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ABSTRACT 
 

A New Member of the AFAP Family, AFAP1L1,  
Binds to Cortactin and Localizes to Invadosomes 

 
Brandi Nicole Snyder 

 
 

 Cellular motility and invasion in normal cellular processes and disease states such 
as cancer are dependent upon the ability of a cell to efficiently interact with its 
microenvironment, rearrange its cytoskeleton and degrade tissue barriers for purposes of 
cell movement. The AFAP family of adaptor proteins, AFAP1, AFAP1L1 and 
AFAP1L2, integrates signals received from the microenvironment into coordinated 
cytoskeletal changes. While there have been many reports on the functions and binding 
partners of AFAP1 and AFAP1L2, this work aimed to determine the cellular location and 
function of newly discovered AFAP1L1. The overall amino acid and protein structures of 
AFAP family members were compared so as to determine similarities and differences as 
well as to propose an evolutionary link between all three family members. As AFAP1 
and AFAP1L1 have been shown to be more closely related, studies focused on a detailed 
comparison of these two family members. AFAP1 and AFAP1L1 were shown to have 
similar cellular localization in the cell by associating with stress filaments and cortical 
actin and also showing localization to invadosomes. Immunohistochemistry demonstrated 
differential expression of AFAP1L1 in the brain, particularly surrounding the Purkinje 
neurons, granular cells and neurons of the dentate nucleus. Although AFAP1 is a well 
known cSrc binding partner and activator, AFAP1L1 was determined to be a binding 
partner for cortactin, possibly through the SH3 domain. As other AFAP family members 
have been shown to be increased in various cancers, AFAP1L1 expression levels are 
upregulated in a number of cancers, particularly neuroblastoma and glioblastoma. While 
the similar amino acid sequence and modular domain identifies AFAP1L1 as a previously 
undescribed member of the AFAP family, the ability of AFAP1L1 to interact with 
cortactin and localize to distinct areas of the brain implies that AFAP1L1 has unique 
functions separate from AFAP1 and AFAP1L2.  
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I. Introduction and Significance 

Cells have the ability to take instructional cues from their environment and 

convert them into a complex and intricate cascade of information directed by signaling 

proteins so as to perform a large array of cellular processes. At the heart of these 

signaling complexes are adaptor proteins, proteins with no intrinsic enzymatic activity 

themselves but which do have the ability to link proteins together by virtue of their 

protein binding domains. These protein binding domains, identified through consensus 

amino acid sequence, allow a single adaptor protein to interact with a variety of other 

proteins so as to create a sophisticated signaling complex (Pawson and Nash, 2003). The 

functions of these signaling complexes are diverse and include apoptosis, actin dynamics 

and cell cycle regulation, among many others (Duncan et al., 2010; Qian et al., 2000; 

Roberts et al., 2002). The Actin Filament-Associated Protein (AFAP) family of adaptor 

proteins is involved in signaling cascades that regulate cell shape, motility and 

cytoskeletal integrity and are associated with cSrc kinase activity, protein kinase C alpha 

(PKCa) activation and activation of the phosphatidylinositol-3 kinase (PI3K) pathway 

(Baisden et al., 2001b; Lodyga et al., 2009; Xu et al., 2007). As the discovery of multiple 

AFAP family members is a relatively new area of research, this literature review will 

serve as an in depth comparison of the AFAP family structure and function.  

 

II. Actin Filaments and Cell Morphology 

It is well known that many cells have the ability to migrate during processes such 

as embryonic development, wound closure, and inflammation (Ho et al., 2008; Le 

Clainche and Carlier, 2008; Parsons et al., 2010; Rathinam and Alahari, 2010). It is 
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through rearrangement of the actin cytoskeleton that cells are able to effectively respond 

to mechanical forces, extracellular matrix proteins or external cues (Parsons et al., 2010). 

The ability of a cell to remodel the cytoskeleton is important in normal cellular processes 

such as embryogenesis, immune cell motility and adhesion; however, cancer cells can 

also acquire the ability to undergo abnormal cell migration (Le Clainche and Carlier, 

2008; Weed and Parsons, 2001). Mediated through a number of proteins such as the Rho 

family of small guanosine triphosphatases (GTPases), cells move towards a signal by first 

extending the cell body and creating a variety of adhesions to their substratum.  

 

Rho Family Members 

Rho family members Rho, Rac and Cdc42 are GTPases that are regulators of cell 

movement. Small GTPases are activated to GTP bound forms through guanine nucleotide 

exchange factors (GEFs) which exchange bound GDP for GTP and are inactivated to 

GDP bound forms through GTPase activating proteins (GAPs) which hydrolyze GTP. 

Activation of different Rho family members can lead to the formation of different actin 

structures within the cell. The activation of Rho is known to induce the formation of 

stress fibers, contractile bundles of anti-parallel cross-linked actin that have the ability to 

contract due to association with non-muscle myosin (Parsons et al., 2010). Rac activation 

is known to induce the formation of lamellipodia, a thin cytoplasmic protrusion at the 

leading edge of the cell that is 1-5mm in width.  Lamellipodia contain branched actin 

structures and are vital to the formation of cellular adhesions while Cdc42 activation 

results in the formation of actin-rich finger-like protrusions which extend outside of the 

lamellipodium called filopodia (Small et al., 2002). Filopodia play multiple roles in the 
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cell by directing cell migration through sensing of the microenvironment, forming sheets 

of cells for both embryonic development and wound healing through cell adhesion and 

forming the precursors of dendritic spines in neurons (Mattila and Lappalainen, 2008).  It 

is through activation of various Rho family GTPases and their subsequent signaling 

pathways that a cell can transform extra- and intracellular cues into a coordinated cell 

movement.  

 

Focal Adhesions 

As a cell begins the process of migration, it begins by forming transient contacts 

with the substratum called focal contacts (Zamir and Geiger, 2001). These immature 

nascent adhesions of bundled actin have the ability to mature into larger and longer 

lasting focal adhesions; a complex array of proteins along the ventral plasma membrane 

rich in cytoskeletal proteins such as paxillin and talin and protein kinases such as Src, 

focal adhesion kinase (FAK) and protein kinase C (PKC), as well as many others that link 

the actin cytoskeleton to the substratum (Zamir and Geiger, 2001). Key players in focal 

adhesions are integrins, transmembrane proteins whose cytoplasmic tails bind to the array 

of proteins in the focal adhesion and whose extracellular domains bind to proteins in the 

extracellular matrix (ECM) such as fibronectin and collagen (Parsons et al., 2010). The 

fast growing filamentous actin lamellipodium at the protruding edge of the cell undergoes 

actin polymerization that pushes the lamellipodium forward, forming immature focal 

contacts with the extracellular matrix. These early contacts mature into integrin-

containing focal adhesions through mechanical tension applied to the contact by myosin-

II mediated contractile forces from the cytoskeleton. The application of force at a 
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maturing contact establishes new binding sites for adhesion-associated proteins through 

conformational changes in proteins involved in the immature contact. An additional result 

of myosin-II activation is cross-linking and bundling of actin filaments, combined with 

myosin-II mediated contractility results in the maturation of focal adhesions at the 

leading edge of the cell which signals for actin filament polymerization and protrusion of 

the leading edge while this protrusive force causes actin filament depolymerization and 

disassembly of the focal adhesions at the rear of the cell (Parsons et al., 2010; Ridley et 

al., 2003; Small and Resch, 2005). The forward movement of the cell is mediated by 

these contractile forces between the cellular adhesions and stress fibers. Three types of 

stress fibers have been described: ventral, dorsal and transverse arcs (Pellegrin and 

Mellor, 2007). Ventral stress fibers extend between focal adhesions at the leading edge of 

the cell to the central cell body  (Small et al., 1998). Contraction of these ventral stress 

fibers causes a pulling towards the newly formed lamellipodium and away from the 

trailing edge of the cell.  Dorsal stress fibers are attached at one end to a focal adhesion 

and rise into the dorsal surface of the cell where they interact with a meshwork of actin. 

Although they do not have the ability to contract themselves, dorsal stress fibers may 

function to transmit the contraction of transverse arcs which are not tethered to focal 

adhesions and form behind the lamellipodium (Pellegrin and Mellor, 2007).  

 

Invadosomes 

In addition to focal adhesions, some highly motile cells such as macrophages, 

osteoclasts, dendritic cells and also smooth muscle cells exhibit podosomes, dynamic 

cellular contacts with the substratum that consist of an F-actin core surrounded by a ring 
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of proteins involved in cytoskeletal organization such as actin-related protein (Arp)2/3, 

cortactin, integrins, cSrc and many others. Found on the ventral membrane of cells, 

podosomes have a half-life longer than focal contacts ranging from approximately 2 to 12 

minutes and form a structure approximately 0.5-1mm in diameter with a depth of 0.2-

0.4mm (Linder and Kopp, 2005).  Although focal adhesions and podosomes share some 

of their integral proteins such as protein kinases, RhoGPTases and integrins, podosomes 

have the ability to secrete matrix metalloproteases (MMPs) which focal adhesions do not 

(Linder and Aepfelbacher, 2003). The ability of podosomes to secrete MMPs allows them 

to remodel the surrounding extracellular matrix for purposes of motility and crossing of 

tissue barriers (Linder and Kopp, 2005). Similar to podosomes are invadopodia, 

podosome-like structures found in transformed cells (cancer cells) which are longer lived 

(minutes to hours) and actively degrade matrix, which is required for tumor invasion 

(Yamaguchi et al., 2006). Invadopodia are larger than podosomes, reaching diameters of 

up to 8mm and extending projections deep into the extracellular matrix (Linder and Kopp, 

2005). A well-known feature of transformed cells is epithelial to mesenchymal transition 

(EMT) which involves the detachment of tumor cells from their place of origin, invasion 

through their surroundings, intravasation into and extravasation from the blood and 

lymphatic vessels and colonization of a secondary metastatic site in which this temporary 

cell phenotype is reversed (Yilmaz and Christofori, 2009). Naturally, loss of cellular 

contacts and rearrangement of the actin cytoskeleton are dynamic activities in the EMT 

process. Invadopodia play a role in EMT by degrading the extracellular matrix and 

providing a pathway for invasion of malignant cells.  
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Collectively termed invadosomes for their ability to degrade components of the 

extracellular matrix, podosomes and invadopodia share some common characteristics 

while there are also identifiable differences between the two (Linder, 2009). It is 

hypothesized that podosomes may be a precursor to invadopodia, and, as such, both 

contain similar cellular location and machinery such as their dot-like shape and 

localization to the ventral membrane as well as their association with actin and other 

focal complex regulators (Linder, 2009; Saltel et al., 2010). While many podosomes may 

form in a single cell and have a lifetime of a few minutes, fewer and longer-lived 

invadopodia are usually found in transformed cells (Linder, 2009). Podosomes are 

commonly characterized as adhesive structures that may play a role in migration and 

ECM remodeling while also serving a sensory function for guidance (Gimona et al., 

2008; Saltel et al., 2010). Invadopodia have an increased ability to degrade the ECM and 

are a hallmark of highly invasive cancers as it is by virtue of this matrix degradation that 

highly motile cancer cells are able to metastasize throughout the body. The origin of and 

an in vivo role for invadosomes is currently a subject of exploration (Gimona et al., 2008; 

Linder, 2009).  

 

cSrc and the Actin Cytoskeleton 

cSrc is a well-known and well-studied non-receptor protein tyrosine kinase whose 

activation affects cellular transformation through the tyrosine phosphorylation of cellular 

proteins thus resulting in a transformed phenotype in which the cells are rounded, lose 

their integrin-based substrate attachment, become more motile and can degrade and 

invade through cellular matrix (Frame et al., 2002; Yeatman, 2004). The cSrc structure 
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consists of a kinase domain, a Src homology 2 (SH2) domain, a Src homology 3 (SH3) 

domain and a myristoylation site that is necessary for membrane localization (Yeatman, 

2004). cSrc remains in an intramolecularly autoinhibited conformation by 

phosphorylation of a tyrosine residue at Y527 in chicken (Y530 in human) that interacts 

with its’ own SH2 domain. An additional interaction of the SH3 domain with the kinase 

domain acts as a second level of intramolecular regulation to insure the proper 

functioning of cSrc (Yeatman, 2004). As activation of cSrc is a hallmark of cancer and 

results in a transformed cellular phenotype, this tight regulation of activation is necessary 

for the proper functioning of the cell. Phosphatases that dephosphorylate the regulatory 

tyrosine in the C-terminus are also highly regulated as dephosphorylation of phospho-

Y527 (Y530 in humans) allows cSrc to open into an active conformation and 

autophosphorylate itself and cellular substrates. While inactive cSrc resides around the 

perinuclear region, active cSrc indirectly associates with actin and can move to the cell 

periphery where the myristoylation site is necessary for association with the plasma 

membrane. From here, cSrc has the ability to phosphorylate a variety of proteins. FAK, 

for example, is a non-receptor tyrosine kinase that associates with integrins and is 

activated when phosphorylated by cSrc which results in a loss of and turnover of focal 

adhesions. This turnover results in the regulated process of assembly and disassembly of 

cell-matrix adhesions and allows the cell to increase its motility. Also a result of cSrc 

activation, cells develop the ability to invade through matrix by the activation of MMPs 

(Yeatman, 2004). 
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Classical Protein Kinase C and the Cytoskeleton 

 The Protein Kinase C family are serine/threonine kinases divided into classical 

(PKC a,bI,bII (splice variants from a single gene) and g), novel (PKC d,e,h and q) and 

atypical (PKC i/l and x) designations which each contain a catalytic and regulatory 

domain (Larsson, 2006). The classical PKCs have a necessary activation site that can 

bind phosphatidylserine, diacylglycerol and phorbol esters, a calcium binding region, an 

ATP binding region and a catalytic domain (Brandt et al., 2002; Martiny-Baron and 

Fabbro, 2007). While PKCb and PKCg are known to have roles in inflammation, 

angiogenesis and neuronal tissues, the PKCa isoform is a general promoter of cell 

migration, proliferation and apoptosis (Larsson, 2006; Martiny-Baron and Fabbro, 2007).  

In A7r5 smooth muscle cells, classical PKCs, PKCa in particular, were shown to be 

responsible for phorbol ester-induced cytoskeletal remodeling of stress fibers into 

podosomes (Hai et al., 2002). Activation of PKCs by phorbol ester in these cells resulted 

in a decrease in RhoA activity and subsequent dissolution of stress fibers by virtue of the 

upregulation of p190RhoGAP (Brandt et al., 2002). P190RhoGAP is activated by 

phosphorylation, possibly by cSrc. Indeed, cSrc activity is also increased upon 

stimulation of A7r5 cells with phorbol ester. It is hypothesized that activation of classical 

PKC family members, PKCa in particular in A7r5 cells, can result in the activation of 

cSrc which in turn phosphorylates and activates p190RhoGAP which results in the 

downregulation of Rho, the dissolution of stress fibers and the formation of podosome-

like structures (Brandt et al., 2002; Fincham et al., 1999). In addition, the activation of 

cSrc can also have a profound effect on the phenotype and motility of the cell.   
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 In addition to its role in cell shape, motility and, in the case of cancer cells, 

invasion, the actin cytoskeleton also plays a role in cell signaling, transport and cell 

division, among others. It is therefore through highly conserved and concerted pathways 

involving the actin cytoskeleton that a cell is able to perform all of its necessary 

processes.  

 

III. The AFAP Family: A Historical Perspective 

The first AFAP family member discovered was described as a tyrosine 

phosphorylated protein of approximately 110 kilodaltons (kDa) which could co-

immunoprecipitate with active cSrc and was referred to as pp110 for phosphoprotein of 

110kDa (Kanner et al., 1991; Reynolds et al., 1989). Although cells expressing active 

cSrc were known to have a transformed phenotype demonstrated by a loss of focal 

adhesions and bundled actin filaments, as well as an increase in motility and invasion 

(Frame et al., 2002), it was unknown through which proteins these signals were relayed. 

While overexpression of cSrc is not enough to induce such a transformed phenotype, a 

mutated form of activated avian Src, cSrc527F, contains a mutation in the C-terminus 

regulatory tyrosine which disrupts internal regulation by changing this tyrosine to a 

phenylalanine.  In the cSrc527F mutant, cSrc is not able to be held in its intramolecular 

inhibition state and is thus constitutively activated. To determine proteins involved in 

cSrc cellular transformation, cSrc527F was transfected into chicken embryo fibroblasts 

(CEF), immunoprecipitated using the cSrc-specific antibody EC10 and immune 

complexes were analyzed through the use of phosphotyrosine antibodies leading to the 

discovery of two tyrosine phosphorylated proteins, pp130 (later known as pp130Cas) and 
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pp110, that interacted directly with active cSrc (Reynolds et al., 1989).  Expression of 

deletion variants of cSrc in CEF cells in which amino acids 155-157 of the SH2 domain 

and amino acids 92-95 were removed confirmed the phosphorylated proteins involvement 

in binding and activation of the cSrc molecule. Monoclonal antibodies were raised 

against pp110 (Kanner et al., 1990). Antibody 4C3 against pp110 was used to screen 

cDNA λgt11 peptide and λgt10 cDNA expression libraries derived from chicken embryo 

brains and chick embryo fibroblasts, thus resulting in the identification of various 

overlapping cDNA sequences which were analyzed so as to construct the overall cDNA 

coding sequence of pp110 (Flynn et al., 1993). A rabbit polyclonal antibody created using 

this cDNA, F1, identified pp110’s association with stress fibers and cortical actin in chick 

embryo cells, thus pp110 was named Actin Filament Associated Protein of 110kDa, 

hereinafter known as AFAP1 (Flynn et al., 1993). The human homologue of chicken 

AFAP1 is also associated with cortical actin and stress fibers. Human AFAP1 is found at 

chromosomal location 4p16.1 and contains 16 exons which encode 730 amino acids with 

an approximate molecular mass of 80,725 daltons (Da) as identified by the Ensembl and 

UniProt databases. A second alternatively spliced isoform of AFAP1, AFAP-120, 

contains an additional 86 amino acids encoded by a novel exon near the carboxy terminus 

and has been shown to have a regulated expression pattern during the development of the 

mouse brain. AFAP-120 is thought to direct signaling through the protein tyrosine 

kinases cSrc and Fyn during neural development (Clump et al., 2003; Flynn et al., 1995).  

 Work by Han et al. identified that AFAP1 and cSrc were in complex after 

mechanical stretch-induced cytoskeletal deformation and that this was dependent upon 

the integrity of the N-terminal SH3 binding motif of AFAP1. Once bound, cSrc had the 
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ability to phosphorylate AFAP1 on multiple tyrosine residues to enhance the interaction 

(Guappone and Flynn, 1997; Guappone et al., 1998; Han et al., 2004; Qian et al., 1998).  

Further studies on the role of AFAP1 in mechanical stretch-induced cSrc activation by 

Xu et al. identified several human expressed sequence tag (EST) clones that shared 

similarities with AFAP1, including a transcript containing a partial C-terminal open 

reading frame (Xu et al., 2007). Analysis of this transcript by reverse transcription and 

polymerase chain reaction amplification resulted in the identification of a novel protein of 

818 amino acids with a predicted mass of 91,300 Da. An antibody created against this 

protein revealed a relative mobility (Mr) of 130kDa, thus this protein was titled XB130 

which will hereinafter be referred to as AFAP1L2 for Actin Filament Associated Protein 

1-like 2 (Xu et al., 2007). AFAP1L2 is predicted to be a paralogue of AFAP1 by the 

Ensembl database and contains 19 exons found on chromosome 10q25.3. 

 A third paralogue of AFAP1, identified as Actin Filament Associated Protein 1-

like 1 or AFAP1L1, is also predicted in the Ensembl database although very little is 

known aside from general sequence knowledge. AFAP1L1 is found at chromosomal 

position 5q33.1 and contains 19 exons which encode 768 amino acids with an 

approximate mass of 86,432 Da. A second isoform of AFAP1L1 encodes 725 amino 

acids and is lacking the 43 amino acids encoded by exon 18.  

 

IV: The AFAP Family: A Genomic Study 

While AFAP family members are found on separate chromosomes, there may be 

an evolutionary link between their locations. First proposed in 1970, the hypothesis that 

two rounds of whole genome duplication occurred in the evolution of the vertebrate 
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genome from invertebrate is known as the 2R hypothesis (Ohno, 1970). The 2R 

hypothesis suggests that the presence of paralogous genes in a species that are located on 

different chromosomes is due to regional duplication during evolution (Ohno, 1970). The 

theory originated with an early observation that gene families which have one member in 

invertebrates can have up to four members in vertebrates (Dehal and Boore, 2005). 

Although this “4:1” rule does not hold up in many vertebrates, this can be attributed to 

the many deletions, translocations and other genetic anomalies that can occur throughout 

evolution (Dehal and Boore, 2005; Ohno, 1970). Various groups have still shown that in 

some gene families, one family member exists in invertebrates while multiple members 

exist in the vertebrate lineage and can be mapped to predictable sites within 

chromosomes. Of particular interest to the AFAP family is the work of Pebusque et al. 

Through the study of various genes on human chromosome 8 (PA family, ANK family 

and FGFR family among others), it was found that paralogous regions exist between 

human chromosomes 4p16, 5q33-35, 8p12-21 and 10q24-26 (Pebusque et al., 1998). 

AFAP family members are found in these regions: AFAP1 at 4p16.1, AFAP1L1 at 

5q33.1 and AFAP1L2 at 10q25.3.  The 2R hypothesis would predict that only one AFAP 

family member would be found in invertebrates while the evolution of the vertebrate 

lineage would produce multiple family members. To study the AFAP family, the defining 

characteristic which establishes these three proteins as a family, the amino acid sequence 

of the AFAP1 pleckstrin homology 1 (PH1) domain, was used to determine paralogous 

genes in the Ensenbl database.  

Urochordates, also known as tunicates or sea squirts, are thought to be the 

invertebrate most closely related to vertebrates (Delsuc et al., 2006; Kasahara, 2007). 
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Indeed, Ciona intestinalis, the vase tunicate, has a 493 amino acid PH domain containing 

protein predicted to be an orthologue of the AFAP family by the Ensembl database which 

shares 13% overall identity (40% similarity) with AFAP1, 13% overall identity (37% 

similarity) with AFAP1L1 and 14% overall identity (35% similarity) with AFAP1L2 

(Figure 1A).  Similarity is particularly strong between all three AFAP family member 

PH1 domains and the Ciona intestinalis PH domain containing protein with 29% identity 

(68% similarity) with the AFAP1 PH1 domain, 21% identity (59% similarity) with the 

AFAP1L1 PH1 domain and 27% identity (63% similarity) with the AFAP1L2 PH1 

domain (Figure 1B). Ciona intestinalis, while predicted by Ensembl to have an 

orthologous relationship with all three AFAP family members in vertebrate lineages, is 

not predicted to have any paralogous genes in its genome. Flajnik et al. predict that the 

first round of whole genome duplication took place after the split of jawless vertebrates 

and protochordates. It is then predicted that a second round of whole genome duplication 

took place upon the split of cartilaginous fish from all other jawed vertebrates (Flajnik 

and Kasahara, 2001). This would be consistent with the finding of one orthologous PH 

domain containing protein in urochordates, the closest invertebrate ancestor to 

vertebrates, and the finding of all three paralogous AFAP family members in higher 

vertebrates.  Taking into account similarity with the PH domain containing protein in 

Ciona intestinalis, one could predict, upon evolution of the vertebrate genome, that 

AFAP1 was the first AFAP family member. It can then be predicted that AFAP1L2 was 

the second AFAP family member to arise.  AFAP1L1 shares more overall similarity with 

Ciona intestinalis than AFAP1L2, but the core factor that makes AFAP family members 

a family, the PH domains, is more conserved between AFAP1L2 and Ciona intestinalis. 
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A possible reason for AFAP1L1 to have higher overall similarity, though lower similarity 

in the PH1 domain, is the fact that AFAP1L1 is more closely related to AFAP1 than to 

AFAP1L2. It could be predicted that after the appearance of AFAP1L2 from AFAP1, 

AFAP1L1 then appeared after a second round of whole genome duplication, being 

duplicated from AFAP1 and not AFAP1L2. This is supported by both cladistic analysis 

of the AFAP family members, showing a closer relationship between AFAP1L1 and 

AFAP1 than AFAP1L1 and AFAP1L2 (Figure 2A) and also an Ensembl generated 

phylogram using all Ensembl AFAP family member sequence data (Figure 2B) (Larkin et 

al., 2007). Ciona intestinalis, which is predicted to be the closest invertebrate available in 

the ENSEMBL database that is related to the AFAP family, is indeed shown to have 

come from an ancestor earlier than any vertebrate AFAP family member. Red nodes in 

Figure 2B indicate predicted duplication events while blue nodes indicate predicted 

speciation events. A predicted duplication event occurred in a vertebrate ancestor that 

lead to two arms, one from which AFAP1L2 arose and another from which AFAP1 arose. 

A second predicted duplication event occurred in the arm of AFAP1 which effectively 

split that arm again into two, one from which the AFAP1 lineage arose and a second from 

which the AFAP1L1 lineage arose. This supports our hypothesis that AFAP1L1 and 

AFAP1 are more closely related and came from a more common ancestor than 

AFAP1L2. Interestingly, a third duplication event is predicted to have occurred in the 

AFAP1L1 lineage of Clupeocephala, or bony fish (Kasahara, 2007). In support of this 

hypothesis, AFAP1L1 has two predominant isoforms in the Ensembl database that are 

found in the bony fish Tetraodon nigroviridis, Takifugu rubripes, Gasterosteus aculeatus, 

Oryzias latipes, and Danio rerio while AFAP1 and AFAP1L2 only contain one isoform 
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in these species (Figure 2B). Though there are multiple AFAP family members in the 

vertebrate lineage, the closest predicted invertebrate ancestor has only one homologous 

PH domain containing protein and shares closest homology with AFAP1.  

We hypothesize that AFAP1 arose in vertebrates from the invertebrate line and 

two rounds of whole genome duplication gave rise to the similar family members, 

AFAP1L1 and AFAP1L2. A third round of whole genome duplication may have 

occurred in the Clupeocephala lineage of AFAP1L1, leading to a possible second isoform 

of AFAP1L1 in bony fish. Across species, AFAP family members are well conserved. A 

detailed phylogram of AFAP1 (Figure 3) shows the sequential relationship between 

various vertebrates. Both AFAP1 and AFAP1L1 share 99% identity with their nearest 

ancestor sequence, chimpanzee, with only a one amino acid change while AFAP1L2 has 

five amino acid changes between chimpanzee and human sequence. In a simpler 

description of the amino acid sequences across human, chimpanzee, mouse, lizard and 

zebrafish, AFAP1 sequences show a high level of identity and similarity throughout the 

entire AFAP1 sequence (Figure 4). While AFAP1 shares the most identity across species, 

a similar analysis of AFAP1L1 (Figure 5) and AFAP1L2 (Figure 6) also shows a high 

level of consensus amino acid sequence across species in these family members.  This 

consensus amino acid sequence in the AFAP family encodes for multiple protein binding 

domains which establish the AFAP proteins as a family of adaptor proteins.  

 

V: The AFAP Family: Protein Structure 

Protein binding domains and their complementary protein binding motifs play a 

key role in regulating cellular processes. While numerous protein binding domains have 
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been described, each binding domain can interact with multiple ligands thus creating an 

even larger array of signaling possibilities. A single protein binding domain may be 

prevalent throughout various proteins, as is characterized by the many phosphotyrosine-

binding SH2 and poly-proline binding SH3 domains that have been identified (Pawson 

and Nash, 2003). These protein binding domains, in conjunction with numerous others, 

allow proteins to create signaling complexes that are not only specific with regard to 

associated proteins but also to the spaciotemporal patterns of cellular processes. 

 In its earliest studies, AFAP1 was found to be associated with actin filaments via 

an actin binding domain in the carboxy terminus and was composed of both amino-

terminal and carboxy-terminal SH2 binding motifs and two juxtaposed SH3 binding 

motifs of which the N-terminal motif is required for cSrc binding (Guappone and Flynn, 

1997; Guappone et al., 1998; Qian et al., 1998). Two PH domains are found within the 

interior of AFAP1. The PH1 domain has been shown to be involved in binding of the 

serine/threonine kinase PKCa and in the intra-molecular regulation of AFAP1 by binding 

to a downstream leucine zipper (Qian et al., 2004). Both PH domains are involved in the 

stabilization of AFAP1 multimers (Clump et al., 2010). The amino acid sequence 

between the PH domains (substrate domain, SD) is rich in serine and threonine residues. 

Phosphorylation of AFAP1 in this region by PKCa plays a role in podosome formation 

(Dorfleutner et al., 2008; Gatesman et al., 2004). The leucine zipper, an alpha-helical 

structure containing a heptad repeat of leucine residues found amino-terminal to the actin 

binding domain, is necessary for both an inhibitory intramolecular interaction with the 

AFAP1 PH1 domain and also to multimerize with other AFAP1 molecules (Kouzarides 

and Ziff, 1988).  AFAP1 has the ability to cross-link actin filaments by binding via its 
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actin binding domain and then interacting with other AFAP1 molecules via the leucine 

zipper motif and possibly other internal sequences.  

 A similarity search of AFAP1 in the Ensembl database identified AFAP1L1 and 

AFAP1L2 which share 71% and 64% overall similarity with AFAP1 respectively (Xu et 

al., 2007) (Figure 7). Of interest between these proteins was both similarity in the 

modular domain structure (Figure 8A) and conservation of amino acid sequence in the 

PH domains (Figure 8B). While the approximately 250 known PH domain containing 

proteins have a highly conserved structure in these domains, a b-barrel with four 

b strands on one side and three b strands on the other connected by three variable loops 

connecting b1/b2, b3/b4 and b6/b7, they do not have conserved amino acid sequences 

(DiNitto and Lambright, 2006). The PH domains of AFAP1, AFAP1L1 and AFAP1L2 

have both similar structure and similar sequence, with 44% identity (80% similarity) 

between the PH1 domains and 40% identity (74% similarity) between the PH2 domains 

(Figure 7). It is these similar sequences and overall domain structure that designate 

AFAP1, AFAP1L1 and AFAP1L2 as related proteins. Consistent with AFAP1, 

AFAP1L1 and AFAP1L2 also contain at least one SH3 binding motif in their N-terminus. 

An SH3 domain is a region of approximately sixty amino acids known to bind to proline-

rich regions with a core PXXP motif (Ren et al., 1993). AFAP1 contains two juxtaposed 

SH3 binding motifs, PPQMPLPEIP and PPDSGPPPLP, and binds cSrc using the N-

terminal PEIP sequence (Guappone and Flynn, 1997). AFAP1L2 is also known to be a 

cSrc binding partner by virtue of its SH3 binding motif, PDLPPPKMIP (Xu et al., 2007). 

While AFAP1L1 contains an SH3 binding motif, DLPPPLPNKP, this sequence is not 

consistent with a consensus cSrc binding motif and instead resembles that of a consensus 
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binding motif for cortactin, which preferentially binds to a +PPYPXKPXWL motif 

where + is a basic residue, Y is an aliphatic residue, and X is any amino acid (Sparks et 

al., 1996). While consensus amino acid sequence designates these as SH3 binding motifs, 

it is the specificity of the surrounding amino acids that can direct AFAP family members 

to interact with different SH3 domain containing proteins.  

 Also consistent with AFAP1, AFAP1L1 and AFAP1L2 have potential sites for 

phosphorylation as predicted by Scansite (Figure 9), although not all of these have been 

confirmed as true phosphorylation targets or SH2 motifs (Obenauer et al., 2003). The 

SH2 domain, a protein binding domain of approximately 100 amino acids, binds 

preferentially to an SH2 binding motif, a short amino acid sequence containing a site of 

tyrosine phosphorylation which is directly amino terminal to 1 or 2 negatively charged 

amino acids followed by a hydrophobic amino acid (Songyang et al., 1993). It is these 

surrounding amino acids that allow SH2 domains to display selectivity in their binding 

partners (Cantley et al., 1991). The known N-terminal AFAP1 SH2 binding motif, 

Y93YEEA, shares 100% identity with both AFAP1L1 and AFAP1L2 while the C-

terminal SH2 binding motif, Y451DYI, shares 75% identity as both AFAP1L1 and 

AFAP1L2 share a YDYV sequence. A third SH2 binding motif in AFAP1L2, Y54IYM, is 

responsible for PI3K interaction and is not conserved in AFAP1 or AFAP1L1.  

 The leucine zipper of AFAP1 is a helical repeat of leucine residues that is 

responsible for intramolecular regulation of AFAP1 by contacting the PH1 domain and 

keeping AFAP1 is a closed conformation and also for contacting other AFAP1 molecules 

when AFAP1 is activated by PKCa so as to aid in multimerization and bundling of actin 

filaments (Qian et al., 2004). AFAP1L1 contains a similar but less conserved leucine 
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zipper motif which may still allow AFAP1L1 to multimerize with other AFAP1L1 

molecules or perhaps other AFAP family members. AFAP1L2 contains a coiled-coil 

region corresponding to the AFAP1 leucine zipper and actin binding domain and may 

instead use an N-terminal actin binding domain to localize to branched filamentous (F)-

actin networks in the lamellipodium (Lodyga et al., 2010; Xu et al., 2007).  

 

VI: The AFAP Family: Cellular Function 

AFAP1 was first identified as a tyrosine-phosphorylated protein that had the 

ability to interact with activated forms of the non-receptor protein tyrosine kinase cSrc 

(Flynn et al., 1993). This interaction was dependent upon the integrity of both the cSrc 

SH2 and SH3 domains as well as their binding motifs within AFAP1 (Kanner et al., 

1991; Kmiecik and Shalloway, 1987; Reynolds et al., 1989). When cells become 

transformed by cSrc, AFAP1 undergoes a change in localization from actin filaments into 

podosomes (Flynn et al., 1993; Linder and Kopp, 2005). In its inactive form, cSrc is 

found in the perinuclear region while activated cSrc moves to the cell periphery where 

association with the plasma membrane is necessary for cell transformation (Yeatman, 

2004). This movement is dependent upon the Rho family members where active cSrc can 

be moved to focal adhesions by RhoA, to lamellipodia by Rac1 and to filopodia by 

Cdc42 (Sandilands and Frame, 2008). With regard to AFAP1, consitutively active RhoA 

was able to largely overcome actin filament rearrangement seen upon activation of 

AFAP1. Therefore, the ability of AFAP to bind to and activate cSrc may be in a Rho-

dependent manner (Baisden et al., 2001a). To determine the temporal binding of AFAP1 

and cSrc, a temperature-sensitive form of constitutively active viral Src, LA29, which 
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resides on perinuclear vesicles at non-permissive temperatures (39.5°C) and induces 

cellular transformation at permissive temperature (35°C), was utilized.  Upon cell 

stimulation with PKCa at non-permissive temperature, AFAP1 was seen to move to 

perinuclear vesicles and colocalize with cSrc. AFAP1 and cSrc, which is activated by the 

binding of AFAP1, can then move to sites of actin rearrangement in transformed cells 

when shifted to the permissive temperature (Walker et al., 2007).  Interestingly, a 

polymorphic variant of AFAP1 exists that is an efficient cSrc activator. A 

nonsynonymous single nucleotide polymorphism (SNP) in the PH2 domain resulting in a 

Ser403 to Cys403 amino acid change found in approximately 21% of both tumor and 

adjacent normal tissues and 28% of normal tissues is more efficient at activating cSrc 

when cSrc levels are high.  The PH2 domain of AFAP1 does not contain the necessary 

conserved basic residues for lipid binding and is instead predicted by molecular modeling 

to be in contact with a water molecule 71% of the time. This Ser403 to  Cys403 change was 

predicted to interrupt the PH2 domain’s ability to interact with a water molecular possibly 

leading to a destabilized structure of the PH2 domain which may alter its binding 

capacity and thus create a more constitutively active AFAP molecule (Clump et al., 

2010). 

 Stimulation of cells with PKCa induces a cell morphology like that seen with 

activated cSrc.  PKCa binds to the PH1 domain of AFAP1 and phosphorylates a key 

serine residue in the substrate domain, Ser277 (Dorfleutner et al., 2008; Gatesman et al., 

2004). AFAP1 is normally held in an inhibitory intramolecular interaction by binding of 

the leucine zipper to the PH1 domain (Qian et al., 2004). The binding of PKCa to the 

PH1 domain disrupts this interaction and AFAP is able to interact with cSrc. Mutants of 
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AFAP1 that contain deletions of the PH1 domain are unable to bind PKCa and cannot 

associate with and activate cSrc (Gatesman et al., 2004). When cSrc is not present, PKCa 

is unable to direct this change thus indicating that cSrc is necessary for actin filament 

rearrangement.(Gatesman et al., 2004).    

 The leucine zipper of AFAP1 is located in the C-terminal portion of the AFAP1 

molecule juxtaposed to an actin binding domain and holds AFAP1 into an autoinhibitory 

conformation by contacting the PH1 domain. Deletion or modification of the leucine 

zipper destabilizes this intramolecular interaction, resulting in a conformational change in 

AFAP1 that allows cSrc activation and more efficient bundling of actin filaments (Qian 

et al., 1998; Qian et al., 2004). Similarly, when this inhibition is released by binding of 

PKCa, the leucine zipper may then promote increased actin filament crosslinking activity 

through interactions with other AFAP1 molecules (Qian et al., 2004).  This is witnessed 

by the interaction of AFAP1 in cell lysates with GST proteins expressing only the 

AFAP1 leucine zipper. Upon expression of AFAP1 constructs lacking the leucine zipper, 

AFAP1 is shown to have an intrinsic ability to activate cSrc and localize to podosomes 

because the intramolecular inhibition of AFAP1 is not present (Qian et al., 1998). 

Therefore, the leucine zipper plays a key role in the ability of AFAP1 to multimerize and 

subsequently cross-link actin filaments. As the neighboring actin binding domain, which 

has been shown to be necessary and sufficient for the binding of AFAP1 to actin, of 

AFAP1 contacts actin filaments, the leucine zipper allows multimerization of AFAP1 

molecules and thus bundles the actin filaments together (Qian et al., 2000). Gel filtration 

experiments have shown that AFAP1 has the ability to exist in large multimeric 

complexes that are mediated by the leucine zipper. Upon deletion of the leucine zipper, 
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AFAP1 complexes are smaller and predicted to exist as dimers or trimers. These smaller 

complexes allow AFAP1 to more efficiently cross-link actin from a meshwork into a 

bundle. Co-pelleting assays of recombinant AFAP1 showed a direct association of 

AFAP1 with actin filaments, and this association was not inhibited by deletion of the 

leucine zipper (Qian et al., 2002).  

 Knockdown of AFAP1 by short hairpin RNA (shRNA) in the MDA-MB-231 

breast cancer cell line, while having no gross effect on cell morphology, resulted in a loss 

of stress filament integrity and reduced cell adhesion. While cortical actin structure was 

maintained in AFAP1 shRNA knockdown cells, stress fibers could not be detected by 

phalloidin immunostaining, possibly due to the loss of cross-linking of actin filaments by 

the lack of AFAP1. The role of AFAP1 in the integrity of stress filaments was confirmed 

by an inducible shRNA system in which AFAP1 levels were rescued or knocked down 

due to the absence or presence of doxycycline.  When AFAP1 levels are knocked down, 

phalloidin readily decorates cortical actin while stress fibers cannot be detected. Upon 

rescue of AFAP1 levels by relief of doxycycline, stress fibers reappear. The ability of 

AFAP1 molecules to bundle actin by virtue of their actin binding domains and leucine 

zippers may be responsible for the lack of stress fiber formation in AFAP1 knockdown 

cells. Stimulation of wild-type MDA-MB-231 cells with lysophosphatidic acid (LPA), a 

Rho activator, induces actin filament cross-linking into stress fibers and more pronounced 

focal adhesions. When MDA-MB-231 AFAP1 knockdown cells are treated with LPA, 

stress fiber formation is inhibited and focal contacts do not form (Dorfleutner et al., 

2007). AFAP1 knockdown cells are slower to adhere to fibronectin, however, given 

enough time, they will reach adhesion levels similar to cells expressing AFAP1 and with 
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no detectable difference in cell survival. It is possible that this difference in cell adhesion 

may be due to the role of AFAP1 in cellular adhesion structures. While wild-type cells 

readily form adhesion structures when plated onto fibronectin, AFAP1 knockdown cells 

have an impaired ability to form focal contacts and have no stress fiber formation in the 

same time span that wild-type cells have matured their focal contacts. The formation of 

stress fibers and their role in cell contractility is essential for the maturation of focal 

adhesions and thus the loss of AFAP1 may affect the adherence ability of the cell 

(Parsons et al., 2010). As cellular adhesion is a prerequisite for cell migration, 

knockdown of AFAP1 in prostate cancer cell line PC3 impaired cellular motility as 

witnessed by their lack of migration in a modified Boyden chamber (Zhang et al., 2007). 

While the knockdown of AFAP1 in MDA-MB-231 cells did not affect the expression 

levels of a5 integrin, b1 integrin, paxillin or vinculin, PC3 cells showed decreased levels 

of b1 integrin when AFAP1 expression was lost (Dorfleutner et al., 2007; Zhang et al., 

2007). b1 integrin expression can be restored in PC3 AFAP1 knockdown cells by 

reintroduction of wild-type AFAP1. While the AFAP1 mutant defective for binding to 

cSrc, AFAP171A , also has the ability to restore b1 integrin expression, AFAP1 mutants 

lacking the PH1 domain failed to restore b1 integrin expression and stress filament and 

focal contact expression in PC3 AFAP1 knockdown cells. This indicates that it is not the 

altered AFAP1/cSrc interaction that is affected when AFAP1 is knocked down in PC3 

cells, but that the role of AFAP1 in focal contact formation through stress fiber formation 

and cell contractility may be regulated by the ability of AFAP1 to bind to PKC (Zhang et 

al., 2007).  While AFAP1 has been shown to bind to multiple PKC family members, 

a,b,g,l, it is the activation and binding of PKCa which phosphorylates AFAP1 on serine 
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residues in the substrate domain (Dorfleutner et al., 2008; Qian et al., 2002). Mutation of 

key serine residues revealed that Ser277 is phosphorylated by PKCa and this is either 

independent or upstream of cSrc activation. A phospho-specific antibody created against 

the AFAP1 pSer277 site showed that in resting A7r5 cells, while AFAP1 localizes to stress 

filaments, there is no evidence for phosphorylation of Ser277. Stimulation of A7r5 cells 

with the phorbol ester phorbol 12,13-dibutyrate (PDBu), a PKCa activator, induced 

phospho-GFP-AFAP1 to localize strongly to podosomes. When GFP-AFAP1 is 

overexpressed in A7r5 cells, the majority of cells display stress fibers while some display 

both stress fibers and small podosomes and a very small percentage spontaneously 

produced podosomes. If A7r5 cells express GFP-AFAP1S277A, a mutant of AFAP1 in 

which Ser277 has been mutated to an alanine, there is in increase in the number of cells 

that spontaneously form podosomes and it is reasoned that phosphorylation of AFAP1 at 

Ser277 plays a role in podosome formation (Dorfleutner et al., 2008).  When podosome 

lifespan was calculated, A7r5 cells expressing AFAP1S277A mutants showed decreased 

podosome turnover and longer average lifespan of podosomes as compared to wildtype 

AFAP1 (Dorfleutner et al., 2008). Due to its ability to act as an actin bundling protein by 

virtue of the leucine zipper and actin binding domain, AFAP1 may regulate the 

construction/deconstruction of podosomes in response to cellular adhesion signals such as 

PKC activation.  

