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Abstract

Preliminary Investigation of Culvert Outlet Baffle Block
 Geometry and Energy Dissipation

Conrad R. Baston

One method used to attenuate high-energy flow at culvert outlets, is the
construction of baffle blocks.  Baffle blocks are devices, generally of simplistic
geometry, that impact the flow and reduce energy.  The current baffle design used by the
WVDOH has in some instances experienced problems with excessive sedimentation to
the extent of causing culvert failure.  The purpose of this investigation was to construct a
testing device to allow for the testing of physical culvert and baffle block models and
produce a preliminary design that would perform more efficiently than the current design.
The new design would need to meet the following criteria:

- Reasonable construction on site
- Economically feasible
- Applicability to various culvert sizes and flowrates
- Self cleaning and low maintenance
- Re-establish natural flow conditions downstream of the outlet

Several models were constructed and tested.  This thesis reviews the construction of all
experimental equipment and the development of a preliminary design.
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Chapter 1 – Background

1.1 Problem Description

In order to attenuate energy associated with high velocity flows at culvert outlets, baffle

blocks are sometimes constructed.  A baffle block is an appurtenance, generally of simple

geometric dimensions, that is placed in the flow path to act as an impact surface to thus decrease

the excessive energy present at some culvert outlets.  Several baffle-type energy dissipators have

been used by the West Virginia Division of Highways (WVDOH), in order to reduce the energy

of high velocity flows present in some roadside culverts.  Many of the baffle-type dissipators

used by the WVDOH have operated successfully as they were designed.  In a number of the

dissipators however, debris and sediment have collected on the apron of the dissipator resulting

in a clogged culvert and a need for maintenance.  An additional concern is that the baffle devices

are comprised of reinforced concrete and are generally expensive and difficult to build.  This

Thesis for a Master’s Degree in Civil and Environmental Engineering, focusing in

Hydrotechnical Engineering, will examine the effectiveness of the current baffle-type energy

dissipator used by the WVDOH.  The problems present with the current design will be

investigated and solutions will be presented and discussed.  Two alternative designs for

providing adequate energy attenuation, economic feasibility, and low maintenance will be

shown.

1.2 Setting

West Virginia, also known as the mountain-state, is best described as being steep and

mountainous with lush vegetation, raging rivers and harsh terrain.  In such a setting, natural

drainage occurs by balancing the necessary energy attenuation for a given flow with the physical

and erosive properties of the drainage channel being formed.  This process constantly seeks a

state of equilibrium as erosion and sedimentation occur and change the characteristics of the

drainage channel over time.  When man alters the environment by replacing the natural channel

with a culvert, the equilibrium of the channel is disrupted.  The flow characteristics are altered by

a change in flow cross-section, roughness and possibly slope and direction.  When the flow

regime is altered, the rate of energy dissipation is changed.  The change in energy dissipation
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will upset the natural equilibrium of the channel producing erosion or sedimentation that was

formerly in balance in the natural drainage channel.  In the case of erosion, the lower energy

dissipation caused by the placement of a culvert must be dealt with to avoid damage to

surrounding structures or the downstream channel itself.

1.3 Current Design

Engineering drawings of the current baffle-type energy dissipator, standard baffle, used

by the WVDOH were available but no evidence of engineering development of the design was

found.  An in depth discussion of energy dissipators for use in roadside channels can be found in

Federal Highway Administration (FHWA) HEC-14, 1983 (Hydraulic Design of Energy

Dissipators for Culverts and Channels).  In development of new designs for baffle-type

dissipators to be used by the WVDOH the following important goals were set: 1) simplicity of

design, 2) low construction cost, 3) effectiveness of energy dissipation, and 4) low sediment

accumulation.  In order to construct a scale model of the apron and baffle appurtenances, the

various dimensions of the dissipator were taken from the WVDOH drawings and reproduced

using Microstation CAD software for ease of interpretation and manipulation.  The dimensions

of the dissipator are all a function of pipe diameter with the exception of thickness and cutoff

wall height, which are determined by the standard construction specifications.  A schematic of

the WVDOH energy dissipator is shown in Figures 1.3.1, 1.3.2, and 1.3.3.  All dimensions vary

with respect to culvert diameter with the exception with the exception of thickness, T, and cutoff

wall height, W.  The dimensions are shown as a multiple of culvert diameter in Table 1.3.1.

Table 1.3.1 Design Dimension as Multiple of Culvert Diameter

for the Standard Baffle Configuration

Dimension Multiple of
Diameter

L 1.2
M 0.6
N 1.2
O 1.3
P 3.9
Q 1.8
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Figure 1.3.1 Plan View of Current WVDOH Standard Baffle Dissipator

Figure 1.3.2 Front View of Current WVDOH Standard Baffle Dissipator
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Figure 1.3.3 Profile View of Current WVDOH Standard Baffle Dissipator

Since the dimensions for the Dissipator were all a multiple of a given culvert diameter,

construction of a scale model for hydraulic model studies was greatly simplified.  Also, in the

consideration of alternate designs, it was decided to maintain all associated geometries as

multiples of culvert diameter for simplicity and ease of construction.

1.4 Field Experiences With the Current Baffle Design

Following the construction of several of the current Standard Baffle energy dissipators,

successes and failures were observed by the WVDOH during operation.  A successful

performance was evidenced by satisfactory energy attenuation, displaying little erosion of the

downstream channel.  Several of the dissipators appeared to be operating successfully, and two

examples are shown in Figures 1.4.1. And 1.4.2.
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Figure 1.4.1 First Example of a Typical Standard Baffle Installation

Note that In Figure 1.4.1, there is no significant sedimentation on the apron of the dissipator and

there is no erosion damage downstream.  Since no experimental development of the current

WVDOH Baffle-type dissipator could be located, the effectiveness of its design may only be

ascertained by visual examination of its operation in the field.  In Figure 1.4.2 another baffle is

shown that appears to be operating successfully.  However note that some debris is beginning to

collect downstream of the center baffle.  Also notice the light colored area located downstream

of the center baffle.  This may be indirect evidence of the presence of a “dead zone” where,

under varying flowrates, more debris may collect and cause this dissipator to fail. Only continued

monitoring over time will determine the ultimate effectiveness of the dissipators shown in

Figures 1.4.1 and 1.4.2.
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Figure 1.4.2 Second Example of a Typical Standard Baffle Installation

Failures of the Standard Baffle dissipators have occurred when large amounts of sediments have

been deposited between the culvert outlet and the center baffle of the dissipator.  Two obvious

failures of the baffle-type dissipators are shown in Figures 1.4.3 and 1.4.4.  The dissipator shown

in Figure 1.4.3 is a multiple baffle design, and has large amounts of sedimentation. Obviously,

the performance potential of this dissipator is significantly reduced.  The dissipator uses an

excessive number of baffle blocks and has a rather long apron, both of which have contributed to

the failure of the device.  The apron of the dissipator has been clogged with sediment, seriously

degrading its performance. The Baffle-type dissipator shown in Figure 1.4.4 also failed after

being placed into operation.  The dissipator was totally clogged with sediment, and future storm

events could cause the culvert to back up and damage the roadway, possibly overtop the fill, or

damage upstream property.   The money spent in the construction of these two examples was

apparently wasted.
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Figure 1.4.3 Failure of a Multi-Baffle Energy Dissipator

Figure 1.4.4 Failure of Baffle-type Energy Dissipator
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Chapter 2 – Literature Review

In order to produce a hydraulic jump that has characteristics of a reliable energy

dissipator, it is beneficial to force a hydraulic jump to occur at a certain location and flowrate.

The forced hydraulic jump is controlled by devices placed in a stilling basin and therefore can be

applied much more suitably than the free hydraulic jump.  The devices placed in the stilling

basin are generally large polygonal shaped objects often called baffle blocks or chute blocks.

The placements of baffle blocks in the stilling basin greatly aid in improving the characteristics

of the forced hydraulic jump.    Numerous stilling basins and energy dissipators have been

fabricated for various applications in hydraulic structures.  These structures range widely in

many aspects due to the uniqueness of the situations in which they are applied.  Since the

performance of a given energy dissipator is subject to a factor of uncertainty, model studies of

individual structures are usually performed.  Many different energy dissipators have been

designed over years of laboratory research.  Upon review of various designs it becomes apparent

that no general set of procedures can be determined for systematic design of an energy dissipator.

Therefore to produce the most efficient design for a given situation it is necessary to model the

flow specific to that situation.  However, much insight can be gained by reviewing work others

have performed which is the goal of this chapter.
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2.1 The Hydraulic Jump
When energy dissipation is required, flow must be either deflected or decelerated before

being released from the dissipating structure.  If this energy reduction is not accomplished

effectively erosion to the downstream channel or damage to the hydraulic structure could occur.

The most common way to cause this energy loss is by use of a hydraulic jump.   Upstream of the

hydraulic jump there are high levels of kinetic energy due to the high velocity of water exiting

the hydraulic structure.  This high level of energy is reduced by transferring kinetic energy to

potential energy and by turbulent dissipation.  The transfer to potential energy can be seen by the

increase in depth downstream of the jump in the subcritical section of flow.

2.1.1 Governing Equations

The relationship between depths in a hydraulic jump, head loss through the jump, and the

energy equation for the jump are given by (Roberson et al, 1995) for rectangular channels:
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Where y1 and y2 are the upstream and downstream depths respectively, V1 and V2 are the

upstream and downstream velocities, and Fr1 is the upstream Froude number.  The Froude

number, Fr, is a dimensionless parameter and is important in establishing similitude between the

model and prototype.  The Froude number is given as:

Fr
V
gy

= (2.1.4)

Where Fr, is the upstream Froude number, V and y are the upstream velocity and hydraulic

depth, and g is the acceleration due to gravity.  The Froude number is a ratio between flow

velocity and surface wave velocity where:
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The law of similitude states that where gravitational forces predominate, as they do in open

channel phenomena, the Froude number should have the same value in model and prototype

(Peterka, 1958).

2.1.2 Specific Head and Energy Loss

Using the governing equations presented above one can calculate the energy lost in the

jump by taking the difference between the specific head upstream and downstream.  This

difference is the loss of energy in depth of water due to the dissipation of energy caused by the

jump.  The upstream depth y1 and the downstream depth y2 are called conjugate depths and y2  is

said to be sequent to y1 (Gray, 1999).  Figure 2.1.2 shows the relationship between specific head

and depth of the hydraulic jump.  Specific head is the sum of the velocity head and depth relative

to the local invert elevation.  Note that H’ represents specific head and H1’and H2’ represent the

specific head upstream and downstream.

Figure 2.1.2  (Gray, 1999)

 It is essential to know the magnitude of energy loss produced by the jump so that efficiencies of

various dissipator designs can be evaluated.
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2.1.3 Jump Length

In order to determine the length of apron and height of sidewalls for a stilling basin, the

length of the hydraulic jump must be determined.  It is difficult to determine the length of the

hydraulic jump due to its complex and random flow patterns.  The formation of rollers and

eddies, air entrainment, and a highly turbulent flow surface make the beginning and end of the

jump difficult to locate.  For practical applications, experimental data have been summarized in a

non-dimensional form relating the approach Froude number, Fr1 , and L/y1 or L/y2,  where L =

length of the jump.  However, a simple but effective equation for determining the approximate

length of a hydraulic jump is L jump = 6y2  for 4< Fr1 <12 (Chaudhry, 1993).

2.1.4 Hydraulic Jump Profile

It is necessary to determine the profile of the hydraulic jump in order to determine the

amount of water that the dissipator apron must support.  If the jump profile is known, the

sidewalls of the dissipator can be designed to maximize economic efficiency.  For example, if a

given design produces a relatively shallow jump profile, the wingwall height can be minimized.

For design purposes, the vertical pressure on the basin floor may be assumed to be the same as

that corresponding to the hydrostatic pressure for the profile depth (Chaudry, 1993).  Figure 2.1.3

shows the jump profiles for various approach Froude numbers.

Figure 2.1.3 Jump Profiles for Various Approach Froude Numbers

(Bakhmeteff and Matzke, 1936)
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2.1.5 Hydraulic Jump Forms

Energy absorption characteristics vary for different hydraulic jump forms.  Therefore it is

important to be able to classify the hydraulic jump into distinct forms.  The hydraulic jump may

occur in at least four different distinct forms on a horizontal apron, as shown in Figure 2.1.4

(Peterka, 1958).

Figure 2.1.4 Hydraulic Jump Forms (Peterka, 1958)

Since the internal characteristics of the hydraulic jump vary with each form, it is convenient to

catalog the jump with respect to some reference measure of the flow.  This can be best

accomplished by using the Froude number.  Each of the four jump forms can be related to the

approach Froude number and are defined as follows.
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Pre jump (1 < Fr1 < 2.5).  For 1 < Fr1 < 1.7, y1 and y2 are approximately equal to each

other, and only a slight ruffle is formed on the surface. This undulation results in very

little energy dissipation.  However as Fr1 approaches 1.7, a number of small rollers are

formed on the water surface, although the downstream water surface remains smooth.

The energy loss is again low in this jump.

Oscillating jump (2.5 < Fr1 < 4.5) The jet at the entrance to the jump oscillates from the

bottom to the top at an irregular period.  Turbulence may be near the channel bottom at

one instant and at the water surface the next.  These oscillations result in the formation of

irregular waves, which may persist for long distances downstream of the jump.  They

may cause considerable damage to the channel banks.  Therefore, this range of Fr1 should

be avoided while designing an energy dissipater.

Steady jump (4.5 < Fr1 < 9).  For this range, the jump forms steadily at the same

location, and the position of the jump is least sensitive to the downstream flow

conditions.  The jump is well balanced and energy dissipation is considerable.

Strong jump (Fr1 > 9).  In this case the difference between the conjugate depths is large.

At irregular intervals, slugs of water roll down the front of the jump face into the high-

velocity jet and generates additional waves.  The jump action is very rough and the

dissipation rate is high.

(Chaudhry, 1993)

Consideration of these various forms of hydraulic jump will aid in maximizing the effectiveness

of energy dissipater design.

2.1.6 Shortcomings of the Hydraulic Jump

A free hydraulic jump, which has been discussed to this point, is a jump that occurs

without the aid of obstacles in the flowstream.   The free hydraulic jump presents a desirable

means for dissipating energy in high velocity flows.  However, there are design considerations

that make use of the free hydraulic jump generally impractical and economically undesirable.  As
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seen with the oscillating case above, the hydraulic jump implemented at some ranges of Froude

number can be destructive to the downstream channel as well as the hydraulic structure itself.  If

there is not significant tailwater depth downstream of the energy dissipator, excavation of the

bed may be required in order to produce the jump (HEC 14, 1983).  The main drawback of the

free hydraulic jump is the length of structure needed to contain the jump to prevent the channel

from being degraded  (Peterka, 1978).  In order to produce the most stable and economic energy

dissipater, or stilling basin, it is necessary to alter these hydraulic jump characteristics.

A carefully designed stilling basin will not only improve the dissipation characteristics of

a hydraulic jump, it will also shorten its length and stabilize the position of the jump so

that it is not sensitive to fluctuations in tailwater level.  This latter attribute makes the

design safer.

(Roberson et al, 1995)

Stilling basins are seldom designed to confine the entire length of the hydraulic jump on

the paved apron, first, for economic reasons, and second, because there are means for

modifying the jump characteristics to obtain comparable or better performance

characteristics in shorter lengths.

(Peterka, 1978)

This can be accomplished by introduction of the forced hydraulic jump.  A forced hydraulic

jump is caused by the artificial induction of change from supercritical flow to subcritical flow,

aided by the placement of objects in the flow, which increase the conjugate depth.  According to

Chaudry the location of a hydraulic jump may be controlled by providing a number of

appurtenances such as baffle blocks, sills, drops or rises in the channel bottom. (Chaudhry, 1993)

2.2 Utah State University (USU) Stilling Basin
2.2.1 Background

In 1970, a study was conducted at Utah State University to design a stilling basin that

would serve to dissipate energy during a flow transition from closed conduit to open channel
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flow.  The energy dissipation in the USU stilling basin, shown in Figure 2.2.1, is due mainly to

shear drag, pressure drag, and the diffusion action of the submerged jet in the stilling basin.

Figure 2.2.1 Utah State University Stilling Basin (Flammer et al., 1970)

Prior to the development of the basin design, the pipe entering the dissipator was investigated.

The experimental equipment used for this investigation are as follows:

- 3 ¼ in Diameter inlet pipe (initially) connected to a box-like stilling basin 18 in. wide
and 10 in. long

- A rectangular flume connected to the stilling basin with the same width as the basin
- A tail gate downstream of the basin to evaluate tail-water effects
- An elbow meter to establish discharge

In testing the dissipator pipe that would enter the USU basin, Flammer describes the procedure
as follows:

In the design of the short pipe energy dissipator, the variables involved are the
diameter of the dissipator pipe (D2), the length of the dissipator pipe (L), and
the slit width (W).  In order to see how each of these variables affect the
overall performance of the stilling basin, one of the three dimensions was
varied while the other two were kept fixed.  At the same time the geometry of
the stilling basin was kept fixed.

(Flammer et al., 1970)

The criterion established for desirable results were based on the fluctuations of the

water surface and boil heights.  These fluctuations were measured by the use of a sonic

wave transducer in conjunction with an x-y recorder.  Following the investigations of
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the dissipator pipe entering the USU dissipator, optimum ratios were defined.  For the

Slit-Width ratio (W/D) the value that established the best hydraulic performance was

0.5 and the optimum dissipator pipe length ratio (L/D) was found to be 1.0.

2.2.2 Model Development

Following the investigation of the pipe entering the stilling basin, design of the

basin itself was completed and optimized.  A steel box was constructed with a 6 ft

height, 4 ft length, and 4 ft width.  The box was designed so that the basin dimensions

could be altered by placing different false walls and floor into predetermined slots.

Also a wooden flume was built to provide an outflow channel for the model basin.  The

general design of the USU model stilling basin is shown in Figure 2.2.2.

Figure 2.2.2 Model USU Stilling Basin (Flammer et al., 1970)
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The three pipe diameters that were used in testing the model were 3 ¼, 6, and 10 in.

