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ANALYSIS AND SYNTHESIS OF IRIS IMAGES

Sarvesh Makthal

ABSTRACT

Of all the physiological traits of the human body that help in personal identification, the iris

is probably the most robust and accurate. Although numerous iris recognition algorithms have

been proposed, the underlying processes that define the texture of irises have not been extensively

studied. In this thesis, multiple pair-wise pixel interactions have been used to describe the textural

content of the iris image thereby resulting in a Markov Random Field (MRF) model for the iris

image. This information is expected to be useful for the development of user-specific models for

iris images, i.e. the matcher could be tuned to accommodate the characteristics of each user’s

iris image in order to improve matching performance. We also use MRF modeling to construct

synthetic irises based on iris primitive extracted from real iris images. The synthesis procedure

is deterministic and avoids the sampling of a probability distribution making it computationally

simple. We demonstrate that iris textures in general are significantly different from other irregular

textural patterns. Clustering experiments indicate that the synthetic irises generated using the

proposed technique are similar in textural content to real iris images.
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Chapter 1

Introduction

1.1 Biometrics

Humans have traditionally relied on the use of face, voice or gait information to recognize others.

For establishing the identity of people at public places like airports, we have always relied on

documents such as passports or ID cards that carry information of the person possessing them.

Such identification measures are highly susceptible to failure since these documents can be forged

or tampered with easily. Hence it is necessary to use an authentication scheme that is based on

the human body, and is unique to every individual.

Biometricsseek to link the identity of a person much more closely to the human body and

some of its unique features. They are expected to perform better than traditional methods of

identification because they depend on “who you are” and not “what you know” or “what you

possess”. Formally, biometrics refers to the automated or semi-automated use of physiological

1



and/or behavioral traits associated with the human body to identify or verify an individual. Some

of the popular biometrics that are used include fingerprints, face, iris, hand geometry, retina,

signature, voice, gait, palmprints, etc [1]. Figure 1.1 illustrates some of the commonly used

biometrics.

(a) Face (b) Iris (c) Fingerprint

(d) Hand Geometry (e) Gait (f) Signature

Figure 1.1: Some popular biometric modalities used for authentication.

An identification (or verification) system operating using biometrics first acquires the data,

extracts relevant features and constructs a template from it, and then compares it with a database

of such templates linked to various identities. In the ‘verification’ mode, the user claims an

identity and the system compares the extracted features with the stored template of the asserted

identity to determine if the claim is true or false. In the ‘identification’ mode, no identity is
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claimed and the extracted feature set is compared with the templates of all the users in the

database in order to recognize the individual. In high security deployments (such as port of

entry for a country), a system could be devised to work in the ‘screening/watch-list’ mode. This

kind of operation simply determines if the individual is part of a watchlist.

Biometrics can be physiological or behaviorial. Physiological characteristics include finger-

prints, face, retina, iris, etc. Behavioral characteristics include voice, signature, gait, etc. While

fingerprint is the oldest and most widely used biometric, recent advances in iris recognition have

made iris a very promising biometric trait. Of all the different unique characteristics of human

beings, the usage of iris patterns has been found to be the most robust and accurate for the

purposes of verification and identification of individuals [2].

1.2 Iris as a Biometric

The iris is the only internal organ of the body that is readily visible from the outside. Its purpose

is to control the amount of light that enters the eye through the pupil, by using the dilator and

sphincter muscles to control the pupil size. It is made up of an elastic fibrous tissue that gives it a

very complicated texture pattern. This texture pattern has no links with the genetic structure of an

individual and is generated by chaotic processes [3]. The human iris begins to form in the third

month of gestation and the structure is complete by the eight month, even though the color and

pigmentation continue to build through the first year of birth. After that, the structure of the iris

remains stable throughout a person’s life, except for direct physical damage or changes caused by

eye surgery. The iris hence parallels the fingerprint in uniqueness but enjoys a further advantage

3



that it is an internal organ and less susceptible to damages over a person’s lifetime. The general

structure of the eye and the position of the iris in the eye is shown in figure1.2

Figure 1.2: Structure of eye1

Figure1.3shows multiple instances of the iris of the same person, taken over a period of time.

Even though the eyelid occlusion and pupil dilation vary from image to image, the underlying

iris texture remains the same.

Daugman has shown that iris patterns have about 250 degrees of freedom, i.e. the probability

of two eyes having the same iris texture is about 1 in 7 billion [2]. Even the 2 irises of

an individual are different thereby suggesting that iris textures are independent of the genetic

constitution of an individual.

Iris recognition has been successfully deployed in many large scale and small scale

applications. Figure1.4 shows some of the applications where iris recognition has been

1Available at : http://www.maculacenter.com/eyeanatomy.htm
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Figure 1.3: Six different instances of the iris of a person showing the stability in iris texture

pattern [4]

successfully put to use.

Even though it has many advantages and the fact that it is the most robust biometric available,

the iris has some inherent drawbacks that cannot be denied. Some of the advantages and

disadvantages of using iris as a biometric are discussed below.

1.2.1 Advantages

1. It is an internal organ of the body and is well protected. It is highly unlikely that the iris

patterns will be damaged due to normal day to day activities of a person [5]

2Imagesc© of Iridian Technologies Inc., USA
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(a) Border control in UAE (b) Expedited check-in (c) UN refugee control
at Narita Airport, Japan at the Pak-Afghan Border

Figure 1.4: Iris recognition systems in commercial deployment2

2. The iris patterns are highly random and it is assumed that no two individuals have the same

iris pattern [2].

3. There is no evidence of genetic penetrance (i.e., the heritability factor) in the structure of

the iris patterns. Hence iris patterns of both eyes of the same person and those of identical

twins are also different [3].

1.2.2 Disadvantages

1. Iris image is difficult to acquire since the size of iris is very small, compared to say, faces.

Capture of an iris image requires an elaborate set up with specialized cameras.

2. Since capturing the image is difficult, the enrollment process takes more time, which may

not be acceptable to all the users. Also, the failure to enroll rate in iris is about7% [6].

6



3. The iris could be obstructed by eyelashes, eyelids and reflections from the ambient and

source light.

Figure1.5shows some common difficulties encountered in capturing good iris images.

Figure 1.5: Some common problems in iris image acquisition

1.3 Overview of Iris Recognition

The uniqueness of iris texture lies in the fact that the processes generating those textures are

completely chaotic but stable. Hence in order to use the iris as a biometric, the feature extraction

should be able to capture and encode this randomness present in the iris texture.

Based on an extensive literature survey, we classify iris recognition systems into three

categories depending on the method by which the features from the texture are extracted for
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matching purposes. These three categories are (a) appearance based, (b) texture based and, (c)

feature based extraction. Appearance based techniques [7, 8] make use of classical statistical

approaches like Principal component analysis (PCA) or Independent component analysis (ICA)

to represent the iris images. Texture based techniques [2, 9, 10, 11, 12, 13] make use of filters

for image processing and extract some properties of the filtered images to quantify the given iris

image. Feature based techniques [14] make use of local features present in the image (blobs or

patches) and record their locations and features to distinguish between different images.

A typical iris recognition system has three major components: (a) iris image localization, (b)

feature extraction and, (c) the matching technique. Different iris recognition approaches have

been summarized in table1.1under these criteria. We shall now present a detailed description of

some of the methods from each category.

1.3.1 Appearance based methods

Noh et.al have proposed an iris recognition system that makes use of Independent Component

Analysis (ICA) to generate optimal basis vectors, which are then used to extract efficient feature

vectors representing the iris signals [7]. Each of these vectors are then converted to an iris code

by quantizing them to store them more efficiently. This method has shown performance similar

to the gabor wavelet system proposed by Daugman [2], but also has some advantages over it. It

uses a significantly smaller feature set and it is possible to extract the linear transform for the

feature extraction from the iris image itself.
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1.3.2 Texture based methods

The first effective iris recognition system was proposed by Daugman [2] in 1993. It made use of

a complete2D Gabor transform [15] to generate a256-byte binary ‘iris code’. This ‘iris code’

is generated by taking the sign of the real and imaginary portions of the transformed image. A

hamming distance measure is used to determine if the images are from the same person or not.

In another approach, Wildes [9] makes use of the Laplacian of the Gaussian filter to extract

the features in the texture part. This is a relatively simple technique that relies on the edge features

in the texture pattern. The matching is done based on computation of the normalized correlation

between the acquired and database representations. Since the mean intensities are subtracted

during the computation of normalized correlation, this technique is robust and can account for

local variations in the image intensity.

More recently, Wang et al [10, 11] have proposed recognition techniques using multiple gabor

filters. 8-directional gabor filters with multiple frequencies are used and the mean and variance

values of these gabor filtered images are used as features for matching. Also another method

exists that does not extract any explicit features, but makes use of the output of a correlation filter

directly for aligning and then matching the iris images [12].

Boles et al proposed a technique based on wavelet transform zero crossings [13]. The dyadic

wavelet transform is used to decompose the image at different resolutions. Since the higher levels

are highly effected by noise, only a few lower resolutions are used. The zero-crossing signature

of each image is generated by recording the zero crossings of these wavelet co-efficients. This

technique offers more freedom in the method of image capture since it is translation and rotation
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variant.