 AFAP1L2 was also initially discovered as a cSrc binding partner and has been 

found to be able to interact with the SH2 and SH3 domain of both cSrc and GTPase 

activating protein (GAP) (Han et al., 2004). Similarly to AFAP1, AFAP1L2 has the 

ability to interact with cSrc when overexpressed, activates cSrc as witnessed by an 
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overall increase in tyrosine phosphorylation seen when both AFAP1L2 and cSrc are 

overexpressed, and has been shown to be a phosphorylation target of cSrc. Deletions in 

AFAP1L2 that remove the N-terminal SH3 and SH2 binding motifs (XB130DN) reduce 

the interaction between AFAP1L2 and cSrc and result in a decrease in cSrc 

phosphorylation at Tyr416 and overall cellular phosphotyrosine when mutant AFAP1L2 

and cSrc are overexpressed. Similarly, siRNA knockdown of AFAP1L2 decreases the 

tyrosine phosphorylation of cSrc at Tyr416 (Xu et al., 2007).  

 Using a luciferase assay, it was shown that co-expression of AFAP1L2 and cSrc 

had the ability to increase the activation of activating protein-1 (AP-1) and serum 

response element (SRE) reporters which may indicate that the AFAP1L2 and cSrc 

interaction is important in gene regulation. Expression of XB130DN with cSrc greatly 

decreased SRE activity in comparison with wild-type AFAP1L2 but there was still some 

activation of SRE in comparison with cSrc expression alone. This indicates that there are 

domains in AFAP1L2 other than the N-terminal SH3 and SH2 domains that can be 

involved in cSrc activation and SRE activity (Xu et al., 2007). Stimulation of cells by 

epidermal growth factor (EGF) showed enhanced SRE activation in cells expressing 

wild-type AFAP1L2 and cSrc and this activation was blunted when cSrc was expressed 

with XB130DN, suggesting a role for AFAP1L2 in signal transduction from EGF leading 

to cellular processes such as mitosis, transformation or survival. Knockdown of 

AFAP1L2 by siRNA was able to blunt the effects of EGF stimulation and arrest cells in 

the G1 phase, thus supporting the conclusion that AFAP1L2 plays a role in EGF 

signaling. In comparison, the interleukin-8 (IL-8) promoter which contains AP-1 sites 

was linked to a luciferase reporter and, similarly, showed increased activation when 
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AFAP1L2 and cSrc were overexpressed. This was also blunted by the expression of 

XB130DN (Xu et al., 2007).  

 Unlike AFAP1, AFAP1L2 has not been shown to interact with stress fibers. 

Immunofluoresence of GFP-tagged, His-tagged and endogenous AFAP1L2 in multiple 

cell lines indicated that AFAP1L2 has a cytosolic distribution in resting cells but can 

translocate to the lamellipodium under cell stimulation in a Rac-dependent manner. 

AFAP1L2 contains a coiled-coil in its C-terminus where AFAP1 contains an actin 

binding domain, and deletion of this coiled-coil domain had no effect on the translocation 

of AFAP1L2 to branched F-actin networks. Instead of an actin binding domain similar to 

AFAP1, AFAP1L2 may contain an actin binding domain 2 (ABD2) similar to that of the 

actin binding domain of talin in its N-terminus. Deletion of the N-terminus inhibited 

AFAP1L2 translocation to the lamellipodia while expression of a tagged peptide of the 

first 167 amino acids of the N-terminus was sufficient for translocation (Lodyga et al., 

2010).  

 Tissue analysis of AFAP1L2 showed localization mainly to the thyroid and spleen 

and it was noted that AFAP1L2 expression was also found in human papillary thyroid 

carcinoma (PTC) at or below normal thyroid levels (Lodyga et al., 2009). Because a 

central feature of PTC is dysregulation of the Rearranged in Transformation/papillary 

thyroid carcinoma (RET/PTC) tyrosine kinase and AFAP1L2 is a potential substrate for 

kinase activity, AFAP1L2 and RET/PTC were transiently overexpressed in human 

embryonic kidney 293 (HEK) cells and an increase in tyrosine phosphorylation of 

AFAP1L2 dependent on the kinase activity of RET/PTC was seen. Although AFAP1L2 

has been shown to interact with and be a substrate for cSrc, the presence or absence of 
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cSrc had no effect on RET/PTC phosphorylation or interaction with AFAP1L2 (Lodyga 

et al., 2009).  Point mutations within the predicted SH2 binding motifs of AFAP1L2 

revealed that Tyr54 is a major, although not the sole, target for RET/PTC phosphorylation. 

This SH2 binding motif, YIYM, resembles that of a PI3K binding motif, YXXM in 

which X is any amino acid. Indeed, expression of AFAP1L2 with RET/PTC greatly 

increased the association of AFAP1L2 with the p85 regulatory subunit of PI3K in 

immunoprecipitation experiments and this interaction was dependent upon the 

phosphorylation status of Y54 (Lodyga et al., 2009). Since the serine/threonine kinase Akt 

is a well known downstream target of PI3K signaling, Akt activation was tested in 

response to overexpression of AFAP1L2 and RET/PTC to see if AFAP1L2 played a role 

in the Akt pathway. Akt phosphorylation was reduced by either mutation of AFAP1L2 so 

that it may not be phosphorylated at Y54 or inhibiting the PI3K pathway. siRNA 

knockdown of AFAP1L2 also lead to a decrease in Akt phosphorylation while it had no 

effect on other PI3K targets such as extracellular signal-regulated kinase (ERK). As Akt 

activation is known to lead to cell survival, AFAP1L2 was knocked down in TPC1 

thyroid papillary carcinoma cells to look at the effect of AFAP1L2 on tumor cell survival 

(Marte and Downward, 1997). Knockdown of AFAP1L2 in TPC1 cells showed a higher 

amount of cells in the G0/G1 phase and decreased proliferation of TPC1 tumor cells. As 

the proliferation of TPC1 has been attributed to the RET/PTC recombination, AFAP1L2 

may be playing an important role in the progression of tumor cells by linking together the 

RET/PTC and Akt pathways. Downregulation of AFAP1L2 has been shown in TPC1 

cells to decrease cell migration and invasion. Therefore, it is hypothesized that AFAP1L2 

may translocate to the cell periphery upon stimulation where it may interact with PI3K 
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and thus link the RET/PTC kinase to the Akt pathway and subsequent migration and 

invasion (Lodyga et al., 2010).   

 Although the function of AFAP1L1 can be hypothesized based upon its sequence 

and similarity with AFAP1 and AFAP1L2, no cellular data was available to determine 

the function of AFAP1L1.  

 

VII: The AFAP Family: Pathology and Disease 

As cSrc is highly active in diseases such as cancer and AFAP1 is a known cSrc 

activator, it is probable that AFAP1 and possibly other AFAP family members have a 

role in disease progression. Dorfleutner et al. have shown that expression of AFAP1 is 

necessary for stress fiber formation and the efficient formation of focal adhesions 

(Dorfleutner et al., 2007). The phosphorylation of AFAP1 at Ser277 plays a role in the 

stability and lifespan of podosomes (Dorfleutner et al., 2008). In cases where AFAP1 is 

overexpressed, it has been shown that increased levels of AFAP1 correlate with 

progressive stages of disease. Through immunohistochemical staining, Zhang et al. 

showed that normal prostate tissues have high AFAP1 levels in prostate smooth muscle 

(Zhang et al., 2007). AFAP1 was low in the luminal secretory layer and the basal layer of 

prostatic glands. In benign prostatic hyperplasia, the luminal secretory layer of cells again 

had low AFAP1 immunoreactivity while basal layer cells had weak reactivity. In 

contrast, prostate cancer tissues exhibited strong AFAP1 immunoreactivity in all prostate 

tissues. Levels of AFAP1 immunostaining correlated with increasing Gleason scores for 

grading the aggressiveness of tumors, and this correlation was seen in normal versus 

tumorigenic cells lines as well. The downregulation of AFAP1 through RNA interference 
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(RNAi) slowed the proliferation of the prostate cancer cell line PC3 in soft agar, possibly 

through a decrease in anchorage-independent growth.  These same cells implanted 

orthotopically into nude mice produced either no or significantly smaller tumors as 

compared to parental lines, indicating that AFAP1 played an important role in the 

progression of prostate tumors. The migration of PC3 cells lacking AFAP1 expression 

was markedly decreased when compared to parental lines, and this was thought to be due 

to a loss of focal contacts in AFAP1 knockdown cells as these cells also resulted in a loss 

of b1 integrin expression. Although the reason for high expression levels of AFAP1 in 

prostate cancer is still unknown, it is increased integrin signaling to the extracellular 

matrix through AFAP1 that is thought to mediate prostate cancer growth and invasive 

potential (Zhang et al., 2007).  

 In addition to prostate cancer, Clump et al. have also shown that AFAP1 levels, 

although not detectable in normal ovarian tissue, are increased in ovarian cancer and also 

correlate with progression of disease (Clump et al., 2010). A polymorphic variant of 

AFAP1 in which a key serine residue in the PH2 domain is mutated to a cysteine, 

AFAP1403C, is found in approximately 20-30% of both normal and ovarian cancer tissues. 

This variant has an increased capacity for cSrc activation and again, although the reason 

for increased AFAP1 expression in ovarian cancer is also unknown, overexpression of 

this polymorphic variant can result in increased cSrc activation and a more aggressive 

cancer (Clump et al., 2010). Through these experiments, it is plausible to assume that 

AFAP1 could be used in both prostate and ovarian cancers as a marker for tumor 

progression and aggressiveness.  
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 AFAP1L2 is also known to play role in cancer. AFAP1L2 expression is high in 

normal thyroid tissue and has been shown to be expressed in high levels in human 

papillary thyroid carcinoma (Lodyga et al., 2009). A genetic hallmark of PTC are various 

rearrangements of the RET tyrosine kinase with portions of various other proteins, most 

often coiled-coil domain containing protine 6 (CCDC6), which is a coiled-coil domain 

containing protein that may act in tumor suppression through apoptosis (Leone et al., 

2010). AFAP1L2 has multiple sites for tyrosine phosphorylation and Y54 was shown to be 

the major target of RET/PTC kinase. The amino acid sequence surrounding Y54 predicts a 

motif that is homologous for a binding site of the p85 subunit of PI3-kinase and these 

proteins are able to interact in an endogenous setting. Akt is a serine/threonine kinase 

downstream of PI3k activation and the interaction of AFAP1L2 and PI3k greatly 

increased the activation of Akt. Aberrant activation of this pathway can lead to cell 

proliferation and survival in cancer cells such as in thyroid papillary carcinoma where 

high levels of AFAP1L2 are found. Therefore, both AFAP1 and AFAP1L2 have been 

shown to play a role in cancer and possible cell survival and metastasis. 

 As for AFAP1L1, online database screens can assess the level of AFAP1L1 

expressed in normal and cancerous tissues. The National Cancer Institute Serial Analysis 

of Gene Expression (SAGE) database predicts AFAP1L1 levels in normal tissues to be 

high in heart, ovary, uterus, skin and vasculature. In comparison, AFAP1L1 levels are 

predicted to be high in various cancers such as brain, breast, liver, prostate, skin, 

stomach, and thyroid cancers. The Oncomine database predicts the highest AFAP1L1 

expression levels as compared to normal to be found in esophageal cancer, glioblastoma 

and neuroblastoma. With regard to various cancers, regardless of the origin, it appears 
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that AFAP1L1 expression is upregulated, not downregulated, compared to levels in 

normal tissues. Therefore, AFAP1L1 may play a role in the formation or progression of 

different cancers by virtue of its signaling capabilities.  

 

IX: Summary 

 The AFAP family represents a family of adaptor proteins with a variety of roles in 

signal transduction. AFAP1 is well-known as a cSrc activator and actin cross linking 

protein and its role in stress fiber formation is indispensable. AFAP1 also plays a key role 

in podosome formation and turnover. As AFAP1 levels are increased in various cancers, 

the inherent abilities of AFAP1 may play a role in the progression of disease. AFAP1L2, 

like AFAP1, is also a known cSrc binding protein and has been shown to link the 

RET/PTC kinase rearrangement to the Akt pathway by virtue of PI3K. AFAP1L2 

localizes to the lamellipodium of motile cells in a Rac-dependent manner and its 

expression is necessary for efficient motility and invasion. As AFAP1L2 has been shown 

to be highly expressed in papillary thryroid carcinoma, it too provides an interesting 

target in the progression of disease. Although the role of AFAP1L1 can be inferred by its 

similarity with AFAP1 and AFAP1L2, no data is available on the role of AFAP1L1 in the 

cell. The purpose of this study was to elucidate the function of AFAP1L1 by virtue of its 

cellular and tissue localization and its interaction with cellular binding partners.  
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Figure 1A 
 
AFAP1                   ------MEELIVELRLFLELLDHEYLTSTVREKKAVITNILLRIQSSKGFDVKDHAQKQE 54 
AFAP1L1                 MDRGQVLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 60 
AFAP1L2                 MERYKALEQLLTELDDFLKILDQENLSSTALVKKSCLAELLRLYTKSSSSDEEYIYMNKV 60 
Ciona.intestinalis      ---MNEWTHVLKEKAAAFTEADNLPAPPVAQRPASSMPEHGAVKRVGSKSDLPVFAINDK 57 
Consensus                       *** E    *   D*   * **      ***           *      *   
 
AFAP1                   TANSLP-------------------------APPQMPLPEIP-QPWLP-PDSGPP----P 83 
AFAP1L1                 DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPP----P 116 
AFAP1L2                 TINKQQNAESQGKAPEEQGLLP-------NGEPSQHSSAPQKSLPDLPPPKMIPERKQLA 113 
Ciona.intestinalis      RIDDGP------------------------------------------------------ 63 
Consensus                 **                                                         
 
AFAP1                   LPTSSLPEGYYEEAVPLSPGKAPEYITSN------------------------------- 112 
AFAP1L1                 LPNKPPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELK 176 
AFAP1L2                 IPKTESPEGYYEEAEPYDTSLNE------------------------------------- 136 
Ciona.intestinalis      LTSPTSPSNGLNNIG--------------------------------------------- 78 
Consensus               ***   P**  **                                                
 
AFAP1                   ---YDSDAMSSSYESYDEEEEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQW 169 
AFAP1L1                 SSYNDSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRFGQW 236 
AFAP1L2                 ----DGEAVSSSYESYDEED-GSKGKSAPYQWPSPEAGIELMRDARICAFLWRKKWLGQW 191 
Ciona.intestinalis      -----KGLKSAVTDIFKKKDNMKKKISMAEQLG-----------ADICGSLNVYS-DGKW 121 
Consensus                        S*  * *****   K  *   Q             * IC* L   *  G*W 
 
AFAP1                   TKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPLVL 229 
AFAP1L1                 AKQLTVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVLVL 296 
AFAP1L2                 AKQLCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHKLKITPMNADVIVL 251 
Ciona.intestinalis      PKKLCTIRDNTLNVFG--KDESPEQSVILHGCDLTPGFGDP-VKKFVFKLTKNKQDLLLM 178 
Consensus               *K L *I**  L  *   KD**P*  * L  ***     *   K** ***T    * *** 
 
AFAP1                   AVQSKEQAEQWLKVIKEAYSGCSGPVDSECPPPPSSPVHKAELEKKLSSERPSSDGEGVV 289 
AFAP1L1                 ALQSREQAEEWLKVIREVSKPVGGAEGVEVPRSP-VLLCKLDLDKRLSQEKQTSDSDSVG 355 
AFAP1L2                 GLQSKDQAEQWLRVIQEVSGLPSEGASEGNQYTP--------DAQRFNCQKPDIAEKYLS 303 
Ciona.intestinalis      EASNSAEMGKWVGMLIAETG-----------------------CAEMPDHVPEQENVYLE 215 
Consensus                 **  *  *W* **                              **  *        *  
 
AFAP1                   ENGITTCNGK----EQVKRKKSSKSEAKGTVSKVTGKKITKIISLGKKK-PSTDEQTSSA 344 
AFAP1L1                 VGDNCSTLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSST 415 
AFAP1L2                 ASEYGSSVDG-------HPEVPETKDVKKKCS--AGLKLSNLMNLGRKK--STSLEP--V 350 
Ciona.intestinalis      TDTYESVMNT-------------------------------------------------- 225 
Consensus                *   *  *                                                    
 
AFAP1                   EEDVPTCGYLNVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSK 404 
AFAP1L1                 EEEVPCCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPR 475 
AFAP1L2                 ERSLETSSYLNVLVNSQWKSRWCSVRDNHLHFYQDRNRSKVAQQPLSLVGCEVVPDPSPD 410 
Ciona.intestinalis      ----------------------------ARKVFHDTVKMKKERNPHSSSSQTAPPPIPEE 257 
Consensus                                              ***D    *    * *  *  * P      
 
AFAP1                   HPLTFRLLRNGQEVAVLEASSSEDMGRWIGILLAETGSSTDPEALHYDYIDVEMSASVIQ 464 
AFAP1L1                 HPFAFRILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVS 535 
AFAP1L2                 HLYSFRILHKGEELAKLEAKSSEEMGHWLGLLLSESGSKTDPEEFTYDYVDADRVSCIVS 470 
Ciona.intestinalis      DDSIYLEVVASAPPPTLATTPTKAHKQQKGVNKDCEPVASTRKQKPRNGAARSRSGSSEQ 317 
Consensus               *   *  *      * L ** **   *  G*           *    *    *   *  * 
 
AFAP1                   TAKQTFCFMNRRVISANPYLGGTSNG-----------------YAHPSGTALHYDDVPCI 507 
AFAP1L1                 AGRNSFLYAR-----------SCQNQ-----------------WPEPR----VYDDVPYE 563 
AFAP1L2                 AAKNSLLLMQRKFSEPNTYIDGLPSQDRQEELYDDVDLSELTAAVEPTEEATPVADDPNE 530 
Ciona.intestinalis      SGGESTVNTN-------------------------------------------------K 328 
Consensus               ** **    *                                                   
 
AFAP1                   NGSL-------------------------------------------------------- 511 
AFAP1L1                 KMQD-------------------------------------------------------- 567 
AFAP1L2                 RESDRVYLDLTPVKSFLHGPSSAQAQASSPTLSCLDNATEALPADSGPGPTPDEPCIKCP 590 
Ciona.intestinalis      KKHK-------------------------------------------------------- 332 
Consensus               *                                                            
 
AFAP1                   -------------KGKKPPVASNGVTGKGKTLSSQPKKADPAAVVKRTGS---------N 549 
AFAP1L1                 -------------EEPERPTGAQ-VKRHASSCSEKSHRVDPQVKVKRHAS---------S 604 
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AFAP1L2                 ENLGEQQLESLEPEDPSLRITTVKIQTEQQRISFPPSCPDAVVATPPGASPPVKDRLRVT 650 
Ciona.intestinalis      -------------QDKERGIHKKAAEVDDERAKQHVRTINVISQVPTQKS---------- 369 
Consensus                            *  *          * *  *      *    *    S           
 
AFAP1                   AAQYKYGKNRVEADAKRLQTKEEELLKRKEALRNRLAQLRKERKDLRAAIEVNAGRKPQA 609 
AFAP1L1                 ANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGAK-LK 663 
AFAP1L2                 SAEIKLGKNRTEAEVKRYTEEKERLEKKKEEIRGHLAQLRKEKRELKETLLKCTDKEVLA 710 
Ciona.intestinalis      ----------VSEEGYNLKSRENALKARKQEILQNLKVLRVKKTELNRYVEAAKSAKEKC 419 
Consensus                         ** *  *   *** L  *K* *  *L  LR ** *L*  *    * *    
 
AFAP1                   ILEEKLKQLEEECRQKEAERVSLELELTEVKESLKKALAGGVTLGLAIEPKSGTSSPQSP 669 
AFAP1L1                 ALEEAVATLEAQCRAKEERRIDLELKLVAVKERLQQSLAGGPALGLSVSSK-----PKS- 717 
AFAP1L2                 SLEQKLKEIDEECRGEESRRVDLELSIMEVKDNLKKAEAGPVTLGTTVDTT--------- 761 
Ciona.intestinalis      NLIRPLDEVKENYTKLENELVNIERELRNVRRLSNTAIEQPSNIRPKTKVG--------- 470 
Consensus                L * *  ** *    E * ***E **  V*   * *      *    *            
 
AFAP1                   VFRHRTLENSPISSCDTSDTEGPVPVNSAAVLKKSQAAPGSSPCRGHVLRKAKEWELKNG 729 
AFAP1L1                 ----GETANKPQNSVP----EQPLPVNCVSELRKRSPSIVAS-NQGRVLQKAKEWEMKKT 768 
AFAP1L2                 ---HLENVSPRPKAVTPASAPDCTPVNSATTLKNRPLSVVVT-GKGTVLQKAKEWEKKGA 817 
Ciona.intestinalis      --------------------ETAIPT-------------------GKVASRAKIFENLEA 491 
Consensus                                       P*                   G V  *AK *E     
 
AFAP1                   T- 730 
AFAP1L1                 -- 
AFAP1L2                 S- 818 
Ciona.intestinalis      KK 493 
Consensus                           
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Figure 1B 
 
AFAP1.PH1domain         ------------------------------------------------------------ 
AFAP1L1.PH1domain       ------------------------------------------------------------ 
AFAP1L2.PH1domain       ------------------------------------------------------------ 
Ciona.intestinalis      MNEWTHVLKEKAAAFTEADNLPAPPVAQRPASSMPEHGAVKRVGSKSDLPVFAINDKRID 60 
Consensus                                                                                     
 
AFAP1.PH1domain         ---------------------------------------------DAKICAFLLRKKRFG 15 
AFAP1L1.PH1domain       ---------------------------------------------ECRICAFLLRKKRFG 15 
AFAP1L2.PH1domain       ---------------------------------------------DARICAFLWRKKWLG 15 
Ciona.intestinalis      DGPLTSPTSPSNGLNNIGKGLKSAVTDIFKKKDNMKKKISMAEQLGADICGSLNVYS-DG 119 
Consensus                                                             * IC* L   *  G 
 
AFAP1.PH1domain         QWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPL 75 
AFAP1L1.PH1domain       QWAKQLTVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVL 75 
AFAP1L2.PH1domain       QWAKQLCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHKLKITPMNADVI 75 
Ciona.intestinalis      KWPKKLCTIRDNTLNVFG--KDESPEQSVILHGCDLTPGFGDP-VKKFVFKLTKNKQDLL 176 
Consensus               *W*K L *I**  L  *   KD**P*  * L  ***     *   K** ***T    * * 
 
AFAP1.PH1domain         VLAVQSKEQAEQWLKVIKEAYS-------------------------------------- 97 
AFAP1L1.PH1domain       VLALQSREQAEEWLKVIREVSK-------------------------------------- 97 
AFAP1L2.PH1domain       VLGLQSKDQAEQWLRVIQEVSG-------------------------------------- 97 
Ciona.intestinalis      LMEASNSAEMGKWVGMLIAETGCAEMPDHVPEQENVYLETDTYESVMNTARKVFHDTVKM 236 
Consensus               **  **  *  *W* **                                            
 
AFAP1.PH1domain         ------------------------------------------------------------ 
AFAP1L1.PH1domain       ------------------------------------------------------------ 
AFAP1L2.PH1domain       ------------------------------------------------------------ 
Ciona.intestinalis      KKERNPHSSSSQTAPPPIPEEDDSIYLEVVASAPPPTLATTPTKAHKQQKGVNKDCEPVA 296 
Consensus                                                                                     
 
AFAP1.PH1domain         ------------------------------------------------------------ 
AFAP1L1.PH1domain       ------------------------------------------------------------ 
AFAP1L2.PH1domain       ------------------------------------------------------------ 
Ciona.intestinalis      STRKQKPRNGAARSRSGSSEQSGGESTVNTNKKKHKQDKERGIHKKAAEVDDERAKQHVR 356 
Consensus                                                                                     
 
AFAP1.PH1domain         ------------------------------------------------------------ 
AFAP1L1.PH1domain       ------------------------------------------------------------ 
AFAP1L2.PH1domain       ------------------------------------------------------------ 
Ciona.intestinalis      TINVISQVPTQKSVSEEGYNLKSRENALKARKQEILQNLKVLRVKKTELNRYVEAAKSAK 416 
Consensus                                                                                     
 
AFAP1.PH1domain         ------------------------------------------------------------ 
AFAP1L1.PH1domain       ------------------------------------------------------------ 
AFAP1L2.PH1domain       ------------------------------------------------------------ 
Ciona.intestinalis      EKCNLIRPLDEVKENYTKLENELVNIERELRNVRRLSNTAIEQPSNIRPKTKVGETAIPT 476 
Consensus                                                                                     
 
AFAP1.PH1domain         ----------------- 
AFAP1L1.PH1domain       ----------------- 
AFAP1L2.PH1domain       ----------------- 
Ciona.intestinalis      GKVASRAKIFENLEAKK 493 
Consensus                                          
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Figure 1. Similarity between human AFAP family members and Ciona intestinalis 

(A) The 493 amino acid sequence of a predicted AFAP homolog in Ciona intestinalis 

was compared by ClustalW2 alignment (50) with the 730 amino acid sequence of 

AFAP1, the 768 amino acid sequence of AFAP1L1 and the 818 amino acid sequence of 

AFAP1L2. Identical amino acid sequence is shown by its one letter abbreviation in the 

consensus sequence while similar amino acid sequence is represented by *. 

(B) The highly conserved PH1 domains of the human AFAP family members were 

compared with the amino acid sequence of the Ciona intestinalis predicted AFAP 

homolog using ClustalW2 analysis (50). Identical amino acid sequence is shown by its 

one letter abbreviation in the consensus sequence while similar amino acid sequence is 

represented by *. 
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ENSCING00000000590 Ciona intestinalis

Euteleostomi: 2 homologs

AFAP1 Xenopus tropicalis

AFAP1 Danio rerio

AFAP1L2 Danio rerio

Sauria: 3 homologs

Sauria: 3 homologs

AFAP1L1 Ornithorhynchus anatinus

AFAP1L2 Oryzias latipes

zgc:114084 Danio rerio

AFAP1L2 Ornithorhynchus anatinus

zgc:153096 Danio rerio

Sauria: 3 homologs

AFAP1 Gasterosteus aculeatus

AFAP1 Tetraodon nigroviridis

AFAP1L1  (2 of 2) Oryzias latipes

AFAP1L2 Gasterosteus aculeatus

AFAP1 Takifugu rubripes

AFAP1 Oryzias latipes

Marsupialia: 2 homologs

Marsupialia: 2 homologs

Marsupialia: 2 homologs

AFAP1L2 Takifugu rubripes

AFAP1L1  (2 of 2) Takifugu rubripes

AFAP1L1 (1 of 2) Gasterosteus aculeatus

AFAP1L2 Tetraodon nigroviridis

AFAP1L1 (1 of 2) Oryzias latipes

AFAP1L1  (2 of 2) Tetraodon nigroviridis

AFAP1L1  (2 of 2) Gasterosteus aculeatus

Xenarthra: 2 homologs

Eutheria: 3 homologs

Xenarthra: 2 homologs

AFAP1L1 (1 of 2) Tetraodon nigroviridis

AFAP1L1 (1 of 2) Takifugu rubripes

Afrotheria: 3 homologs

Eutheria: 4 homologs

Afrotheria: 3 homologs

AFAP1L1 Erinaceus europaeus

Laurasiatheria: 10 homologs

Eutheria: 11 homologs

AFAP1 Tupaia belangeri

Euarchontoglires: 8 homologs

Laurasiatheria: 10 homologs

Strepsirrhini: 2 homologs

Sciurognathi: 3 homologs

Glires: 7 homologs

AFAP1L1 Tupaia belangeri

AFAP1L2 Tarsius syrichta

Strepsirrhini: 2 homologs

AFAP1L2 Callithrix jacchus

AFAP1 Tarsius syrichta

Strepsirrhini: 2 homologs

AFAP1 Callithrix jacchus

AFAP1L1 Callithrix jacchus

AFAP1L2 Macaca mulatta

AFAP1 Macaca mulatta

AFAP1L1 Macaca mulatta

AFAP1L2 Pongo pygmaeus

AFAP1L2 Homo sapiens

AFAP1L1 Pongo pygmaeus

AFAP1 Pongo pygmaeus

Homininae: 2 homologs

AFAP1L1 Gorilla gorilla

AFAP1 Gorilla gorilla

AFAP1 Pan troglodytes

AFAP1L1 Homo sapiens

AFAP1 Homo sapiens

AFAP1L1 Pan troglodytes

LEGEND
 x1 branch length

 x10 branch length

 x100 branch length

Gene ID  current gene

Gene ID  within-sp. paralog

 speciation node

 duplication node

 ambiguous node

 collapsed sub-tree

 collapsed (current gene)

 collapsed (paralog)

 AA alignment match/mismatch

 AA consensus > 66% (mis)match

 AA consensus > 33% (mis)match

 AA alignment gap
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Figure 2. Cladistic analysis of AFAP family members 

(A) Full length amino acid sequences of AFAP family members were compared by ClustalW2 

alignment (50) and a cladogram created so as estimate a shared ancestry between AFAP family 

members. 

(B) Full length amino acid sequences of all AFAP family members across species that are 

deposited in the Ensembl database were used to create a detailed phylogram of all AFAP family 

member sequences known. Red nodes indicate a duplication event while blue nodes indicate a 

speciation event. The alignment of shared amino acid similarity between all AFAP family 

member sequences is shown.   
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Figure 3. Phylogenetic analysis of AFAP1 

Full length amino acid sequences for AFAP1 across human (Homo sapiens), chimpanzee (Pan 

troglodytes), mouse (Mus musculus), Ciona intestinalis, macaque (Macaca mulatta), Xenopus 

tropicalis, zebrafish (Danio rerio) and Anole lizard (Anolie carolinesis) were compared by 

Clustal W2 alignment (50) and a detailed phylogram created to compare the sequential and 

temporal relationship of ancestry in AFAP1 sequences.  
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Figure 4 
 
AFAP1.human           MEELIVELRLFLELLDHEYLTSTVREKKAVITNILLRIQSSKGFDVKDHAQKQETANSLP 60 
AFAP1.chimpanzee      MEELIVELRLFLELLDHEYLTSTVREKKAVITNILLRIQSSKGFDVKDHAQKQETANSLP 60 
AFAP1.mouse           MEELIVELRLFLELLDHEYLTSTVREKKAVLTNILLRLQSSKGFEVKDHAQKAEANN-LP 59 
AFAP1.lizard          MEELIVELQLFLQLLDHEYLTSTVREKKAVLTNILLRIQSSKDFDLKEKVQKQEVVNSLP 60 
AFAP1.zebrafish       MEELLAELRVFLELLDREYLTAGVREKKQQILNILHRVLATR-----EPSCKTEIHTSLP 55 
Consensus             MEEL**EL**FL*LLD*EYLT* VREKK  * NIL R* ***     *   K E  * LP 
 
AFAP1.human           APPQMPLPEIPQPWLPPDSGPPPLPTSSLPEGYYEEAVPLSPGKAPEYITSNYDSDAMSS 120 
AFAP1.chimpanzee      APPQMPLPEIPQPWLPPDSGPPPLPTSSLPEGYYEEAVPLSPGKAPEYITSNYDSDAMSS 120 
AFAP1.mouse           APPQMPLPEIPQPWLPPDSGPPPLPTSSLPEGYYEEAVPLSPGKAPEYITSNYDSDAMSS 119 
AFAP1.lizard          APPQMPLPEIPQQWLPPDNGPPPLPSSSLPEGYYEEAVPLSPGKAPEYITSNYDSDAMSS 120 
AFAP1.zebrafish       APPQMPLPEIPHPWMPPDNGPPPLPSSSLPEGYYEEAVPLGPGKAPEYITSNYDSDAMSS 115 
Consensus             APPQMPLPEIP* W*PPD*GPPPLP*SSLPEGYYEEAVPL*PGKAPEYITSNYDSDAMSS 
 
AFAP1.human           SYESYDEEEEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKDTK 180 
AFAP1.chimpanzee      SYESYDEEEEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKDTK 180 
AFAP1.mouse           SYESYDEEEEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKDTK 179 
AFAP1.lizard          SYESYDEEDEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKENK 180 
AFAP1.zebrafish       SYESYDEEEEDGKGQKMRHQWPSEEASMDLVKDARICAFLLRKKRFGQWTKLLCVIKDNK 175 
Consensus             SYESYDEE*EDGKG*K RHQWPSEEASMDLVKDA*ICAFLLRKKRFGQWTKLLCVIK**K 
 
AFAP1.human           LLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPLVLAVQSKEQAEQW 240 
AFAP1.chimpanzee      LLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPLVLAVQSKEQAEQW 240 
AFAP1.mouse           LLCYKSSKDQQPQMELPLQGCSITYIPRDSKKKKHELKITQQGTDPLVLAVQSKEQAEQW 239 
AFAP1.lizard          LLCYKSSKDQQPQMELLLNGCSIIYIPKDSKKKKHELKITHQGQDALVLAVQSKEQADQW 240 
AFAP1.zebrafish       LLCYKSSKDQTPQMELLLSGCSITHIPKDGKKKKHELKIVHQGADALVLAVQSKEQAEQW 235 
Consensus             LLCYKSSKDQ PQMEL L*GC*I *IP*D*KKKKHELKI**QG D*LVLAVQSKEAQ*QW 
 
AFAP1.human           LKVIKEAYSGCSGPVDSECPPPPSS--PVHKAELEKKLSSERPSSDGEGVVENGIT-TCN 297 
AFAP1.chimpanzee      LKVIKEAYSGCSGPVDSECPPPPSS--PVHKAELEKKLSSERPSSDGEGVVENGIT-TCN 297 
AFAP1.mouse           LKVIKEAYSGCSGPVDPECSPPPSTSAPVNKAELEKKLSSERPSSDGEGGVENGVT-TCN 298 
AFAP1.lizard          LKIIKEVCSNCVGTTDSDG---PSSNSPVHKTELEKKLSSERPSSDGEGTVENGIASICN 297 
AFAP1.zebrafish       LKVMKEVCSNGNGVVDCDG---AGSGSTVHKAELEKKLSCDRPSSDGEPCHENGIS---D 289 
Consensus             LK**KE* S*  G *D *    ***  *V*K*ELEKKLS**RPSSDGE   ENG**   * 
 
AFAP1.human           GKEQVKRKKSSKSEAKGTVSKVTGKKITKIISLGKKKPSTDEQTSSAEEDVPTCGYLNVL 357 
AFAP1.chimpanzee      GKEQVKRKKSSKSEAKGTVSKVTGKKITKIISLGKKKPSTDEQTSSAEEDVPTCGYLNVL 357 
AFAP1.mouse           GKEQAKRKKPSKSEAKGTVSKVTGKKITKIIGLGKKKPSTDEQTSSAEEDVPTCGYLNVL 358 
AFAP1.lizard          GKEQVKRKKSSKTDSKSTVSKVTGKKITKIIGLGKKKPSTDEQTSSAEEDIPTCGYLNVL 357 
AFAP1.zebrafish       GKDPAKGKKNSKSEQKGTVGRVTGKKITKIISLGKKKPSTDEQTSSAEEDVPTCGYLNVL 349 
Consensus             GK* *K KK SK** K*TV**VTGKITTKII*LGKKKPSTDEQTSSAEE* PTCGYNNVL 
 
AFAP1.human           SNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSKHPLTFRLLRNGQE 417 
AFAP1.chimpanzee      SNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDCKHPLTFRLLRNGQE 417 
AFAP1.mouse           SNSRWRERWCRVKDSKLILHKDRADLKTHLVSIPLRGCEVIPGLDSKHPLTFRLLRNGQE 418 
AFAP1.lizard          SNNRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSKHPLTFRLLRNAQE 417 
AFAP1.zebrafish       SNNRWRERWCQLKDNQLFLHKDRADLKTHMASLPLRGCEVIPGLDSKHPFAFRLLRNGQE 409 
Consensus             SN*RWRERWV**KD**L**HKDR*DLKTH**S*PLRGCEVIPGLD*KHP**FRLLRN*QE 
 
AFAP1.human           VAVLEASSSEDMGRWIGILLAETGSSTDPEALHYDYIDVEMSASVIQTAKQTFCFMNRRV 477 
AFAP1.chimpanzee      VAVLEASSSEDMGRWIGILLAETGSSTDPEALHYDYIDVEMSASVIQTAKQTFCFMNRRV 477 
AFAP1.mouse           VAVLEASSSEDMGRWIGILLAETGSSTDPGALHYDYIDVEMSANVIQTAKQTFCFMNRRA 478 
AFAP1.lizard          VAVLEASSSEDMGRWIGILLAESGSSADPGTLHYDYIDVDITASVIQAAKQTFCFMNRRV 477 
AFAP1.zebrafish       VAVLEASSSESMGRWLGVLLAETGSTTDPAALHYDYIDVETTANVIQLAKQSFCFTSKRA 469 
Consensus             VAVLEASSSE*MGRW*G*LLAE*GS**DP *LHYDYIDV* *A*NIQ AKQ*FCF **R* 
 
AFAP1.human           ISANPYLGGTSNGYAHPSGTALHYDDVPCINGSLKGKKPPVASNGVTGKGKTLSSQPKK- 536 
AFAP1.chimpanzee      ISANPYLGGTSNGYAHPSGTALHYDDVPCINGSLKGKKPPVASNGVTGKGKTLSSQPKK- 536 
AFAP1.mouse           VSTSPYLGSLSNGYAHPSGTALHYDDVPCVNGSLKNKKPPASSNGVPVKGKAPSSQQKK- 537 
AFAP1.lizard          LSTNPYRGNPTNGYACPSGMALHYDDVPCINGSFKGKKVSTATNGVVGKGRTLNNPQKK- 536 
AFAP1.zebrafish       VSPNPYLDNPVNGYACPTGVALHYDDVPCINGTMKGKK-GLITNGFGAKKLDKNQPKKAN 528 
Consensus             *S**PY **  NGYA P*G ALHYDDVPC*NG**K*KK    *NG*  K    **  K   
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AFAP1.human           -ADPAAVVKRTGSNAAQYKYGKNRVEADAKRLQTKEEELLKRKEALRNRLAQLRKERKDL 595 
AFAP1.chimpanzee      -ADPAAVVKRMGSNAAQYKYGKNRVEADAKRLQTKEEELLKRKEALRNRLAQLRKERKDL 595 
AFAP1.mouse           -VETAGGVKRTASNAEQYKYGKNRVEADAKRLQSKEEELLKRKEALRNRLAQLRKERKDL 596 
AFAP1.lizard          -SEFSSNVKRSTSSAEQYRYGKNRVEADAKKLQTKEEELLKKKEALRNRLAQLRKERKDL 595 
AFAP1.zebrafish       GISSTLPVKRNNSSVDQYKYGKNRVEADAKKLQAKEEELMRKKQEIRNRLTQLKKDRKDL 588 
Conensus               * *  VKR  S** QY*YGKNRVEADAK*LQ*KEEEL***K* *RNRL*QL*K*RKDL 
 
 
AFAP1.human           RAAIEVNAGRKPQAILEEKLKQLEEECRQKEAERVSLELELTEVKESLKKALAGGVTLGL 655 
AFAP1.chimpanzee      RAAIEVNAGRKPQAILEEKLKQLEEECRQKEAERVSLELELTEVKESLKKALAGGVTLGL 655 
AFAP1.mouse           RAAIEVNAGRKTQAALEDKLKRLEEECKQREAERVSLELELTEVKESLKKALAGGVTLGL 656 
AFAP1.lizard          RAALEANVGRKPLIILEDKLKKLEEECKLKESERVSLELELTEVKENLKKALAGGITLGL 655 
AFAP1.zebrafish       RTALENNTAKRSQASLTERLKKVEDECKLKEEERVSLELELTEVKESLKKALNGGVTLGL 648 
Consensus             R*A*E N*****   L **LK**E*EC* *E ERVSLELELTEVKE*LKKAL GG*TLGL 
 
AFAP1.human           AIEPKSGTSSPQSPVFRHRTLENSPISSCDTSDTEG-PVPVNSAAVLKKSQAAPGSSPCR 714 
AFAP1.chimpanzee      AIEPKSGTSSPQSPVFRHRTLENSPISSCDTSDTEG-PVPVNSAAVLKKSQAAPGSSPCR 714 
AFAP1.mouse           AIEPRSGTSSPQSPVFRHRTLENSPISSCDTSDAEG-PLPVNSAAVLKKSQPSSGSSPCR 715 
AFAP1.lizard          AIEPKSGTSTAQSPVLKHQTLENSPISSCDTSDTET-SVPVNSAVVMKR-HSSSSSSPCR 713 
AFAP1.zebrafish       TIEPKTGSSSPQSPVLMRRTVDNSPISSCNTSDTETCSLPVNSASLLRR-QTQQKASPVR 707 
Consensus             *IEP**G*S**QSPV* **T**NSPISSC*TSD*E  **PVNSA **** **   *SP R 
 
AFAP1.human           GHVLRKAKEWELKNGT 730 
AFAP1.chimpanzee      GHVLRKAKEWELKNGT 730 
AFAP1.mouse           GHVLQKAKEWELKNGT 731 
AFAP1.lizard          GHVLQKAKEWELKNGT 729 
AFAP1.zebrafish       GHVLRKAKEWEMKSGT 723 
Consensus             GHVL*KAKEWE*K*GT 
 
 
 
 

