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ABSTRACT

Kriging-Based Design of Experiments for Multi-Source

Exposure-Response Studies in Nanotoxicology

Ying Pei

One of the main challenges with toxicology studies of nanomaterials(NMs), compared

to traditional materials or chemicals, lies in the large variety of NMs with various physico-

chemical properties. This work is concerned with the efficient design of multi-source biologi-

cal experiments for the toxicity characterization of NMs in terms of their exposure-response

profiles. The major contribution of this thesis is the development of a two-stage experi-

mental design procedure based on the statistical model, stochastic kriging with qualitative

factors (SKQ). With a given experimental budget, the SKQ-based design method aims at

achieving the highest-quality SKQ, which synergistically models the exposure-response data

from multiple sources (e.g., NM types). The method determines the experimental design

(that is, the sampling location as well as allocation) in such a way that the resulting sam-

pling data allow SKQ to realize its maximum potential to pool information across multiple

sources for efficient modeling. Built in a two-stage framework, which enables a learning

process of the target exposure-response relationships, the SKQ-based design procedure also

inherits the general advantages of stochastic kriging in the sense that the design is particu-

larly tailored to model the possibly nonlinear and complex relationships and heterogeneous

data variances. Through simulation studies, the efficiency of the SKQ-based procedure for

multi-source experiments is demonstrated over two alternative design methods.
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Chapter 1

Introduction

With the rapid development of nanotechnology, nanomaterials (NMs) find increasing

applications in energy [1, 2], biomedicine [3, 4, 5], and environment [6, 7, 8, 9]. The produc-

tion, use, and disposal of NMs inevitably lead to their appearance in air, water, soils, etc.,

and hence raise the safety, health, and environmental concerns of NMs. For the safe and

sustainable development of nanotechnology, the risk assessment of NMs plays a critical role.

One of the most fundamental steps in assessing the risk of a NM (or any other

substance) is to characterize the NM by its exposure-response profile [10, 11], which describes

the dependence of the adverse bioactivity effects (the responses) upon the NM exposure

conditions [12]. The exposure condition is typically specified through the settings of two

factors: the NM dosage and the time factor involved (e.g., post-exposure time for acute

studies). To obtain the characteristic profile of a NM, biological experiments need to be

performed at different exposure conditions to observe the corresponding bioactivity responses

of animals. Such biological experiments are extremely expensive and time-consuming, and

the particular challenge with the exposure-response studies of NMs, compared to traditional

materials or chemicals, lies in the large NM variety caused by their various physico-chemical

properties (e.g., chemical compositions, shape, size, and surface chemistry).

How to design exposure-response experiments across multiple sources (i.e., determine

the experimental exposure conditions for each type of NMs and the sample allocations),

for the efficient utilization of limited resources? To address this question, a kriging-based

design of experiments (DOE) procedure is developed in this thesis. The DOE method is
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built upon the stochastic kriging with qualitative factors (SKQ) model developed in [13].

Thus, it inherits the advantages of SKQ such as high flexibility and generality, and seeks

to generate a design that allows SKQ to realize its maximum efficiency in modeling multi-

source data. Specifically, the SKQ-based DOE aims at designing multi-source experiments

to obtain a most informative data ensemble across multiple sources. The data ensemble is

most informative in the sense that when being synergistically modeled by SKQ, information

will be pooled from all the data sources leading to the highest-quality model (e.g., exposure-

response model) for each source (e.g., NM type). When the target relationships are nonlinear

or there is variance heterogeneity in the data, both of which are commonly encountered

in nanotoxicology studies, the optimal design that optimizes the model estimation quality

is dependent on the true underlying response surfaces and variance patterns, which are

unknown. To circumvent this problem, the DOE procedure employs a two-stage paradigm:

In the first stage, some preliminary experiments are carried out, on which SKQ modeling

is performed to derive information regarding the target relationships and data variance; in

the second stage, the information obtained from the previous stage is utilized to guide the

Stage-2 design, which aims at optimizing the quality of the SKQ models fitted from both

stages of data for the target response surfaces.

The SKQ-based two-stage design method represents a new addition to the existing

literature of experimental design, which can be generally divided into two groups: model-

independent versus model-based designs. In these two groups, the design methods most

relevant to the current study are briefly reviewed in the following. Both “naive” designs

commonly used by biology experimenters and space-filling designs [14, 15] fall into the cat-

egory of model-independent designs, which have no bearing on the models for the target

response surfaces. In the current DOE practice for toxicology studies, “naive” designs are

generated based on empirical experiences in a somewhat arbitrary manner [16, 17]. They

usually involve equally-spaced levels (on a linear or log scale) in dose and/or time range, and

the same design is typically adopted across multiple sources (e.g., NM types). A space-filling
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design seeks to provide an even coverage of the design regions of interest. In particular, in

the presence of multiple sources, sliced space-filling designs [18, 19] have been developed. In

contrast to disregarding the target response surfaces, model-based designs aim at optimiz-

ing the quality of the resulting estimated models for the target surfaces. Since our design

method is based on SKQ, a kriging model, we focus on reviewing kriging-based designs.

Depending on whether or not the response is stochastic, there is deterministic kriging (DK)

versus stochastic kriging (SK), based on which respective design methods have been devel-

oped. The majority of the work has been on DK-based designs [20, 21, 22, 23, 24], which

only need to determine the location of design points with one sample assigned to each point.

Some research efforts have been devoted to SK-based designs [25, 26], which determine not

only the design-point locations but also the sample size at each point; such SK models the

effects of quantitative factors only. As pointed out in Wang et al. [13], SKQ represents the

kriging model that models the variability across replications (randomness in responses) and

the variability arising from quantitative as well as qualitative factors (e.g., source factors).

Accordingly, our SKQ-based design method utilizes the information regarding the target

response surfaces and the variance structures to find the design (that is, the design-point

locations and sample allocations) for multi-source experiments that leads to the fitted SKQ

model of the highest quality.