1.3.3 Feature based methods

Wang et al have proposed a technique that makes use of the local variations in the iris texture

along with wavelet transform [11]. The local variations are characterized by the appearance and

disappearance of an important image structure. The two dimensional image is converted to a

one dimensional signal and the dyadic wavelet transform is used to generate a position sequence

that characterizes the local sharp variation points. These position sequences are then used for

matching purposes.

Table 1.1: Comparison of various iris recognition techniques.

Technique Attribute

Localization Feature Extraction Matching Technique

Daugman [93] Integro-Differential 2D Gabor Transform Hamming Distance
Operator

Wildes [97] Circular Hough Laplacian of Fisher Discriminant
Transform Gaussian Filters Analysis

Noh et.al [03] N/A Multiscale ICA Hamming Distance

Wang et.al [03] Hough Transform Multiple Gabor Filters Weighted Euclidean
and Wavelet Transform Distance

Boles et.al [98] Edge and Zero Crossings Global Energy of
Contour Detection of Wavelet Transform zero crossing signal
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1.4 Challenges in Iris Recognition

Although there are iris recognition systems that can operate successfully at0% false accept and

false reject rates under ideal conditions [2, 14], there is ample scope for further research in this

field. Some of the challenges that are yet to be overcome are enumerated in this section.

1. Even after many systems being available for successful iris recognition, none of the present

methods discuss the actual processes defining the iris structure. There is a need for more

analysis of the iris texture as such. If the iris texture can be explicitly characterized, then

a user specific matcher could be used for recognition, where in the matcher is tuned to a

specific characteristic of each user.

2. Most of the current iris recognition techniques have never been tested on a large scale

database. The largest publicly available database [4] has only108 different users with7

images per user. Due to the invasive nature of the image acquisition, creation of a large

database has been a problem.

3. There have been no classification schemes for iris images like that are available for

fingerprints. Though iris images appear chaotic and random, they do possess a global

structure that can be perceived. Since all commercial systems can perform1-to-N matches

within a couple of seconds, such a scheme may not be of much commercial interest right

now, but it is very important from an academic point of view. Such a technique will provide

more insight into the structure of the iris texture and could provide more information about

the individuality of iris images.
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4. None of the literature in iris recognition today hints towards the development of an iris

image quality measure. There is no set standard for the method of capture of iris images,

resulting in a variety of iris images, differing from each other in many aspects. Of course,

each algorithm has its own needs and specifications for the iris image capture, but the lack

of a proper standard makes it difficult to compare various techniques on a common platform

5. All of the current literature focuses on operating with iris images which have been obtained

by full co-operation from the user. Techniques that can make use of partial iris images or

off-angle images need to be explored to reduce the stringent requirements of the iris image

capture.

1.5 Contributions of this thesis

The work here tries to address some of the challenges discussed in the previous section. The

major contributions of this thesis can be listed as follows.

1. A new technique for analysis of iris images has been presented. It has been shown that

this analysis has potential applications in developing a user-specific matcher for an iris

recognition system. It is further discussed that the results of this analysis could be used for

iris image indexing and efficient synthesis of iris images.

2. An attempt has been made to address the problem of non-availability of large iris databases

for testing. A scheme is proposed to generate synthetic iris images that have iris like
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properties and could be used for testing of algorithms. Markov Random field modeling is

used to characterize and generate the synthetic iris images.

1.6 Organization

In chapter2 we present the analysis of texture images in general and iris images in particular. We

discuss how this analysis could play an important role in solving some of the unsolved problems

in dealing with iris recognition. In chapter3 we present a new technique for generating synthetic

iris images based on texture synthesis. Summary and future work are described in chapter4.
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Chapter 2

Analysis of Iris Images

2.1 Introduction

The problem of iris matching involves determining the degree of correlation between any two

iris images. A typical iris recognition algorithm has three major components: iris localization,

feature extraction and feature matching. We have provided an overview of the iris recognition

algorithms in Chapter1. There are numerous algorithms that work efficiently to extract relevant

features from the iris texture image and use them for identification and/or verification purposes.

But none of the algorithms explicitly characterize the texture of the iris image. All the methods

make use of ‘feature extraction’, which is nothing but representation of the image is some other

form. We attempt to characterize the iris texture using a Markov Random Field (MRF) model that

would aid in understanding the structural texture pattern of the iris. We propose a characterization

which not only helps in classification of the iris images, but also helps in the understanding of the

14



texture properties to a large extent.

Our technique is predominantly based on Gimel ’ Farb’s methodology [16] to describe natural

textures with the help of a Markov Random Field that is generated based on the multiple

pairwise pixel interactions. Traditional MRF/Gibbs modeling of images like the Gaussian

Markov Random Field (GMRF) use predefined pairs of interacting neighbors and hence are not a

good choice for non-uniform textures like iris images. In contrast, techniques based on multiple

pairwise interactions make use of the relationship between two pixels that are close by as well as

between pixels that are far away in the image lattice. The pairs that are used to characterize the

texture and build the model are selected based on a potential strength assigned to them, which is

calculated based on the Gray Level Difference Histogram (GLDH) of the image. Hence the pairs

that characterize a particular image are found out from the image itself and are not pre-defined.

Thus the model is developed based on individual training images and should result in a more

accurate description of the texture structure.

Given a training image, the MRF model for the texture image is built in the following

manner:(a) Estimation of initial parameters of the model from the training image and selecting the

pairs of pixels that have maximum interactions, (b) using these pairs to refine the initial estimate

by means of stochastic relaxation and (c) converging iteratively to a final solution for the model

parameters based on the similarity of the GLDH of the generated and training images.

The uniqueness of the iris comes from the underlying texture patterns in it. Hence any form

of feature extraction or analysis of the iris image will constitute a form of texture analysis. Image

texture analysis is a well studied problem and the next section provides an introduction to texture
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analysis.

2.2 Texture Analysis

In real world, ‘texture’ is ubiquitous. Every perceivable object or scene has a texture associated

with it and it is very easy for humans to perceive what texture is and the human mind is able to

perceive and differentiate between two different types of textures with little difficulty. But in the

field of machine learning and computer vision, making a computer learn and understand what is

the texture of a particular segment of an image, is a challenging task. The definition of texture is

difficult because of its abstract nature and the fact that practically every object seen exhibits some

texture. Various definitions have been proposed but none of them provide a complete description

of texture. This is because the definition is highly fluid and is not the same for all the classes of

texture. Texture can be discriminated by the change in the intensity values due to the presence

of solid objects present in the scene. Such a texture is mapped as intensity changes when being

captured as an image. There are many instances in literature attempting to define texture, some

of which are enumerated below.

1. Chaudhuri, Sarkar and Kundu state that “Textured regions give different interpretations

at different distances and at different degrees of visual attention. At standard distance

with normal attention, it gives the notion of macro regularity that is characteristic of the

particular texture. When viewed closely and attentively, homogeneous regions and edges

are noticeable.” [17]
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2. Sklansky states that “A region in an image has a constant texture if a set of local statistics or

other local properties of the picture function are constant, slowly varying, or approximately

periodic”. [18]

3. “Texture is defined for our purposes as an attribute of a field having no components that

appear enumerable. The phase relations between the components are thus not apparent.

Nor should the field contain an obvious gradient. The intent of this definition is to direct

attention of the observer to the global properties of the display- i.e., its overall “coarseness”,

“bumpiness” or “fineness.” Physically, nonenumerable (aperiodic) patterns are generated

by a stochastic as opposed to deterministic processes. Perceptually, however, the set of

all patterns without obvious enumerable components will include many deterministic (and

even periodic) textures.” [19]

These varied definitions of texture presented in literature illustrate the difficulty in putting

forth a definition of texture that is complete in all respects. Thus there is no generally agreed

upon definition of texture. But there are some general properties that one can assign to a texture:

1. Texture cannot be defined for a single point, it is a property that can be described only for

areas.

2. Since texture is visualized in the gray scale values of an image, any statistic that can

describe the nature of the gray scale distribution of an image is capable of analyzing the

texture.
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3. Texture properties also vary with the resolution they are captured. At lower resolution,

we can capture the global textural properties of an image and at higher resolutions of the

same image; we could be able to gather information about the basic building blocks of the

texture.

Other than these, there are other qualities that one can “feel” about texture like coarseness or

fineness, contrast, density, regularity or irregularity, directionality etc.

2.2.1 Need for Texture Analysis

Texture analysis in a given image may be needed for more than one good reason. We might need

to find different regions in an image, which are separated by their distinctive texture. Such kind of

texture segmentation is important in the analysis of aerial images and the images obtained from

satellites. The segmentation can also be used to other applications like separation of text from

the remaining part of an image. One may use texture analysis to determine if a particular texture,

known apriori, is present or not in a given image. This is known as ‘texture classification’. Such

a classification has applications where there is a need to match two different textures and identify

the degree of similarity, like biometrics. Texture identification is used primarily in biometric

recognition or identification using iris. Another use of texture classification is in the medical

image analysis, wherein the classifier will have to differentiate between normal tissue texture and

abnormal tissue structure in the medical images.