The three pipe selections were tested for various flowrates, using the ratios determined

from the investigation of the inlet pipe.  Next, one of the three dimensions for the basin

was held fixed and the other two varied as in the inlet pipe investigation.  Following

experimentation, the best stilling basin width ratio was determined to be 6.77 as the

greater basin width provided more lateral flow.  The optimum length ratio with respect

to the inlet and outlet diameter dimensions D1 and D2, shown in Figure 2.2.2 was found

to be 3.5.  (Flammer et al., 1970)

2.2.3 Conclusions and Recommendations

After the completion of experimental procedures a graphical relationship was

developed to aid in the application of the design for the USU stilling basin.  The

relationship involved the tail water depth yt, the outlet flume floor elevation Y2, the

height of boils in the stilling basin, and the basin width Wb.  The stilling basin width

and the amount of freeboard present, fb, were related to the Froude number and the

relative tail water elevation.  Also the boil height above the tail water surface was found

to be a function of the Froude number, and the relative elevation of the tail water

Figure 2.2.3 Design Parameters for USU Stilling Basin (Flammer et al. 1970)
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surface above the centerline of the pipe (Flammer et al., 1970). The graphical

relationship for the design of the USU stilling basin is shown in Figure 2.2.3.

2.3 Baffled Apron Spillway Dissipator
2.3.1 Dissipator Description

In canal structures and some spillway works, Baffled Apron Energy Dissipators have

been used as a means to dissipate the energy of a flow at a wasteway or drop.  The dissipators

have performed within their required design parameters in many instances with some reports of

operation at twice the design discharge with no adverse effects of a short time period.  In canal

structures the dissipators require no tailwater, however some bed scour may occur at the outlet of

the dissipator.  The most favorable condition is the presence of a pool at the outlet which

decreases the amount of scour, as compared to the lack of any tailwater.  The dissipator generally

consists of a sloping apron on a 2:1 slope with rows of evenly spaced baffled blocks along the

structure.  The baffles attenuate the energy related with a sudden drop in elevation by acting as

an impact surface which redirects the flow (Rhone, 1977)

2.3.2 Development

The Baffled Apron Spillway Dissipator was developed from the observation of model

studies in the laboratory and prototype operation in the field.  This process was

Figure 2.3.1 Design Criteria for Baffle Apron Spillway Dissipator (Rhone, 1977)
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repeated over the construction of several structures with improvements on successive designs.

Some of the major concerns were excessive splashing and erosion of the channel bank.   These

problems were easily corrected with the use of rip-rap.  Based on the studies conducted on this

type of dissipator, design limitations were set and related to block height which are presented in

graphical form as shown in Figure 2.3.1.  The maximum unit discharge was set at 60 cfs/ft and

the approach velocity had to be less than the critical velocity of the design flow based on the

design discharge of the structure (Rhone, 1977).

2.3.3 Extension of Application Range

Once the Baffled Apron Energy Dissipator was operating successfully, there was a desire

to extend the range of application of the dissipator to larger structures.  The design curve was

extended to higher flow discharges and new model studies were conducted.  The first prototype

location was at the Concully Spillway in Oregon.  The Concully Spillway was designed for a

unit discharge of 78 cfs/ft at a width of 150 ft, and a change in elevation of 65 ft.  The dissipator

operated successfully at this larger scale with a new found benefit of reducing nitrogen super-

saturation in the downstream channel, which was extremely beneficial to the Oregon Department

of Fish and Game.  Following this success the dissipator was further studied and developed and

design criteria ranged up to 300 cfs/ft for the design unit discharge.  Model tests indicated that

the flow conditions for the large-scale dissipator were similar to the smaller canal-type

dissipators.  There were typically no increase in the impact pressures after the third row of

baffles and no sub-atmospheric pressures were measured (Rhone, 1977).

2.3.4 Entrance Concerns

The one aspect of the dissipator design that seemed in need of improvement was the

entrance configuration.  The first row of baffles caused an increase in water surface elevation and

at times would collect debris.  The first entrance developed is shown in Figure 2.3.2, along with

the downstream spillway.  This entrance produced the best flow conditions and was

recommended if upstream water elevation is of no concern.
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Figure 2.3.2 Entrance Configuration: Standard (Rhone, 1977)

The second entrance, entrance XVI, substituted a triangular block adjacent to the sidewalls.

Upon investigation it was found that a large fin of water formed along the sidewall at the second

row of blocks, but did not overtop the dissipator at the design sidewall height.  The XVI entrance

is displayed in Figure 2.3.3.

Figure 2.3.3 Entrance XVI (Rhone, 1977)
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The third entrance, termed the Fujimoto entrance, implemented a serrated broad crested weir.

The weir replaced the first row of blocks and the second row of blocks were omitted.  The

Fujimoto entrance also produced acceptable entrance flow condition and is shown in Figure

2.3.4.  Also note that the XVI and Fujimoto entrances produced no increase in upstream water

elevation (Rhone, 1977).

Figure 2.3.4 Fujimoto Entrance (Rhone, 1977)

2.4 Basin II
One obvious location that would necessitate the use of a stilling basin would be at the toe

of a dam.  In 1958 Peterka studied several configurations for stilling basins, one of which is

designed for high earth dams and large canal structures, named Basin II.  This basin employs the

use of chute blocks at the upstream end and a dentated sill near the downstream end.   Baffle

piers (blocks) are not used in Basin II because of the relatively high velocities entering the jump

( Peterka, 1978).

The object of these tests was to generalize the design, and determine the range of

operating conditions for which this basin is best suited.  Since many basins of this type

have been designed, constructed, and operated, some of which were checked with

models, the principle task in accomplishing the first objective was to tabulate and analyze



22

the dimensions of existing structures.  Only structures on which firsthand information

was available were used.       (Peterka, 1978)

The dimensions of Basin II are shown in Figure 2.4.1, and are helpful in understanding the data

collected by Peterka.

Figure 2.4.1 Basin II (Peterka, 1978)

Peterka summarized the compilation of data gathered on the Basin II energy dissipater as

follows.  The height of the structures studied showed a maximum fall from headwater to tail-

water of 179 feet, a minimum of 14 feet, and an average of 85 feet.  The width of the stilling

basins ranged from 1,197.5 feet to 20 feet.  The flowrate per foot of basin width varied from 760

ft3/s to 52 ft3/s with 265 ft3/s as the median.  The calculated velocity V1 entering the basin ranged

from 108 to 38 ft/s.  The depth of flow D1 ranged from 8.80 to 0.60 ft.  The value for the Froude

number varied from 4.31 to 22.00.  Finally the actual depth of tail water above the stilling basin

floor ranged from 12 to 60 ft.

2.4.1 Tail-water Depth

Based on the data collected on Basin II, Peterka concludes that, on the average, the basin

floor was set to produce the tail-water necessary for the conjugate or necessary depth.  This is
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seen by the ratio of actual tail water depth to calculated conjugate depth, where the average value

for the ratio was 0.99.

2.4.2 Chute Blocks

The majority of the stilling basins analyzed by Peterka implemented the use of chute

blocks. Where chute blocks were absent, either no devices were used or there was a solid step.

Baffle and Chute blocks are somewhat similar in appearance but they function differently.

Chute blocks at the upstream end of a basin tend to corrugate the jet, lifting a portion of it

from the floor to create a greater number of energy dissipating eddies, resulting in a

shorter length of jump than would be possible without them.  These Blocks also reduce

the tendency of the jump to sweep off the apron at tail water elevations below conjugate

depths.  (Peterka, 1978)

2.5 Basin III
Basin III was found to be used most widely in short stilling basins for canal structures,

small outlet works, and small spillways.  Peterka explains that Basin III is often operating at

relatively low discharges and therefore is too conservative and economically unfeasible.  In order

to reduce the costs related to Basin III it is necessary to place baffle blocks downstream of the

chute blocks and simplify the parameters of the end sill.  Basin III is illustrated in the following

figure:

Figure 2.5.1 Basin III (Peterka, 1978)

In order to avoid the onset of cavitation on the baffle blocks the velocities at the entrance to the

stilling basin are limited to 50 -60 feet per second and discharges per foot of width are to be less
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than 200 cubic feet per second.  Peterka examines 14 different basins in order to generalize the

range in which Basin III will operate satisfactorily.

2.5.1 Experimental Considerations

Peterka considers various arrangements of stilling basin configurations in order to

optimize effectiveness.

The most effective way to shorten a stilling basin is to modify the jump by the addition of

appurtenances, that must be self cleaning or nonclogging.   This restriction limits the

appurtenances to baffle piers or sills, which can be incorporated into the stilling basin

apron.  Numerous experiments were performed using various types and arrangements of

baffle piers and sills in order to obtain the best possible solution.  (Peterka, 1978)

Several tests were applied with various arrangements and are displayed in Figure 2.5.2.

Figure 2.5.2 Baffle Shapes Investigated (Peterka, 1978)
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As seen in the above figure, arrangement (a) consists of chute blocks followed by a solid curved

wall and an end sill.  Following several tests with the curved wall at various locations Peterka

concluded that arrangement (a) required a significant tail water depth in order to be effective.

Next Peterka replaced the solid curved wall (a) with Baffle blocks (b).  The baffle blocks

performed well at certain dimensions and produced a water surface profile similar to that shown

in Figure 2.5.3.

Figure 2.5.3 Water Surface Profile (Peterka, 1978)

Peterka terms block (c) ineffective since a high velocity jet shot over the front surface and the

downstream conditions were turbulent with waves.  Block (d) was used in single and double

rows and produced a similar effect as to that shown by (c).  Block (e) was found to be effective

when the optimal dimensions were found.  The jump formed by the use of Block (e) displayed  a

nearly vertical upstream face and the downstream section was nearly flat and smooth.  Block (f)

produced nearly identical results as Block (e), which Peterka attributes to the vertical upstream

face.  Block (g) is identical to Block (f) with rounded corners.  It was found that the rounding of

the corners dramatically reduced the effectiveness of the device.  From these tests Peterka

concludes that the vertical upstream face is of key importance to the formation of an effective

and stable jump.  He also concludes that the use of a second row of blocks, arrangement (h), was

of little effect (Peterka, 1978).

In fact, a double row of blocks that had rounded corners did not perform as well as a

single row of blocks "b", "e", or "f."  Even slight rounding of the corners tended to



26

streamline the block and reduce its effectiveness as an impact device.  As block "f" is

usually preferable from a construction standpoint, it was used throughout the remaining

tests to determine a general design with respect to height, width, spacing, and position on

the apron.   (Peterka, 1978)

In addition to studying the effects of baffle block arrangement the characteristics of the end sill

were also examined.  It was determined that when the chute and baffle blocks were arranged

properly, the end sill was of little or no effect.  It was therefore concluded that a dentated end sill

was not required and that any solid type of end sill would be efficient.  The only function served

by the end sill, after the chute and baffle blocks are arranged correctly, is to direct any remaining

bottom currents upward to prevent scour.

The generalized final design, as defined by Peterka is shown in figure 2.5.4.

Figure 2.5.4 General Design of Basin III (Peterka, 1978)

Peterka describes this basin as using impact as its primary dissipation force where the baffle

blocks perform the brunt of the work.  The chute blocks are implemented to aid in stabilizing the

jump and directing the upstream flow, and the end sill is for scour control (Peterka, 1978).
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2.5.2 Performance

Basin III proved to be more hydraulically stable than Basin I and II, Basin I being the

formation of a hydraulic jump on a horizontal apron.  Basin III produced a steep face at the

upstream end of the jump and there was a decreased amount of action due to waves downstream.

Basin III also has a large factor of safety against sweepout and operates satisfactorily for Froude

numbers greater than 4.0.  Cavitation becomes a concern when approach velocities are greater

than 50- 60 feet per second.  Peterka suggests the use of Basin II when high velocities are

expected, to avoid cavitation damage on the baffle blocks.  From Figure 2.5.4 notice that the

height, width and spacing of the chute blocks are equal to D1.  Peterka discourages the use of

chute blocks greater than D1 due to the "overshooting" of the baffle blocks that may occur. The

height of the baffle blocks increased with Froude number and the most effective width and

spacing was determined to be 3/4 h3.  Peterka discourages staggering the chute and baffle blocks,

since there is no increase in the effectiveness and construction difficulties arise.  The best

location of the baffle blocks was found to be 0.8 D2 where D2 is the conjugate tail water depth.

Deviation from the suggested dimensions may produce cascades, jump sweepout, waves and

other effects that decrease the efficiency of the dissipator.  The most effective baffle blocks

found by this study were shapes (e) and (f).  Peterka again cautions that rounding the edges of a

baffle block reduce the occurrence of eddies which aid in energy attenuation and should

therefore be avoided.  A tail water depth equal to the conjugate depth is recommended for Basin

III.  If the tail water depth is less than conjugate depth, exiting surface velocities are high and the

chances for the occurrence of scouring effects are increased.  Also, if the baffle blocks are eroded

over their service life, having a tail water depth equal to the conjugate depth will aid in

increasing the life of the block (Peterka, 1978).

2.5.3 Basin III Rules and Recommendations

Based on the experimental data and verification tests performed by Peterka on Basin III

the following set of rules and recommendations is presented.

1. Basin III operates most efficiently when the tail water depth is equal to the conjugate

depth D2.
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2. The length of Basin III can be found from Figure 2.5.5, shown below.  Notice that the

length needed for Basin III is one half the length needed for a "free" jump on a

horizontal apron.

Figure 2.5.5 Basin III Length Determination (Peterka, 1978)

3. Basin III is applicable for Froude numbers as low as approximately 4.0.

4. The height, width, and spacing of the blocks are determined by the average depth of

flow entering the basin, D1.  Width of the blocks can be decreased as long as spacing

is decreased a like amount.  If the flow entering the basin is less than 8 inches, the

block height should be no less than 8 inches.

5. The most effective baffle block is one that has a vertical upstream face.

6. The upstream face of the baffle block should be 0.8D2 from the downstream face of

the chute blocks.

7. The slope of the end sill is 2:1 upward in the direction of flow.

8. Rounding the baffle blocks, chute blocks, or end sill may reduce their effectiveness

by fifty percent.  To prevent rounding due to erosion, Chamfers may be applied.
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9. For slopes greater than 45 degrees a radius of R>4D1 be used at the intersection of the

chute and basin apron.

10. The slope of the chute has little effect on the jump unless long flat slopes are
      present.

2.6 Basin VI
Another stilling basin investigated by Peterka is sometimes termed the "Hanging Baffle"

energy dissipator.  This dissipator is based on impact attenuation and is contained in a box-like

structure that is small compared to other dissipator structures.  One important feature of Basin VI

is that it does not require any tail water depth to be effective.  Basin VI is designed mainly for

pipe and small outlet works but it is possible to modify it to accommodate open channel flow.

Basin VI is designed to accommodate velocities up to approximately 30 feet per second.  For

discharges greater than this several basins can be constructed side by side to accommodate the

flow.  Basin VI is more effective at dissipating energy than a hydraulic jump at the same Froude

number.

Basin VI was developed to handle the need for 50 or more energy dissipators that were to

be used on an irrigation project.  The basins had to be relatively small and were required to

operate without tail water.  Instead of preparing 50 separate model studies, Peterka developed a

single setup that could be modified to simulate a range of expected field conditions.

2.6.1 Testing

Hydraulic models were constructed that could be scaled up to predict the performance of

the prototype in the field.  Basin VI was tested in a tail box that had a trapezoidal channel

constructed of gravel to approximate downstream conditions.  Gravel sizes were varied

throughout the experiments and a tailgate was constructed downstream to evaluate tail water

effects.

It was decided that some device placed in the dissipator was needed that would produce

the same results downstream of the dissipater no matter what conditions were imposed upstream.

The vertical "hanging baffle" produced the same results downstream regardless of the upstream

conditions, within the limits defined.  This greatly aided the design by eliminating some

variables form the design considerations.  Following this variable reduction it was found that for
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velocities less than 30 feet per second, the width of the basin became a function of discharge as

seen in Figure 2.6.1.

Figure 2.6.1 (Peterka, 1978)

Various tests were performed to determine the upper and lower limit lines of Figure 2.6.1.  Once

these lines were determined an average was taken to determine the most likely width of basin per

given discharge (Peterka, 1978).
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2.6.2 Energy attenuation

In Basin VI, energy reduction is accomplished by the impact of the flow with the vertical

hanging baffle.  The horizontal portion of the baffle and the floor of the apron serve to create

eddies and aid in energy dissipation.  These factors eradicate the need for tail water depth that

would be needed for a hydraulic jump basin. Having tail water present will improve the

performance of Basin VI in creating a smoother water surface profile downstream and reducing

the chance for erosion.  However, excessive tail water depth will cause the overtopping of the

hanging baffle, which is not desired (Peterka, 1978).

2.6.3 Basin VI Rules and Recommendations

Based on the experimental data and verification tests performed by Peterka on Basin VI

the following set of rules and recommendations is presented.

1. Basin VI should be used where the velocity at the entrance to the stilling basin

does not greatly exceed 30 feet per second.

2. The dimensions of basin VI are determined from the maximum discharge, and

multiple units placed side by side may be the most economical in certain

cases.

3. The necessary pipe area is to be computed from the expected velocity and

discharge.  If an open channel is implemented in lieu of a pipe, the channel should be

narrower than the basin with an invert elevation the same as the pipe.

 4.  Moderate tail water depth will improve the effectiveness of the basin, although

                 it is not necessarily required.  For best performance apply a tail water equal to

     d+g/2.

5. Suggested thicknesses of various dimensions of the basin are given in Table

      2.6.1 in columns 14 through 18.



32

Basin VI stilling basin dimensions
1 2 3 4 5 6 7 8 9

Diameter (in.) Area (ft2) Max Discharge
Q (second-

feet)

W H L a b c

18 1.77 21 5'6" 4'3" 7'4" 3'3" 4'1" 2'4"
24 3.14 38 6'9" 5'3" 9' 3'11" 5'1" 2'10"
30 4.91 59 8' 6'3" 10'8" 4'7" 6'1" 3'4"
36 7.07 85 9'3" 7'3" 12'4" 5'3" 7'1" 3'10"
42 9.62 115 10'6" 8' 14' 6' 8' 4'5"
48 12.57 151 11'9" 9' 15'8" 6'9" 8'11" 4'11"
54 15.9 191 13' 9'9" 17'4" 7'4' 10' 5'5"
60 19.63 236 14'3" 10'9" 19' 8' 11' 5'11"
72 28.27 339 16'6" 12'3" 22' 9'3" 12'9" 6'11"

10 11 12 13 14 15 16 17 18 19
d e f G Tw Tf tb tp K Suggested

RipRap Size

0'11" 0'6" 1'6" 2'1" 6" 6.5" 6" 6" 3" 4"
1'2" 0'6" 2' 2'6" 6" 6.5" 6" 6" 3" 7"
1'4" 0'8" 2'6" 3' 6" 6.5" 7" 7" 3" 8.5"
1'7" 0'8" 3' 3'6" 7" 7.5" 8" 8" 3" 9.0"
1'9" 0'10" 3' 3'11" 8" 8.5" 9" 8" 4" 9.5"
2' 0'10" 3' 4'5" 9" 9.5" 10" 8" 4" 10.5"

2'2" 1' 3' 4'11" 10" 10.5" 10" 8" 4" 12.0"
2'5" 1' 3' 5'4" 11" 11.5" 11" 8" 6" 13.0"
2'9" 1'3" 3' 6'2" 12" 12.5" 12" 8" 6" 14.0"

Table 2.6.1 Basin VI Dimensions (Peterka, 1978)

6. Suggested sizes for the riprap protective blanket are given in column 19 of

Table 2.6.1.  This value represents the minimum size of stone that will not be

susceptable to movement in the flow.  The rock size selected should be equal

or greater to the size given in Table 2.6.1.  One equation applicable for

determining the size of  stone, assuming the rock has a specific gravity of 2.65

is:      Vb=2.6*(d)^(1/2)

where Vb = bottom velocity in feet per second

     d = diameter of rock in inches

This equation is accurate up to velocities of 16 feet per second, in excess of this

velocity accuracy is unknown.