Figure 4. Comparison of AFAP1 sequences across species 

The 730 amino acid sequence of human AFAP1 was compared by ClustalW2 alignment 

(50) with the 730 amino acid sequence of chimpanzee AFAP1, the 731 amino acid 

sequence of mouse AFAP1, the 729 amino acid sequence of Anole lizard AFAP1 and the 

723 amino acid sequence of zebrafish AFAP1.  Identical amino acid sequence is shown 

by its one letter abbreviation in the consensus sequence while similar amino acid 

sequence is represented by *. 
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Figure 5 
 
AFAP1L1.human           -MDRGQVLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNT 59 
AFAP1L1.chimpanzee      -MDRGQVLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNT 59 
AFAP1L1.mouse           -MDRSRVLEQLIPELTGLLSLLDHEYLSDSTLEKKMAVASLLQSLQPLPAKEVSFLYVNT 59 
AFAP1L1.lizard          --FLSTVLDQLLPELNVLLKLLDHEYLSSTTMEKKTAVSNILQKLQPPTGKDVNYMYMNT 58 
AFAP1L1.zebrafish       MEINSKPMELLVTELNMLLKLLDHETLSCATEEKKMAVKNLLRQLQPS-VTAKDYMYVNT 59 
Consensus                   *  ** L**EL* LL*LLDHE LS *T EKK AV **L**LQP   *  ***Y*NT 
 
AFAP1L1.human           ADLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLR-NAADLPPPLP 118 
AFAP1L1.chimpanzee      ADLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLR-NAADLPPPLP 118 
AFAP1L1.mouse           ADLHSGPSFVESLFEEFDCDLGDLRDMS-DDGEPSKGASPEPTKSPSLRSAAADVPPPLP 118 
AFAP1L1.lizard          ETLHNGTSFVESLFEGFDCDLSNLQDMQEDEVDTKEGISLELSKSQLAKSISGEPPPPLP 118 
AFAP1L1.zebrafish       SVYRNGTSFVESLFETFDCDLGDLKVEMEDQKKEPE------ANHTVTKPSKTDSPPPLP 113 
Consensus                  **G*SFVESLFE FDCDL**L*    D* *  *      **    *    * PPPLP 
 
AFAP1L1.human           NKPPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELKSS 178 
AFAP1L1.chimpanzee      NKPPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELKSS 178 
AFAP1L1.mouse           NKPPPEDYYEEALPLGPGKSPEYISSHNGCSPAQSIVDGYYEDADNSYPTTRMNGELKNS 178 
AFAP1L1.lizard          TTPPPEDYYEEALPLGPGKAPEYITSHSNSSPPNSIEDGYYEDADSNYPVTRMNGEQKNS 178 
AFAP1L1.zebrafish       NTPPPEDYYEEAVPLSPGKMPEYITSRSSSSPPNSIEDGYYEDAENNYPTTQVNGRRKNS 173 
Consensus               **PPPEDYYEEA*PL*PGK PEYI*S****SP**SI EDGYEDA***YP*T**NG* K*S 
 
AFAP1L1.human           YNDSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRFGQWAK 238 
AFAP1L1.chimpanzee      YNDSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRFGQWAK 238 
AFAP1L1.mouse           YNDSDAMSSSYESYDEEEEEEKGRQPKHQWPSEEASMHLVRDCRICAFLLRKKRFGQWAK 238 
AFAP1L1.lizard          YNDSDAMSSSYESYDEEEEDGKGQRLTHQWPSEEASMNLVKDCRICAFLLRKKRFGQWAK 238 
AFAP1L1.zebrafish       YNDSDALSSSYESYDEEEEE-KGQRLTHQWPSEENSMAPVRDCHICAFLLRKKRFGQWAK 232 
Consensus               YNDSDA*SSSYESYDEEEE* K* *  HQWPSEE SM  V**C*ICAFLLRKKFRGQWAK 
 
AFAP1L1.human           QLTVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVLVLAL 298 
AFAP1L1.chimpanzee      QLTVIREDQLLCYKSSKDQQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVLVLAL 298 
AFAP1L1.mouse           QLTVIKEEQLLCYKSSKDRQPHLRLALDVCTVIYVPKDSRHKRHELRFSQGATEVLVLAL 298 
AFAP1L1.lizard          QLTVIKDNKLLCYKSSKHRQPHLEVPLSVCNVVYVPKDGRRKKHELRFSLPGAEALVLAV 298 
AFAP1L1.zebrafish       QLTVIRENRLQCYKSSKDQSPYTDIPLSLCSVIYVPKDGRRKKHELRFTLPGGEALVLAV 292 
Consensus               QLTVI****L CYKSSK***P*  **L* C***YVPKD*R*K*HELRF*  * E*LVLA* 
 
AFAP1L1.human           QSREQAEEWLKVIREVSKPVGGAEGVEVPRSPVLLCKLDLDKRLSQEKQTSDSDSVGVGD 358 
AFAP1L1.chimpanzee      QSREQAEEWLKVIREVSKPVGGAEGVEVPRSPVLLCKLDLDKRLSQEKQTSDSDSMGVGD 358 
AFAP1L1.mouse           QSREQAEEWLKVIREVSRPIVGAEGLEVPRSPVILCKADQDKRLSQEKQNSDSDSLGMND 358 
AFAP1L1.lizard          QSKEQAEEWLKVMKEVSN---GQSGTEVLTSPMLTCKMDHDKRSSQDKHTSDSDSVATAE 355 
AFAP1L1.zebrafish       QSKEQAEKWLHVVRDVTG---QGNGLDSPSSPMIPKKIELDKWCSAEKQTSDSDSMPSGE 349 
Consensus               QS*EQAE*WL*V***V*      *G *   SP**  K * DK  S *K**SDSDS*   * 
 
AFAP1L1.human           NCSTLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSSTEEE 418 
AFAP1L1.chimpanzee      NCSTLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSSTEEE 418 
AFAP1L1.mouse           SGSTLGRREACEHGKGKKNSLAELKGSMSRAAGRKITRIISFSKKKALSEDLQTFSSEDE 418 
AFAP1L1.lizard          NCSSMTRREAQEQGKGKKSGLAELKGSVSRAAGRKITRIISFSKKKPSPEDTQTSSTEED 415 
AFAP1L1.zebrafish       S-----ARDIRENGKPKRGALSELTGTVSRAAGRKITRIISFSKRKP-PLPGDSRSSFDH 403 
Consensus               *      R*  **GK K***L*EL*G**SRAAGRKITRII*FSK*K* *   ** S* ** 
 
AFAP1L1.human           VPCCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPRHPF 478 
AFAP1L1.chimpanzee      VPCCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPRHPF 478 
AFAP1L1.mouse           VPCCGYLNVLVNQGWKERWCRLRCNTLYFHKDRTDLHTHVNSIALRGCEVAPGFGPRHPF 478 
AFAP1L1.lizard          IPCCGYLNVLVNQCWKERWCRLKGNTLYFHKDRTDLRTHVNAIVLRGCEVAPGLGPKHPL 475 
AFAP1L1.zebrafish       DPRCGYVGVLVNRCWREHWCRVRAGSLYLYQEKGEQRVPHTTVGLKGCEVVPGLGPKHPF 463 
Consensus                P CGY**VLVN* W*E*WCR** **LY***** * **  *** L*GCEV*PG*GP*HP* 
 
AFAP1L1.human           AFRILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVSAGR 538 
AFAP1L1.chimpanzee      AFRILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVSAGR 538 
AFAP1L1.mouse           AFRILRNRQEVAILEASCSEDMGRWLGLLLVEMGSKVTPEALHYDYVDVETLTSIVSAGR 538 
AFAP1L1.lizard          AFRILRNGQEVSALEANSYEDLGRWLGLLLVETGSQTAPEALHYDYVDVEKIANIINAVR 535 
AFAP1L1.zebrafish       ALRILKGGAEVAALEASCSEDMGRWLGVLLAETGSSADPESLHYDYVDVETIANIRTAAR 523 
Consensus               A*RIL**  EV* LEA** ED*GRWLG*LL*E GS * PE*LHYDYVDVE****I *A R 
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AFAP1L1.human           NSFLYARSCQNQWPEPR--VYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQV 596 
AFAP1L1.chimpanzee      NSFLYARSCQNQWPEPR--VYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQV 596 
AFAP1L1.mouse           NSFLYAQSCQDQWPEPR--IYDEVPYEKVQDEEPQRPTGAQVKRHASSCSEKSHRADPQV 596 
AFAP1L1.lizard          HSYMWASSSVENQGDSSRVLYDEVPYEKVELEKSRWPSGTQVKRHGSSCSEKSRRVDPQV 595 
AFAP1L1.zebrafish       HSFLWATSTDSR-------TYDEVPFETIEQENERLRGRAQTKRRSSFSSSDTGKPSPQI 576 
Consensus               *S***A S  **        YD*VP*E*** E* *    *Q*KR**S *S*** * *PQ* 
 
 
AFAP1L1.human           KVKRHASSANQY-KYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIR 655 
AFAP1L1.chimpanzee      KVKRHASSANQY-KYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIR 655 
AFAP1L1.mouse           KVKRHASSANQY-KYGKNRAEEDARRYLVEKERLEKEKETIRTELTALRQEKKELKEAIR 655 
AFAP1L1.lizard          KVKRHASNANNY-RYGKNRAEEDARRFLTEKDKLEKEKASIRTEIMGLRKEKRELREAMK 654 
AFAP1L1.zebrafish       TLKRHGSNANQYGRYGKTRAQEDARRYLKEKEDLETEIDSIRTVLVALRKKKREAKEKMK 636 
Consensus               **KRH*S*AN*Y *YGK*RA*EDARR*L EK* LE*E  *IRT * *LR**K*E *E ** 
 
AFAP1L1.human           SSPGAKLKALEEAVATLEAQCRAKEERRIDLELKLVAVKERLQQSLAGGPALGLSVSSKP 715 
AFAP1L1.chimpanzee      SSPGAKLKALEEAVATLEAQCRAKEERRIDLELKLVAVKERLQQSLAGGPALGLSMSSKP 715 
AFAP1L1.mouse           NNPGAKSKALEEAVATLEAQCRAKEEQRIDLELKLVAVKERLQQSLAGGPALGLSVSNKN 715 
AFAP1L1.lizard          SSSGKDLKELEHRVAALEEQCKANEARRVDLELKLTEVKDRLKQSLAGGPALGLTVTTKP 714 
AFAP1L1.zebrafish       SATDKQKLTLEECVTKLEDSCRVKEGERVDLELKLTQVKENLKKSLAGG---EMEAPTES 693 
Consensus               * ** *   LE* V* LE *C***E *R*DLEELK* VK**L**SLAGG    *  ***  
 
AFAP1L1.human           KSGETANKPQNSVPEQPLPVNCVSELRKRSPSIVASNQGRVLQKAKEWEMKKT- 768 
AFAP1L1.chimpanzee      KSGETANKPQNSVPEQPLPVNCVSELRKRSPSIVASNQGRVLQKAKEWEMKKT- 768 
AFAP1L1.mouse           KSQDTTNKPQSNAPEQSLPVNCVSELRKRSPSIVTSNQGRVLQKAKEWEMKKT- 768 
AFAP1L1.lizard          ENKDVAIQPNGTPPEHLVPVNCAAEMRKRSPSLLPANKGNVLQKAK-------- 760 
AFAP1L1.zebrafish       KPAHKTQRTEAQYMESFLPVNCASEMRKRPPSIYASTKGNVMQKAKEWESKKGT 747 
Consensus               *  * * ***    E  *PVNC**E*RKR*PS* ****G*V*QKAK         
 
 

Figure  5. Comparison of AFAP1L1 sequences across species 

The 768 amino acid human AFAP1L1 sequence was compared using ClustalW2 

alignment (50) with the 768 amino acid sequence of chimpanzee AFAP1L1, the 768 

amino acid sequence of mouse AFAP1L1, the 760 amino acid sequence of Anole lizard 

AFAP1L1 and the 747 amino acid sequence of zebrafish AFAP1L1. Identical amino acid 

sequence is shown by its one letter abbreviation in the consensus sequence while similar 

amino acid sequence is represented by *. 
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Figure 6 
 
AFAP1L2.human           MERYKALEQLLTELDDFLKILDQENLSSTALVKKSCLAELLRLYTKSSSSDEEYIYMNKV 60 
AFAP1L2.chimpanzee      MERYKALEQLLTELDDFLKILDQENLSSTALVKKSCLAELLRLYTKSSSSDEEYIYMNKV 60 
AFAP1L2.mouse           --------------------------------------------------------MNKV 4 
AFAP1L2.lizard          -----ALEQLLTELEDFLKILDKENLSSTAIVKKSFLADLLRLCTKSNGGDEEYIYMNKV 55 
AFAP1L2.zebrafish       MDKHKVLEQLLEQLQKFLKILDVEKLSGNAKVQKGLLMELLQSYKSSNGGDEEYIYMNKV 60 
Consensus                                                                       MNLV 
 
AFAP1L2.human           TINKQQNAESQGKAPEEQGLLPNGEPSQHSSAPQKSLPDLPPPKMIPERKQLAIPKTESP 120 
AFAP1L2.chimpanzee      TINKQQNAESQGKAPEEQGLLPNGEPSQHSSAPQKSLPDLPPPKMIPERKQLAIPKTESP 120 
AFAP1L2.mouse           SVNGEQNSASPDKVPEEQGPLTNGEPSQHSSAPQKSLPDLPPPKMIPERKQPTVPKIESP 64 
AFAP1L2.lizard          SIN-KQHGELEKSDKGHRDSLTNGDAEQHLSPPQKSLPDLPPSKIIPETKPYSGSKTESP 114 
AFAP1L2.zebrafish       IVT----CQTQDKTNRDHRPEANGDPSKHIS--VKNPPEPPPPRPVSKQKRAPAPASMEN 114 
Consensus                **         *   **   *NG****H S   K* P* PP** *** K  * *   *  
 
AFAP1L2.human           EGYYEEAEPYD-TSLNEDGEAVSSSYESYDEEDGSKGKS-APYQWPSPEAGIELMRDARI 178 
AFAP1L2.chimpanzee      EGYYEEAEPYD-TSLNEDGEAVSSSYESYDEEDGSKGKS-APYQWPSPEAGIELMRDARI 178 
AFAP1L2.mouse           EGYYEEAEPFD-RSINEDGEAVSSSYESYDEDENSKGKA-APYQWPSPEASIELMRDARI 122 
AFAP1L2.lizard          EGYYEEAEPYG-ISLNDDGEAVSSSYESYDEEENTKGKS-APHQWPSPEASIELMKDARI 172 
AFAP1L2.zebrafish       ESYYEDPQPYDPISINEDTEQLSSSYESYDEEEVTKGKSTAQHQWPSPEASIELMKDARI 174 
Consensus               E*YYE***P**  S*N*D E *SSSYESYDE** *KGK* A *QWPSPEA*IELM*DARI 
 
AFAP1L2.human           CAFLWRKKWLGQWAKQLCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHK 238 
AFAP1L2.chimpanzee      CAFLWRKKWLGQWAKQLCVIKDNRLMCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHK 238 
AFAP1L2.mouse           CAFLWRKKWLGQWAKQLCVIRDTRLLCYKSSKDHSPQLDVNLRGSSVVHKEKQVRKKGHK 182 
AFAP1L2.lizard          CAFLWRKKWLGQWAKQLCVIKDNRLLCYKTSKDHNPQLDVNLLGCSVIHKEKNVRKQEHK 232 
AFAP1L2.zebrafish       CAFLWRKKWLGQWAKQLCVVREHRLLCYKSSKDQTPLLDISLLGCSVVYKEKQTKRKEHK 234 
Consensus               CAFLWRKKWLGQWAKQLCV*** RL*CYK*SKD**P LD**L G*SV**KEK***** HK 
 
AFAP1L2.human           LKITPMNADVIVLGLQSKDQAEQWLRVIQEVSGLPSEGASEGNQYTPDAQRFNCQKPDIA 298 
AFAP1L2.chimpanzee      LKITPMNADVIVLGLQSKDQAEQWLRVIQEVSGLPSEGASEGNQYTPDAQRFNCQKPDIA 298 
AFAP1L2.mouse           LKITPMNADVIVLGLQSKDQAEQWLRVIQEVSGLPSEGASEGNQYTPDAQRLNCQKPDIA 242 
AFAP1L2.lizard          LKIIPMNADVIVLGLQSKDQAEQWLRVIQETSGLYPDGWGEGNQYVPDSQRLSYPKVEAT 292 
AFAP1L2.zebrafish       LKISPLGAEAIVLGLQSKEQAEQWLKVIQEISPKNTTGSD-----VTDSPTLICTKGEQS 289 
Consensus               LKI P**A**IVLGLQSK*QAEQWL*VIQE S   * G *     **D*  *   K * * 
 
AFAP1L2.human           EKYLSASEYGSSVDGHPEVPETKDVKKKCSAGLKLSNLMNLGRKKSTSLEPVERSLETSS 358 
AFAP1L2.chimpanzee      EKYLSASEYGSSVDGHSEVPETKDVKKKCSAGLKLSNLMNLGRKKSTSLEPVERSLETSS 358 
AFAP1L2.mouse           EKYLSAAEYGITINGHPEIPETKDVKKKCSAGLKLSNLMNLGRKKSTSLEPPERSLETSS 302 
AFAP1L2.lizard          ERYSVASESGSSTDGHPELMETKDAKKKGTSGLKLSNLMNLGRKKSASLDSPERSLDTCT 352 
AFAP1L2.zebrafish       ERYSVASESGSSTDSHAENMENKDVKKKYG---KFSNLMNIGKKKVCSLESPEKSVDTSG 346 
Consensus               E*Y  A*E G * **H*E  E*KD*KKK     K*SNLMN*G*KK  SL** E*S**T*  
 
AFAP1L2.human           YLNVLVNSQWKSRWCSVRDNHLHFYQDRNRSKVAQQPLSLVGCEVVPDPSPDHLYSFRIL 418 
AFAP1L2.chimpanzee      YLNVLVNSQWKSRWCSVRDNHLHFYQDRNRSKVAQQPLSLVGCEVVPDPSPDHLYSFRIL 418 
AFAP1L2.mouse           YLNVLVNSQWKSRWCFVRDSHLHFYQDRNRSKVAQQPLSLVGCDVLPDPSPDHLYSFRIL 362 
AFAP1L2.lizard          YLNVLVNSQWKSRWCYVKDGQLHFYQDKNKTKTAQQPLNLIGCEIFPDPSPDHLYSFRIL 412 
AFAP1L2.zebrafish       YLNVLVNTQWRSRWCSVKDRQLWIYSDKSKGKVAQQPLSLEGCMVLPDPSPEHLYSFRIQ 406 
Consensus               YLNVLVN*QW*SRWC V*D *L *Y*D*** K*VAQQP*L GC **PDPSP*HLYSFRI  
 
AFAP1L2.human           HKGEELAKLEAKSSEEMGHWLGLLLSESGSKTDPEEFTYDYVDADRVSCIVSAAKNSLLL 478 
AFAP1L2.chimpanzee      HKGEELAKLEAKSSEEMGHWLGLLLSESGSKTDPEEFTYDYVDADRVSCIVSAAKNSLLL 478 
AFAP1L2.mouse           HNGEELAKLEAKSSEEMGHWLGLLLSESGSKTDPEELTYDYVDAERVSCIVSAAKTSLLL 422 
AFAP1L2.lizard          HNGEERAMLEAKTCEEMGHWLGLLLSESGSKTDPEELTYDYVDADRVSCIVSAAKNSLLL 472 
AFAP1L2.zebrafish       MDGEELAILEAKSSADMGHWLGLILSQTGTKTDPEDLSYDYVNSERISSIVNAAKTSMYL 466 
Consensus                *GEE A LEAK** *MGHWLGL*LS**G*KTDPE***YDYV***R*S*IV*AAK*S* L 
 
AFAP1L2.human           MQRKFSEPNTYIDGLP-SQDRQEELYDDVDLSELTA-AVEPTEEATP--VADDPNERESD 534 
AFAP1L2.chimpanzee      MQRKFSEPNTYIDGLP-SQDRQEELYDDVELSELTA-AVEPTEEATP--VADDPNERESD 534 
AFAP1L2.mouse           MQRKFSEPNTYIDGLP-SRDCQDDLYDDVEVSELIA-VVEPAEEAAP--AVDANSGSEPD 478 
AFAP1L2.lizard          MQRKYSEPNTYIDNLPKEKEEQEELYDDVDVPESTMNKFNISHQEIP--LIESKSAGEQD 530 
AFAP1L2.zebrafish       MQRRYSEPNTYTDSPPSDPQTCDDIYDDVPSTENEQEEVQEVQNGSEEGTVNAEEENGKD 526 
Consensus               MQR**SEPNTY D* P * *  ***YDDV  *E     **  **       *  *    D 
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AFAP1L2.human           RVYLDLTPVKSFLHGPSSAQAQASSPTLSCLDNATEALPADSGPGPTPDEPCIKCPENLG 594 
AFAP1L2.chimpanzee      RVYLDLTPVKSFLHGPSSAQAQASSPTLSCLDNATEALPADPGPGPTPDEPCIKCPENLG 594 
AFAP1L2.mouse           RVYLDLTPVKSFLHSSSEAQAQASLPAVPHQDDVAETLTVDPKPGTTPEEPHTESPGDPE 538 
AFAP1L2.lizard          RVYLDLTPVQSFVYSAGRKHGQLTPSVSPSLQRSVHKNSTDSDK----DLFTLYKEGELN 586 
AFAP1L2.zebrafish       RVYLDLIPLRSFLHTSSAKTLGQNLPGDPHLPPAATLISP-PPPGPQLFGTVYNTPGLPT 585 
Consensus               RVYLDL P**SF** **      * *  *     *   *  *                   
 
 
AFAP1L2.human           EQQ-----LESLEPEDPSLRITTVKIQTEQQRISFPPSCPDAVVATPPGASPPVK-DRLR 648 
AFAP1L2.chimpanzee      EQQ-----LESLEPEDPSLRITTVKIQTEQQRISFPPSCPDAVVATPPGASPPVK-DRLR 648 
AFAP1L2.mouse           VQQRQPEVQESSEPIEPTPRITMVKLQAEQQRISFPANCPDTMASAPIAASPPVK-EKLR 597 
AFAP1L2.lizard          RQS-----VEATDQLLP-LRTTTVKIQAQQQQIAFPQSAFEMKNATTIVAAPKEKGERPK 640 
AFAP1L2.zebrafish       MIKYPIAADRTRNPEIQKKASPLPKTQSLPQTSAQTPQSPPTSRAR--AASTDRLLDRLK 643 
Consensus                 *      ** *        *  K Q*  Q  * * **     *    A**    ** * 
 
AFAP1L2.human           VT-----SAEIKLGKNRTEAEVKRYTEEKERLEKKKEEIRGHLAQLRKEKRELKETLLKC 703 
AFAP1L2.chimpanzee      VT-----SAEIKLGKNRTEAEVKRYTEEKERLEKKKEEIRGHLAQLRKEKRELKETLLKC 703 
AFAP1L2.mouse           VT-----SAEIKLGKNRTEAEVKRYTEEKERLERSKEEIRGHLAQLRREKRELKETLLRC 652 
AFAP1L2.lizard          VA-----PVETKLGKNRTEAEVKRYSEERDRLEKEKEEIRSQLAQLRKDKRELKELLTNC 695 
AFAP1L2.zebrafish       FSPAGPGSVEVKLGKNRTEADVRRYTDDRDRLEREREEVKNTLATLRKDRREVKDELSSC 703 
Consensus               **     **E KLGKNRTEA*V*RY*****RLE***EE*** LA LR***RE*K* L  C 
 
AFAP1L2.human           TDKEVLASLEQKLKEIDEECRGEESRRVDLELSIMEVKDNLKKAEAGPVTLGTTVDTTHL 763 
AFAP1L2.chimpanzee      TDKEVLASLEQKLKEIDEECRGEESRRVDLELSIMEVKDNLKKAEAGPVTLGTTVDTTHL 763 
AFAP1L2.mouse           TDKGVLAKLEQTLKKIDEECRMEESRRVDLELSIMEVKDNLKKAEAGPVTLGTTVDTTHL 712 
AFAP1L2.lizard          TDKSILSTLEQNLKEIEEECKRKEDQRVDLELNLVEVKENLRKAESGPVTLGTAVDTTHL 755 
AFAP1L2.zebrafish       QVQTELASLEARLKQMEETCREAERRRVEVELSLMEVKENLRKVESGPFTLGTTVDSSLL 763 
Consensus                 *  L**LE  LK***E C*  E *RV**EL***EVK*NL*K*E*GP*TLGT*VD** L 
 
AFAP1L2.human           ENVSPRP--KAVTPASAP--------------DCTPVNSATTLKNRPLSVVVTGKGTVLQ 807 
AFAP1L2.chimpanzee      ENVSPRP--KAVTPASAP--------------DCTPVNSATTLKNRPLSVMVTGKGTVLQ 807 
AFAP1L2.mouse           DNMSPRPQPKAATPNPPP--------------DSTPVNSASVLKNRPLSVMVTGKGTVLQ 758 
AFAP1L2.lizard          ENSSPKM--KVANPMNST--------------ESSPVNSAMALKNRPLSIMVTGKGTVLQ 799 
AFAP1L2.zebrafish       DISVPKP-AAVSSPAPNTPNNTNINTPACTNNEDSPVNSATALKNRPPSVMAASKGNVLQ 822 
Consensus               *   P*    * *P   *              * *PVNSA *LKNRP S*****KG*VLQ 
 
AFAP1L2.human           KAKEWEKKGAS 818 
AFAP1L2.chimpanzee      KAKEWEKKGAS 818 
AFAP1L2.mouse           KAKEWEKKGAS 769 
AFAP1L2.lizard          KAKEWEKKGAS 810 
AFAP1L2.zebrafish       KAKEWEKKNTT 833 
Consensus               KAKEWEKK*** 
 
 

Figure 6. Comparison of AFAP1L2 sequences across species 

The 818 amino acid sequence of AFAP1L2 was compared by ClustalW2 alignment (50) 

with the 818 amino acid sequence of chimpanzee AFAP1L2, the 769 amino acid 

sequence of mouse AFAP1L2, the 810 amino acid sequence of Anole lizard AFAP1L2 

and the 833 amino acid sequence of zebrafish AFAP1L2. Identical amino acid sequence 

is shown by its one letter abbreviation in the consensus sequence while similar amino 

acid sequence is represented by *. 
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Figure 7 
 
 
AFAP1           ------MEELIVELRLFLELLDHEYLTSTVREKKAVITNILLRIQSSKGFDVKDHAQKQE 54 
AFAP1L1         MDRGQVLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 60 
AFAP1L2         MERYKALEQLLTELDDFLKILDQENLSSTALVKKSCLAELLRLYTKSSSSDEEYIYMNKV 60 
Consensus             *E*L* EL  *L**LD*E L**T*  KK  ****L       * * *    *   
 
AFAP1           TANSLP-------------------------APPQMPLPEIP-QPWLP-PDSGPP----P 83 
AFAP1L1         DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPP----P 116 
AFAP1L2         TINKQQNAESQGKAPEEQGLLP-------NGEPSQHSSAPQKSLPDLPPPKMIPERKQLA 113 
Consensus         **                            P** * *     P L  *   P     * 
 
AFAP1           LPTSSLPEGYYEEAVPLSPGKAPEYITSN------------------------------- 112 
AFAP1L1         LPNKPPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELK 176 
AFAP1L2         IPKTESPEGYYEEAEPYDTSLNE------------------------------------- 136 
Consensus       *P**  PE*YYEEA P ***                                         
 
AFAP1           ---YDSDAMSSSYESYDEEEEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQW 169 
AFAP1L1         SSYNDSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRFGQW 236 
AFAP1L2         ----DGEAVSSSYESYDEED-GSKGKSAPYQWPSPEAGIELMRDARICAFLWRKKWLGQW 191 
Consensus           D**A*SSSYESYDEE*  *K* ** *QWPS EA***L*****ICAFL RKK *GQW 
 
AFAP1           TKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPLVL 229 
AFAP1L1         AKQLTVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVLVL 296 
AFAP1L2         AKQLCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHKLKITPMNADVIVL 251 
                *K L VI** *LLCYKSSKD**P** * L  *** *  K* **K*H*L**T   ** *VL 
 
AFAP1           AVQSKEQAEQWLKVIKEAYSGCSGPVDSECPPPPSSPVHKAELEKKLSSERPSSDGEGVV 289 
AFAP1L1         ALQSREQAEEWLKVIREVSKPVGGAEGVEVPRSP-VLLCKLDLDKRLSQEKQTSDSDSVG 355 
AFAP1L2         GLQSKDQAEQWLRVIQEVSGLPSEGASEGNQYTP--------DAQRFNCQKPDIAEKYLS 303 
                **QS**QAE*WL*VI*E*    *   *     *p          **** **     * *  
 
AFAP1           ENGITTCNGK----EQVKRKKSSKSEAKGTVSKVTGKKITKIISLGKKK-PSTDEQTSSA 344 
AFAP1L1         VGDNCSTLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSST 415 
AFAP1L2         ASEYGSSVDG-------HPEVPETKDVKKKCS--AGLKLSNLMNLGRKK--STSLEP--V 350 
                 *   *  *        * * **  * K * S  *G K*********KK  * * **  * 
 
AFAP1           EEDVPTCGYLNVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSK 404 
AFAP1L1         EEEVPCCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPR 475 
AFAP1L2         ERSLETSSYLNVLVNSQWKSRWCSVRDNHLHFYQDRNRSKVAQQPLSLVGCEVVPDPSPD 410 
                E***  **YLNVL N* W**RWC ** N L F**D*   **   ***L GCEV P* **  
 
AFAP1           HPLTFRLLRNGQEVAVLEASSSEDMGRWIGILLAETGSSTDPEALHYDYIDVEMSASVIQ 464 
AFAP1L1         HPFAFRILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVS 535 
AFAP1L2         HLYSFRILHKGEELAKLEAKSSEEMGHWLGLLLSESGSKTDPEEFTYDYVDADRVSCIVS 470 
                H  *FR*L** *E*A LEA**SE*MG*W*G*LL E GS * PE * YDY*D**  ***** 
 
AFAP1           TAKQTFCFMNRRVISANPYLGGTSNG-----------------YAHPSGTALHYDDVPCI 507 
AFAP1L1         AGRNSFLYAR-----------SCQNQ-----------------WPEPR----VYDDVPYE 563 
AFAP1L2         AAKNSLLLMQRKFSEPNTYIDGLPSQDRQEELYDDVDLSELTAAVEPTEEATPVADDPNE 530 
                ******   *           *  *                    *P        D P   
 
AFAP1           NGSL-------------------------------------------------------- 511 
AFAP1L1         KMQD-------------------------------------------------------- 567 
AFAP1L2         RESDRVYLDLTPVKSFLHGPSSAQAQASSPTLSCLDNATEALPADSGPGPTPDEPCIKCP 590 
                * *                                                          
 
AFAP1           -------------KGKKPPVASNGVTGKGKTLSSQPKKADPAAVVKRTGS---------N 549 
AFAP1L1         -------------EEPERPTGAQ-VKRHASSCSEKSHRVDPQVKVKRHAS---------S 604 
AFAP1L2         ENLGEQQLESLEPEDPSLRITTVKIQTEQQRISFPPSCPDAVVATPPGASPPVKDRLRVT 650 
                             *  *    *  *  * *  S  *   D* * *   *S         * 
 
AFAP1           AAQYKYGKNRVEADAKRLQTKEEELLKRKEALRNRLAQLRKERKDLRAAIEVNAGRKPQA 609 
AFAP1L1         ANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGAK-LK 663 
AFAP1L2         SAEIKLGKNRTEAEVKRYTEEKERLEKKKEEIRGHLAQLRKEKRELKETLLKCTDKEVLA 710 
                * * K GKNR*E ***R   **E*L K*KE *R *L  LR*E***L* **   ** *    
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AFAP1           ILEEKLKQLEEECRQKEAERVSLELELTEVKESLKKALAGGVTLGLAIEPKSGTSSPQSP 669 
AFAP1L1         ALEEAVATLEAQCRAKEERRIDLELKLVAVKERLQQSLAGGPALGLSVSSK-----PKS- 717 
AFAP1L2         SLEQKLKEIDEECRGEESRRVDLELSIMEVKDNLKKAEAGPVTLGTTVDTT--------- 761 
                 LE* *  ** *CR *E *R**LEL**  VK* L*** AG  *LG *****          
 
AFAP1           VFRHRTLENSPISSCDTSDTEGPVPVNSAAVLKKSQAAPGSSPCRGHVLRKAKEWELKNG 729 
AFAP1L1         ----GETANKPQNSVP----EQPLPVNCVSELRKRSPSIVAS-NQGRVLQKAKEWEMKKT 768 
AFAP1L2         ---HLENVSPRPKAVTPASAPDCTPVNSATTLKNRPLSVVVT-GKGTVLQKAKEWEKKGA 817 
                        *   **          PVN*** L**   *   *  *G VL*KAKEWE K   
 
AFAP1           T 730 
AFAP1L1         - 
AFAP1L2         S 818 
 
 
 

Figure 7. Identity and similarity between human AFAP family members 

The 730 amino acid sequence of AFAP1 was compared to the 768 amino acid sequence 

of AFAP1L1 and the 818 amino acid sequence of AFAP1L2 using ClustalW2 alignment 

(50). Identical amino acid sequence is shown by its one letter abbreviation in the 

consensus sequence while similar amino acid sequence is represented by *. 
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Figure 8B 
 
AFAP1.PH1        DAKICAFLLRKKRFGQWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKK 60 
AFAP1L1.PH1      ECRICAFLLRKKRFGQWAKQLTVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRH 60 
AFAP1L2.PH1      DARICAFLWRKKWLGQWAKQLCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRK 60 
Consensus        ***ICAFL RKK *GQW*K L VI** *LLCYKSSKD**P** * L  *** *  K* ** 
 
AFAP1.PH1        KKHELKITQQGTDPLVLAVQSKEQAEQWLKVIKEAYS 97 
AFAP1L1.PH1      KRHELRFTQGATEVLVLALQSREQAEEWLKVIREVSK 97 
AFAP1L2.PH1      KEHKLKITPMNADVIVLGLQSKDQAEQWLRVIQEVSG 97 
Consensus        K*H*L**T   ** *VL**QS**QAE*WL*VI*E*   
 
 
 
 
 
AFAP1.PH2        DVPTCGYLNVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSKHP 60 
AFAP1L1.PH2      EVPCCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPRHP 60 
AFAP1L2.PH2      SLETSSYLNVLVNSQWKSRWCSVRDNHLHFYQDRNRSKVAQQPLSLVGCEVVPDPSPDHL 60 
Consensus        **  **YLNVL N* W**RWC ** N L F**D*   **   ***L GCEV P* ** H  
 
AFAP1.PH2        LTFRLLRNGQEVAVLEASSSEDMGRWIGILLAETGSSTD 99 
AFAP1L1.PH2      FAFRILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVT 99 
AFAP1L2.PH2      YSFRILHKGEELAKLEAKSSEEMGHWLGLLLSE------ 93 
Consensus         *FR*L** *E*A LEA**SE*MG*W*G*LL E       
 
 
 

Figure 8. Comparison of AFAP family members  
 
(A) Modular domain organization of AFAP family members was compared. SH3bm = 

SH3 binding motif, SH2bm = SH2 binding motif, PH1 = pleckstrin homology domain 1, 

PH2 = pleckstrin homology domain 2, SD = serine/threonine rich substrate domain, Lzip 

= leucine zipper, ABD = actin binding domain. Sequences that do not correlate with an 

identified type of modular domain or motif are labeled “A, B, C, D or E”. 

(B) The PH1 domains of AFAP family members were compared by ClustalW2 analysis 

(50). Identical amino acid sequence is shown by its one letter abbreviation in the 

consensus sequence while similar amino acid sequence is represented by *. 
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Figure 9. A Scansite scan determined potential sites for phosphorylation 

The Scansite motif scanning progam (59) determined possible sites of protein interaction in 

AFAP family members. Predicted sites include Src homology 3 groups (SH3), Src homology 2 

groups (SH2), tyrosine kinase groups (Y_kin), lipid binding groups (Lip_bind) and basophilic 

serine/threonine kinase groups (Baso_ST_kin).  
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ABSTRACT 
 

 The actin-filament associated protein (AFAP) family of adaptor proteins consists 

of three members: AFAP1, AFAP1L1, and AFAP1L2/XB130 with AFAP1 being the best 

described as a cSrc binding partner and actin cross-linking protein. A homology search of 

AFAP1 recently identified AFAP1L1 which has a similar sequence, domain structure and 

cellular localization; however, based upon sequence variations, AFAP1L1 is 

hypothesized to have unique functions that are distinct from AFAP1. While AFAP1 has 

the ability to bind to the SH3 domain of the nonreceptor tyrosine kinase cSrc via an N-

terminal SH3 binding motif, it was unable to bind cortactin. However, the SH3 binding 

motif of AFAP1L1 was more efficient at interacting with the SH3 domain of cortactin 

and not cSrc. AFAP1L1 was shown by fluorescence microscopy to decorate actin 

filaments and move to punctate actin structures and colocalize with cortactin, consistent 

with localization to invadosomes. Upon overexpression in A7r5 cells, AFAP1L1 had the 

ability to induce podosome formation and move to podosomes without stimulation. 

Immunohistochemical analysis of AFAP1L1 in human tissues shows differential 

expression when contrasted with AFAP1 with localization of AFAP1L1 to unique sites in 

muscle and the dentate nucleus of the brain where AFAP1 was not detectable. We 

hypothesize AFAP1L1 may play a similar role to AFAP1 in affecting changes in actin 

filaments and bridging interactions with binding partners, but we hypothesize that 

AFAP1L1 may forge unique protein interactions in which AFAP1 is less efficient, and 

these interactions may allow AFAP1L1 to affect invadosome formation.  
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INTRODUCTION 

 Adaptor proteins are non-enzymatic proteins that have the ability to link together 

different components of cellular signaling complexes through protein-binding motifs. 

Actin Filament-Associated Protein of 110 ki lodaltons (kDa) (AFAP-110/AFAP1) is an 

adaptor protein with multiple protein binding motifs that is known to function as both an 

actin binding protein and a cSrc activating protein (Flynn et al., 1993; Qian et al., 2000). 

The AFAP1 protein binding motifs include two juxtaposed poly-proline rich Src 

homology 3 ( SH3) binding motifs of approximately 10 amino acids with essential 

prolines at the amino acid number seven and ten positions within the motif (Mayer, 

2001), two Src homology 2 (SH2) binding motifs containing a phosphotyrosine residue 

amino terminal to 1 or  2 ne gatively charged amino acids followed by a  hydrophobic 

amino acid (Songyang et al., 1993), two pleckstrin homology (PH) domains, a substrate 

domain (SD) rich in serine and threonine residues that is a substrate for serine/threonine 

kinases, a h elical leucine zipper (Lzip) with a heptad repeat of leucine residues 

(Kouzarides and Ziff, 1988) for intra- and inter-molecular interactions within itself and 

other AFAP1 molecules and an actin binding domain (ABD) which is both necessary and 

sufficient for AFAP1 to interact with actin filaments (Baisden et al., 2001a; Qian et al., 

1998; Qian et al., 2000; Qian et al., 2004). AFAP1 is known to bind actin filaments 

through its carboxy terminal actin filament-binding domain and will multimerize through 

its leucine zipper, thus enabling it to crosslink actin filaments (Qian et al., 2002). 

Activation by the serine/threonine kinase PKCα directs AFAP1 to colocalize with cSrc in 

the perinuclear region of the cell and activate cSrc by binding to the SH3 domain via its 

N-terminal SH3 binding motif (Gatesman et al., 2004; Walker et al., 2007). 
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Subsequently, cSrc then has the ability to activate downstream cellular signals that affect 

cell adhesion, invasion and motility (Fincham et al., 1996; Frame and Brunton, 2002). 

 Upon cSrc binding and activation, AFAP1 and cSrc move to podosomes, 

adhesion structures found on the ventral membrane of cells which contain an F-actin rich 

core (Gatesman et al., 2004; Linder and Kopp, 2005).  Podosomes also secrete proteases 

which enable cells to degrade the extracellular matrix, cross tissue barriers and invade.  

As cSrc activation is known to switch cells from a normal to an invasive phenotype, the 

activation and movement of cSrc and AFAP1 may be important steps toward promoting 

cellular changes in adhesion and invasive potential. Also involved in this process is the 

ability of a cell to assemble, disassemble and remodel its actin cytoskeleton (Yilmaz and 

Christofori, 2009). As AFAP1 has been shown to affect dynamic changes in actin 

filament cross-linking (Qian et al., 2004), AFAP1 may also play a r ole in actin 

cytoskeleton remodeling in addition to cSrc activation.  

AFAP1 represents a f amily of three proteins that also include Actin Filament 

Associated Protein 1 Like 1 (AFAP1L1) and Actin Filament Associated Protein 1 Like 2 

(AFAP1L2/XB130) so named as a family by t he Human Genome Project due to 

similarity in modular domain structure and amino acid sequence, most notably within 

their PH domains. There are 250 know n PH domain-containing proteins in the human 

genome and while the amino acid sequences of these PH domains are not well conserved, 

they are predicted to have a similar structure with a β-barrel with four β strands on one 

side and three β strands on the other connected by three variable loops connecting β1/β2, 

β3/β4 and β6/β7 (DiNitto and Lambright, 2006). However, within the AFAP family, the 

amino acid sequence, as well as st ructure and placement within the protein, are well 
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conserved between the PH domains, designating them as a  related family of proteins. 

Overall, AFAP1L2/XB130 consists of 818 a mino acids and is 35% identical (64% 

similar) to AFAP1. AFAP1L2/XB130 was also discovered as a cSrc binding protein and 

contains a shared functional domain structure to AFAP1 including one SH3 motif, three 

SH2 motifs, 2 P H domains, a coiled-coil region corresponding to the AFAP1 leucine 

zipper and a sequence similar to the AFAP1 actin binding domain (Xu et al., 2007). 

However, unlike AFAP1, AFAP1L2/XB130 did not appear to bind efficiently to actin 

filaments.  AFAP1L2/XB130 does appear to have functions distinct from AFAP1 in that 

it acts as an intermediary between the RET/PTC kinase and PI-3kinase pathway in the 

thyroid (Lodyga et al., 2009).  

