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Abstract

A Heterogeneous Aerial Platform Mission Planner using a Genetic

Algorithm

by Jonathan Rojas

Systems exist today that can plan a mission with more than one aircraft efficiently for

surveillance. However, objectives in these missions do not change and are typically per-

formed using a homogeneous set of aerial vehicles. An adaptive mission planner was

sought to task a heterogeneous set of Unmanned Aerial Vehicles (UAVs) when an un-

known Target of Interest (TOI) is located amongst a set of Points of Interest (POIs).

First, two dimensional flight path models of fixed wing and quadcopter platforms were

created. Next, the design of a genetic algorithm and its fitness functions were studied.

Fixed wing fitness functions were developed to balance POI task loads amongst a set of

fixed wing aircraft. A quadcopter fitness function was then designed to task a quadcopter

to visit a newly located TOI. The quadcopter fitness function was also designed to max-

imize battery usage as it was desired that the quadcopter visit as many additional POIs

on route to and from the TOI. Case studies were then simulated using varying heteroge-

neous UAV sets and TOI locations. Results of these simulations were then analyzed using

mission times as a performance metric. Simulation results indicated that the deployment

of the quadcopter to the TOI and additional POIs reduced overall mission times. Mission

time reductions were also found to be depended on the number of fixed wing aircraft used

in heterogeneous UAV sets.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) have become an important resource for Intelligence,

Surveillance and Reconnaissance (ISR) missions in military operations. Ground teams

have access to multiple UAVs but typically only use one UAV at a time. However,

multiple UAVs in an ISR mission could increase coverage area and reduce mission times.

Systems exist that can plan a mission with more than one UAV to search a set of Points

of Interest (POIs). However, these systems do not typically account for a scenario in

which an unknown Target of Interest (TOI) is located during a mission and only utilize

a homogeneous set of UAVs. A human operator may have to manually re-task the UAVs

in the event that a TOI is found. The TOI may represent a POI or a separate spot along

the UAV flight path which requires long term or closer surveillance. Due to this need,

an adaptive mission planner was sought to task a heterogeneous set of UAVs

when an unknown TOI is located amongst a set of POIs.

Adaptive mission plans will be produced using either fixed wing aircraft or a combination

1



Chapter 1. Introduction 2

of both fixed wing aircraft and quadcopter platforms. Initially, fixed wing aircraft will

be used to perform overhead fly-by visitations of multiple POIs as they are capable of

achieving long duration flight times. POI task loads will be balanced amongst the fixed

wing aircraft set to maximize POI coverage area. Once a TOI is located by the fixed

wing aircraft set, a quadcopter will be deployed to visit the TOI as they can Vertically

Take Off and Land (VTOL) making them ideal for long term ground surveillance. Upon

arriving at the TOI, the quadcopter will deploy a sensor pod to provide long term ground

surveillance. Additional unsearched POIs will also be visited by the quadcopter by tasking

it to visit nearby POIs on route to and from the TOI. Remaining unsearched POIs will

then be re-distributed amongst the fixed wing aircraft set. Allowing the quadcopter to

visit unsearched POIs after the TOI has been found could reduce the number of POIs

visited by the fixed wing platforms and the overall mission time duration.

In order to develop the adaptive mission planner, literature will first be collected on task-

ing and path planning algorithms. Tasking algorithms will be investigated to determine

a method of generating initial and mission re-plan solutions. Path planning algorithms

will be studied to select a method of constructing fixed wing and quadcopter flight paths.

Next, an adaptive mission planner will be designed using the selected tasking and path

planning methods. Case studies will then be simulated by varying the number of fixed

wing aircraft in the heterogeneous set and the location of a single unknown TOI. Simu-

lating case studies will ensure that the adaptive mission planner generates mission that

satisfy both initial and mission re-plan objectives. Results of the simulations will then

be analyzed using mission times as a performance metric.



Chapter 2

Review of Literature

In order to develop the adaptive mission planner, background research was necessary in

the following areas: UAV platforms, tasking algorithms and path planning algorithms.

First, UAV platforms were studied to determine which UAV platforms were best suited

to search POIs and TOIs. Next, tasking algorithms were studied to determine a method

which could be used to generate initial and mission re-plan solutions. Lastly, path plan-

ning algorithms were examined to determine a method of generating two dimensional

fixed wing and multirotor helicopter flight paths.

2.1 Unmanned Aerial Vehicles

An Unmanned Aerial Vehicle is defined as an aircraft that does not carry a pilot or

crew on board and can fly autonomously using a pre-programmed flight plan and aircraft

3



Chapter 2 Review of Literature 4

dynamic control systems [3]. UAVs can be found in a variety of airframe configurations

including fixed wing and multirotor helicopter configurations [4]. Each configuration has

advantages and disadvantages in performance and maneuverability when compared to

each other.

2.1.1 Fixed Wing Aircraft

Fixed wing aircraft use a set of stationary wings to generate lift and achieve flight [5].

Control surfaces on these wings control the orientation of the aircraft. Aileron surfaces

control the roll, elevator surfaces control the pitch and rudder surfaces control the yaw

orientation of the aircraft. Forward motion of the aircraft is achieved by either gliding

over moving air or by thrust produced via a propeller or engine. Fixed wing aircraft can

achieve long duration flight times and high efficiency due to their body lifting surfaces

which makes them idea for long duration ISR missions. Disadvantages of fixed wing

aircraft includes the requirement of a flat surface to take-off and land. Additionally, air

must be moving over their wings to generate lift and thus requires them to always remain

in a constant forward motion. An example of a fixed wing UAV is the AeroVironment

RQ-11 Raven [6] which has a flight time of 60-90 minutes and a wingspan of 1.4 meters

as seen in Figure 2.1. Fixed wing aircraft can be utilized in this application to search

multiple POIs as they are capable of long duration flight times.
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Figure 2.1: AeroVironment RQ-11 Raven UAV

2.1.2 Multirotor Helicopters

Multirotor helicopters feature multiple rotors which induce thrust used for lifting [5].

Rotors are fixed in a circular configuration around a central body. Roll, pitch and yaw

control of a multirotor helicopter is achieved by varying the thrust produced by each rotor.

A primary advantage of multirotor helicopter is a VTOL ability which typically allows

them to hover and achieve low speed flight [7]. Disadvantage of a multirotor helicopter

includes the increase in power consumption due to the varying propeller thrust used to

lift the vehicle. Increased power consumption may result in shorter overall flight times.

An example of a four-rotor multirotor helicopter is the Aeryon Scout Quadcopter [8] seen

in Figure 2.2. Multirotor helicopters can be used in this application as they have the

capability of hovering and deploying a sensor pod to provide additional surveillance of

the TOI.
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Figure 2.2: Aeryon Scout Quadcopter

2.1.3 Unmanned Aerial Vehicle Comparisons

Fixed wing aircraft are best suited for applications where long duration flight times greater

than 60 minutes are desired such as in a long duration ISR mission. Multirotor helicopters

are best suited when a VTOL vehicle is desired such as in a loitering or close surveillance

application. Tasking methods will be investigated next to determine which method will

be best to generate mission plan solutions.

2.2 Tasking Algorithms

Literature was collected on tasking algorithms to examine which methods could be used

to generate initial and mission re-plan solutions. Tasking methods found in literature

included: Mixed Integer Linear Programming (MILP), Dijkstra’s Algorithm (DA) and

Genetic Algorithms (GAs). MILP will be presented first followed by DA.
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2.2.1 Mixed Integer Linear Programming

MILP aims to either maximize or minimize variables of a linear objective function [9].

Linear inequalities and equality constraints along with bounds are placed on the objective

function variables. In comparison to traditional linear programming methods in which

variables can be all real numbers, some or all MILP variables must be integers. To

illustrate a basic example, an objective function in which variables x1 and x2 must be

minimized can be seen in Equation 2.1.

min
x

(−1x1 − 1x2) (2.1)

Constraints are then placed on the variables where both x1 and x2 must be integers using

Equations 2.2 and 2.3.

x1 + 4x2 ≤ 20 (2.2)

6x1 + 2x2 ≤ 25 (2.3)

Lastly, bounds are placed on the variables using Equations 2.4 and 2.5.

0 ≤ x1 (2.4)

0 ≤ x2 (2.5)

MILP can be used to design tasking objective functions which can be subjected to mis-

sion constraints and bounds. Richards, Bellingham, Tillerson and How [10] applied MILP
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to model optimization task assignments for UAVs under vehicle capability constraints.

Schumacher, Chandler and Pachter [11] applied MILP to a scenario in which multiple

UAVs were required to classify geographically dispersed targets under timing and task

order constraints. Darrah, Niland and Stolark [12] extended the work in [11] by adding

new constraints that increased the complexity of the task allocation problem to include

dynamic re-tasking. Added assumptions and constraints included survivable vehicle mod-

els after unmanned combat and dynamic target discovery. Wang, Zhang, Geng, Fuh and

Teo [13] also applied MILP to task a heterogeneous set of fixed winged like UAVs to

accomplish a set of heterogeneous tasks.