The remainder of this thesis is organized as follows. Chapter 2 describes in precise

terms the problem of designing multi-source experiments for exposure-response studies. A

brief review of SKQ and its advantages is given in Chapter 3. The SKQ-based two-stage

design procedure is detailed in Chapter 4. In chapter 5, the design procedure is applied

into two cases and its efficiency is illustrated via comparison with two other DOE methods:

the “naive” design commonly used in toxicology studies and a space-filling design in the

DOE literature. Chapter 6 summarizes the SKQ-based two-stage design procedure and its

advantages.
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Chapter 2

Statement of the Research Problem

For the exposure-response studies of an NM, biological experiments need to be carried

out under a range of experimental conditions. An experimental condition is defined by the

combination of a number of factors, which can be divided into two categories, quantitative

and qualitative factors.

• Quantitative factors typically include but are not limited to the toxicant dosage ad-

ministered to an animal, and the time factor. Depending on the time scope of the

toxicology study, the time factor could be exposure time for long-term studies, or post-

exposure time for acute studies. The vector x is used to represent the quantitative

factors considered.

• Qualitative factors mainly include the various source factors such as the NM type,

the conducting laboratory for experiments. The qualitative factors are denoted by the

vector z.

The experimental condition is specified in terms of the factor vector w = (x>, z>)>.

The random response obtained from an animal subject at a w can be generally written as

Y(w) = E[Y(w)] + ε(w) = Y(w) + ε(w), (2.1)

where Y(w) = E[Y(w)] represents the true expected response, and ε(w) the random zero-

mean error accounting for the variability across animal subjects.
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A setting of the qualitative factors z specifies a combination category, say cq, repre-

senting one source of data. The total of Q data sources specified by the categories of z are

denoted as {cq; q = 1, 2, . . . , Q}. The biological data collected at a range of w settings are

represented as

{(wi,Yj(wi)); i = 1, 2, . . . , I; j = 1, 2, . . . , n(wi)} (2.2)

where I denotes the number of distinct design points (i.e., factor setting at which experiments

are performed), wi the ith design point, Yj(wi) the response from the jth replication at wi,

and n(wi) the number of replications performed at wi.

The goal of DOE is to determine the location of design points {wi; i = 1, 2, . . . , I}

and the sample allocation {n(wi); i = 1, 2, . . . , I} to achieve the maximum experimental

efficiency.
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Chapter 3

Review of Stochastic Kriging with Qualitative Factors(SKQ)

The DOE method in this work is developed based on the SKQ modeling of multi-

source data. Hence, a brief review of the SKQ developed in Wang et al. [13] is provided

herein. As pointed out in Wang et al. [13], SKQ is the first kriging model that is able to

accommodate the variability arising from quantitative as well as qualitative factors, and the

variability across replications.

SKQ models the dependence of a continuous response upon the factors w = (x>, z>)>,

with x = (x1, x2, . . . , xd)
> ∈ Rd and z = (z1, z2, . . . , zL)>. There are L qualitative factors,

and each factor z` (` = 1, 2, . . . , L) has a number of category levels. The response at w from

the jth replication (animal subject) is modeled by SKQ as

Yj(w) = Y(w) + εj(w) = f(w)>β + M(w) + εj(w), (3.1)

The expectation Y(w) consists of two parts: f(w)>β and M(w). f(w) is a vector of known

functions of w, and β a vector of unknown parameters of compatible dimension. In this work,

we set f(w)>β = β0, which has been widely accepted as sufficient for most applications. The

term M(w) represents a mean-zero stationary Gaussian process, and intends to capture the

variability due to the factors w, which is referred to as the extrinsic variability.

The intrinsic variability refers to the randomness of ε(w). The random noise

{εj(w); j = 1, 2, . . .} at w is assumed to have mean zero, and be independent and identically

distributed (i.i.d.) across replications. The error variance Var[ε(w)] can be w-dependent.
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With the sample data (2.2), the sample average of the responses at wi across the

n(wi) replications is obtained as

Ȳ(wi) =
1

n(wi)

n(wi)∑
j=1

Yj(wi) = β0 + M(wi) +
1

n(wi)

n(wi)∑
j=1

εj(wi).

For I distinct design points, the I × 1 vector of sample averages is denoted as

Ȳ =
(
Ȳ(w1), Ȳ(w2), . . . , Ȳ(wI)

)>
. (3.2)

The vector of sample average errors is represented as

ε = (ε̄(w1), ε̄(w2), . . . , ε̄(wI))
> , (3.3)

with ε̄(wi) = n(wi)
−1∑n(wi)

j=1 εj(wi), i = 1, 2, . . . , I.

The extrinsic variability is modeled in SKQ by M(w), which is specified by its covari-

ance

Cov[M(w),M(w′)] = σ2 · Corr[M(w),M(w′)] = σ2 ·

[
L∏
`=1

τ
(`)

z`,z
′
`

]
·K(x,x′), (3.4)

where σ2 is the variance of the Gaussian process. The correlation Corr[M(w),M(w′)] is

decomposed into two parts:
∏L

`=1 τ
(`)

z`,z
′
`

and K(x,x′). For the estimation of a SKQ, specific

functional forms need to be assumed for both parts. The correlation across the quantitative

settings is represented by K(x,x′), for which a range of functional forms are provided in the

literature [27, 28]. A most widely-adopted function is the exponential correlation function

K(x,x′) = exp

{
d∑

h=1

−θh|xh − x′h|p
}
, (3.5)
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where θ = (θ1, θ2, . . . , θd) is a vector of unknown parameters. It is required that θh > 0 (h =

1, 2, . . . , d), and θ determines the roughness of the response surface for a given combination

category of z. The parameter p ∈ (0, 2] also needs to be estimated unless p is pre-specified

as 2, [29]. In (3.4), the term
∏L

`=1 τ
(`)

z`,z
′
`

models the correlations across different categories of

qualitative factors. As noted in Qian et al.[28], τ
(`)

z`,z
′
`

measures the correlation (similarity) at

any two settings w and w′ that differ only on the values of the `th qualitative factor. For

τ
(`)

z`,z
′
`
, a range of functional forms have been proposed in Qian et al. [28] and Zhou et al. [30].

In this paper, we use the exchangable correlation function as follows.

Exchangeable correlation functions (EC):

τ
(`)

z`,z
′
`

= exp{−φ(`)I(z` 6= z′`)}; ` = 1, 2, . . . , L (3.6)

In (3.6), Φ = {φ(`); ` = 1, 2, . . . , L} represents the set of unknown parameters to be esti-

mated; and I[A] is an indicator function that takes 1 if event A is true and 0 otherwise.