7. The inlet of the pipe or channel can be tilted downward up to 15 degrees
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      without harming the performance of the basin.  For slopes greater than 15

      degrees a length of horizontal pipe should be placed just upstream of the basin

      at approximately 2 or more diameters in length.

8. A vent, approximately one-sixth the pipe diameter in size may need to be

      installed if a hydraulic jump is expected to form in the downstream length of

      pipe.  The vent can be located at any location upstream of the jump.

9. The implementation of an end sill and a 45 degree wall design will reduce

      chances of erosion and produce the best overall performance.

2.7 SAF Stilling Basin

The St. Anthony Falls, SAF, stilling basin was developed to implement the use of a

hydraulic jump to dissipate energy.  Model studies were performed to develop design criteria for

the basin by the Soil Conservation Service at the University of Minnesota.  The basin is intended

for use on small spillways, canals, and outlet works, for Froude numbers ranging from 1.7-17.

The basin length is reduced to 80 percent of the length of a free hydraulic jump basin by the use

of chute blocks, baffle blocks, and an end sill (Blaisdell, 1959).

2.7.1 Design Procedures

For non-circular culverts the width of the basin WB is equal to the width of the culvert

WO.  If the basin is applied to a circular conduit, the width of the basin, WB, is given by the

following equation:

W
Q

DB = � �0 3 2 5. . (2.7.1)

In determining the length of the basin, LB, the proportional relationship between the Froude

number range, 1.7-17, and the theoretical sequent depth was utilized, found from the hydraulic

jump equation.

( )
y y

Fr
j =

+ −
1

1
21 8 1

2
(2.7.2)
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Next an equation for LB is developed:

L
y

FrB
j= 4 5 0 76. . (2.7.3)

The width and spacing of the chute blocks used to direct the flow is equal to 0.75y1, with a

height equal to y1.  Staggering of the baffle blocks with respect to the chute blocks should be

performed and placement should be LB/3 downstream of the chute blocks.  The baffle blocks

should occupy 40-50 percent of the basin width and should not be closer than 3y1/8 to the

sidewalls.  The end sill height is defined as 0.07yj, with yj being the theoretical sequent depth

based on y1.  The construction of wingwalls should be of equal length and height to the sidewalls

of the basin and the wingwall top slope should be 1:1.  If the wingwalls are located at 45 degrees

to the centerline of the outlet, the best conditions for energy attenuation are obtained.  The

orientation of the basin sidewalls depends on the type of dissipater.  If a rectangular basin is

constructed the walls of the stilling basin can be parallel.  If a flared stilling basin is constructed

the sidewalls may diverge as an extension of the transition sidewalls.  The sidewall height is

based on the maximum design tailwater depth and is defined as yj/3.  At the end of the stilling

basin a cutoff wall must be placed to prevent degradation of the basin.  The dimensions of the

Figure 2.7.1 SAF Stilling Basin (Blaisdell, 1959)
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cutoff wall are dependent on the characteristics of the site where the basin is placed.  Therefore

the cutoff wall should be of depth significant to deal with the maximum expected erosion.

Figure 2.7.1 displays the various geometeries associated with the SAF stilling basin (Blaisdell,

1959).

2.8 Contra Costa Basin

The University of California at Berkley, along with Contra Costa County, California,

designed the Contra Costa basin.  In order for the basin to be effective for use the following

criteria had to be met:

- applicability for various culvert sizes and flow conditions

- fabrication on site must be easy

- economically feasible

- drain by gravity at no flow conditions

- must be self cleaning and have low maintenance needs

- must reestablish natural flow conditions downstream of the basin

The Contra Costa basin was intended for small to medium size culverts of any cross-section.

The flow conditions for use of the basin are to be sites where the depth of flow at the outlet is

less than the culvert diameter and of medium to high velocity.  The basin was designed to

operate without tailwater; therefore the presence of tailwater increases the effectiveness of the

basin to above required criteria (Keim, 1962).

2.8.1 Design Procedures

The first step in designing the basin is to determine the depth of flow, ye, at the outlet of

the culvert in question.  For rectangular, or box culverts, ye=yn.  For non-rectangular cross-

sections, the flow depth must be converted to the equivalent rectangular flow depth.  To convert

to a rectangular cross-section from circular, elliptical, parabolic, etc., the equivalent rectangular

cross-section must have a width equal to twice the depth of flow, ye=(A/2)1/2.  In determining the

Froude number, ye is used instead of the actual depth, with Fr defined as:

F
V
gyr

e

= �� �� (2.8.1)
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Figure 2.8.1 Baffle Height Determination (Keim, 1962)

Next, Fr2, and an assumed value of L2/h2 are entered into Figure 2.8.1 to determine a trial height

for the second baffle, h2 (Keim, 1962).

The equation defining the lines in Figure 2.8.1 were changed slightly from those used by a

previous investigation.  This was done to allow for the conversion from non-rectangular to

rectangular cross-sections for computing the flow depth ye.  The original equation is shown

below:

L
h

Fr
h
yO

2

2

2 2
1 8

12� � =
�

�
�

�
�.

.

(2.8.2)
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The modified form of the equation is given as:

L
h

Fr
h
ye

2

2

2 2
1 8

135� � =
�

�
�

�
�.

.

(2.8.3)

The remaining dimensions of the basin are determined from the following two equations that

remain unchanged from the original source.

L
L

h
L

3

2

2

2

0 68

375� � =
�

�
�

�
�.

.

(2.8.4)

y
h

L
h

2

2

2

2
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13� � =
�

�
�

�
�.

.

(2.8.5)

Figure 2.8.2 Length of Contra Costa Basin (Keim, 1962)
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The above two equations are plotted in Figures 2.8.2 and 2.8.3 respectively.  The three equations

may be used solely to determine the various dimensions of the basins but Figures 2.8.1, 2.8.2,

and 2.8.3 are suggested for convenience (Keim, 1962).

In the experiments conducted on this basin, values for L2/h2 ranged from 2.5-7.0.  The

value recommended by the literature is 3.5 where this is economically feasible.  Once the values

for h2 and L2 are determined from Figure 2.8.1, L3 can be found by implementing Figure 2.8.2.

If the dimensional variables obtained by the figures will not fit the physical or economical

constraints of the site, a new value for L2/h2 must be selected and another iteration performed.

Also note that the value for h2/ye should always be greater than one.

Figure 2.8.3 Depth Over Baffle (Keim, 1962)
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The various dimensions of the Contra Costa basin are displayed in Figure 2.8.4.  The first

baffle height h1, is one half the second baffle height h2.  The position of the first and second

baffle blocks is L2 for the second baffle and L2/2 for the first baffle.  The side slope for all the

experimental runs on the trapezoidal basin were 1:1.  The basin width, W, can vary from 1 to 3

times the culvert diameter and the basin floor should be constructed nearly level.  The height of

the end sill can range from 6 to 10 percent of y3.  Once all of the dimensions are determined with

the constraints of the site in mind, the value for the maximum water surface depth, y2, can be

found from Figure 2.8.3 (Keim, 1962).

Figure 2.8.4 Contra Costa Energy Dissipator (Keim, 1962)
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2.9 Hook Type Energy Dissipator

The Hook, also known as Aero-type, basin was developed based on two different

hydraulic model tests.  One model implemented a tapered floor and warped wingwalls that

diverged from vertical to a side slope of 1.5:1, as shown in Figure 2.9.1.  The second model

utilized a constant cross-section trapezoidal channel, as displayed in Figure 2.9.2.  The Hook

dissipator was designed initially for large arch culverts with low tailwater, but can be applied

circular or box--type cross-sections.  The Froude number range for which the dissipator is

applicable is 1.8-3.0.  Design and development of the Hook dissipator was performed at the

University of California along with the Bureau of Public Roads and the California Division of

Highways (MacDonald, 1967).

Figure 2.9.1 Warped Wingwall Stilling Basin (MacDonald, 1967)
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Figure 2.9.2 Design Criteria for Straight Basin (MacDonald, 1967)

2.9.1 Straight Trapezoidal Basin

The straight trapezoidal type basin will be discussed first, as shown in Figure 2.9.2.  In

the trapezoidal form of the Hook energy dissipator, the cross-sectional geometry is

approximately the same as the natural channel before installation of the culvert.  Some of the
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design variables between the straight trapezoidal and warped wingwall basins are different.  For

example, in the straight trapezoidal basin the hooks and end sill are located upstream closer to

the outfall of the culvert.  Testing determined that for a constant flowrate, widening of the basin

reduced the velocity downstream of the basin.  Also, flattening the slopes of the sidewalls

improved the attenuation of energy for Froude number values up to 3.0 (MacDonald, 1967).

2.9.2 Design Recommendations (Straight Trapezoidal Basin)

(MacDonald, 1967)  The dimensions shown below are the suggested design parameters

for the Straight Trapezoidal Basin.

LB = 3.0Wo
L1 = 1.25Wo
L2 = 2.1Wo
W2 = 0.65Wo
W5/W6 = 0.33
h4/y1 = 0.67
h5/h6 = 0.70

h6 = 3.33ye (for 1.5:1 side slopes)
h6 = 2.69ye (for 2:1 side slopes)
Wo = Width of rectangular culvert ( For non-rectangular Wo = 2 ye where ye = (A/2)1/2

W6 = Bottom width of trapezoidal channel
W6/Wo can be up to 2 without affecting performance (see Figure 2.9.4)
W4 = 0.16W
W3/W4 should be greater than or equal to 1

Refer to Figures 2.9.2 and 2.9.3 for dimensions.

Figure 2.9.3 Recommended Dimensions for Straight basin (MacDonald, 1967)
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Figure 2.9.4 (MacDonald, 1967)

2.9.3 Warped Wingwall Basin Type

(MacDonald, 1967) In designing the Warped Wingwall type Hook basin, judgment is

needed to allow enough width for efficient operation, but not so much that too much flow is

passing between the hooks.  Each time the Warped Wingwall type Hook basin is used, the

spacing between the hooks should fall between 1.5-2.5 times the hook width.  The basin becomes

more effective for increasing values of the velocity ratio, Vo/VB.  The best value for the flare

angle is 5.5 degrees per side (alpha = 0.10) for Fr>2.45.  The dissipator effectiveness decreases

rapidly for increasing Froude number for flare angles above 5.5 degrees.  Therefore 5.5 degrees

should be the maximum value for the flare angle.
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2.9.4 Design Recommendations (Warped Wingwall Hook Basin)

The following design recommendations are presented for the Warped Wingwall Hook

Basin:

- For the maximum velocity reduction, the tangent of the flare angle should
equal 0.10.

- The best range of L1/LB for the A-hooks is 0.75-0.80
- The best range of L2/LB for the B-hook is 0.83-0.89
- The best width of opening at the end sill ratio, W5/W6, is 0.33
- The best end sill height is approximately 2/3 the flow depth at the culvert outlet, h4/ye

= 0.67, ye = (A/2)1/2

- Tests did not indicate a specific optimum for the end sill height.  The value used may
be 0.94 for h5/h6.

- For wide hooks the velocity reduction will be maximized, but the apparent maximum
flowrate (i.e. the flow rate just before excessive over-topping of the wingwalls) will
be reduced.  In addition, as the hooks become wider, the spacing between them and
the walls decreases and may not be sufficient for the passage of debris.  For these
reasons a thickness ratio W4/ye = 0.16, the minimum value tested, is recommended.
The design should be adjusted to the proper spacing.

- The basin length cannot be assigned a fixed value since it depends on site conditions.
However, the shorter basin lengths give high velocity reduction over most of the
range of Froude numbers tested.

- The recommended hook dimensions are shown in Figure 2.9.5

Figure 2.9.5 Hook Dimensions for Warped Wingwall Basin (MacDonald, 1967)
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- The height of wingwalls (h6) should be at least twice the flow depth at the culvert exit
or 2ye.  This was the height used in the study to determine apparent maximum
flowrate.  The apparent maximum flowrate was the condition used to determine the
velocity ratios and Froude numbers.  Therefore the prototype basin should be
supplied with additional freeboard.

- Depending on final velocity and soil conditions, some scour can be expected
downstream of the basin.  The designer should, where necessary, provide riprap
protection in this area.

- Where large debris is expected, armor plating the upstream face of the hooks with
steel is recommended.
(MacDonald, 1967)

2.10 Stilling Basin Design for Low Froude Number

2.10.1 Overview

As discussed in previous sections, introducing appurtenances into a stilling basin reduces

the length need to produce a hydraulic jump, increasing the energy dissipation by decreasing the

sequent depth.  This makes the basin design more economic by reducing the materials needed to

produce the full development of a hydraulic jump.  In 1975, design criteria for basins with high

upstream Froude numbers were well established, but no well-developed design criteria existed

for basin that operated in the lower Froude number range of 2.5-4.5 (Bhowmik, 1975).

Therefore the Illinois State Water Survey began investigations of stilling basins that operated in

this Froude number range.  Since irrigation structures, diversion or low head spillways, and

culvert outlet works operate at Froude numbers of 2.5-4.5, the investigation was necessitated.

The experiments performed tested ordinary hydraulic jumps and baffled stilling basins, both on

horizontal aprons.

2.10.2 Design Considerations for Low Froude Number Stilling Basins

In considering the construction of a Low Froude Number Stilling Basin the following

factors were considered:

- Absolute size of the structure
- Frequency of operation
- Durability of the channel bed downstream from the stilling basin
- The use of chute blocks, baffle blocks, and other appurtenances
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The formation of the hydraulic jump was transmitted farther upstream on the basin, stability of

the basin was increased, and wave action was reduced with the addition of non-streamlined

baffle-type appurtenances.  Also when the tail-water depth was not significant enough to produce

a hydraulic jump, sweepout of the jump was prevented.  An end sill was also implemented in the

testing of the Low Froude Number basins.  The use of an end sill deflected the high velocity jet

from the floor of the apron toward the surface of the water, preventing the erosion of loose bed

materials downstream (Bhowmik, 1975).

2.10.3 Hydraulic Jump Characteristics for Froude Numbers Less Than 4.5

As discussed previously the type of hydraulic jump formed depends on the value of the

approach Froude number.  Between the values of 1.7-2.5 a weak jump forms where there are

small rollers on the surface but downstream the water surface remains smooth.  From 2.5-4.5 the

formation of an oscillating jet becomes apparent fluctuating from the surface to the apron floor

with no apparent discernible period.  The oscillations formed from Froude number 2.5-4.5

produce undesirable wave activity downstream of the basin.   The design for a Low Froude

Number Stilling Basin considered the elimination of the wave activity present on the Froude

Number range of 2.5-4.5.

(Bhowmik, 1975) In the case of an ordinary hydraulic jump, the two independent

characteristics are the initial depth, D, and the initial velocity, V, at the entrance to the stilling

basin.  The Froude number associated with the flow entering the stilling basin is given by

equation 2.1.4.  Utilizing the momentum equation the relationship between D, Fr and D2, the

sequent depth, and other geometric properties of the basin can be determined.  In the analysis it

is generally assumed that the boundary shear stress can be neglected, the velocity distribution is

uniform before and after the jump, and the pressure distribution is hydrostatic with some

variation near the water surface.  With these assumptions the relationship between D2/D and F

for a rectangular basin floor is:

( )2 1
2

1 8 12
1
2D

D
F= + −� �         (2.10.1)
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Whenever the boundary roughness is such that the shear stress cannot be neglected, an additional

term must appear which will show an increase in downstream depth for the same upstream depth

and Froude number.  Surface rollers are generated in a hydraulic jump as a result of the presence

of non-collinear but equal pressure and dynamic forces.  Part of this roller is continually torn

away and passes downstream as vortices, so that the total energy lost is the summation of all the

energies of these vortices.  In any real fluid, viscosity brings about the conversion of all these

energies into thermal energy.  Since the thermal energies cannot be recovered the hydraulic jump

is an irreversible phenomenon.

(Bhowmik, 1975) Introduction of different artificial roughnesses, such as chute blocks,

baffle blocks and end sills, in a stilling basin can control the formation of a hydraulic jump at

various locations on the apron depending upon the tail-water depth.  These artificial roughnesses

can forcibly form the jump at the entrance section of the stilling basin and thus confine the jump

within a specified limit making it practical to predict the location of the jump.  The most

common stilling basin on a horizontal floor is a rectangular basin with an end sill and one or two

rows of baffle blocks.  With some adjustment of the tail-water depth, the jump can be stabilized

on the basin’s apron with the aid of baffle blocks and an end sill.

Following Bhowmik’s discussion of the ordinary and forced hydraulic jump, he addresses

the effects of turbulent pressure fluctuations on a stilling basin.  Bhowmik indicates the

importance of considering pressure fluctuations associated with a turbulent velocity profile in

order to correctly design the baffle appurtenances for not only uplift forces but also to withstand

the onset of cavitation.  Bhowmik cites the experimental work performed by the U. S. Bureau of

Reclamation (USBR) in the study of cavitation damage on baffle appurtenances at

subatmospheric pressures.  The critical areas of cavitation damage as reported by the USBR were

on the sides of the chute blocks near the bottom (USBR, 1963).  No turbulent pressure

fluctuations were collected in Bhowmik’s study since the fluctuating water surface profile at the

low Froude number range would not produce reliable values.

2.10.4 Data Collection and Experimental Procedures

The experiments for this study were performed at the hydraulic laboratory of the Illinois

State Water Survey.  The tests were run in a 2 ft wide 60 ft long glass walled tilting flume,
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consisting of a constant head tank and re-circulation system as well as various other

instrumentation.