MILP could be applied to solve the initial mission planning problem for this application

under the constraint of balanced POI tasking amongst a homogeneous set of UAVs. On

the other hand, MILP has also been shown to be undesirable due to its long computational

times required to solve larger scale problems [14]. Such a characteristic could hinder

computational times as the number of POIs in a mission increases. Next, Dijkstra’s

Algorithm (DA) will be presented to illustrate how it has been implemented to solve

tasking problems.

2.2.2 Dijkstra’s Algorithm

Dijkstra’s Algorithm (DA) was developed by computer scientist Edsger Wybe Dijkstra

in 1956 [15] with the goal of finding the shortest path between a starting node (R1) and

goal node (R2) using a weighted graph approach. Initially, a set of neighboring nodes
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around the starting node is considered [16]. All the neighboring nodes in the graph are

placed in a priority queue which is prioritized by distance, or weight, between the current

node (T-node) and its neighboring nodes. The path to the neighboring node with the

shortest distance is selected and the neighboring node is assigned as the current (T-

node). Distances to a new set of neighboring nodes are then calculated and the queue is

updated. This procedure is repeated until the shortest path from the starting node (R1)

to the goal node (R2) is found. A flowchart illustrating DA can be seen in Figure 2.3 [17].

Applications of DA can be found in software protocols [18], power restoration systems

[19] and emergency vehicle routing [20].

DA appears to be best suited for applications where the shortest path between a series

of nodes is desired and thus it may not be a good fit for generating initial and mission

re-plans. DA may not work for this application as mission plans will not seek the shortest

paths but rather paths that fulfill a set of mission objectives.
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Figure 2.3: Dijkstra’s Algorithm Flowchart

2.2.3 Genetic Algorithms

Genetic Algorithms (GA) are based of Charles Darwin’s evolutionary theory of “survival

of the fittest” [21]. Darwin’s theory proposes that a species exists in nature today as a

result of years of adaptation in a forever changing environment. Individuals that learned
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to adapt to their environment had a better chance of survival and as a result, were able

to procreate offspring that carried these adaptive traits. Over time, an entire population

of that species can be said to have “evolved” to contain the better fit species.

GAs search for an optimized solution that either maximizes or minimizes parameters used

to characterize a solution in the structure of a chromosome. Typically, a GA will begin

by initializing a randomly generated population of potential chromosome/solutions [22].

Solutions are then evaluated by means of a fitness function and are assigned a quantitative

score.

Convergence of the GA can then be checked via means of a convergence criterion. In

some cases, an imposed number of GA generations must be satisfied or a desired fitness

score within the population must be satisfied.

If GA convergence has shown to be unsatisfied, the best fit individuals of the current

population are selected and reproduce as “parents” into a new population. Roulette-

wheel selection methods are probabilistic methods of determining which individuals will

contribute to the next population based on fitness score[23]. Elitism can also be imple-

mented, which passes an unaltered copy of the best fit solution of each population into

the succeeding population. Passing an unaltered copy may ensure that solutions do not

degrade in fitness from one generation to the next.

Genetic operations are then performed on the selected population to produce a new pop-

ulation of solutions. Crossover operators split two “parent” chromosomes at randomized

locations to create two “children” chromosomes. A single chromosome is generated by
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concatenating the first part of one chromosome and the second part of the other chro-

mosome. Mutation operators alter a number of elements in the chromosomes based on a

mutation rate. Once these alterations have been performed, the current population now

contains a set of “children” chromosomes which represent the new population. GA gen-

erations are repeated until a convergence criterion is met or until a superimposed number

of generations has been achieved. Figure 2.4 illustrates a flowchart of the GA.

Figure 2.4: Genetic Algorithm Framework
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2.2.3.1 GA’s for UAV Tasking

Jing Tian [24] took a GA approach to a multi-UAV cooperative reconnaissance mission

planning problem. The objective of this work was to conduct UAV reconnaissance on a set

of targets within a specified window of time. Fitness evaluations penalized solutions that

failed to visit the targets within the specified window of time and those that exceeded the

maximum allowed UAV travel time. In contrast, Darrah [25] applied the GA to generate

mission plans that tasked a homogeneous set of UAVs in a long term balanced surveillance

mission. In this work, a set of AeroVironment Raven UAVs, seen in Figure 2.5, were

cooperatively tasked to survey a set of POIs in a search space. A fixed wing aircraft

fitness function was designed to maximize mission surveillance times while balancing

POI visitation loads amongst the UAVs In the set.

Figure 2.5: AeroVironment Raven UAV

An expanded study of Darrah’s GA application examined the performance of the GA, in

parallel executions, in converging to a “good” solution by varying the number of gener-

ations and population sizes [26]. A “good” solution was defined as a fitness score that
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came within a confidence range of the highest fitness score attained over all GA runs.

Parallel operations of the same GA with identical parameters over 50,000 generations

obtained the highest fitness score. Confidence range was defined as the number of gen-

erations needed to ensure that all generations will achieve at least 90% of the highest

fitness score. Results of this study indicated, that as the population size increased, fewer

generations were needed to reach a 90% confidence range. Results found that GA run

times increased due to the larger population sizes and can be seen in Table 2.1. GAs have

been shown to be used extensively in UAV tasking and this would be a suitable option

for this application.
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Population

Size

Generation

Run Time

(min.)

Minutes/

Generation

Generations

to 90%

Confidence

Time (min.)

to 90%

Confidence

25 23.255 0.0047 133 0.619

35 28.348 0.0057 106 0.601

45 35.310 0.0071 91 0.646

50 41.391 0.0083 82 0.679

60 50.251 0.0101 74 0.744

70 58.140 0.0116 91 1.058

80 68.378 0.0137 84 1.149

90 74.647 0.0149 78 1.162

100 84.327 0.0169 75 1.267

200 150.650 0.0301 46 1.386

Table 2.1: Population Size and Generations to 90% Confidence

Based on the number of GA applications in UAV tasking, GAs display great promise

to generate initial and mission re-plan solutions for the proposed application. Existing

GA applications for a balanced surveillance missions could be used as a basis for initial

mission planning. Development of a re-plan fitness function can then be used to evaluate

potential re-plan solutions.
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2.2.4 Tasking Algorithm Comparisons

MILP has been shown to generate optimized solutions under a series of constraints, yet

MILP is limited due to high computational times. DA is best in finding the shortest

path between a series of nodes. GAs can also obtain optimized mission plan solutions

and evaluate solutions via a customizable functions. Path planning methods will be

investigated next to determine what method would be best to generate fixed wing and

quadcopter flight paths.

2.3 Path Planning Algorithms

Path planning is the process of formulating a route that moves an entity from an initial

state to a final state in two or three dimensional environment, based of vehicle dynamics

and navigational requirements [27]. Road map methods will be presented first followed

by pose-based methods.

2.3.1 Road Map Methods

Road map path planning methods break down a solution space into a finite number of

discrete segments. A desired mission optimization criterion is then used to select an

optimal path in the solution space. Common road map methods include the Voronoi

diagram and cell decomposition.
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2.3.1.1 Voronoi Diagram

Voronoi diagram methods use a set of points in a two dimensional space as an input

and generates lines, or paths, that are equidistant between two nearby points [28]. Path

segments that converge around each point form a set of polygons and the shortest vertices

belonging to each polygon represent the shortest path.

Bhattacharya and Gavrilova [29] used the Voronoi diagram representation to find the

shortest path between a source and a destination in the presence of simple polygon ob-

stacles. Pei-bei, Zuo-e and Jun [30] applied the Voronoi diagram method to describe

threat environments and no-fly zones for UAV dynamic path planning. Path segments

that fell in a no-fly zone were removed from the map. Flyable UAV paths were then gen-

erated by filleting the resulting path segments at their intersections using a radius equal

to the UAVs minimum turn radius. In contrast, Davis [31] implemented the Voronoi dia-

gram to generate collision free paths through a series of cylindrical risk zones. However,

this method was formulated such that there was no need to remove path segments in risk

zones which reduces the likelihood of obtaining no available path. Voronoi diagrams may

not be suitable for this application as there is no need to generate the shortest path or a

path avoiding obstacles in the search space.

2.3.1.2 Cell Decomposition

Cell decomposition consists of breaking down a solution space into a uniform grid of nodes

and segments that form cells. Nodes and segments that fall inside threat or obstacle
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zones can be removed from the solutions space. Two dimensional applications of the cell

decomposition are common however it can be expanded to three dimensions as well.

Araujo, Sujit and Sousa applied the cell decomposition method to generate a flight path

for a UAV tasked to collect aerial coverage [32]. In this work, a method was developed

to determine the optimal number of path lanes needed within the cells to minimize UAV

turns while providing complete coverage of the search space. Perhinschi [33] applied the

cell decomposition method to produce a grid search space containing obstacles. Cells and

path segments that fell within these obstacle zones were removed from the grid. Dijkstra’s

algorithm was then applied to determine the optimal path through the available nodes.