Clearly, EC assumes that all the category levels of the `th qualitative factor are of isotropic

nature; that is, for a given `, τ
(`)

z`,z
′
`

is a constant as long as z` 6= z′`.

Given the data (2.2) collected at I distinct design points, the I×I variance-covariance

matrix ΣM is defined as

ΣM = σ2 ·R(θ,Φ) =

σ2 ·

 1 Corr[M(w1),M(w2)] ··· Corr[M(w1),M(wI)]
Corr[M(w2),M(w1)] 1 ··· Corr[M(w2),M(wI)]

...
...

...
...

Corr[M(wI),M(w1)] Corr[M(wI),M(w2)] ··· 1,

 (3.7)

where R(θ,Φ) denotes the correlation matrix with each element representing a correlation.

Each element correlation can be decomposed into two parts as explained above, and involves

the unknown parameters θ and Φ. For an arbitrary w0, the I×1 vector ΣM(w0, ·) is defined
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as

ΣM(w0, ·) = σ2v(w0,θ,Φ) = σ2



Corr[M(w0),M(w1)]

Corr[M(w0),M(w2)]

...

Corr[M(w0),M(wI)]


, (3.8)

with v(w0,θ,Φ) being a correlation vector involving w0, θ and Φ.

Denote Σε as the I × I variance-covariance matrix of vector ε defined in (3.3). With

i.i.d. random errors, Σε is a I × I diagonal matrix

Σε =diag{Var[ε(w1)]/n(w1),Var[ε(w2)]/n(w2),

. . . ,Var[ε(wI)]/n(wI)}. (3.9)

For a data set (2.2), the SKQ estimation and inference procedure in Wang et al. [13]

is summarized as follows.

1. Estimate Σε as:

Σ̂ε =diag{V̂ar[ε(w1)]/n(w1), V̂ar[ε(w2)]/n(w2),

. . . , V̂ar[ε(wI)]/n(wI)} (3.10)

where

V̂ar[ε(wi)] =
1

n(wi)− 1

n(wi)∑
j=1

(
Yj(wi)− Ȳ(wi)

)2
, i = 1, 2, . . . , I . (3.11)
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2. Replace Σε by Σ̂ε in the maximum likelihood (ML) function(3.12), and obtain the ML

estimates (β̂0, σ̂
2, θ̂, Φ̂), which fully specify the SKQ model.

lnL(σ2,θ,Φ) = − ln[(2π)I/2]− 1

2
ln[|σ2R(θ,Φ) + Σ̂ε|]

− 1

2
(Ȳ − β̂0(σ2,θ,Φ)1I)

>[σ2R(θ,Φ) + Σ̂ε]
−1(Ȳ − β̂0(σ2,θ,Φ)1I), (3.12)

3. For an arbitrary w0, the expected response Y(w0) can be estimated by

Ŷ(w0) = β̂0 + v(w0, θ̂, Φ̂)>[σ̂2R(θ̂, Φ̂) + Σ̂ε]
−1(Ȳ − β̂01I), (3.13)

The mean squared error (MSE) of Ŷ(w0) is obtained as:

M̂SE[Ŷ(w0)] =σ̂2 − σ̂4v(w0, θ̂, Φ̂)>[σ̂2R(θ̂, Φ̂) + Σ̂ε]
−1v(w0, θ̂, Φ̂)

+ η2(1>I [σ̂2R(θ̂, Φ̂) + Σ̂ε]
−11I)

−1, (3.14)

where η = 1− 1>I [σ̂2R(θ̂, Φ̂) + Σ̂ε]
−1v(w0, θ̂, Φ̂)σ̂2.
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Chapter 4

SKQ-Based Two-Stage Design Procedure

A SKQ-based two-stage procedure is developed to determine the design

{wi, n(wi); i = 1, 2, . . . , I} for multi-source experiments. The pre-specified inputs required

by the procedure are given as follows.

• N : the total number of samples (animals) available, which depends on the experimental

budget.

• N1: the number of samples assigned to Stage 1, which implies that the Stage-2 sample

size is N −N1. It is recommended to set N1 as 1/4− 1/2 of N [31].

• H: the feasible space of the variable vector w. H includes Q slices (Q sources) of the

region χ, denoting the feasible region of the quantitative vector x.

• I: the total number of distinct design points to be assigned. In biological experiments,

it is typical to assign at least three samples to a design point, and thus I ≤ N/3. Also,

I is recommended to be set at least about ten times the dimension of χ [32], to provide

an adequate coverage of the region χ.

An overview of the SKQ-based two-stage procedure is briefed as follows. In Stage 1,

N1 pilot experiments are performed following the initial design, which will be discussed in

Section 4.1. Based on the preliminary data, two kriging models will be fitted: (i) One quan-

tifies the dependence of the expected response Y(w) on w, and (ii) the other approximates

the variance Var[Y(w)] as a function of w. In Stage 2, the information contained in the two

fitted SKQ models is utilized to design the remaining N −N1 samples. The follow-up design
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aims at optimizing the quality of the resulting response surfaces (exposure-response surfaces

for multiple sources) estimated from both stages of data.

4.1 Initial Design and Preliminary Modeling

At Stage 1, N1 samples are to be allocated. Denote the initial design as

D1 =

 w1 w2 · · · wI1

n1 n2 · · · nI1

 (4.1)

where I1 is the number of distinct experimental conditions w.

Given the sample size N1, the initial design (4.1) is determined as follows. At this

initial stage, ni is set as n for i = 1, 2, . . . , I1, with absent information on the variance

pattern. The value of n is specified by the experimenter based on her experience of biological

experiments with NMs, which is typically done to determine a naive design in the current

practice. The number of distinct design points I1 is then calculated as I1 = N1/n. The I1

sampling points will then be allocated to the multiple slices (sources) of the quantitative

region χ. The purpose of the initial design is to provide a fair coverage of the design space

to gain some information on both the target surfaces and the variance structure throughout

the multi-slice design regions. Hence, we adopt the Sliced Latin Hypercube Design(SLHD)

[18] to determine the locations of the design points. SLHD is a special space-filling design

that can be partitioned into slices of smaller Latin hypercube designs (LHD). Each slice of

the design achieves maximum uniformity in any one-dimensional projection, and provides an

even coverage of χ for each slice (source). When collapsed across the slices, all the sampling

points in χ have the maximum stratification in any one-dimensional projection.

