP 

toxicity, and the mechanisms of that toxicity, may be required to move NP-based 

therapeutics forward in the regulatory process.  A major concern for general NP toxicity, 

as well SPIONs specifically, is the generation of reactive oxygen species (ROS).19,30,58 

ROS are most likely to be generated due to the reactivity of the SPION core,52,53,59 a risk 

that is mitigated in this case by the thick polymer coating.15,29–35 Once present, ROS are 

themselves highly reactive and can cause damage to DNA, proteins, lipids, and nucleic 

acids. Electron paramagnetic resonance (EPR) and fluorescent assays can be used to 

detect ROS. NP-induced genotoxicity, due to ROS or direct interaction of NPs with 

genetic material, is also possible.19,30,58  Flow cytometry and comet assays can be used 

to assess physical DNA damage, while microarrays can offer insight into changes in gene 

regulation.  
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4.1.3b Evaluation of the Toxicity of SPION-ASO In Vivo 

 

After demonstrating the biocompatibility of SPION-ASO in vitro, the safety of the 

platform must be evaluated in vivo. SPION-ASO is intended to be safe for systemic 

intravenous administration. Systemic administration will theoretically allow the SPIONs to 

localize to tumors and metastases due to the enhanced permeability and retention 

effect.29,57,126 However, local delivery, like direct injection into a known tumor, is also a 

possibility. Initial in vivo studies will focus on monitoring SPION-ASO biodistribution and 

systemic adverse reactions. Therapeutic endpoints will include tumor growth inhibition 

and tumor survivin expression. SPION-related MRI contrast enhancement will also be 

assessed.  

 

Biodistribution will be determined from tumor and organ analysis. Organ and tumor 

iron content will be quantified using ICP.19,127 Tissue sections will be stained for iron, using 

Prussian blue, to visualize tissue distribution.19,76,93,128 The contrast-enhancing effects of 

SPIONs will also allow their distribution to be visualized with MRI.76,128 Systemic toxicity 

will be evaluated by monitoring changes in organism behavior, weight, appearance, and 

blood chemistry. Induction of systemic inflammatory or immune responses would 

increase plasma levels of IL-1β, IL-6 and TNF-α cytokines.93 SPION interactions with the 

liver and kidneys as a result of clearance and physiologic filtration could cause target 

organ damage. Serial blood levels of serum proteins that indicate hepatic or renal 
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damage, including alanine aminotransferase, aspartate aminotransferase, bilirubin, 

creatinine, albumin, and total protein will be used to monitor for target organ damage.19  

 

4.1.4 Selection of a Targeting Ligand to Improve the Selectivity of SPION 

Uptake by Survivin-Expressing Cancer Cells  

 

A well-designed SPION system can serve as both a drug delivery vehicle and an MRI 

contrast agent. SPION conjugation with an ASO targeting a protein primarily found in 

cancer cells, like survivin, allows for specificity of therapeutic action. While specificity of 

action will reduce unintended adverse effects, SPION-ASO conjugates have an 

intracellular target and thus do not contribute to tumor-specific particle distribution or 

uptake. A ligand directing improved specificity of uptake by target cells would allow the 

platform to be used as an MRI contrast agent and/or a delivery vector for high 

concentrations of cytotoxic drugs. Previously, SPION conjugation with aptamers,27 

antibodies,15,27,28,49 and biomolecules like folate34,66,84,129–132 has been shown to increase 

the specificity of accumulation in vivo. Thus, identification of a target specific to survivin-

expressing malignant cells would enhance the utility of the SPION system described in 

Chapter 2. 

 

One potential target is the unique manner in which many cancer cells process survivin. 