Resulting paths produced a flyable trajectory by filleting intersecting paths similar to

Pei-bei, Zuo-e and Jun [30]. Similar to Voronoi Diagrams, cell decomposition may not be

suitable for this application as there is no need generate a path which avoids obstacles in

the search space.

2.3.2 Pose-Based Methods

Pose-based path planning methods consist of generating a path that traverses a series of

specified waypoints in space. These methods are not dependent based upon the shortest

overall path distance, but rather the order in which these waypoints must be traversed.

The minimum distance is then found between the consecutive waypoints in the series.

Two notable pose-based path planning methods is the Dubins and the Clothoid method.
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2.3.2.1 Dubins

Dubins pose-based path planning algorithm was developed by L.E. Dubins in 1957 [34].

Dubins methods use a combination of circular arcs, of a constant radius, and straight

line segments to generate a path. Arcs and straight path segments are then connected to

each other via relevant tangent points to construct a full path.

Grymin and Crassidis [35] have applied the Dubins method to construct a flyable tra-

jectory for a UAV tasked to navigate through a series of waypoints. In the study, a

simplified aircraft model was constructed under the assumptions of constant velocity and

turn radius.

Karas [36] implemented the Dubins paradigm to model a two dimensional fixed wing

aircraft flight path. In this work, a fixed wing aircraft flight path was modeled through a

series of POIs in a search space. Dubins arcs express bank maneuvers and Dubins straight

path segments expressed forward paths. Bank maneuvers were modeled as paths equal

to the aircraft minimum turn radius at the aircraft cruising speed. One second sampling

rates were used to calculate the flight path segments. Sampling the flight path at this

rate ensured that computational efforts of the algorithm were kept to a minimum while

maintaining the curvature needed to describe the flyable path.

Generating the flight path was achieved via an algorithm that generated a new trajectory

point and path segment at each time step. Figure 2.6 illustrates a logical flowchart of

this algorithm. Each trajectory point calculated corresponded to the start and the end

of a path segment. Figure 2.7 illustrates the segments that are expressed by a forward
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path velocity vector −→v in the direction of the aircraft current heading angle α. Bearing

angle, β, represented the angle between a consecutive POI relative to a current POI or

location.
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Figure 2.6: Fixed Wing Path Planner Flowchart
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Figure 2.7: Path Segmentation and Angle

To begin, a bearing angle β to the first POI relative to the aircraft current position was

calculated. Aircraft heading angle α was then set equal to the bearing angle β as the

aircraft was initially assumed to be inbound towards the first POI. Straight path segments

were generated until the first POI was reached. Once the aircraft reached the first POI,

the algorithm determined the difference between the aircraft current heading angle α and

the bearing angle β to the next POI. The difference between angle α and β was compared

to the aircraft turn-rate angle ε which was the maximum angle that aircraft could turn

at each time step. If the difference between the angles was found to be larger than the

turn-rate angle ε, the aircraft heading angle α was adjusted by adding or subtracting
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the turn-rate angle ε. Aircraft heading was incrementally adjusted until the difference

between the heading angle α and bearing angle β was smaller than the turn-rate angle

ε. At this point, the aircraft was in a straight line path with the next POI and straight

path segments were generated.

Davis [33] applied the Dubins paradigm to create a UAV path through a series of points

not based on shortest total distance, but rather the order of visitation and distance

between consecutive points. Visitation of points were defined as being either ”observing”

or ”visiting”. Observing a point consisted of generating a circular path that flew around

an event zone. Visiting a point consisted of generating a path that flew through the point.

The Dubins paradigm would be best suited for this application as the generated path can

not only traverse a specific series of waypoints, but can be used to model two-dimensional

flight paths for both fixed wing and quadcopter platforms.

2.3.2.2 Clothoid

Clothoid paths are similar to the Dubins method however, arc paths are represented using

a continuous curvature profile. In some cases, Clothoid methods are preferred to model

UAV flight paths when compared to the Dubins method. Using a Clothoid continuous

curvature profile results in a gradual or ramp acceleration profile that may be easier for

commonly used UAV platforms to follow.
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Wilburn [37] developed a three dimensional UAV Clothoid trajectory generation algo-

rithm which produced flyable paths of continuous curvature that ensured a more follow-

able command path. This method was developed as an extension of the three dimen-

sional Dubins and two dimensional Clothoid methods. Shanmugavel [38] implemented

the Clothoid method to generate safe and flyable flight paths for a cooperative group of

UAVs tasked to arrive simultaneously on a target. Al Nuaimi [39] compared the differ-

ences between the Dubins and Clothoid. Simulations considered factors such trajectory

tracking control laws under various flight conditions. Results found that the Dubins path

yielded increased tracking errors due to the discontinuous changed in lateral command ac-

celerations at the transition points between circular arcs and straight segments. Clothoid

methods would also be a suitable option for this application. However, accuracy of a

UAV in following a command path is not a considered factor in this application.

2.3.3 Path Planning Methods Comparisons

Roadmap methods are best suited for obstacle or collision avoidance path planning. Both

the Voronoi diagram and Cell decomposition can be applied in a two dimensional space

however cell decomposition can be easily expanded to three dimensions. Roadmap meth-

ods are also low complex calculation intensive and are much easier to implement. Pose-

based methods are best suited when a desired path must traverse a set of waypoints

or perform a specific task. Generating shortest paths between consecutive waypoints is

also an advantage of these methods. However, pose-based methods require more complex
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calculations which can result in longer computation times when compared to roadmap

methods.

2.4 Literature Review Conclusions

The reviewed literature indicates that fixed wing aircraft are best to search multiple POIs

as they can achieve long duration flight times. Multirotor helicopters are most useful to

investigate the located TOI as they can VTOL which make them ideal to deploy a sensor

pod to provide additional TOI surveillance.

Tasking algorithm literature indicates that GAs can be easily implemented to solve a

variety of UAV mission tasking problems using a customizable fitness function. MILP

methods can be applied as well but have shown to result in high computation times as the

complexity of the problem increases. DA is best used to find the shortest path through

a series of nodes which is not the focus of this work. A GA was selected for the mission

planning application as they allow solutions to be evaluated by means of customizable

fitness function. In addition, existing GA applications in literature can be used as a basis

to generate initial mission plans while an additional fitness function can be developed to

evaluate mission re-plan solutions.

Path planning literature suggests that Dubins arcs can allow fixed wing aircraft bank

maneuvers to be simplified using constant radius arcs. Although the continuous curva-

ture profile of the Clothoid method may generate paths more suited for UAV command
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trajectories, this work is not concerned with the tracking accuracy of a UAVs commanded

path. Discrete methods are best used in applications that involve obstacle or collision

avoidance flight paths. Due to the simplified paths generated via Dubins arcs, a pose-

based Dubins path planning method will be applied to model two dimensional fixed wing

and quadcopter flight paths.
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Adaptive Mission Planner

In this chapter, a sample mission scenario is presented first followed by an envisioned

adaptive mission planner which would be used to plan the mission scenario. Next, im-

plementation of the selected GA for mission planning and Dubins for path planning is

presented. Lastly, design of the adaptive mission planer using the selected mission plan-

ning and path planning algorithms is presented.

3.1 Envisioned Adaptive Mission Planning System

In order to present the design of the envisioned adaptive mission planner, a sample mission

scenario is presented first. A set of POIs must be simultaneously surveyed to locate

an unknown TOI which requires additional close surveillance. POIs in the search space

require multiple overhead fly-by visitations and no two POIs can be visited simultaneously

27



Chapter 3 Adaptive Mission Planner 28

within a specified window of time. Example of a search space containing nine POIs which

are equally spaced apart in a three by three matrix configuration can be seen in Figure 3.1.

The home base location is centered and away from the nine POIs and is where vehicles will

deploy from and return to. TOI location is initially unknown but for illustration purposes

the TOI is annotated as POI #5. Search space size is based off the flight distance range

capabilities of a small hand launched UAV.
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Figure 3.1: Scenario Search Space

First, an initial mission plan must be developed to task a fixed wing aircraft set, which are

optimized for endurance, to survey POIs simultaneously in search of a TOI. Aircraft will

be deployed from the same home base location and are assumed to be flying at varying

altitudes to avoid aerial collisions. To maximize surveillance time, POI visitation loads

will be evenly tasked amongst the fixed wing aircraft set. Once the TOI is located, a

mission re-plan must be developed in which a vertical take off and landing vehicle, such a
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quadcopter will be deployed from the home base location to visit the TOI. The quadcopter

will fly at a low altitude so as to deploy a sensor pod at the TOI to obtain additional close

surveillance. Additional POIs that have either been unvisited or still require visitations

will also be tasked to the quadcopter. Remaining POIs not tasked to the quadcopter

will then be evenly re-tasked amongst the fixed wing aircraft set. Once the TOI and

remaining POIs have been visited, the fixed wing aircraft set and quadcopter will return

to the home base location.