For the case of the ordinary hydraulic jump, a jump was formed downstream of a sluice

gate by adjustment of the tail-water depth.  In order to obtain a given flow condition, flowrate,

sluice gate opening, and tail water depth were adjusted.  The first data set was begun at a Froude

number equal to 2.5 and then increased for successive trials.  Measurements taken included:

flowrate, upstream and downstream depth of flow, and hydraulic jump length.  Also,

photographs were taken and comments were recorded as necessary.

The case of the forced hydraulic jump followed the same description as the ordinary

hydraulic jump, excepting the addition of an end sill, baffle blocks or both.  Chute blocks were

not tested since the experiments were performed on a horizontal apron with the formation of the

jump occurring downstream of a sluice gate.  The jump length was determined by visual

observation.  In the majority of the experimental runs the profile of the jump became parallel to

the floor of the flume at or before the end sill.  Therefore the jump length was measured from the

toe of the jump to the location of the end sill.

2.10.5 Results and Conclusions

Bhowmik begins by stating the complexity involved in the design of hydraulic jump type

stilling basins.  No two stilling basins perform exactly the same in all respects: however, a

generalized design criteria can be attained for stilling basins subjected to similar flow conditions

and performing under similar circumstances (Bhowmik, 1975).  Throughout the experimental

tests, several graphical relationships were produced for the ordinary and forced hydraulic jumps.

The two forms of jumps were compared in order to determine the energy dissipation

characteristics obtained by the addition of appurtenances such as baffles and end sills.  Three

non-dimensional variables were implemented and plotted with respect to Froude number:

- D2/D1 the depth ratio

- EL/E1 the energy loss ratio

- L/D2 the length ratio

Examples of these graphical relationships are shown in Figures 2.10.1, 2.10.2, and 2.10.3.

A baffle arrangement, termed Basin L, performed satisfactorily and was adopted for

implementation in the field.  The arrangement of Basin L is shown in Figure 2.10.4.
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Figure 2.10.1 Depth Ratio vs Froude Number (Bhowmik, 1975)

Figure 2.10.2 Energy Loss vs Froude Number (Bhowmik, 1975)
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Figure 2.10.3 Length of Basin vs Froude Number (Bhowmik, 1975)

Figure 2.10.4 Schematic of Basin L (Bhowmik, 1975)
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Chapter 3 - Procedure

3.1 Development of Experimental Equipment

At the beginning of the research project the decision was made to construct a flume at

WVU to allow for the testing of physical scale models.  The construction of a “custom-built”

flume would allow for modifications that would become necessary over the life of the project.

The flume consisted of two tanks to allow for re-circulation of water, necessary piping, and

various measuring devices.  The flume was designed to accommodate a range of slopes and be

within the economic constraints of the project budget, and was to be housed in the Civil

Engineering Hydraulics Lab at West Virginia University (Room SB-35, Engineering Science

Building).

3.2 Pump Selection

A centrifugal pump was selected to produce the re-circulation of water necessary for the

experiments.  The pump was to operate at low head and would need to accommodate a range of

flowrates.  Preliminary calculations were performed using standard culvert capacity relationships

to assure that the flume would properly model flow conditions that are expected in the field. The

selection of a 4.25 in. diameter culvert model required that the maximum flow capacity be

approximately 200 gpm under inlet control conditions. This flow rate was used in determining

the specifications needed for the pump.  For a submerged culvert at the inlet the following

equation applies (FHWA HDS #5, 1985):

HW
D

c
Q

AD
Y Si = � � + −0 5

205. . (3.2.1)

Where

- HWi = Headwater depth above inlet control section invert (ft)
- D = Interior height of culvert Barrel (ft)
- Q = Discharge (cfs)
- A = Full cross sectional area of culvert barrel (ft2)
- S = Culvert Barrel Slope (ft/ft)
- Y,c = Constants from inlet control design equations

With the test culvert Diameter at 4.25 in. and assuming 1 ft of headwater and 10% slope, Q was

found to be approximately 200 gpm, validating the original assumption. The pump selected was
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purchased from Interstate Pump Company, and provided slightly over 200 gpm at 25 feet of

head, which provided a small amount of excess capacity.  The pump setup is shown in Figure

3.1.

Figure 3.1 Centrifugal Pump Setup

3.3 Tank Selection

In order for the flume to properly re-circulate an adequate supply of water, two

tanks were needed.  The upstream tank needed to be tall, to supply sufficient head, while the

downstream tank needed to be short so that they would accommodate for slope adjustment and

still meet the volume requirements on the intake side of the pump. It was determined that the

necessary volume for the operation of the flume was approximately 500 gallons. The

downstream tank, a 150-gallon ovular agricultural tank, was obtained from an agricultural supply

store, and is shown in Figure 3.2.  Due to the unusual dimensional requirements of the upstream

tank, it was impossible to obtain it through commercial providers. Therefore, the decision was

made to construct a custom designed upstream tank.  The upstream tank was constructed from ¾

inch pressure treated plywood reinforced with 2 x 4 framing.  The tank dimensions were 3’ x 3’

x 5’ with an approximate volume of 340 gallons.  A square opening, 1.5’x 1.5’, was cut in the

front of the upstream tank in preparation for the addition of the inlet box.
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Figure 3.2 Downstream Tank

The inlet box will be described in greater detail in another section.  The completed blue and

yellow upstream tank is shown in Figure 3.3.  In the initial design stage of the upstream tank, a

pond liner was to be used as a bladder for water containment.  This proved difficult to install

since the seams could not be easily fused to prevent water leakage.  This problem was rectified

by the removal of the pond liner and application of a waterproof coating on the inside surface of

the plywood.  The coating chosen was an elastomeric polymer, originally intended for sealing

roofs.  After several coatings of the polymer were applied, the tank was sufficiently

waterproofed.  It was found to be necessary to reinforce the outside of the upstream tank with 2 x

4 framing due to hydrostatic forces.

Figure 3.3 Upstream Tank
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The outside of the upstream tank was painted for aesthetic purposes as well as for mold

prevention due to the constant high humidity in the hydraulics lab.

3.4 Frame Development

In order to provide a structure to accommodate piping, piezometer bank, flow meter,

slope adjustment, testing channel, and to keep the tanks in a fixed position, a frame was

developed.  The frame consisted of perforated, galvanized 1.25-inch angle iron, which provided

an easy means of construction.  The framing was simply cut to size and bolted together with

5/16-inch bolts.  Trapezoidal braces were constructed on the top of the frame to provide a cradle

for the piping.  The frame also allows for slope adjustment, which will be discussed in greater

detail in another section.

3.5 Inlet and Outlet Boxes

Two cast acrylic boxes were constructed to allow for visual examination of physical

phenomenon present in the planned hydraulic model studies.  The inlet box dimensions were 1.5’

x 1.5’ x 1.5’ and was constructed from 0.5-inch thick cast acrylic.  The inlet box was constructed

to create uniform and steady flow conditions approaching the inlet of the model culvert.  The

inlet box is shown below in Figure 3.4.

Figure 3.4 Inlet Box

The outlet box dimensions were 2’ x 4’ x 1.04’.  It was also constructed from 0.5-inch

thick cast acrylic.  Twenty 2-inch diameter holes and eight 1.5-inch diameter holes were cut in
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the downstream floor of the outlet box to provide adequate drainage exiting through the floor of

the outlet box.  A screen was constructed from 0.25-inch hardware cloth and placed over the

drilled out holes to prevent debris from entering the downstream tank.  The purpose of the outlet

box was to serve as a container for the hydraulic models.

Figure 3.5 Outlet Box

A testing channel constructed from the same 0.5-inch thick cast acrylic was placed within the

outlet box.  This testing channel will be discussed in greater detail in another section.  The outlet

box is shown in Figure 3.5.

3.6 Piping Assembly

The water supply piping network for the testing flume was constructed of 3 in. PVC

sewer pipe.  Clear acrylic pipe was selected for the model culvert.  The PVC pipe proved easy to

work with as all fittings could be glued together, and cutting the pipe to size could be

accomplished with simple tools.  Two 3 in. gate valves provided the flow adjustments needed for

experimental runs.  One gate valve was located at the upstream tank, near the end of the supply

line from the pump, and was used to regulate the flow.  The second gate valve was placed at the

outlet tank and served as a bypass valve.  To provide a low flow capability, the bypass valve was

opened to allow some of the supply line flow to re-circulate back into the outlet tank.  This

bypass was necessary in order to maintain a minimum required pump flow rate during low

discharge testing (about 50gpm).  The supply line was extended vertically downward into the

upstream tank so that the submerged jet would dissipate excess turbulent energy in the flow prior
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to reaching the culvert inlet.  The test culvert was comprised of 4.25 in. inside diameter extruded

acrylic pipe.  One major problem with the test culvert was keeping it sealed at the inlet and outlet

boxes, while still allowing for slope adjustment.  Sealing was accomplished by the use of two

rubber grommets attached to the inlet and outlet boxes with custom washers machined from

standard plastic stock.  The grommets were attached to the pipe with pipe clamps and proved

extremely effective at sealing the test culvert and allowing for slope adjustment, Figure 3.7.  The

test culvert is shown in Figure 3.6.

Figure 3.6 Test Culvert

Figure 3.7 Grommet usage
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3.7 Measuring Devices

To provide data crucial for hydraulic calculations, several measuring devices were used.  The

devices implemented in the experimental procedures are as follows:

- Flowmeter
- Piezometer Board
- Three-Point Depth Gage
- Pitot Tube Device
- Slope Adjustment Devices

The measuring devices are discussed in further detail in this section, along with associated

problems, corrections, and construction considerations where appropriate.

3.7.1 Flowmeter

A flowmeter was purchased that read flowrate in gpm over a range of 40-450 gpm with ±

2.0% full scale linearity and ± 1.0% full scale repeatability.  The mechanism used was a paddle

wheel with magnetic inserts.  The flowmeter would produce a flowrate based on the rate of

rotation of the paddle wheel.  The flowmeter is shown in Figure 3.8.

Figure 3.8 Flowmeter

Initially, the supply line from the downstream to upstream tank, contained a double elbow bend

upstream of the flowmeter.  This location produced erroneous flowmeter readings with high

fluctuations.  It was determined that the double bend was producing vortices that were causing

the incorrect readings.  It was also suspected that air was being trapped at certain locations in the
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supply line.  To correct these problems three modifications were made.  First, the double elbow

bend was removed and replaced with a single elbow. Second, the overhead supply line was

replaced with transparent 3 in. PVC pipe to allow for visual inspection of the flow entering and

exiting the flowmeter.  Third, several air bleeds were placed along the overhead supply line to

remove trapped air from the line.  These corrections eliminated the problems mentioned, and

provided greater assurance of accurate measurements.

3.7.2 Piezometer Board

In order to measure the water surface elevation at various locations in the test culvert, a

piezometer board was constructed.  The board consisted of 19 - ¼ in. Plexiglas tubes affixed to a

¼ in. plywood board.  Scales were mounted next to the tubes with bolts and wing nuts that could

travel vertically, in a milled slot, to allow for the establishment of a zero reading.  The tubes

were attached to tygon tubing at the bottom, then were connected to the test culvert at various

points through brass fittings.  First, small 1/32 in. diameter holes were drilled in the test culvert

invert to serve as the piezometer tap.  Next, the brass fittings were threaded into small

rectangular blocks of Plexiglas that were, in turn, glued to the test culvert around the previously

drilled holes.  This produced a row of piezometer taps along the invert of the test culvert from

which flow depth could be established.  The piezometer setup is shown in Figure 3.9.  The

location of each piezometer tap is shown In Figure 3.10 and the distance to each tap from the test

culvert inlet are shown in Table 3.1.

Figure 3.9 Piezometer Board
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Figure 3.10 Piezometer tap locations

Table 3.1 Distance to
Piezometer Taps from Culvert

Inlet

Tap Number Distance from Test
Culvert Inlet (in)

1 5.125
2 10.625
3 16.5
4 22.625
5 28.875
6 34.625
7 40.625
8 46.625
9 52.75
10 58.75
11 64.75
12 86.25
13 92
14 94
15 96
16 98
17 100
18 102
19 104
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3.7.3 Three-point Depth Gage

To obtain water depth flowing on various hydraulic models, a point gage was borrowed

from an existing flume and modified by adding two lateral points.  The modified three-point

depth gage was to provide a more accurate representation of the average flow depth along any

cross section in the test channel.  The point gage had a verneir scale that was accurate to .001 ft.

The scale is shown in Figure 3.12. First, the center point was lowered to the water surface and a

reading was taken.  Next the lateral points were lowered and another reading was taken.  The

average of the “inside” and “outside” depth reading is the average flow depth for that cross

section.  A track was constructed of 1 ½ in. aluminum angle that allowed the point gage to travel

along the testing channel. Depth readings were taken at eight points along the channel.  A

schematic of the location of the eight points, labeled A through G is shown in Figure 3.11.  The

distance to the points, measured from the culvert outlet, are shown in Table 3.2.

Table 3.2 Testing Channel
Measurement Locations

Point of
Measurement

Distance from
Culvert Outlet (in)

A 3.25
B 3.75
C 4.50
D 10.00
E 16.25
F 23.50
G 30.00
H 35.75
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Figure 3.11 Points of Depth Measurement in Testing Channel

To provide longitudinal measurement along the testing channel, a scale was bolted on the outside

of the outlet box and a pointer was attached to the side of the gage.  The three-point depth gage is

shown in Figure 3.13.

Figure 3.12 Point Gage Scale
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Figure 3.13 Three-Point Depth Gage

3.7.4 Pitot Tube Device

In order to assure that the velocity head was accurately calculated for various model tests,

it was decided that the traverse velocity profile for the rectangular test section needed to be

established.  The data acquired would be used to verify that traverse velocity variations did not

produce a significant variation from unity in the velocity head correction factor. A Pitot tube was

constructed using 5mm-glass tubing.  When this tube was first tested there were many

oscillations present, so a 3mm-glass tube was inserted inside the horizontal section of the

existing tube to produce a damping effect.  Next the Pitot tube was clamped into a Plexiglas

cradle and then fitted to a Plexiglas slide and track to allow for vertical and lateral adjustments.

A metric scale and pointer were then fixed to the apparatus to allow for depth and total head

measurements.  The rectangular channel cross section was then divided into 15 evenly spaced

subsections and tic marks were placed on the surface of the Plexiglas track.  The completed

apparatus can be seen in Figures 3.14 and 3.15.
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Figure 3.14 Pitot Device (side view)

Figure 3.15 Pitot Device (front view)

In applying the Pitot tube for establishing the velocity profile the energy equation was

utilized:

p V
g

z PitotMeasurement
γ

α+ + =
2

2 (3.7.1)

The first term, which represents local pressure head, is assumed to be the depth of water above

the centerline of the Pitot tube (hydrostatic assumption).  The second term, which represents the
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local velocity head, was computed in mm/s with the value for acceleration due to gravity being

9.81 m/s2.  The last term represents the datum elevation that was taken as the height above the

false floor in the rectangular channel.  The datum was established by placing the center of the

Pitot tube at the surface of the false floor and recording the depth from the scale attached to the

Pitot apparatus.

To determine the value for the velocity correction factor, α, the following expression was

used:

α =
u dA

V A

3

1

15

3 (3.7.2)

Where α is the value for the velocity head correction factor.  The point velocity found from the

Pitot tube is represented by u.  The term dA represents each incremental area at which a

corresponding measurement was taken.  The values in the numerator are then summed from 1-

15, as there were 15 sections of measurement.  In the denominator V represents average the

velocity and A is the total cross-sectional area of the flow.  Since flow depths were small, only

one velocity measurement was made per incremental area.  This measurement was made at a

point just below the water surface corresponding to full submergence of the Pitot tube.

3.7.5 Slope Adjustment Devices

Culvert slopes of 2, 4, 6 and 8% were selected for testing in the experimental runs.

Therefore it was necessary to provide a slope adjustment capability.  To allow for slope

variation, the outlet box rested on adjustable supports at the front and back of the box.  The

supports could be bolted at incremental heights on the vertical columns on either side of the box.

Two pieces of all-thread steel rod were attached to the support on the left and right of the box,

along with another piece of steel angle.  This piece of steel angle could be adjusted by lifting up

the box and turning nuts on the threaded rod to achieve the desired height.  Next, a datum was

established by attaching five scales to the frame, using surveying equipment, and then all slope

adjustments were calculated based on that elevation.  One scale was placed at the test culvert

inlet and the other four around the outlet box so it could easily be leveled.  The slope adjustment

setup is shown in Figure 3.16 as well as a close-up of the support adjustment in Figure 3.17.
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Figure 3.16 Outlet Box Slope Adjustment

Figure 3.17 Support Adjustment

        

3.8 Model Construction

Three main components were constructed to perform hydraulic model tests of baffle

blocks used for energy dissipation; a model apron, a testing channel, and the baffle blocks to be

tested.  Since plans were available for the existing culvert apron design, the scale model was

easily constructed of 0.5-in. thick cast acrylic.  All dimensions were expressed as a function of

culvert diameter and the scale model was constructed.  A rectangular testing channel was used to

contain the flow within lateral boundaries.  To produce the rectangular channel, two vertical

walls were attached to the model apron, and two concrete pallets with embedded stone were built
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to simulate downstream channel conditions.  Also, two vertical extensions were added to the

wingwalls to prevent flows from short-circuiting over the wingwalls.  The testing channel is

shown in Figure 3.18.

Figure 3.18 Testing Channel

Five baffle block configurations were tested and are listed below:

- Base Configuration
- ½ Diameter Cylinder Baffle
- ¾ Diameter Cylinder Baffle
- ½ Diameter L Baffle
- ¾ Diameter L Baffle
- Standard Baffle

The Base Configuration consisted of no baffles, no obstructions in the flow, and was used as a

reference point.  The other configurations are discussed in the following sections.

3.8.1 Cylinder Baffles

For the Cylinder Baffles ½ and ¾ diameter refer to the non-dimensional height of the

cylinders.  In both cases the cylinder diameter was equal to ¼ the culvert diameter. Three

cylinders are placed in an isosceles triangle one diameter downstream of the outlet.  Since the

major concern of the existing design was excessive sedimentation, circular baffles were intended

to provide better self-cleaning.  The isosceles triangle arrangement was picked due to simplistic

geometry and to allow the deflected flow from the lead baffle to impact the two baffles

downstream.  The model baffles were held in place using silicone cement, since excessive screw
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holes in the model apron floor were undesirable.  The ½ and ¾ diameter cylinder baffle

arrangement dimensions are shown in Figures 3.19 through 3.22.