Survivin in cancer patients, but not healthy people, is digested and select fragments are 

then displayed on the cell surface as part of the major histocompatibility type I complex 

(MHC), particularly on human leukocyte antigen A (HLA-A), through a pathway that 
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typically handles foreign proteins.133 There are several HLA-A subtypes, and there is 

evidence that HLA-A subtype is the defining factor in the survivin epitope displayed, 

independent of the cancer type.134 The viability of this complex as a therapeutic target 

was demonstrated with the development of a vaccine that sensitized patient T-cells to a 

survivin epitope.116 Thus, a ligand that could possibly be engineered to be selective for 

this survivin-HLA complex, which is unique to cancer cells, could be conjugated to 

SPIONs to increase the selectivity of SPION uptake in vivo.   

 

Aptamer selection is a time- and labor-intensive process. Although our intended target 

is well described, it is not known if an aptamer can provide the specificity needed to 

recognize the survivin nonapeptide bound to HLA. To streamline the selection process, 

in silico modeling will be employed as a first step (4.1.4a In Silico selection of an aptamer 

targeting survivin-expressing cells). Starting with in silico modeling will provide a better 

understanding of the possibilities of targeting peptide bound HLA, and will allow for 

prediction of cross-reactivity between the survivin peptide fragments displayed on 

different HLA isoforms. The modeling process will, ideally, identify aptamer sequences 

that are expected to bind the target with high affinity and specificity. If the aptamer 

modeling fails to identify potential aptamer sequences, aptamer selection can be carried 

out in vitro using either isolated MHC-survivin epitope complexes134 or whole-cell 

SELEX135 (4.1.4b Selection of an aptamer targeting external feature of survivin expressing cells).  

 

4.1.4a In Silico selection of an aptamer targeting survivin-expressing cells  
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The basic approach will be align published peptide sequences (survivin derived) with 

the crystal structure of a peptide bound to HLA (here called the reference nonapeptide). 

This will provide a composite from which the predicted binding elements involved will be 

identified, based on the known binding of the reference nonapeptide.  These peptides will 

then be docked to a library of aptamers and the result rank-ordered. Selection of the best 

peptide-aptamer complexes (best will be defined) will be further examined.  In particular, 

high scoring complexes that utilize the predicted region for binding to the aptamer will be 

selected. The aptamer and peptide comprising this complex will be made and their 

binding measured by surface plasmon resonance (SPR). The aptamer yielding the 

highest affinity by SPR will then be attached to SPIONs that also bear antisense survivin, 

and the resulting SPIONs will be assayed for binding to survivin expressing and non-

expressing cells. 

 

The peptides that will be used come from Bachinsky, et.al.136 and Reker, et.al.133  The 

binding affinity of each peptide to HLA-A is known and combining these two data sets will 

provide approximately 100 peptides. Each nonapeptide will be built and energy minimized 

using Amber.137 Since nonapeptides are too short for accurate structure prediction, we 

will use simulated annealing to generate multiple conformations.  Only the conformation 

with the lowest root-mean-squared deviation (RMSd) to the reference nonapeptide will be 

retained. Once all nonapeptides are aligned with the reference peptide, the predicted 

binding regions of each peptide will be determined by comparison to the known binding 

regions of the reference nonapeptide.  All peptides will then be screen against a library of 

aptamer candidates138 using AutoDock.139  Chushak has provided us with this database.  
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The resulting set of peptide-aptamer complexes will be rank-ordered based on the 

docking score.  The top 100 complexes will be examined to determine the binding mode 

of the peptide and those that do not use the binding motif predicted from their alignment 

with the reference nonapeptide will be discarded. Further, the aptamer component of 

these complexes will screened in silico peptides that are known to bind poorly or not at 

all to HLA-A and those ranked high will also be removed with this process simulate 

negative selection. The peptides that remain from this process will be examined for their 

affinity for HLA-A complexes containing common viral peptides. 