An envisioned adaptive mission planning system used to generate initial and mission re-

plans can be seen in Figure 3.2. Systems of the adaptive mission planner included a GA

based initial mission planning system and mission re-planning system. Mission planners

are activated based on the mission and GA parameter inputs provided and a final initial

or mission re-plan is outputted. In addition, a Dubins path planning algorithm will be

built into the mission planners to simulate missions in order to evaluate the performance

of the mission plan solutions. Implementation of the selected GA for mission planning and

Dubins path planning for flight path simulation will now be presented in the proceeding

sections.
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Figure 3.2: Envisioned Adaptive Mission Planner

3.2 Genetic Algorithm Mission Planning Implemen-

tation

GA implementation to generate mission plan solutions is presented in this section. First,

the GA genetic representation used to characterize mission plan solutions is discussed.

Next, selection/reproduction and genetic alteration operators are defined. Lastly, fitness

functions designed to evaluate fixed wing and quadcopter mission plans is presented.

3.2.1 Genetic Representation

Real Representation (RR) was used to encode the chromosome parameters which meant

that parameters were represented using real number vectors [25]. Chromosomes were

expressed by 2 x L vectors, where L is the length of the chromosome. Vehicle numbers
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are represented in the top row, which represent both fixed wing and quadcopter platforms,

and POI numbers are represented in the bottom row. Tasking was then defined as the pair

assignment between a top row vehicle number and a bottom row POI number. Priority

parameters were assigned to POIs which determined the number of times the POI was to

be visited during the mission. Summation of priority parameters determined the length,

L, of the chromosome. Table 3.1 illustrates a sample chromosome using 5 POIs and 3

UAVs. POIs 1 & 2 were assigned a priority of 1, POIs 3 & 4 were assigned a priority of

2 and POI 5 a priority of 3.

1 3 1 2 3 2 1 2 3

2 1 5 5 3 4 4 3 5

Table 3.1: Sample Chromosome

3.2.2 Initial Population

An initial population size of 52 was selected based on a population convergence analysis

performed on the GA used to task a homogeneous set of fixed wing aircraft in a balanced

surveillance mission [25][26].

3.2.3 Selection/Reproduction

Roulette-wheel selection, augmented with elitist section, was used in this application. In

this case, the roulette-wheel selection determined which chromosomes will engage with

crossover alterations.
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3.2.4 Genetic Alterations

Both crossover and mutation operators were implemented to perform alterations on chro-

mosomes. Crossover was applied on even generations on the chromosomes selected by

the roulette-wheel. Mutation was applied on odd generations.

3.2.4.1 Crossover

Crossover was applied at random chromosome partition locations. First, two chromo-

somes were selected as parents. Next, both chromosomes were split at the same partition

and concatenated with each other to make two new children chromosomes.

3.2.4.2 Mutation

Mutation altered random elements in the current population. The number of elements

randomly mutated in the population was determined by a mutation rate. Using the GA

design that tasked a homogeneous set of fixed wing aircraft[25], a mutation rate of 21

was selected.
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3.2.5 Fitness Evaluation

3.2.5.1 Initial Fixed Wing Fitness Function

Fixed wing aircraft were initially deployed to survey a set of POIs in search of a TOI.

Since the TOI location was initially unknown, the initial GA mission planner was to

develop a mission plan that balanced flight times and POI visitation loads amongst the

fixed wing aircraft. Satisfying the following requirements from a previous GA application

ensured that this mission was achieved [25]:

1. Maximize mission time to allow for maximum possible surveillance. Maximizing

UAV surveillance times ensures that the term D is maximized.

2. Balance task loads evenly amongst UAVs in the set. Even distribution of POI task

loads ensures that the term S is minimized.

3. UAVs must not reach a POI within too short of a time window which is represented

by the N term.

Based off the previous requirements, the fixed wing fitness function can be seen in Equa-

tion 3.1

FitnessFWInitial =
D − S
N + 1

(3.1)

D = Summation of all UAV flight times traveled

S = dMAX − dMIN where dMAX is the the maximum UAV flight time traveled and dMIN

is the minimum UAV flight time traveled
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N = The number of times in which two UAVs arrive at the same POI within a specified

window of time

3.2.5.2 Re-plan Fixed Wing Fitness Function

Once a TOI was found in the search space, a quadcopter was to be deployed to visit

the TOI. At this time, the fixed wing aircraft were re-tasked to continue visitations of

unsearched POIs while the quadcopter visits the TOI and additional POIs. Re-tasking is

achieved using a summation of the initial fixed wing fitness function and the additional

term seen in Equation 3.2.

FitnessFWAdditional =
n∑

i=1

1

FWn

(3.2)

FWn = Summation of all fixed wing aircraft flight times traveled to first assigned POI.

Aircraft number is denoted by the term ”n”.

Adding this term ensured that during a mission re-plan the fixed wing aircraft set visit

POIs closest to their current position in the space first. Since the flight time to the first

assigned POI must be minimized, the reciprocal of this term was added to increase the

fitness score. The re-plan fitness function can be seen in Equation 3.3 with each term

carrying a weight of one.

FitnessFWReplan =
D − S
N + 1

+
n∑

i=1

1

FWn

(3.3)
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In order to highlight the significance of the additional term, a sample UAV path scenario

is presented. Three aircraft were assumed to travel similar triangular paths as seen in

Figure 3.3. Aircraft deployed from the home base location and simultaneously visited

points A and B before returning to the home base location. Aircraft paths were sim-

plified using straight path segments and each aircraft traveled at a cruising speed of 15

meters/second. Aircraft flight times between path segments can be seen in Table 3.2.
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Figure 3.3: Triangular UAV Path

Path Segment Home-A A-B B-Home

Aircraft Flight Time (min.) 1.11 0.63 0.80

Table 3.2: Aircraft Flight Times Between Path Segments
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Potential aircraft visitation orders consisted of either visiting point A first or point B

first. Fitness evaluation for the aircraft visitation orders were broken up into two parts,

initial fixed wing fitness as seen in Equation 3.1 and the additional term as seen in

Equation 3.2. Summation of these two equations equaled the final fitness value and can

be seen in Table 3.3. Results indicated that the value of the additional term was larger

when the aircraft set visited point B first. Inversely, when the aircraft set visited point

A first, the value of the additional term was smaller. Reason for this behavior is that

aircraft flight time to point B was shorter from the home base location when compared

to point A as seen in Table 3.2.

Visitation Order

Equation 3.1

Initial Fixed

Wing Fitness

Value

Equation 3.2

Additional

Fixed Wing

Term Value

Equation 3.3

Re-plan Fixed

Wing Fitness

Value

Home-A-B-Home 7.62 2.70 10.32

Home-B-A-Home 7.62 3.74 11.37

Table 3.3: Aircraft Visitation Order Fitness Values

3.2.5.3 Quadcopter Fitness Function

When a TOI was found by the set of fixed wing aircraft, a quadcopter was deployed

with the intention of visiting the TOI while alleviating the POI loads of the fixed wing

aircraft. Alleviating the POI loads on the fixed wing aircraft was achieved by tasking the
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quadcopter to visit the TOI while visiting additional unsearched POIs to and from the

TOI. Satisfying the following requirements ensured that quadcopter mission objectives

were achieved:

1. TOI must be visited and is represented by the term DTOI

2. Visit additional POIs on route to and from TOI which is represented by the term

POIV isited

POITotal

3. Maximize the battery usage by visiting as many additional POIs within the battery

constraint which is represented by the term (100−BatteryMission)

Based off the previous requirements, the quadcopter fitness function can be seen in Equa-

tions 3.4 and 3.5:

FitnessQR = DTOI ∗
POIV isited

POITotal

∗ (100−BatteryMission) (3.4)

BatteryMission =
DistanceTraveled

DistanceFullBattery

∗ 100 (3.5)

DTOI = Reward for visiting the TOI (DTOI = 1) and or penalty for failing to visit the

TOI (DTOI = 0)

POIV isited = Number of POIs visited by quadcopter

POITotal = Total number of POI visitations remaining

DistanceTraveled = Distance traveled by quadcopter
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DistanceFullBattery = Total distance traveled on a full quadcopter battery

GA implementation to generate mission plan solutions has now been presented. Next,

Dubins path planning implementation to simulate fixed wing and quadcopter flight plans

will be presented.

3.3 Dubins Path Planning Implementation

3.3.1 2D Fixed Wing Aircraft Flight Path

Two dimensional fixed wing flight paths were generated using the Dubins paradigm [36].

Bank maneuvers were described using Dubins arcs and forward movement using Dubins

straight paths. Fixed wing flight path was modeled based on the 3D Robotics Aero

fixed wing aircraft[1] and can be seen in Figure 3.4. Aircraft parameters seen below are

representative of the Aero aircraft specifications:

1. 15 meter/second cruise speed

2. 11 degree turn-rate angle per second

3. 77 meter turn radius

4. 30, 45 and 60 meter cruising altitudes
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5. 30 minute flight time on full battery. Flight time was a selected percentage of the

estimated 40 minute flight time by 3D Robotics to account for battery usage during

take-off and landing.