From the initial data, which are denoted as {(wi,Yj(wi)); i = 1, 2, . . . , I1; j =

1, 2, . . . , n(wi)}, two preliminary models will be estimated. First, the SKQ estimation (Chap-

ter 3) will be performed quantifying the relationship between the expected response Y(w)
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and w (that is, the multiple response surfaces across sources). Second, deterministic krig-

ing [33] will be carried out based on the data pair {(wi, V̂ar[ε(wi)]); i = 1, 2, . . .}, where

V̂ar[ε(wi)] represents the sample variance as calculated in (3.11). The second kriging model

approximates Var[ε(w)] as a function of w. These two kriging models, which contain the

target surface and variance information derived from the initial data, will be utilized to guide

the follow-up design in Stage 2.

4.2 Design Augmentation

At Stage 2, the task is to determine the design for the N2 = N −N1 samples, which are to

be allocated to I2 = I − I1 distinct design points. The Stage-2 design is denoted as

D2 =

 wI1+1 wI1+2 · · · wI

nI1+1 nI1+2 · · · nI

 , (4.2)

and is determined in such a way that the quality of the final SKQ, fitted from both stages

of data D = D1

⋃
D2 to model the multi-source response surfaces, is optimized.

The quality of a model can be measured by a range of metrics [26] such as the

integrated mean squared error(IMSE), the comparison index based criterion(Comp), etc.

An appropriate performance measure can be selected depending on the modeling purpose.

Herein, as an example, the integrated mean squared error (IMSE) is used as the design

criterion, and the design optimization problem in Stage 2 can be formulated as:

MinimizeD(2) IMSE =
∑
cq

∫
x0∈χ

MSE[Ŷ(x0)]dx0 (4.3)

Subject to
I∑

i=I1+1

ni = N2, (4.4)

where I1, I, and N2 are all predetermined parameters. The objective criterion IMSE rep-

resents the integration of MSE[Ŷ(w0)], the MSE of the response estimates Ŷ(w0) over the
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feasible region of H; and the estimate Ŷ(w0) at an arbitrary w0 is provided by the SKQ

model fitted from both stages of data following the design D = D1

⋃
D2.

How is the criterion IMSE related to the design D? Recall that for a fitted SKQ

model, the MSE of the response estimates MSE[Ŷ(w0)] can be estimated as (3.14), which is

re-written as follows for convenience of discussion:

M̂SE[Ŷ(w0)] =σ̂2 − σ̂4v(w0, θ̂, Φ̂)>[σ̂2R(θ̂, Φ̂) + Σ̂ε]
−1v(w0, θ̂, Φ̂)

+ η2(1>I [σ̂2R(θ̂, Φ̂) + Σ̂ε]
−11I)

−1, (4.5)

where η = 1− 1>I [σ̂2R(σ̂, Φ̂) + Σ̂ε]
−1v(w0, θ̂, Φ̂)σ̂2.

As can be seen from (4.5), an MSE (and hence the IMSE) depends on three items: the

SKQ parameters (β0, σ
2,θ,Φ) for the target response surfaces, which have been estimated

from Stage 1 and can be plugged into (4.5); the variance model specifying the relationship

between Var[ε(w)] and w, which have been estimated from Stage 1 as well; and the design

D = D1

⋃
D2, with D1 given from Stage 1 and D2 to be determined via the optimization.

More specifically, in (4.5), both R(θ̂, Φ̂) and v(w0, θ̂, Φ̂), which are defined in (3.7) and

(3.8) respectively, depend on the design D and the SKQ parameters (β0, σ
2,θ,Φ). The

diagonal variance matrix Σ̂ε, which is defined in (3.9), has each element as Var[ε(wi)]/n(wi),

i = 1, 2, . . . , I, and is dependent on D; the functional dependence of Var[ε(w)] upon w has

been approximately established by the variance model.

Hence, for a candidate design of D2, the corresponding IMSE criterion can be eval-

uated based on the prior obtained estimates for (β0, σ
2,θ,Φ), the variance model, and D1

determined in Stage 1. This evaluation ability provides the necessary basis to perform a

numeric search for the optimal values of D2.

Solving (4.3) is challenging due to the high dimension of the decision variables involved

in D2 (4.2), and the integer nature of ni (i = I1 +1, I1 +2, . . . , I). We approach this problem
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by utilizing the approximate relationships between the optimal values of {n(wi); i = 1, 2, . . .}

and the given design locations {wi; i = 1, 2, . . .}, and by an iterative procedure.

Given the remaining sample size N2 , the first stage design D1 and the design-point

locations of the second stage {wi; i = I1+1, I1+2, . . . , I}, the values of {n(wi); i = I1+1, I1+

2, . . . , I} that minimize the IMSE of the SKQ model, which is fitted from the N -sample data

following the design {(wi, n(wi)); i = 1, 2, . . . , I}, can be approximated as:

ni ≈ N2

√
ViCi∑I

j=1

√
VjCj

. (4.6)

The detailed derivation is given in Appendix A. In (4.6), Vi is the intrinsic variance, and

Ci = [Σ−1M WΣ−1M ]ii, W is the I × I matrix with elements Wij =
∑
cq

∫
x0∈χ r0ir0jdx0 and

r0i = Corr[M(wi),M(w0)].

Utilizing (4.6), the iterative procedure is developed as follows to solve the design

optimization (4.3).

Inputs: (a) D1, the Stage-1 design;

(b) The SKQ model fitted from the Stage-1 data approximating the target multi-

source response surfaces;

(c) The kriging model fitted from the Stage-1 data approximating the random error

variance as a function of w.

Step 0: Set ni ≈ N2

√
ViCi∑I

j=1

√
VjCj

for i = I1 + 1, I2 + 2, . . . , I; solve (4.3) w.r.t. {wi; i =

I1 + 1, I1 + 2, . . . , I}.