Figure 3.19 ½ D Cylinder Baffle Configuration Plan View

Figure 3.20 ½ Diameter Cylinder Baffle Configuration Profile View
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Figure 3.21 ¾ Diameter Cylinder Baffle Configuration Plan View

Figure 3.22 ¾ Diameter Cylinder Baffle Configuration Profile View

3.8.2 L Baffle

For the ½ and ¾ L Baffle configurations the height of the baffle was again a fraction of

the culvert diameter.  The width of the L Baffle was equal to the culvert diameter, and a lip was

added to the top of the baffle to produce a turning effect in the flow.  The length of the lip was

equal to ¼ of the culvert diameter.  The L Baffles were located at the downstream edge of the

culvert apron.  This location should be beneficial to construction by allowing reinforcing rebar to

tie into the toe of the culvert apron producing added strength.  The lip was constructed of 1/8 in.

sheet aluminum stock attached to the top of the baffle by machine screws.  The ½ and ¾ L Baffle

configurations are shown in Figures 3.23 through 3.26.



69

Figure 3.23 ½ Diameter L Baffle Configuration Front View

Figure 3.24 ½ Diameter L Baffle Configuration Profile View

Figure 3.25 ¾ Diameter L Baffle Configuration Front View
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Figure 3.26 ¾ Diameter L Baffle Configuration Profile View

3.8.3 Standard Baffle

 The Standard Baffle configuration is the current design used by the WVDOH.  Testing

was performed on this configuration to determine problems associated with the design as well as

provide a means for comparison with the previous configurations.  The design dimensions were

presented in Chapter 1, Figures 1.3.1 through 1.3.3.
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Chapter 4 – Analysis

Following the completion of the testing flume, project goals were developed for the

investigation of the baffle configurations.  In order for the baffle configuration to meet the goals

of the project the following criteria had to be satisfied:

- Construction on site must be reasonable

- Economically feasible

- Applicability to various culvert sizes and flowrates

- Self cleaning and low maintenance

- Re-establish natural flow conditions downstream of the outlet

The configurations developed were intended for small to medium sized culverts, typically 2-12

feet, of various cross-section.  The configurations were designed to operate without the presence

of tail-water.  Where tail-water was present the effectiveness of the configurations increased.

4.1 Data Collection

Following the completion of the testing flume, several baffle shapes and configurations

were tested by a trial and error process.  The purpose was to narrow the focus to what appeared

to be the best performing baffle configuration.  After the trial phase the six baffle configurations

to be tested were defined and testing methods were established.  Each experimental run required

the measurement of five main parameters.

- Slope
- Headwater at inlet
- Piezometer readings
- Three point depth data
- Flow rate

A data sheet was developed to accommodate the various data taken.  Culvert slopes tested were

2, 4, 6, and 8%.  Headwater was read at the beginning of each test, measured from the inlet invert

of the test culvert.  Piezometer readings were taken before the pump was turned on to establish a

tare reading (zero depth).  Depth readings were taken along the testing channel at eight points

using the three-point depth gage.  The depth reading was computed as an average of the middle

point reading and the reading from the two lateral points.  Along with the three-point depth

measurements the flow behavior at the culvert outlet, interaction with the wingwalls, and any
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adverse effects were noted based on visual observation. Flowrates of 50, 75, 100, 125, 150, and

200 gpm were applied to each baffle configuration at each of the four slopes.

4.2 Velocity Profile Investigation

To determine the value for alpha, the velocity head correction factor, the following

expression was used:

α =
u dA

V A

3

1

15

3 (4.2.1)

Where:

α = Velocity correction factor
u = Point velocity found from the pitot tube
da = Incremental area at which measurements were taken
V = Average Velocity
A = Total cross sectional area of the flow

The values in the numerator are then summed from 1 to 15, as there were 15 sections of

measurement.  Initial calculations were performed at 50 gpm and 8% slope, since the flow

appearance at 8% slope appeared the most non-uniform. The first method used values obtained

solely from the Pitot tube.  Table 4.2.1 lists the data measurements and results of the

computations.
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Table 4.2.1 Calculations for Velocity Proflie Correction Factor

1

Width
Increments

2

Depth from
bottom of

tube

3

Pitot
Reading

4

Pitot
Depth

5

Depth from
center of tube

6

p/gamma

7

Point
Velocity @

section

8

Area @
section

9

(u3)dA

10

Incremental
Flowrate

(Section) (mm) (mm) (mm) (mm) (mm) (mm/s) (mm^2) (mm^3/s)
1 241 45 250 243.5 6.5 869 317 2.078E+11 275150
2 241 60 247 243.5 3.5 1053 317 3.694E+11 333322
3 241 85 248 243.5 4.5 1257 317 6.282E+11 397867
4 242 125 249 244.5 4.5 1537 289 1.050E+12 444452
5 248 135 253 250.5 2.5 1612 124 5.191E+11 199739
6 248 140 253 250.5 2.5 1642 124 5.488E+11 203473
7 248 150 253 250.5 2.5 1701 124 6.097E+11 210742
8 248 153 253 250.5 2.5 1715 124 6.253E+11 212520
9 248 160 253 250.5 2.5 1758 124 6.727E+11 217768

10 248 155 253 250.5 2.5 1729 124 6.410E+11 214284
11 248 145 253 250.5 2.5 1672 124 5.790E+11 207139
12 248 140 253 250.5 2.5 1642 124 5.488E+11 203473
13 241 140 247 243.5 3.5 1636 317 1.387E+12 518091
14 241 90 246 243.5 2.5 1310 317 7.119E+11 414805
15 241 75 246 243.5 2.5 1192 317 5.369E+11 377580

SUMS: 22326 3180 9.636E+12 4430403

The first column, width increments, is the section number assigned to each location of

measurement.  The second column, depth from bottom of tube, is the location of the water

surface found by locating the point at which the Pitot tube first contacts the surface of the flow.

The third column, Pitot reading, is the value obtained by recording the height of water that

appeared in the Pitot tube.  Note that due to oscillations, the Pitot reading was an average based

on visual inspection.  The fourth column, Pitot depth, is the location of the Pitot tube when it was

placed into the flow to obtain a Pitot reading.  The fifth column, depth from center of tube, is an

adjustment of column two.  In order to produce more accurate results, the initial water surface

measurement was taken from the bottom of the tube and then a half diameter adjustment was

applied to give the water surface elevation from the center of the tube.  Column six, p/gamma, is

the height of the column of water from the center of the Pitot tube to the surface of the flow,

(column 4) minus (column 5).  Column seven, point velocity @ section, is the value for u as

determined from the energy equation solving for V.  Column eight, area @ section, is the value

of the incremental cross sectional area at the corresponding width increment.  The value for

width is found by dividing the total width of the channel, 413mm, by the number of width

increments, 15.  The height for the incremental cross-sectional area is found by subtracting the
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datum elevation from the depth of water from the center of the tube.  Column 9, (u3)dA is the

product of the cube of the point velocity and the incremental area, (column 73)*(column 8).

Column 10 is the incremental flowrate found by the product of columns seven and eight.  Note

that columns eight, nine and ten are summed with the total at the bottom.

For the first method of determining alpha by the Pitot data alone, the value for the

numerator is the sum of column nine.  The value for the average velocity, V, is found by dividing

the total of the incremental flow rates by the total of the incremental areas.  The value for A is

the sum of the incremental areas.

A second method of determining alpha was by the use of data obtained by experiments

performed using the three-point depth gage and flow meter.  The average velocity was calculated

based on the flow meter discharge, and the total cross sectional area of the flow was based on the

three point gage measurement.  Alpha was calculated by using the same numerator values as in

the first method, however the denominator values were obtained from the three point gage data.

The values obtained from the two methods are displayed in Table 4.2.2.

Table 4.2.2 Alpha Value obtained by Methods 1
and 2 (50gpm 8%Slope)

Results based on Pitot
Data

Results from Three
Point  Gage Data

Average
Velocity
(mm/s)

1393 Average
Velocity
(mm/s)

1146

Area (mm2) 3180 Area (mm2) 2760

Alpha 1.121 Alpha 2.320

The same procedure was performed at 100 gpm and 8% slope and the velocity correction

factor obtained by the two methods at this setting is displayed in Table 4.2.3.  The values

obtained from the three-point gage, were obviously less accurate than the Pitot data. Since there

was a potential inconsistency between the average velocity and the point velocity measurements,

the results of the second method were not used.  These two tests, at 50 gpm and 100 gpm, were

examined and expected to be typical values.  The value for the velocity correction factor was

nearly equal to unity in the Pitot tube analysis, it was not considered in energy calculations.
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Table 4.2.3 Alpha Values Obtained by Methods 1
and 2 (100 gpm 8% Slope)

Results Based on Pitot
Data

Results from Three Point
Data

Average
Velocity
(mm/s)

1797 Average
Velocity
(mm/s)

1626

Area (mm2) 4667 Area (mm2) 3880

Alpha 1.046 Alpha 1.698

4.3 Test Culvert Analysis

It became apparent that uniform flow depth was approached at the test culvert outlet for

each of the flowrates and slopes used.  To obtain the best representative value of uniform flow

depth at the test culvert outlet, piezometer data for each slope and flowrate for the six

configurations was compiled in Microsoft excel.  The spreadsheet, titled Test Culvert Analysis,

contained the depth data for all 19 piezometers for each configuration.  Since the reading

obtained from the piezometer is the depth of water above the tap opposite the direction of

gravity, a conversion was used to give the depth of flow perpendicular to the culvert invert.  The

equation is simply a trigonometric operation and was performed as follows:

( )
y

R R
COSn

a t=
−

( )θ
       (4.3.1)

Where:

Ra = The actual Reading from the piezometer
Rt = The tare reading for the piezometer
yn = Uniform flow depth perpendicular to the test culvert invert
θ = Slope of the test culvert (decimal)

The 19 piezometer tap values were examined and it was concluded that the values had reached

uniform flow conditions from taps 10 – 19 in most instances.  Where wave action was

pronounced or the presence of a jump was detected, those tap readings were not considered.  The

taps that most accurately depicted uniform flow depth were then averaged and recorded for each
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slope and flowrate.  The values were then summarized in a table for each configuration and

averaged again over the six experimental configurations.  The result is the value used for uniform

flow depth at the test culvert outlet for a given slope and flow rate, shown in red in Table 4.3.1

(Test Culvert Uniform Flow Depth Analysis).   Since the uniform flow depth and corresponding

Froude number are referred points for each slope and discharge combination, it was highly

beneficial to adopt a single value for each parameter to facilitate data presentation.

Table 4.3.1 Test Culvert Analysis

Uniform Flow Depth in Test Culvert (in)

Culvert
Slope (%)

Flowrate
(gpm)

Base
Configuration

CYL Baffle
H=0.75D

CYL Baffle
H=0.5D

L-Baffle H=0.75D L-Baffle H=0.5D Standard
Baffle

Average
Uniform flow

depth over runs
(in)

2 50 1.39 1.40 1.43 1.39 1.41 1.46 1.41
2 75 1.69 1.68 1.71 1.69 1.72 1.75 1.71
2 100 1.99 1.96 2.00 1.96 1.96 2.02 1.98
2 125 2.22 2.19 2.22 2.22 2.23 2.24 2.22
2 150 2.41 2.38 2.42 2.38 2.42 2.40 2.40
2 200 - 2.63 2.63 2.64 2.66 2.61 2.63

4 50 1.25 1.25 1.22 1.26 1.26 1.22 1.24
4 75 1.55 1.53 1.51 1.50 1.55 1.49 1.52
4 100 1.75 1.81 1.75 1.75 1.82 1.78 1.78
4 125 1.98 2.04 1.97 1.99 1.98 2.01 1.99
4 150 2.16 2.22 2.16 2.17 2.23 2.17 2.19
4 200 - 2.48 2.40 2.44 2.45 2.27 2.41

6 50 1.12 1.12 1.10 1.13 1.09 1.12 1.11
6 75 1.36 1.37 1.36 1.38 1.37 1.37 1.37
6 100 1.61 1.58 1.59 1.59 1.59 1.61 1.59
6 125 1.81 1.80 1.82 1.95 1.82 1.83 1.82
6 150 2.00 1.98 1.98 2.05 2.00 2.01 2.00
6 200 - 2.26 2.27 2.28 2.26 2.22 2.26

8 50 1.22 1.07 1.03 1.11 1.18 1.06 1.08
8 75 1.43 1.28 1.27 1.37 1.44 1.31 1.32
8 100 1.66 1.50 1.49 1.56 1.60 1.53 1.53
8 125 1.86 1.72 1.70 1.77 1.87 1.74 1.74
8 150 2.03 1.90 1.87 1.94 2.05 1.93 1.92
8 200 - 2.20 2.08 2.24 2.28 2.14 2.21
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4.4 Equivalent Rectangular Froude Number

In the early stages of channel data analysis, it became apparent that the calculated Froude

number, at the culvert outlet, was misleading when used as a non-dimensional flow reference

downstream.  The Froude number was based on the circular cross-section of the test culvert,

which was the source of the problem.  A transformation from circular to rectangular cross section

was found in the development of the Contra Costa energy dissipator, reviewed in HEC-14, 1983.

The circular to rectangular transform eliminated the complex variance of cross-sectional

properties with the increase of flow depth.  HEC-14 states that for oval, circular, elliptical or

other shapes, the flow at the culvert must be converted to an equivalent rectangular cross-section

with a width equal to twice the depth of flow.  The equivalent rectangular flow depth, ye, is

determined from the following relationship:

y
A

e = � �
2

1
2

(4.4.1)

Where:
ye = the equivalent rectangular flow depth
A = Area of the flow cross-section

Following the transform of the flow depth, the equivalent rectangular Froude number can be

determined from using ye rather than the hydraulic depth at the culvert outlet.  So the relationship

for the Froude number becomes:

Fr
V
gye

= (4.4.2)

The introduction of the transformed rectangular cross-section avoids the misleading reversal in

Froude number magnitude (that approaches zero) as a round pipe nears full flow.  Values

obtained for the uniform flow depth, from Section 4.3, were converted to the equivalent

rectangular flow depth for purposes of calculating the Froude number.

4.5 Energy Calculations

Based on the uniform flow depth established from Section 4.3, the following parameters

were obtained for application in the spreadsheet:
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- Culvert Φ
- Flow Area
- Velocity at test culvert outlet
- Flow depth at culvert outlet

Culvert Φ was the sector angle used to calculate the cross-sectional area of the flow at a given

flow depth.  Culvert Φ is depicted in Figure 4.5.1.

Figure 4.5.1 Culvert Φ

Given a value for the depth of flow in the test culvert, Φ was determined from the following

equation:

Φ = −� �−2 1
21COS

y
D

(4.5.1)

The flow area of a given test was found from a relation involving the diameter of the test culvert

and culvert Φ, shown below.

( )A
D

SIN= −
2

8
Φ Φ (4.5.2)
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Since the cross-sectional area of the flow and the flowrate were both known, the velocity could

easily be determined by dividing the flowrate by the cross-sectional area.  The adopted values of

uniform flow depth from Section 4.3 for the test culvert at a set slope and flowrate, are shown in

Tables 4.5.1 through 4.5.4.

Table 4.5.1 Test Culvert Data 2% Slope
Flow Rate

(gpm)
Uniform

Flow
Depth (in)

Culvert Φ Flow Area
(in2)

Velocity at
Test Culvert
Outlet (in/s)

Equivalent
Rectangular

Flow Depth at
Test Culvert
Outlet (in)

50 1.41 2.46 4.12 46.7 1.44
75 1.71 2.75 5.33 54.2 1.63
100 1.98 3.01 6.48 59.4 1.80
125 2.22 3.23 7.50 64.1 1.94
150 2.40 3.40 8.26 69.9 2.03
200 2.63 3.62 9.23 83.5 2.15

Table 4.5.2 Test Culvert Data 4% Slope
Flow Rate

(gpm)
Uniform

Flow
Depth (in)

Culvert Φ Flow Area
(in2)

Velocity at
Test Culvert
Outlet (in/s)

Equivalent
Rectangular

Flow Depth at
Test Culvert
Outlet (in)

50 1.24 2.29 3.46 55.7 1.31
75 1.52 2.57 4.56 63.3 1.51
100 1.78 2.81 5.62 68.5 1.68
125 1.99 3.02 6.54 73.6 1.81
150 2.19 3.20 7.35 78.6 1.92
200 2.41 3.41 8.29 92.8 2.04



80

Table 4.5.3 Test Culvert Data 6% Slope
Flow Rate

(gpm)
Uniform

Flow
Depth (in)

Culvert Φ Flow Area
(in2)

Velocity at
Test Culvert
Outlet (in/s)

Equivalent
Rectangular

Flow Depth at
Test Culvert
Outlet (in)

50 1.11 2.15 2.96 65.0 1.22
75 1.37 2.41 3.95 73.1 1.41
100 1.59 2.64 4.86 79.3 1.56
125 1.82 2.85 5.78 83.2 1.70
150 2.00 3.03 6.58 87.8 1.81
200 2.26 3.27 7.66 100 1.96

Table 4.5.4 Test Culvert Data 8% Slope
Flow Rate

(gpm)
Uniform

Flow
Depth (in)

Culvert Φ Flow Area
(in2)

Velocity at
Test Culvert
Outlet (in/s)

Equivalent
Rectangular

Flow Depth at
Test Culvert
Outlet (in)

50 1.08 2.11 2.84 67.7 1.19
75 1.32 2.36 3.75 77.1 1.37
100 1.53 2.58 4.61 83.5 1.52
125 1.74 2.78 5.47 88.0 1.65
150 1.92 2.95 6.23 92.6 1.77
200 2.21 3.22 7.46 103 1.93

Since the uniform flow depth was kept constant at a given slope and flowrate, the

remainder of the calculations dealt with comparing the conditions at the culvert outlet and

downstream in the testing channel.  The parameters obtained from the rectangular channel are as

follows:

- Average Flow Depth
- Flow Area
- Velocity

The average flow depth was obtained by examining the values for flow depth from the three-

point gage along the designated eight points of measurement.  Plots of the water surface

elevation for a given run were then examined to identify any values that were outliers due to

wave action or experimental error.  The points that were termed acceptable, as best displaying
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average flow depth in the testing channel, were then averaged to produce the mean flow depth in

the testing channel.  The flow area of a given run was determined from the product of the

average flow depth with the width of the testing channel.  The velocity was found by simply

dividing the flowrate by the cross-sectional area of the flow.  The cross-sectional area of flow

over the rip-rap was calculated based on a flat bed at the same height as the apron.  The rip-rap

was previously installed such that its effective bed elevation was the same as the apron elevation

(based on the assumption of volumetric equivalency).  Next, the Froude number at the culvert

outlet was calculated as described in Section 4.4. The Froude number was also calculated in the

testing channel.  The Froude number at the culvert outlet and testing channel were calculated to

provide a non-dimensional reference to flow conditions.