 In this report we characterize the third AFAP family member, AFAP1L1, which 

also contains a shared domain structure with AFAP1 and AFAP1L2/XB130. Cladistic 

analysis of the three AFAP family members (data not shown) indicated that AFAP1 and 

AFAP1L1 are more closely related to each other than to AFAP1L2/XB130, therefore we 

sought to compare and contrast AFAP1L1 to AFAP1 so as to characterize AFAP1L1 and 

determine whether it has functions that are shared or distinct relative to AFAP1.  
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MATERIALS AND METHODS 

Cell Culture and Reagents 

 A7r5, rat aortic smooth muscle cells, were purchased from American Type 

Culture Collection and grown in Dulbecco’s modified Eagle’s medium (DMEM, 

Mediatech) supplemented with 10% fetal bovine serum (FBS, Atlanta Biologicals), 2mM 

L-Glutamine (Gibco) and penicillin/streptomycin (Mediatech) at 37°C with 5% CO2. 

MDA-MB-435, MDA-MB-231, B1A (Dorfleutner et al., 2007), and Cos-1 cells were 

grown in Dulbecco’s modified Eagle’s medium (DMEM, Mediatech), 10% fetal bovine 

serum (FBS, Atlanta Biologicals), 2mM L-Glutamine (Gibco) and 

penicillin/streptomycin (Mediatech) at 37°C with 5% CO2. MCF-10A cells were grown 

in complete Mammary Epithelium Basal Medium supplemented with MEGM 

SingleQuots (Lonza) and MCF-7 cells were cultured in Modified Eagle’s medium 

containing 10% FBS and 10 µg/ml bovine insulin (Sigma).      

 Antibodies used for western blotting and immunofluorescence are as follows: 

anti-AFAP1 (F1) (Flynn et al., 1993), anti-AFAP1 (BD Transduction Labs), anti-

cortactin (Millipore), and β actin (Sigma). Tetramethylrodamine-isothiocyanate (TRITC)-

conjugated phalloidin was from Sigma and Alexa Fluor conjugated phalloidin and 

secondary antibodies were from Invitrogen. The antibody against AFAP1L1, 1L1-CT, 

was generated by ProSci Incorporated. Rabbits were immunized with AFAP1L1 peptide 

corresponding to amino acids 714-727. 1L1-CT antibody was affinity-purified by affinity 

absorption against the AFAP1L1 peptide attached to an Ultralink Iodoacetyl column 

(Pierce) according to manufacturer’s protocol. Two additional antibodies against 
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AFAP1L1, Ab1 and Ab2, targeting either the C-terminus (amino acid 525- 659) or the N-

terminus (amino acids 21-159) of 1L1, respectively, were from Sigma. 

 

Constructs 

 The afap1l1 cDNA sequence was purchased in two vectors from OpenBioSource. 

The coding sequence for AFAP1L1 amino acids 1 t hrough 340 w as identified in a 

pCMV-SPORT6 vector. The coding sequence for AFAP1L1 amino acids 273 t hrough 

768 was identified in a pINCY vector. A BstYI restriction site, GATCC, in the overlap 

region was mutated to a BglII restriction site, GATCT, to create a unique restriction site 

using the Stratagene QuikChange Site-Directed Mutagenesis Kit according to 

manufacturer’s protocol. AFAP1L1 N-terminal coding sequence was subcloned into 

pBluescript II K S (Stratagene) using HindIII and an engineered EcoRI restriction site. 

AFAP1L1 C-terminal coding sequence was subcloned into pBluescript II KS using 

engineered HindIII and EcoRI restriction sites.  F ull length afa1l1 was created by 

restriction digest of pBluescript containing each afap1l1 coding sequence with the unique 

BglII site in the overlap region and a unique Sca1 site found in the vector followed by 

fusion of the two halves of pBluescript.  The afap1l1 full length sequence was confirmed 

by DNA sequencing. 

 Full length afap1l1 was subcloned into pEGFP (Clonetech) using HindIII and 

EcoRI. Full length afap1l1 was subcloned from pEGFP into pcDNA3.1(+) hygro 

(Invitrogen) using HindIII and Kpn1. GFP-AFAP1 was previously described by (Qian et 

al., 2000). 
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Transfection  

 For antibody characterization and GST pull down overexpression studies 

respectively, Cos-1 and 293T cells were transiently transfected with 5µg of either GFP-

AFAP1 or GFP-AFAP1L1 using Lipofectamine and Plus reagent according to 

manufacturer’s protocol. For confocal overexpression studies, mouse embryo fibroblasts 

(MEF) were transfected with 5µg of either GFP-AFAP1L1 or untagged AFAP1L1 (in 

pcDNA3.1) using Lipofectamine and Plus reagent.  

 To determine endogenous AFAP1L1 localization to invadopodia, MDA-MB-435 

cells were transfected with cSrc527F plasmid using Lipofectamine and Plus reagent 

(Invitrogen) according to the manufacturer’s instructions. A7r5 cells were transfected 

with GFP-AFAP1 or GFP-AFAP1L1 in increasing amounts from 0.1 µg to 1.0 µg using 

Lipofectamine and Plus reagent per well of a 6 well plate. Total DNA concentration for 

dose response transfections was kept constant using an empty pcDNA3.1 vector to keep 

the total DNA transfected at 1.0 µg to maintain equal transfection efficiency.  

 

Immmunoblotting 

 Cos-1 cells transiently expressing GFP-AFAP1 or GFP-AFAP1L1 were lysed in 

2X SDS buffer (125mM Tris-HCl pH6.8, 20% glycerol, 4% SDS). Cell lines MCF-10A, 

MCF-7, MDA-MB-231, MDA-MB-435, B1A, and Cos-1 were lysed in 2X SDS buffer. 

Protein concentration was determined using a BCA Protein Assay Kit (Pierce) according 

to manufacturer’s protocol. 50µg of total lysate was resolved by 8 % SDS-PAGE. 

Proteins were transferred to polyvinylidene fluoride (PVDF) membrane (Immobilon-P, 

Millipore) using semi-dry electroblotting. Proteins were detected by incubation with 
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either anti-1L1-CT (ProSci) 1:250, anti-1L1-Ab1 (Sigma) 1:1000, anti-1L1-Ab2 (Sigma) 

1:500, anti-AFAP1 (BD Transduction Labs) 1:10000, anti-AFAP1 (F1) 1:20000, anti-

GFP (Zymed) 1:1000 or anti-β-actin (Sigma) 1:10000 in 5% powdered milk (TBS, 0.05% 

Tween-20) followed by incubation with 1:3000 dilution of donkey anti-mouse or donkey 

anti-rabbit horseradish peroxidase conjugated antibodies (GE Healthcare Bio-Sciences). 

Chemiluminescence was visualized with Pierce ECL Western Blotting Substrate.  

 

Immunofluorescence 

 MDA-MB-435, MEF and A7r5 cells were grown on fibronectin-coated coverslips 

(50µg/ml) overnight at 37°C. For GFP-AFAP1L1 overexpression and overexpressed 

untagged AFAP1L1, MEF and A7r5 cells were fixed with 3.7% formaldehyde, 

permeabilized with 0.2% triton X-100 and incubated with or without anti-cortactin 

antibody (1:200). Actin filaments were decorated with TRITC-phalloidin (1:600) or 

Alexa Flour conjugated phalloidin (1:100). For endogenous AFAP1L1 staining, MDA-

MB-435 were fixed and permeabilized in 3.7% formaldehyde containing 0.1% triton X-

100, incubated with Alexa Flour conjugated phalloidin (1:100) in 3% BSA, and then 

stained with anti-AFAP1L1 antibodies Ab1 or Ab2 (Sigma, 2 µg/ml) and anti-cortactin 

antibodies. Fluorescence conjugated secondary antibodies (Invitrogen) were used at a 

1:200 dilution. Coverslips were mounted on slides using Prolong Gold (Invitrogen) and 

imaged with a Zeiss LSM 150 microscope or Nikon eclipse Ti inverted epi-fluorescence 

microscope. Podosomes were confirmed by anti-cortactin localization along the 

basolateral membrane via confocal microscopy (0.5 µm scanning thickness).  Images 
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were further processed with Zeiss LSM Image Browser (Zeiss), CorelDRAW12, Nikon 

NIS element software (Nikon) and Adobe Photoshop.  

 

Immunoprecipitation 

 Cos-1 cells were lysed in RIPA buffer (50mM Tris pH7.5, 150mM NaCl, 2mM 

EDTA, 1% Igepal, 0.25% sodium deoxycholate, 10mM β-glycerol, 1mM sodium 

vanadate, 5µg/µl aprotinin, 5µg/µl leupeptin, 1mM PMSF). 1 mg of Cos-1 lysate was 

used for each control IgG, anti-1L1-CT and AFAP1 (F1) pull down. Lysates were pre-

cleared with agarose A beads for one hour. The precleared lysates were incubated on ice 

for one hour with 2µg IgG, 1L1-CT or F1 antibodies, and  then 50% slurry agarose A 

beads were added and incubated for one hour. Proteins were eluted from beads using 2X 

Laemmli sample buffer (LSB) with 200mM dithiothreitol (DTT), separated by 8% SDS-

PAGE and processed for western blot analysis. 293T cells were transfected with human 

cortactin cDNA with either EGFP AFAP1 or AFAP1L1 construct using Polyfect 

(Qiagen) according to the manufacturer’s specification. Forty-eight hours post 

transfection, cells were lysed in RIPA buffer and 2 mg of cell lysates were used for 

immunoprecipitation with either GFP antibodies (Polyclonal Av antibodies, Clonetech) 

or cortactin antibodies (clone 4F11, Millipore) as described above.  

 

Immunohistochemical methods  

 Immunohistochemistry was performed on de -identified human brain, breast and 

colon tissue slices obtained from the West Virginia University Department of Pathology 

Tissue Bank. Tissues were paraffin-embedded and cut into 5 μm-thick sections and 
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mounted on positive-charge coated slides. Tissue sections were dried overnight in a 45ºC 

oven, deparaffinized, rehydrated, and subjected to heat-induced epitope retrieval for two 

hours in 1 mM citrate buffer (pH 6.00) in an 80º C water bath. Endogenous peroxide 

activity was blocked with 3% hydrogen peroxide and was followed by treatment with a 

serum-free protein blocker to block non-specific binding. Following each step of the 

immunoreaction except the protein blocker, sections were rinsed in Tris-buffered saline 

with Tween-20. Tissues were incubated for two hours with either anti-AFAP1 antibody 

(F1) at a dilution of 1:50 or with anti-1L1-CT diluted 1:50 in 10% normal horse serum. 

Negative controls (i.e., preimmune serum or normal rabbit IgG) were incubated in 10% 

normal horse serum. Sections were incubated with biotinylated-linked secondary 

antibody, followed by t reatment with streptavidin peroxidase and stained with 

diaminobenzidine substrate-chromogen solution. Counterstaining was performed with 

hematoxylin, followed by a water rinse and bluing solution. Tissues were then dehydrated 

and mounted with coverslips. 

 

Affinity precipitation with GST fusion proteins 

 293T cells transiently expressing GFP-AFAP1 or GFP-AFAP1L1 were lysed in 

Modified RIPA buffer (50 mM Tris pH 7.5, 150 mM NaCl, 2mM EDTA, 1% Igepal, 

0.25% sodium deoxycholate, 10 m M β-glycerol, 1 m M sodium vanadate, 5µg/µl 

aprotinin, 5µg/µl leupeptin and 1µM PMSF). GFP-AFAP1 and GFP-AFAP1L1 lysates 

were pre-cleared using 50 µg of GST protein bound to Glutathione Sepharose 4B coated 

beads (GE Healthcare) and 1mg of each pre-cleared lysate was incubated at 4°C for 1 

hour with either 50 µg control GST, 50 µg GST-Src SH3 domain or 50 µg GST-cortactin 
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SH3 domain bound t o GST beads. Proteins were eluted from beads by boi ling for 5 

minutes in 2X Laemmli sample buffer with 200mM DTT and further processed with 

PAGE and western blot analysis. Western blot results were examined with ImageJ 

densitometry analysis so as to provide a ratio between the amount of AFAP1 and 

AFAP1L1 pulled down with each GST or GST fusion protein.  
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RESULTS 

Identification of AFAP1L1  

 AFAP1L1 was discovered during a homology search of the human genome using 

sequences of the AFAP1 PH domains and was subsequently referred to as t he third 

member of the AFAP family by the Human Genome Project.  The afap1l1 gene is located 

on chromosome 5q33.1 and consists of 19 exons that are predicted to encode 768 amino 

acids in the open reading frame (Figure 1). All AFAP family members contain at least 

one predicted N-terminal SH3 binding motif, at least one predicted N-terminal SH2 

binding motif, two PH domains separated by a region rich in serine and threonine 

residues and a C-terminal SH2 binding motif (Figure 2A). One major difference is found 

in the C-terminus where AFAP1 and AFAP1L1 contain a leucine zipper and actin 

binding domain while AFAP1L2/XB130 contains a related coiled-coil in this respective 

region (Figure 2B) (Baisden et al., 2001b; Xu et al., 2007). 

 There appear to be differences in the SH3 binding motif of AFAP1L1 compared 

to AFAP1.  A FAP1 contains two juxtaposed SH3 binding motifs, PPQMPLPEIP and 

PPDSGPPPLP, beginning at amino acids 65 and 76 respectively (Guappone and Flynn, 

1997).  AFAP1 will bind cSrc using the N-terminal P71EIP of the first SH3 binding motif 

(Guappone and Flynn, 1997), while AFAP1L2/XB130 has been reported to also bind 

cSrc through its SH3 binding motif, identified as PDLPPPKMIP (Xu et al., 2007).  

However, the AFAP1L1 coding sequence contains only one predicted SH3 binding motif 

in its amino terminus, DLPPPLPNKP, which is not consistent with a consensus cSrc SH3 

binding motif but may have the ability to bind to other SH3 domains.  
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 AFAP1 contains two SH2 binding motifs that interact with cSrc, YYEEA in the 

N-terminal portion of the protein and YDYI in the C-terminal portion, which are both 

sites for tyrosine phosphorylation (Guappone et al., 1998). AFAP1L1 shares 100% 

sequence identity with both AFAP1 and AFAP1L2/XB130 in its predicted N-terminal 

SH2 binding motif, YYEEA, and is highly similar in its C-terminal SH2 binding motif 

YDYV (Guappone et al., 1998; Xu et al., 2007). Thus, these may be potential sites for 

tyrosine phosphorylation.  

 The N-terminal and C-terminal PH domains of the AFAP family share sequence 

similarity and, thus, can be predicted to share structural similarity.  The amino acid 

sequence intervening between the PH domains of AFAP1 (substrate domain, SD, Figure 

2B) is rich in serine and threonine residues (Qian et al., 2002). Serine277 in AFAP1 is a 

known target of phosphorylation by PKCα and plays a role in the ability of AFAP1 to 

regulate podosome formation and lifespan (Dorfleutner et al., 2008).  A FAP1L1 and 

AFAP1L2/XB130 also have multiple serine and threonine residues in the sequence 

flanked by their PH domains, although these sequences have not been confirmed to be 

phosphorylated by serine/threonine protein kinases.   

 The leucine zipper of AFAP1 is essential for intra-molecular regulation of AFAP1 

and interaction with other AFAP1 molecules and is directly adjacent to the actin binding 

domain (Qian et al., 2004). AFAP1L1 contains a si milar sequence that may have the 

ability to act as a leucine zipper or coiled-coil motif as well as a putative actin binding 

domain which is similar to the known actin filament binding domain found in AFAP1 

(Qian et al., 2000). AFAP1L2/XB130 contains a coiled-coil motif in its C-terminus and a 

sequence that is similar to the AFAP1 actin binding domain, but AFAP1L2/XB130 has 
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not been demonstrated to bind actin filaments (Xu et al., 2007). An amino acid sequence 

alignment of the three family members found that AFAP1 and AFAP1L1 overall share 

44% identity and 71% similarity while AFAP1L1 and AFAP1L2/XB130 share 31% 

identity and 61% similarity and their sequences predict conserved functional domains 

within the proteins (Figure 2B).  

 

A novel antibody is specific for AFAP1L1 

 A rabbit polyclonal antibody was generated against the carboxy terminal amino 

acids 714-727 of human AFAP1L1. We refer to this antibody as 1L1-CT. We also 

utilized two commercially available AFAP1L1 antibodies, called Ab1 (epitope defined as 

amino acids 525-659) and Ab2 (epitope defined as amino acids 21-159).  The ability of 

these antibodies to detect AFAP1L1 was studied using lysates of human breast lines 

MCF-10A, MCF-7, MDA-MB-231, B1A (a variant of MDA-MB-231 cells that had 

AFAP1 knocked down using shRNA  (Dorfleutner et al., 2007)), MDA-MB-435 as well 

as monkey kidney cell line Cos-1. All three AFAP1L1 antibodies detected a distinct 

protein band by western blot analysis with a Mr of 115 kDa (Figure 3A, result from Ab2 

as a r epresentative example) with MDA-MB-435 having the highest endogenous 

expression levels of AFAP1L1 among the tested cell lines. The Mr of AFAP1L1 was 

further confirmed by s iRNA knockdown against AFAP1L1 (data not shown). The 

expression pattern of AFAP1L1 across breast cancer cell lines was further confirmed in 

messenger RNA levels through quantitative RT-PCR analysis (data not shown). To test 

the ability of the 1L1-CT antibody to immunoprecipitate endogenous AFAP1L1, Cos-1 

cells were lysed and 1mg of lysate (1µg/µl) was incubated with either 5µg 1L1-CT, 5µg 
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AFAP1 antibody F1 or 5µg control rabbit IgG and the immunoprecipitate resolved by 

SDS-PAGE (Figure 3B).  Upon western blot analysis with 1L1-CT, it was apparent 

that the 1L1-CT antibody specifically immunoprecipitated a protein with a Mr of 115kDa, 

consistent with the predicted Mr for AFAP1L1 (Figure 3B, left panel, middle lane); while 

the AFAP1 antibody F1 did not immunoprecipitate a protein of this Mr (Figure 3B, left 

panel, right lane) that could be detected by the 1L1-CT antibody.  To test the specificity 

of F1 antibody for endogenous AFAP1, Cos-1 cells were lysed and 1.5mg (1µg/µl) of 

lysate was incubated with rabbit IgG, F1 or 1L1-CT. F1 antibody specifically 

immunoprecipitated the expected AFAP1 protein with an Mr of 110 kD a (Figure 3B, 

right panel, right lane) and did not immunoprecipitate AFAP1L1 (Figure 3B, right panel, 

middle lane), indicating that these two antibodies are specific for endogenous protein. To 

determine if 1L1-CT and F1 antibodies can specifically recognize overexpressed protein, 

plasmids encoding GFP-AFAP1L1 and GFP-AFAP1 were transfected into Cos-1 cells. 

Western blot analysis of these cells (Figure 3C) showed that 1L1-CT antibody detected 

overexpressed GFP-AFAP1L1 but not overexpressed GFP-AFAP1 (Figure 3C, left 

panel). AFAP1 antibody F1 detected GFP-AFAP1 but not GFP-AFAP1L1 (Figure 3C, 

middle panel).  T hese data indicate that the AFAP1L1 antibody 1L1-CT and AFAP1 

antibody F1 have specificity for AFAP1L1 and AFAP1, respectively. These data also 

indicated that 1L1-CT antibody is specific to the AFAP1L1 of human and monkey 

species. 1L1-CT antibody did not recognize any distinct band in murine cell lysates (data 

not shown), because the epitope is not conserved in murine AFAP1L1 (Figure 3D). 

Sigma antibodies Ab1 and Ab2 also failed to recognize AFAP1L1 in murine cell lysates. 

An alignment of the peptide sequence used to create 1L1-CT against the amino acid 
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sequence of human, chimpanzee, mouse and rat AFAP1L1 was shown to illustrate the 

similarity of the 1L1-CT binding site across species (Figure 3D).  

 

Immunohistochemical analysis of AFAP1L1 

 The ability of the 1L1-CT antibody to specifically recognize endogenous 

AFAP1L1 in its native conformation by immunoprecipitation and to recognize AFAP1L1 

by immunofluorescence (Supplemental Figure 1) demonstrated its usefulness for 

immunohistochemistry. To determine the tissue localization of AFAP1L1, 

immunohistochemistry was performed on hu man breast, colon and brain tissues using 

1L1-CT antibody (Figure 4). AFAP1 or AFAP1L1 tissue localizations were compared 

using sequential sections of tissue immunolabeled with F1 or 1L1-CT antibodies, 

respectively, in order to contrast expression patterns. In the breast, AFAP1 was found to 

strongly associate with the ductal cells and also the breast microvasculature (Figure 4A 

panels a, c and e). AFAP1L1 was found in the contractile myoepithelial cell layer which 

surrounds the breast ducts and in the microvasculature (Figure 4A panels b, d a nd f), 

similar to AFAP1. In the colon (Figure 4B), AFAP1 was found in the epithelial mucous 

membrane as well as in the colonic crypts (Figure 4B panels a and g) which aid in 

mucous production and production of new epithelial cells for the intestinal surface 

(Sherwood, 2003). AFAP1L1 was also found in the mucous membrane and colonic 

crypts (Figure 4B panels b a nd h). Both AFAP1 and AFAP1L1 are found in the 

microvasculature (Figure 4B panels a-d) while AFAP1 can also be found in nerves that 

pass through the lamina propria (Figure 4B panel g).  T he lamina propria lies directly 

beneath the epithelial cell layer and consists of connective tissue, blood vessels, nerve 
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fibers and lymphatic ducts (Widmaier, 2003). The muscularis, layers of smooth muscle 

which provide movement of the colon, expresses both AFAP1 and AFAP1L1 (Figure 4B 

panels c-f) while AFAP1 is solely found in Auberbach’s plexus (Figure 4B panel e), the 

nerves that innervate the muscle of the gut (Sherwood, 2003). While AFAP1 and 

AFAP1L1 have overlapping localization in human breast and colon tissue, human brain 

showed examples of differential expression patterns for these two proteins (Figure 4C). 

The cerebellum is located at the base of the skull and is an important part of the motor 

system. Divided into three layers, the cerebellar cortex is composed of a g ranular cell 

layer consisting of small granule cells which receive input from mossy fibers and extend 

into the molecular layer, the outermost portion of the cerebellar cortex which houses 

stellate and basket cells. Purkinje cells are large neurons acting as t he sole output of 

motor coordination from the cerebellar cortex and are found in a single layer between the 

molecular and granular layers (Squire, 2008). AFAP1 is found in the microvasculature of 

the brain, in the molecular layer and meningeal vessels and to a sl ight level around the 

granule cells of the granular layer (Figure 4C panels a, c, e and g). AFAP1L1 is again 

found in low levels in the microvasculature of the brain but is localized around the 

Purkinje neurons and the granule cells of the granular layer (Figure 4C panels b, d, f and 

h). This immunolabeling is not inside of either the Purkinje neurons or the granule cell 

bodies but instead extends away from the cell body. A lthough the source of this 

immunolabeling is unknown, mossy fibers and climbing fibers extend into the granule 

cell layer and Purkinje cell layer respectively, synapsing onto granule and Purkinje cells 

(Squire, 2008). This may provide the source of immunolabeling for AFAP1L1 away from 

the granule and Purkinje cell body. Outside of the cerebellar cortex, AFAP1 and 
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AFAP1L1 are both found in glial cells (Figure 4C panels o-p) but have a differential 

expression pattern in the dentate nucleus (Figure 4C k-n), one of four deep cerebellar 

nuclei responsible for voluntary movements of the extremities (Squire, 2008). Again, 

AFAP1L1 is highly expressed away from the cell bodies within the dentate nucleus, 

while AFAP1 was not detected in this structure. Relative intensities of 

immunohistochemical signal for AFAP1 and AFAP1L1 are presented in Table 1. 

 

AFAP1L1 subcellular localization 

 AFAP1 is known to bind actin filaments, move to actin rich structures called 

podosomes upon stimulation with the phorbol ester PDBu and also to be localized in 

podosome-like structures termed invadopodia in MDA-MB-231 cells, while 

AFAP1L2/XB130 is not known to bind actin filaments (Flynn et al., 1993; Gatesman et 

al., 2004; Xu et al., 2007).  Thus, we sought to determine if AFAP1L1 had the potential 

to be localized with actin filaments and podosomes, similar to AFAP1 (Gatesman et al., 

2004).  For this analysis, we used the rat-derived A7r5 cell line, a well established cell 

model system for podosome formation (Hai et al., 2002).  O verexpression of GFP-

AFAP1L1 alone in A7r5 cells produced two distinct phenotypes (Figure 5A).  G FP-

AFAP1L1 expressing cells either have GFP-AFAP1L1 decorating actin stress fibers 

while cortactin is found in the cytoplasm and around the cell periphery (Figure 5A panels 

a-d) or both GFP-AFAP1L1 and cortactin colocalizing in punctate actin dots along the 

ventral membrane (Figure 5A and Supplemental Figure 2). The adaptor protein cortactin 

was used as a marker for podosome formation.  Podosome formation was observed either 

around the cell periphery (5A panels e-h) or scattered across the ventral membrane (5A 
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panels i-l). Thus, AFAP1L1 decorates actin stress fibers and co-localizes with cortactin in 

podosomes. Overexpression of AFAP1L1 induced the formation of podosomes in a small 

percentage of cells.  

 Next, we utilized MDA-MB-435 cells to determine the subcellular localization of 

endogenous AFAP1L1 based on t he high level of expression of AFAP1L1 in this cell 

line. Immunolabeling of MDA-MB-435 with Sigma Ab2 (Figure 5B, panel a-c) and Ab1 

(data not shown) showed a population of AFAP1L1 decorating actin stress filaments 

while the rest of AFAP1L1 was detected diffusely across the cytoplasm. A similar pattern 

of expression was observed for the 1L1-CT antibody in MEF cells overexpressing 

untagged AFAP1L1 (Supplemental Figure 1).  

 To determine whether endogenous AFAP1L1 could co-localize to invadopodia, 

we transiently transfected a constitutively active Src construct (Src527F) into MDA-MB-

435 to induce invadopodia, podosome-like structures found in cancer cells. The 

overexpression of Src527F induced punctate actin- and cortactin-rich structures in these 

cells (Figure 5C, b-c, f-g) accompanied by the loss of stress filaments, which were 

consistent with the appearance of typical invadopodia.  T he immunolabeling of 

endogenous AFAP1L1 (Figure 5C, a) showed discernable association with invadopodia, 

co-localizing with cortactin and actin (Figure 5C, a-d, marked with white arrow as an 

example of colocalization). These data indicate that AFAP1L1, like AFAP1, is associated 

with actin stress filaments and localizes to invadosomes (the collective term for 

podosomes and invadopodia) at both overexpressed and endogenous levels (also see 

Supplemental Figure 3) (Linder, 2009; Saltel et al., 2010).  
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Quantification of podosome formation in A7r5 expressing AFAP1 or AFAP1L1 

 In a previous study of AFAP1, expression of GFP-AFAP1 was sufficient to 

induce podosomes in a portion of the A7r5 cells in which it was expressed (Dorfleutner et 

al., 2008). Therefore, we sought to compare the potency of the GFP-AFAP1 and GFP-

AFAP1L1 constructs to induce podosomes using a dose response analysis.  A7r5 cells 

were transfected with equal amounts of total plasmid cDNA containing the indicated 

amount of GFP-AFAP1 or GFP-AFAP1L1 plasmid (Figure 6). Transfection of equal 

amounts of plasmid (combination of empty vector and GFP-AFAP) ensured that 

transfection efficiencies were identical for each dose of plasmid. Forty eight hours after 

transfection, the cells expressing either GFP-AFAP1 or GFP-AFAP1L1 were assessed for 

podosome formation. Reduction of plasmid DNA resulted in a corresponding reduction 

of GFP-AFAP1 and GFP-AFAP1L1 expression (Figure 6A). The reduction of expression 

was also reflected in a r eduction in the percent of cells exhibiting podosomes (Figure 

6B). When 1µg and 0.35 µg of plasmid DNA was used, the percentage of GFP-AFAP1 

expressing cells exhibiting podosomes dropped from 11.4% to 7.1% while in 

GFPAFAP1L1 expressers the change was more modest, 9.2% to 8.0%. At 0.1 µg of DNA 

the number of podosome cells appeared to increase. This increase resulted from the 

variability in expression levels among cells and the dimness of the low expressers which 

made these cells difficult to detect by immunofluorescence.  O verall, this experiment 

demonstrated that under identical conditions of transfection, expression, processing and 

immunofluorescence analysis, expression of GFP-AFAP1 and GFP-AFAP1L1 induce 

podosome formation in A7r5 cells.  
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Interaction of AFAP1L1 and cortactin 

 To determine if AFAP1L1 might have a differential ability to interact with 

proteins relative to AFAP1, we screened SH3 domains from various proteins for the 

binding to AFAP1L1. A Panomics array screening of SH3 domains showed that the SH3 

domain of cortactin and the SH3 binding motif of AFAP1L1 had a strong potential to 

interact (data not shown). To confirm these screening results, GST fusion proteins 

containing the cortactin SH3 domain and the Src SH3 domain were incubated with 1mg 

of cell lysate containing either overexpressed GFP-AFAP1L1 or GFP-AFAP1.  As 

expected from the known binding of AFAP1 to Src, AFAP1 showed a strong interaction 

with the Src SH3 domain with a 14-fold increase in the ratio of AFAP1 pulled down by 

GST-Src SH3 as compared to GST control while precipitation by the cortactin SH3 

domain was undetectable (Figure 7A). However, AFAP1L1 was more efficiently 

precipitated by GST-SH3-cortactin than GST-SH3-Src with an approximately 9-fold 

increase in the ratio of AFAP1L1 pulled down by GST-cortactin SH3 compared to GST 

control (Figure 7B). These data indicate that the SH3 binding motifs of AFAP1 and 

AFAP1L1 have the ability to interact with different affinities toward different SH3 

binding partners. To further examine the potential binding of AFAP1L1 with cortactin, 

we transiently overexpressed either GFP-AFAP1 or GFP-AFAP1L1 with cortactin in 

293T cells.  G FP-AFAP1L1 co-immunoprecipitated with cortactin (Figure 7C, upper 

panel) more efficiently than did GFP-AFAP1 (the amounts of immunoprecipitated GFP 

proteins were relatively equal Figure 7C, lower panel). Conversely, cortactin specifically 

co-immunoprecipitated GFP-AFAP1L1, but not GFP-AFAP1 (Figure 7D, upper panel). 

These data suggest that cortactin can form a complex with AFAP1L1, but is either unable 
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to form a complex with AFAP1 or its ability to bind in a complex with AFAP1 is below 

detection limits. This interaction is hypothesized to occur through SH3 interactions based 

on our affinity precipitations with the SH3 domains and suggests a unique function for 

AFAP1L1 that is distinct from AFAP1.  
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DISCUSSION 
 
AFAP family amino acid sequence 

 AFAP1 is a well-studied cSrc binding partner and actin filament cross-linking 

protein that is the prototype member of what is predicted to be a family of three proteins 

which also includes AFAP1L1 and AFAP1L2/XB130.  There are no published reports on 

AFAP1L1 and the goal of this study was to analyze some of the similarities and 

differences between AFAP1 and AFAP1L1 in order to understand what functions 

AFAP1L1 may have relative to AFAP1.  The AFAP family consists of three family 

members that share similarity in protein binding motifs including both PH domains. 

Analysis of the overall amino acid structure of previously described AFAP1 and newly 

presented AFAP1L1 show 44% identity and 71% similarity between the two proteins. 

AFAP1 contains two juxtaposed SH3 binding motifs in its N-terminus, PPQMPLPEIP 

and PPDSGPPPLP, of which the first is necessary for efficient cSrc binding. Mutation of 

a necessary proline, Pro71, to an alanine, Ala71, in the AFAP1 SH3 binding motif 

prevented cSrc binding (Guappone and Flynn, 1997).  While AFAP1L1 only contains one 

putative SH3 binding motif, DLPPPLPNKP, this sequence is not consistent with the 

conserved consensus cSrc SH3 binding motif.  Rather, the AFAP1L1 SH3 binding motif 

more closely resembles that of a cortactin SH3 domain binding site, which preferentially 

binds a +PPΨPXKPXWL motif where + is a basic residue, Ψ is an aliphatic residue, and 

X is any amino acid (Sparks et al., 1996).  

 In addition to the SH3 binding motif, cSrc also has the ability to phosphorylate 

and bind two SH2 binding motifs in AFAP1. In AFAP1, an N-terminal YYEEA sequence 

adjacent to the SH3 binding motifs and a C-terminal YDYI sequence have been shown to 
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be phosphorylated by cSrc (Guappone et al., 1998).  AFAP1L1 contains the conserved 

YYEEA sequence in its N-terminus adjacent to the SH3 binding motif and a similar 

YDYV sequence in its C-terminus. Although we did not analyze AFAP1L1 as a possible 

target for phosphorylation by tyrosine kinases, these similar SH2 binding motifs may be 

potential targets for tyrosine phosphorylation. A ScanSite motif scan comparison between 

AFAP1 and AFAP1L1 predicts these sites for tyrosine phosphorylation and also predicts 

similar sites for serine/threonine phosphorylation as well (data not shown). The amino 

acid sequences between the PH1 and PH2 domains of AFAP1 and AFAP1L1 are rich in 

serine and threonine residues that are predicted to be sites of serine and threonine 

phosphorylation. In particular, AFAP1 is known to be phosphorylated on serine 277 by 

PKCα and this phosphorylation is important for podosome turnover (Dorfleutner et al., 

2008). Although we have not validated AFAP1L1 as a PKC substrate, AFAP1L1 also 

contains a similar PKCα phosphorylation site.  

 The conservation of domain structure, overall sequence similarity and high 

similarity of sequence between the two PH domains indicates that AFAP1, AFAP1L1 

and AFAP1L2/XB130 are members of a family of proteins, referred to here and in 

genome databases as the AFAP family. The amino terminal PH1 domain of AFAP1 has 

been known to function in intra-molecular regulation of AFAP1 (Qian et al., 2004).  In 

addition, the PH1 domain is a binding partner for PKCα and phospholipids (Cunnick and 

Flynn, manuscript in preparation) (Qian et al., 2002).  

 The actin binding domain within AFAP1 is necessary and sufficient for the 

binding of AFAP1 to actin filaments (Qian et al., 2000).  Comparison of the AFAP1 actin 

binding domain sequence to the corresponding sequence in AFAP1L1 does not indicate a 
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high level of similarity although our data indicates that AFAP1L1 also has the ability to 

associate with actin filaments. We predict that the sequences within the C-terminus of 

AFAP1L1 that are similar to the known actin filament binding domain in AFAP1 may 

promote actin filament association, however, as the binding affinity of AFAP1 for actin is 

relatively low, we predict that the putative actin binding domain of AFAP1L1 may have a 

lower affinity for actin.  S tudies are underway to determine the mechanism of actin 

filament binding and if the leucine zipper/coiled-coil motif adjacent to the putative actin 

filament binding domain can regulate self-association and actin filament cross-linking, 

similar to AFAP1 (Qian et al., 2004). 

 

AFAP1L1 western blot analysis 
 
 AFAP1L1 can be found in human breast and breast cancer cell lines, as well as 

the Cos-1 monkey cell line. The predicted molecular weight of AFAP1L1 is 85kDa, but it 

is detected as a single protein band by w estern blot analysis with a Mr of 115 kD a,  

Similarly, AFAP1 has a molecular weight of 82 kDa but is detected on western blot as a 

110 kDa protein..  F or AFAP1, it was hypothesized that the difference in molecular 

weight and Mr might be due to overall charge and the shape of the protein, which may 

also apply to AFAP1L1.  T he AFAP1L1 specific antibodies, 1L1-CT, Ab1 and Ab2 

antibodies (latter two from Sigma), have the ability to specifically detect AFAP1L1 but 

not AFAP1 by western blot.  In our hands, all three antibodies could detect AFAP1L1 by 

immunoprecipitation, immunofluorescence and western blot; however, the 1L1-CT 

antibody was determined to be less efficient in detecting denatured AFAP1L1 by western 

blot, indicating that this antibody may preferentially recognize a conformational epitope 
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and be less efficient in detecting denatured AFAP1L1, relative to Ab1 and Ab2, which 

appear to detect denatured AFAP1L1 efficiently.   Conversely, the anti-AFAP1 antibody 

F1 is able to specifically immunoprecipitate AFAP1 but does not immunoprecipitate 

AFAP1L1.  

 

AFAP1L1 tissue expression pattern 

 AFAP1 and AFAP1L1 have similar distribution in breast and colon tissue with 

the exception that AFAP1 can be found in the nerves that innervate the gut while 

AFAP1L1 was not detected there. While immunolabeling of the brain shows similarities 

between AFAP1 and AFAP1L1 in the granule cell layer and glial cells, differences occur 

in the brain where AFAP1L1 is found in the Purkinje cell layer and the dentate nucleus, 

while AFAP1 was not detected here. The dentate nucleus is known to be involved in 

motor coordination; alterations in the neuronal composition of signaling to and from the 

dentate have been implicated in diseases with motor dysfunction such as A lzheimer’s 

disease, autism spectrum disorders and Pick’s disease (Braak et al., 1999; Fukutani et al., 

1999; Lotspeich and Ciaranello, 1993). Consistent immunolabeling of AFAP1L1 

between the granule cell layer, Purkinje layer and dentate nucleus indicates that the 

AFAP1L1 immunohistochemical signal is not in the cell bodies of the granule cells, 

Purkinje neurons or cells of the dentate nucleus, but is instead found extending away 

from the cell body. Thus, we hypothesize that AFAP1L1 may be playing a role in either 

the axon terminals of afferent neurons or the dendritic spines of efferent neurons in these 

areas, both of which have a dynamic actin cytoskeleton and are rich in proteins involved 

in cytoskeletal remodeling, such as cortactin (Hering and Sheng, 2003). As we see the 
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most marked difference between AFAP1 and AFAP1L1 expression in the dentate 

nucleus, we speculate that AFAP1L1 may play a role in the association of proteins 

involving signaling to or from the dentate nucleus. Notably, podosomes have recently 

been shown to be involved in maturation of the neuromuscular junction and a similar 

mechanism may be involved in neuron-neuron interactions (Proszynski et al., 2009).  

 

AFAP1L1 subcellular localization and podosome formation 

 GFP-AFAP1L1 and endogenous AFAP1L1 colocalized with actin filaments and 

invadosomes similar to the subcellular localization pattern of AFAP1. Overexpression of 

GFP-AFAP1L1 induced podosome formation in the absence of extracellular signals (e.g., 

phorbol ester). A direct comparison of the ability of GFP-AFAP1 and GFP-AFAP1L1 to 

induce podosomes demonstrated that both proteins had similar capacities to induce these 

structures. Thus, like AFAP1, AFAP1L1 may have the ability to interact with proteins 

involved in podosome formation such as f-actin, cSrc or possibly cortactin. A panomics 

array of various SH3 domains was scanned for the ability to bind the AFAP1L1 SH3 

binding motif, and these data indicated that the AFAP1L1 SH3 binding motif and the 

cortactin SH3 domain showed the strongest interaction among those SH3 domains 

surveyed (data not shown). GST fusion proteins containing either the cortactin SH3 

domain or Src SH3 domain show that AFAP1 interacted with GST-Src SH3 much better 

than with GST-cortactin SH3.  However, with AFAP1L1 the reverse was true. AFAP1L1 

interacted with GST-cortactin-SH3 better than GST-Src SH3.  These data indicate that 

the SH3 binding motifs of AFAP1 and AFAP1L1 likely have different affinities for 

different SH3 binding partners.  The co-immunoprecipitation of cortactin with full length 
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AFAP1L1 and not with AFAP1 further supports the possibility of differential 

characteristics of these two proteins and also suggests the interaction of AFAP1L1 with 

cortactin as a p ossible mechanism of AFAP1L1 localization to invadosomes. 

Investigations are underway to determine if the SH3 binding motif of AFAP1L1 mediates 

the binding of AFAP1L1 to cortactin and to determine the functional relevance of this 

interaction.   

 

Conclusion 

 The goal of this study was to characterize the AFAP family member AFAP1L1 

and to determine if it had functions common and distinct to AFAP1.  Our data indicate 

that AFAP1L1 has strong similarity and conservation of domain structure with AFAP1. 

Also similar to AFAP1, it has an ability to associate with actin filaments, can be found in 

actin-rich structures such as invadosomes, and is capable of independently inducing 

podosomes upon overexpression.  AFAP1L1 shares expression patterns with AFAP1 in 

several tissues.  However, AFAP1L1 did display some unique properties.  For example, 

unlike AFAP1, AFAP1L1 was found in the dentate nucleus and its expression appeared 

to occur along neuronal processes.  Interestingly, it is in these processes that podosomes 

are hypothesized to be associated with synaptic connections (Proszynski et al., 2009), and 

these same connections in the dentate nucleus contain cortactin binding proteins (Hering 

and Sheng, 2003).  As podosomes play a role in enabling cells to traverse and cross tissue 

barriers, we hypothesize that AFAP1L1 may play a unique role in the innervation of the 

dentate nucleus. Although it may have a weak affinity, AFAP1L1 is not predicted to be a 

strong binding partner for cSrc through SH3 interactions; however, it does interact with 
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cortactin.  As a potential binding partner for actin filaments and cortactin, AFAP1L1 may 

associate with podosomes via interactions with these proteins and regulate podosome 

formation in cells, including neurons within the dentate nucleus. 
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Table 1 
 
AFAP1 and AFAP1L1 immunohistochemical signal in human tissue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: AFAP1 and AFAP1L1 immunohistochemical signal intensity in human tissue 

The intensity of AFAP1 staining in human breast, colon and brain tissues was analyzed. Staining 

in breast ducts was scored as ++++ for highest level of intensity. Staining in the dentate nucleus 

was scored as – for no level of staining. Other tissues labeled for AFAP1 were compared using 

this scale. AFAP1L1 staining intensity was analyzed in a similar manner, designating AFAP1L1 

staining in the dentate nucleus as ++++ and lamina propria as – for no level of staining. Other 

tissues labeled for AFAP1L1 were compared using this scale. 