Step 1: Fix {wi; i = I1 + 1, I1 + 2, . . . , I} at its most recently-obtained values, and solve

(4.3) w.r.t. {n(wi); i = I1 + 1, I1 + 2, . . . , I}.

Step 2: Fix {n(wi); i = I1 + 1, I1 + 2, . . . , I} at its most recently-obtained values, and solve

(4.3) w.r.t. {wi; i = I1 + 1, I1 + 2, . . . , I}.

15



Step 3: Repeat Step 1-2 until there is no significant changes in {wi; i = I1 +1, I1 +2, . . . , I}

or {n(wi); i = I1 + 1, I1 + 2, . . . , I}.

Through the iterative procedure, the size of the optimization problems to be solved

is reduced by half. In our empirical experience, it sufficed to perform one round of Steps 1-2

to achieve convergence in D2. The global genetic algorithm (GA) in Matlab is employed to

solve the optimization problems involved in this procedure.
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Chapter 5

Empirical Studies

In this chapter, the SKQ-based two-stage design procedure is statistically evaluated

and compared to two other design methods: the traditional design and space-filling design

through two empirical case studies.

Case 1: A multi-source dose-time-response case with two quantitative factors and one

qualitative factor.

Case 2: A multi-source dose-response case with one quantitative factor and one qualitative

factor.

The evaluation of a statistical method such as the design procedure requires the avail-

ability of the true target relationships(e.g., the true dose-time-response and dose-response

surfaces) as a benchmark and an extremely large amount of validation data, and thus is

usually performed based on simulation, as opposed to real experiments. A simulation model

includes the true benchmark as part of the model, and can be used to generate data that

reflect any important features of real data via computer experiments [34].

5.1 Case 1

This case is derived from the toxicology study of TiO2 NMs performed in Porter et al. [35].

The experimental condition is defined by two quantitative factors x = (x1, x2), and one

qualitative factor z. The TiO2 dosage administered to an animal is denoted by x1, with x1 ∈

[0, 15]µg; and the post-exposure time is denoted by x2, with x2 ∈ [1, 112] days. The factor z
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has two categories (sources) {c1, c2}, corresponding to the two different shapes of NMs: c1

for short and c2 for long TiO2 nanobelts. Thus, the experimental condition is specified by

the factor vector w = (x>, z)>, and the response of interest is BAL (bronchoalveolar lavage)

PMNs measured in the units of 103/mouse.

5.1.1 Simulation Model

A simulation model is developed to generate dose-time-response data mimicking the real

experimental data in the TiO2 toxicology study described above.

The simulation model is specified as follows. The true expected dose-time-responses

for the two sources (short and long nanobelts) are represented as {Y(x, c1),Y(x, c2)}, with

specific expressions given as Model (5.1-5.2):

Y(x, c1) = 67.55 +
0.14

exp (−12.85 + 0.41x1 + 0.06x2)
+

−33.23

exp (−1.39 + 0.12x1 − 0.02x2)

+
−0.08

exp (−8.57 + 1.22x1 − 0.2x2)
+

−76.00

exp (−0.21 + 0.06x1 − 0.01x2)

+
−3.49

exp (−0.40 + 0.20x1 − 0.04x2)
+

−76.99

exp (−0.51− 0.05x1 + 0.03x2)

+
5.15

exp (−5.52 + 0.16x1 + 0.04x2)
+

−0.03

exp (−25.89 + 2.99x1 + 0.28x2)

+
32.77

exp (−0.62 + 0.05x1 + 0.03x2)
+

1.09

exp (5.76 + 0.26x1 − 0.07x2)
(5.1)

Y(x, c2) = 71.74 +
−104.84

exp (−0.66 + 0.09x1 − 0.02x2)
+

−1.18

exp (7.66− 0.45x1 − 0.01x2)

+
0.04

exp (28.01− 3.62 + 0.24x2)
+

−4.50

exp (5.02− 0.16x1 − 0.04x2)

+
82.50

exp (0.74 + 0.04x1 − 0.03x2)
+

−27.73

exp (0.83 + 0.13x1 − 0.02x2)

+
35.84

exp (−1.18 + 0.04x1 + 0.03x2)
+

−13.58

exp (−0.85− 0.18x1 + 0.03x2)

+
−2.61

exp (0.32− 0.27x1 + 0.01x2)
+

2.59

exp (−8.86− 0.05x1 + 0.08x2)
. (5.2)
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The error variance is dependent on w and the true variance models are given as:

Var[ε(x, c1)] = (0.33Y(x, c1)
0.26)

2
(5.3)

Var[ε(x, c2)] = (0.77exp(Y(x, c2)× 0.0076)2 (5.4)

For an arbitrary subpopulation cq(q = 1, 2) and at an exposure level x0, a random

response y0 is simulated as

y0 = Y(x0, cq) +
√

Var[ε(x0, cq)] · ε; q = 1, 2 (5.5)

where ε is a random error provided by a standard normal random generator[34].

The above simulation models are blind in applying the two-stage procedure. They

only serve two purposes in this study. First, they are used to generate dose-time-

response data via computer experiments. Second, the true expected response surfaces

{Y(x, c1),Y(x, c2)}, which are part of the simulation model, provide the true benchmark

to evaluate the SKQ model fitted from data following a certain design, and hence to com-

pare different design methods in terms of their efficiency.

5.1.2 Applying the Two-Stage Procedure

By using the simulation model (5.1.1) as the sampling approach for data generation, we ap-

plied the SKQ-based two-stage procedure to design and model the multi-source experiments

for the TiO2 toxicity study.

The inputs of the procedure (listed at the beginning of Chapter 4) are given as follows

for this case: N = 240; N1 = 120; Q = 2; χ = [0, 15]× [1, 112]; I = 24.

Stage 1: A total of N1 = 120 samples are allocated to the initial stage. The number

of replications at each design point is selected to be 10, and thus the number of distinct

design points is I1 = 12. The locations of these 12 points are determined by applying SLHD

to the two slices of region χ. A realization of the SLHD space-filling design is plotted as

19



stars in Figure 5.1(a) and (b), with the number next to each star or dot representing the

number of replications assigned to that design point. Each of the two sources (short and

long nanobelts) has been assigned 6 points.
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(a) c1: Short TiO2 nanobelts
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(b) c2: Long TiO2 nanobelts

Figure 5.1: The two-stage experimental design: the stars denote the Stage-1 design points
and the dots denote the Stage-2 design points.