 

Surface Plasmon Resonance (SPR) measurements of relative binding affinities will be 

made on a Biacore X1000.140  Gold films on glass will be treated in an ethanolic solution 

of mercaptoundecanoic acid (MUA) and octane thiol (1:3), placed in the sample holder 

and activated with NHS/EDC followed by exposure to the peptide target (purchased from 

Peptide 2.0, Chantilly, VA) under examination (one selected from a nonapeptide-aptamer 

complex predicted from the in silico studies).  This will result in an amide bond between 

the N-terminus of the peptide and the MUA.  For peptides containing non-terminal lysines, 

mecaptoundecanoaimine will be used in place of MUA and the C-terminus of the peptide 

will be activated with NHS/EDC and bonded to the SAM.  The aptamer partner will then 

be flowed over the chip and the binding constants determined by measuring the SPR 

response over time (i.e., during association and dissociation phases) as a function of 

aptamer concentration.   
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4.1.4b Selection of an aptamer targeting external feature of survivin expressing 
cells 

 

If potential aptamer characteristics are identified with in silico modeling, sequences 

with the identified features will be used as the starting point for our library for in vitro 

selection against an isolated recombinant target.  E. coli will be modified to produce 

human HLA-A, which will then be mixed with survivin peptide fragments to generate the 

isolated protein target.134 Negative selection will be carried out against HLA-A bearing 

common viral proteins. 

 

Although the survivin peptide – HLA-A complex has been isolated, it is possible that 

we will be unable to replicate this procedure.  If this becomes a problem, we will proceed 

with whole cell SELEX,135 beginning with a library based off our most likely aptamer 

sequences from modeling. In the event that whole cell selection is required, HLA-type 

would be used to match survivin expressing cell lines with appropriate survivin-deficient 

cell lines for negative selection. 

 

After several rounds of both positive and negative aptamer selection, we anticipate 

identifying and sequencing an aptamer that binds selectively to our target.  Although the 

aptamers are expected to be relatively HLA-type specific, an aptamer that binds to more 

than one type might actually be advantageous in vivo since even small mutations can 

impede aptamer binding and cancer cells are known for their high mutation rates. This 

aptamer can then be coupled to the SPION platform to allow for specific targeting of 

survivin expressing cancer cells. 
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4.2 Role of MSLN in CNT-induced Malignant Transformation  

 

Malignant transformation takes place over a protracted period of time, during which 

genetic damage accumulates.141 Although cancer development occurs as more of a 

continuum than as a series of discrete steps, it is usually difficult to identify and study the 

early stages of the transformation period. Consequently, most cancer studies are 

conducted using definitively malignant cells. Even for particle-induced malignancies, 

there can be several decades between the inciting exposure and clinical detection. 

Methods allowing for the identification and investigation of early genetic and behavioral 

changes would offer greater mechanistic insight than can be obtained from the current 

binary classification of malignant or non-malignant.   

 

An in vitro chronic exposure model has been developed to study the effects of chronic 

(6 month) exposures to sub-acute doses of SWCNT,142–144 MWCNT,142,144  

asbestos,142,144 and metals.145 Using this model, the transformative effects of chronic CNT 

exposures have been demonstrated in non-cancerous bronchial epithelial cells (BEAS-

2B143,146,147 and SAEC142) as well as in a mesothelioma line (Met5A).144 So far this 

exposure model has been used to study the transformed cells, but, moving forward, this 

chronic exposure model could be used to better understand the dynamic transformation 

process. Studying cell populations from numerous time points throughout the 6 month 

exposure would help map out the order in which changes occur, and would allow for 

comparison of the damages from different materials. Obviously studying all possible 
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changes would be inefficient. A more streamlined approach would be to look at specific 

pathways, mediators, or expected changes.  

 

Specifically, using this chronic transformation model, subtle changes in cellular 

morphology, behavior, and function can be assessed over time to better understand the 

course of cancer development. Using our previously generated, CNT-transformed 

bronchial epithelial cell line (BSW), we have begun to look at the functional role of MSLN 

in the malignant phenotype (Chapter 3). After determining that MSLN was overexpressed 

in the BSW cells, a stable MSLN knockdown line (BSW shMSLN) was generated. We 

found that while BSW cells were more aggressive than their untransformed counterparts, 

knocking down MSLN reverted BSW shMSLN to more normal behavior. To better 

understand the mechanism by which MSLN was contributing to the malignant behavior, 

IPA was used to identify potential upstream mediators and downstream effects of 

mesothelin overexpression in CNT-transformed bronchial epithelial cells (BSW). Many 

likely relationships were identified, including mediators involved in cell proliferation and 

cell cycle regulation, apoptosis, and metastasis. We previously confirmed MSLN-related 

changes in cyclin E expression; however, the remaining relationships have not been 

validated (4.2.1 MSLN-Related Changes in Gene Expression). A potential relationship 

between MSLN and the anti-apoptotic mediator survivin has also been identified (4.2.2 

MSLN as a Survivin Regulator).  