 AFAP1 AFAP1L1 

Breast Lobule ++++ + 

Breast Duct ++++ + 

Breast 

Microvasculature 

+++ + 

Colon Muscularis ++ +++ 

Colon Mucosa +++ +++ 

Colon Lamina Propria - - 

Cerebellar Cortex + + 

 

Cerebellar Granule Cell 

Layer 

++ ++++ 

Cerebellar Purkinje 

Layer 

+ ++++ 

Meningeal Vessels ++++ + 

Dentate Nucleus - ++++ 

Glial Cells ++ +++ 
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ATG GAC CGA GGC CAG GTG CTG GAG CAG CTG CTC CCA GAG CTC ACC GGG CTG CTC AGC CTC CTG GAC CAC GAG  

 M   D   R   G   Q   V   L   E   Q   L   L   P   E   L   T   G   L   L   S   L   L   D   H   E  

TAC CTC AGC GAT ACC ACC CTG GAA AAG AAG ATG GCC GTG GCC TCC ATC CTG CAG AGC CTG CAG CCC CTT CCA  

 Y   L   S   D   T   T   L   E   K   K   M   A   V   A   S   I   L   Q   S   L   Q   P   L   P 

GCA AAG GAG GTC TCC TAC CTG TAT GTG AAC ACA GCA GAC CTC CAC TCG GGG CCC AGC TTC GTG GAA TCC CTC  

 A   K   E   V   S   Y   L   Y   V   N   T   A   D   L   H   S   G   P   S   F   V   E   S   L 

TTT GAA GAA TTT GAC TGT GAC CTG AGT GAC CTT CGG GAC ATG CCA GAG GAT GAT GGG GAG CCC AGC AAA GGA  

 F   E   E   F   D   C   D   L   S   D   L   R   D   M   P   E   D   D   G   E   P   S   K   G 

GCC AGC CCT GAG CTA GCC AAG AGC CCA CGC CTG AGA AAC GCG GCC GAC CTG CCT CCA CCG CTC CCC AAC AAG  

 A   S   P   E   L   A   K   S   P   R   L   R   N   A   A   D   L   P   P   P   L   P   N   K 

CCT CCC CCT GAG GAC TAC TAT GAA GAG GCC CTT CCT CTG GGA CCC GGC AAG TCG CCT GAG TAC ATC AGC TCC  

 P   P   P   E   D   Y   Y   E   E   A   L   P   L   G   P   G   K   S   P   E   Y   I   S   S 

CAC AAT GGC TGC AGC CCC TCA CAC TCG ATT GTG GAT GGC TAC TAT GAG GAC GCA GAC AGC AGC TAC CCT GCA  

 H   N   G   C   S   P   S   H   S   I   V   D   G   Y   Y   E   D   A   D   S   S   Y   P   A 

ACC AGG GTG AAC GGC GAG CTT AAG AGC TCC TAT AAT GAC TCT GAC GCA ATG AGC AGC TCC TAT GAG TCC TAC  

 T   R   V   N   G   E   L   K   S   S   Y   N   D   S   D   A   M   S   S   S   Y   E   S   Y 

GAT GAA GAG GAG GAG GAA GGG AAG AGC CCG CAG CCC CGA CAC CAG TGG CCC TCA GAG GAG GCC TCC ATG CAC  

 D   E   E   E   E   E   G   K   S   P   Q   P   R   H   Q   W   P   S   E   E   A   S   M   H 

CTG GTG AGG GAA TGC AGG ATA TGT GCC TTC CTG CTG CGG AAA AAG CGT TTC GGG CAG TGG GCC AAG CAG CTG  

 L   V   R   E   C   R   I   C   A   F   L   L   R   K   K   R   F   G   Q   W   A   K   Q   L 

ACG GTC ATC AGG GAG GAC CAG CTC CTG TGT TAC AAA AGC TCC AAG GAT CGG CAG CCA CAT CTG AGG TTG GCA  

 T   V   I   R   E   D   Q   L   L   C   Y   K   S   S   K   D   R   Q   P   H   L   R   L   A 

CTG GAT ACC TGC AGC ATC ATC TAC GTG CCC AAG GAC AGC CGG CAC AAG AGG CAC GAG CTG CGT TTC ACC CAG  

 L   D   T   C   S   I   I   Y   V   P   K   D   S   R   H   K   R   H   E   L   R   F   T   Q 

GGG GCT ACC GAG GTC TTG GTG CTG GCA CTG CAG AGC CGA GAG CAG GCC GAG GAG TGG CTG AAG GTC ATC CGA  

 G   A   T   E   V   L   V   L   A   L   Q   S   R   E   Q   A   E   E   W   L   K   V   I   R 

GAA GTG AGC AAG CCA GTT GGG GGA GCT GAG GGA GTG GAG GTC CCC AGA TCC CCA GTC CTC CTG TGC AAG TTG  

 E   V   S   K   P   V   G   G   A   E   G   V   E   V   P   R   S   P   V   L   L   C   K   L 

GAC CTG GAC AAG AGG CTG TCC CAA GAG AAG CAG ACC TCA GAT TCT GAC AGC GTG GGT GTG GGT GAC AAC TGT  

 D   L   D   K   R   L   S   Q   E   K   Q   T   S   D   S   D   S   V   G   V   G   D   N   C 

TCT ACC CTT GGC CGC CGG GAG ACC TGT GAT CAC GGC AAA GGG AAG AAG AGC AGC CTG GCA GAA CTG AAG GGC  

 S   T   L   G   R   R   E   T   C   D   H   G   K   G   K   K   S   S   L   A   E   L   K   G 

TCA ATG AGC AGG GCT GCG GGC CGC AAG ATC ACC CGT ATC ATT GGC TTC TCC AAG AAG AAG ACA CTG GCC GAT  

 S   M   S   R   A   A   G   R   K   I   T   R   I   I   G   F   S   K   K   K   T   L   A   D 

GAC CTG CAG ACG TCC TCC ACC GAG GAG GAG GTT CCC TGC TGT GGC TAC CTG AAC GTG CTG GTG AAC CAG GGC  

 D   L   Q   T   S   S   T   E   E   E   V   P   C   C   G   Y   L   N   V   L   V   N   Q   G 

TGG AAG GAA CGC TGG TGC CGC CTG AAG TGC AAC ACT CTG TAT TTC CAC AAG GAT CAC ATG GAC CTG CGA ACC  

 W   K   E   R   W   C   R   L   K   C   N   T   L   Y   F   H   K   D   H   M   D   L   R   T 

CAT GTG AAC GCC ATC GCC CTG CAA GGC TGT GAG GTG GCC CCG GGC TTT GGG CCC CGA CAC CCA TTT GCC TTC  

 H   V   N   A   I   A   L   Q   G   C   E   V   A   P   G   F   G   P   R   H   P   F   A   F 

AGG ATC CTG CGC AAC CGG CAG GAG GTG GCC ATC TTG GAG GCA AGC TGT TCA GAG GAC ATG GGT CGC TGG CTC  

 R   I   L   R   N   R   Q   E   V   A   I   L   E   A   S   C   S   E   D   M   G   R   W   L 

GGG CTG CTG CTG GTG GAG ATG GGC TCC AGA GTC ACT CCG GAG GCG CTG CAC TAT GAC TAC GTG GAT GTG GAG  

 G   L   L   L   V   E   M   G   S   R   V   T   P   E   A   L   H   Y   D   Y   V   D   V   E 

ACC TTA ACC AGC ATC GTC AGT GCT GGG CGC AAC TCC TTC CTA TAT GCA AGA TCC TGC CAG AAT CAG TGG CCT  

 T   L   T   S   I   V   S   A   G   R   N   S   F   L   Y   A   R   S   C   Q   N   Q   W   P 

GAG CCC CGA GTC TAT GAT GAT GTT CCT TAT GAA AAG ATG CAG GAC GAG GAG CCC GAG CGC CCC ACA GGG GCC  

 E   P   R   V   Y   D   D   V   P   Y   E   K   M   Q   D   E   E   P   E   R   P   T   G   A 

CAG GTG AAG CGT CAC GCC TCC TCC TGC AGT GAG AAG TCC CAT CGT GTG GAC CCG CAG GTC AAA GTC AAA CGC  

 Q   V   K   R   H   A   S   S   C   S   E   K   S   H   R   V   D   P   Q   V   K   V   K   R 

CAC GCC TCC AGT GCC AAT CAA TAC AAG TAT GGC AAG AAC CGA GCC GAG GAG GAT GCC CGG AGG TAC TTG GTA  

 H   A   S   S   A   N   Q   Y   K   Y   G   K   N   R   A   E   E   D   A   R   R   Y   L   V 

GAA AAA GAG AAG CTG GAG AAA GAG AAA GAG ACG ATT CGG ACA GAG CTG ATA GCA CTG AGA CAG GAG AAG AGG   

 E   K   E   K   L   E   K   E   K   E   T   I   R   T   E   L   I   A   L   R   Q   E   K   R 

GAA CTG AAG GAA GCC ATT CGG AGC AGC CCA GGA GCA AAA TTA AAG GCT CTG GAA GAA GCC GTG GCC ACC CTG  

 E   L   K   E   A   I   R   S   S   P   G   A   K   L   K   A   L   E   E   A   V   A   T   L 

GAA GCT CAG TGT CGG GCA AAG GAG GAG CGC CGG ATT GAC CTG GAG CTG AAG CTG GTG GCT GTG AAG GAG CGC  

 E   A   Q   C   R   A   K   E   E   R   R   I   D   L   E   L   K   L   V   A   V   K   E   R 

TTG CAG CAG TCC CTG GCA GGA GGG CCA GCC CTG GGG CTC TCC GTG AGC AGC AAG CCC AAG AGT GGG GAA ACT  

 L   Q   Q   S   L   A   G   G   P   A   L   G   L   S   V   S   S   K   P   K   S   G   E   T 

GCA AAT AAA CCC CAG AAC AGC GTT CCA GAG CAA CCT CTC CCT GTC AAC TGT GTT TCT GAG CTG AGG AAG AGG  

 A   N   K   P   Q   N   S   V   P   E   Q   P   L   P   V   N   C   V   S   E   L   R   K   R 

AGC CCA TCC ATC GTA GCC TCC AAC CAA GGA AGG GTG CTA CAG AAA GCC AAG GAA TGG GAA ATG AAG AAG ACC  

 S   P   S   I   V   A   S   N   Q   G   R   V   L   Q   K   A   K   E   W   E   M   K   K   T 

TAG 

STOP 
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Figure 1: AFAP1L1 sequence  

AFAP1L1 coding sequence was divided into codons with corresponding amino acid sequence. 

Start and stop codons are indicated in bold type. 
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AFAP1           ------MEELIVELRLFLELLDHEYLTSTVREKKAVITNILLRIQSSKGFDVKDHAQKQE 54 

AFAP1L1         MDRGQVLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 60 

AFAP1L2         MERYKALEQLLTELDDFLKILDQENLSSTALVKKSCLAELLRLYTKSSSSDEEYIYMNKV 60 

Consensus              E L  EL   L  LD E L  T   KK      L                    

 

AFAP1           TANSLP-------------------------APPQMPLPEIP-QPWLP-PDSGPP----P 83 

AFAP1L1         DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPP----P 116 

AFAP1L2         TINKQQNAESQGKAPEEQGLLP-------NGEPSQHSSAPQKSLPDLPPPKMIPERKQLA 113 

Consensus                                       P           P L      P       

 

AFAP1           LPTSSLPEGYYEEAVPLSPGKAPEYITSN------------------------------- 112 

AFAP1L1         LPNKPPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELK 176 

AFAP1L2         IPKTESPEGYYEEAEPYDTSLNE------------------------------------- 136 

Consensus        P    PE YYEEA P                                             

 

AFAP1           ---YDSDAMSSSYESYDEEEEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQW 169 

AFAP1L1         SSYNDSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRFGQW 236 

AFAP1L2         ----DGEAVSSSYESYDEED-GSKGKSAPYQWPSPEAGIELMRDARICAFLWRKKWLGQW 191 

Consensus           D  A SSSYESYDEE    K      QWPS EA   L     ICAFL RKK  GQW 

 

AFAP1           TKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPLVL 229 

AFAP1L1         AKQLTVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVLVL 296 

AFAP1L2         AKQLCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHKLKITPMNADVIVL 251 

Consensus        K L VI    LLCYKSSKD  P     L         K    K H L  T       VL 

 

AFAP1           AVQSKEQAEQWLKVIKEAYSGCSGPVDSECPPPPSSPVHKAELEKKLSSERPSSDGEGVV 289 

AFAP1L1         ALQSREQAEEWLKVIREVSKPVGGAEGVEVPRSP-VLLCKLDLDKRLSQEKQTSDSDSVG 355 

AFAP1L2         GLQSKDQAEQWLRVIQEVSGLPSEGASEGNQYTP--------DAQRFNCQKPDIAEKYLS 303 

Consensus         QS  QAE WL VI E                P            

 

AFAP1           ENGITTCNGK----EQVKRKKSSKSEAKGTVSKVTGKKITKIISLGKKK-PSTDEQTSSA 344 

AFAP1L1         VGDNCSTLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSST 415 

AFAP1L2         ASEYGSSVDG-------HPEVPETKDVKKKCS--AGLKLSNLMNLGRKK--STSLEP--V 350 

Consensus                                  K   S   G K         KK   

 

AFAP1           EEDVPTCGYLNVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSK 404 

AFAP1L1         EEEVPCCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPR 475 

AFAP1L2         ERSLETSSYLNVLVNSQWKSRWCSVRDNHLHFYQDRNRSKVAQQPLSLVGCEVVPDPSPD 410 

Consensus       E       YLNVL N  W  RWC    N L F  D            L GCEV P  

 

AFAP1           HPLTFRLLRNGQEVAVLEASSSEDMGRWIGILLAETGSSTDPEALHYDYIDVEMSASVIQ 464 

AFAP1L1         HPFAFRILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVS 535 

AFAP1L2         HLYSFRILHKGEELAKLEAKSSEEMGHWLGLLLSESGSKTDPEEFTYDYVDADRVSCIVS 470 

Consensus       H   FR L    E A LEA  SE MG W G LL E GS   PE   YDY D 

 

AFAP1           TAKQTFCFMNRRVISANPYLGGTSNG-----------------YAHPSGTALHYDDVPCI 507 

AFAP1L1         AGRNSFLYAR-----------SCQNQ-----------------WPEPR----VYDDVPYE 563 

AFAP1L2         AAKNSLLLMQRKFSEPNTYIDGLPSQDRQEELYDDVDLSELTAAVEPTEEATPVADDPNE 530 

Consensus                                                     P        D P   

 

AFAP1           NGSL-------------------------------------------------------- 511 

AFAP1L1         KMQD-------------------------------------------------------- 567 

AFAP1L2         RESDRVYLDLTPVKSFLHGPSSAQAQASSPTLSCLDNATEALPADSGPGPTPDEPCIKCP 590 

Consensus                                                                 

 

AFAP1           -------------KGKKPPVASNGVTGKGKTLSSQPKKADPAAVVKRTGS---------N 549 

AFAP1L1         -------------EEPERPTGAQ-VKRHASSCSEKSHRVDPQVKVKRHAS---------S 604 

AFAP1L2         ENLGEQQLESLEPEDPSLRITTVKIQTEQQRISFPPSCPDAVVATPPGASPPVKDRLRVT 650 

Consensus                                       S      D         S          

 

AFAP1           AAQYKYGKNRVEADAKRLQTKEEELLKRKEALRNRLAQLRKERKDLRAAIEVNAGRKPQA 609 

AFAP1L1         ANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGAK-LK 663 

AFAP1L2         SAEIKLGKNRTEAEVKRYTEEKERLEKKKEEIRGHLAQLRKEKRELKETLLKCTDKEVLA 710 

Consensus           K GKNR E    R   EKE L K KE  R  L  LR E   L           

 

AFAP1           ILEEKLKQLEEECRQKEAERVSLELELTEVKESLKKALAGGVTLGLAIEPKSGTSSPQSP 669 

AFAP1L1         ALEEAVATLEAQCRAKEERRIDLELKLVAVKERLQQSLAGGPALGLSVSSK-----PKS- 717 

AFAP1L2         SLEQKLKEIDEECRGEESRRVDLELSIMEVKDNLKKAEAGPVTLGTTVDTT--------- 761 

Consensus        LE         CR  E  R  LEL    VK  L    AG   LG          

 

AFAP1           VFRHRTLENSPISSCDTSDTEGPVPVNSAAVLKKSQAAPGSSPCRGHVLRKAKEWELKNG 729 

AFAP1L1         ----GETANKPQNSVP----EQPLPVNCVSELRKRSPSIVAS-NQGRVLQKAKEWEMKKT 768 

AFAP1L2         ---HLENVSPRPKAVTPASAPDCTPVNSATTLKNRPLSVVVT-GKGTVLQKAKEWEKKGA 817 

Consensus                               PVN    L             G VL KAKEWE K   

 

AFAP1           T 730 

AFAP1L1         - 

AFAP1L2         S 818 

Consensus                  
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Figure 2: AFAP family members share both sequence and domain similarity 

(A) AFAP1, AFAP1L1 and AFAP1L2 amino acid sequences were compared using ClustalW2 

alignment (Larkin et al., 2007). Consensus sequence between all three family members is labeled 

as consensus. Intron/exon boundaries are marked by red letters. Predicted SH3 binding motifs 

are highlighted in green, predicted SH2 binding motifs in pink, predicted PH domains in light 

blue, predicted Substrate Domain (SD) in yellow, predicted leucine zipper (AFAP1, AFAP1L1) 

and coiled coil (AFAP1L2) in red and predicted actin binding domain in dark blue. The 

AFAP1L1 peptide sequence used to create 1L1-CT antibody is underlined. 

(B) Modular domain organization of AFAP family members was compared. SH3bm = SH3 

binding motif, SH2bm = SH2 binding motif, PH1 = pleckstrin homology domain 1, PH2 = 

pleckstrin homology domain 2, SD = serine/threonine rich substrate domain, Lzip = leucine 

zipper, ABD = actin binding domain. Sequences that do not correlate with an identified type of 

modular domain or motif are labeled “A, B, C, D or E”. 
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Figure 3: A novel antibody specifically recognizes AFAP1L1 

(A) Cell lines were lysed in 2X SDS buffer, resolved by 8% SDS-PAGE and transferred to 

PVDF. The Sigma antibody Ab2 specifically recognized a protein band of 115 kDa. Bands 

identified as AFAP1L1 and recognized by the Ab2 antibody (top panel) are indicated by an 

arrow. Gamma tubulin was used as a loading control. Not shown, but in an adjacent lane, was a 

lysate prepared from 293T cells transfected with untagged AFAP1L1 which was used in 

identifying the band corresponding to AFAP1L1. 

(B) Endogenous AFAP1L1 and AFAP1 were specifically immunoprecipitated from Cos-1 cells 

using 5µg 1L1-CT and F1 polyclonal antibodies respectively and the resolved proteins detected 

with 1L1-CT (left panel) or AFAP1 monoclonal antibodies (BD Transduction, right panel). 

Rabbit IgG antibody was used as a control. Note the differences in the molecular weight markers 

for each western. 

(C) GFP-AFAP1L1 and GFP-AFAP1 were overexpressed in Cos-1 cells and lysed in 2X SDS 

buffer. Lysates were resolved by 8% SDS-PAGE, transferred to PVDF membrane and 

immunoblotted with either AFAP1L1 (1L1-CT) or AFAP1 (F1) antibody.  GFP (top right 

western) and β-actin (bottom westerns) were used as loading controls. 

(D) The peptide sequence used to create antibody 1L1-CT was compared to analogous sequences 

in human, chimpanzee, mouse and rat to show similarity between antibody binding sites. 
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Figure 4: Immunohistochemical analysis of AFAP1L1 shows differential expression from 

AFAP1 in human tissue 

Paraffin-embedded human breast (A), colon (B) and brain (C) tissues were analyzed for AFAP1 

and AFAP1L1 localization using F1 and 1L1-CT antibodies respectively. Breast regions include 

breast ducts (4A panels a-d), breast lobules (4A panels a,b) and microvasculature (4A panels e,f). 

Colon regions include the mucosa (4B panels a,b,g,h), lamina propria (4B panels a-d, g,h) and 

muscularis (4B panels a-f). Brain regions include the cerebellar cortex (4C panels a-j), dentate 

nucleus (4C panels k-n) and glial cells (4C panels o,p). AFAP1L1 is designated by long thin 

arrows while AFAP1 is designated by arrowheads. 
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Figure 5: Subcellular localization of GFP-AFAP1L1 shows association with actin and 

invadosomes   

(A) A7r5 cells transiently expressing GFP-AFAP1L1 were plated onto fibronectin-coated 

coverslips and immunolabeled for cortactin (Millipore). Actin was visualized with TRITC-

phalloidin (Sigma). Representative images of cells with well-formed stress fibers or podosome 

formation are shown.  

(B) MDA-MB-435 cells were plated on fibronectin coated coverslips and immunolabeled for 

endogenous AFAP1L1 (Sigma Ab2, panel a-c).  Rabbit IgG was used as a control (panel d-f) and 

actin was visualized with AlexaFluor labeled phalloidin. Epifluorescence images of 

representative cells are shown.  

(C) MDA-MB-435 cells were transfected with Src 527F construct, plated onto fibronectin coated 

coverslips and immunolabeled for AFAP1L1 (Sigma Ab1, panel a-d). Rabbit IgG was used as 

control antisera for AFAP1L1 antibody (panel e-h). Cortactin was immunolabeled with 

monoclonal anti-cortactin antibodies (4F11, Millipore) and actin was visualized by AlexaFluor 

labeled phalloidin (panel c, g). Examples of AFAP1L1 co-localizing to invadopodia, actin and 

cortactin rich punctate structures are marked with white arrows.  
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Figure 6 
 

 
 

Figure 6: Podosome formation in A7r5 transfected with GFP-AFAP1 or GFP-

AFAP1L1 plasmids. 

A7r5 cells were transfected with the indicated amounts of plasmids encoding either GFP-

AFAP1 or GFP-AFAP1L1 (in combination with pcDNA3.1) to bring the total amount of 

plasmid DNA to 1 µg for each transfection. Twenty four hours post-transfection, the cells 

were transferred to fibronectin-coated coverslips. Forty-eight hours after transfection, 

cells were processed for immunofluorescence analysis or used to prepare whole cell SDS 

lysates. (A) Equal amounts of SDS lysates were resolved by 8% SDS-PAGE and then 

transferred to PVDF membranes and subsequently probed with an antiserum that 

recognizes GFP. (B) Cells expressing GFP-AFAP1 or GFP-AFAP1L1 were assessed for 

podosome formation and the percentage of cells exhibiting podosomes for each 

transfection was calculated. 150 to 300 cells were counted for each transfection. Panel A 

and B represents one experiment out of two independently performed experiments. 
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Figure 7: AFAP1L1 interacts with cortactin SH3 domain 

(A) 1mg of lysate from 293T cells transiently expressing GFP-AFAP1 was incubated with 50µg 

of GST, GST-Src-SH3 domain or GST-cortactin-SH3 domain bound fusion protein to 

glutathione Sepharose 4B beads and probed for GFP through western blot analysis (upper panel). 

The lower panel represents a GelCode Blue Stain (ThermoScientific) of GST or GST fusion 

protein. A graph representing the ratio of AFAP1 pulled down by each GST fusion protein 

compared to GST control using scanning densitometry is shown. 

(B) 1mg of lysate from 293T cells transiently expressing GFP-AFAP1L1 was incubated with 

50µg of GST, GST-Src-SH3 domain or GST-cortactin-SH3 domain bound to glutathione 

Sepharose 4B beads and probed for GFP through western blot analysis (upper panel). The lower 

panel represents a GelCode Blue Stain (ThermoScientific) of GST or GST fusion protein. A 

graph representing the ratio of AFAP1L1 pulled down by each GST fusion protein compared to 

GST control using scanning densitometry is shown.  

(C) 293T transiently expressing cortactin with either GFP-AFAP1 or GFP-AFAP1L1 were 

immunoprecipitated with anti-GFP antibody, probed for cortactin through western blot analysis 

(upper panel) and then re-probed for GFP tagged proteins (lower panel).  

(D) 293T transiently expressing cortactin with either GFP-AFAP1 or GFP-AFAP1L1 were 

immunoprecipitated with anti-cortactin antibody, probed for GFP tagged proteins through 

western blot analysis (upper panel) and then re-probed for cortactin (lower panel). 
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Supplemental Figure 1 
 
 

 
 

Supplemental Figure 1: AFAP1L1 overexpression in MEF cells 

Mouse embryo fibroblast cells were transfected with 5 µg of either GFP-AFAP1L1 or 

untagged AFAP1L1 (in pcDNA3.1). Untagged AFAP1L1 was probed using 1L1-CT 

antibody (1:200). GFP-AFAP1L1 localized to stress filaments and cortical actin (panels 

a-c). Untagged AFAP1L1 also localized to stress filaments and showed some diffuse 

cytoplasmic staining (panels d-f). Actin was visualized by TRITC-phalloidin 

(Invitrogen). Rabbit IgG was used as a control (panels g-i).  
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Supplemental Figure 2 
 
 

 
 

Supplemental Figure 2: Colocalization of GFP-AFAP1L1 and cortactin 
 
A7r5 cells transiently expressing GFP-AFAP1L1 were plated onto fibronectin-coated 

coverslips and immunolabeled for cortactin (Millipore). Representative images of cells 

with well-formed stress fibers (panels a-c), podosomes around the periphery of the cell 

(panels d-f) or podosomes throughout the cell (panels g-i) are presented showing 

colocalization of GFP-AFAP1L1 and cortactin in podosomes.  
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Supplemental Figure 3 
 
 

 
 

Supplemental Figure 3: Overexpression of dsRed-AFAP1 and GFP-AFAP1L1 in 

A7r5 cells 

A7r5 cells transiently expressing dsRed-AFAP1 and GFP-AFAP1L1 were plated onto 

fibronectin coated coverslips. Actin was visualized by BODIPY-650/665 (Invitrogen). 

Representative cells with well formed stress fibers (panels a-d) and podosome formation 

(panels e-h) show colocalization of dsRed-AFAP1 and GFP-AFAP1L1 on both stress 

fibers and in podosomes. 
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I. A panomics screen using the AFAP1L1 SH3 binding motif identified potential 

AFAP1L1 binding partners 

A TranSignal SH3 Domain Array 1 of recombinant binding sites of SH3 domain 

containing proteins spotted onto a membrane was obtained from Panomics (Affymetrix) 

to probe for potential SH3 domain binding partners of the AFAP1L1 SH3 binding motif 

(Figure 1A). A biotinylated peptide of the AFAP1L1 binding motif (biotin-

ADLPPPLPNKPPE) was synthesized by EZBiolab Custom Peptide Service so as to 

probe the TranSignal SH3 Domain Array 1 for binding partners. 1mg of biotin-

conjugated peptide was brought up in 1ml of sterile water so as to produce a peptide 

solution of 1mg/ml. Peptide solution was diluted to 0.1µg/µl and 15µl (1.5µg total) was 

incubated with 15µl of 1.25µg/µl streptavidin-horseradish peroxidase (HRP) conjugate 

for 30 minutes by rocking at 4°C. Streptavidin was used to bind to the biotin linker of the 

AFAP1L1 peptide so as to create an HRP-linked AFAP1L1 binding motif peptide. The 

peptide solution was then placed into 5ml of 3% bovine serum albumin (BSA) in TBST 

and kept at 4°C.  

 The SH3 Domain Array membranes were incubated in 5% powdered milk 

dissolved in TBST to block overnight at 4°C, washed for 30 minutes with TBST and 

incubated for two hours in 3% BSA/TBST. The membranes were then incubated with 

either 10µg or 15µg of peptide solution overnight at 4°C. After washing for 30 minutes in 

TBST, the membranes were developed using Pierce ECL Western Blotting Substrate.  

 Five duplicate SH3 domain spots giving the strongest signal with biotinylated 

AFAP1L1 SH3 binding motif were considered for potential AFAP1L1 binding (Figure 

1B).  
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Spectrin alpha chain (non-erythrocytic) 

 Spectrin alpha chain (alpha-II spectrin/SPTAN1) is a member of a family of 

scaffolding proteins that stabilize the plasma membrane and is involved in various cell 

processes such as cell growth and differentiation, vesicular trafficking and 

neurotransmitter release, among others. It has also been shown to be involved in DNA 

repair (McMahon et al., 2009). Alpha-II spectrin is a rod-like protein of 2,472 amino 

acids that heterodimerizes with beta-spectrin subunits and contains 23 spectrin repeats, 

three EF-hand domains and two potential calcium binding domains (2010; Jain et al., 

2009).  The SH3 domain is located in the central portion of the protein and has been 

shown to bind both cSrc and low molecular weight protein-tyrosine phosphatase isoform 

A (Nedrelow et al., 2003; Nicolas et al., 2002). 

 

Spectrin alpha chain (erythrocytic) 

 Spectrin alpha chain erythrocyte (SPTA1) is a 2,419 amino acid protein that 

contains 21 spectrin repeats, three EF-hand domains, two potential calcium binding 

domain and a central SH3 domain (2010; Jain et al., 2009). Like SPTAN1 in non-

erythrocytic cells, SPTA1 provides structural support to the plasma membrane of the 

erythrocyte by heterodimerizing with beta-spectrin subunits and providing a scaffold for 

other cytoskeletal proteins (Chakrabarti et al., 2006). The SH3 domain of SPTA1 has 

been shown to have a possible interaction with Fas ligand (Voss et al., 2009). 
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Avian sarcoma virus CT10 oncogene homolog, domain #2 

 Avian sarcoma virus CT-10 oncogene homolog (Crk) is a 304 amino acid protein 

that acts as an adaptor molecule. Crk exists in two isoforms, Crk-I and Crk-II which have 

distinct roles in the cell. Crk-I contains an SH2 domain and one SH3 domain while Crk-II 

contains one SH2 domain, two SH3 domains and multiple sites for tyrosine, serine and 

threonine phosphorylation (2010; Gelkop et al., 2003; Jain et al., 2009). Biotinylated 

AFAP1L1 binding motif had the ability to interact with the C-terminal SH3 domain of 

Crk-II. While the N-terminal SH3 domain of Crk-II has multiple known binding partners, 

the exact binding function of the N-terminal SH3 domain is still unknown although it has 

been shown to be involved in the activation of Abl kinase (Gelkop et al., 2003; Reichman 

et al., 2005). The N-terminal SH3 domain of Crk-II was not available on the TranSignal 

SH3 Domain Array 1.  

 

Cortactin 

 Cortactin (CTTN) is a 550 amino acid rod-shaped protein involved in signaling 

processes such as cell adhesion, migration and invasion and plays an important role by 

stabilizing branching points of the actin cytoskeleton. Cortactin consists of an N-terminal 

acidic domain, six and one half tandem cortactin repeats of which the fourth repeat is 

necessary for actin binding, an α-helical domain, a region rich in prolines, tyrosines and 

serines and a C-terminal SH3 domain. The SH3 domain of cortactin is known to interact 

with WASp interacting protein (WIP), neural Wiskott-Aldrich syndrome protein (N-

WASp), myosin light chain kinase (MLCK), and dynamin-2 (Ammer and Weed, 2008). 
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Post-synaptic density protein 95 

 Post-synaptic density protein 95 (PSD-95) is a 724 amino acid scaffolding protein 

found in the post-synaptic density, a dense area in the postsynaptic region of a neuron 

rich in proteins involved with the cytoskeleton and cell adhesion such as adaptor proteins, 

signaling kinases, phosphatases, membrane-bound receptors and G-proteins (Boeckers, 

2006). PSD-95 consists of three PDZ domains, an SH3 domain, a guanylate kinase-like 

domain and multiple sites for serine and tyrosine phosphorylation (2010; Jain et al., 

2009). PSD-95 is a major component of the post synaptic density and has multiple roles 

such as stabilizing membrane protein localization and mediating synaptic plasticity (Han 

and Kim, 2008). PSD-95 has been shown to interact with the Src family kinases Src, Lyn 

and Yes, however the SH3 domain of PSD-95 does not appear to have typical SH3 

binding ability and it remains to be seen if it is the SH3 domain of PSD-95 that allows 

interaction with SFK (Kalia and Salter, 2003). 

While the exact function of AFAP1L1 is unknown, due to its similarity with 

family member AFAP1, we hypothesized that AFAP1L1 would also have a role in actin 

dynamics. It is interesting that the results of the panomics screen resulted in proteins that 

have direct roles in the regulation of the actin cytoskeleton and this may strengthen the 

hypothesis of a role for AFAP1L1 with the actin cytoskeleton. Two SH3 binding domains 

had the strongest reaction with the AFAP1L1 binding motif: cortactin and PSD-95. 

Although the results from a panomics array can suggest possible protein-protein 

interactions, the interaction of SH3 domain peptides with the AFAP1L1 SH3 binding 

motif peptide could produce artificial results due to such forced interactions.  Due to its 

accessibility and previous data results showing colocalization of AFAP1L1 and cortactin 
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in cells, we chose to determine if AFAP1L1 and cortactin were true binding partners in 

our AFAP1L1 characterization studies. 

 

II. Postsynaptic Density Protein 95 

 The postsynaptic density (PSD) is an electron-dense portion of a neuronal synapse 

in which multiple classes of proteins such as cell-adhesion proteins, cytoskeletal proteins, 

scaffolding and adaptor proteins, membrane-bound receptors and channels, G-proteins 

and modulators and signaling molecules can be found. PSDs can be found on the 

dendritic shaft or at the tip of a dendritic spine and lie just below the membrane of 

glutamatergic synapses (Boeckers, 2006). Glutamatergic synapses are excitatory synapses 

that can contain any of five glutamate transporters, GLAST, GLT-1, EAAC1, EAAT4 

and EAAT5, which are differentially expressed throughout the central nervous system 

(Tanaka, 2000). As an example of a glutamatergic synapse, Purkinje cells are the largest 

neurons in the brain and are found in a single layer between the molecular and granular 

layers of the cerebellum. While the output from Purkinje cells is inhibitory, the major 

input to a Purkinje neuron is excitatory. It is thought that a Purkinje cell refines the 

multitude of excitatory pulses it receives into one major inhibitory stimulus sent to the 

deep cerebellar nuclei which can control motor output. Purkinje cells are contacted in two 

ways by excitatory synapses. Parallel fibers are projections of mossy fibers from the brain 

stem and spinal cord which pass through the granular cell layer and create thousands of 

weak excitatory synapses onto Purkinje cells. The major input of excitatory stimulus 

applied to a Purkinje cell is through projections from the brain stem called climbing 

fibers. Each Purkinje cell is innervated by a single climbing fiber which wraps itself 
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around the body of the Purkinje cell and thus creates multiple signaling sites. Basket and 

stellate cells of the molecular layer which surround the Purkinje cell are thought to relay 

weak inhibitory signals; however the major input into a Purkinje cell is through 

excitatory synapses. It is at these excitatory glutamatergic synapses on Purkinje cells that 

four of the five glutamate transporters are found with EAAT4 being found in the highest 

concentration in dendritic spines (Takayasu et al., 2009). 

 Correct regulation of glutamate receptors and subsequent signaling in the PSD is 

essential and is highly regulated by PSD-95/DLG/ZO-1 (PDZ) domain containing 

proteins. PSD-95 (SAP90) is a member of the membrane-associated guanylate kinase 

(MAGUK) family and is considered to be the best characterized and prototype MAGUK 

family member in the PSD (Boeckers, 2006). PSD-95 is an adaptor protein that consists 

of three PDZ domains, an SH3 domain and a guanylate kinase-like domain (Han and 

Kim, 2008). It is through these domains that PSD-95 has the ability to bind to other PSD-

95 proteins to form a scaffold, traffic proteins and receptors to the synapse and link 

receptors at the excitatory synapse to the underlying actin cytoskeleton of the dendritic 

spine so as to regulate synaptic plasticity and signaling (Boeckers, 2006). While some 

MAGUK proteins are expressed in early development, PSD-95 is expressed 

predominantly in later stages (Kim and Sheng, 2004).  

 PSD-95 is positioned at the synaptic membrane and functions to tether N-methyl 

D-aspartate (NMDA) receptors and other transmembrane receptors such as ADAM22, 

neuroligin 1 and synaptic-like adhesion molecule (SALM) to the cellular membrane by 

interaction with their cytoplasmic tails (Boeckers, 2006; Han and Kim, 2008). It 

additionally interacts with other intracellular PSD proteins such as A-kinase anchor 
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protein 79 (AKAP79), spine associated Rap-Gap (SPAR) and synaptic Ras GTPase-

activating protein (SynGAP) by virtue of its adaptor domains to regulate their localization 

to the synaptic membrane (Boeckers, 2006). These proteins link PSD-95 into a signaling 

complex that ties it to the underlying actin cytoskeleton. PSD-95 has been shown to 

directly bind the Src family kinases Src, Lyn and Yes which are found in the PSD (Kalia 

and Salter, 2003). As signaling to NMDA receptors has been shown to play a role in 

synaptic plasticity, it is possible that PSD-95 may link together signals from the NMDA 

receptor to Src family kinases and thus result in alterations of the underlying cytoskeleton 

to affect dendritic spine morphogenesis. The alteration in morphology of dendritic spines 

regulated by the actin cytoskeleton is crucial for higher brain functions such as learning 

and memory (Sekino et al., 2007).  

 While there are many other important proteins in the postsynaptic density, 

cortactin in particular for its role in actin rearrangement and dendritic spine 

morphogenesis, PSD-95 plays a central role in linking synaptic signaling to cell 

morphology (Sekino et al., 2007). Due to the high level of actin dynamics in the 

postsynaptic density, it is conceivable that AFAP1L1 could play a role in the  

postsynaptic density as it is a cortactin binding partner and is hypothesized to play a role 

in actin rearrangement.  

  

III.  Differential immunohistochemical staining of AFAP1L1 in human brain  

The dentate nucleus is one of four grey matter structures (dentate nucleus, 

vestibular nucleus, fastigial nucleus and globose/emboliform nucleus) found deep within 

the white matter of the cerebellum (Squire, 2008).  Very little data exists on the functions 
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of these nuclei due to their small size and inability to be rigorously tested by imaging 

techniques. The dentate nucleus is the most easily identifiable deep cerebellar nuclei. A 

recent study determined that activation in the dentate nucleus mainly occurs during times 

of complex motor, sensorimotor and cognitive tasks such as exploratory movements, 

procedural memory, emotional and cognitive functions and cognitive tasks. Notably, the 

dentate nucleus was highly active in puzzle solving, planning tasks and verbal memory 

(Habas, 2010). 

To determine differences in tissue localization between AFAP1 and AFAP1L1, 

tissues with known expression of AFAP1 were chosen for analysis. AFAP1 and a brain 

specific isoform, AFAP-120, are both expressed in the embryonic brain of mouse pups 

while proteins levels are decreased in adult mice except in the olfactory bulb (Clump et 

al., 2003). While AFAP1 and AFAP1L1 had similar staining patterns in the cerebellum 

with staining in microvasculature and around granule cells, AFAP1L1 had a distinct 

pattern of staining that was found extending from the molecular layer, surrounding the 

Purkinje neurons of the cerebellar cortex, in distinct locations around the granule cells 

(Figure 2A) and also surrounding the neurons of the dentate nucleus (Figure 2B). This 

was in contrast to AFAP1 which was not detected in these regions.  

Work done by Tabakoff et al. in HXB/BXH recombinant inbred rats showed an 

association of AFAP1L1 with alcohol preference and consumption (Tabakoff et al., 

2009). Rats were first exposed to 10% ethanol and then given a choice between water and 

10% ethanol for seven weeks followed by removal of the brain and RNA extraction for 

microarray analysis. AFAP1L1 showed a significant increase in expression in the brains 

of two different strains of mice that preferred alcohol over water using two separate array 
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platforms. Tabakoff et al. hypothesized that AFAP1L1 is associated with the trafficking 

of the GABAA receptor by virtue of its association with actin organization, and that 

AFAP1L1 is located in the postsynaptic density in association with actin filaments and 

dynamin which supports our hypothesis that AFAP1L1 may be found in this area.  

The postsynaptic density, as previously described, is found just below the 

membrane of the dendritic spine or dendritic shaft. Distinct from AFAP1, AFAP1L1 is 

found surrounding the Purkinje neurons and neurons of the dentate nucleus while staining 

appears to be excluded from the cell body. Due to its localization, it can be hypothesized 

that AFAP1L1 could be found in the postsynaptic densities of these cells. Postsynaptic 

densities can by isolated from brain tissue of multiple species through isolation with 

Triton X-100 and surveyed by Coomassie stain and mass spectrometry or western blot 

(Carlin et al., 1980; Walikonis et al., 2000). Isolation of the postsynaptic density fraction 

from cerebellar tissue samples followed by SDS-PAGE analysis with AFAP1L1 specific 

antibodies could provide a means to determine if AFAP1L1 is found in the postsynaptic 

density.  

  

IV. Mutating the SH3 binding motif of AFAP1L1 so as to determine specific residues 

necessary for cortactin binding 

 A Src homology 3 (SH3) domain is a conserved protein domain of approximately 

50-70 amino acids that preferentially binds to an SH3 binding motif, a poly-proline rich 

region of a peptide in which there is a conserved PXXP motif. The amino acids 

surrounding the PXXP motif confer specificity for the binding of particular SH3 

domains. Cortactin contains an SH3 domain in the C-terminus of the protein that 
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resembles that of the Src family kinases and has been shown to bind a variety of proteins 

including dynamin-2, N-WASp and MLCK among others (Ammer and Weed, 2008; 

Sparks et al., 1996; Weed and Parsons, 2001). AFAP1L1 has also been shown to interact 

with a GST fusion protein of the cortactin SH3 domain. We have shown previously with 

prototype AFAP family member AFAP1 that mutation of a key proline at amino acid 71 

to an alanine (P71A) in the N-terminal SH3 binding motif decreases the ability of AFAP1 

to interact with and activate cSrc (Guappone and Flynn, 1997). AFAP1L1 contains one 

SH3 binding motif with an amino acid sequence of DLPP115PLP118NKP121. Prolines at 

amino acids 115, 118 and 121 fall into the PXXP motif and may affect the binding ability 

of AFAP1L1 to cortactin. Thus, we sought to determine if mutation of key proline 

residues in the AFAP1L1 binding motif could abrogate cortactin binding. 

 The proline residue at amino acid 115 is encoded by a CCA codon. Mutation of 

the first cytosine in the codon to a guanine (CCAàGCA) allows for only a single 

nucleotide alteration which changes the encoded amino acid from a proline to an alanine. 

This results in a similar non-polar amino acid so as to limit major modifications that 

would affect the binding and folding of the protein. Primers used to mutate P115A are as 

follows with the nucleotide mutation highlighted in yellow: 

Forward 5’ CC GAC CTG CCT GCA CCG CTC CCC 3’ 

Reverse 3’ GGG GAG CGG TGC AGG CAG GTC GG 5’ 

 The proline residue at amino acid 118 is encoded by a CCC codon. Mutation of 

the first cytosine to a guanine results in a single amino acid from proline to alanine. 