Thus, the Stage-1 design D1 consists of 12 points (stars in Figure 5.1) with 10 replica-

tions assigned to each point. At each distinct design point, Model (5.5) is used to generate 10

i.i.d. random responses. The initial data set is denoted as {(wi,Yj(w)); i = 1, 2, . . . , 12; j =

1, 2, . . . , 10}, on which normalization is performed so that both the quantitative factors and

responses fall within the range of [0, 1]. Based on the initial data, two models are fitted:

The fitted SKQ model Ŷ(w) approximating the two target dose-time-response surfaces is ob-

tained by applying the SKQ estimation procedure (Chapter 3). The variance model V̂ar(w)

is fitted from the sample variance data {(wi, V̂ar[ε(w))]; i = 1, 2, . . . , 12} via deterministic

kriging.

Stage 2: N2 = N−N1 = 120 samples are to be allocated to I2 = I−I1 = 12 distinct

design points. The location of these 12 design points and the sample allocation are obtained

by solving the design optimization problem (4.3) using the iterative procedure in Section 4.2.

The inputs needed for the iterative procedure have been obtained from Stage 1: the Stage-1
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design D1, the SKQ model Ŷ(w) and the variance model V̂ar[w] that are both fitted from

the Stage-1 data.

The design points obtained from the design optimization for Stage 2 are plotted as

dots in Figure 5.1(a) and (b), with the number next to each dot representing the sample

size assigned to that design point. Among the 12 design points, 5 are assigned to the short

nanobelts, and 7 to the long nanobelts. The samples are not evenly distributed to the 12

design points: the points with higher error variance tend to have more replications assigned

to them.

Following the Stage-2 design, a new batch of experiments are carried out. From the

two stages of data, SKQ will be performed to simultaneously model the exposure-response

surfaces for both short and long TiO2 nanobelts.

It is worthy of noting that the outcome (the resulting two-stage design, sample data

and fitted SKQ from both stages of data) of applying the two-stage procedure is random:

The stars in Figure 5.1 represent one possible SLHD space-filling design in the two slices of

region χ; the Stage-2 design is dependent on both the design and randomly sampled data

in Stage 1; the final SKQ model is fitted from the randomly sampled data following the

two-stage design.

It is important to point out that the outcome of applying the improved two-stage

design above only represents one possible optimal design under the certain design criterion.

Due to the random nature of responses, reapplying the procedure will lead to a different stage

I design which will change the following stage II design results. Considering the randomness,

a total of 200 macro-replications will be run to get an average for comparison results.

5.1.3 Evaluation and Comparison

Due to the stochastic nature of its outcome, the SKQ-based design procedure is statistically

evaluated and compared to the other two design methods based on large macro-replications.
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The two alternative design methods are described as follows. (i) The traditional

design includes 12 evenly-spaced sampling points (Figure 5.2) in the dose-time region for

each of the two sources. Ten replications are assigned to each design point, with a total

sample size of 12 × 2 × 10 = 240. (ii) The SLHD space-filling design is performed with 24

distinct design points assigned to the two slices of dose-time region, and the total sample size

is also 240 with 10 replications at each point. An example of the generated SLHD design is

given in Figure 5.3, with the triangles representing the design points for the short nanobelts,

and the squares those for the long nanobelts. Clearly, all three design methods have the

same sample budget.
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Figure 5.2: The design points in the dose-time region for each source (short or long nanobelts)
in the traditional design

For each design method, M = 200 macro-replications (that is, independent applica-

tions of the method) have been performed as follows.

Step 0: Initialize the index m = 1.

Step 1: Apply the design method and follow the design to carry out the experiments; based

on the collected data, fit the SKQ model approximating the exposure-response surfaces

for both short and long nanobelts; denote the fitted SKQ as Ŷ
(m)

(w).

22



0 3 6 9 12 15
1

22

44

66

88

112

x1 : TiO2 Dose (ug/mouse)

x
2
:P
o
st
-e
x
p
o
su
re

ti
m
e
(D

a
y
s)

Figure 5.3: The design points of both sources in space-filling design: triangles denote the
design points for short nanobelts and squares denote the design points for long nanobelts

Step 2: Evaluate the goodness of Ŷ
(m)

(w) by calculating the estimated root mean squared

error (ERMSE)

ERMSE(m)(Ccq) =

√√√√ 1

#[Ccq ]
∑

w∈Ccq

(
Ŷ
(m)

(w)− Y(m)(w)
)2

; q = 1, 2 (5.6)

In (5.6), Ccq represents the collection of 8,456 check points in the dose-time region for

short (q = 1) or long (q = 2) nanobelts. These check points are evenly-spaced dense

grids in the dose-time region. #[Ccq ] denotes the total number of check points in the

set Ccq , and is equal to 8,456 for both q values. ERMSE measures the average deviation

of Ŷ(·) from its true correspondence Y(·) at the check points in C. The true value Y(·)

is available from the simulation model (5.1.1).

For each design method, {ERMSE(m)(Cc1);m = 1, 2, . . . , 200} and

{ERMSE(m)(Cc2);m = 1, 2, . . . , 200} are obtained from 200 macro-replications, and

used to generate the two box plots for short (c1) and long (c2) nanobelts respectively.

Figure 5.4 includes the two box plots for each of the three design methods. In comparison,

the boxes of our two-stage procedure are the lowest, illustrating its best performance in
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terms of ERMSE among the three methods; the boxes are relatively narrow showing that

the two-stage procedure leads to consistently low ERMSE. The ERMSE performance of

the space-filling design is quite unstable, with the two widest boxes. The ERMSE of the

traditional design is consistently high, corresponding to the highest and narrowest boxes in

the figure.
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(a) c1: Short TiO2 nanobelts
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(b) c2: Long TiO2 nanobelts

Figure 5.4: The two box plots for each of the three design methods

5.2 Case 2

This case is constructed based on the dose-response study of ZnO engineered nanomate-

rial(ENM) performed by Tian et al.[36]. There is one quantitative factor x representing the

ZnO concentration with x ∈ [0, 50]µg/mL and one qualitative factor z with six categories

{c1, c2, c3, c4, c5, c6}. Each category corresponds to a laboratory where the experiments were

carried out. The experimental condition is written as w = (x, z). The response of interest

is Percent LDH(Lactate dehydrogenase) release.