The energy at the culvert outlet was calculated from the following expression:

OutletEnergy
V

g
y SpecificHead= + =

2

2
  (4.5.3)

Where:

- V = Average velocity at culvert outlet
- g = acceleration due to gravity
- y =uniform flow depth at the culvert outlet (actual depth)

The energy in the testing channel was found from the same equation, excepting that velocity and

uniform flow depth are those relating to the testing channel.  The energy at the culvert outlet and

testing channel are then compared in the form of a non-dimensional energy difference of the

following form:

Non Dim Energy Difference
Outlet Energy Culvert Energy

Culvert Energy
− =

−
. (4.5.4)

 An example of the spreadsheet format used for the energy calculations, for a given slope and

configuration, is shown in Table 4.5.5.  In following sections, each tested baffle configuration

will be presented and discussed with the results presented in this latter format.
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Table 4.5.5 Example of Energy Calculations Performed
Testing Channel Data Froude Number

Comparison  Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50
75
100
125
150
200
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4.6 Base Configuration

The base configuration was tested to investigate the flow conditions when no baffles

were located on the culvert apron.  The testing of the base configuration allowed for a

comparison between the performance of successive trials.  The flow path expanded from the

culvert outlet, with a general spreading across the channel apron and localized disturbances and

wave action on the simulated channel bed.  The model for the base configuration is shown in

Figure 4.6.1.  Graphs of the depth for tests conducted at 2, 4, 6, and 8% slopes are shown in

Figures 4.6.2 through 4.6.5.

Figure 4.6.1 Model for Base Configuration

Figure 4.6.2 Plot of Depth for Base Configuration at 2% Culvert Slope

and 50-150 gpm

Plot of Depth for Base Configuration at 2% Culvert Slope
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Figure 4.6.3 Plot of Depth for Base Configuration at 4% Culvert Slope

and 50-150 gpm

Figure 4.6.4 Plot of Depth for Base Configuration at 6% Culvert Slope

and 50-150 gpm

Plot of Depth for Base Configuration at 4% Culvert Slope
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Plot of Depth for Base Configuration at 6% Culvert Slope
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Figure 4.6.5 Plot of Depth for Base Configuration at 8% Culvert Slope

and 50-150 gpm

After the water surface elevation was established, uniform flow depth was determined by

performing an average over the points in the channel that best represented uniform flow.  From

the flow depth and the results from Section 4.3, the aforementioned energy calculations were

conducted.  The results for the energy calculations for the base configuration are shown in Tables

4.6.1 through 4.6.4.

Table 4.6.1 Energy Calculation for Base Configuration at 2% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.24 20.0 9.63 1.98 0.440 4.23 1.36 0.680
75 1.26 20.4 14.1 2.16 0.640 5.51 1.52 0.724
100 1.38 22.3 17.3 2.25 0.749 6.54 1.76 0.731
125 1.36 22.0 21.8 2.34 0.952 7.54 1.98 0.738
150 1.35 21.8 26.5 2.49 1.16 8.72 2.26 0.741
200

Plot of Depth for Base Configuration at 8% Culvert Slope 
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Table 4.6.2 Energy Calculations for Base Configuration at 4% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.01 16.3 11.8 2.47 0.598 5.26 1.19 0.774
75 1.11 18.0 16.0 2.62 0.774 6.70 1.45 0.784
100 1.24 20.0 19.3 2.69 0.881 7.85 1.72 0.781
125 1.28 20.7 23.2 2.78 1.04 9.00 1.98 0.780
150 1.32 21.3 27.1 2.89 1.20 10.2 2.27 0.777
200

Table 4.6.3 Energy Calculations for Base Configuration at 6% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 0.97 15.7 12.3 3.00 0.635 6.57 1.16 0.823
75 0.97 15.7 18.4 3.14 0.950 8.29 1.41 0.830
100 1.11 18.0 21.4 3.23 1.03 9.73 1.70 0.825
125 1.20 19.4 24.9 3.25 1.16 10.8 2.00 0.815
150 1.30 21.0 27.5 3.32 1.23 12.0 2.28 0.810
200

Table 4.6.4 Energy Calculations for Base Configuration at 8% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 0.89 14.4 13.4 3.15 0.723 7.01 1.12 0.840
75 1.01 16.3 17.7 3.35 0.900 9.01 1.41 0.843
100 0.94 15.3 25.2 3.45 1.32 10.6 1.77 0.833
125 1.02 16.6 29.0 3.48 1.46 11.8 2.12 0.820
150 1.02 16.6 34.9 3.55 1.75 13.0 2.60 0.801
200
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4.7 ¾ Diameter Cylinder Baffle Configuration

Sedimentation and blockage in the current baffle design used by the WVDOH was a

major problem.  The idea behind the cylinder baffle arrangements was to see how a streamlined

baffle would perform as opposed to standard rectangular designs.  Since the need was for the

total energy downstream of the culvert outlet to return to the level of energy present under

natural stream conditions, the hypothesis was that the partial streamlining of the baffle would

produce enough energy attenuation, without causing significant sedimentation.  The flow exiting

the culvert outlet split around the first cylinder and impacted the next two where it was again

deflected.  Vertical spray was also present at all three cylinders, reaching heights of 2D based on

visual inspection. Little water depth was accumulated on the culvert apron.  The model of the

configuration is shown in Figure 4.7.1. Typical flow regimes are depicted in Figures 4.7.2 and

4.7.3

Figure 4.7.1 ¾ D Cylinder Baffle Model

Figure 4.7.2 ¾ D Cylinder Baffle at 6% Culvert Slope and 125 gpm
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Figure 4.7.3 ¾ D Cylinder Baffle at 6% Culvert Slope and 125 gpm

The graphs of depth for the configuration are shown in Figures 4.7.4 through 4.7.7.  Energy

calculations for the ¾ D Cylinder Baffle are shown in Tables 4.7.1 through 4.7.4.

Figure 4.7.4 Plot of Depth for ¾ D Cylinder baffle at 2% Culvert Slope and 50-200 gpm

Plot of Depth for 3/4 CYL Baffle Configuration at 2% Culvert Slope
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Figure 4.7.5 Plot of Depth for ¾ D Cylinder baffle at 4% Culvert Slope and 50-200 gpm

Figure 4.7.6 Plot of Depth for ¾ D Cylinder baffle at 6% Culvert Slope and 50-200 gpm

Plot of Depth for 3/4 CYL Baffle Configuration at 4% Culvert Slope
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Plot of Depth for 3/4 CYL Baffle Configuration at 6% Culvert Slope
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Figure 4.7.7 Plot of Depth for ¾ D Cylinder baffle at 8% Culvert Slope and 50-200 gpm

Table 4.7.1 Energy Calculations for 3/4 Diameter Cylinder Baffle at 2% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.22 19.7 9.78 1.98 0.451 4.23 1.34 0.683
75 1.34 21.7 13.3 2.16 0.587 5.51 1.57 0.715
100 1.46 23.6 16.3 2.25 0.689 6.54 1.80 0.725
125 1.58 25.5 18.9 2.34 0.764 7.54 2.04 0.730
150 1.75 28.3 20.4 2.49 0.787 8.72 2.29 0.738
200 1.92 31.1 24.7 2.90 0.908 11.6 2.72 0.767

Plot of Depth for 3/4-CYL Baffle Configuration at 8% Culvert Slope 
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Table 4.7.2 Energy Calculations for 3/4 Diameter Cylinder Baffle at 4% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.16 18.8 10.3 2.47 0.485 5.26 1.30 0.754
75 1.39 22.5 12.8 2.62 0.555 6.70 1.60 0.761
100 1.46 23.6 16.3 2.69 0.686 7.85 1.80 0.770
125 1.57 25.3 19.0 2.78 0.772 9.00 2.03 0.774
150 1.69 27.3 21.2 2.89 0.829 10.2 2.27 0.777
200 1.93 31.2 24.7 3.31 0.905 13.6 2.72 0.800

Table 4.7.3 Energy Calculations for 3/4 Diameter Cylinder Baffle at 6% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.11 17.9 10.8 3.00 0.521 6.57 1.26 0.809
75 1.29 20.8 13.9 3.14 0.622 8.29 1.54 0.815
100 1.37 22.2 17.4 3.23 0.754 9.73 1.76 0.819
125 1.49 24.1 20.0 3.25 0.832 10.8 2.01 0.814
150 1.65 26.7 21.6 3.32 0.858 12.0 2.26 0.812
200 1.80 29.1 26.4 3.65 1.00 15.3 2.70 0.824

Table 4.7.4 Energy Calculations for 3/4 Diameter Cylinder Baffle at 8% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.17 18.9 10.2 3.15 0.479 7.01 1.30 0.814
75 1.31 21.2 13.6 3.35 0.604 9.01 1.55 0.828
100 1.40 22.6 17.0 3.45 0.733 10.6 1.77 0.832
125 1.46 23.6 20.4 3.48 0.859 11.8 2.00 0.830
150 1.58 25.6 22.6 3.55 0.913 13.0 2.24 0.828
200 1.79 29.0 26.6 3.78 1.01 16.0 2.70 0.831
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4.8 ½ D Cylinder Baffle Configuration

The cylinder baffle arrangements were tested at two heights to try to minimize the

amount of material needed for construction.  The flow description for the ½ D cylinder

configuration was similar to the ¾ D configuration.  However, with the ½ D configuration the

depth of flow exiting the test culvert was at times equal to the height of the cylinder.  Vertical

spray was still present, and the flow again split on the first cylinder and impacted the two

downstream.  The depth of water on the culvert apron was minimal.  The ½ D cylinder

configuration is shown in Figure 4.8.1.  Typical flow patterns are shown in Figures 4.8.2 and

4.8.3.

Figure 4.8.1 ½ D Cylinder Baffle Model

Figure 4.8.2 Plan of ½ D Cylinder Baffle at 4% Culvert Slope and 125 gpm
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Figure 4.8.3 Profile of ½ D Cylinder Baffle at 4% Culvert Slope and 125 gpm

Graphs of water surface elevation are shown in Figures 4.8.4 through 4.8.7.  Notice in the plots

of depth for 6 and 8% slope, some data points are not plotted.  The points were not plotted due to

large scale turbulence at those locations. Energy calculations for the ½ D Cylinder Baffle are

shown in Tables 4.8.1 through 4.8.4.

Figure 4.8.4 Plot of Depth for ½ D Cylinder baffle at 2% Culvert Slope and 50-200gpm

Plot of Depth for 1/2 CYL Baffle Configuration at 2% Culvert Slope
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Figure 4.8.5 Plot of Depth for ½ D Cylinder baffle at 4% Culvert Slope and 50-200 gpm

Figure 4.8.6 Plot of Depth for ½ D Cylinder baffle at 6% Culvert Slope and 50-200 gpm

Plot of Depth for 1/2 CYL Baffle Configuration at 4% Culvert Slope
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Plot of Depth for 1/2 CYL Baffle Configuration at 6% Culvert Slope
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Figure 4.8.7 Plot of Depth for ½ D Cylinder baffle at 8% Culvert Slope and 50-200 gpm

Table 4.8.1 Energy Calculations for 1/2 Diameter Cylinder Baffle at 2% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.24 20.1 9.57 1.98 0.436 4.23 1.36 0.678
75 1.39 22.5 12.8 2.16 0.554 5.51 1.60 0.709
100 1.52 24.6 15.6 2.25 0.645 6.54 1.84 0.719
125 1.70 27.6 17.5 2.34 0.680 7.54 2.10 0.722
150 1.88 30.4 19.0 2.49 0.705 8.72 2.35 0.731
200 2.04 33.1 23.3 2.90 0.829 11.6 2.75 0.764

Plot of Depth for 1/2 CYL Baffle Configuration at 8% Culvert Slope
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Table 4.8.2 Energy Calculations for 1/2 Diameter Cylinder Baffle at 4% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.23 20.0 9.64 2.47 0.442 5.26 1.35 0.742
75 1.38 22.3 13.0 2.62 0.562 6.70 1.59 0.762
100 1.47 23.8 16.2 2.69 0.678 7.85 1.81 0.769
125 1.55 25.0 19.2 2.78 0.787 9.00 2.02 0.775
150 1.79 29.0 19.9 2.89 0.758 10.2 2.30 0.773
200 1.92 31.1 24.7 3.31 0.907 13.6 2.72 0.800

Table 4.8.3 Energy Calculations for 1/2 Diameter Cylinder Baffle at 6% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.13 18.3 10.5 3.00 0.501 6.57 1.28 0.806
75 1.36 22.0 13.1 3.14 0.573 8.29 1.58 0.809
100 1.48 24.0 16.0 3.23 0.670 9.73 1.82 0.813
125 1.55 25.0 19.3 3.25 0.788 10.8 2.02 0.812
150 1.82 29.4 19.6 3.32 0.742 12.0 2.32 0.807
200 1.96 31.8 24.2 3.65 0.880 15.3 2.72 0.822

Table 4.8.4 Energy Calculations for 1/2 Diameter Cylinder Baffle at 8% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.14 18.4 10.4 3.15 0.497 7.01 1.28 0.817
75 1.29 20.8 13.9 3.35 0.622 9.01 1.54 0.830
100 1.40 22.7 16.9 3.45 0.728 10.6 1.78 0.832
125 1.49 24.2 19.9 3.48 0.829 11.8 2.01 0.829
150 1.67 27.1 21.3 3.55 0.838 13.0 2.26 0.826
200 1.72 27.9 27.6 3.78 1.07 16.0 2.71 0.830
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4.9 ¾ Diameter L-Baffle Configuration

The L-baffle originally started as a single rectangular baffle located at the toe of the

apron.  Vertical spray was so pronounced that the ¼ D lip was added to produce a turning effect

in the flow.  The lip performed very well in eliminating the vertical spray.  The flow exited the

culvert and traveled down the apron until impact with the L-baffle.  Upon impact the flow was

forced upward toward the lip and outward laterally toward the wingwall extensions.  Water

collecting on the apron with the L-baffle was substantially more than with the Cylinder baffles

but never to the extent of overflowing the wingwalls. The constructed model of the ¾ D L-baffle

is shown in Figure 4.9.1.  A typical flow regime is shown in Figures 4.9.2.  Initial testing of the

L-Baffle configuration to examine the flow pattern is shown in Figure 4.9.3.

Figure 4.9.1 ¾ D L-Baffle Model

Figure 4.9.2 ¾ D L-Baffle at 4% Culvert Slope and 125gpm
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Figure 4.9.3 ¾ D L-Baffle Preliminary Test

Plots of water surface elevation are shown in Figures 4.9.4 through 4.9.7.  Energy calculations

performed on the ¾ D L-baffle are shown in Tables 4.9.1 through 4.9.4.

Figure 4.9.4 Plot of Depth for 3/4 D L-Baffle at 2% Culvert Slope and 50-200 gpm

Plot of Depth for 3/4 L-Baffle Configuration at 2% Culvert Slope
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Figure 4.9.5 Plot of Depth for 3/4 D L-Baffle at 4% Culvert Slope and 50-200 gpm

Figure 4.9.6 Plot of Depth for 3/4 D L-Baffle at 6% Culvert Slope and 50-200 gpm

Plot of Depth for 3/4 L-Baffle Configuration at 4% Culvert Slope
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Figure 4.9.7 Plot of Depth for 3/4 D L-Baffle at 8% Culvert Slope and 50-200 gpm

Table 4.9.1 Energy Calculations for 3/4 Diameter L-Baffle at 2% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.37 22.2 8.66 1.98 0.376 4.23 1.47 0.652
75 1.45 23.5 12.3 2.16 0.519 5.51 1.65 0.701
100 1.61 26.0 14.8 2.25 0.595 6.54 1.89 0.711
125 1.88 30.4 15.8 2.34 0.586 7.54 2.20 0.708
150 2.01 32.5 17.8 2.49 0.639 8.72 2.42 0.723
200 2.38 38.5 20.0 2.90 0.660 11.6 2.90 0.751

Table 4.9.2 Energy Calculations for 3/4 Diameter L-Baffle at 4% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.30 21.1 9.14 2.47 0.407 5.26 1.41 0.732
75 1.51 24.4 11.8 2.62 0.491 6.70 1.69 0.748
100 1.65 26.7 14.4 2.69 0.570 7.85 1.92 0.755
125 1.81 29.3 16.4 2.78 0.622 9.00 2.16 0.760
150 1.99 32.2 17.9 2.89 0.647 10.2 2.41 0.763
200 2.34 37.9 20.3 3.31 0.675 13.6 2.88 0.788

Plot of Depth for 3/4 L-Baffle Configuration at 8% Culvert Slope 
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Table 4.9.3 Energy Calculations for 3/4 Diameter L-Baffle at 6% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.34 21.7 8.89 3.00 0.391 6.57 1.44 0.781
75 1.47 23.8 12.1 3.14 0.508 8.29 1.66 0.799
100 1.62 26.2 14.7 3.23 0.587 9.73 1.90 0.805
125 1.72 27.9 17.3 3.25 0.670 10.8 2.11 0.804
150 2.07 33.4 17.3 3.32 0.611 12.0 2.45 0.795
200 2.43 39.3 19.6 3.65 0.639 15.3 2.93 0.809

Table 4.9.4 Energy Calculations for 3/4 Diameter L-Baffle at 8% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.28 20.7 9.31 3.15 0.419 7.01 1.39 0.802
75 1.54 25.0 11.6 3.35 0.474 9.01 1.72 0.810
100 1.64 26.5 14.6 3.45 0.579 10.6 1.91 0.819
125 1.78 28.8 16.7 3.48 0.636 11.8 2.14 0.818
150 1.94 31.4 18.4 3.55 0.671 13.0 2.38 0.817
200 1.98 32.1 24.0 3.78 0.867 16.0 2.73 0.829
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4.10 ½ D L-Baffle Configuration

The L-baffles were tested at ½ D and ¾ D to investigate difference in flow

characteristics, as was done with the cylinder baffles.  The flow pattern for the ½ D was similar

to that of the taller baffle, but the impact on the ½ D baffle seemed to be more turbulent.  As the

vertical distance to the lip was less than with the taller baffle, the flow had less room to expand.

Also like the ½ D cylinder baffle, the ½ D L-baffle was at times submerged by the flow exiting

the test culvert.  The model of the ½ D L-baffle is shown in Figure 4.10.1, and typical flow

patterns are shown in Figures 4.10.2 and 4.10.3.

Figure 4.10.1 Model of ½ D L- Baffle

Figure 4.10.2 ½ D L-Baffle at 4% Slope and 125gpm
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Figure 4.10.3 ½ D L-baffle at 4% Slope and 125gpm

Graphs of water surface elevation are shown in Figures 4.10.4 through 4.10.7.  Energy

calculations are shown in Tables 4.10.1 through 4.10.4.