Primers used to mutate P118A are as follows with the nucleotide mutation highlighted in 

yellow: 
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Forward 5’ CCT CCA CCG CTC GCC AAC AAG CCT C 3’ 

Reverse 3’ G AGG CTT GTT GGC GAG CGG TGG AGG 5’ 

 The proline residue at amino acid 121 is encoded by a CCT codon. Mutation of 

the first cytosine to a guanine results in a single amino acid change from proline to 

alanine. Primers used to mutate P121A are as follows with the nucleotide mutation 

highlighted in yellow: 

Forward 5’ CTC CCC AAC AAG GCT CCC CCT GAG G 3’ 

Reverse 3’ C CTC AGG GGG AGC CTT GTT GGG GAG 5’ 

 Mutagenesis of P115A, P118A, and P121A, was accomplished by use of the 

QuikChange Site-Directed Mutagenesis Kit from Agilent (Stratagene). GFP-tagged 

AFAP1L1 was mutated so as to contain each separate P à A mutation using the 

following reaction methods: 

10X Reaction 
Buffer 

5µl 

GFP-AFAP1L1 
plasmid 

10ng 

dNTP mix 1µl 

Forward primer 125ng 

Reverse primer 125ng 

Pfu Ultra DNA 
Polymerase 

1µl 

Water To 50µl 

 

Reaction mixtures were subjected to polymerase chain reaction in the following manner: 
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Segment Cycles Temperature Time 
1 1 95°C 30 seconds 
2 16 95°C 30 seconds 
  55°C 1 minute 
  68°C 7 minutes 

(1min per kb) 
 

 PCR products were incubated at 37°C for one hour with 1µl of restriction enzyme 

Dpn1 so as to digest parental DNA. Mutated PCR products were then transformed into 

dH5α bacterial cells by incubation of 5µl of PCR product with 50µl of bacteria on ice for 

30 minutes. Bacteria were heat shocked at 42°C for 30 seconds followed by 2 minutes on 

ice. 1ml of SOC media was added and bacteria were placed on a 37°C shaker for one 

hour. Bacteria were spun down, 900µl of media were removed and the bacterial pellet 

was brought up in the remaining 100µl. Bacteria were plated onto LB-agar plates 

containing kanamycin and grown at 37°C overnight. Resultant colonies were picked and 

grown overnight in 3ml of LB media containing kanamycin while shaking at 37°C. 1.5ml 

of bacterial culture was subjected to EasyPrep lysis so as to recover DNA. DNA 

concentrations were read using a NanoDrop spectrophotometer (ThermoScientific) and 

800ng of DNA product was sent to GeneWiz for sequencing. The primers used for 

sequencing were as follows: 

Forward: 5’ GTG AAC ACA GCA GAC CTC CAC 3’ 

Reverse: 3’ GCT CAT TGC GTC AGA GTC ATT 5’ 

 Of the three P115A colonies chosen, two had the correct mutation and P115A #1 was 

chosen for larger DNA prep (Figure 3A). Four P118A colonies were chosen of which two 

had the correct mutation and P118A #1 was chosen for larger DNA prep (Figure 3B). Four 
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P121A colonies were chosen for sequencing and two had the correct mutation with P121A 

#2 being chosen for larger DNA prep (Figure 3C).  

 GFP-AFAP1L1 SH3 binding motif mutants were tested for their ability to interact 

with FLAG tagged cortactin. While equal amounts of cortactin and GFP constructs were 

expressed (Figure 4, top panel), immunoprecipitation against cortactin and 

immunoblotting against GFP showed that all AFAP1L1 SH3 binding motif mutants were 

able to interact with cortactin (Figure 4, bottom panel). GFP-AFAP1 was used as a 

control and, as previously shown, did not immunoprecipitate with cortactin. Reprobing 

for cortactin showed that equal amounts of cortactin were pulled down in all AFAP1 and 

AFAP1L1 immunoprecipitations. The SH3 binding motif of AFAP1L1 is 

DLPP115PLP118NKP121. While P115, P118 and P121 were chosen due to their localization 

within a PXXP motif, it is possible that other prolines in the SH3 binding motif may play 

a role in binding. To further elucidate what amino acids in the SH3 binding motif, if any, 

are responsible for cortactin binding, amino acids P114, P116 or L117 could be mutated and 

tested for their ability to immunoprecipitate cortactin. Also, the entire AFAP1L1 binding 

motif could be deleted to determine if another region in AFAP1L1 is responsible for 

cortactin binding.  

 

V. Antibody epitopes and binding  

 There are currently a limited number of antibodies available for the study of 

AFAP1L1. A polyclonal antibody created by ProSci Incorporated (1L1-CT) detects an 

epitope in the C-terminus of AFAP1L1 that corresponds to amino acids 714-727. Two 

additional polyclonal antibodies from Sigma Aldrich, Ab1 and Ab2, also recognize 
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AFAP1L1. Ab1 (Sigma C-term) was created using an immunogen corresponding to 

amino acids 525-659 near the N-terminal portion of AFAP1L1. Ab2 (Sigma N-term) was 

created using an immunogen corresponding to amino acids 21-159 in the N-terminal 

portion of AFAP1L1 (Figure 5) (Larkin et al., 2007). The immunogen used to create 

Sigma N-term encompasses a unique region in the N-terminus of AFAP1L1, a proposed 

SH2 binding motif and a proposed SH3 binding motif while the immunogen used for 

Sigma C-term encompasses a unique region in AFAP1L1 after the PH2 domain, the 

putative leucine zipper and the putative actin binding domain. The epitope recognized by 

1L1-CT corresponds to a unique region in the C-terminus of AFAP1L1.  

 All three antibodies recognize AFAP1L1 at an approximate Mr of 115kDa via 

western blot in a similar manner in a panel of cell lines with the band corresponding to 

AFAP1L1 being confirmed through siRNA knockdown. However, each antibody also 

picks up additional background bands. Antibody 1L1-CT detects a band corresponding to 

AFAP1L1 and also detects a strong band directly above AFAP1L1 with a Mr of 

approximately 120kDa in all cell lines tested. 1L1-CT also detects two lower bands with 

approximate Mr of 90kDa and 75kDa. Sigma C-term detects AFAP1L1, a band directly 

below with an approximate Mr of 110kDa, a doublet with an approximate Mr of 120kDa 

and a single band with an approximate Mr of 60kDa. Sigma N-term detects a single band 

directly above the band corresponding to AFAP1L1 and various lower bands with 

approximate Mr of 75kDa and 65kDa (Figure 6).   

 Due to similarity in the AFAP family, it is possible that commercial AFAP1L1 

antibodies could cross-react between other AFAP family members . Antibody 1L1-CT 

was specifically chosen to be created by ProSci Incorporated because of its unique 
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epitope found in AFAP1L1. At the time of antibody creation, amino acids 714-727 of 

AFAP1L1 did not show any other possible protein interactions by virtue of a BLAST 

search against the epitope. 1L1-CT shows some identity and strong similarity to AFAP1 

although the epitope is not fully conserved. The epitope is less conserved in AFAP1L2 

and therefore is predicted to specifically identify AFAP1L1. Interestingly, the epitope for 

antibody 1L1-CT is more similar with an N-terminal sequence rather than a C-terminal 

sequence in AFAP1L2 (Figure 7). A BLAST search identified that Sigma N-term may 

have the ability to detect all three AFAP family members due to the immunogen covering 

a conserved SH2 binding motif and SH3 binding motif area in these proteins (Figure 8). 

Additionally, a BLAST search determined that Sigma C-term antibody may also have the 

ability to detect all three AFAP family members, again due to the high level of similarity 

in the protein sequence used to create the antibody (Figure 9).  

 There are various splice variants of the AFAP family members that may also 

contribute to the banding pattern seen with AFAP1L1 antibodies. AFAP1 has a similar 

neural-specific isoform in which an additional 258 base pairs are inserted between amino 

acids 510 and 511 which is detected at an approximate Mr of 120kDa (Flynn et al., 1995) 

(Figure 10). AFAP1L1 has a smaller isoform of 725 amino acids predicted by the 

Ensembl database in which exon 18 has been deleted. While the canonical sequence of 

AFAP1L1 is predicted to have a molecular weight of approximately 82kDa, the band 

corresponding to AFAP1L1 is detected at an approximate Mr of 115kDa, most likely due 

to overall charge on the protein. This is similar to AFAP1 which is predicted to have a 

molecular weight of 81kDa and is detected at an approximate Mr of 110kDa and 

AFAP1L2 which is predicted to have a molecular weight of 91kDa and is detected at an 
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approximate Mr of 130kDa. Exon 18 of AFAP1L1 encodes 43 amino acids; therefore it 

can be hypothesized that this isoform of AFAP1L1 will run lower than AFAP1L1 

although its exact location cannot be identified based solely upon sequence due to the 

change in overall charge on the protein. Two additional isoforms of each transcript are 

also predicted by the Ensembl dataset in which the sequence of Exon 1 appears to be 

altered (Figure 11). AFAP1L2 has four predicted isoforms by the Ensembl database. 

Canonical AFAP1L2 contains 818 amino acids while a predicted isoform of 814 amino 

acids lacks four amino acids in the C-terminal unique region of AFAP1L2. A predicted 

protein coding isoform of 841 amino acid lacks a canonical start codon and contains an 

additional 28 amino acids inserted between Exons 5 and 6 while lacking the four amino 

acids in the C-terminal unique region that are also missing in the 814 amino acid isoform. 

A short 312 amino acid form of AFAP1L2 is predicted by the Ensembl database that 

contains 18 additional amino acids in Exon 2 and ends at Exon 5 of canonical AFAP1L2, 

thus encoding only the predicted SH2 and SH3 binding motifs with their surrounding 

unique sequences (Figure 12).  

In addition to other members and splice variants of the AFAP family, AFAP1L1 

antibodies may have the ability to interact with other proteins. When created, the epitope 

for 1L1-CT antibody was run through a human protein BLAST search and returned only 

AFAP1L1 as an exact protein sequence match. Since the creation of antibody 1L1-CT, an 

additional human protein which is identical to AFAP1L1 in the C-terminal 444 amino 

acids and therefore shares the 1L1-CT epitope was discovered. This unnamed protein 

(Accession BAG64383) contains 625 amino acids and mRNA was isolated from human 

thymus tissue (Maruyama et al., 2009).  This protein is identical to human lysosomal 
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protein transmembrane 5 in the N-terminal portion of the protein and identical to 

AFAP1L1 in the C-terminal portion (Figure 13). Apart from protein sequence, there is 

currently no known functional data for this protein.  

 Due to the large sequence used to create Sigma N-term and Sigma C-term 

antibodies, the exact epitope to which the antibodies bind is unknown. It is conceivable 

that Sigma N- and C-term antibodies may have the ability to bind other proteins outside 

of the AFAP family.  

 Although 1L1-CT antibody detects multiple bands in western blot, it specifically 

identified one single band during immunoprecipitation. Due to the denaturing 

characteristics of SDS-PAGE, 1L1-CT antibody may have the ability to detect other 

proteins in their denatured state when looking at whole cell lysates when in fact these 

epitopes may not be accessible in an intact cell. Immunoprecipitation by 1L1-CT 

antibody would detect proteins in their native conformation before denaturing conditions 

and therefore can provide validity to the fact that 1L1-CT antibody can specifically detect 

AFAP1L1. Currently, immunoprecipitation with Sigma antibodies has not been carried 

out.  

 

VI. siRNA knockdown of AFAP1L1 

 Short interfering RNA (siRNA) is a useful tool to transiently decrease the 

expression of a specific protein through posttranscriptional gene silencing by specific 

degradation of messenger RNA (mRNA). As a cellular process, long dsRNA is processed 

through the protein Dicer into duplexes of short nucleotide sequences of approximately 

21 base pairs and loaded as single antisense RNA strands into RNA-induced silencing 
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(RISC) complexes.  The single stranded antisense strand of RNA then binds to its 

complementary sequence in mRNA and causes degradation through cleavage, thus 

regulating protein expression within the cell. siRNA can be synthetically produced and 

introduced so as to exploit the cell’s machinery and decrease the expression of a protein 

of choice (Dorsett and Tuschl, 2004; Whitehead et al., 2009).  

 siRNA knockdown of AFAP1L1 has many benefits. Knockdown of AFAP1L1 

expression is useful in western blotting to determine the Mr of AFAP1L1 as siRNA 

knockdown should deplete AFAP1L1 expression and thus remove the AFAP1L1 signal. 

Expression of untagged pcDNA3.1-AFAP1L1 in 293T cells resulted in a strong band at 

an approximate Mr of 115kDa which corresponds to a band seen endogenously in 

multiple cell lysates. This Mr 115kDa band was not seen after treatment with siRNA 

specific to AFAP1L1 and was thus confirmed as the Mr of AFAP1L1.  

 As AFAP1L1 expression has also been shown to play a role in motility structures, 

siRNA against AFAP1L1 has implications for determining the role of AFAP1L1 in 

invadosome formation. Preliminary studies show decreased podosome formation in cells 

lacking AFAP1L1 and further studies are underway to confirm these results. 
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Figure 1A 
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Figure 1. A Panomics TranSignal SH3 Domain Array I predicted AFAP1L1 SH3 

domain binding partners 

(A) The SH3 domain layout of a TranSignal SH3 Domain Array I from Panomics, Inc. 

was shown as a guide to determine possible SH3 domain binding partners of a 

biotinylated AFAP1L1 SH3 binding motif peptide. 

(B) Five duplicate SH3 domain spots were chosen as potential sites for AFAP1L1 

binding based upon their chemiluminescence. 1 = Spectrin alpha chain (non-

erythrocytic), 2 = Cortactin, 3 = Spectrin alpha chain (erythrocytic), 4 = Avian sarcoma 

virus CT10 oncogene homolog domain #2, and 5 = Post synaptic density protein 95. 
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Figure 2. Immunohistochemical staining of AFAP1L1 in human cerebellum and 

dentate nucleus 

(A) AFAP1L1 immunohistochemical signal in human cerebellum shows distinct staining 

extending from the molecular layer (panels e-f), surrounding the Purkinje neurons (panels 

a-h) and in distinct locations around the granule cells of the granular layer (panels g-h). 

(B) AFAP1L1 immunohistochemical signal in the human dentate nucleus shows distinct 

signal around the cells of the dentate nucleus.  
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Figure 3 

 

A. 
AFAP1L1         CTAGCCAAGAGCCCACGCCTGAGAAACGCGGCCGACCTGCCTCCACCGCTCCCCAACAAG 360 
P115A.1         CTAGCCAAGAGCCCACGCCTGAGAAACGCGGCCGACCTGCCTGCACCGCTCCCCAACAAG 162 
                ****************************************** ***************** 
 
B. 
AFAP1L1         CTAGCCAAGAGCCCACGCCTGAGAAACGCGGCCGACCTGCCTCCACCGCTCCCCAACAAG 360 
P118A.1         CTAGCCAAGAGCCCACGCCTGAGAAACGCGGCCGACCTGCCTCCACCGCTCGCCAACAAG 163 
                *************************************************** ******** 
 

C. 
AFAP1L1         CCTCCCCCTGAGGACTACTATGAAGAGGCCCTTCCTCTGGGACCCGGCAAGTCGCCTGAG 420 
P121A.2         GCTCCCCCTGAGGACTACTATGAAGAGGCCCTTCCTCTGGGACCCGGCAAGTCGCCTGAG 224 
                 *********************************************************** 
 
 
 

Figure 3. Mutation of the SH3 binding motif of AFAP1L1 

Key prolines in the SH3 binding motif of AFAP1L1 were mutated to alanines so as to test 

the ability of the alanine mutation to abrogate AFAP1L1 binding to cortactin. (A) P115A, 

(B) P118A, and (C) P121A, were mutated to alanine by site-directed mutagenesis.  
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Figure 4. Immunoprecipitation of cortactin with AFAP1L1 SH3 binding motif 

mutants 

GFP-AFAP1 and GFP-AFAP1L1, as well as three AFAP1L1 SH3 binding motif mutants 

GFP-AFAP1L1P115A, GFP-AFAP1L1P118A and GFP-AFAP1L1P121A, were overexpressed 

with FLAG-cortactin and immunoprecipitated against cortactin. Lysates were resolved by 

SDS-PAGE and immunoblotted for GFP. Reprobe against the GFP tag confirmed equal 

immunoprecipitation of all constructs (bottom panel).  5µg of each lysate was resolved by 

SDS-PAGE and immunoblotted for both GFP and cortactin to confirm that equal 

amounts of constructs were expressed in each lysate (top panel). 
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Figure 5 
 
AFAP1L1         MDRGQVLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 60 
SigmaNterm      --------------------LDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 40 
                                    **************************************** 
                                                                             
AFAP1L1         DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPPPLPNK 120 
SigmaNterm      DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPPPLPNK 100 
                ************************************************************ 
                                                          
AFAP1L1         PPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELKSSYN 180 
SigmaNterm      PPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYY--------------------- 139 
                ***************************************                      
                                                            
AFAP1L1         DSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRFGQWAKQL 240 
                                                                             
AFAP1L1         TVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVLVLALQS 300 
 
AFAP1L1         REQAEEWLKVIREVSKPVGGAEGVEVPRSPVLLCKLDLDKRLSQEKQTSDSDSVGVGDNC 360 
 
AFAP1L1         STLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSSTEEEVP 420 
                                                                             
AFAP1L1         CCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPRHPFAF 480 
                                                                             
AFAP1L1         RILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVSAGRNS 540 
SigmaCterm      --------------------------------------------VDVETLTSIVSAGRNS 16 
                                                            **************** 
                                                             
AFAP1L1         FLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQVKVKR 600 
SigmaCterm      FLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQVKVKR 76 
                ************************************************************ 
                                                             
AFAP1L1         HASSANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGA 660 
SigmaCterm      HASSANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPG- 135 
                ***********************************************************  
                                                             
AFAP1L1         KLKALEEAVATLEAQCRAKEERRIDLELKLVAVKERLQQSLAGGPALGLSVSSKPKSGET 720 
1L1-CT          -----------------------------------------------------KPKSGET 7 
                                                                     ******* 
AFAP1L1         ANKPQNSVPEQPLPVNCVSELRKRSPSIVASNQGRVLQKAKEWEMKKT 768 
1L1-CT          ANKPQNS----------------------------------------- 14 
                ******* 
 
 

Figure 5. AFAP1L1 antibodies aligned with AFAP1L1 amino acid sequence 

Sigma N-term, Sigma C-term and 1L1-CT antibodies were aligned to full length 

AFAP1L1 amino acid sequence using ClustalW2 analysis (27) so as to determine where 

in the sequence antibodies bound and what conserved binding motifs these antibodies 

may cover. The proposed SH3 domain is highlighted in green, proposed SH2 domains are 

highlighted in pink, the PH1 and PH2 domains are highlighted in light blue, the substrate 

domain is highlighted in yellow, the proposed leucine zipper is highlighted in red and the 

proposed actin binding domain in highlighted in dark blue. 
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Figure 6. AFAP1L1 antibody specificity 

A panel of cell lines was tested against all three AFAP1L1 antibodies to test for 

specificity. 293T cells overexpressing an untagged pcDNA3.1 afap1l1 construct were 

used as a control to determine AFAP1L1 Mr. Cell lines tested were breast lines MCF10a, 

MCF7, MDA-MB-231, MDA-MB-435, B1A ( a knockdown of AFAP1 in MDA-MB-

231 cells), and CaOv3, an ovarian cancer cell line. Sigma N-term (A), Sigma C-term (B) 

and 1L1-CT (C) all recognize AFAP1L1 to differing extents and detect various 

background bands. 
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Figure 7 
 
 
AFAP1L1         KPKSGETANKPQNS 727  
1L1-CT          KPKSGETANKPQNS 14 
Consensus       KPKSGETANKPQNS 
 
 
AFAP1           EPKSGTSSPQSPVFRHRTLENSPISSCDTSDTEGPVPVNSAA 683 
1L1-CT          KPKSGETA------------NKPQNS---------------- 14 
Consensus       *KPKS **            N*P *S                                      

 
 
AFAP1L2         APEEQGLLPNGEPSQHSSAPQKSLPDLPPPKMIPERKQLAIPKTESP 120 
1L1-CT          KPK------SGETANK---PQNS------------------------ 14 
Consensus        P*      *GE****   PQ*S                         
 

 
 
 

Figure 7. 1L1-CT binding across AFAP family members 

The amino acid sequence against which antibody 1L1-CT was raised was compared 

across AFAP family members. Identical amino acid sequence is shown by its one letter 

abbreviation in the consensus sequence while similar amino acid sequence is represented 

by *. 
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Figure 8 
 
AFAP1L1           MDRGQVLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 60 
Sigma.N-term      --------------------LDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 40 
Consensus                             LDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 
 
AFAP1L1           DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPPPLPNK 120 
Sigma.N-term      DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPPPLPNK 100 
Consensus         DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPPPLPNK 
 
AFAP1L1           PPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELKSSYN 180 
Sigma.N-term      PPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYY--------------------- 139 
Consensus         PPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYY                      
 
 
 
AFAP1             MEELIVELRLFLELLDHEYLTSTVREKKAVITNILLRIQSSKGFDVKDHAQKQETANSLP 60 
Sigma.N-term      --------------LDHEYLSDTTLEKKMAVASILQSLQ--------------------- 25 
Consensus                       LDHEYL**T* EKK ****IL  *Q                      
 
AFAP1             APPQMPLPEIPQPWLPPDSGPPPLPTSSLPEGYYEEAVPLSPGKAPEYITSNYDSDAMSS 120 
Sigma.N-term      ----------------------PLPAKEVSYLYVNTADLHSGPSFVESLFEEFDCDLS-- 61 
Consensus                               PLP*****  Y * A   S  *  E * ***D*D     
 
AFAP1             SYESYDEEEEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKDTK 180 
Sigma.N-term      --DLRDMPEDDGE--------PSKGASPELAKSPRLR----------------------- 88 
Consensus           *  D  E*DG*        PS* AS *L*K****                         
 
AFAP1             LLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPLVLAVQSKEQAEQW 240 
Sigma.N-term      ------NAADLP------------------------------------------------ 94 
Conensus                *  * P                                                 
 
AFAP1             LKVIKEAYSGCSGPVDSECPPPPSSPVHKAELEKKLSSERPSSDGEGVVENGITTCNGKE 300 
Sigma.N-term      -------------------PPLPNKPPPEDYYEEALP------LGPGKSPEYISSHNG-- 127 
Consensus                            PP P**P  *   E* L*       G G   * I** NG   
 
AFAP1             QVKRKKSSKSEAKGTVSKVTGKKITKIISLGKKKPSTDEQTSSAEEDVPTCGYLNVLSNS 360 
Sigma.N-term      ----CSPSHSIVDGYY-------------------------------------------- 139 
Consensus              **S*S **G                                               
 
 
 
AFAP1L2           MERYKALEQLLTELDDFLKILDQENLSSTALVKKSCLAELLRLYTKSSSSDEEYIYMNKV 60 
Sigma.N-term      --------------------LDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 40 
Consensus                             LD*E LS*T*L KK **A**L*     **** *Y*Y*N** 
 
AFAP1L2           TINKQQNAESQGKAPEEQGLLPNGEPSQHSSAPQKSLPDLPPPKMIPERKQLAIPKTESP 120 
Sigma.N-term      DLHS-------------------------------------------------------- 44 
Consensus          ***                                                         
 
AFAP1L2           EGYYEEAEPYDTSLNEDGEAVSSSYESYDEEDGSKGKSAPYQWPSPEAGIELMRDARICA 180 
Sigma.N-term      ------GPSFVESLFEEFDCDLSDLRDMPEDDGE---------PSKGASPELAKSPRLR- 88 
Consensus               * **  SL E* **  S* **  E*EG*         PS  A* EL ***R*   
 
AFAP1L2           FLWRKKWLGQWAKQLCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHKLK 240 
Sigma.N-term      ------------------------------------------------------------ 
Consensus                                                                               
 
AFAP1L2           ITPMNADVIVLGLQSKDQAEQWLRVIQEVSGLPSEGASEGNQYTPDAQRFNCQKPDIAEK 300 
Sigma.N-term      ----NAADLPPPLPNKPPPEDYYEEALPLG--------------------PGKSPEYISS 124 
Consensus             NA  *   L *K  *E** *    **                      **P*  ** 
 
AFAP1L2           YLSASEYGSSVDGHPEVPETKDVKKKCSAGLKLSNLMNLGRKKSTSLEPVERSLETSSYL 360 
Sigma.N-term      HNGCSPSHSIVDGYY--------------------------------------------- 139 
Consensus         * **S   S VDG*                                    
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Figure 8. Sigma N-term binding across AFAP family members 

The amino acid sequence against which Sigma N-term antibody was raised was 

compared across AFAP family members. Identical amino acid sequence is shown by its 

one letter abbreviation in the consensus sequence while similar amino acid sequence is 

represented by *. 
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Figure 9 
 
AFAP1L1           RILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVSAGRNS 540 
Sigma.C-term      --------------------------------------------VDVETLTSIVSAGRNS 16 
Consensus                                                     VDVETLTSIVSAGRNS 
 
AFAP1L1           FLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQVKVKR 600 
Sigma.C-term      FLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQVKVKR 76 
Consensus         FLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCDEKSHRVDPQVKVKR 
 
AFAP1L1           HASSANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGA 660 
Sigma.C-term      HASSANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPG- 135 
Consensus         HASSANQPKQGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPG          
 
 
 
 
AFAP1             LEASSSEDMGRWIGILLAETGSSTDPEALHYDYIDVEMSASVIQTAKQTFCFMNRRVISA 480 
Sigma.C-term      ---------------------------------VDVETLTSIVSAGRNSFLYAR------ 21 
Consensus                                          *DVE  *S********F * *       
 
AFAP1             NPYLGGTSNGYAHPSGTALHYDDVPCINGSLKGKKPPVASNGVTGKGKTLSSQPKKADPA 540 
Sigma.C-term      -----SCQNQWPEPR----VYDDVPYEKMQDEEPERPTGAQ-VKRHASSCSEKSHRVDPQ 71 
Consensus              * *N ***P      YDDVP  * * *  * P**** V* **** S******DP  
 
AFAP1             AVVKRTGSNAAQYKYGKNRVEADAKRLQTKEEELLKRKEALRNRLAQLRKERKDLRAAIE 600 
Sigma.C-term      VKVKRHASSANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIR 131 
Consensus         * VKR *S*A QYLYGKNR*E DA*R  ***E*L K*KE**R**L  LR*E***L* AI* 
 
AFAP1             VNAGRKPQAILEEKLKQLEEECRQKEAERVSLELELTEVKESLKKALAGGVTLGLAIEPK 660 
Sigma.C-term      SSPG-------------------------------------------------------- 135 
Consensus          **G                                                         
 
 
 
 
 
AFAP1L2           GEELAKLEAKSSEEMGHWLGLLLSESGSKTDPEEFTYDYVDADRVSCIVSAAKNSLLLMQ 480 
Sigma.C-term      ---------------------------------------VDVETLTSIVSAGRNSFLYAR 21 
Consensus                                                VD** ***IVSA**NS*L  * 
 
AFAP1L2           RKFSEPNTYIDGLPSQDRQEELYDDVDLSELTAAVEPTEEATPVADDPNERESDRVYLDL 540 
Sigma.C-term      ---SCQNQWPE--------PRVYDDVPYEKMQ-------------DEEPER--------- 48 
Consensus            S  N * *         **YDDV  ***              D*  ER          
 
AFAP1L2           TPVKSFLHGPSSAQAQASSPTLSCLDNATEALPADSGPGPTPDEPCIKCPENLGEQQLES 600 
Sigma.C-term      ---------PTGAQVKRHAS--SCSEKS------------------------------HR 67 
Consensus                  P**AQ**  **  SC ***                              *  
 
AFAP1L2           LEPEDPSLRITTVKIQTEQQRISFPPSCPDAVVATPPGASPPVKDRLRVTSAEIKLGKNR 660 
Sigma.C-term      VDP--------QVKVKRHAS-----------------------------SANQYKYGKNR 90 
Consensus         **P         VK** * *                             ** * K GKNR 
 
AFAP1L2           TEAEVKRYTEEKERLEKKKEEIRGHLAQLRKEKRELKETLLKCTDKEVLASLEQKLKEID 720 
Sigma.C-term      AEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPG--------------- 135 
Consensus         *E ***RY  EKE*LEK*KE IR *L  LR*EKRELKE** ****                
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Figure 9. Sigma C-term binding across AFAP family members 

The amino acid sequence against which Sigma C-term antibody was raised was compared 

across AFAP family members. Identical amino acid sequence is shown by its one letter 

abbreviation in the consensus sequence while similar amino acid sequence is represented 

by *. 

 
 

146



 

 

Figure 10 
 
AFAP1           MEELIVELRLFLELLDHEYLTSTVREKKAVITNILLRIQSSKGFDVKDHAQKQETANSLP 60 
AFAP120         MEELIVELRLFLELLDHEYLTSTVREKKAVITNILLRIQSSKGFDVKDHAQKQETANSLP 60 
                ************************************************************ 
 
AFAP1           APPQMPLPEIPQPWLPPDSGPPPLPTSSLPEGYYEEAVPLSPGKAPEYITSNYDSDAMSS 120 
AFAP120         APPQMPLPEIPQPWLPPDSGPPPLPTSSLPEGYYEEAVPLSPGKAPEYITSNYDSDAMSS 120 
                ************************************************************ 
 
AFAP1           SYESYDEEEEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKDTK 180 
AFAP120         SYESYDEEEEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKDTK 180 
                ************************************************************ 
 
AFAP1           LLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPLVLAVQSKEQAEQW 240 
AFAP120         LLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPLVLAVQSKEQAEQW 240 
                ************************************************************ 
 
AFAP1           LKVIKEAYSGCSGPVDSECPPPPSSPVHKAELEKKLSSERPSSDGEGVVENGITTCNGKE 300 
AFAP120         LKVIKEAYSGCSGPVDSECPPPPSSPVHKAELEKKLSSERPSSDGEGVVENGITTCNGKE 300 
                ************************************************************ 
 
AFAP1           QVKRKKSSKSEAKGTVSKVTGKKITKIISLGKKKPSTDEQTSSAEEDVPTCGYLNVLSNS 360 
AFAP120         QVKRKKSSKSEAKGTVSKVTGKKITKIISLGKKKPSTDEQTSSAEEDVPTCGYLNVLSNS 360 
                ************************************************************ 
 
AFAP1           RWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSKHPLTFRLLRNGQEVAV 420 
AFAP120         RWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSKHPLTFRLLRNGQEVAV 420 
                ************************************************************ 
 
AFAP1           LEASSSEDMGRWIGILLAETGSSTDPEALHYDYIDVEMSASVIQTAKQTFCFMNRRVISA 480 
AFAP120         LEASSSEDMGRWIGILLAETGSSTDPEALHYDYIDVEMSASVIQTAKQTFCFMNRRVISA 480 
                ************************************************************ 
 
AFAP1           NPYLGGTSNGYAHPSGTALHYDDVPCING------------------------------- 509 
AFAP120         NPYLGGTSNGYAHPSGTALHYDDVPCINGSWEPEDGFPASCSRGLGEEVLYDNAGLYDNL 540 
                *****************************                                
 
AFAP1           -----------------------------------------------------SLKGKKP 516 
AFAP120         PPPHIFARYSPADRKASRLSADKLSSNHYKYPASAQSVTNTSSVGRASLGLNSQLKGKKP 600 
                                                                     :****** 
 
AFAP1           PVASNGVTGKGKTLSSQPKKADPAAVVKRTGSNAAQYKYGKNRVEADAKRLQTKEEELLK 576 
AFAP120         PVASNGVTGKGKTLSSQPKKADPAAVVKRTGSNAAQYKYGKNRVEADAKRLQTKEEELLK 660 
                ************************************************************ 
 
AFAP1           RKEALRNRLAQLRKERKDLRAAIEVNAGRKPQAILEEKLKQLEEECRQKEAERVSLELEL 636 
AFAP120         RKEALRNRLAQLRKERKDLRAAIEVNAGRKPQAILEEKLKQLEEECRQKEAERVSLELEL 720 
                ************************************************************ 
 
AFAP1           TEVKESLKKALAGGVTLGLAIEPKSGTSSPQSPVFRHRTLENSPISSCDTSDTEGPVPVN 696 
AFAP120         TEVKESLKKALAGGVTLGLAIEPKSGTSSPQSPVFRHRTLENSPISSCDTSDTEGPVPVN 780 
                ************************************************************ 
 
AFAP1           SAAVLKKSQAAPGSSPCRGHVLRKAKEWELKNGT 730 
AFAP120         SAAVLKKSQAAPGSSPCRGHVLRKAKEWELKNGT 814 
                ********************************** 
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Figure 10. AFAP1 isoforms 

AFAP1 canonical sequence was compared to a second neural specific AFAP1 isoform, 

AFAP120 using ClustalW2 analysis (27). Identical sequence is represented by * while 

similar sequence is represented by : . 
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Figure 11 
 
AFAP1L1          MDRGQVLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 60 
AFAP1L1.767      -ERGKMLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 59 
AFAP1L1.725      MDRGQVLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 60 
AFAP1L1.724      -ERGKMLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTA 59 
                  :**::****************************************************** 
 
AFAP1L1          DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPPPLPNK 120 
AFAP1L1.767      DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPPPLPNK 119 
AFAP1L1.725      DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPPPLPNK 120 
AFAP1L1.724      DLHSGPSFVESLFEEFDCDLSDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPPPLPNK 119 
                 ************************************************************ 
 
AFAP1L1          PPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELKSSYN 180 
AFAP1L1.767      PPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELKSSYN 179 
AFAP1L1.725      PPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELKSSYN 180 
AFAP1L1.724      PPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYEDADSSYPATRVNGELKSSYN 179 
                 ************************************************************ 
 
AFAP1L1          DSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRFGQWAKQL 240 
AFAP1L1.767      DSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRFGQWAKQL 239 
AFAP1L1.725      DSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRFGQWAKQL 240 
AFAP1L1.724      DSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRFGQWAKQL 239 
                 ************************************************************ 
 
AFAP1L1          TVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVLVLALQS 300 
AFAP1L1.767      TVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVLVLALQS 299 
AFAP1L1.725      TVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVLVLALQS 300 
AFAP1L1.724      TVIREDQLLCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKRHELRFTQGATEVLVLALQS 299 
                 ************************************************************ 
 
AFAP1L1          REQAEEWLKVIREVSKPVGGAEGVEVPRSPVLLCKLDLDKRLSQEKQTSDSDSVGVGDNC 360 
AFAP1L1.767      REQAEEWLKVIREVSKPVGGAEGVEVPRSPVLLCKLDLDKRLSQEKQTSDSDSVGVGDNC 359 
AFAP1L1.725      REQAEEWLKVIREVSKPVGGAEGVEVPRSPVLLCKLDLDKRLSQEKQTSDSDSVGVGDNC 360 
AFAP1L1.724      REQAEEWLKVIREVSKPVGGAEGVEVPRSPVLLCKLDLDKRLSQEKQTSDSDSVGVGDNC 359 
                 ************************************************************ 
 
AFAP1L1          STLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSSTEEEVP 420 
AFAP1L1.767      STLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSSTEEEVP 419 
AFAP1L1.725      STLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSSTEEEVP 420 
AFAP1L1.724      STLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSSTEEEVP 419 
                 ************************************************************ 
 
AFAP1L1          CCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPRHPFAF 480 
AFAP1L1.767      CCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPRHPFAF 479 
AFAP1L1.725      CCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPRHPFAF 480 
AFAP1L1.724      CCGYLNVLVNQGWKERWCRLKCNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPRHPFAF 479 
                 ************************************************************ 
 
AFAP1L1          RILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVSAGRNS 540 
AFAP1L1.767      RILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVSAGRNS 539 
AFAP1L1.725      RILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVSAGRNS 540 
AFAP1L1.724      RILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALHYDYVDVETLTSIVSAGRNS 539 
                 ************************************************************ 
 
AFAP1L1          FLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQVKVKR 600 
AFAP1L1.767      FLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQVKVKR 599 
AFAP1L1.725      FLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQVKVKR 600 
AFAP1L1.724      FLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQVKVKR 599 
                 ************************************************************ 
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AFAP1L1          HASSANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGA 660 
AFAP1L1.767      HASSANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGA 659 
AFAP1L1.725      HASSANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGA 660 
AFAP1L1.724      HASSANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGA 659 
                 ************************************************************ 
 
AFAP1L1          KLKALEEAVATLEAQCRAKEERRIDLELKLVAVKERLQQSLAGGPALGLSVSSKPKSGET 720 
AFAP1L1.767      KLKALEEAVATLEAQCRAKEERRIDLELKLVAVKERLQQSLAGGPALGLSVSSKPKSGET 719 
AFAP1L1.725      KLKALEEAVATLEAQCRAKEERRIDLELKLVAVKERLQQSLAGGPALGLSVSSKPKSG-- 718 
AFAP1L1.724      KLKALEEAVATLEAQCRAKEERRIDLELKLVAVKERLQQSLAGGPALGLSVSSKPKSG-- 717 
                 **********************************************************   
 
AFAP1L1          ANKPQNSVPEQPLPVNCVSELRKRSPSIVASNQGRVLQKAKEWEMKKT 768 
AFAP1L1.767      ANKPQNSVPEQPLPVNCVSELRKRSPSIVASNQGRVLQKAKEWEMKKT 767 
AFAP1L1.725      -----------------------------------------EWEMKKT 725 
AFAP1L1.724      -----------------------------------------EWEMKKT 724 
                                                          ******* 
 
 
 
 
 

Figure 11. AFAP1L1 isoforms 

Canonical AFAP1L1 amino acid sequence was compared using ClustalW2 analysis (27) 

to three other AFAP1L1 isoforms. AFAP1L1 containing 767 amino acids has an altered 

Exon 1, AFAP1L1 containing 725 amino acids does not contain Exon 18 and AFAP1L1 

containing 724 amino acids does not contain Exon 18 and has an altered Exon 1. Identical 

sequence is represented by * while similar sequence is represented by :. 
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Figure 12 
 
AFAP1L2          MERYKA------------------LEQLLTELDDFLKILDQENLSSTALVKKSCLAELLR 42 
AFAP1L2.814      MERYKA------------------LEQLLTELDDFLKILDQENLSSTALVKKSCLAELLR 42 
AFAP1L2.841      -QRVRA------------------LEQLLTELDDFLKILDQENLSSTALVKKSCLAELLR 41 
AFAP1L2.312      MERYKAQGCCCLVVQRRIRQVSASLEQLLTELDDFLKILDQENLSSTALVKKSCLAELLR 60 
                  :* :*                  ************************************ 
 
AFAP1L2          LYTKSSSSDEEYIYMNKVTINKQQNAESQGKAPEEQGLLPNGEPSQHSSAPQKSLPDLPP 102 
AFAP1L2.814      LYTKSSSSDEEYIYMNKVTINKQQNAESQGKAPEEQGLLPNGEPSQHSSAPQKSLPDLPP 102 
AFAP1L2.841      LYTKSSSSDEEYIYMNKVTINKQQNAESQGKAPEEQGLLPNGEPSQHSSAPQKSLPDLPP 101 
AFAP1L2.312      LYTKSSSSDEEYIYMNKVTINKQQNAESQGKAPEEQGLLPNGEPSQHSSAPQKSLPDLPP 120 
                 ************************************************************ 
 
AFAP1L2          PKMIPERKQLAIPKTESPEGYYEEAEPYDTSLN--------------------------- 135 
AFAP1L2.814      PKMIPERKQLAIPKTESPEGYYEEAEPYDTSLN--------------------------- 135 
AFAP1L2.841      PKMIPERKQLAIPKTESPEGYYEEAEPYDTSLNGHSGGFLPTGVPRWVQVPEGVIYATIT 161 
AFAP1L2.312      PKMIPERKQLAIPKTESPEGYYEEAEPYDTSLN--------------------------- 153 
                 *********************************                            
 
AFAP1L2          -EDGEAVSSSYESYDEEDGSKGKSAPYQWPSPEAGIELMRDARICAFLWRKKWLGQWAKQ 194 
AFAP1L2.814      -EDGEAVSSSYESYDEEDGSKGKSAPYQWPSPEAGIELMRDARICAFLWRKKWLGQWAKQ 194 
AFAP1L2.841      LEDGEAVSSSYESYDEEDGSKGKSAPYQWPSPEAGIELMRDARICAFLWRKKWLGQWAKQ 221 
AFAP1L2.312      -EDGEAVSSSYESYDEEDGSKGKSAPYQWPSPEAGIELMRDARICAFLWRKKWLGQWAKQ 212 
                  *********************************************************** 
 
AFAP1L2          LCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHKLKITPMNADVIVLGLQ 254 
AFAP1L2.814      LCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHKLKITPMNADVIVLGLQ 254 
AFAP1L2.841      LCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHKLKITPMNADVIVLGLQ 281 
AFAP1L2.312      LCVIKDNRLLCYKSSKDHSPQLDVNLLGSSVIHKEKQVRKKEHKLKITPMNADVIVLGLQ 272 
                 ************************************************************ 
 
AFAP1L2          SKDQAEQWLRVIQEVSGLPSEGASEGNQYTPDAQRFNCQKPDIAEKYLSASEYGSSVDGH 314 
AFAP1L2.814      SKDQAEQWLRVIQEVSGLPSEGASEGNQYTPDAQRFNCQKPDIAEKYLSASEYGSSVDGH 314 
AFAP1L2.841      SKDQAEQWLRVIQEVSGLPSEGASEGNQYTPDAQRFNCQKPDIAEKYLSASEYGSSVDGH 341 
AFAP1L2.312      SKDQAEQWLRVIQEVSGLPSEGASEGNQYTPDAQRFNCQK-------------------- 312 
                 ****************************************                     
 
AFAP1L2          PEVPETKDVKKKCSAGLKLSNLMNLGRKKSTSLEPVERSLETSSYLNVLVNSQWKSRWCS 374 
AFAP1L2.814      PEVPETKDVKKKCSAGLKLSNLMNLGRKKSTSLEPVERSLETSSYLNVLVNSQWKSRWCS 374 
AFAP1L2.841      PEVPETKDVKKKCSAGLKLSNLMNLGRKKSTSLEPVERSLETSSYLNVLVNSQWKSRWCS 401 
AFAP1L2.312      ------------------------------------------------------------ 
                                                                              