18



Another application can be the extraction or construction of a three dimensional surface from

variations in the textural properties in an image. Such an application helps us recreate the 3D

surface, whose projection on the 2-D image is the given texture.

Since texture cannot be completely described in one particular definition, we also cannot find

just one way that is able to completely characterize any given texture and extract its features

successfully for all the different applications. Hence there have been different approaches to

analyze texture by many people, depending on the kind of application and also depending on the

type of texture being analyzed. The different ways in which texture has been analyzed can be

divided into the following categories:

1. Statistical Methods

2. Geometrical or Structural Methods

3. Model based Methods

4. Signal Processing based Methods

2.2.2 Texture Analysis Methods

1. Statistical Methods

Such methods take into account the statistical relationship that exists between the gray

scale values of the pixels in the given image. Most of this work is based on the results of

Julesz [20] describing the fact that humans use statistical features to discriminate between

different textures. These could be first order or second order or higher order features. Since
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many different features can be defined, but in the end most of them are inter related, we

shall consider only a few important gray level features.

(a) Gray Level Co-Occurrence Matrices

The gray level co-occurrence probabilities for an image specify the conditional

probability of finding two pixels with the specified gray level values at a specific

distance‘a’ in a specific direction‘d’ . These probabilities, when found out all over

the image, form the gray level co-occurrence matrix for the image, for any given‘a’

and‘d’ . There are no specific rules to determine values of the separation between the

pixels and the direction of separation. They have to be decided empirically by visually

looking at the texture and deciding upon the directionality and coarseness or fineness

of the texture. The gray level co-occurence pairs (GLCPs) are a kind of second order

statistic on the gray scale levels in the image since they take into consideration pairs

of pixels instead of one. For any particular window size, they represent the joint

probability that two pixels separated by some distance in some particular direction,

have specific gray level values. Hence one could construct a number of co-occurrence

matrices for any given image and then calculate many different features from those

matrices to analyze the texture.

The co-occurrence matrix is defined by Astrit et.al in [21] as follows:

Let I be an image whose pixel gray levels are in the range0. . .255. Let

δ = (u, v) be an integer-valued displacement vector;δ specifies the relative

position of the pixel coordinates(x, y) and (x + u, y + v) . A spatial co
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occurrence matrix of an image is a matrix whose element(i, j) is the number

of pairs of pixels in relative position such that the first pixel has gray leveli

and the second one has gray levelj.

If δ is very much smaller than the dimensions of the texture elements, then the

pixels separated by displacement ofδ will have almost similar values. Thus, the

co occurrence matrix will have larger values concentrated near its diagonal. But if

the texture is fine compared to the size ofδ, then the matrix will be fairly uniform.

Such features of the co-occurrence matrices have to be captured for effective texture

analysis.

For any given co occurrence matrix,M , a number of statistical characteristics can be

found out. One can make use of these features for analysis of texture. Some of these

characteristics have been outlined from [22]:

i. Energy−∑
i

∑
j M2

δ (i, j)

ii. Entropy−∑
i

∑
j Mδ(i, j) log Mδ(i, j)

iii. Contrast−∑
i

∑
j(i− j)2Mδ(i, j)

iv. Homogeneity−∑
i

∑
j

Mδ(i,j )
1+|i-j |

v. Correlation−
∑

i

∑
j
(i−µx)(j−µy)Mδ(i,j)

σxσy

These features can either be used individually or a combination of these could be used

to analyze or classify a given texture.

One such use was by Davis [23], wherein he proposed a new tool called Polarograms

for texture analysis. A Polarogram is a plot in polar coordinates of the texture statistics
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as a function of orientation. A Polarogram can thus be described by constructing

different co-occurrence matrices for fixed distances but variable orientations. Texture

features can then be derived from the Polarogram by calculating the geometrical

features of the Polarogram. Davis conducted two experiments on a database of5

classes using16 orientations to calculate the Polarogram for these textures. He used

linear discriminant analysis to classify the textures and could obtain accuracy in the

range of75% to 90%. This method can be improved by finding the exact number of co

occurrence matrices that need to be calculated for proper representation of the texture.

Hence the basic problem of finding the right number of co occurrence matrices still

remains open.

(b) Autocorrelation

Since texture is basically considered as a repetition of basic structural elements, the

autocorrelation function of a texture image can provide some useful information

about the texture properties. It can provide us with the amount of regularity and

also information about the coarseness or fineness of the texture. The autocorrelation

function of an image,ρ(x, y) is defined as:

ρ(x, y) =

∑N
u=0

∑N
u=0 I(u, v)I(u + x, v + y)∑N

u=0

∑N
u=0 I2(u, v)

. (2.1)

In general, if the texture is coarse, then the auto correlation function will drop off

slowly and if it is fine, then it will drop off sharply. For well defined textures, it will

be periodic with regular peaks and valleys.
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(c) SGLD, GLR and GLD Matrices

The Spatial Gray Level Dependence Matrix (SGLD), Spatial Gray Level Run Length

Matrix (SGLRL) and the Gray Level Difference Matrix (GLDM) are three variants

of the co-occurrence matrix and take into consideration the second order statistics of

the texture image. Methods for texture classification using features extracted from

these matrices were proposed by Mir, Hanmandlu and Tandon in [24]. The SGLD is

nothing but the co-occurrence matrix itself; the SGLRL takes into consideration the

run length, i.e. the maximum length of a connected set of pixels in a given direction

that have the same gray scale value and the GLDM is similar to the co occurrence

matrix except that it considers the difference between two gray scale levels instead of

theabsolutedifference between two gray scale values.

2. Geometrical Methods

Geometrical methods define the texture to be composed of structural elements or primitives.

These primitives are usually determined as a result of geometric analysis of the image.

Since these methods try to define the texture around a basic primitive, they are more

effective in describing repetitive or structurally arranged texture patterns. After the

structural elements are identified for an image, they could be analyzed by studying the

statistical properties of those elements or by determining the placement rule of the elements

in the texture. We will now consider some of the popular approaches based on the analysis

of texture primitives.
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(a) Voronoi Tesselation Features

Tuceryan and Jain used features of Voronoi tesselations for texture segmentation [25].

Voronoi tesselations have been used because they help characterize the local spatial

relations in a texture pattern. These tesselations are constructed using texture tokens

and the local spatial distributions of the tokens are reflected in the tesselations.

Features of each token are computed from the Voronoi tesselation and they are used to

evaluate if the texture is uniform or not. These features could be used for segmentation

of texture images. Regions of large dissimilarities could constitute for a texture edge.

(b) Structural Methods

Structural methods assume that the texture is formed using only a few primitives that

are placed repetitively in some geometrical or statistical pattern. These algorithms

are most effective in dealing with extremely regular textures and fail when irregular

or random textures are encountered. A number of authors have discussed methods

to extract these texture primitives from the images [26], [27], [28]. The texture

primitives are determined using multi-scale filtering or blob detection and then

properties like intensity and shapes of the detected primitives are computed for texture

segmentation.

3. Model Based Methods

Model based methods characterize image to fit into a specific model that describes the inter

relations between the different pixels in the image. This characterization can not only be

used to describe the texture, but it can also act as a guide towards synthesizing similar
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texture images. Most algorithms model textures using Markov Random Fields (MRF).

MRFs have been popular because of their ability to characterize a wide variety of textures

and hence can be generalized easily. Another type of modeling is done using Fractals

Mandelbrot [29]. The fractal dimension measures the roughness of a surface. But since

most natural surfaces (and hence textures) are not deterministic and have certain stochastic

properties attached to them, describing them with only fractal dimensions is difficult.

4. Signal Processing based Methods

In approaches using signal processing techniques for texture analysis, most methods make

use of filtering techniques and then extract features from the filter response and use them

for classification or segmentation. Both spatial and frequency domain filters can be used

to extract features, but frequency domain filters perform better because of the reason that

the human visual system performs frequency domain operations to analyze texture images.

Extensive work has been done on using Gabor filters and wavelets for texture analysis with

excellent results [2, 30, 31].

2.3 Markov/Gibbs Random Field Model

Markov Random fields have been popularly used in image modeling because of their ability to

describe a wide range of different textures. Probabilistic image modeling treats the image as

a random field and relates the pixels to a particular random field. If such a model accurately

captures the inter pixel dependencies (which are described as probabilities), then multiple images
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could be generated such that all the inter pixel relations in the generated image also follow the

probabilities specified by the model.

A Markov Random Field (MRF) for any image can be broadly described as a probability

distribution that governs the intensity value at each pixel in an image such that the value of a

pixel depends only on the values of a specific “neighborhood” of the pixel and is independent of

all other pixels in the image. The neighboring pixels are described by annth order neighborhood,

wheren is selected depending on the type of texture.