Figure 4.10.4 Plot of Depth for ½ D L-baffle at 2% Culvert Slope and 50-200 gpm

Plot of Depth for 1/2 D L-Baffle Configuration at 2% Culvert Slope
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Figure 4.10.5 Plot of Depth for ½ D L-baffle at 4% Culvert Slope and 50-200 gpm

Figure 4.10.6 Plot of Depth for ½ D L-baffle at 6% Culvert Slope and 50-200 gpm

Plot of Depth for 1/2 D - Baffle Configuration at 4% Culvert Slope
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Plot of Depth for 1/2 D L-Baffle Configuration at 6% Culvert Slope
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Figure 4.10.7 Plot of Depth for ½ D L-baffle at 8% Culvert Slope and 50-200 gpm

Table 4.10.1 Energy Calculations for 1/2 Diameter L-Baffle at 2% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.37 22.2 8.66 1.98 0.376 4.23 1.47 0.652
75 1.59 25.7 11.2 2.16 0.453 5.51 1.75 0.682
100 1.64 26.6 14.5 2.25 0.576 6.54 1.91 0.708
125 1.60 25.9 18.6 2.34 0.746 7.54 2.05 0.729
150 1.86 30.0 19.2 2.49 0.717 8.72 2.33 0.732
200 1.73 28.0 27.5 2.90 1.07 11.6 2.71 0.767

Plot of Depth for 1/2 D L-Baffle Configuration at 8% Culvert Slope 
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Table 4.10.2 Energy Calculations for 1/2 Diameter L-Baffle at 4% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.34 21.6 8.91 2.47 0.392 5.26 1.44 0.727
75 1.54 24.9 11.6 2.62 0.475 6.70 1.71 0.744
100 1.64 26.5 14.6 2.69 0.579 7.85 1.91 0.757
125 1.81 29.3 16.4 2.78 0.620 9.00 2.16 0.760
150 1.77 28.7 20.1 2.89 0.769 10.2 2.30 0.774
200 1.69 27.4 28.1 3.31 1.10 13.6 2.72 0.800

Table 4.10.3 Energy Calculations for 1/2 Diameter L-Baffle at 6% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.33 21.6 8.93 3.00 0.394 6.57 1.44 0.782
75 1.61 26.1 11.1 3.14 0.444 8.29 1.77 0.787
100 1.67 26.9 14.3 3.23 0.563 9.73 1.93 0.802
125 1.79 29.0 16.6 3.25 0.631 10.8 2.15 0.801
150 1.76 28.4 20.3 3.32 0.779 12.0 2.29 0.809
200 1.65 26.7 28.8 3.65 1.14 15.3 2.73 0.822

Table 4.10.4 Energy Calculations for 1/2 Diameter L-Baffle at 8% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.42 22.9 8.40 3.15 0.359 7.01 1.51 0.785
75 1.56 25.2 11.5 3.35 0.467 9.01 1.73 0.808
100 1.53 24.8 15.6 3.45 0.640 10.6 1.84 0.825
125 1.71 27.7 17.4 3.48 0.677 11.8 2.10 0.821
150 1.82 29.5 19.6 3.55 0.737 13.0 2.32 0.822
200 2.10 34.0 22.6 3.78 0.794 16.0 2.77 0.827
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4.11 Standard Baffle

The standard baffle configuration was tested for comparison with new designs and to

identify problems that were present in the current design.  One problem identified in the

laboratory is that, at some flow rates, water will actually flow back over the wingwalls.

WVDOH personnel found this interesting in that the current design could possibly erode the

roadbed above the culvert in some instances.  Testing of the standard baffle configuration also

gave a representative view of an excellent energy dissipator.  In fact the blockage of the flow was

too extreme, which caused debris to block the culvert apron.  The analysis performed later in this

chapter will designate how much energy dissipation was required to reduce the flow at the

culvert outlet to natural stream conditions.  The model for the Standard baffle configuration is

shown in Figure 4.11.1.  Typical flow conditions are shown in Figures 4.11.2 and 4.11.3.

Figure 4.11.1 Model of Standard Baffle Configuration
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Figure 4.11.2 Standard Baffle Configuration (Initial Testing)

Figure 4.11.2 Standard Baffle Configuration at 8% Culvert Slope and 125 gpm
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Graphs of depth for the Standard Baffle configuration are shown in Figures 4.11.4 through

4.11.7.  Energy calculations performed on the Standard Baffle are shown in Tables 4.11.1

through 4.11.4.

Figure 4.11.4 Plot of Depth for Standard Baffle at 2% Culvert Slope and 50-200 gpm

Figure 4.11.5 Plot of WSE for Standard Baffle at 4% Culvert Slope and 50-200 gpm
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Figure 4.11.6 Plot of WSE for Standard Baffle at 6% Culvert Slope and 50-200 gpm

Figure 4.11.7 Plot of Depth for Standard Baffle at 8% Culvert Slope and 50-200 gpm

Plot of Depth for STD Baffle Configuration at 6% Culvert Slope
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Table 4.11.1 Energy Calculations for Standard Baffle at 2% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.49 24.1 7.98 1.98 0.333 4.23 1.57 0.628
75 1.54 25.0 11.6 2.16 0.474 5.51 1.72 0.689
100 1.77 28.7 13.4 2.25 0.513 6.54 2.01 0.694
125 1.83 29.6 16.3 2.34 0.611 7.54 2.17 0.712
150 1.87 30.3 19.0 2.49 0.708 8.72 2.34 0.731
200 1.90 30.8 25.0 2.90 0.923 11.6 2.71 0.767

Table 4.11.2 Energy Calculations for Standard Baffle at 4% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.43 23.2 8.30 2.47 0.352 5.26 1.52 0.710
75 1.55 25.1 11.5 2.62 0.469 6.70 1.72 0.743
100 1.66 26.8 14.3 2.69 0.566 7.85 1.93 0.755
125 1.72 27.8 17.3 2.78 0.672 9.00 2.11 0.766
150 1.71 27.6 20.9 2.89 0.813 10.2 2.27 0.777
200 1.92 31.1 24.8 3.31 0.910 13.6 2.71 0.800

Table 4.11.3 Energy Calculations for Standard Baffle at 6% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.35 21.9 8.78 3.00 0.384 6.57 1.45 0.779
75 1.52 24.6 11.7 3.14 0.485 8.29 1.70 0.795
100 1.73 28.0 13.7 3.23 0.531 9.73 1.98 0.797
125 1.72 27.9 17.3 3.25 0.670 10.8 2.11 0.804
150 1.91 30.8 18.7 3.32 0.691 12.0 2.36 0.803
200 2.16 35.0 22.0 3.65 0.762 15.3 2.79 0.818
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Table 4.11.4 Energy Calculations for Standard Baffle at 8% Culvert Slope
Testing Channel Data Froude Number

Comparison
Energy Calculations

Flowrate
(gpm)

Flow
Depth in
Channel

(in)

Flow Area
(in2)

Velocity
(in/s)

Froude
Number at

Culvert
Outlet

Froude
Number in

Testing
Channel

Energy at
Culvert

Outlet (in)

Energy in
Testing
Channel

(in)

Non-
dimensional

Energy
Difference

50 1.40 22.6 8.53 3.15 0.367 7.01 1.49 0.788
75 1.62 26.2 11.0 3.35 0.440 9.01 1.78 0.803
100 1.73 27.9 13.8 3.45 0.534 10.6 1.97 0.813
125 1.82 29.4 16.4 3.48 0.617 11.8 2.16 0.816
150 1.89 30.6 18.9 3.55 0.699 13.0 2.35 0.819
200 2.11 34.1 22.6 3.78 0.790 16.0 2.77 0.827
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4.12 Comparison to “Natural” Energy Grade Line

In the beginning of this chapter, one criterion that needed to be met was to re-establish

natural flow conditions downstream of the outlet.  In order for this parameter to be examined, the

headwater elevations above the invert of the culvert inlet, for the tested flowrates, were used to

establish the “natural” energy grade line.  The headwater elevation was taken as the location of

the energy grade line above the culvert inlet and was extended parallel to the culvert, assuming

uniform flow (at the respective slope setting).  A representation of the physical setting for this

calculation is shown in Figure 4.12.1.

Figure 4.12.1 Energy Grade Line Establishment

Notice that the specific energy at the culvert inlet, E1, is equal to the elevation of the energy

grade line at the culvert outlet, E2.  Since, E1 and E2 were equal, the calculations to find the

elevation of the energy grade line at a point in the testing channel would be performed from E2

for simplicity.  The point selected to perform the comparison between the natural energy grade

line and the total energy calculated from the three-point gage data was point F (refer to Chapter 3

Figure 3.9).  Point F was selected because it was the center point on which the majority of

average flow depths in the testing channel were calculated.  Following the selection of the point

for comparison, the elevation of the natural energy grade line was calculated based on simple

trigonometry, right triangles and the Pythagorean theorem. The values for the elevation of the

natural energy grade line, shown in red, were then compared to the values for total energy in the

testing channel in Table 4.12.1.
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Table 4.12.1 Comparison Between "Natural" and Calculated Energy in Testing Channel
Flow rate

(gpm)
Slope % "Natural"

Energy Grade
Line

Base
Configuration

Cylinder
Baffle 3/4

D

Cylinder
Baffle 1/2

D

L-Baffle
3/4 D

L-Baffle
1/2 D

Standard
Baffle

Total Energy in Testing Channel (in)

50 2 2.72 1.36 1.34 1.36 1.47 1.47 1.57
75 2 3.55 1.52 1.57 1.60 1.65 1.75 1.72
100 2 4.53 1.76 1.80 1.84 1.89 1.91 2.01
125 2 5.67 1.98 2.04 2.10 2.20 2.05 2.17
150 2 7.01 2.26 2.29 2.35 2.42 2.33 2.34
200 2 10.9 - 2.72 2.75 2.90 2.71 2.71
50 4 2.25 1.19 1.30 1.35 1.41 1.44 1.52
75 4 3.08 1.45 1.60 1.59 1.69 1.71 1.72
100 4 4.06 1.72 1.80 1.81 1.92 1.91 1.93
125 4 5.20 1.98 2.03 2.02 2.16 2.16 2.11
150 4 6.54 2.27 2.27 2.30 2.41 2.30 2.27
200 4 10.4 - 2.72 2.72 2.88 2.72 2.71
50 6 1.78 1.16 1.26 1.28 1.44 1.44 1.45
75 6 2.60 1.41 1.54 1.58 1.66 1.77 1.70
100 6 3.59 1.70 1.76 1.82 1.90 1.93 1.98
125 6 4.73 2.00 2.01 2.02 2.11 2.15 2.11
150 6 6.07 2.28 2.26 2.32 2.45 2.29 2.36
200 6 9.93 - 2.70 2.72 2.93 2.73 2.79
50 8 1.30 1.12 1.30 1.28 1.39 1.51 1.49
75 8 2.13 1.41 1.55 1.54 1.72 1.73 1.78
100 8 3.12 1.77 1.77 1.78 1.91 1.84 1.97
125 8 4.26 2.12 2.00 2.01 2.14 2.10 2.16
150 8 5.60 2.60 2.24 2.26 2.38 2.32 2.35
200 8 9.45 - 2.70 2.71 2.73 2.77 2.77

From Table 4.12.1, one can see that the effectiveness of the baffle configurations increase with

flowrate.  Also, from left to right, the energy associated with selected baffle configurations tends

to increase.  This is misleading in that the specific energy does not represent the effect of the

baffle configurations as desired.  Further discussion of this analysis is presented in Chapter 5.

All baffle configurations performed satisfactorily in reducing energy below natural levels, with

the exception of three values that are highlighted in yellow.  These instances are minor

deviations at a low flow rate and are within the expected measurement error range.
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4.13.1 Error Analysis

Design of the testing flume was original in that it was required to meet specific unique

research needs.  Several modifications were made throughout the process of experimentation,

therefore it was difficult to perform an error analysis. There were several reasons that made an in

depth error analysis impractical.  Due to the number of significant changes that occurred in

design and in methods of calculation, it was difficult to follow the propagation of error to the

final results. The raw depth measurements taken in the testing channel were subject to

turbulence, aeration, and error on part of the researcher.  These influences created the greatest

source of error in the various experiments.  Also, due to the time constraints of the project,

establishing repeatability in depth measurements for a specific situation was not accomplished.

However, trends in the data could be observed and explained.

The main measuring devices used in experiments performed with the testing flume

include the following:

- Metric scales
- Headwater depth
- Piezometer depth
- Slope Adjustment
- Pitot tube readings
- Longitudinal distance along testing channel

- Digital scales
- Flowmeter

- Vernier scale
- Depth in testing channel

All of the metric scales were read to the nearest millimeter, based on the convention of best

estimate.  The Vernier scale was accurate to .001 ft and measurements were taken accordingly.

Three significant figures applied for all measures of length. The flowmeter had a range of 40-450

gpm with ± 2.0% full-scale linearity and ± 1.0% full-scale repeatability.  Expected values of

uncertainty for several variables measured in the experiments are shown in Table 4.13.1.
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Table 4.13.1 Expected Error for Various
Calculated Values

Value Test Culvert Testing
Channel

Area 3.4% 8.4%
Velocity 5.4% 10.4%
Froude
Number

5.7% 11.2%

Energy 9.0% 21.3%
Depth 3.3% 8.3%
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Chapter – 5 Results

5.1 Comparison of Baffle Configurations

In order to compare the performance of each configuration, the values of non-

dimensional energy difference, equation 4.5.4, for each slope and discharge were compiled into a

single table. Table 5.1.1 shows the summary of these data in terms of non-dimensional energy

difference.

Table 5.1.1 Comparison of Values for Non-Dimensional Energy Difference
Flowrate

gpm
Slope % Base

Configuration
Cylinder
Baffle 3/4

D

Cylinder
Baffle 1/2

D

L-Baffle
3/4 D

L-Baffle
1/2 D

Standard
Baffle

Non-Dimensional Energy Difference

50 2 0.680 0.683 0.678 0.652 0.652 0.628
75 2 0.724 0.715 0.709 0.701 0.682 0.689
100 2 0.731 0.725 0.719 0.711 0.708 0.694
125 2 0.738 0.730 0.722 0.708 0.729 0.712
150 2 0.741 0.738 0.731 0.723 0.732 0.731
200 2 - 0.767 0.764 0.751 0.767 0.767
50 4 0.774 0.754 0.742 0.732 0.727 0.710
75 4 0.784 0.761 0.762 0.748 0.744 0.743
100 4 0.781 0.770 0.769 0.755 0.757 0.755
125 4 0.780 0.774 0.775 0.760 0.760 0.766
150 4 0.777 0.777 0.773 0.763 0.774 0.777
200 4 - 0.800 0.800 0.788 0.800 0.800
50 6 0.823 0.809 0.806 0.781 0.782 0.779
75 6 0.830 0.815 0.809 0.799 0.787 0.795
100 6 0.825 0.819 0.813 0.805 0.802 0.797
125 6 0.815 0.814 0.812 0.804 0.801 0.804
150 6 0.810 0.812 0.807 0.795 0.809 0.803
200 6 - 0.824 0.822 0.809 0.822 0.818
50 8 0.840 0.814 0.817 0.802 0.785 0.788
75 8 0.843 0.828 0.830 0.810 0.808 0.803
100 8 0.833 0.832 0.832 0.819 0.825 0.813
125 8 0.820 0.830 0.829 0.818 0.821 0.816
150 8 0.801 0.828 0.826 0.817 0.822 0.819
200 8 - 0.831 0.830 0.829 0.827 0.827

Several conclusions can be drawn from the comparison of these results.  For baffle-type

configurations, the value for non-dimensional energy difference increases with increasing

flowrate.  Also, the value for non-dimensional energy difference increases with increase of slope.
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This trend seems plausible since the square of velocity at the culvert outlet increases with

flowrate and slope faster than in the testing channel. Therefore the difference between the energy

at the outlet and channel must increase to account for the divergence of the two velocities.

Examination of the values from left to right in the table for all of the tested configurations shows

a general decline in the value of non-dimensional energy loss in most cases.  This can be

explained by the amount of relative roughness seen by the flow.  The values for average uniform

flow depth are displayed in table 5.1.2.  The first value for the test culvert was obtained from

Section 4.3 and is the depth at the outlet.  The depths for each configuration are the average

depths, established in the testing channel over the stone bed.  Notice the increase in depth from

left to right.  This indicates that as the flow depth in the testing channel increases, less energy,

proportionally, is dissipated from the roughness of the downstream channel bed, as compared to

the baffle.  The rip-rap downstream of the culvert apron is most effective in energy dissipation

when the depth is shallow and the velocity high.  Since a depth increase in the testing channel

means a lower velocity downstream, and more energy dissipation, proportionally by the baffle, it

follows that the effectiveness of the tested dissipators can be ordered based on downstream

velocity.  Then it can be stated that from left to right, in Tables 5.1.1 and 5.1.2, the base

configuration produces the least effect of velocity reduction and the standard baffle the greatest.

The performance judgements therefore, cannot be based solely on the basis of non-dimensional

energy difference.  The effect of the downstream rock bed plays a large role in energy

attenuation in the laboratory model.  In the field however, the downstream rock would not be

held in place rigidly and supporting bed material could be eroded away under high velocity

flows.

Given the above discussion, it is clear that two measures of performance are required to

support a decision as to which dissipator performs best.  The non-dimensional energy difference,

equation 4.5.4, is the first measure.  A second measure is provided by the following ratio

computed in the testing channel:

y
V

g

2

2� �

(5.1.1)
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Where:

y = depth
V = velocity
g = gravitational acceleration

Erosive energy is minimized when the baffle produces greater depth and lower velocities in the

testing channel.  This is apparent in the comparison between velocity head at the culvert outlet

and in the testing channel for each configuration shown in Table 5.1.3  Therefore, performance is

maximized when both the energy difference and this latter ratio are both maximized.  The depth

to velocity head ratiois computed for each run and is presented in table 5.1.4.  To summarize the

relative performance of each design graphically, the measures are plotted against one another in

Figure 5.1.1.