Figure 3.4: 3DR Aero Fixed Wing Aircraft [1]

Using the vehicle parameters for the fixed wing aircraft, a simulation of the fixed wing

aircraft flight path can be seen through a series of POIs in Figure 3.5.
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Figure 3.5: Fixed Wing Dubins Flight Path

3.3.2 2D Quadcopter Flight Path

Quadcopter flight path was generated using Dubins straight path segments between con-

secutive POIs. Straight path segments were used as the quadcopter was capable of chang-

ing direction at any moment. Quadcopter flight path was modeled after the 3D Robotic

IRIS quadcopter [2] seen in Figure 3.6. Vehicle parameters seen below are representative

of the IRIS quadcopter specifications:

1. 25 meter/second cruise speed

2. 5 meter cruising altitude
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3. 10 minute flight time on full battery. Flight time was a selected percentage of the

estimated 16-22 minute flight time by 3D Robotics to account battery usage during

take-off and landing.

Figure 3.6: 3DR IRIS Quadcopter [2]

Using the vehicle parameters for the quadcopter, a simulation of the quadcopter flight

path can be seen in Figure 3.7.
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Figure 3.7: Quadcopter Trajectory

Implementation of the Dubins paradigm to generate two dimensional flight paths has

now been presented. The designed adaptive mission planner using the GA for mission

planning and Dubins path planning algorithm will be presented next.

3.4 Designed Adaptive Mission Planner

The developed adaptive mission planning system utilized two GAs to generate initial and

mission re-plan solutions. Each GA mission planner was activated based on the mis-

sion and GA parameters provided to the adaptive mission planner. The final initial or

mission re-plan was then outputted. Within each GA mission planner were several com-

ponents which included the following: population, evaluation, convergence verification,
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selection/reproduction and genetic alterations which can be seen in Figure 3.8. Mis-

sion and GA parameters provided were used to generate an initial random population

of mission plan solutions. The evaluation system simulated mission flight paths using

the Dubins path planning algorithm and evaluated the mission plans using the designed

GA fitness functions. A GA convergence criterion was then checked to determine if the

desired number of GA generations had been satisfied. If convergence was satisfied, then

the final mission plan solution was outputted otherwise a new population of solutions

was generated. Selection/reproduction operators, such as the roulette wheel method and

elitist strategies, were applied to select best fit solutions within the current population of

solutions. Genetic alterations, such as crossover and mutation operators, then modified

the selected population to produce a new current population of mission plan solutions.

GA generations continued until the convergence criterion was satisfied. Inputs of the

initial GA mission planning system will be presented next followed by those of the GA

mission re-planning system.
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Figure 3.8: GA Initial Mission Planner and Re-Planner Components

3.4.1 GA Initial Mission Planner

Initial GA mission planning was activated during the initial search of the POIs. Fixed

wing aircraft in the set were assigned to visit a balanced number of POIs. Initial mission

and GA parameter inputs include the following:

� Home base coordinates

� POI coordinates and frequency of visitation

� Number of fixed wing aircraft
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� POI visitation window time constraint

� GA parameters which include: population size, chromosome structure and number

of desired generations

Evaluation in the initial mission planner consisted of simulating the fixed wing flight

paths and evaluating the fitness value of the mission plans. Once the GA completed the

desired number of generations, the final initial mission plan was outputted.

3.4.2 GA Mission Re-Planner

GA mission re-planning was activated once the TOI had been located by one of the fixed

wing aircraft. At this time, a quadcopter was deployed to visit the TOI and additional

unsearched POIs. Remaining unsearched POIs were then re-tasked amongst the fixed

wing aircraft set. Mission re-plan and GA parameter inputs included the following:

� Home base coordinates

� TOI coordinate location

� Unsearched POI coordinates and remaining frequency of visitation

� POI visitation window time constraint

� Fixed wing aircraft vehicle states which includes the current coordinate location

and remaining battery life
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� GA parameters which include: population size, chromosome structure and number

of desired generations

Evaluation in the re-plan GA consisted of simulating mission plans and evaluating fitness

values for both quadcopter and fixed wing vehicles. Mission plans contained unsearched

POIs and the TOI. The quadcopter mission plan was simulated first and remaining POIs

not visited by the quadcopter were simulated in a separate mission plan using fixed wing

aircraft set. Quadcopter and fixed wing mission plans were then evaluated, using the

designed fitness functions, to determine individual vehicle set fitness values. Summation

of the two fitness values then equaled the overall mission plan fitness value. Once the

re-plan GA completed the desired number of generations, the final mission re-plan was

outputted. Simulations of the adaptive mission planner are presented in the next chapter

to ensure that the designed systems satisfied initial and mission re-planning objectives.



Chapter 4

Mission Planning Simulations

4.1 Simulation Overview

Simulations of the initial and mission re-planning systems are presented in this chapter.

First, the initial GA mission planning system was simulated to ensure that POI task loads

were balanced amongst the fixed wing aircraft. Second, the re-plan GA mission planning

system was simulated to ensure that the TOI was visited by the deployed quadcopter

and remaining POIs were evenly redistributed amongst the fixed wing aircraft set. Next,

both the initial and re-plan GA mission planning systems were simulated together to test

the effectiveness of the adaptive mission planner. Lastly, case studies were simulated in

which the number of fixed wing aircraft in the heterogeneous UAV sets varied along with

the location of a single TOI. All search space sizes used in the simulations were based off

a small fixed wing aircraft and quadcopter flight distance ranges.

47
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4.2 Initial GA Simulation

Initial GA mission planning consisted of the initial fixed wing aircraft fitness function

and the fixed wing aircraft flight path planner. It was required that the obtained mission

plan solution balance the flight times and POI visitation loads amongst the fixed wing

aircraft in the set. Initial GA mission planning was simulated by selecting a scenario in

which a set of fixed wing aircrafts were required to fly over a series of POIs. Mission and

GA parameters used to simulated the mission can be seen below and the search space

can be seen in Figure 4.1:

1. 1200m x 900m Search Space

2. 5 POIs with Priority 3

3. 3 Fixed Wing Aircraft

4. Delta = 0.50 min. (30 Second Window)

5. GA Generations = 350
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Figure 4.1: Initial Search Space

After 350 GA generations, the best initial chromosome obtained based on fitness function

score can be seen in Table 4.1. As seen in the chromosome, All fixed wing aircrafts were

tasked to visit 5 POIs each thus satisfying the mission requirement of balancing the POI

task loads.

1 2 1 3 2 1 2 3 3 3 1 3 2 1 2

5 1 3 3 2 5 4 1 4 2 1 4 2 3 5

Table 4.1: Initial Best Chromosome

Fixed wing flight times and distances traveled can be seen in Table 4.2. Since POI visi-

tation loads were evenly distributed amongst the fixed wing aircraft, an average mission

time of 7.3 minutes was obtained. Flight path trajectories for the initial mission plan

solution can then be seen in Figure 4.2.
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Fixed Wing 1 Fixed Wing 2 Fixed Wing 3 Avg Std Dev

Flight Time (min.) 7.2 7.1 7.7 7.3 0.3

Flight Distance (m.) 6522.8 6464.6 6978.1 6645.2 291.7

Table 4.2: Initial Flight Times & Distances
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Figure 4.2: Initial Trajectory

In addition to ensuring that POI and flight times were balanced, no two aircraft were to

reach the same POI within a 30 second time interval. Figure 4.3 illustrates the time in

which a UAV arrives at a POI. It can be seen that the smallest interval of time in which

two UAVs arrive at a POI was 0.74 minutes, 39 seconds, at POI number 2.
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Figure 4.3: Initial POI Timeline

GA run time and convergence during the initial mission plan can be seen in Table 4.3

and the fitness scores vs generations in Figure 4.4. In order to complete 350 generations

the GA ran for total of 4.8 minutes resulting in a final fitness score of 25.6. Delta G

represents the number of generations without an increase in fitness and in this scenario

the fitness did not increase for 183 generations.

Run Time Seconds/Generation Convergence Time Convergence Generation ∆G

4.8 min. 0.8 132.8 sec. 169 183

Table 4.3: Initial GA Performance



Chapter 4. Mission Plan & Simulations 52

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

 

 

X: 349
Y: 25.62

Generation

F
itn

es
s 

S
co

re
Highest Fitness
Average Fitness

Figure 4.4: Initial Fitness vs Generations

4.3 Re-Plan GA Simulation

Once a TOI is found, the re-plan GA mission planner is activated. A quadcopter platform

would to be deployed with the intention of visiting the TOI and additional POIs along

its route to and from the TOI. Remaining POIs that have not yet been visited, or will

not be visited by the quadcopter, were to be evenly redistributed amongst the fixed

wing aircraft set. In order to achieve these mission objectives, the re-plan GA used a

combination of the re-plan fixed wing and quadcopter fitness functions as well as their
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flight path planners. In the event of a mission re-plan, the fixed wing aircraft will start

from their current locations in the search space while the quadcopter is deployed from

the home base location. However, to illustrate the effectiveness of the re-plan GA all

vehicles began and ended at the home base location with POI #5 being a preselected

TOI. Mission re-plan and GA parameters used to simulate the mission can be seen below

and the search space in Figure 4.5.