5.2.1 Simulation Model

The true expected dose-response models are given in (5.7-5.12).
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Y(x, c1) = 17.56 +
64.58

1 + exp (0.66 + 4.14x)
(5.7)

Y(x, c2) = 67.36 +
−61.16

1 + exp (−0.95− 3.92x)
(5.8)

Y(x, c3) = 13.45 exp(x/28) (5.9)

Y(x, c4) = 16.16 exp(x/34.5) (5.10)

Y(x, c5) = 20.59 exp(x/33) (5.11)

Y(x, c6) = 39.40 exp(x/54.6) (5.12)

The error variance is dependent on w and the true variance models are given as:

Var[ε(x, c1)] = (
1

0.15
√

2π
exp(−(x− 37)2

450
))2 (5.13)

Var[ε(x, c2)] = (1.353 exp(x/52.8))2 (5.14)

Var[ε(x, c3)] = (
1

0.06
√

2π
exp(−(x− 37)2

450
))2 (5.15)

Var[ε(x, c4)] = (5 +
4.2

1 + exp(6− 0.3x)
)2 (5.16)

Var[ε(x, c5)] = (
1

0.083
√

2π
exp(−(x− 38)2

338
))2 (5.17)

Var[ε(x, c6)] = (
1

0.076
√

2π
exp(−(x− 17)2

128
))2 (5.18)

For an arbitrary subpopulation cq(q = 1, 2, 3, 4, 5, 6) and at an exposure level x0, a

random response y0 is simulated as

y0 = Y(x0, cq) +
√

Var[ε(x0, cq)] · ε; q = 1, 2, 3, 4, 5, 6 (5.19)

where ε is a random error provided by a standard normal random generator[34].
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5.2.2 Applying the Two-Stage Procedure

As in Case 1, we use the simulation model5.2.1 to generate data and then applied the SKQ-

based two-stage procedure to design and model the multi-source experiments for the ZnO

toxicity study.

The inputs are given as follows: N = 120; N1 = 60; Q = 6; χ = [0, 50]; I = 24.

Stage 1: A total of N1 = 60 samples are allocated in the first stage. The number

of replications at each design point is set to be 5, so the number of distinct design points

turns out to be I1 = 12 with 2 design points per category. Similarly, SLHD is employed to

determine the location of these 12 design points to the six slices of region χ. One possible

SLHD space-filling design is shown in Table 5.1.

Table 5.1: SLHD space-filling design in Stage-1 for Case 2

x: dose cq:subpopulation n:replications

26.0028 c1 5

3.6714 c1 5

23.1572 c2 5

42.6297 c2 5

15.8945 c3 5

37.5966 c3 5

36.5581 c4 5

10.5538 c4 5

5.6975 c5 5

46.6739 c5 5

19.2036 c6 5

32.1494 c6 5

At each distinct design point {wi; i = 1, 2, . . . , 12}, 5 i.i.d. random responses are

generated by Model (5.19). Thus, the initial data set is denoted as {(wi,Yj(w)); i =

1, 2, . . . , 12; j = 1, 2, . . . , 5}, on which normalization is also needed. SK and determinis-

tic kriging (DK) modeling are applied to the initial data set and two Kriging models are

obtained: the fitted SKQ model Ŷ(w) approximating the six target dose-response surfaces
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and the fitted deterministic kriging (DK) model V̂ar(w) from the sample variance data

{(wi, V̂ar[ε(w))]; i = 1, 2, . . . , 12}.

Stage 2: The remaining of N2 = N − N1 = 60 samples are to be allocated to

I2 = I − I1 = 12 distinct design points. Following the design procedure in Section 4.2, the

Stage-2 design D2 can be determined by solving the design optimization problem (4.3) using

the iterative procedure in Section 4.2.

The inputs needed to solve the design optimization problem are as follows. D1: the

Stage-1 design; Ŷ(w): the fitted SKQ model estimating the target dose-response curve;

V̂ar(w): the fitted deterministic kriging model approximating the variance model. All of

these inputs have been derived from the first stage.

The design points and their corresponding replications obtained in Stage-2 are shown

in Table 5.2. For the additional 12 design points, 3 are assigned to the Lab 1, 3 are assigned

to the Lab 2, 2 are assigned to the Lab 3,1 is assigned to Lab 4, 2 are assigned to Lab 5,

and 1 is assigned to Lab 6. Also, the replications of these 12 design points are not equal.

This result is reasonable because more design points and replications will be needed in the

dosage scale with higher error variance.

Thus, the complete design D = D1

⋃
D2 is obtained. Based on D, a total of 120

pairs of data will be generated by Model 5.19 denoted by {(wi,Yj(w)); i = 1, 2, . . . , 24; j =

1, 2, . . . , n(wi)}. From these data, SKQ is to be performed to simultaneously model the

dose-response curves for all the six Labs.

For the same reasons as Case 1, a total of 200 macro-replications will also be run to

get an fair results to compare with the other two design method.

5.2.3 Evaluation and Comparison

Similar to Case 1, the traditional design and space-filling design methods are performed

under a same sample budget N = 120 as a comparison with the proposed design procedure.
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Table 5.2: Stage-2 design for Case 2

x: dose cq:subpopulation n:replications

8.0260 c1 6

38.4289 c1 5

19.9689 c1 2

46.9781 c2 2

6.3843 c2 6

23.5860 c2 9

43.9672 c3 6

30.5763 c3 3

40.7347 c4 5

20.1781 c5 3

42.5425 c5 6

43.3273 c6 7

For the traditional design, 4 equally spaced design points are selected over the dosage

range [xL, xU ] = [0, 50] for each of the six sources. Five replications are assigned to each of

the design point such that the total sample size is 4 × 6 × 5 = 120. The traditional design

per source is specified as (5.20).

 0 16.7 33.4 50

5 5 5 5

 (5.20)

For the space-filling design, SLHD is performed within an equally total sample size of

120. I = 24 design points are assigned to the six slices of dosage range with five replications

at each point. A possible locations of design points generated by SLHD is given in Table

5.3.