Let S be an image lattice of sizem × n = R pixels, then thenth order neighborhood for each

pixel i in S is defined as,

Ni = [An
i = All pixels within a radius ‘n’ of a given pixel, ∀An

i = S] (2.2)

The neighborhoods up to third order are shown in the figure2.1:

Figure 2.1: First, second and third order neighborhoods defining a Markov random field

An MRF assigns probability values for each of the neighbors of a site and the intensity value at

that site depends only on the values of its neighbors and not on any other pixels from the image

lattice.
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If S is a given image, thenF = f1, f2, . . . , fR is a MRF onS with respect to the neighborhood

systemNi such that it satisfies the following conditions :

Positivity : P (fi) ≥ 0

Markovianity : P (fi | fS−{i}) = P (fi | fNi
) (2.3)

where P (fi) = Joint probability that theith pixel takes on one particular value given one

configuration of neighboring pixels.

Another kind of random field modeling of images, that makes use of irregular neighborhoods

and sometimes fewer pixels than a MRF is the Gibbs Random Field (GRF). The neighboring

pixels for a GRF are described by what are known as “cliques” of pixels. A cliqueC can consist

of just the pixel itself or 2 or more pixels. The spatial relationship between 2 or more pixels

forming a particular clique can be defined in anyway that is convenient to efficiently characterize

the given image. Some common examples of possible cliques are shown in figure2.2:

Figure 2.2: Examples of cliques that could be used to define a Markov/Gibbs random field

A GRF is completely described by a probability distribution which is governed by the geometric

structure and the intensity values of the pixels involved in the cliques.
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The general form of a Gibbs Probability Distribution(GPD) is given as [32] :

Given an imageS, with m x n= R pixels,F = f1, f2, . . . , fR is said to be a Gibbs random field if

the probability values take the form :

P (fi) =
1

Z
e−

1
T

U(fi),∀i ∈ R (2.4)

WhereZ is a normalizing constant andT is called the temperature and will be assumed unity

here, andU(f) is the energy function.

The energy function is given as :

U(fi) =
∑
c∈C

Vc(fi),∀i ∈ R (2.5)

whereVc is a function of the signal combinations[si : i ∈ C] in the cliqueC and is called the

Gibbs potential function.

Further, an ‘interaction structure’ is defined in [33] as a particular geometrical pattern that is

a cliqueC. The ‘interaction strength’ of a particular set of cliquesC of pixels with the same

geometrical relationship is specified by its potential functionVc.

Hence the GPD is now specified as :

P (fi) =
1

Z
exp

∑
c∈C

Vc(si : i ∈ C) (2.6)
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2.4 Multiple Pairwise Pixel Interactions

Traditional MRF models like the auto-binomial and the the Gauss-Markov model cannot take

into account the full interaction properties in a given texture image primarily because they

have predefined pixel pairs or ‘cliques’. The auto-binomial model exploits only the first order

neighborhood and the GPD is based on only four cliques. The Gauss-Markov model is more

flexible than the auto-binomial model in the fact that it assumes all the pixels within a specified

window are neighbors of each other and form a clique. But even this kind of a model is restricted

in its use because very large windows cannot be used since they increase the computation cost.

Hence the Gibbs models should be generalized to include arbitrary cliques where in pixels

placed at distances much larger than the maximum possible window size from earlier models can

also be taken into account; if they contribute a significant amount of interaction to the texture

structure. If such cliques are considered, then a pixel can be a part of many second order cliques

and the whole ‘interaction structure’ i.e. the union of all such cliques that contribute significantly

to the structure of the texture can be defined for each image separately. This is useful in modeling

textures better than just randomly pre-selecting the cliques to describe the texture properties.

These ‘clique families’ are defined in [33] as : ‘Each second order clique family

Ca = Cµa,va = [(i, j) : i, j ∈ R; i− j = (µa, va) (2.7)

contains all the translation invariant pixel pairs(i, j) that have a fixed inter-pixel shift(µa, va).

These inter-pixel shifts(µa, va) can vary arbitrarily depending on the texture to be modeled and

can thus be selected so as to represent the texture properties as accurately as possible.
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The model employed here assumes that the GLDH of the given image is a sufficient statistic

to characterize the given image using an MRF. A GLDH is the second order histogram of an

image. It gives the probability of two pixels in an image seperated by(µa, va) having a gray-level

difference ofd ∈ [−qmax, · · · , 0, · · · , qmax]. Hence the GLDH obtained from the given image is

used to assign the potential function values to each of the clique familya:

Va(d = q − qa) ∝ Ha(d | go) (2.8)

whereq, qa are gray values of pixels with a shift ofd = [−qmax, · · · , 0, · · · , qmax] andHa(d |

go) is a component of the GLDH for a given training samplego. Hence by looking at the potential

values, we can determine which gray level difference occurs more frequently in a given texture

and thus only those cliques which have potential values greater than a specific value can be

assumed to be true representative of the underlying texture. Thus by using this criterion for

selecting the most active cliques, we can define the interaction structure for each image separately

and thus model the texture in a more efficient manner.

2.5 Experiments

We performed experiments for MRF modeling on iris images from the CASIA iris database [4].

Before any image processing algorithm can be performed on these eye images, the iris portion

must be localized and converted to the rectangular strip format. The iris image localization

technique is described in detail next.
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2.5.1 Iris Image Localization

The iris image localization is performed by detecting the image intensity changes using the

integro-differential operator [2]. The primary steps in this image preprocessing can be defined

as follows : (a) Define pupillary boundary, (b) Define limbic-iris boundary, (c) Define upper and

lower eyelid boundary, and (d) Unwrap the circular iris portion to a rectangular image block.

1. Detecting Pupillary Boundary

The pupillary boundary is indicated in figure2.3 the region that separates the iris from the

pupil of the eye. This boundary is detected as an abrupt or sharp change in the gray level

values when viewed along the circumference of a circle. This change will peak when the

circle in consideration has its center located very close to the true pupil center and its radius

is very close to the pupillary radius. In image processing, this can be accomplished by the

use of an integro-differential operator. For an imageI(x, y), the operator would search for

the maximum in the derivative, with respect to changing radiusr, of the contour integral of

I(x, y) along a circle of radiusr and center co-ordinates(x0, y0). This can be expressed in

the form of an equation as :

max(r,x0,y0) |
∂

∂r

∮
r,x0,y0

I(x, y)

2πr
ds | (2.9)

The operator behaves like a circular edge detector searching for a maximum contour

integral derivative with increasing radius, and the location of the circles is determined by

(x0, y0).
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(a) (b)

Figure 2.3: (a) Original eye image and (b) Detected pupil boundary

2. Detecting Iris Limbic Boundary

After the pupillary boundary and the center of the pupil have been successfully determined,

we proceed to detect the outer boundaries of the iris. This can be achieved in a similar

fashion, only that the boundary is less prominent and has a lesser abrupt change than for

the pupillary boundary. Instead of finding for an abrupt change in the circular fashion, we

limit ourselves to arcs on the left and right hand sides of the image, since the iris is not

visible as a full circle in most of the cases because of eyelid occlusion. Also, since the

center of the iris coincides with or lies very close to the center of the pupil, we restrict

the range of(x0, y0) to lie with a very small radius of the center of the pupil. This results

in reduction of unnecessary computations. Figure2.4 depicts the detected pupillary and

limbic boundaries using this technique.
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Figure 2.4: (a) Detected pupillary and limbic boundary

3. Detecting Eyelid Boundaries

Most iris recognition algorithms assume that the eyelid occlusion is very minor and do not

take into account the portion of the iris near the eyelids. But the CASIA dataset iris images,

which are used in the experiments here, is derived from people of Asian origin and the

occlusion due to eyelids is very prominent in these images, compared to that in the images

of people from Caucasian origins. Hence we have extended the iris image localization to

even finding out the boundaries of the upper and lower eyelids for more accurate image

representation. Again, we look for sharp changes in the gray scale intensities, but eyelids

are better approximated by parabolic curves. Also, since the eyelids are bound to occur in

the top and lower portions of the pupil center, we have narrowed our search to only those

areas. We use the parametric definition of a parabola to construct parabolas of different

sizes and shapes. The parametric equation of a parabola is given as :
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x = at2

y = 2at (2.10)

Hence we search for an abrupt change in the summation of gray scale values over the

shape of a parabola, for various shapes and sizes of parabolas. This results in detection of

the upper and lower eyelid boundaries in the eye image. Figure2.5shows the result of such

a detection.

Figure 2.5: (a) Detected eyelid boundaries
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4. Unwrapping

Daugman [2] represented the iris as a fixed rectangular block of image in a doubly

dimensionless pseudo polar co-ordinate system. We have unwrapped the iris image in a

similar fashion and the process of the unwrapping is illustrated in figure2.6.

text

r
0 1

θ

r

θ

Figure 2.6: Unwrapping procedure for iris image

The iris portion of the eye image is mapped to a rectangular block of fixed size using the

following procedure:

x(r, θ) = (1− r)xp(θ) + rxi(θ)

y(r, θ) = (1− r)yp(θ) + ryi(θ) (2.11)

whereI(x, y) is the iris region in the eye image.(x, y) are the original cartesian co-

ordinates and(r, θ) are the corresponding polar co-ordinates. Figure2.7 shows the result
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of unwrapping. Here the regions above the eyelid of the eye have been masked and are

indicated in black. This region is not used for any analysis.