1. 2000m x 3000m Search Space

2. 9 POIs with Priority 1

3. 3 Fixed Wing Aircraft + 1 Quadcotper

4. Target of Interest (TOI) = 5

5. Delta = 0.50 min. (30 Second Window)

6. GA Generations = 350
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Figure 4.5: Re-Plan Search Space

After 350 GA generations, the best initial chromosome obtained based on fitness function

score can be seen in Table 4.4. It can be seen that each fixed wing aircraft was tasked

to visit two POIs while the quadcopter was tasked to not only visit the TOI but two

additional POIs.

4 2 1 3 1 4 3 2 4

7 9 4 6 3 5 1 2 8

Table 4.4: Re-Plan Best Chromosome

Vehicle flight times and distances can then be seen in Table 4.5. Fixed wing flight times

were balanced while the quadcopter traveled for 3.2 minutes and ended with 68 % of its

battery life remaining. Figure 4.6 then illustrates the final re-plan trajectory.
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FW #1 FW #2 FW #3 Quadcotper Avg Std Dev

Flight Time (min.) 8.6 7.6 8.6 3.2 7.1 2.6

Flight Distance (m.) 7797.1 6835.2 7797.1 4860.7 6822.5 1384.2

Table 4.5: Re-Plan Flight Times and Distances
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Figure 4.6: Re-Plan Trajectory

Similar to the in the initial mission plan, no two fixed wing aircraft were to reach the

same POI within the 30 seconds time interval. However, since each POI was only given

a priority level of one, no two aircraft reached the same POI during the simulation.

Figure 4.7 illustrates the POI timeline of the re-plan mission.
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Figure 4.7: Re-Plan POI Timeline

GA run time and convergence performance of the mission re-plan can be seen in Table 4.6

and the fitness scores vs generations can be seen in Figure 4.8. In order to complete 350

generations, the re-plan GA ran for 5.3 minutes and attained its highest fitness score

after 58 generations. At this generation, the fixed wing aircraft fitness score was 25.2

and the quadcopter was 15 for a total final fitness of 40.2. Average population fitness vs

generations can then be seen in Figure 4.9. Results of this simulation indicated that the

re-plan GA was capable of satisfying re-plan objectives.

Run Time Seconds/Generation Convergence Time Convergence Generation ∆G

5.3 min. 0.9 53.2 sec. 58 294

Table 4.6: Re-Plan GA Performance
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4.4 Adaptive Mission Planner Simulation

Initial and re-plan GAs were found to obtain missions that satisfied initial and re-plan

objectives. Effectiveness of the combined systems in the adaptive mission planner was

then tested by simulating a mission scenario. The procedure used to perform the adaptive

mission planner simulation can be seen below and a flowchart illustrating the procedure

in Figure 4.10.

1. Establish POI and search space

2. Run initial GA mission planner

3. Simulate initial mission plan until a preselected TOI is reached

4. Extract fixed wing vehicle states for mission re-plan

5. Run re-plan GA mission planner

6. Evaluate mission times as metric

Figure 4.10: Adaptive Mission Planner Flowchart

Prior to conducting an adaptive mission planner simulation, a metric to quantifying

the reductions in mission times by deployment of a quadcopter was developed. Both
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reductions in fixed wing and overall mission times were examined and can be seen in

Equations 4.1 and 4.2.

FixedWingReduction = 100−
∑
FWT imeTraveled +

∑
FWRe−PlanT ime∑

FWInitialT ime

∗ 100 (4.1)

MissionT imeReduction = 100−
∑
FWT imeTraveled +

∑
FWRe−PlanT ime +QRT ime∑

FWInitialT ime

∗ 100

(4.2)

where

∑
FWInitialT ime = Total initial mission time between all fixed wing aircraft

∑
FWT imeTraveled = Total mission time traveled between all fixed wing aircraft prior to

locating TOI

∑
FWRe−PlanT ime = Total re-plan mission time between all fixed wing aircraft

QRT ime = Total mission time of quadcopter

An adaptive mission planner simulation was conducted using the following initial param-

eters and the initial search space can be seen in Figure 4.11:

1. 1500m x 1000m Search Space

2. 9 POIs with Priority 2
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3. 3 Fixed Wing Aircraft + 1 Quadcotper

4. Target of Interest (TOI) = 5

5. Delta = 0.50 min. (30 Second Window)

6. GA Generations = 350
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Figure 4.11: Adaptive Mission Planner Simulation Search Space

After 350 generations, the best initial GA mission planner chromosome seen in Table 4.7.

POI visitation loads were balanced amongst the fixed wing aircraft as each were tasked

to visit 6 POI. Figure 4.12 then shows the initial fixed wing aircraft trajectory.

3 3 2 3 2 1 3 2 1 3 3 2 2 1 1 2 1 1

6 8 1 2 5 2 7 7 3 3 5 9 1 4 6 9 4 8

Table 4.7: Adaptive Mission Planner Initial Best Chromosome
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Figure 4.12: Scenario Initial Trajectory

POI #5 was assigned to be the TOI and further examination of the initial chromosome

indicated that fixed wing aircraft #2 was assigned to first visit POI #1 followed by POI

#5. This meant that fixed wing aircraft #1 & #3 will visit as many POIs in their mission

plan before fixed wing aircraft #2 reaches the TOI. Figure 4.13 illustrates a simulation

of the initial mission plan. It can be seen that fixed wing aircraft #1 reached POIs #2

& #3 and fixed wing #3 was inbound to POI #6 before the TOI was reached.
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Figure 4.13: Adaptive Mission Planner Initial Mission Simulation

Current vehicle states of the fixed wing aircraft were then used to generate a mission

re-plan and the best re-plan chromosome attained after 350 GA generations can be seen

in Table 4.8. Upon further examination of the re-plan chromosome, the quadcopter was

assigned to visit a total of 7 POIs including TOI #5. Fixed wing aircraft #1 & #3

were assigned to visit two POIs while fixed wing aircraft #2 was assigned to visit three

remaining POIs. Re-plan trajectory can be seen illustrated in Figure 4.14.

3 4 1 4 2 2 2 4 4 4 1 4 3 4

6 2 3 6 8 9 1 9 8 5 7 7 4 4

Table 4.8: Adaptive Mission Planner Re-Plan Best Chromosome
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Figure 4.14: Adaptive Mission Planner Re-Plan Trajectory

Initial and re-plan flight distances and times can be seen in Tables 4.10 and 4.9. Flight

distances and times were balanced in the initial mission plan which was expected as POI

loads were balanced amongst the fixed wing aircraft. During the re-plan, fixed wing

aircraft distances and times were also balanced while the quadcopter traveled for a total

time of 2.7 minutes.

FW #1 FW #2 FW #3 Quadcotper Avg Std Dev

Initial Flight Time (min.) 7.6 8.2 7.8 7.7 0.4

Re-Plan Flight Time (min.) 3.9 3.9 3.6 2.7 3.5 0.6

Table 4.9: Adaptive Mission Planner Flight Times
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FW #1 FW #2 FW #3 Quadcotper

Initial Flight Distance (m.) 6461.8 6955.3 6224.2

Re-Plan Flight Distance (m.) 3489.9 3554.7 3239.4 4094.7

Table 4.10: Adaptive Mission Planner Flight Distances

GA performance for both the initial and re-plan solutions can be seen in Table 4.11. 350

GA generations in the initial mission plan ran for 4.8 minutes while the re-plan mission

plan ran for 2.6 minutes. Fitness scores vs generations for both the initial and mission

re-plan can be seen in Figures 4.15 and 4.16.

Run Time Sec/Gen Convergence Time Convergence Generation ∆G

Initial 4.8 min. 0.8 153.4 sec. 183 169

Re-Plan 2.6 min. 0.5 143.7 sec. 310 42

Table 4.11: Adaptive Mission Planner GA Performances
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Figure 4.15: Adaptive Mission Planner Initial Fitness
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Figure 4.16: Adaptive Mission Planner Re-plan Fitness
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Figure 4.17: Average Population Fitness vs Generations

POI timelines for both the initial and re-plan mission can be seen in Figures 4.18 & 4.19.

In the initial mission plan no two aircraft arrived at the same POI within the 30 second

allowable window. Mission re-plan POI timeline indicated that no two fixed wing aircraft

arrived at the same POI within the allowable 30 second window as well.
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Figure 4.18: Adaptive Mission Planner Initial POI Timeline
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Figure 4.19: Adaptive Mission Planner Re-Plan POI Timeline
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Simulation of the adaptive mission planner has now illustrated that initial and mission

re-plan objectives are achieved. Reductions in fixed wing and overall mission times by

the deployment of the quadcopter were then examined and can be seen in Table 4.12.