Table 5.1.2 Uniform Flow Depth at Culvert Outlet and Testing Channel
Flow rate

(gpm)
Slope % Test Culvert

Outlet
Base

Configuration
Cylinder
Baffle 3/4

D

Cylinder
Baffle 1/2

D

L-Baffle
3/4 D

L-Baffle
1/2 D

Standard
Baffle

Uniform Flow Depth (in)

50 2 1.41 1.24 1.22 1.24 1.37 1.37 1.49
75 2 1.71 1.26 1.34 1.39 1.45 1.59 1.54
100 2 1.98 1.38 1.46 1.52 1.61 1.64 1.77
125 2 2.22 1.36 1.58 1.70 1.88 1.60 1.83
150 2 2.40 1.35 1.75 1.88 2.01 1.86 1.87
200 2 2.63 - 1.92 2.04 2.38 1.73 1.90
50 4 1.24 1.01 1.16 1.23 1.30 1.34 1.43
75 4 1.52 1.11 1.39 1.38 1.51 1.54 1.55
100 4 1.78 1.24 1.46 1.47 1.65 1.64 1.66
125 4 1.99 1.28 1.57 1.55 1.81 1.81 1.72
150 4 2.19 1.32 1.69 1.79 1.99 1.77 1.71
200 4 2.41 - 1.93 1.92 2.34 1.69 1.92
50 6 1.11 0.97 1.11 1.13 1.34 1.33 1.35
75 6 1.37 0.97 1.29 1.36 1.47 1.61 1.52
100 6 1.59 1.11 1.37 1.48 1.62 1.67 1.73
125 6 1.82 1.20 1.49 1.55 1.72 1.79 1.72
150 6 2.00 1.30 1.65 1.82 2.07 1.76 1.91
200 6 2.26 - 1.80 1.96 2.43 1.65 2.16
50 8 1.08 0.89 1.17 1.14 1.28 1.42 1.40
75 8 1.32 1.01 1.31 1.29 1.54 1.56 1.62
100 8 1.53 0.94 1.40 1.40 1.64 1.53 1.73
125 8 1.74 1.02 1.46 1.49 1.78 1.71 1.82
150 8 1.92 1.02 1.58 1.67 1.94 1.82 1.89
200 8 2.21 - 1.79 1.72 1.98 2.10 2.11
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Table 5.1.3 Comparison Between Velocity Head at Culvert Outlet and Testing Channel
Flow rate

(gpm)
Slope % Velocity Head

at Culvert
Outlet

Base
Configuration

Cylinder
Baffle 3/4

D

Cylinder
Baffle 1/2

D

L-Baffle
3/4 D

L-Baffle
1/2 D

Standard
Baffle

Velocity Head (in)

50 2 2.82 0.12 0.12 0.12 0.10 0.10 0.08
75 2 3.81 0.26 0.23 0.21 0.20 0.16 0.17
100 2 4.57 0.39 0.35 0.32 0.28 0.27 0.23
125 2 5.33 0.62 0.46 0.39 0.32 0.45 0.34
150 2 6.32 0.91 0.54 0.47 0.41 0.48 0.47
200 2 9.02 - 0.79 0.70 0.52 0.98 0.81
50 4 4.02 0.18 0.14 0.12 0.11 0.10 0.09
75 4 5.19 0.33 0.21 0.22 0.18 0.17 0.17
100 4 6.08 0.48 0.34 0.34 0.27 0.27 0.27
125 4 7.01 0.70 0.47 0.48 0.35 0.35 0.39
150 4 7.99 0.95 0.58 0.51 0.42 0.52 0.56
200 4 11.16 - 0.79 0.79 0.53 1.02 0.79
50 6 5.47 0.20 0.15 0.14 0.10 0.10 0.10
75 6 6.93 0.44 0.25 0.22 0.19 0.16 0.18
100 6 8.14 0.59 0.39 0.33 0.28 0.26 0.24
125 6 8.96 0.80 0.52 0.48 0.39 0.36 0.39
150 6 9.99 0.98 0.61 0.50 0.39 0.53 0.45
200 6 13.08 - 0.90 0.76 0.50 1.08 0.63
50 8 5.94 0.23 0.13 0.14 0.11 0.09 0.09
75 8 7.70 0.41 0.24 0.25 0.17 0.17 0.16
100 8 9.04 0.82 0.38 0.37 0.27 0.31 0.25
125 8 10.03 1.09 0.54 0.51 0.36 0.39 0.35
150 8 11.12 1.57 0.66 0.59 0.44 0.50 0.46
200 8 13.78 - 0.92 0.99 0.75 0.66 0.66
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Table 5.1.4 Depth to velocity head ratio
Flow rate

(gpm)
Slope % Base

Configuration
Cylinder
Baffle 3/4

D

Cylinder
Baffle 1/2 D

L-Baffle
3/4 D

L-Baffle
1/2 D

Standard
Baffle

Depth to Velocity Head Ratio

50 2 10.31 9.83 10.50 14.16 14.16 18.06
75 2 4.89 5.81 6.52 7.43 9.76 8.90
100 2 3.56 4.22 4.80 5.64 6.03 7.60
125 2 2.21 3.42 4.32 5.81 3.59 5.35
150 2 1.48 3.23 4.02 4.90 3.89 3.99
200 2 - 2.43 2.91 4.59 1.76 2.35
50 4 5.59 8.51 10.26 12.05 12.99 16.10
75 4 3.34 6.50 6.32 8.29 8.85 9.11
100 4 2.58 4.24 4.35 6.17 5.97 6.23
125 4 1.83 3.36 3.23 5.17 5.20 4.43
150 4 1.38 2.91 3.48 4.77 3.38 3.03
200 4 - 2.44 2.43 4.39 1.65 2.42
50 6 4.95 7.38 7.96 13.08 12.90 13.57
75 6 2.21 5.17 6.09 7.76 10.15 8.51
100 6 1.88 3.52 4.46 5.80 6.30 7.08
125 6 1.49 2.89 3.22 4.46 5.02 4.46
150 6 1.32 2.72 3.64 5.36 3.30 4.19
200 6 - 1.99 2.59 4.90 1.53 3.45
50 8 3.82 8.71 8.09 11.40 15.50 14.82
75 8 2.47 5.49 5.17 8.90 9.16 10.32
100 8 1.15 3.72 3.78 5.97 4.89 7.01
125 8 0.94 2.71 2.91 4.94 4.37 5.25
150 8 0.65 2.40 2.85 4.44 3.68 4.10
200 8 - 1.96 1.74 2.66 3.17 3.20

In Figure 5.1.1 the average of Non-dimensional energy difference and depth to velocity head

ratio are averaged for each slope.  This was done to allow for easier interpretation of the plot.

Both L-baffle configurations perform the closest to the standard baffle upon inspection of the

above mentioned parameters.  Since the difference between the ¾ and ½ L-baffle configurations

is not dramatic the ½ D L-baffle was selected as the material needed for its construction would

be less.
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Figure 5.1.1 Average Depth to Velocity Head Ratio vs. Average Non-Dimensional Energy

Difference

Average Depth to Velocity Head Ratio vs. Average Non-
Dimensional Energy Difference
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5.2 Froude Number and Non-Dimensional Energy Difference

Graphical representations of hydraulic performance measurements were desired to

produce further understanding of the test results obtained.  The plots were made non-dimensional

to provide the best comparative presentation of the experiments performed.  It was decided to

plot Froude number versus non-dimensional energy difference.  At first the plots seemed

inconclusive but once the data was separated by slope several interesting conclusions could be

made.  For the following discussion refer to the Figures listed below:

- Figure 5.2.1  Base Configuration Froude Number at Culvert Outlet vs. Non-
dimensional Energy Difference

- Figure 5.2.2  ¾ D Cylinder Configuration Froude Number at Culvert Outlet vs. Non-
dimensional Energy Difference

- Figure 5.2.3 ½ D Cylinder Configuration Froude Number at Culvert Outlet vs. Non-
dimensional Energy Difference

- Figure 5.2.4 ¾ D L-baffle Configuration Froude Number at Culvert Outlet vs. Non-
dimensional Energy Difference

- Figure 5.2.5 ½ D L-baffle Configuration Froude Number at Culvert Outlet vs. Non-
dimensional Energy Difference

- Figure 5.2.6 Standard Baffle Configuration Froude Number at Culvert Outlet vs.
Non-dimensional Energy Difference

In Figure 5.2.1 four well-defined arcs are formed. For the base configuration the flow

spreads out across the apron and flows into the channel with no influence of baffles.  Then the

only parameter that could cause the obvious separation of data is the slope.  The several changes

of direction from the outlet of the culvert to the apron floor help reduce the amount of energy in

the flow.  This energy attenuation is caused by the introduction of turbulence into the flow.  The

angle formed by the slope of the culvert meeting the apron floor can provide a means of

introducing turbulence and serves to help expand the flow. Then the introduction of baffles into

the flow path will dramatically disturb the flow further to the extent that the effect of impact

angle of the culvert and apron floor should no longer be apparent.  This phenomenon would be

apparent if the test culvert slope could no longer be a means of separating the data for the

different trials.

In Figures 5.2.2 and 5.2.3 the data is not nearly as easy to separate as compared to the

base configuration, as the trend of Froude number vs. non-dimensional energy difference

becomes similar.  The cylinder configurations are therefore beginning to introduce more
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turbulence into the flow and in turn reduce the amount of energy present.  It is difficult to discern

which configuration is adding more turbulence to the flow from Figures 5.2.2 and 5.2.3.

Looking back at the data from Tables 5.1.1 and 5.2.2. indicated that the ½ D Cylinder baffle

performed better.  The performance of the ½ D cylinder baffle was due to its height.  Recall that

at some flows the cylinders were submerged, which added more roughness to the flow path,

outperforming the ¾ D cylinders.

Examination of the L-baffles indicated that indeed more turbulence was added to the flow

as the data become even more difficult to separate based on slope.  The performance of the L-

baffles was easier to evaluate than the cylinder baffles.  As seen in Figure 5.2.5 the data lies

along a smooth arc but in Figure 5.2.4 the data is more separated.  In conjunction with Tables

5.1.1 and 5.1.2, it becomes apparent that the ½ D L-baffle performance was more desirable than

the ¾ D.  Again the shorter height aided in reducing the velocity of the flow by adding roughness

and by increasing pressure on the lip of the L-baffle.

Finally in Figure 5.2.6 the impact angle cannot be readily noticed.  Then the addition of

the various baffles has greatly decreased the amount of energy present in the flow.  Due to

problems in the field the standard baffle was no longer a design option, but proved an excellent

model to investigate for comparison purposes.

Figure 5.2.1  Base Configuration Froude Number at Culvert Outlet vs. Non-dimensional
Energy Difference

Froude Number at Culvert Outlet vs Non-Dimensional Energy Difference for Base 
Configuration

1.5

2.0

2.5

3.0

3.5

4.0

0.60 0.65 0.70 0.75 0.80 0.85

N on- D imensio nal Energy D if f erence

2%
4%
6%
8%



125

Figure 5.2.2  ¾ D Cylinder Configuration Froude Number at Culvert Outlet vs. Non-
dimensional Energy Difference

Figure 5.2.3 ½ D Cylinder Configuration Froude Number at Culvert Outlet vs. Non-
dimensional Energy Difference

Froude Number at Culvert Outlet vs Non-Dimensional Energy 
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Figure 5.2.4 ¾ D L-baffle Configuration Froude Number at Culvert Outlet vs. Non-
dimensional Energy Difference

Figure 5.2.5 ½ D L-baffle Configuration Froude Number at Culvert Outlet vs. Non-
dimensional Energy Difference
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Figure 5.2.6 Standard Baffle Configuration Froude Number at Culvert Outlet vs. Non-
dimensional Energy Difference

Froude Number at Culvert Outlet vs Non-Dimensional Energy 
Difference for STD Baffle Configuration
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5.3 Energy Dissipation Performance Parameter

The next conclusion drawn from the experimental data in evaluation of the various baffle

configurations was the deviation from the natural energy grade line, established in Section 4.12.

It was decided to present the data in graphical and tabular form in order to draw conclusions

about the performance of each baffle configuration.  The difference between the elevation of the

natural energy grade line and the total energy, calculated in the testing channel, was non-

dimensionalized and termed the energy dissipation performance parameter, (EDPP).  The value

used to create the non-dimensional parameter was the amount the natural energy grade line

deviated from the horizontal at the center point of the testing channel, shown as E3 in Figure

5.3.1.  The values for E3 are shown for each culvert slope in Table 5.3.1.

Figure 5.3.1 Location of E3, Value for Establishing the Energy Dissipation Performance
Parameter

Table 5.3.1 Values for E3
at Given Culvert Slopes

Slope % E3 (in)
2 0.470
4 0.941
6 1.41
8 1.88

The following expression was used to determine the values for the energy dissipation

performance parameter.



129

EDPP
E E

E
F=

−2
3

(5.3.1)

Where:

EDPP= Energy Dissipation Performance Parameter
E2 = Elevation of the natural energy grade line at the culvert outlet
EF = Total energy calculated from the three-point gage at Point F
E3 = Drop in the natural energy grade line from the outlet to the testing channel

The values for the energy dissipation performance parameter were then organized for

comparison, shown in Table 5.3.2.  In Table 5.3.2, positive values, (E2>EF), indicate that the

energy in the flow has been decreased below the natural energy grade line assumption

established at the culvert outlet. Negative values indicate no effect in decreasing the energy of

the flow.

Table 5.3.2 Values for the Energy Difference Performance Parameter (EDPP)
Flow rate

(gpm)
Slope % Base

Configuration
Cylinder
Baffle 3/4

D

Cylinder
Baffle 1/2

D

L-Baffle
3/4 D

L-Baffle
1/2 D

Standard
Baffle

Energy Difference Performance Parameter
50 2 2.90 2.93 2.89 2.65 2.65 2.44
75 2 4.31 4.21 4.13 4.04 3.81 3.89
100 2 5.89 5.80 5.73 5.62 5.57 5.37
125 2 7.86 7.73 7.60 7.38 7.71 7.45
150 2 10.1 10.0 9.92 9.77 9.95 9.93
200 2 - 17.3 17.3 17.0 17.4 17.4
50 4 1.13 1.01 0.95 0.89 0.86 0.77
75 4 1.73 1.57 1.58 1.48 1.45 1.44
100 4 2.49 2.40 2.39 2.27 2.29 2.27
125 4 3.43 3.37 3.38 3.23 3.23 3.29
150 4 4.54 4.54 4.50 4.40 4.51 4.54
200 4 - 8.17 8.17 8.00 8.17 8.17
50 6 0.43 0.37 0.35 0.24 0.24 0.23
75 6 0.85 0.76 0.72 0.67 0.59 0.64
100 6 1.33 1.29 1.26 1.20 1.18 1.14
125 6 1.94 1.93 1.92 1.86 1.83 1.86
150 6 2.69 2.70 2.66 2.56 2.68 2.63
200 6 - 5.12 5.10 4.96 5.10 5.06
50 8 0.10 0.00 0.01 -0.05 -0.11 -0.10
75 8 0.38 0.31 0.32 0.22 0.21 0.19
100 8 0.72 0.71 0.71 0.64 0.68 0.61
125 8 1.14 1.20 1.19 1.12 1.14 1.11
150 8 1.59 1.78 1.77 1.71 1.74 1.72
200 8 - 3.58 3.58 3.57 3.55 3.55
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Values of EDPP between 0 and 1 indicate performance is positive but less than desired. A value

of 1 or greater indicates performance is sufficient to return the energy in the flow to that assumed

under natural conditions, or to reduce it to lower levels than under natural conditions.  Plots of

the energy dissipation performance parameter were then made for each baffle configuration,

shown in Figures 5.3.2 through 5.3.7.  Each plot shows the energy dissipation performance

parameter vs. flowrate.  These plots are very similar, but examination of Table 5.3.2 displays the

differences between each data series.  The plots were generated to display the trends similar to

each configuration.  The effectiveness of all the baffle configurations increased with flowrate and

decreases with slope.

Figure 5.3.2 EDPP vs. Flowrate for Base Configuration

Energy Dissipation Performance Parameter vs. Flowrate for Base 
Configuration
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Figure 5.3.3 EDPP vs. Flowrate for ¾ D Cylinder Baffle

Figure 5.3.4 EDPP vs. Flowrate for ½ D Cylinder Baffle

Energy Dissipation Performance Parameter vs. Flowrate for 3/4 
Cylinder Baffle 
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Figure 5.3.5 EDPP vs. Flowrate for ¾ D L-Baffle

Figure 5.3.6 EDPP vs. Flowrate for ½ D L-Baffle

Energy Dissipation Performance Parameter vs. Flowrate for 
3/4 L Baffle
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Figure 5.3.7 EDPP vs. Flowrate for Standard Baffle

Energy Dissipation Performance Parameter vs. Flowrate for 
Standard Baffle
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Conclusions and Recommendations
Based on the results presented in Sections 5.1 through 5.3, the baffle configuration that

best satisfied the established criteria was the ½ diameter L-baffle.  The ½ diameter L-baffle gave

the best overall performance while meeting economic goals.  The effectiveness of this

configuration was closest to the standard baffle configuration, without the standard baffle’s

negative aspects.  The sedimentation characteristics were examined by allowing small diameter

stones to travel down the test culvert and across the culvert apron, no significant sedimentation

was detected.  The ½ diameter L-baffle would be easy to construct with standard forms. Steel

stock could be cut to produce the ¼ diameter lip and fastened in place with standard bolting

devices.  The wingwalls were extended along the apron to contain any lateral flow from the

baffle.  The material needed for the construction of the L-baffle design should be no more than

that needed for the standard baffle design.

Figure 6.1 Front View of L-Baffle Dissipator

Downstream of the dissipator, the requirements of returning natural stream conditions were met.

In winter conditions the baffle would have little to zero icing effects on nearby roadways, since

vertical spray was eliminated by the lip of the baffle.  Figures 6.1 and 6.2 show the dimensions
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for the L-baffle based on culvert diameter.  The dimensions of the culvert apron remain

unchanged from the current design. (refer to Table 1.3.1.)

Figure 6.2 Profile View of L-Baffle Dissipator

Since this research was a preliminary investigation of culvert outlet baffle block

geometry and energy dissipation, further research is needed to provide a better understanding of

this baffle configuration.  A large portion of the time available for this project was used in the

development of the testing flume.  Further investigation of the L-baffle configuration could

include:

- Further analysis of error associated with the testing flume

- Larger range of culvert slopes

- Greater accuracy measuring velocities and depths (Laser Doppler Anemometer)

- Longer testing channel to allow for better establishment of uniform flow

- Construction of a non-rigid downstream bed to examine scour characteristics

- Examination of full scale prototype in the field
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The above areas of interest are suggestions to create a better understanding of the flow

characteristics of the L-Baffle configuration.  Upon the completion of this thesis the WVDOH

will construct the full-scale prototype, possibly on the Corridor H project, where further analysis

of the L-baffle configuration can begin.   A conceptual view of the new design is shown in

Figure 6.3.

Figure 6.3  ½ Diameter L-Baffle Right Isometric View
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