 

4.2.1 MSLN-Related Changes in Gene Expression of CNT-transformed Cells 
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We demonstrated the functional contribution of MSLN to the development of malignant 

phenotypes following chronic CNT exposure (Chapter 3); however, the mechanisms 

behind those changes are still largely unaccounted for. The mechanisms by which MSLN 

contribute to carcinogenesis and tumor aggression, in general, are not well 

understood.148,149 Predictions as to the molecular mechanisms driving the CNT-induced 

carcinogenesis were generated to focus our mechanistic studies. Gene expression 

changes following chronic CNT-exposure of bronchial epithelial cells were analyzed using 

microarrays.143,150 Gene expression in CNT-transformed cells was compared to 

unexposed controls to identify the pathways that were most affected. IPA was then used 

to predict the effects of knocking out MSLN expression in the transformed BSW cells 

(Chapter 3). Although the predicted effects are in line with our observed changes in cell 

behavior following MSLN knockdown, the majority of the IPA predictions have not yet 

been verified in our transformed cells. MSLN-related changes in gene expression will be 

investigated (4.2.1a Validation of Predicted MSLN-induced Changes in Protein 

Expression). Upstream changes expected to contribute to MSLN overexpression include 

increase in TNF-α, K-ras, and decreases in cyclin A, cyclin B, and CDK1. MSLN 

overexpression then induces, directly or indirectly, IL-6, Stat3, cyclin E, MMP-9, and 

MMP-7, while inhibiting p53 and the pro-apoptotic mediator BAX. MSLN and other 

relevant mediators will then be quantified in cell samples collected from various time 

points through the transformation process, with the aim of determining a time line of the 

changes (4.2.1b Evolution of Gene Expression During CNT-induced Transformation). 

Changes in gene and/or protein expression will be correlated with cell behaviors. At the 
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conclusion of these studies, significant insight into the mechanistic role of MSLN in the 

development of MSLN-related aggressive behaviors will have been gained.  

 

4.2.1a Validation of Predicted MSLN-induced Changes in Protein Expression  

 

Our previous MSLN studies were carried out with CNT-transformed bronchial 

epithelial cells (BSW) and a stably transfected BSW MSLN knockdown line (BSW 

shMSLN) has already been generated. IPA predictions of MSLN interactions were 

specific to this cell line, although many of the relationships are expected to be 

generalizable as they have been shown previously in other cancer cell lines. Western 

blots will be used as a first step to identify significant changes in protein expression 

between BSW, BSW shMSLN, and passage matched BEAS-2B controls. Expected 

changes include increased TNF-α, K-ras IL-6, Stat3, cyclin E, MMP-9, and MMP-7, and 

decreased cyclin A, cyclin B, CDK1, p53, and BAX. Changes in protein expression 

detected by Western blot will be correlated with the appropriate cell behaviors. The 

altered protein expression profile is expected to be readily detectable, as MSLN 

overexpression has previously been shown to induce cyclin E,151 MMP-7,152 MMP-9,152,153 