 
AFAP1L2          VRDNHLHFYQDRNRSKVAQQPLSLVGCEVVPDPSPDHLYSFRILHKGEELAKLEAKSSEE 434 
AFAP1L2.814      VRDNHLHFYQDRNRSKVAQQPLSLVGCEVVPDPSPDHLYSFRILHKGEELAKLEAKSSEE 434 
AFAP1L2.841      VRDNHLHFYQDRNRSKVAQQPLSLVGCEVVPDPSPDHLYSFRILHKGEELAKLEAKSSEE 461 
AFAP1L2.312      ------------------------------------------------------------ 
                                                                              
 
AFAP1L2          MGHWLGLLLSESGSKTDPEEFTYDYVDADRVSCIVSAAKNSLLLMQRKFSEPNTYIDGLP 494 
AFAP1L2.814      MGHWLGLLLSESGSKTDPEEFTYDYVDADRVSCIVSAAKNSLLLMQRKFSEPNTYIDGLP 494 
AFAP1L2.841      MGHWLGLLLSESGSKTDPEEFTYDYVDADRVSCIVSAAKNSLLLMQRKFSEPNTYIDGLP 521 
AFAP1L2.312      ------------------------------------------------------------ 
                                                                              
 
AFAP1L2          SQDRQEELYDDVDLSELTAAVEPTEEATPVADDPNERESDRVYLDLTPVKSFLHGPSSAQ 554 
AFAP1L2.814      SQDRQEELYDDVDLSELTAAVEPTEEATPVADDPNERESDRVYLDLTPVKSFLHGPSSAQ 554 
AFAP1L2.841      SQDRQEELYDDVDLSELTAAVEPTEEATPVADDPNERESDRVYLDLTPVKSFLHGPSSAQ 581 
AFAP1L2.312      ------------------------------------------------------------ 
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AFAP1L2          AQASSPTLSCLDNATEALPADSGPGPTPDEPCIKCPENLGEQQLESLEPEDPSLRITTVK 614 
AFAP1L2.814      AQASSPTLSCLDNATEALPADSGPGPTPDEPCIKCPENLGEQQLESLEPEDPSLRITTVK 614 
AFAP1L2.841      AQASSPTLSCLDNATEALPADSGPGPTPDEPCIKCPENLGEQQLESLEPEDPSLRITTVK 641 
AFAP1L2.312      ------------------------------------------------------------ 
                                                                              
 
AFAP1L2          IQTEQQRISFPPSCPDAVVATPPGASPPVKDRLRVTSAEIKLGKNRTEAEVKRYTEEKER 674 
AFAP1L2.814      IQTEQQRISFPPSCPDAVVATPPGASPPVKDRLRVTSAEIKLGKNRTEAEVKRYTEEKER 674 
AFAP1L2.841      IQTEQQRISFPPSCPDAVVATPPGASPPVKDRLRVTSAEIKLGKNRTEAEVKRYTEEKER 701 
AFAP1L2.312      ------------------------------------------------------------ 
                                                                              
 
AFAP1L2          LEKKKEEIRGHLAQLRKEKRELKETLLKCTDKEVLASLEQKLKEIDEECRGEESRRVDLE 734 
AFAP1L2.814      LEKKKEEIRGHLAQLRKEKRELKETLLKCTDKEVLASLEQKLKEIDEECRGEESRRVDLE 734 
AFAP1L2.841      LEKKKEEIRGHLAQLRKEKRELKETLLKCTDKEVLASLEQKLKEIDEECRGEESRRVDLE 761 
AFAP1L2.312      ------------------------------------------------------------ 
                                                                              
 
AFAP1L2          LSIMEVKDNLKKAEAGPVTLGTTVDTTHLENVSPRPKAVTPASAPDCTPVNSATTLKNRP 794 
AFAP1L2.814      LSIMEVKDNLKKAEAGPVTLGTTVDTTHLEN----PKAVTPASAPDCTPVNSATTLKNRP 790 
AFAP1L2.841      LSIMEVKDNLKKAEAGPVTLGTTVDTTHLEN----PKAVTPASAPDCTPVNSATTLKNRP 817 
AFAP1L2.312      ------------------------------------------------------------ 
                                                                              
 
AFAP1L2          LSVVVTGKGTVLQKAKEWEKKGAS 818 
AFAP1L2.814      LSVVVTGKGTVLQKAKEWEKKGAS 814 
AFAP1L2.841      LSVVVTGKGTVLQKAKEWEKKGAS 841 
AFAP1L2.312      ------------------------ 
 
 
 
 

Figure 12. AFAP1L2 isoforms 

Canonical AFAP1L2 amino acid sequence was compared by ClustalW2 analysis (27) to 

three other AFAP1L2 predicted isoforms. AFAP1L2 containing 814 amino acids lacks 

four amino acids in the C-terminal region. AFAP1L2 containing 841 amino acids has a 

undefined start codon, lacks the four amino acids in the C-terminal region as in 

AFAP1L2 containing 814 amino acids and has an additional 28 amino acids inserted 

between Exons 5 and 6. AFAP1L2 containing 312 amino acids contains 18 additional 

amino acids in Exon 2 and ends at Exon 5 of canonical AFAP1L2. Identical amino acids 

are represented by * while similar amino acids are represented by :. 
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Figure 13 
 
BAG64383   --------------------------------------------------------------------------------   
AFAP1L1    MDRGQVLEQLLPELTGLLSLLDHEYLSDTTLEKKMAVASILQSLQPLPAKEVSYLYVNTADLHSGPSFVESLFEEFDCDL  80 
LAPTM5     --------------------------------------------------------------------------------   
 
BAG64383 ----------MDPRLSTVRQTCCCFNVRIATTALAIYHVIMSVLLFIEHSVEVAHGKA--------SCKLSQM---GYLR  59 
AFAP1L1  SDLRDMPEDDGEPSKGASPELAKSPRLRNAADLPPPLPNKPPPEDYYEEALPLGPGKSPEYISSHNGCSPSHSIVDGYYE  160 
LAPTM5   ----------MDPRLSTVRQTCCCFNVRIATTALAIYHVIMSVLLFIEHSVEVAHGKA--------SCKLSQM---GYLR  59 
 
BAG64383 IADLISSFLLITMLFIISLSLLIGVVKNREKY-------LLPFLSLQ----------IMDYLLCLLTL----L-------  111 
AFAP1L1  DADSSYPATRVNGELKSSYNDSDAMSSSYESYDEEEEEGKSPQPRHQWPSEEASMHLVRECRICAFLLRKKRF-------  233 
LAPTM5   IADLISSFLLITMLFIISLSLLIGVVKNREKY-------LLPFLSLQ----------IMDYLLCLLTLLGSYIELPAYLK  122 
 
BAG64383 ------------------------------GSYIELPTYLNFKSMNHMNYLPSQEDMPH----------------NQFIK  145 
AFAP1L1  ------------------------------GQWAKQLTVIREDQL--LCYKSSKDRQPHLRLALDTCSIIYVPKDSRHKR  281 
LAPTM5   LASRSRASSSKFPLMTLQLLDFCLSILTLCSSYMEVPTYLNFKSMNHMNYLPSQEDMPH----------------NQFIK  186 
 
BAG64383 MMIIFSIAFITVLIFKVYMFKCVWRCYRLIKCM-------NSVEVPRSPVLLCKLDLDKRLSQEKQTSDSDSVGVGDNCS  218 
AFAP1L1  HELRFTQGATEVLVLALQSREQAEEWLKVIREVSKPVGGAEGVEVPRSPVLLCKLDLDKRLSQEKQTSDSDSVGVGDNCS  361 
LAPTM5   MMIIFSIAFITVLIFKVYMFKCVWRCYRLIKCM-------NSVEEKRNSKMLQKVVLP---SYEEALSPAGPV----SCS  252 
 
BAG64383 TLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSSTEEEVPCCGYLNVLVNQGWKERWCRLK  298 
AFAP1L1  TLGRRETCDHGKGKKSSLAELKGSMSRAAGRKITRIIGFSKKKTLADDLQTSSTEEEVPCCGYLNVLVNQGWKERWCRLK  441 
LAPTM5   QLGQRFRLSHSSGL--SIIQPNNAW----------FISISSD-TCLDDWPF-----------------------------  290 
 
BAG64383 CNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPRHPFAFRILRNRQEVAILEASCSEDMGRWLGLLLVGMGSRVTPEALH  378 
AFAP1L1  CNTLYFHKDHMDLRTHVNAIALQGCEVAPGFGPRHPFAFRILRNRQEVAILEASCSEDMGRWLGLLLVEMGSRVTPEALH  521 
LAPTM5   --------------------------------------------------------------------------------      
 
BAG64383 YDYVDVETLTSIVSAGRNSFLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQVKVKRH  458 
AFAP1L1  YDYVDVETLTSIVSAGRNSFLYARSCQNQWPEPRVYDDVPYEKMQDEEPERPTGAQVKRHASSCSEKSHRVDPQVKVKRH  601 
LAPTM5   --------------------------------------------------------------------------------   
 
BAG64383 ASSANQYKYGKNRAEEDARKYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGAKLKALEEAVATLEAQCRAKEE  538 
AFAP1L1  ASSANQYKYGKNRAEEDARRYLVEKEKLEKEKETIRTELIALRQEKRELKEAIRSSPGAKLKALEEAVATLEAQCRAKEE  681 
LAPTM5   --------------------------------------------------------------------------------   
 
BAG64383 RRIDLELKLVAVKERLQQSLAGGPALGLSVSSKPKSGETANKPQNSVPEQPLPVNCVSELRKRSPSIVASNQGRVLQKAK  618 
AFAP1L1  RRIDLELKLVAVKERLQQSLAGGPALGLSVSSKPKSGETANKPQNSVPEQPLPVNCVSELRKRSPSIVASNQGRVLQKAK  761 
LAPTM5   --------------------------------------------------------------------------------   
 
BAG64383 EWEMKKT  625 
AFAP1L1  EWEMKKT  768 
LAPTM5   -------   
 
 
 
 

Figure 13. AFAP1L1 and BAG64383 

A protein identical to lysosomal protein transmembrane 5 (LAPTM5) in its N-terminal 

181 amino acids and identical to AFAP1L1 in its C-terminal 444 amino acids was aligned 

to each protein by ClustalW2 analysis (27). BAG64383 sequence identical to LAPTM5 is 

highlighted in yellow, sequence identical to AFAP1L1 is highlighted in green, sequence 

shared between all three proteins is highlighted in pink and sequence unique to 

BAG64383 is highlighted in light blue. 
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I. Mutation and formation of full length AFAP1L1 from separate plasmids 

For purposes of creating a plasmid to express tagged and untagged full length 

nucleotide sequence of AFAP1L1, two vectors were purchased from Thermo Scientific 

OpenBiosystems, Huntsville, Alabama. The first, a pCMV-SPORT6 vector, contained 

coding sequence for the first 340 amino acids of afap1l1. The second, a pINCY vector, 

contained coding sequence for amino acids 274 to 768. An overlap region of 67 amino 

acids existed between the two sequences, encompassing amino acids 274 to 340 (Figure 

1). To piece together the 5’ and 3’ halves of afap1l1, we identified a restriction enzyme 

site in the overlap region that could be used to digest afap1l1 part 1 from pCMV-

SPORT6 and afap1l1 part 2 from pINCY which would create sticky ends which could be 

ligated together to form full length afap1l1. Using the New England BioLabs NEBcutter 

program to find restriction enzyme sites, we determined that a BstYI restriction enzyme 

site (AGATCC) in the overlap region could be mutated to a BglII restriction enzyme site 

(AGATCT) by mutating one base pair of amino acid 329, TCC to TCT. This would 

create a restriction site unique to each plasmid so that multiple cut sites would not be 

found and also would not change the amino acid encoded as TCC and TCT both code for 

the amino acid serine.  

Mutagenesis of amino acid 329 was accomplished by using the QuikChange 

Multi-Site Directed Mutagenesis Kit from Stratagene. Forward and reverse primers were 

synthesized (Forward 5’GAGGTCCCCAGATCTCCAGTCCTCCTGTG3’ and Reverse 

5’CACAGGAGGACTGGAGATCTGGGGACCTC3’) and the following reaction 

mixture was used:  
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10X Buffer 2.5µl 

dH20 16µl 

pSPORT6 
or pINCY 
template 

2.5µl 
(50ng 
total) 

Forward 
primer 

1µl 
(100ng 
total) 

Reverse 
primer 

1µl 
(100ng 
total) 

dNTPs 1µl 

QuikChange 
Enzyme 

1µl 

 

The reaction mixture was incubated in the following PCR protocol: 

Segment Cycle Temperature Time 
1 1 95°C 1 minute 
2 30 95°C 1min 
  55°C 1min 
  65°C 9min 
3 Hold 4°C Hold 

 

 The PCR product was incubated at 37°C for 1 hour with addition of restriction 

enzyme Dpn1 to degrade parental DNA and the final product was transformed into dH5α 

bacterial cells by incubation of 1µg PCR product with 50µl dH5α for 30 minutes 

followed by 30 seconds of heat shock at 42°C and incubation on ice for 2 minutes. 1ml of 

SOC media was added and the bacterial mixture was shaken at 37°C for one hour in a 

heated shaker. After 1 hour, bacteria were spun down at 5000rpm, 900µl of media was 

removed, bacteria were resuspended in the remaining 100µl of SOC media and plated 

onto ampicillin plates. Control transformations with no plasmid added were also 

conducted. 
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 Multiple colonies from each mutated pCMV-SPORT6 and pINCY were picked 

and grown overnight in 3ml of LB+Ampicillin shaking at 37°C. 1.5ml of overnight 

culture was centrifuged at 12,000rpm for 30 seconds and the bacterial pellet was lysed in 

50µl of EasyPrep lysis buffer (10mM TrisHCl pH8.0, 1mM EDTA, 15% sucrose, 

2mg/ml lysozyme, 0.2mg/ml RNase A and 0.1mg/ml BSA). Lysates were incubated at 

room temperature for 5 minutes, boiled at 100°C for 90 seconds, chilled on ice for 2 

minutes and then centrifuged 12,000rpm for 20 minutes at room temperature. 5µl of each 

DNA prep was digested with restriction enzymes in the following manner to determine if 

they contained their respective afap1l1 insert. pCMV-SPORT6 vectors were cut with 

Not1 and Sal1 to cut out afap1l1 part 1 and pINCY vectors were cut with EcoRI and 

Not1 to check for afap1l1 part 2.  

pCMV-SPORT6 pINCY 

5µl DNA 5µl DNA 

2µl dH20 2µl dH2O 

2µl Buffer H 2µl Buffer H 

0.5µl Not1 0.5µl EcoRI 

0.5µl Sal1 0.5µl Not1 

 

Digests were placed at 37°C for two hours and run on a 1% Seakem agarose gel 

containing ethidium bromide to determine their banding pattern. If the afap1l1 insert was 

present, pCMV-SPORT6 should have produced two bands, 4396bp and 1314bp. The 

pINCY vector should create two bands with a molecular weight (MW) of 4080bp and 

2607bp. Five colonies from pCMV-SPORT6 and three colonies from pINCY provided 

the correct banding patterns. 200µl of pCMV-SPORT6 colonies 2 and 7 and pINCY 
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colonies 2, 7 and 11 were grown overnight in 500ml LB+Ampicillin shaking at 37°C to 

perform a midi prep of DNA so as to send for sequencing.  

 Colonies 2 and 7 of pCMV-SPORT6 and colony 11 of pINCY showed mutation 

of amino acid 329 from a TCC codon to TCT while keeping the amino acid as a serine 

(Figure 2). To ligate together the two halves of afap1l1, it was decided to insert each 

mutated portion of afap1l1 in to a pBlueScriptII KS+ vector (Stratagene) followed by 

digestion of the vector with the engineered BglII site and a unique ScaI site and ligation 

so as to bring together the two halves of KS+ and full length afa1l1. The restriction sites 

HindIII and EcoRI in the KS+ vector were chosen because pCMV-SPORT6 contained a 

HindIII site which could be used to cut out and ligate afap1l1 part 1. An EcoRI site was 

engineered through site-directed mutagenesis (forward 

5’CGAATTCCTTGTCCAGGTCCAACTT3’, reverse 

5’AAGTTGGACCTGGACAAGGAATTCG3’) at the end of the afap1l1 part 1 fragment 

so as to insert the afap1l1 sequencing into the KS+ vector. Additionally, pINCY 

contained an EcoRI site at the end of the afap1l1 part 2 sequence and an engineered 

HindIII site      (forward 5’ATAAGCTTTGCCCAAGGACAGCCGGCA3’, reverse 

5’TGCCGGCTGTCCTTGGGCAAAGCTTAT3’) was created in the beginning of the 

afap1l1 part 2 sequence so as to ligate to the KS+ vector. PCR mixture and parameters 

were as follows: 
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pCMV-SPORT6 pINCY 
40 µl dH20 40 µl dH20 
5µl Pfu Buffer 5µl Pfu Buffer 
1µl dNTPs(10mM) 1µl dNTPs (10mM) 
1µl pCMV-SPORT6 (100ng/ml) 1µl pINCY (100ng/ml) 
1µl pCMV-SPORT6 EcoRI forward 
primer 

1µl pINCY HindIII forward 
primer 

1µl pCMV-SPORT 6 reverse primer 1µl pINCY HindIII reverse 
primer 

1µl Pfu Polymerase (2.5U) 1µl Pfu Polymerase (2.5U) 
  

Segment Cycle Temperature Time 
1 1 95o 2min 
2 30 95o 30sec 
  Primer Tm-5o 30sec 
  72o 1min per kb 
3 1 72o 10min 
4 Hold 4o Hold 

  

 PCR products were cleaned using the Invitrogen PCR Purification Kit and 

digested with their respective restriction enzymes to produce sticky ends compatible for 

ligation. 30µl of PCR product were digested using 4µl Buffer B, 4µl H2O, 3µl HindIII 

and 3µl EcoRI by incubation at 37°C for two hours. KS+ vector was also cut using 

HindIII and EcoRI restriction enzymes for two hours and phosphatased for an additional 

hour. Cut PCR products and vector were run on a 1% Seakem agarose gel, stained by 

incubation in water containing ethidium bromide for one hour and cut and eluted from the 

gel using an Invitrogen Quick Gel Extraction Kit. Afap1l1 part 1 and afap1l1 part 2 were 

each ligated separately to KS+ using T4 ligase. 1µl of KS+ plasmid treated with alkaline 

phosphatase was incubated with 21µl dH2O, 3µl T4 Buffer, 1µl T4 Ligase and 4µl of 

either afap1l1 part 1 or afap1l1 part 2 overnight at 16°C. 2.5µl of each ligation product 

was incubated with 60µl dH5α bacterial cells on ice for 30 minutes, heat shocked for 30 
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seconds and placed back onto ice for 2 minutes. 1ml of SOC media was added and 

bacteria were grown while shaking at 37°C for one hour. Bacteria were spun down, 900µl 

of SOC media removed and bacteria brought up in the remaining 100µl SOC media and 

plated onto LB plates containing ampicillin. Colonies formed from ligations were grown 

overnight in 3ml of LB + Ampicillin. 1.5ml of overnight culture was subjected to 

EasyPrep lysis and 5µl used for digestion with EcoRI and HindIII restriction enzymes to 

insure that the KS+ vector contained the respective afap1l1 insert. If the digest did drop 

out an EcoRI/HindIII band, this bacterial lysate was also subjected to digestion with BglII 

to insure that the insert was indeed mutated afap1l1. Once KS+ vectors containing the 

correct afap1l1 part 1 and afap1l1 part 2 inserts were determined, 5µg of each of these 

vectors was cut using the engineered BglII site in the overlap region of AFAP1L1 and a 

unique Sca1 site in the KS+ vector in the following manner: 

AFAP1L1 part 1 AFAP1L1 part 2 

3µl part 1 (5µg) 4.5µl part 2 
(5µg) 

4µl dH20 2.5µl dH2O 

1µl Buffer H 1µl Buffer H 

1µl BglII 1µl BglII 

1µl Sca1 1µl Sca1 

 

 Additionally, the KS+/afap1l1 part 1 was chosen to be phosphatased for one hour 

after digestion. Digests were run on a 1% Seakem agarose gel and stained for one hour 

with water containing ethidium bromide. The cut pCMV-SPORT6 vector should produce 

two bands, a 2790bp fragment that contains the afap1l1 part 1 insert and an 1158bp 

fragment. The cut pINCY vector should produce two bands, a 2479bp fragment that 
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contains afap1l1 part 2 and a 1794bp fragment. Fragments containing their respective 

inserts were eluted from the gel using the Invitrogen Quick Gel Extraction Kit. The 

KS+/afap1l1 part 1 and KS+/afap1l1 part 2 fragments were ligated together using T4 

ligase overnight at 16°C and bacteria were transformed and plated onto LB+Ampicillin 

plates. Colonies were picked, grown overnight in 3ml LB+Ampicillin and subjected to 

EasyPrep lysis. 5µl of lysate was digested using EcoRI and HindIII to look for a fragment 

consistent with full length afap1l1. A colony containing the correct banding pattern 

consistent with full length afap1l1 was chosen to grow up in 500ml of LB+Ampicillin 

overnight for midi prep. Vector KS+ containing full length afap1l1 was subjected to 

digestion with EcoRI and HindIII and full length afap1l1 was inserted into a pEGFP 

vector so as to utilize GFP tagged AFAP1L1. Additionally, the full length afap1l1 was 

also inserted into a pcDNA3.1+ vector so as to utilize an untagged AFAP1L1. 

Sequencing of pEGFP-AFAP1L1 confirmed that full length afap1l1 was expressed in the 

pEGFP vector.  

 

II. Creation and purification of a rabbit polyclonal antibody against AFAP1L1: 

1L1-CT 

 During early work with AFAP1L1, no commercial antibodies were available for 

use in molecular biology techniques. ProSci Incorporated of Poway, CA was 

commissioned by our lab to create an antibody against AFAP1L1. ProSci Inc. analyzed 

full length AFAP1L1 sequence and provided three possible antibody epitopes based upon 

regions of high hydrophilicity (H), antigenicity (A) and surface probability (SP) scored 

from 1-10, with 10 being the highest. 
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 Residue 82 
DLRDMPEDDGEPSK 

Residue 198 
EGKSPQPRHQWPSE 

Residue 714 
KPKSGETANKPQNS 

Turns 1 1 2 
H 8 8 8 
A 8 8 10 
SP 8 8 7 
 

 A BLAST search was performed on each epitope to determine suitability for a 

unique antibody that would not react with other proteins, including other AFAP family 

members. As of August 21, 2007, Residue 82 epitope was discarded due to similarity 

with the ubiquitin-protein ligase Tom1. Residue 198 epitope showed homology with 

human and mouse forms of AFAP1L1. Residue 714 epitope, which is near the C-

terminus, showed homology with the human form of AFAP1L1 and was chosen due to its 

lack of similarity with other proteins and also as a recommendation from ProSci Inc. that 

N- and C- termini epitopes tend to perform the best for western blotting and can perform 

better than higher ranked internal sequences. An immunogen of NH2-

K714PKSGETANKPQNS727-OH was synthesized by ProSci Incorporated and used to 

inject two separate rabbits, PAS12219 and PAS12220. 5ml of pre-immune serum was 

collected from each rabbit and rabbits were immunized with synthesized immunogen at 

Week 0 using 200mg/rabbit in Complete Freud’s Adjuvant. Rabbits were additionally 

immunized with 100mg/rabbit of immunogen in Incomplete Freud’s Adjuvant at Weeks 

2, 4 and 6. The first production bleed was collected at Week 5 with a 2nd bleed at Week 7, 

a 3rd bleed at Week 8 and a final bleed within five days of the 3rd bleed. Serum was 

shipped from ProSci Incorporated after each bleed and stored at -80°C.  

 Beginning with PAS12219, rabbit serum was purified using an Ultralink 

Iodoacetyl Gel peptide column from Pierce with 5mg immunogen C-
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KPKSGETANKPQNS cross-linked to the gel. The antibody column was prepared by 

first capping the end of a column tube and adding 3ml of Ultralink Iodoacetyl Gel bead 

slurry to the provided column so as to end with 1.5ml of gel bed as this would hold a total 

of 6mg of peptide. The gel bed was allowed to settle for 30 minutes and the bottom cap 

was removed to allow gel bed liquid to flow out while re-capping the column as the 

liquid meniscus reached the top of the gel bed so as to avoid the potential for air pockets. 

Five gel bed volumes (7.5ml) of Coupling Buffer (50mM Tris, 5mM EDTA, pH8.46) 

were added to the column and allowed to flow through until liquid neared the top of the 

gel bed. 5mg of AFAP1L1 peptide was brought up in 1.5ml of Coupling Buffer, saving a 

small portion for before binding optical density (OD) reading, and added to the column. 

The column was secured tight with parafilm and rotated at room temperature for 15 

minutes. The column was allowed to settle for 30 minutes and remaining buffer was 

allowed to flow out while keeping the flow through so as to compare to the before 

binding OD reading to determine how much protein was bound. The OD reading at 

wavelength 280 for peptide mixture before binding was 0.156. The OD reading for the 

flowthrough after binding was 0.050. It was determined that 32% of the protein came 

through in the flowthrough and 68% of the peptide remained bound to the column. The 

peptide column was washed with 3 gel bed volumes (4.5ml) of Coupling Buffer and 

allowed to drain until liquid reached the top of the gel bed. The column was then 

incubated with 1 gel bed volume (1.5ml) of Coupling Buffer containing 50mM L-

Cysteine, mixed and rotated for 15 minutes at room temperature so as to block any other 

peptide binding sites in the peptide column. The column was allowed to settle for 30 

minutes. With Couling Buffer with L-Cysteine still in the column, a column disc was 
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floated and soaked in the column so as to remove air bubbles from the disc. Using the 

provided cylinder, the disc was pushed down into the column to within 1mm of the gel 

bed without touching the gel bed. The column was then washed with 5 gel bed volumes 

(7.5ml) of 1M NaCl and then 5 gel bed volumes (7.5ml) of PBS with 0.02% NaN3. 1ml 

of PBS with 0.02% NaN3 was added to the column for preservation and it was stored 

upright at 4°C when not in use. 

 To pass serum over the column for the purpose of purifying antibody, the column 

and all solutions were allowed to come to room temperature so as to avoid introducing air 

bubbles into the column. Serum to be used (PAS12219 Bleed 1 for example) was thawed 

on ice and filtered through a 0.45µm filter using a syringe so as to remove any buildup 

that would stop flow of the column. Once to room temperature, the column was washed 

with 5 gel bed volumes (7.5ml) of PBS with no azide. After washing, the serum was 

passed over the column at 4°C in 2ml aliquots, running the entire amount of serum over 

the column three times. Returning to room temperature, the column was washed with 5 

gel bed volumes (7.5ml) of PBS with no azide. To collect fractions, 750ul of Elution 

Buffer (100mM glycine, pH 2.3-3.0) was passed over the column. In the tube to collect 

fractions, 1/10 of the volume (75µl) of 1M Tris pH 7.5 was added so as to neutralize the 

low pH flowthrough. The OD of each fraction was read at 280nm as each fraction was 

collected so as to determine when peptide antibody came out of the column. For 

PAS12219 Bleed 1, 10 fractions were collected, resulting in ODs of 
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Fraction OD 280nm 

1 .360 

2 .327 

3 .264 

4 1.610 

5 1.168 

6 .413 

7 .413 

8 .057 

9 .057 

10 .051 

 When graphed, this showed that the antibody eluted from the column in fractions 

4-7. After antibody was successfully eluted from the column, the column was washed 

with 5 gel bed volumes (7.5ml) of PBS following by 5 gel bed volumes (7.5ml) with PBS 

containing 0.02% NaN3 and stored at 4°C with 1ml PBS containing NaN3 until the next 

antibody purification would be needed. 

 In addition to determining the OD reading for each fraction collected, an 11% 

acrylamide gel was run and stained with Coomassie stain so as to visualize any heavy and 

light chains present in the fractions. Although the OD reading can tell that peptide is 

present, visualization of the heavy and light chains is necessary to show that the peptide 

is antibody. Once confirmed, antibody can be used in various applications such as 

western blotting, immunohistochemistry, immunoprecipitation and other various 

molecular biology techniques.  
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Figure 1 
 
ATG GAC CGA GGC CAG GTG CTG GAG CAG CTG CTC CCA GAG CTC ACC GGG CTG CTC AGC CTC CTG GAC CAC GAG  
 M   D   R   G   Q   V   L   E   Q   L   L   P   E   L   T   G   L   L   S   L   L   D   H   E  
TAC CTC AGC GAT ACC ACC CTG GAA AAG AAG ATG GCC GTG GCC TCC ATC CTG CAG AGC CTG CAG CCC CTT CCA  
 Y   L   S   D   T   T   L   E   K   K   M   A   V   A   S   I   L   Q   S   L   Q   P   L   P 
GCA AAG GAG GTC TCC TAC CTG TAT GTG AAC ACA GCA GAC CTC CAC TCG GGG CCC AGC TTC GTG GAA TCC CTC  
 A   K   E   V   S   Y   L   Y   V   N   T   A   D   L   H   S   G   P   S   F   V   E   S   L 
TTT GAA GAA TTT GAC TGT GAC CTG AGT GAC CTT CGG GAC ATG CCA GAG GAT GAT GGG GAG CCC AGC AAA GGA  
 F   E   E   F   D   C   D   L   S   D   L   R   D   M   P   E   D   D   G   E   P   S   K   G 
GCC AGC CCT GAG CTA GCC AAG AGC CCA CGC CTG AGA AAC GCG GCC GAC CTG CCT CCA CCG CTC CCC AAC AAG  
 A   S   P   E   L   A   K   S   P   R   L   R   N   A   A   D   L   P   P   P   L   P   N   K 
CCT CCC CCT GAG GAC TAC TAT GAA GAG GCC CTT CCT CTG GGA CCC GGC AAG TCG CCT GAG TAC ATC AGC TCC  
 P   P   P   E   D   Y   Y   E   E   A   L   P   L   G   P   G   K   S   P   E   Y   I   S   S 
CAC AAT GGC TGC AGC CCC TCA CAC TCG ATT GTG GAT GGC TAC TAT GAG GAC GCA GAC AGC AGC TAC CCT GCA  
 H   N   G   C   S   P   S   H   S   I   V   D   G   Y   Y   E   D   A   D   S   S   Y   P   A 
ACC AGG GTG AAC GGC GAG CTT AAG AGC TCC TAT AAT GAC TCT GAC GCA ATG AGC AGC TCC TAT GAG TCC TAC  
 T   R   V   N   G   E   L   K   S   S   Y   N   D   S   D   A   M   S   S   S   Y   E   S   Y 
GAT GAA GAG GAG GAG GAA GGG AAG AGC CCG CAG CCC CGA CAC CAG TGG CCC TCA GAG GAG GCC TCC ATG CAC  
 D   E   E   E   E   E   G   K   S   P   Q   P   R   H   Q   W   P   S   E   E   A   S   M   H 
CTG GTG AGG GAA TGC AGG ATA TGT GCC TTC CTG CTG CGG AAA AAG CGT TTC GGG CAG TGG GCC AAG CAG CTG  
 L   V   R   E   C   R   I   C   A   F   L   L   R   K   K   R   F   G   Q   W   A   K   Q   L 
ACG GTC ATC AGG GAG GAC CAG CTC CTG TGT TAC AAA AGC TCC AAG GAT CGG CAG CCA CAT CTG AGG TTG GCA  
 T   V   I   R   E   D   Q   L   L   C   Y   K   S   S   K   D   R   Q   P   H   L   R   L   A 
CTG GAT ACC TGC AGC ATC ATC TAC GTG CCC AAG GAC AGC CGG CAC AAG AGG CAC GAG CTG CGT TTC ACC CAG  
 L   D   T   C   S   I   I   Y   V   P   K   D   S   R   H   K   R   H   E   L   R   F   T   Q 
GGG GCT ACC GAG GTC TTG GTG CTG GCA CTG CAG AGC CGA GAG CAG GCC GAG GAG TGG CTG AAG GTC ATC CGA  
 G   A   T   E   V   L   V   L   A   L   Q   S   R   E   Q   A   E   E   W   L   K   V   I   R 
GAA GTG AGC AAG CCA GTT GGG GGA GCT GAG GGA GTG GAG GTC CCC AGA TCC CCA GTC CTC CTG TGC AAG TTG  
 E   V   S   K   P   V   G   G   A   E   G   V   E   V   P   R   S   P   V   L   L   C   K   L 
GAC CTG GAC AAG AGG CTG TCC CAA GAG AAG CAG ACC TCA GAT TCT GAC AGC GTG GGT GTG GGT GAC AAC TGT  
 D   L   D   K   R   L   S   Q   E   K   Q   T   S   D   S   D   S   V   G   V   G   D   N   C 
TCT ACC CTT GGC CGC CGG GAG ACC TGT GAT CAC GGC AAA GGG AAG AAG AGC AGC CTG GCA GAA CTG AAG GGC  
 S   T   L   G   R   R   E   T   C   D   H   G   K   G   K   K   S   S   L   A   E   L   K   G 
TCA ATG AGC AGG GCT GCG GGC CGC AAG ATC ACC CGT ATC ATT GGC TTC TCC AAG AAG AAG ACA CTG GCC GAT  
 S   M   S   R   A   A   G   R   K   I   T   R   I   I   G   F   S   K   K   K   T   L   A   D 
GAC CTG CAG ACG TCC TCC ACC GAG GAG GAG GTT CCC TGC TGT GGC TAC CTG AAC GTG CTG GTG AAC CAG GGC  
 D   L   Q   T   S   S   T   E   E   E   V   P   C   C   G   Y   L   N   V   L   V   N   Q   G 
TGG AAG GAA CGC TGG TGC CGC CTG AAG TGC AAC ACT CTG TAT TTC CAC AAG GAT CAC ATG GAC CTG CGA ACC  
 W   K   E   R   W   C   R   L   K   C   N   T   L   Y   F   H   K   D   H   M   D   L   R   T 
CAT GTG AAC GCC ATC GCC CTG CAA GGC TGT GAG GTG GCC CCG GGC TTT GGG CCC CGA CAC CCA TTT GCC TTC  
 H   V   N   A   I   A   L   Q   G   C   E   V   A   P   G   F   G   P   R   H   P   F   A   F 
AGG ATC CTG CGC AAC CGG CAG GAG GTG GCC ATC TTG GAG GCA AGC TGT TCA GAG GAC ATG GGT CGC TGG CTC  
 R   I   L   R   N   R   Q   E   V   A   I   L   E   A   S   C   S   E   D   M   G   R   W   L 
GGG CTG CTG CTG GTG GAG ATG GGC TCC AGA GTC ACT CCG GAG GCG CTG CAC TAT GAC TAC GTG GAT GTG GAG  
 G   L   L   L   V   E   M   G   S   R   V   T   P   E   A   L   H   Y   D   Y   V   D   V   E 
ACC TTA ACC AGC ATC GTC AGT GCT GGG CGC AAC TCC TTC CTA TAT GCA AGA TCC TGC CAG AAT CAG TGG CCT  
 T   L   T   S   I   V   S   A   G   R   N   S   F   L   Y   A   R   S   C   Q   N   Q   W   P 
GAG CCC CGA GTC TAT GAT GAT GTT CCT TAT GAA AAG ATG CAG GAC GAG GAG CCC GAG CGC CCC ACA GGG GCC  
 E   P   R   V   Y   D   D   V   P   Y   E   K   M   Q   D   E   E   P   E   R   P   T   G   A 
CAG GTG AAG CGT CAC GCC TCC TCC TGC AGT GAG AAG TCC CAT CGT GTG GAC CCG CAG GTC AAA GTC AAA CGC  
 Q   V   K   R   H   A   S   S   C   S   E   K   S   H   R   V   D   P   Q   V   K   V   K   R 
CAC GCC TCC AGT GCC AAT CAA TAC AAG TAT GGC AAG AAC CGA GCC GAG GAG GAT GCC CGG AGG TAC TTG GTA  
 H   A   S   S   A   N   Q   Y   K   Y   G   K   N   R   A   E   E   D   A   R   R   Y   L   V 
GAA AAA GAG AAG CTG GAG AAA GAG AAA GAG ACG ATT CGG ACA GAG CTG ATA GCA CTG AGA CAG GAG AAG AGG   
 E   K   E   K   L   E   K   E   K   E   T   I   R   T   E   L   I   A   L   R   Q   E   K   R 
GAA CTG AAG GAA GCC ATT CGG AGC AGC CCA GGA GCA AAA TTA AAG GCT CTG GAA GAA GCC GTG GCC ACC CTG  
 E   L   K   E   A   I   R   S   S   P   G   A   K   L   K   A   L   E   E   A   V   A   T   L 
GAA GCT CAG TGT CGG GCA AAG GAG GAG CGC CGG ATT GAC CTG GAG CTG AAG CTG GTG GCT GTG AAG GAG CGC  
 E   A   Q   C   R   A   K   E   E   R   R   I   D   L   E   L   K   L   V   A   V   K   E   R 
TTG CAG CAG TCC CTG GCA GGA GGG CCA GCC CTG GGG CTC TCC GTG AGC AGC AAG CCC AAG AGT GGG GAA ACT  
 L   Q   Q   S   L   A   G   G   P   A   L   G   L   S   V   S   S   K   P   K   S   G   E   T 
GCA AAT AAA CCC CAG AAC AGC GTT CCA GAG CAA CCT CTC CCT GTC AAC TGT GTT TCT GAG CTG AGG AAG AGG  
 A   N   K   P   Q   N   S   V   P   E   Q   P   L   P   V   N   C   V   S   E   L   R   K   R 
AGC CCA TCC ATC GTA GCC TCC AAC CAA GGA AGG GTG CTA CAG AAA GCC AAG GAA TGG GAA ATG AAG AAG ACC  
 S   P   S   I   V   A   S   N   Q   G   R   V   L   Q   K   A   K   E   W   E   M   K   K   T 
TAG 
STOP 
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Figure 1: Amino acid sequence of AFAP1L1 with highlighted overlap 

The pCMV-SPORT6 vector contained coding sequence for amino acids 1-340 of afap1l1. 

The pINCY vector contained coding sequence for amino acids 274-768 of afap1l1. An 

overlap region (highlighted) between the two sequences encompassed 67 amino acids 

from amino acid 274 to 340. A BstYI restriction site in the overlap region was changed to 

a unique BglII restriction site by mutation of amino acid 329, changing coding sequence 

from TCC to TCT to create the BglII site while keeping the amino acid a serine.  
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Figure 2 

 

A. 

pSPORT6.mut.check.      CGAGAGCAGGCCGAGGAGTGGCTGAAGGTCATCCGAGAAGTGAGCAAGCCAGTTGGGGGA 151 

AFAP1L1                 CGAGAGCAGGCCGAGGAGTGGCTGAAGGTCATCCGAGAAGTGAGCAAGCCAGTTGGGGGA 960 

                        ************************************************************ 

 

pSPORT6.mut.check.      GCTGAGGGAGTGGAGGTCCCCAGATCTCCAGTCCTCCTGTGCAAGTTGGACCTGGACAAG 211 

AFAP1L1                 GCTGAGGGAGTGGAGGTCCCCAGATCCCCAGTCCTCCTGTGCAAGTTGGACCTGGACAAG 1020 

                        ************************** ********************************* 

 

 

 

B. 

pINCY.mut.check.      CGAGAGCAGGCCGAGGAGTGGCTGAAGGTCATCCGAGAAGTGAGCAAGCCAGTTGGGGGA 118 

AFAP1L1               CGAGAGCAGGCCGAGGAGTGGCTGAAGGTCATCCGAGAAGTGAGCAAGCCAGTTGGGGGA 960 

                      ************************************************************ 

 

pINCY.mut.check.      GCTGAGGGAGTGGAGGTCCCCAGATCTCCAGTCCTCCTGTGCAAGTTGGACCTGGACAAG 178 

AFAP1L1               GCTGAGGGAGTGGAGGTCCCCAGATCCCCAGTCCTCCTGTGCAAGTTGGACCTGGACAAG 1020 

                      ************************** ********************************* 

 

 

Figure 2. Mutation of amino acid 329 in afap1l1 

Afap1l1 part 1 in the pCMV-SPORT6 vector (A) and afap1l1 part 2 in the pINCY vector 

(B) were successfully mutated from TCC to TCT (highlighted) so as to introduce a 

unique BglII restriction enzyme site while keeping the amino acid a serine.  
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CHAPTER 5 

 

General Discussion 
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 The Actin Filament Associated Proteins represent a family of adaptor proteins 

that have similar overall structure while each displays a signature function. All three 

family members share modular domain structure with at least one N-terminal SH3 

binding motif, at least one N-terminal SH2 binding motif, two PH domains in the central 

portion of the protein which surround a region rich in serine and threonine residues, at 

least one SH2 binding motif in the C-terminal region and a helical region at the C-

terminus. In AFAP1, this region is known to contain a helical leucine zipper motif and 

actin binding domain while AFAP1L1 also contains a putative leucine zipper and actin 

binding domain. AFAP1L2 contains a coiled-coil in this region and is hypothesized to 

bind actin through a more C-terminal region (Baisden et al., 2001; Lodyga et al., 2010; 

Xu et al., 2007). It is the sequence similarity of the PH domains that define the AFAP 

proteins as a family. Although PH domains contain a characteristic helix-loop-helix 

structure, the amino acids within PH domains vary widely and little conservation is seen 

among proteins (DiNitto and Lambright, 2006). This is not true, however, for the AFAP 

proteins as they share 44% identity (81% similarity) in the PH1 domains and 40% 

identity (73% similarity) in their PH2 domains. The AFAP proteins may be 

evolutionarily related by two chromosomal duplications that are hypothesized to have 

taken place during the evolution of invertebrates to vertebrates (Dehal and Boore, 2005; 

Ohno, 1970). Conservation of overall structure through evolution may explain the high 

level of similarity between the PH domains of the different family members. Although 

similar in their modular domain, each AFAP family member has its own unique function 

that is characterized by its individual amino acid sequence. While AFAP1 has been 

intensively studied for its cellular function and binding abilities and AFAP1L2 has 
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currently been a topic of study for its role in the PI3K/Akt pathway, this dissertation 

served to define the cellular role of AFAP1L1 (Baisden et al., 2001; Lodyga et al., 2009).  