Fixed wing aircraft mission times saw a reduction of 31% and the overall mission time

was reduced by 19%. This reduction resulted in the entire mission being completed 18.7

minutes in comparison to the initial 23.2 minutes. To further expand on these simulation

results, case studies were simulation where the number of UAVs in the heterogeneous sets

varied.

Initial Fixed

Wing Time

(min.)

Simulation

Time Traveled

(min.)

Re-Plan Fixed

Wing Time

(min.)

Fixed Wing

Time

Reduction

Mission Time

Reduction w/

Quadcopter

23.2 4.6 11.4 30.9 % 19.2 %

Table 4.12: Adaptive Mission Planner Metric Evaluation

4.5 Varying Vehicle Set Simulations

Adaptive mission planner case studies were simulated by varying the number of the fixed

wing aircraft in the heterogeneous between 2,3 and 4 aircraft with one quadcopter. POIs

in the search space were organized in a square formation with each POI requiring three

visits as seen in Figure 4.20. In every vehicles set, a single TOI was rotated between one

of the nine POIs. Simulations were conducted using the following GA parameters:
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1. 1500m x 1000m Search Space

2. 9 POIs with Priority 3

3. 2,3 & 4 Fixed Wing Aircraft + 1 Quadcotper

4. Target of Interest (TOI) = 1-9

5. Delta = 0.50 min. (30 Second Window)

6. GA Generations = 350
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Figure 4.20: Varying Vehicle Search Space

Fixed wing aircraft mission time reductions can be seen in Figure 4.21 where each data

set represented a heterogeneous UAV set containing either two, three or four fixed wing
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aircraft and a single quadcopter. Results indicated that for these particular case studies,

an average fixed wing mission time reduction of 42% was obtained when the heterogeneous

set contained two fixed wing aircraft. Sets containing three fixed wing aircraft resulted

in a 20% average mission time reduction while four fixed wing aircraft resulted in a 21%

average mission time reduction.
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Figure 4.21: Case Study Fixed Wing Time Reductions

Overall mission time reductions can be seen in Figure 4.22. Simulation results of the

previously mentioned case studies indicated average overall mission time reductions of

30% using two fixed wing aircraft, 11% using three fixed wing aircraft and 7% using four

fixed wing aircraft.
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Figure 4.22: Case Study Mission Time Reductions

Quadcopter battery life remaining after each simulation can be seen in Figure 4.23. Re-

sults indicated that the quadcopter returned with and average remaining battery of 45%

when two fixed wing aircraft were used in the heterogeneous set. Three fixed wing aircraft

in the set resulted in a 69% average remaining battery and four fixed wing aircraft in the

set resulted in a 70% average remaining battery.
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Figure 4.23: Case Study Quadcopter Battery Remaining

GA run times for the initial and mission re-plan can be seen in Figures 4.24 and 4.25.

Average run times for the GA initial and mission re-plan can also be seen in Table 4.13.

Results indicated that GA run times were greatest in both the initial and mission re-plan

when two fixed wing aircraft were used. As the number of fixed wing aircraft increased,

average GA run times decreased.
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2 Fixed Wing

Aircraft

3 Fixed Wing

Aircraft

4 Fixed Wing

Aircraft

Initial Run Time (min.) 10.9 9.1 8.2

Re-Plan Run Time (min.) 4.1 3.8 4.7

Table 4.13: Average Case Studies GA Run Times
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Figure 4.24: GA Initial Mission Plan Run Times
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Figure 4.25: GA Mission Re-plan Run Times

Tables containing vehicle flight times and GA performance for all case studies can be

found in the appendix in Tables A.1 through A.9.
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Conclusions

An adaptive mission planning system was developed to task a heterogeneous set of UAVs

to investigate a TOI when it was located amongst a set of POIs being searched by a set

of fixed wing aircraft. The developed system consisted of two GAs with fitness functions

and flight path models that worked together to generate advanced mission plans. Two

dimensional flight path models for a fixed wing aircraft and quadcopter were generated

using a Dubins method. An initial fixed wing aircraft fitness functions was used to

evaluate the efficiency of a mission plan for a homogeneous set of fixed wing aircraft.

Missions in which POI visitation loads were balanced amongst the fixed wing aircraft

were rewarded. Building off the initial fixed wing fitness function, a re-plan fixed wing

fitness function was then developed to task fixed wing aircraft to visit POIs closest to

their current position once a TOI was located. A quadcopter fitness function was then

designed to task a quadcopter to visit the newly located. Quadcopter fitness function
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was designed to maximize battery usage as it was desired that the quadcopter visit as

many additional POIs as possible. Addition of the developed quadcopter fitness function

to the GA ensured that additional surveillance of the TOI was obtained.

Case study simulations of missions were then conducted using varying numbers of fixed

wing aircraft with a single quadcopter to ensure that the developed system generated

plans that satisfied both initial and re-plan objectives. Simulation search space size was

selected based on the flight distance range capabilities of a small fixed wing aircraft. Initial

mission plans were obtained using the GA and the initial fixed wing fitness function and

flight path planner. Mission re-plans were generated using the GA and a combination

of the re-plan fixed wing fitness function, quadcopter fitness function and flight path

planners.

Case study results indicated average overall mission time reductions of 30% with two

fixed wing aircraft, 11% with three fixed wing aircraft and 7% with four fixed wing

aircraft. Selected case study scenarios revealed that reductions in overall mission times

were inversely proportional to the number of fixed wing aircraft used in the heterogeneous

sets. In conclusion, the developed system will enable battlefield ground operators to plan

a multi-UAV mission that provides additional surveillance of a TOI while reducing overall

mission times.
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5.1 Future Work

In addition to the research already conducted in this thesis, the following cases should be

considered to benefit the adaptive mission planner:

1. Expanded case studies to further investigate the reduction in mission times with

higher POIs, multiple TOIs and varying number of fixed wing and quadcopter

platforms

2. The implementation of loitering path planners to obtain additional aerial surveil-

lance around POI and TOIs.

3. Dynamic flight path planning algorithms to account for moving POIs, TOIs and

obstacles.

4. Implementation of three dimensional path planning algorithms to better reflect fixed

wing and quadcopter flight path behaviors.
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A.1 2 Fixed Wing + 1 Quadcopter Case Study Re-

sults

TOI

Initial Fixed

Wing Time

(min.)

Simulation

Time Traveled

(min.)

Re-Plan

Fixed Wing

Time (min.)

Fixed Wing

Time

Reduction

Mission Time

Reduction w/

Quadcopter

1 31.94 10.89 7.84 41.35 % 29.91 %

2 33.13 4.99 15.07 39.48 % 27.99 %

3 31.76 8.48 9.58 43.12 % 29.64 %

4 32.77 9.05 8.86 45.38 % 31.30 %

5 32.52 2.40 14.09 49.28 % 36.32 %

6 32.61 7.59 10.57 44.30 % 31.01 %

7 32.81 6.10 14.57 36.99 % 26.26 %

8 32.24 3.00 15.84 41.60 % 29.65 %

9 32.19 4.32 15.89 37.21 % 25.50 %

Table A.1: Mission Time Reductions 2 Fixed Wing & 1 Quadcopter
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FW #1

(min.)

FW #2

(min.)

QC

(min.)

AVG

(min.)

Std Dev

(min.)

TOI 1
I 15.88 16.06 - 15.97 0.126

R 3.70 4.41 3.66 3.83 0.271

TOI 2
I 16.79 16.34 - 16.57 0.322

R 7.47 7.59 3.81 6.29 2.153

TOI 3
I 15.98 15.78 - 15.88 0.140

R 5.76 3.82 4.28 4.62 1.011

TOI 4
I 16.32 16.45 - 16.39 0.087

R 4.54 4.32 4.61 4.49 0.155

TOI 5
I 16.24 16.27 - 16.26 0.024

R 6.67 7.43 4.21 6.10 1.680

TOI 6
I 16.30 16.31 - 16.30 0.007

R 4.50 6.07 4.33 4.97 0.960

TOI 7
I 16.36 16.46 - 16.41 0.071

R 7.29 7.28 3.52 6.03 2.174

TOI 8
I 16.31 15.94 - 16.12 0.264

R 7.94 7.90 3.85 6.56 2.347

TOI 9
I 16.05 16.14 - 16.10 0.067

R 7.92 7.98 3.77 6.55 2.410

Table A.2: Flight Times 2 Fixed Wing & 1 Quadcopter
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Fitness

GA Run

Time

(min.)

Sec/-

Gen

Conver-

gence Time

(min.)