Figure 2.7: Unwrapping an iris image

This mapping takes into account various dilations and constrictions of the pupil and returns

an image of the fixed size all the time. Thus the iris region is modeled as a flexible rubber

sheet anchored at the iris boundary with the pupil center as the reference point.

5. Enhancement by Normalization

To account for the various changes in illumination and difference in contrast across various

iris images, we perform normalization of the gray scale values for enhancing the quality of

the image. We adopt the image normalization technique described by Hong et al in [34].

Let I denote the image and letM andV be the estimated mean and variance of imageI

respectively. Then, the normalized image,G can be obtained as :

36



G(x, y) =


M0 +

√
V0(I(x,y)−M)2

V
if I(x, y) > M

M0 −
√

V0(I(x,y)−M)2

V
otherwise

(2.12)

WhereM0 andV0 are the desired mean and variance respectively. We have determinedM0

andV0 empirically by taking the average of the mean and variances across all the images

in the CASIA database. Some of the results of the enhancement using this technique are

shown in figure2.8.

(a) (b)

Figure 2.8: Iris images (a)before enhancement (b) after enhancement

2.5.2 Results

After the initial pre-processing is completed, the analysis is performed only on the output of the

pre processing stage, i.e., the enhanced image. Also, to exclude any kind of eyelid occlusion,

we consider only a25 × 360 portion of the unwrapped iris image for our analysis purposes.

We have also used other kinds of images to compute the GLDH table from them and to study

its properties. The different kinds of images used include (a) Regular (repetitive) images from

the Brodatz album, (b) Irregular images from the Brodatz album and, (c) Iris images. We
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analyze the importance of inter pixel relationships in these different kinds of images, based on

the computation of their respective Gray level difference histograms (GLDHs).

For different kinds of textures, the relationship between pairs of pixels will be different. Since

the GLDH captures the gray level differences between all the different possible pairs of pixels in

an image (or cliques), it is fair to expect that the GLDH should carry most of the discriminatory

information regarding the texture images being analyzed. The results presented here depict the

maximum value of the gray level differences computed across the different cliques possible.

Since we use a25× 360 image for computation of the GLDH, the maximum possible pixel pairs

are9000. But since we consider two complementing pairs to be same (For e.g.(0, 1) and(0,−1)

are treated as the same clique), the number of pairs is reduced to4500. After the computation of

the GLDH, we look at the maximum of the histogram across each of the4500 cliques and select

only the top10% of the calculated GLDHs. This finaly results in a GLDH table corresponding to

the top450 of the cliques in the image. In the graphical description, theX − axis corresponds

to the clique number and theY − axis corresponds to the maximum value of the GLDH for that

particular clique. The values on theX − axis correspond to the cliques(0, 0) and(0, 1) and so

on. Figures2.9, 2.10and,2.11shows some of the results obtained for the Brodatz images.
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Figure 2.9: Brodatz album image D3 and its corresponding GLDH values

Figure 2.10: Brodatz album image D25 and its corresponding GLDH values
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Figure 2.11: Brodatz album image D9 and its corresponding GLDH values

Figures2.12and2.13depict the GLDH results for iris images from2 different users.
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Figure 2.12: Iris image of user1 and its corresponding GLDH values
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Figure 2.13: Iris image of user2 and its corresponding GLDH values
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2.5.3 Discussion

In the earlier section, we presented some graphical results of the GLDH analysis performed on

the different kinds of texture images. Some of the interesting observations of this analysis and

their possible applications are discussed in this section. The primary observations were :

The primary goal of this exercise was to study the various pair wise pixel interactions in

the texture image. Analysis of the GLDH values for each clique reveal that for textures having

regularity and where the repetitive element is small, the pixels lying close to each other have

more interaction than the ones that are lying far apart. This is illustrated in the GLDH values

in figure2.9. For images which did not have any regularity, there is almost always a significant

relationship between pairs of pixels that lie close by and also for those pixels which are far apart.

This fact is evident from figures2.11, 2.12, and2.13. Hence these results illustrate the fact that

iris texture is not local, but has some global properties attached to it. Hence any random field

modeling that expects to model an iris image effectively will have to take into consideration the

relationship between all the pixels in the iris texture image.

One important observation is that across all the different texture images, the waveform that

represents the maximum of the GLDH values for all the cliques in the image, is not similar,

i.e., the fact that the GLDH values peak at different cliques for different kinds of texture images

could be used as discriminatory information. Also, there is no indexing technique for iris image

databases. This information could be used to develop an iris image classifier that could categorize

the iris images into broad classes.

By examining the peak values in the GLDH, we can assign ‘interaction strengths’ to the
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cliques. The cliques, ordered according to their interaction strengths, can form a unique identifier

for each iris image. Thus, these prominent cliques could be stored for each user in an iris

identification system and only these cliques can be used for identification of each user. These

prominent cliques can be called as the ‘interaction structure’ for each user and thus a user-specific

matcher can be devised that can be tuned for each user’s specific characteristics.

Another application of this ‘interaction structure’ could be in the field of texture synthesis

using Markov Random Fields (MRFs). Texture synthesis using MRFs requires probability values

assigned to a specific neighborhood of each pixel to be generated. All the traditional texture

synthesis methods right now use fixed size neighborhoods around the pixel to be generated. If

the interaction structure is accurately determined through this analysis, then the neighbors of a

pixel could be assigned probability values based on the values of their interaction strengths. This

will result in much more efficient and accurate texture synthesis, since the MRF is being tailored

to each image and not vice-versa.
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Chapter 3

Iris Image Synthesis

3.1 Introduction

A number of iris recognition algorithms have been proposed in the literature over the past few

years. Though most commercial systems claim a0% false accept rate, only Daugman’s method

[2] has been tested on a large database (∼ 350, 000 images), which is proprietary . The Chinese

Academy of Sciences (CAS) has made available a public database which is modest in size and

comprises756 images pertaining to108 users [4]. With the introduction of new iris recognition

algorithms (e.g., [9], [10], [11], [13], [14]), there is a pronounced need for a large public database

to test and compare multiple techniques. The use of synthetic databases in biometrics is not new

and has been previously studied in the context of fingerprint and face biometrics. Orlans et al. [35]

have outlined the advantages of studying synthetic biometric capabilities which are enumerated

below.
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1. The development of parametric models that permit thetestingof a biometric system under

various conditions.

2. The mitigation ofprivacyconcerns typically associated with real-world data.

3. Theefficiency(with respect to cost and time) in assembling a large database representing a

variety of intra-class and inter-class variations.

4. The design to statistical procedures topredict the performance of systems in large-scale

deployments.

Also, an analysis-by-synthesis approach helps researchers gain insight into the individuality

of biometric patterns.

In the fingerprint literature, a technique for generating synthetic fingerprints was proposed

by Capelli et al. [36]. The resulting software known as SFINGE has been used to generate

artificial databases that have been incorporated in multiple editions of the Fingerprint Verification

Contest (FVC2000, FVC2002, FVC2004 [37]). The authors observe that the performance of

competing algorithms on these synthetic databases is comparable with their performance on real

datasets thereby suggesting the ability of SFINGE to realistically model intra-class and inter-

class dynamics. Similarly, the FaceGen software [38] along with the3D Studio Max and Visage

FaceTools has been used by Orlans et al. [39] to devise test protocols for face recognition.

There are, however, very few literature precedents discussing synthetic generation of iris

images. Wang et al. [40] recently used the Principal Component Analysis (PCA) approach to

generate synthetic irises. The eigen-coefficients obtained from a training set of real iris images
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are modified in a controlled manner; the eigen basis is then used to generate synthetic iris images

using these new coefficients. Proper modification of these coefficients results in new classes of

iris texture. Lefohn et al. [41] created renditions of the human iris by stacking several transparent

layers with each layer describing a certain iris component (such as stroma, collarette, sphincter,

etc.).

In this thesis, we propose a new technique for generating synthetic iris using Markov Random

Field (MRF) models. The patterns visible in any iris image can be categorized as a texture

pattern. We describe a synthetic iris image generation scheme that is based on texture synthesis.

Myriad texture synthesis algorithms are available in literature which describe the generation of

large texture images given small samples as inputs orprimitives [42, 43, 44, 45, 16, 32]. We

synthesize iris texture using one particular class of fast texture synthesis algorithm proposed by

Li-Yi Wei [ 42]. Multiple and distinct sources of texture are used as primitives for this algorithm.

These primitive texture images are small portions of real iris textures that have been preselected

to contribute in the synthesis procedure. Since the iris texture itself is random in nature, synthesis

of an image with a combination of such primitives generates an image which also has a high

degree of randomness.