For each design method, M = 200 macro-replications are to be performed following

the steps in Section 5.1.3. Thus, six box plots(Figure 5.5) for all sources will be generated

based on the six groups of ERMSEs:{ERMSE(m)(Ccq);m = 1, 2, . . . , 200; q = 1, 2, . . . , 6}.

From the Figure (5.5), it is obvious that our two-stage procedure performs best in terms of
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Table 5.3: Design points in the space-filling design for Case 2.

x: dose 2.5 22.1 41.4 27.0 38.8 8.0 12.5 27.8 49.2 32.0 11.2 17.1

cq: sources c1 c2 c3

x: dose 44.1 24.9 9.1 30.9 14.6 0.4 36.3 45.9 43.2 5.7 19.2 34.6

cq: sources c4 c5 c6

ERMSE compared to the other two design methods. First, the boxes of the proposed design

procedure are lowest which means our design can get a best estimated curve among the three

method. Second, the boxes of ours are relatively narrow showing that the two-stage design

method has a stable good performance.
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Figure 5.5: The six box plots for each of the three design methods
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Chapter 6

Conclusion

A two-stage design of experiments (DOE) procedure was developed to efficiently de-

sign multi-source experiments in exposure-response studies of NMs. The design method is

closely coupled with stochastic kriging with qualitative factors (SKQ), a statistical model

which synergistically models multi-source data by pooling information across sources. Based

on SKQ, the DOE procedure seeks to find the experimental design (the sampling location

and allocation) that enables SKQ to maximize its information-pooling capability and thus to

render fitted relationships (e.g., exposure-response) of the highest quality. The DOE is built

in a two-stage framework to allow for the learning of the possibly nonlinear relationships

and heterogeneous variance structures, and the learned information is utilized to guide the

optimal experimental design.

Through the empirical simulation studies, the efficiency of the proposed SKQ-based

two-stage DOE over the two alternative design methods which are widely used in biological

experiments has been demonstrated. The DOE method developed in this paper is expected

to substantially reduce the cost and time in exposure-response studies for nanotoxicology,

and accelerate the progress toward quantifying the risk, safety and health effects of NM

exposure.
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Appendix A

Derivation of equation (4.6)

We shall show how to derive the approximation formula between optimal allocation

and the locations of design points. First, we need to note that

M̂SE[Ŷ(w0)] = ΣM(w0,w0)− ΣM(w0, ·)(ΣM + Σε)
−1ΣM(w0, ·)

= σ2 − σ4 · v(w0,θ,Φ)>(ΣM + Σε)
−1v(w0,θ,Φ)

= σ2 − σ4 ·
I∑

i,j=1

{[(ΣM + Σε)
−1] · r0ir0j} (A.1)

where, σ2 is the variance of the Gaussian process. ΣM is the I×I variance-covariance matrix,

ΣM = σ2R(θ,Φ) = σ2


1 Corr[M(w1),M(w2)] . . . Corr[M(w1),M(wI)]

Corr[M(w2),M(w1)] 1 . . . Corr[M(w2),M(wI)]
...

...
. . .

...

Corr[M(wI),M(w1)] Corr[M(wI),M(w2)] . . . 1

 .

(A.2)

v(w0,θ,Φ) denotes the correlation vector with each component being a correlation function

dependent on w0, and the unknown parameters θ and Φ,

v(w0,θ,Φ) =


Corr[M(w0),M(w1)]

Corr[M(w0),M(w2)]
...

Corr[M(w0),M(wI)]

 , (A.3)
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Σε is the I × I variance-covariance matrix of vector ε̄. Under the i.i.d. assumption of

random errors, Σε is a I × I diagonal matrix

Σ̂ε =diag{V̂ar[ε(w1)]/n(w1), V̂ar[ε(w2)]/n(w2),

. . . , V̂ar[ε(wI)]/n(wI)}, (A.4)

r0i is the correlation between w0 and wi, for i = 1, 2, . . . , I.

r0i = Corr[M(w0),M(wi)] (A.5)

Next step, IMSE is computed across the whole design space of interest H.

IMSE =

σ2 − σ4 ·
I∑

i,j=1

{[(ΣM + Σε)
−1] ·

∑
cq

∫
x0∈χ

r0ir0jdx0} (A.6)

Define WI×I as the matrix with elements Wij =
∑
cq

∫
x0∈χ r0ir0jdx0 and (ΣM+Σε)

−1 =

Σ−1, then

IMSE = σ2 − σ4 · 1>I [Σ−1 ◦WI×I ]1I (A.7)

Taking the derivative w.r.t. ni for both sides of (A.7), we get

∂IMSE

∂ni
= −σ4 · 1>I [

∂Σ−1

∂ni
◦WI×I ]1I (A.8)

Then, the problem reduces to computing the
∂Σ−1

∂ni
. According to the matrix deriva-

tive operation,

∂Σ−1

∂ni
= −Σ−1

∂Σ

∂ni
Σ−1

= −Σ−1(−Var(wi)

n2
i

Lii)Σ−1 (A.9)

where, Lii is I × I matrix with 1 in position (i,i) and 0 in other places.
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Plugging (A.9) into (A.8) , then (A.8) can be re-written as:

∂IMSE

∂ni
=− σ4 · 1>I {[−Σ−1(−Var(ε(wi))

n2
i

Lii)Σ−1] ◦WI×I}1I

=− σ4 · Var(ε(wi))

n2
i

· 1>I [(Σ−1LiiΣ−1) ◦WI×I ]1I

=− σ4 · Var(ε(wi))

n2
i

[Σ−1WI×IΣ
−1]ii (A.10)

To be simple, define Ci = [Σ−1WI×IΣ
−1]ii and Var(ε(wi)) = Vi. When N is large,

Σ−1 = (ΣM + ΣM)−1 ≈ Σ−1M ,hence, Ci ≈ Σ−1M WI×IΣ
−1
M . Finally, (A.10) can be rewritten as

the following:
∂IMSE

∂ni
= −σ4 Vi

n2
i

Ci (A.11)

Therefore, ni ∝
√
ViCi.
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