Conver-

gence

Generation

∆G

TOI 1
I 35.24 10.47 1.79 2.06 69 283

R 90.99 2.87 0.49 1.41 172 180

TOI 2
I 36.15 11.23 1.92 5.90 184 168

R 104.09 4.63 0.79 1.30 98 254

TOI 3
I 36.19 10.80 1.85 7.34 238 114

R 88.72 3.48 0.60 3.13 314 38

TOI 4
I 36.00 10.42 1.79 7.00 235 117

R 141.34 3.47 0.59 2.93 296 56

TOI 5
I 36.39 10.51 1.80 9.61 320 32

R 101.64 5.04 0.86 2.74 190 162

TOI 6
I 34.65 11.53 1.98 6.16 187 165

R 104.77 3.98 0.68 2.01 177 175

TOI 7
I 36.07 10.83 1.86 9.25 299 53

R 98.44 4.28 0.73 2.35 192 160

TOI 8
I 35.40 11.08 1.90 8.52 269 83

R 108.23 5.06 0.87 4.87 337 15

TOI 9
I 36.72 11.83 2.03 8.89 263 89

R 97.55 4.77 0.82 1.31 96 256

Table A.3: GA Performance 2 Fixed Wing & 1 Quadcopter
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A.2 3 Fixed Wing + 1 Quadcopter Case Study Re-

sults

TOI

Initial Fixed

Wing Time

(min.)

Simulation

Time Traveled

(min.)

Re-Plan

Fixed Wing

Time (min.)

Fixed Wing

Time

Reduction

Mission Time

Reduction w/

Quadcopter

1 33.58 8.83 14.64 30.12 % 20.45 %

2 33.35 19.21 11.57 7.70 % 1.49 %

3 34.14 11.42 15.17 22.13 % 12.04 %

4 30.88 3.40 16.84 34.48 % 23.93 %

5 32.63 3.62 21.21 23.89 % 12.75 %

6 34.14 9.52 15.74 26.01 % 16.09 %

7 34.25 10.20 18.83 15.24 % 7.34 %

8 34.04 4.88 25.28 11.37 % 2.87 %

9 35.00 23.53 8.88 7.40 % 0.63 %

Table A.4: Mission Time Reductions 3 Fixed Wing & 1 Quadcopter
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FW #1

(min.)

FW #2

(min.)

FW #3

(min.)

QC

(min.)

AVG

(min.)

Std Dev

(min.)

TOI 1
I 11.33 11.24 11.01 - 11.19 0.163

R 5.09 4.89 4.66 3.25 4.47 0.835

TOI 2
I 11.09 11.09 11.16 - 11.12 0.038

R 4.22 3.61 3.74 2.07 3.41 0.931

TOI 3
I 11.35 11.46 11.34 - 11.38 0.071

R 4.42 4.95 5.80 3.45 4.65 0.985

TOI 4
I 10.34 10.28 10.26 - 10.29 0.045

R 5.60 5.89 5.35 3.26 5.02 1.199

TOI 5
I 10.93 10.72 10.98 - 10.88 0.136

R 6.94 6.80 7.48 3.63 6.21 1.744

TOI 6
I 10.90 11.59 11.64 - 11.38 0.411

R 5.29 5.41 5.03 3.39 4.78 0.943

TOI 7
I 11.46 11.42 11.36 - 11.42 0.050

R 5.83 6.00 7.00 2.70 5.38 1.859

TOI 8
I 11.28 10.99 11.77 - 11.35 0.396

R 8.49 8.35 8.45 2.89 7.04 2.768

TOI 9
I 11.24 12.10 11.66 - 11.67 0.427

R 2.01 3.70 3.17 2.37 2.81 0.763

Table A.5: Flight Times 3 Fixed Wing & 1 Quadcopter
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Fitness

GA Run

Time

(min.)

Sec/-

Gen

Conver-

gence Time

(min.)

Conver-

gence

Generation

∆G

TOI 1
I 37.62 8.80 1.51 8.60 342 10

R 87.82 3.87 0.66 1.94 175 177

TOI 2
I 37.93 9.17 1.57 4.67 178 174

R 72.16 2.13 0.36 0.66 109 243

TOI 3
I 38.87 9.28 1.59 3.45 130 222

R 86.65 3.60 0.62 3.57 347 5

TOI 4
I 36.86 8.81 1.51 7.05 280 72

R 90.23 5.25 0.90 5.04 336 16

TOI 5
I 37.31 9.51 1.63 4.54 167 185

R 92.77 5.46 0.94 4.40 282 70

TOI 6
I 39.35 9.32 1.60 6.45 242 110

R 88.26 3.66 0.63 2.78 266 186

TOI 7
I 38.44 9.07 1.56 5.08 196 156

R 85.60 4.12 0.71 2.25 191 161

TOI 8
I 37.34 9.58 1.64 1.59 58 294

R 93.38 5.35 0.92 3.07 201 151

TOI 9
I 39.00 9.23 1.58 8.07 306 46

R 35.25 1.63 0.28 0.25 53 299

Table A.6: GA Performance 3 Fixed Wing & 1 Quadcopter
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A.3 4 Fixed Wing + 1 Quadcopter Case Study Re-

sults

TOI

Initial Fixed

Wing Time

(min.)

Simulation

Time Traveled

(min.)

Re-Plan

Fixed Wing

Time (min.)

Fixed Wing

Time

Reduction

Mission Time

Reduction w/

Quadcopter

1 33.80 3.32 26.41 16.98 % 9.11 %

2 36.03 7.02 25.29 10.35 % 2.41 %

3 35.41 5.69 25.84 10.97 % 2.05 %

4 33.24 4.54 19.66 27.20 % 17.01 %

5 34.07 4.83 24.04 15.26 % 6.29 %

6 34.33 8.27 19.92 17.88 % 9.23 %

7 36.04 14.04 15.35 18.47 % 10.17 %

8 33.61 6.88 24.68 6.08 % -1.91 %

9 36.35 7.22 23.66 15.03 % 7.21 %

Table A.7: Mission Time Reductions 4 Fixed Wing & 1 Quadcopter
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FW #1

(min.)

FW #2

(min.)

FW #3

(min.)

FW #4

(min.)

QC

(min.)

AVG

(min.)

Std Dev

(min.)

TOI 1
I 8.35 8.80 9.40 9.25 - 8.95 0.475

R 7.36 5.86 6.80 6.39 2.82 5.84 1.781

TOI 2
I 8.51 8.51 9.46 9.56 - 9.01 0.578

R 6.74 7.01 6.24 5.30 2.86 5.63 1.679

TOI 3
I 9.17 9.14 8.70 8.40 - 8.85 0.372

R 5.94 6.95 6.95 5.99 3.16 5.80 1.556

TOI 4
I 8.65 6.65 7.92 8.01 - 8.31 0.396

R 5.64 4.80 5.66 3.55 3.39 4.61 1.099

TOI 5
I 9.15 8.98 8.75 7.19 - 8.52 0.899

R 5.37 6.87 6.41 5.39 3.05 5.42 1.473

TOI 6
I 8.26 8.96 8.24 8.87 - 8.58 0.384

R 5.29 4.97 5.13 4.53 2.97 4.58 0.944

TOI 7
I 8.61 9.38 9.24 8.81 - 9.01 0.361

R 3.92 3.72 4.78 2.93 2.99 3.67 0.760

TOI 8
I 8.25 8.53 8.30 8.53 - 8.40 0.148

R 6.78 7.32 6.69 3.90 2.69 5.47 2.051

TOI 9
I 9.25 9.18 8.64 9.28 - 9.09 0.300

R 6.77 6.26 6.54 4.10 2.84 5.30 1.740

Table A.8: Flight Times 4 Fixed Wing & 1 Quadcopter
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Fitness

GA Run

Time

(min.)

Sec/-

Gen

Conver-

gence Time

(min.)

Conver-

gence

Generation

∆G

TOI 1
I 40.42 8.00 1.37 7.61 333 19

R 85.97 5.64 0.97 4.95 307 45

TOI 2
I 40.57 8.47 1.45 2.95 122 230

R 98.15 5.19 0.89 3.20 216 136

TOI 3
I 41.23 8.47 1.45 7.94 328 24

R 92.83 5.24 0.90 2.54 170 182

TOI 4
I 39.52 8.04 1.38 4.11 179 173

R 96.42 4.84 0.83 3.34 242 110

TOI 5
I 37.99 8.37 1.43 4.90 205 147

R 92.46 5.16 0.89 4.50 305 47

TOI 6
I 39.92 8.26 1.42 6.33 268 84

R 95.03 4.17 0.72 1.66 139 213

TOI 7
I 41.56 8.33 1.43 4.07 171 181

R 82.95 3.32 0.57 1.00 105 247

TOI 8
I 40.30 7.78 1.33 7.49 337 15

R 99.06 4.76 0.82 3.91 288 64

TOI 9
I 40.68 8.42 1.44 3.23 134 218

R 99.34 4.65 0.80 3.55 267 85

Table A.9: GA Performance 4 Fixed Wing & 1 Quadcopter
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