IL-6,149,151,154 and Stat3151 and to inhibit p53155 and BAX.155 Additionally, decreases in p53 

are known to have an important role in CNT-induced cell cycle dysfunction.143,156 To give 

a more complete picture of MSLN effects, BSW shMSLN gene and protein expression 

will be assessed through DNA microarray analysis and an apoptosis protein array, 

comparable to the ones used on the BSW cells previously.150  
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The role of MSLN overexpression in the transformations observed in our other chronic 

exposure models has not been studied. However, similar post-exposure effects, including 

increased proliferation, increased invasion and migration, and apoptosis resistance have 

been noted following a variety of chronic in vitro NP exposures.142,144,145 To use these cell 

lines, MSLN expression in the transformed and passage matched controls would first 

need to be quantified. MSLN overexpression in these lines, including a second variety of 

non-cancerous lung epithelial cells,142,144  would allow for further validation of the role of 

MSLN in CNT-induced carcinogenic transformation. A mesothelioma line, Met5A, has 

also been used to model chronic transformation.144 Mesotheliomas, including Met5A cells, 

highly express MSLN at baseline. Comparison of the MSLN- and whole-genome related 

changes in transformed Met5A cells versus non-cancerous lung epithelial cells would 

offer insight into the role of MSLN in the transformation process. Thorough analysis of the 

genomic and protein expression changes in multiple cell lines following exposure to CNT 

through the same model can be used to identify recurrent patterns in the molecular 

mechanisms of chronic CNT-induced damage.  

 

4.2.1b Evolution of Gene Expression During CNT-induced Transformation     

 

Validation of MSLN-related changes in CNT-transformed cells offers a starting point 

for understanding the transformation process. Ultimately, however, the best way to 

understand the transformation is to study the cells as they transition from the non-

cancerous parental line to the aggressive and tumorigenic state. Presumably sample 

populations of CNT-exposed and passage-matched controls were frozen down 
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throughout the 6 month exposure. These stored cells can be used to document the 

changes in cell morphology, behavior, and gene expression, allowing a step-by-step 

reconstruction of the transformation process. Cells from the transition period may further 

change if they are passaged too many times, so thawed cells should be used quickly and 

passage number should be meticulously documented to minimize the impact of these 

effects. Limitations on handling these cells may preclude longer experiments but are not 

expected to impede short-term studies.  

 

Expression of MSLN and other critical mediators, including those discussed in the 

previous section, should be quantified in the transition-phase cells. Based on the IPA 

predictions, MLSN overexpression is induced at least in part by increases in TNF-α and 

K-ras, and the increases in either or both before MSLN levels rise would lend support to 

that prediction. There is also a chance that MSLN is involved in a positive feedback loop 

where TNF-α induces MSLN, which induces IL-6, and then IL-6 further induces TNF-α. 

Cell proliferation rate can be used as a fast and simple screening to identify the onset of 

cell cycle dysfunction. Similar setups can be used to determine apoptosis 

resistance.143,147 

 

4.2.2 MSLN as a Survivin Regulator 

 

Tumor overexpression of both MSLN148,149,157,158,152 and survivin86,103,106,109–116 is, 

independently, correlated with more aggressive phenotypes and overall worse outcomes. 

The presence of either protein is strongly associated with more rapid cell proliferation, 
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apoptosis resistance, and increased invasion and migration in vitro and metastases in 

vivo. While survivin has been hot topic in cancer research for over a decade, MSLN has 

not been as well described. Although on the surface MSLN and survivin seem to have 

little in common, there is significant overlap between the consequences and proposed 

molecular pathways driving the consequences of their upregulation. Specifically, MSLN 

constitutively activates NF-kβ, increasing the production of IL-6, which increases Stat3 

expression.149 Stat3 is an upstream regulator of various anti-apoptotic mediators, 

including survivin.  As Stat3 binds acts as a transcription factor for survivin, by binding 

directly to the survivin promoter,159,160 increases/decreases in Stat3 expression have 

been linked to increases/decreases, respectively in survivin expression.161,162 It seems 

reasonable, then, that decreasing MSLN expression would indirectly result in decreased 

survivin expression. Identification of a relationship between MSLN and survivin would 

significantly enhance the understanding of MSLN downstream effects.  