The iris is a flattened circular region of the eye that is made of a fibrovascular tissue called

stroma. The stroma connects the sphincter muscle, that contracts the pupil, with the dilator

muscles, which open it. Due to the presence of stroma, the iris has a highly fibrous and

textured appearance. The iris is usually pigmented, with the pigmentation being majorally from a

substance called ‘melanin’. The iris colors vary from brown to green or blue or hazel. The lighter
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colored irises occur due to the lack of melanin pigmentation, which is a characteristic that mostly

depends on the race of the person (Caucasian, African, Asian, etc.). The iris is a highly textured

structure that exhibits specific characteristics in different regions.

Figure3.1 shows some of the major regions of the iris texture. Based on the amount and

Collarette Crypts

Limbus

Contraction 
Furrows

Figure 3.1: Detailed structure of iris texture

structure of the stromatic texture, the iris can be divided primarily into three major divisions :

(a) The inner pupillary region, where the fibrous texture is radially and very compactly

arranged, (b) The central collarette portion where the fibrous texture begins to taper away.

Also, this region is characterized by the presence of blob like structures called ‘crypts’, (c) The

outermost portion of the iris is called the limbus and displays very little texture information. Only

a few artifacts occur in this region due to the constant dilation and contraction of the pupil. These

appearances are called as the contraction furrows.

We select the primitives used to generate synthetic iris images from the real iris images such

that they reflect these different portions and characteristics of the iris texture. The primitives

are selected from each of the above specified regions and they are used in the same order while
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generating the output image. During the generation process, the image is generated in distinct

steps, for each of the primitive selected. For example, to generate the innermost portion of the

iris, the primitives that would be used would have been selected only from the pupillary regions

of a true iris image. After that we would proceed to generate the central portion of the iris, which

would have information from primarily the collarette region of the iris, and finally the outermost

region is generated from a third primitive which has been selected from the limbical region of a

true iris image.

As explained in Chapter1, most iris recognition systems perform segmentation of the image

of the eye and extract the iris portion from the image to a rectangular portion. We proceed by

generating the synthetic iris texture directly in this rectangular format. There are some inherent

advantages in generating the images in this format.

1. Observation has revealed that the local features in an iris are predominantly radial in nature.

When a circular iris is mapped as a rectangular strip, these transform to vertical features.

This process is illustrated in figure3.2. Generation of images with vertical features is much

simpler than trying to incorporate a process which would generate a circular image with

radial features. Thus images can be generated in the form of a rectangular block and then

remapped in a circular fashion to give the radial effect to the pattern.

2. If the image has to be generated in a circular fashion, it is inevitable that we generate a large

image with dimensions equal to the radius of the circle and the circular pattern will then

have to be selected from this image. But large images will require more time for generation.

This complexity in terms of time required for generation can be reduced significantly if we
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Figure 3.2: Segmented iris and its unwrapped version

simply generate an image in the form of the rectangular block, which will be of much

smaller proportions.

Thus we first generate the iris images as a rectangular strip and then remap them onto an

eye template. These mapped images are then subjected to perspective transformations [46] to

simulate the effect of differences in camera focus and blur, thus creating multiple samples of the

same image. The portion corresponding to the iris in these images is again unwrapped and these

rectangular strips are used in the experiments. We perform two kinds of experiments on these

images to validate the synthesis procedure.

1. The first of these experiments is aimed at showing that these images can be categorized as

‘iris like’ images. For that, we put together all the images from the CASIA iris database

along with all the synthetic iris images and some of the standard stochastic textures from

the Brodatz image album. Features characterizing the texture are computed using the co-

occurrence matrix [22] and using these features, these images are classified by a k-means
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classifier into just 2 classes. It will be shown that all the iris images, original and synthetic,

group together into one cluster while most of the Brodatz texture images are grouped into

the second cluster.

2. In the second experiment, we try to measure the inter-class and intra-class distance between

the generated iris images. For this purpose an iris matching algorithm is implemented that

is based on extracting some features using the Haar Wavelet decomposition of the images

and then performing a 1-to-n matching. The receiver operating characteristic(ROC) is also

shown as a measure of the matching performance obtained using the synthetic images.

The whole procedure of synthesizing iris images can be divided broadly into the following

sections: (a) Selection of primitives from real iris images, (b) Generation of a spatial weighting

function to determine the influence of each of the primitives in the output synthesized image, (c)

Texture synthesis in the output image using the primitives and their corresponding spatial weights,

and finally (d) Validating the synthesized images by clustering and matching experiments.

Figure3.3gives a snapshot of the synthesis procedure.

3.2 Image Texture Synthesis

The task of texture synthesis can be divided into 2 major divisions: (a) To model the texture

,i.e. to be able to characterize the stochastic and structural portions of the input sample and (b)

To sample this model to produce new textures similar to the ones described by the model. The

model is usually a probability distribution that describes the spatial relationship between groups
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Figure 3.3: Synthetic iris generation

of pixels. Model sampling, in such a case, entails determining the pixel values for the new texture

based on this probability distribution.

Our approach for iris texture generation is based on a fast texture synthesis technique [42]

because of its high efficiency, low computational complexity and ease of implementation. The

input to the basic algorithm consists of a small patch of an example texture patch (the primitive

image) and a random noise image of size as desired as the output. The algorithm then iteratively

modifies the random noise image to make it look similar to the primitive texture image. While

a single primitive is sufficient for the generation algorithm, more than one primitives may also

be used to generate outputs that look similar to a blend of the primitives. The use of multiple

primitives may be necessary because (a) a typical iris exhibits rich texture in the immediate

vicinity of the pupil which tapers away in intensity as one moves away from the pupil; and (ii)
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the blending of multiple textures increases the complexity of the randomness of the synthesized

image. In the following subsections we describe synthesis based on both single and multiple

primitives.

The basic algorithm explained in [42] is primarily for images that can be categorized as

a local and stationary process. That means, the any portion of the image looks similar when

viewed within a small neighborhood of a pixel and that the value of that pixel is characterized

by those surrounding pixels only. These are the basic characteristics of a Markov random field.

This algorithm assumes these properties for the input texture patch and tries to incorporate these

properties into the larger output sample. It generates the image pixel by pixel via a raster scan,

while maintaining the local relations of the pixels as similar as possible to the primitive image’s

pixels. Since this process is completely deterministic and requires no sampling of a probability

distribution, it is computationally inexpensive and can generate images very quickly. We first

describe the single resolution algorithm which will then be followed by an extension of it to

multiple resolutions to improve the efficiency. Also, this algorithm can be accelerated further by

using techniques like tree-structured vector quantization.

3.2.1 Single Resolution Algorithm

Let the primitive sample be denoted asIp and letIs represent the initial random noise image .

For each pixelr in Is, let Ns(r) represents its neighborhood as shown in figure3.4.

For our convenience we arrange the pixel values from the neighborhood in a vector form as
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Figure 3.4: A figure illustrating the neighborhood of each pixel

shown in figure3.4. Let Np = {Np(r)} be the set ofall such neighborhoods inIp. Each element

of Np is compared with theNs(r) using the Euclidean distance metric. The purpose of this

exercise is to determine the neighborhood inIp that closely resembles the current neighborhood

of r in Is. The pixel valueIs(r) is then updated based on this comparison as

Is(r) = Ip(t
∗), (3.1)

where t∗ = arg min
t∈Ip

‖ Ns(r)−Np(r) ‖ (3.2)

Here ‖ . ‖ represents theL2 norm. This process is repeated iteratively in raster scan

fashion for all the pixels. Thus the local relations between the pixels in the input texture are
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incorporated into the noise image resulting in the generation of a similar looking texture. Note

that more sophisticated comparison techniques other than theL2 norm may be used to compare

the neighborhood intensities of the two images; however, experiments suggest that theL2 norm

suffices for our purpose.

3.2.1.1 Choice of Neighborhood

Since the neighborhood effectively decides the quality of the synthesized texture, its size and

shape play an important role. For any regular repetitive texture pattern, it should be equal to or

greater than the largest regular structure present in it. But for the generation of iris images, which

are non-homogenous, this constraint can be relaxed. One has to just make sure that the input

texture block displays a good amount of ‘random texture’ elements. To facilitate this, images

from the CASIA database [4] have been used to obtain the primitive patterns in our experiments.

Since all regions of the iris do not have rich texture information, the dataset was carefully studied

and only selective portions of each image were used as primitives by the synthesis algorithm.

Figure 3.5 shows two30 × 30 blocks extracted from an arbitrarily chosen iris image; it also

shows some of the sample primitives that have been selected for synthetic image generation. The

neighborhoods were chosen based on the visual appearance of the iris texture and their size varied

anywhere between9 × 9 to 23 × 23 pixels in our experiments. It should be mentioned here that

any other primitive demonstrating iris-like properties can be substituted for these primitives.

Also, the shape of the neighborhood is made ‘causal’, i.e. the neighborhood of a pixel

will always have pixels that have already been generated in the order of the raster scan. This
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(a)

(b)

Figure 3.5: (a) Selection of primitives from an actual iris image. The iris structure has been

unwrapped and presented as a rectangular entity rather than a circular one. (b) Examples of

sample primitives used in our experiments.

ensures that every output pixel is updated from only the pixels already generated and not purely

from noise. This causal property of the neighborhoods accelerates the convergence speed of

the algorithm. Only the first few pixels of the output image will use white noise as their

neighborhoods in the first iteration, but subsequently, all pixels will use neighborhoods that have

been assigned by the algorithm in the earlier pass.

3.2.1.2 Edge Handling

The pixels near the image boundaries will not have the full portion of the specified neighborhood.

This problem is circumvented by assuming that the image is toroidal in nature. Hence the pixel

(x,y) can be mapped as(x mod R, y mod C) where R and C are the rows and columns of the

image respectively. If the edge pixel neighborhoods are not handled properly, the output image

will appear tiled and blocky. But it must be noted that due to the usage of causal neighborhoods,
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only toroidal mapping is not sufficient for smooth tiling of the output image. The multiple

resolution algorithm to be introduced in the next subsection must be used in conjunction with

toroidal mapping to overcome the problem of tiling.

3.2.2 Multiple Resolution Algorithm

As explained in Section3.2.1.1, good quality texture synthesis requires the neighborhood to

be at least as large as the largest regular structure present in the primitive image. For larger

structural elements, the neighborhood size should be increased and increasing the neighborhood

size would result in more computations and slower synthesis. A multi resolution approach can

save computation because larger scale texture elements can be compactly represented by down

sampled versions of the primitive. Thus smaller neighborhoods can still represent the large

structural element.

The multi resolution approach is implemented by constructing Gaussian pyramids for both the

primitive and output images. The output texture is first synthesized in the down sampled version

and then this information is used to generate a larger image. Also, since the lower resolution

image is already complete, a full neighborhood can be used instead of a causal one. The higher

resolution image is constructed in a manner similar to the single resolution algorithm, with the

only modification that the neighborhood now consists of pixels from the current resolution and

also from those in the lower resolutions.

We have used a two level multi resolution synthesis in our experiments. The lower resolution

image was obtained by down sampling the larger image by2. Hence we even reduce the block
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size by2 for the lower level. Thus if a5 × 5 block was used for the higher level, a3 × 3 block

size was employed for the lower level.

3.2.3 Generation from Multiple Primitives

In the previous sections, we described the generation of a texture based on a single primitive.

That technique is valid for textures with repetitive patterns as the process would essentially

generate a large texture that has portions of the small input texture repeated over the entire

image. Iris texture, however, is not repetitive but exhibits significant randomness. To incorporate

this randomness, we propose the use of more than one kind of iris texture as primitives for the

synthesis process. Two or more primitives could be used to generate an image similar to a blend

or mixture of the inputs. Such a scheme could be used to generate new textures that previously

did not exist. Since iris texture itself is highly random in nature, the blend of multiple primitives

will result in a very unique and random structure.

3.2.3.1 Linear Weighting function

The algorithm takes a set of source iris texturesIp1 , Ip2 , . . . , Ipk
as primitives with a weight image

Wj associated with each primitiveIpj
. The weight image (whose size is the same as the desired

synthetic image) specifies the importance of a primitive when determining the value of a pixel

in the synthetic textureIs. For example, if we use two primitives,Ip1 andIp2 , and want the

upper portion of the synthetic image,Is, to resembleIp1 and the lower portion to resembleIp2,

then higher weights are assigned to the upper part ofW1 and the lower part ofW2. The weight
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images could be modified in more complex ways to achieve various types of synthetic textures.

The simple case of weight assignment explained above is illustrated in figure3.6.

(a)

(b)

Figure 3.6: Weights used for each of the primitives

To incorporate more randomness in the synthesis procedure, we treat the weight values as

probability measures when updating pixel values inIs. Thus, to update pixelr in Is we first

compareNs(r) with all neighborhoods in thek primitives using theL2 norm. For each primitive,

Ipj
, the best neighborhood,Npj

(tj) is reported. ThenIs(r) is assigned the valueIpj
(tj) with a

probabilityWj(tj). This ensures that sufficient randomness is introduced in the synthetic image.

3.2.3.2 Gaussian Weighting Function

More complicated ways of using multiple primitives could be devised. As explained in Chapter

1, the iris is divided into two prominent regions, the pupillary and the ciliary regions. The ciliary

regions consists of closely arranged radial patterns that seem to fade away in the pupillary regions.

The pupillary region is characterized by loosely formed radial patterns and also the presence of

‘crypts’, or large blob-like structures. Finally, the outer boundary is formed by the Limbus, which
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joins the iris to the outer Sclera. We identify three ‘key primitives’ that describe the different

formations found in the ciliary, pupillary and the limbus regions of the iris. By using a weighting

function that accommodates these three primitives, iris images of enhanced visual quality are

generated.

To accomplish this, the top one-third portion of the iris image is assigned to one primitive,

and this primitive is placed in that region with a probability value if1 (absolute certainty). In

the remaining two-thirds region, we form gaussian peaks of the weights, which help in placing

the crypts at arbitrary locations. The third primitive is placed in regions that are not occupied by

these two primitives. Figure3.7shows an example of the three primitives that can be used in this

scheme of weighting and the corresponding weights they occupy in the synthesized image.

(a) (b)

Figure 3.7: Three primitives representing (a) Primitives, (b) Corresponding weights
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3.2.4 Acceleration of the Algorithm

The texture synthesis procedure described above is totally deterministic and avoids the com-

putational complexity arising from sampling a probability distribution. But this technique

still requires a exhaustive search of the closest neighborhood for each pixel. This process

can be accelerated by considering the neighborhood vectors of the primitive as points in a

multidimensional space. Tree-structured vector quantization could then be used to efficiently

search through them.

Tree-structured vector quantization is generally used for data compression. It first takes a set

of vectors as training data and generates a tree-structured codebook. The training data here would

be the 900(30 × 30 pixels) neighborhood vectors of the primitive. These vectors are divided

into two clusters using the k-means clustering technique. Each of these two groups can further

be divided similarly by recursing the same algorithm on them. Hence, as shown in figure3.8,

a binary tree-like structure is developed. Let this tree structure be called asT. The depth of the

tree can be decided empirically. The tree structure with clustering up to three levels is used our

experiments.

To use this tree during synthesis, the closest point to the neighborhood vectorNs(r) is found

out by doing the best traversal over the earlier generated tree structureT. If NL is the number of

pixels in the primitive, this kind of a tree structure has a computational complexity ofO(log(NL))

as compared toO(NL) for the exhaustive search. Thus the tree structured vector quantization

greatly helps in accelerating the process of texture synthesis. The iris image synthesis algorithm

was implemented in MATLAB on a Pentium IV2.8 GHz machine with2 GB RAM. While the
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Figure 3.8: The tree structure used for vector quantization

average time of each single iteration to generate a30× 30 image without any vector quantization

was about50 seconds, the time required for a similar operation using vector quantization was

about1.25 seconds.

3.3 Results of Synthesis

Images from the CASIA database have been used as the primitives for the experiments using

this method. Since all the portions of the iris do not have rich texture information, the dataset

was carefully eyeballed and only selective portions of each image were used as primitives to the

synthesis algorithm.
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As explained in Section3.1 the synthetic patterns are generated as rectangular entities and

are subsequently mapped onto a circular structure to create iris-like images. If only one primitive

is used for the synthesis procedure, the synthesized image, though iris like, has repetitions of the

primitive in it. This fact is illustrated by the results obtained by the synthesis of images using

only one primitive as shown in figure3.9.

(a) (b)

Figure 3.9: Synthesis results using a single primitive: (a) The primitive used, (b) Synthesized

iris image

Hence2 images of size30× 30 pixels that have been extracted from the iris images are used

as primitives to the synthesis algorithm. The CASIA dataset has 108 distinct iris images and we

select two blocks from each image. Thus we have total of 216 separate blocks that can serve as

primitives to our algorithm and the maximum number of possible classes that can be generated

using this technique would be
(

216
2

)
= 23220. Figure3.10shows the results of synthesis using

the multi resolution algorithm using2 primitives and the linear weighting function (Figure3.6).

By combining more than two texture primitives or by altering the weight images, this number

can be exponentially increased. By using3 primitives, we can generate
(

216
3

)
= 1656360 distinct
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Figure 3.10: Synthesis results using 2 primitives and the linear weighting scheme

iris images. Figure3.12 shows the results of synthesis using the multi resolution, multiple

primitive (3 in this case) algorithm with the gaussian weighting function for synthesis. The

results depict the output after 10 iterations of the algorithm.

3.3.1 Generating Multiple Samples Per User Class

Even though iris patterns do not change over a period of time, multiple images of the same iris in

real world scenarios, taken simultaneously or at different times, do not result in the same image

. Variations are caused due to rotation (cyclovergence or tilting of the head), translation and
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Figure 3.11: Synthesis results using3 primitives and the gaussian weighting scheme.

dilation (due to change in camera position, focus and zoom factors). These factors have to be

added in a controlled manner to generate multiple images of same class.
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The synthetic image(rectangular) is rotated cyclically in order to incorporate the rotation

parameter. Translation is included by shifting the circular iris along the x- and y-axis by a few

pixels. To include the distortion due to camera motion, perspective transformations are used [46].