 

Although MSLN is probably not the sole inducer of survivin in real-world settings, it is 

very likely that is plays an important role in MSLN-related aggressive behaviors and that 

this relationship can be detected in vitro. To determine if MSLN overexpression can 

upregulate survivin, appropriate cell lines must first be chosen. To do so, MSLN and 

survivin expression of a variety of cell lines will be quantified (4.2.2a Identification of 

MSLN and Survivin Co-Expressing Cell Lines). Then stable MSLN knockdowns will be 

generated and used to investigate the resultant changes in survivin expression as well as 

changes in cell behavior and expression of target genes (4.2.2b MSLN Knockdown is 

Expected to Decrease Survivin Expression and Mitigate Malignant Phenotype). Last, 
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survivin expression in MSLN-knockdown cells will be induced and changes in cell 

behavior and target gene expression will again be assessed (Overexpression of both 

survivin and MSLN is known to increase MMPs,152,164,153 cyclin E,101,160,151 and Bcl-

2.149,165,166 Repression of p53 is also expected.108,143,160,167 

 

4.2.2c Induced Survivin Expression Restores Apoptosis Resistance, Cell Cycle 

Dysfunction, and Invasiveness. Restoring survivin expression independent of MSLN 

will aid in identifying any survivin-related changes that are induced by MSLN 

overexpression.  

 

4.2.2a Identification of MSLN and Survivin Co-Expressing Cell Lines 

 

Cell lines with high levels of both MSLN and survivin are expected to have the greatest 

potential for demonstrating MSLN-related changes in survivin expression.  MSLN and 

survivin co-expression will be quantified in a number of cell lines and human tumor 

lysates. The easiest starting point for this step would be to use cell lines that are already 

known to have high MSLN expression, including BSW, mesothelioma,163 or pancreatic 

cancer154 cell lines. Transformed cell lines generated using our in vitro chronic exposure 

model142–145 are also likely to have increased MSLN expression. Analysis of cell 

populations from time points throughout the exposure and transformation process would 

provide a timeline and progression of the changes. Additionally, analysis of human tumor 

lysates will ensure that the studies are providing clinically relevant insight.  

 



 

247 
 

4.2.2b MSLN Knockdown is Expected to Decrease Survivin Expression and 

Mitigate Malignant Phenotype 

 

MSLN and survivin co-expressing cell lines, identified in the previous step, will be used 

to study the role of MSLN in survivin overexpression. Stable MSLN knockout lines 

(shMSLN) will be generated using shRNA. MSLN expression in the knockout lines will be 

assessed and lines with the least MSLN will be selected for initial analysis. However, if 

MSLN knockdown is found to have an effect on survivin expression than the dose-

dependence of that effect can be quantified164 using cell lines with intermediate levels of 

MSLN expression. Evaluation of the aggressiveness of the shMSLN lines can then be 

assessed in terms of apoptosis resistance,143 cell cycle dysfunction, and invasion and 

migration. The effects of MSLN knockdown, and subsequent changes in survivin 

expression, on drug sensitivity and tumor formation in vivo can also be investigated. 

Microarrays will be used to identify changes in gene expression. Overexpression of both 

survivin and MSLN is known to increase MMPs,152,164,153 cyclin E,101,160,151 and Bcl-

2.149,165,166 Repression of p53 is also expected.108,143,160,167 

 

4.2.2c Induced Survivin Expression Restores Apoptosis Resistance, Cell Cycle 

Dysfunction, and Invasiveness  

 

Survivin expression will then be rescued in the shMSLN cells.168 Survivin rescue, while 

still inhibiting MSLN, will demonstrate which pathways are downstream of survivin versus 

those effects that are unique to MSLN. Cell behaviors and changes in gene expression 
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will be assessed as described in the previous section. Strong correlations between 

survivin expression and tumor aggressiveness have been documented in across nearly 

all types of cancer, so survivin rescue is expected to restore these behaviors. However, 

demonstrating that these behaviors can be reduced or eliminated by knocking out MSLN, 

and that they are restored when survivin expression is rescued, would significantly 

advance the current understanding of the role of MSLN in carcinogenesis.  
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