If xu andyu are the undistorted co-ordinates andxd andyd are the co-ordinates after distortion,

then the lens distortion model can be written as :

xu = xd(1 + kr2
d),

yu = yd(1 + kr2
d), (3.3)

whererd =
√

x2
d + y2

d is the distorted radius. The inverse distortion model is given by :

ru = rd(1 + kr2
d), (3.4)

whereru =
√

x2
u + y2

u is the undistorted radius.

Solving forxd andyd using equations3.3and3.4:

xd = xu
rd

ru

,

yd = yu
rd

ru

(3.5)
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This model represents the simplest of the lens distortion cases, but higher distortion of cameras

could also be added [46].

Figure3.12describes the procedure followed to generate multiple samples of an iris image

after the rectangular block of image has been generated.

(a) (b)

(c) (d) (e)

Figure 3.12: Generation of within class images: (a) Generated iris image, (b) Image wrapped

to an eye template, (c)-(e) Same class images generated by multiple operations of perspective

blurring and rotation
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3.4 Validating Synthetic Irises

3.4.1 Clustering of Iris Images

Iris images have distinct texture properties when compared to other natural textures. Since

images are high dimension data, it is difficult to visualize and compare different kinds of images

easily. We hypothesize that in the space occupied by textured images, the iris texture resides

in a compact, non linear manifold. Learning the structure of such manifolds is the problem of

nonlinear dimensionality reduction. Such a solution will allow us to classify images into iris and

non-iris textures. Our hypothesis is shown graphically in figure3.13.

A simple form of clustering using the k-means clustering method is sufficient to show that

the iris images are significantly distinct from other irregular texture images. We have studied the

clustering property of real and synthetic iris images relative to the texture patterns in the Brodatz

texture library. Since iris images are non-homogeneous and non-repetitive nature, we compare

them with only the irregular textures present in the Brodatz library.

Some of the well known features for texture classification and analysis are the ones derived

from the co-occurrence matrix of the images. The spatial gray level co-occurrence matrix of an

image tries to capture the second order statistics of the image. The co-occurrence matrixCd for

a displacement vectord = (dx, dy) can be defined as follows [22]: The entry(i, j) of Cd is the

number of occurrences of the pair of gray levelsi andj which are at a distanced apart. It can be

stated mathematically as:
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Figure 3.13: Figure depicting our hypothesis that iris images reside in an exclusive subspace

within irregular textured images

Pd(i, j) =| ((r, s), (t, v)) : I(r, s) = i, I(t, v) = j | (3.6)

where(r, s), (t, v) ∈ NXN, (t, v) = (r + dx, s + dy).

The co-occurrence matrices are used to compute various features like the energy,entropy,contrast

and homogeneity. They are defined as follows [22]:
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Energy =
∑

i

∑
j

P 2
d (i, j)

Entropy = −
∑

i

∑
j

Pd(i, j)log(Pd(i, j))

Contrast =
∑

i

∑
j

(i− j)2P 2
d (i, j)

Homogeneity =
∑

i

∑
j

Pd(i, j)

1+ | i− j |
(3.7)

There are no well defined methods for selecting the displacement vectord. Hence, based on

experiments, we choose to selectd in increments of 5 pixels along the x- and y-axis respectively.

Each co-occurrence matrix is used to compute the four features as shown above in equation3.7.

The input image is of size(20× 360) and111 co-occurrence matrices calculated. Thus a feature

vector of length111× 4 = 444 is derived for each image.

These features were computed for100 images in the CASIA dataset,100 images in the

synthesized dataset and20 irregular images in the Brodatz library. The k-means clustering

technique is used to classify all these images into 2 categories. In this experiment,97% of the real

iris images and100% of the synthetic iris images were classified together in one group, where

as75% of the Brodatz textures were categorized as non-iris images. The confusion matrix is

presented in table3.1

3.4.2 Generation of Genuine/Impostor Distributions

Apart from being iris like, the synthetic iris images have to unique. Only then any iris recognition

algorithm can make use of this database to prove itself. We tried using a well tested approach
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Table 3.1: Confusion matrix indicating iris and non-iris classification.

True Assigned Class

Class Iris Non-Iris

Real Iris 97 3

Synthetic Iris 100 0

Brodatz 5 15

to extract features from the images and perform a1 − n matching of the synthetic iris images.

The Haar Wavelet decomposition is used to extract discriminatory features from the iris texture

images.

The genuine and impostor match score distributions of the synthetic iris images (100 classes,

4 samples per class) by extracting features using the wavelet approach and comparing the features

using the manhattan distance. Figure3.14compares these distributions with that associated with

real iris images (100 classes,4 samples per user).

3.5 Discussion

The algorithm presented in this chapter for generation of synthetic iris images is derived from the

work of Wei [47]. It uses the same causal neighborhood and raster scan approach along with the

deterministic sampling approach for texture synthesis. However, when used for synthesis with

multiple primitives, instead of using a weighting function to blend the primitives, our algorithm
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Figure 3.14: The genuine and impostor match score distributions for real and synthetic iris

images.

uses the weights as probabilities. Thus whenever an output pixel is being generated, it is not the

weighted sum of the primitive pixel values, but is always from only one primitive. This ensures

that the iris-like properties of the primitive are maintained in the synthesized image.

The primitives used in the synthesis process are hand picked and are only small portions of

the true iris images. They are selected based on the visual appearance of the iris structure. If

the iris image can be indexed into various portions automatically, the selection of the primitives
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could be automated, resulting in a fully automatic synthesis procedure.

Though iris texture is considered to be extremely random, human vision can perceive a global

texture to the patterns. Since fixed size neighborhoods are used for synthesis, they are not able

to capture the global properties of the iris structure. Present synthesis techniques end up with iris

images which are locally similar to the original primitives, but are lacking a global structure. We

have made an effort to incorporate the global structure by selecting3 primitives and designing a

weight function that mimics the true structure of the human iris. Also, if the neighborhood size

is chosen small relative to the texture artifacts present in the primitive image, then the resulting

synthetic image lacks any similarity to the primitive images. An example of such a failure is

shown in figure3.15

(a) (b)

Figure 3.15: Failure in synthesis: (a) Primitives used for synthesis (b) Synthesized Image

Some more examples of the failure of the synthesis procedure are shown in figure3.16
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Figure 3.16: Some examples of failures in the synthesis process

73



Chapter 4

Conclusions and Future Work

The iris as a biometric is assuming lot of importance. While there exist very efficient systems

for iris recognition, the properties of iris texture and the underlying processes generating it have

not been explored. The goal of this thesis was to provide an insight into these aspects. Markov

Random Field methods have been used to describe the spatial relationships between the pixels

of the iris texture image. While traditional Markov Random Fields model a given texture image

based on a fixed neighborhood, we have used a flexible neighborhood that takes into account

all the pixels present in the image. We then come up with a unique description for each texture

image based on the relationships of the pixels in the image, without restricting the neighborhood

to a fixed size. This results in the Markov Random Field being tailored to a specific image. Thus,

we have a more robust and accurate description of the underlying texture present in the image.

The proposed algorithm is easy to use as it only requires the difference of pixels values located

at various distances in the image.
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Another contribution made in this thesis is the generation of a synthetic iris database. Again,

Markov Random Fields have inspired our approach to generate synthetic iris images via image

texture synthesis. A fast texture synthesis approach has been adopted. Multiple samples of

textures extracted from real iris images are used as inputs for the texture synthesis. Extremely

realistic images with iris like properties were generated using this approach. We have presented

multiple methods to generate different kinds of synthetic iris images. Robust testing has been

performed to validate the generated images in more than one way.

We envision several possible directions of future work as described below.

4.1 User Specific Models for Iris Recognition

As explained in Chapter2, we are able to define each individual user’s specific characteristics and

this information could be used to define a user-specific matcher. A user-specific matcher could

be tuned to each enrolled user’s characteristics. When a person approaches for verification as a

particular identity, the system then invokes that particular identity’s specific matcher to perform

the verification process. This should result in a more robust biometric system since the matcher

is specific to each user and makes use of the characteristics that are unique to the users.

4.2 Iris Image Indexing

There are no published techniques that address to the problem of iris image indexing. The user-

specific characteristics can be used to detect, on a broader scale, the properties of various users
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in a iris recognition system for indexing the iris database.

4.3 Improvements in Synthesis Algorithm

4.3.1 Choice of Neighborhood

To maintain simplicity, we have restrained ourselves to using a fixed neighborhood in determining

the inter-pixel relations during the synthesis of artificial iris images. This process could be further

refined by using only the prominent cliques or the interaction structure (learnt by the multiple

pair wise pixel analysis of the image) as the neighborhood for synthesis procedure. The results

of synthesis can also serve as an assessment platform for the analysis. The better the learnt

interaction structure, the better the synthesized result.

4.3.2 Choice of Primitives

We have tested the synthesis algorithm using1, 2 and3 primitives as inputs. More number of

primitives could be used to generate more realistic looking iris images. More complex weighting

functions could be developed that help capture the true properties of the iris texture. Also, using

more number of primitives will greatly increase the number of distinct classes (i.e., users) that

can be generated.
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