 So named for their ability to interact with actin filaments, the AFAP proteins may 

play pivotal roles in regulation of the actin cytoskeleton. Cytoskeletal rearrangement is 

indispensable to a cell and is responsible for a number of processes such as motility in 

embryogenesis and wound healing, immune cell adherence and movement, pathogen 

infection and invasion. Each AFAP family member has been shown to interact with actin 

(Flynn et al., 1993; Lodyga et al., 2010). AFAP1 plays a role in cell contractility by 

virtue of its ability to bind actin filaments and multimerize, thus bundling actin filaments 

together. The loss of AFAP1 results in a loss of stress fiber integrity (Dorfleutner et al., 

2007). AFAP1L2 translocates from the cytosol to the lamellipodium and interacts with 

branched F-actin networks in a Rac-dependent manner (Lodyga et al., 2010). AFAP1L1 

is shown to bind actin filaments and may play a similar role to AFAP1 in actin cross-

linking due to conservation of a putative leucine zipper. This may give AFAP1L1 the 

ability to bind other AFAP molecules and thus also play a role in actin filament cross-

linking and stress fiber formation. 

 While each AFAP family member encodes at least one SH3 binding motif, they 

vary in their ability to bind different proteins. The core amino acids of an SH3 binding 

motif, a PXXP motif, are surrounded by various amino acids that convey specificity for 

the binding of SH3 domains. The SH3 domains of AFAP1 and AFAP1L2 have been 

shown to interact with cSrc while the SH3 domain of AFAP1L1 has been shown to 

interact with cortactin (Guappone and Flynn, 1997; Xu et al., 2007).  This cortactin 
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interaction is unique to AFAP1L1 and may play an important role in cell motility and 

invasion.   

 Cortactin is an adaptor protein that is necessary for stabilization of actin 

branching in growing actin filaments and also for the formation of invadosomes. In its 

inactive state, cortactin displays diffuse cytoplasmic staining around the perinuclear 

region. Upon cellular stimulation with growth factors, cortactin moves from its 

perinuclear region to active sites of cytoskeletal branching where it binds to the sides of 

growing actin filaments and interacts with the Arp2/3 complex to stabilize branching 

points (Ammer and Weed, 2008). Cortactin is also found in cellular adhesions such as 

invadosomes and is necessary for their formation and function (Ayala et al., 2008). High 

levels of cortactin indicate poor prognosis in tumors as these tend to be more aggressive 

and have an increased ability to metastasize (Weaver, 2008). Although cellular levels of 

AFAP1L1 are relatively low in many cell lines, the cancer cell line MDA-MB-435 

expresses high levels of AFAP1L1. When comparing the endogenous localizations of 

AFAP1L1 and cortactin in unstimulated MDA-MB-435 cells, AFAP1L1 is found to 

decorate actin filaments and have some cytoplasmic staining in the perinuclear region 

while cortactin is found in its expected perinuclear location. When active cSrc was 

transfected so as to create a transformed phenotype in these cells, both AFAP1L1 and 

cortactin moved to invadopodia. Cortactin is a substrate for cSrc phosphorylation on key 

tyrosine residues in the helical region and, upon their phosphorylation, is hypothesized to 

undergo a conformation change under which cortactin may bind actin filaments more 

efficiently and also open up binding sites for other proteins (Ammer and Weed, 2008). It 

is through the phosphorylation of cortactin by active cSrc and subsequently activated 
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kinases which may have allowed for AFAP1L1 binding to the SH3 domain of cortactin 

through its SH3 binding motif. AFAP1L1 and cortactin were then able to localize to 

invadopodia and, by virtue of their binding motifs, act as scaffolds for other invadosome-

related proteins. 

  Interestingly, it was found that upon the overexpression of GFP-AFAP1L1, A7r5 

smooth muscle cells expressing high levels of GFP-AFAP1L1 had the ability to 

spontaneously dissolve their stress fibers and form podosomes in which both GFP-

AFAP1L1 and cortactin colocalized. This is similar to the expression of AFAP1 as 

AFAP1 is found to decorate actin filaments on an endogenous level. In unstimulated 

cells, the AFAP1 binding partner cSrc is found in an inactive state on vesicles in the 

perinuclear region. AFAP1 moves to the perinuclear region where it binds to and 

activates cSrc which then moves as a complex to sites of actin rearrangement (Walker et 

al., 2007). High levels of exogenous GFP-AFAP1 have the ability to induce podosome 

formation without cell stimulation in a subset of cells. This was attributed to the culture 

conditions of the cells in which endogenous levels of PKCα may become activated, thus 

activating the high levels of AFAP1 and in turn activating cSrc and podosome formation 

(Dorfleutner et al., 2008). This may also be the case for AFAP1L1; however it is 

interesting that while many cells overexpresse GFP-AFAP1L1, cells expressing low 

levels of GFP-AFAP1L1 showed highly formed stress fibers while only those with the 

highest levels of GFP-AFAP1L1 expression formed spontaneous podosomes. Perhaps 

there is an intrinsic ability of AFAP1L1 to induce podosome formation. This ability may 

allow AFAP1L1 to move to cortactin and ferry it to invadosomes, much like the activity 

of AFAP1 and cSrc.  
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 Despite the fact that the mechanism for the relocation of AFAP1L1 to 

invadosomes remains unclear, AFAP1L1 is a newly described invadosome protein, 

adding to the large array of cytoskeletal and signaling proteins found in these complexes. 

Invadosomes have both physiological and pathological roles. The ability of a cell to cross 

tissue barriers is necessary in the case of immune cells but is exploited by transformed 

cancer cells which use the process for metastasis (Linder, 2009). While podosomes have 

been extensively studied in a number of different cell types, they have recently been 

shown to play a role in acetylcholine receptor clustering on the skeletal muscle side of the 

neuromuscular junction and this is their first description for a role in neuronal synapses 

(Proszynski et al., 2009). These podosomes are necessary for remodeling of the 

postsynaptic membrane and are an integral part of its maturity. The neuromuscular 

junction is quite large when compared to typical synapses between neurons, and these 

smaller synapses are not large enough to contain conventional podosomes. However, 

neuronal synapses do share a similar maturation pathway with the neuromuscular 

junction and it is hypothesized that podosome-like complexes may be found within these 

synapses as they contain very similar proteins that are involved in actin reorganization 

(Proszynski et al., 2009).   

 The dendrite of a receiving neuron undergoes constant actin cytoskeletal 

reorganization, known as synaptic plasticity, to strengthen or weaken its receiving signal. 

Dendritic spines are small protrusions from the dendrite which receive signals from the 

presynaptic neuron and have the ability to change their shape or number quickly in 

response to receiving stimuli. Dendritic spines cluster neurotransmitter receptors to an 

area at the tip of the spine known as the postsynaptic density which houses a diverse 

174



 

 

group of adaptor proteins that link transmembrane neurotransmitter receptors to the 

underlying actin cytoskeleton so as to transmit the receiving signal (Boeckers, 2006). 

Cortactin is one of the major constituents of the postsynaptic density as its role in 

cytoskeletal rearrangement is paramount to the function of the dendritic spine (Hering 

and Sheng, 2003; Sekino et al., 2007).   

 Immunohistochemical detection shows a differential expression of AFAP1L1 

from AFAP1 in the adult human brain. AFAP1L1 has a unique localization around the 

Purkinje neurons and granule cells of the cerebellum and is also found surrounding the 

neurons of the dentate nucleus. Although we cannot identify the exact location of 

AFAP1L1 through this immunohistochemical signal, it is possible that these 

immunoreactive sites represent the clustering of actin associated proteins at the 

postsynaptic density in which AFAP1L1 may play a role. The ability of AFAP1L1 to 

localize with actin filaments, bind to cortactin and be involved in podosome formation 

may play a role in the maturation of neuronal synapses by neurotransmitter clustering and 

up and down regulation of dendritic spines. 

 Work by Tabakoff et al. supports the hypothesis of a role for AFAP1L1 in the 

postsynaptic density. AFAP1L1 was shown to be upregulated in the brains of rats that 

became addicted to alcohol and is considered a candidate gene that influences 

dependency versus non-dependency. Tabakoff et al. hypothesize that AFAP1L1 plays a 

role in receptor trafficking by virtue of its actin filament association and propose its 

location in the neuronal synapse to be at the postsynaptic density in association with F-

actin and other cytoskeletal associated proteins (Tabakoff et al., 2009).  
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 The Oncomine database predicts high expression levels of AFAP1L1 in cancers 

of the nervous system, particular neuroblastoma and glioblastoma. Neuroblastoma occurs 

most commonly in children from bundles of immature nerve fibers and has a fairly good 

prognosis while glioblastoma arises from glial cells and is the most common and most 

aggressive primary brain tumor in humans (Maris, 2010; Miller and Perry, 2007). We 

have shown that AFAP1L1 can be detected by immunohistochemistry in glial cells. 

AFAP1 has also been shown to play a role in glioblastoma as it is highly expressed in 

last-stage glioblastoma cell lines. This expression overlaps with the expression of the Src 

family kinases cSrc, Fyn and Lyn. AFAP1 is poised in glioblastoma to relay signals 

through SFK that that can promote proliferation and invasion of the tumor (Clump, 

2008). AFAP1L1 may play a similar role and its expression in glial tumors may enhance 

the aggressiveness of the tumor. 

 The Oncomine database also predicts high levels of AFAP1L1 in melanoma. 

Melanoma arises from melanin-producing melanocytes in the skin and is considered a 

very serious and aggressive form of cancer (Berwick, 2006). Cortactin is known to be 

highly increased in metastatic melanoma and its aberrant expression may have a role in 

tumor progession (Xu et al., 2010). While we have not tested for levels of AFAP1L1 in 

melanoma in our studies, our observations of high levels of AFAP1L1 in MDA-MB-435 

cells provides as intriguing idea that AFAP1L1 may play a role in melanoma as well. 

MDA-MB-435 cells were originally isolated in 1978 from a pleural effusion of a breast 

cancer patient (Cailleau et al., 1978). Considered a highly aggressive and metastatic form 

of breast cancer, the MDA-MB-435 cell line was used in many studies to determine the 

signaling pathways of breast cancer cells until it was noticed by Ross et al. that MDA-
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MB-435 cells did not cluster with other breast cancer cell lines based upon their mRNA 

expression patterns and instead clustered among various melanoma cell lines (Ross et al., 

2000). Many studies have taken place since this discovery to determine the exact origin 

of MDA-MB-435 cells. Theories range from misidentification of the cell line to 

contamination with and eventual succession by the M14 melanoma cell line. 

Additionally, it is hypothesized that the MDA-MB-435 cell line was created from an 

undiagnosed metastatic melanoma lesion and not a breast lesion from the beginning. 

Multiple studies have shown that MDA-MB-435 cells do not express genes typically 

found in breast cancer and instead express those involved in melanoma. Through 

extensive gene expression profiling, SNP profiling and karyotyping, MDA-MB-435 cells 

are considered to be more melanocytic in nature than related to breast cells. Regardless of 

their origin, AFAP1L1 expression levels are high in MDA-MB-435 cells. If it is true that 

these cells are indeed melanocytic or have taken on a melanocytic genotype, it is 

intriguing that AFAP1L1 and cortactin are highly expressed in conjuction with each other 

in cancer.  

 AFAP1L1 represents a newly identified AFAP family member that may have 

arisen from AFAP1 through gene duplication and plays a role in the regulation of the 

actin cytoskeleton. Through its unique interaction with cortactin, AFAP1L1 may play a 

role in motility and invasion as witnessed by its ability to localize to invadosomes and 

induce spontaneous podosomes upon high levels of overexpression. The distinct 

expression of AFAP1L1 in the area surrounding the Purkinje neurons and granule cells of 

the cerebellum as well as the neurons of the dentate nucleus implies that AFAP1L1 may 

play a role in these areas, particularly in the postsynaptic density which is a site of high 
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actin dynamics. As podosomes have recently been described in the neuromuscular 

junction, it is possible that similar complexes occur in neuronal synapses at the 

postsynaptic density and AFAP1L1 is a regulator of these complexes to govern receptor 

trafficking and clustering. The unique staining of AFAP1L1 in the brain is also supported 

by the fact that AFAP1L1 is predicted to be high in cancers of the central nervous 

system, particularly glioblastoma, as we find high levels of AFAP1L1 in glial cells. This 

interaction with cortactin and ability to alter the actin cytoskeleton may allow AFAP1L1 

to play a role in normal cellular physiological processes involving actin dynamics and to 

also a play a role in the metastatic ability of cancer. 
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ABSTRACT 

 

Enhanced expression and activity of cSrc is associated with ovarian cancer progression.  

Generally, cSrc does not contain activating mutations; rather its activity is increased in 

response to signals that effect a conformational change that releases its autoinhibition.  In 

this report we analyzed ovarian cancer tissues for expression of a cSrc-activating protein, 

AFAP-110. AFAP-110 activates cSrc through a direct interaction that releases it from its 

autoinhibited conformation.  Immunohistochemical analysis revealed a concomitant 

increase of AFAP-110 and cSrc in ovarian cancer tissues. An analysis of the AFAP-110 

coding sequence revealed the presence of a nonsynonymous, single nucleotide 

polymorphism (SNP) that resulted in a change of Ser403 to Cys403. In cells that express 

enhanced levels of cSrc, AFAP-110403C directed the activation of cSrc and the formation 

of podosomes independently of input signals, in contrast to wild-type AFAP-110. We 

therefore propose that under conditions of cSrc over-expression, the polymorphic variant 

of AFAP-110 promotes cSrc activation.  Further, these data indicate a mechanism by 

which an inherited genetic variation could influence ovarian cancer progression and be 

used to predict the response to targeted therapy. 
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INTRODUCTION 

 Ovarian cancer, the most lethal gynecological malignancy, is characterized by 

tumor disruption of the ovarian capsule and dissemination and seeding of the pelvic and 

abdominal cavities (Naora and Montell, 2005).  A combination of unreliable screening 

techniques, unspecific symptoms, and chemotherapy resistance results in 15,000 

mortalities per year in the United States (Jemal et al., 2007).  BRCA1 and BRCA2 are 

relevant for the disease and mutations of these genes are found in approximately 15% of 

ovarian cancer cases (Pal et al., 2005; Risch et al., 2006).  However, the majority of cases 

consist of inconspicuous associations between inherited susceptibility and the 

environment.  These associations may be explained by haplotype mapping studies, which 

predict that single nucleotide polymorphisms (SNPs) are not inherited independently, but 

instead associate with one another, as well as with environmental stimuli, producing the 

disease (Goldstein and Cavalleri, 2005).  While SNPs that influence drug metabolism and 

cancer-related symptoms are described (Reyes-Gibby et al., 2008), little is known about 

genetic variants that modulate tumorigenesis.  Identification of these genes may enhance 

our understanding of the progression of neoplasms such as ovarian cancer.  In addition, 

these polymorphisms may serve as biomarkers that predict susceptibility to cancer or 

response to therapy.   

 One protein contributing to ovarian cancer progression is cSrc. This tyrosine 

kinase is over-expressed and activated in ovarian cancer cell lines and ovarian tumors 

(Wiener et al., 2003).  cSrc promotes motility and invasion, the alteration of adhesion, 

and epithelial-mesenchymal transition (Frame, 2004; Yeatman, 2004).  In addition, cSrc 

contributes to chemotherapy resistance, as inhibiting cSrc restores sensitivity to paclitaxel 
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(Chen et al., 2005; George et al., 2005).  cSrc activation does not correlate with intrinsic 

mutations or SNPs; rather, signals from growth factors in the tumor microenvironment or 

intracellular activators of cSrc direct cSrc activation.  A few cSrc activators have genetic 

variations that potentially modulate cSrc activity (Chen et al., 2005; George et al., 2005), 

and these may eventually serve as biomarkers useful for identifying the tumors most 

likely to respond to cSrc inhibition.   

 One cSrc activator, the actin-filament associated protein of 110 kDa (AFAP-110) 

is encoded by a polymorphic gene.  The NCBI dsSNP database identifies a 

nonsynonymous C1210G coding substitution in exon 9 that predicts a serine to cysteine 

change at amino acid 403 (AFAP-110403C) 

(http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=60312).  AFAP-110, via its 

intrinsic multimerization and a carboxy-terminal actin-binding domain, promotes actin 

filament cross-linking (Baisden et al., 2001; Qian et al., 2004).  Additionally, AFAP-110 

relays signals from PKCα that activate cSrc (Gatesman et al., 2004; Qian et al., 2002).  

These functions are autoinhibited by an intermolecular interaction between the carboxy-

terminal leucine-zipper motif and an amino-terminal pleckstrin homology domain (PH1) 

(Qian et al., 2002; Qian et al., 2004).   Upon experimental deletion of the leucine zipper 

domain (AFAP-110ΔLzip) or upon PKCα activation, AFAP-110 is uninhibited and 

facilitates cSrc activation (Qian et al., 2002; Qian et al., 2004).  This correlates with 

trafficking of activated cSrc to the cell membrane and the formation of the actin-rich 

invasive structures, podosomes (Gatesman et al., 2004; Walker et al., 2007). 

  To determine if AFAP-110 is positioned to activate cSrc in ovarian cancer, we 

performed immunohistochemical analysis on ovarian cancer tissues.  In doing so, we 
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demonstrated that AFAP-110 exhibited a concomitant increase in expression with cSrc.  

Using PCR analysis, we discovered that a polymorphism of AFAP-110 was expressed in 

1/4th of the population.  This polymorphic variant, AFAP-110403C, activated cSrc and 

triggered the formation of podosomes, suggesting that this variant of AFAP-110 may 

contribute to the progression of ovarian cancer. 
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MATERIALS AND METHODS 

Reagents 

The rabbit anti-human cortactin polyclonal antibody was purchased from Abcam 

(Cambridge, MA, USA).  The AFAP-110 antibody F1 was previously characterized 

(Qian et al., 1999).  The mouse anti-avian Src monoclonal antibody (clone EC10) was 

obtained from Upstate Biotechnology (Lake Placid, NY, USA).  The rabbit anti-human 

cSrc monoclonal antibody (clone EG107) was from Novus Biologicals (Littleton, CO, 

USA). The rabbit anti-phospho-Src (Tyr416) monoclonal antibody (clone 100F9) was 

purchased from Cell Signaling (Danvers, MA) and the rabbit anti-phospho-Src (Tyr418) 

polyclonal antibody was from Biosource (Camarillo, CA, USA).  Alexa Fluor secondary 

antibodies and fluorescently-labeled phalloidins were purchased from Molecular Probes. 

TRITC-phalloidin was purchased from Sigma (St Louis, MO, USA).   

 

Cell culture 

Mouse embryo fibroblasts (MEF), MEFs devoid of Src, Yes, and Fyn (SYF) and SYF 

cells re-expressing cSrc (SYF-cSrc) were obtained from the ATCC (Rockville, MD, 

USA).  Cell lines were cultured in high glucose Dulbecco's modified Eagle's medium 

(DMEM) supplemented with 10% fetal calf serum, 2 mM glutamine, 100 U/mL  

penicillin and 100 µg/mL streptomycin.   

 

Study subjects and tissue samples  

280 normal tissues and 124 serous papillary ovarian carcinomas in stage 3 or stage 4 

were obtained from the Cooperative Human Tissue Network, Pediatric Division, 
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Children’s Hospital, Columbus, OH, USA and from the WVU Pathology Department.  

Samples were collected prior to drug treatment and snap-frozen at –80oC until 

RNA/DNA extraction was performed.  All specimens were diagnosed and classified by 

pathologists.   

 

cDNA preparation and RT-PCR 

From the studied specimens, total cellular RNA was isolated and purified by hot 

phenol/chloroform extraction.  Purified RNAs were precipitated and dissolved in DEPC-

treated water.  Through reverse transcription, using the SuperScript Preamplification 

System, cDNAs were generated with oligo-dT primers from 5 µg of total RNA per 

sample (Reverse Transcription System, Promega, Madison, WI, USA). Exon 9 of the 

AFAP-110 gene which contains the SNP for 403C was amplified by the polymerase 

chain reaction (PCR).  The primer set used for amplification contained the sequence of 

the 6 intron bases and the 20 exon bases that flank each end of exon 9 

(CCGCAGGCTATCTGAACGTGCTCTCC and 

TCCTACCTCCAATACTGCAACCTCCT). The PCR conditions were 95oC for 3 

minutes flowed by 40 cycles of 95oC for 30 seconds, 58oC for 30 seconds and 72oC for 

45 seconds; and then 1 cycle of 72oC for 10 minutes.  

 

DNA sequencing and genotyping 

PCR products were separated on agarose gel and purified using the QIAQuick Gel 

Extraction Kit (Qiagen, Valencia, CA, USA).  The purified fragments were sequenced to 

identify AFAP-110 mutations using the CEQ 8000 Genetic Analysis System with 
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GenomeLab DTCS-Quick Start Kit (Beckman Coulter, Fullerton, CA, USA) and then 

using ABI Prism DNA Sequencer with BigDye Terminator Cycle Sequencing Kit 

(Applied Biosystems, Foster City, CA, USA) to confirm identified mutations.  In 

addition, sequence variants were confirmed in duplicate independent PCR amplifications 

and sequencing reactions to insure that the mutations were not a result of PCR artifact.     

 

Immunohistochemical methods 

Immunohistochemistry was performed on 50 serous papillary ovarian carcinomas that 

were paraffin-embedded and cut into 5 μm-thick sections and mounted on positive-charge 

coated slides.  Tissue sections were dried overnight in a 45º C oven, then deparaffinized, 

rehydrated, and subjected to heat-induced epitope retrieval for two hours in 1 mM citrate 

buffer (pH 6.00) in an 80º C water bath.  Endogenous peroxide activity was blocked with 

3% hydrogen peroxide and was followed by treatment with a serum-free protein blocker 

to block nonspecific binding.  Following each step of the immunoreaction except the 

protein blocker, sections were rinsed in Tris-buffered saline with Tween.  Tissues were 

incubated for two hours with anti-AFAP-110 antibody (F1, 6 μg/mL) at a dilution of 1:10 

or with anti-cSrc (EG107, diluted 1:50) in 10% normal horse serum.  Negative controls 

(i.e., preimmune serum or normal rabbit IgG) were incubated in 10% normal horse 

serum.  Sections were incubated with biotinylated secondary link antibody, followed by 

treatment with streptavidin peroxidase and stained with diaminobenzidine substrate-

chromogen solution.  Counterstaining was performed with hematoxylin, followed by a 

water rinse and bluing solution.  Tissues were then dehydrated and coverslipped.   
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Plasmid constructs 

Mutagenesis was performed on human AFAP-110 to generate AFAP-110403C.  AFAP-

110 and AFAP-110403C were cloned into pEGFP-C3 (Clontech, Mountain View, CA, 

USA) as previously described (Qian et al., 2002).  The pGEX-6P-1 vector from 

Amersham Pharmacia Biotech was used to create fusion proteins expressing the PH2 

domain of AFAP as previously described (Qian et al., 2004).  The pGexX-6P-1 PH2 
403C 

construct was created by PCR cloning the PH2403C fragment from the pEGFP vector with 

BamHI and EcoRI ends and subsequent cloning into the pGEX-6P-1 vector.  Human 

AFAP-110 wild-type and AFAP110403C cDNA were PCR amplified and ligated into 

pFLAG CMV vector using EcoRI and XhoI sites to generate Flag-tagged AFAP-110.   

 

Immunofluorescence   

Transfection of either GFP AFAP-110 or GFP AFAP-110403C into MEF, SYF, and SYF-

cSrc cells for immunofluorescence was carried out using either Lipofectamine PLUS 

(Invitrogen, Carlsbad, CA, USA) or Nucleofector (Amaxa, Walkersville, MD, USA) 

according to the manufacturer’s specification.  Cells were plated on glass coverslips 

immediately after transfection or allowed to recover for 24 hr after transfection and then 

plated on glass coverslips coated with 10 µg/ml fibronectin (BD Bioscience, San Jose, 

CA, USA).  Cells were serum starved for 12 hours prior to fixation or left untreated as 

indicated in the results section.  Fixation, permeabilization, and staining procedures, 

including antibody dilutions, were performed as previously described (Gatesman et al., 

2004).  Confocal images were acquired with a Zeiss LSM 510 microscope with an 

average slice thickness of 1 µm.  Fluorescence channels were sequentially recorded using 
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the multi-track recording module.  Fluorescence images were obtained with a Zeiss 

Axiovert 200M microscope.  Images were subsequently analyzed with LSM 510 

software, Adobe Photoshop, and Image J (Rasband, W.S., ImageJ, U. S. National 

Institutes of Health, Bethesda, Md, USA, http://rsb.info.nih.gov/ij/, 1997-2007).  

 

Quantification of podosomes 

Actin-rich structures at the ventral surface of cells were identified as podosomes if three 

podosome markers: AFAP-110, cortactin, and phospho-cSrc colocalized.  250 to 300 

cells from two independent experiments were analyzed to determine the percentage of 

cells forming podosomes. The number of podosomes/cell was also counted from at least 

100 podosome-positive cells and the distribution of podosomes/cell was plotted.  

Student’s t-test with Bonferroni adjustment was used to detect the statistical significance. 

 

Western Blot analysis and cSrc activation assay 

Cultures or human ovarian tissue were lysed or homogenized in 

radioimmunoprecipitation assay buffer (RIPA) (50mM TrisHCl, pH7.4, 150mM NaCl, 

2mM EDTA, 1% NP-40) containing leupeptin, aprotinin, sodium vanadate, EGTA, and 

phenylmethylsulfonyl fluoride (PMSF). Protein concentration was determined by the 

BCA assay (Pierce) and equal amount of proteins were resolved on SDS-PAGE and 

transferred to PVDF. SYF cells were transfected with either Flag-AFAP-110 or Flag-

AFAP-110 403C and cSrc using Lipofectamine PLUS (Invitrogen).  48 hours after 

transfection, cells were stimulated and lysed in RIPA buffer. The levels of 

phosphorylated Y416 cSrc and total cSrc were assessed in the subsequent western blot 
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analysis. Antibody dilutions were performed according to previously described protocols 

(Gatesman et al., 2004). 

 

Molecular Modeling 

The PH domain of SKAP-hom (PDB ID#1U5E), a SKAP55 homologue and a Src-

associated adaptor protein, was used as a structural template to create a homology model 

of the AFAP PH2-WT domain using the homology module of Insight II.  SKAP-hom was 

chosen as the best template based on a BLAST server analysis and fold recognition 

programs such as PHYRE, 123D+, and FUGUE.  A sequence alignment was created 

using the Clustal W server and manual adjustments were made by integrating secondary 

structure prediction data for the PH2–WT domain from the PROF server with the known 

secondary structure of SKAP-hom.  The model was then minimized with 1000 steps of 

steepest descent minimization.  The structure was equilibrated for 300ps using explicit 

water molecules as solvent.  Equilibration was completed using the sander command of 

Amber 8.  The model was analyzed to ensure no mis-folded regions existed using the 

Profiles3D program in Insight II.  The sander command of Amber 8 was then used to 

create a 700ps trajectory of the protein domain in explicit water molecules and a 

hydrogen bond analysis for PH2403S was completed using the default parameters of the 

ptraj hbond command in Amber 8.  This process was repeated for PH2403C. 

 

Lipid dot-blot  

The lipid dot-blot was used to detect interactions between soluble GST proteins and 

phospholipids immobilized on nitrocellulose. Lipid spotted membranes (PIP strips, 
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Echelon Biosciences, Salt Lake City, UT, USA) were blocked 1 hour with 0.2% BSA in 

TBS and incubated overnight with 0.5 mg/ml recombinant GST protein in TBS. Bound 

GST protein was detected with rabbit anti-GST antibody (Sigma-Aldrich, St. Louis, MO, 

USA).  

 

Preparation of Lipid Vesicles  

Large unilamellar lipid vesicles (LUV) were prepared by the extrusion method using 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the indicated lipid (Avanti 

polar Lipids, Alabaster, AL, USA). Phospholipids were combined by molar ratio (10% 

indicated lipid, 90% POPC or 100% POPC) in chloroform: methanol: water (60: 30: 4), 

dried with a stream of N2, and evacuated to remove traces of solvent. The residue was 

hydrated with Buffer B (50 mM HEPES, pH 7.2, 80 mM KCl, and 3 mM EGTA) to 

attain 2 mM lipid sheets when resuspended by vortex. Samples were subjected to 10 

cycles of freeze thaw and then 10 passages through two layers of 0.10 μm polycarbonate 

filters under high pressure N2. The resulting LUV were used directly for sedimentation 

assays.  

 

Sedimentation assay for PtdIns lipids  

To detect pleckstrin homology domain protein associated with membrane phospholipids, 

a sedimentation assay was used. Samples containing 1.7 mM vesicle lipid and 0.025 mM 

recombinant GST fusion protein (PH1) were prepared in 150 μl binding buffer. Samples 

were incubated 60 min and centrifuged with a Beckman Airfuge for 15 min at room 

temperature. From each centrifuged sample, 16% of the supernatant and 100% of the 
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pellet were analyzed by SDS-PAGE. Gels were stained with SPYRO orange (Invitrogen 

Corp., Carlsbad, CA, USA). 
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RESULTS 

 

AFAP-110 and cSrc are over-expressed in ovarian cancer  

 Immunohistochemistry (IHC) determined that AFAP-110 and cSrc were over-

expressed in 30/33 and 32/33 ovarian cancer samples, respectively (Supplemental Table 

1).   In 60% of the samples, AFAP-110 was over-expressed focally (Figure 1A and B) 

while in 86% of samples cSrc expression was diffuse (Figure 1C and D). AFAP-110 

expression in blood vessels is observed in Figure 1B.  

 AFAP-110 and cSrc were not detected in normal ovaries (Figure 2, panels A-C), 

although blood vessels exhibited AFAP-110 expression (Figure 2, panel A).  AFAP-110 

was always expressed with cSrc in well-differentiated tumors (Figure 2, panels D-F).  

Further, AFAP-110 and cSrc always co-localized in desmoplastic regions (Figure 2, 

panels G-I).  AFAP-110 is over-expressed in undifferentiated tumor specimens (13 

specimens analyzed), but co-expression of AFAP-110 and cSrc was observed in only four 

of these specimens (Figure 2, panels J-L).  

 

A SNP in AFAP-110 

 Genetic variation within AFAP-110 was examined.  Analysis of AFAP-110 

cDNA isolated from the ovarian cancer cell lines OvCAR-3 and 2008 revealed a 

synonymous SNP (G297A, CCG to CCA) not found in the A2780, MCAS or SKOV3 

lines.  A nonsynonymous SNP (C1210G, TCT to TGT) identified in exon 9 resulted in a 

serine to cysteine (S403C) substitution and was also found in the OVCAR-3 and 2008 

cell lines.  
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 Ovarian tissues were screened to determine the prevalence of this nonsynonymous 

SNP, C1210G.   C1210G was identified in 19/91 (20.9%) tumor samples and 9/41 

(21.2%) tumor-adjacent normal tissues (Supplemental Table 2).  In addition, the 33 

samples used for IHC were analyzed and revealed the SNP in 9/33 samples (27.3%).   

 Tissue not associated with cancer was obtained to determine if the SNP was 

enriched in ovarian cancer.  C1210G was present in 80/280 normal tissues (28.6%) 

(Supplemental Table 2).  Thus, AFAP-110403C was not enriched in ovarian cancer. 

 We analyzed ovarian tumor tissues and adjacent normal tissue to confirm that 

cSrc was over-expressed in tissues that have either wild type AFAP-110 or AFAP-

110403C.  For comparison, we analyzed the intensity of cSrc expression in SYF cells, 

which have no Src family kinases (Klinghoffer et al., 1999), and SYF-cSrc cells, which 

over-express cSrc. Western blotting revealed that cSrc expression in tumors 

approximated that detected in SYF-cSrc cells (Figure 3A). An antibody that detected both 

forms of AFAP-110 indicated a reduction of AFAP-110 expression in adjacent normal 

tissues confirming the over-expression in tumors observed by IHC (Figure 3B). Over-

expression of cSrc in ovarian tumor samples was also confirmed.  

 

403C is located within the PH2 domain     

 The serine to cysteine (S403C) substitution is located in the second PH domain 

(PH2) of AFAP-110.  PH domains are characterized by seven β-strands that are linked by 

loop regions. These loop regions differ in length and amino acid composition and 

therefore confer the differential binding of PH domains to lipids (Haslam et al., 1993; 

Hyvonen et al., 1995; Lemmon et al., 1995; Macias et al., 1994; Mayer et al., 1993; 
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Musacchio et al., 1993; Yoon et al., 1994).  The S403C substitution occurs in a loop 

region between the 5th and 6th β-strand (Figure 4).  In AFAP-110, the hydroxyl R-group 

of Ser403 is predicted to interact with water 71% of the time (Figure 4 panel B).  

However, in AFAP-110403C, the sulfhydryl R-group of Cys403 is not predicted to be an 

efficient hydrogen binding partner (36%, Figure 4 panel D), indicating that the PH403C 

domain may exhibit differential binding specificity secondary to changes in structural 

flexibility.   

 PH domains participate in protein-protein interactions.  For example, PH domains 

in pleckstrin and in AFAP-110 (PH1) bind to PKCα (Abrams et al., 1995; Qian et al., 

2002).  Further, the PH1 domain of AFAP-110 binds to AFAP-110, stabilizing the 

AFAP-110 multimer (Qian et al., 2004).  To determine differential binding between 

AFAP-110 and AFAP-110403C, affinity precipitation assays using GST-fusion proteins 

were performed.  GST-PH2 was more efficient than GST-PH2403C in pulling down 

AFAP-110 (Figure 5).  CaOV3 cell lysates were used as a negative control, as they have 

AFAP-110 expression levels that are at or below detection limits (Gatesman et al., 2004).  

These data indicated that the S403C change may reduce the affinity and therefore the 

ability of the PH2 domain to bind to AFAP-110. Pull-down assays using GST-PH2 did 

not reveal other binding partners (data not shown). 

 PH domains are also known to interact with lipids; however, an analysis of the 

AFAP-110 PH2 domain demonstrated that it does not contain the conserved basic 

residues that mediate electrostatic interactions with negatively charged phospholipids 

(Figure 4, panels B and D).  A lipid dot- blot analysis as well as a lipid vesicle 

sedimentation assay was used to determine if the GST-PH2 fusion protein would bind 
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phosphoinositides (Supplemental Figure 1A-B and Supplemental Methods).  Unlike the 

positive control, the PH domain from DAPP1 (Dowler et al., 1999), GST-PH2 did not 

bind to phosphoinositides.   

 

Effects of AFAP-110403C on actin filament modulation.     

 Affinity precipitation data indicated that the PH2 domain mediates self-

association.  Earlier work demonstrated that intermolecular interactions that stabilize self-

association had an autoinhibitory effect on AFAP-110 (Qian et al., 2004).  As GST-

PH2403C is less-efficient in binding to AFAP-110 than GST-PH2 and destabilization of 

the AFAP-110 multimer correlated with an acquired ability to activate cSrc, we sought to 

determine if AFAP-110403C had the capacity to activate cSrc.   

 Co-transfection of Flag-tagged AFAP-110 or Flag-tagged AFAP-110403C with 

cSrc into SYF cells confirmed that AFAP-110403C was able to direct cSrc activation in 

contrast to wild type AFAP-110 (Figure 6A).  The SYF cell lines allowed us to determine 

the effect of AFAP-110 on cSrc activity in the absence of other Src family members. This 

data indicated that AFAP-110403C can activate cSrc in cells under conditions of dual over-

expression. 

 To further examine the effect of 403C on the function of AFAP-110, fibroblasts 

expressing varying levels of cSrc were used. SYF cells do not express cSrc, MEFs 

express a low level, while SYF-cSrc cells express a relatively high level of cSrc (Figure 

6B). Neither GFP-AFAP-110 or GFP-AFAP-110403C affect detectable changes in cellular 

morphology in SYF (data not shown) nor MEF cells (Figure 7A).  Anti-phospho 

cSrcY416 which recognizes phosphorylated tyrosine 416 in active cSrc was used to 
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assess cSrc activity. Active cSrc was undetectable in both SYF and MEF cells. However, 

in SYF-cSrc cells, GFP-AFAP-110403C directed cSrc activation and the formation of 

podosomes (Figure 7B).  Podosome formation was confirmed based on the co-

localization of AFAP-110, actin and cortactin in punctate structures on the ventral surface 

of the cells (Linder and Aepfelbacher, 2003) (Figure 7C).  By quantifying the number of 

cells exhibiting podosomes and the number of podosomes/cell, we determined that 

podosome formation was strongly associated with expression of AFAP-110403C in SYF-

cSrc cells, and that cells expressing AFAP-110403C had significantly more podosomes/cell 

than that of cells expressing only endogenous or over-expressed AFAP-110 (Figure 8).  
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DISCUSSION 

 Ovarian cancer results from a combination of inherited and acquired genetic 

alterations as well as from environmental influences.  Detection is limited because of 

inadequate screening and nonspecific symptoms.  Since this leads to a delayed diagnosis, 

ovarian cancer is the most lethal gynecological malignancy.  This creates interest in 

identifying biomarkers that stratify patients into high risk subgroups, as well as 

potentially guide the development of individualized therapy.  The present study 

demonstrates that AFAP-110403C results in activation of cSrc under conditions of over-

expression.  Therefore, we hypothesize that the presence and expression levels of AFAP-

110403C may have value in predicting risk and treatment strategies for ovarian cancer.    

 AFAP-110 functions as an actin filament cross-linking protein and an adaptor 

protein that relays signals from PKCα that activate cSrc (Chen et al., 1985; Dorfleutner et 

al., 2007; Kanner et al., 1991; Qian et al., 2002; Qian et al., 2004).  Activated cSrc  leads 

to an increase in cell motility and the production of podosomes, which may be precursors 

to invadopodia (Gatesman et al., 2004; Walker et al., 2007).  As podosome formation 

requires both cSrc activation and dynamic changes in actin filament integrity, AFAP-110 

may be uniquely positioned to regulate these two cellular signals.  This ability to activate 

cSrc and contribute to the formation of invasive structures may be relevant for cancer 

progression (Flynn, 2008). 

 As AFAP-110 is a cSrc activating protein, this report determined if its expression 

or its genetic variant AFAP-110403C was associated with ovarian cancer.  IHC 

demonstrated that both AFAP-110 and cSrc were over-expressed in ovarian cancer.  In 

general, cSrc expression was diffuse, while AFAP-110 expression was focal.  
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Interestingly, both AFAP-110 and cSrc were always over-expressed together in well-

differentiated tumors and in desmoplastic regions of the tumor.  Co-localization in 

desmoplastic areas may represent dynamic interactions between the host and the invasive 

tumor.  As cSrc activation correlates with acquisition of the invasive phenotype (Summy 

and Gallick, 2006), we hypothesized that AFAP-110 is positioned to activate cSrc and 

therefore promote invasion in these discrete areas.   

 AFAP-110 was scanned for genetic changes in human ovarian cancer cell lines by 

isolating the cDNA of AFAP-110.   A SNP was identified that affected a nonsynonymous 

coding change at base pair 1210, changing Ser403→Cys403.   Additionally, 124 ovarian 

tumors were analyzed and determined to contain the SNP in 22% of the samples.  

Adjacent, normal ovarian tissue as well as that obtained from women with no known 

history of malignancy revealed a similar SNP profile.  Thus, although expression levels 

of AFAP-110 were elevated in ovarian cancer, the presence of the SNP was not enriched 

in tumors.  Therefore, this study focused on determining if high expression levels of 

AFAP-110 or AFAP-110403C affected differences in cSrc activation or cell morphology. 

 Serine 403 of AFAP-110 is positioned on the loop between the fifth and sixth β-

strands of the PH2 domain. Molecular modeling indicated that the peripherally positioned 

R-hydroxyl group of Ser403 forms hydrogen bonding with H2O 71% of the time, while the 

Cys403 forms hydrogen bonding with H2O less efficiently (36%).  Hydrogen bonds may 

stabilize the loops of the PH domain and increase the rigidity in the binding pocket.    

 There are as many as 258 different proteins that contain PH domains (Lemmon et 

al., 2002; McPherson et al., 2001).  Of these, only 10% are predicted to facilitate 

phospholipid binding by forming interactions between positively charged Lys or Arg 
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residues within the PH binding pockets and the negatively charged phospholipids.  The 

PH2 domain of AFAP-110 is unable to bind phospholipid. 

  PH domains also bind to proteins.  Affinity precipitation revealed that similar to 

the PH1 domain, the PH2 domain also bound AFAP-110. Thus, it is predicted that the 

PH2 domain may foster either intramolecular or intermolecular interactions, promoting 

multimerization or stabilization of the multimer.  However, GST-PH2403C bound less 

efficiently to AFAP-110. Loss of AFAP-110 multimer stability correlated with a gain-of-

function, including an ability to colocalize and activate cSrc (Gatesman et al., 2004; Qian 

et al., 2004; Walker et al., 2007).  Thus, we sought to determine if AFAP-110403C 

activates cSrc. 

 Expression of AFAP-110 or AFAP-110403C in MEF cells, which contain 

detectable levels of cSrc – estimated around 20,000 molecules per cell (Flynn 

unpublished data) did not result in cSrc activation or morphological changes that are 

associated with cSrc activation.  Ectopically expressed AFAP-110 or AFAP-110403C in 

SYF-cSrc cells, which over-express cSrc at levels that are higher than MEFs, was used to 

determine if AFAP-110403C has a differential capacity to activate cSrc.  Compared to 

AFAP-110, AFAP-110403C was a more efficient activator of cSrc and more efficient in 

inducing the formation of podosomes.  Thus these data indicate that in cells over-

expressing cSrc, AFAP-110403C more efficiently activates cSrc compared to wild type 

AFAP-110.  Previous evidence suggested that in chicken embryo fibroblasts transformed 

by the Rous sarcoma virus only 5% of AFAP-110 is complexed with v-Src (Kanner et al., 

1991).  Since only a subset of AFAP-110 and Src interact, it is possible that in MEF cells 

only 5% or less of the cSrc population that is expressed would be engaged with AFAP-
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110403C and that this stoichiometry of binding could be below detection.  Further, if 5% of 

cSrc were activated in MEF cells, activation may be insufficient to direct morphological 

changes characteristic of Src-transformed cells.  Thus, under conditions where both cSrc 

and AFAP-110403C expression is low, as in normal tissues, cSrc activation is unlikely to 

occur or affect cellular changes even in those cells that inherit AFAP403C.  Under 

conditions of dual over-expression of AFAP-110403C and cSrc, AFAP-110403C may 

independently activate cSrc and promote tumor progression.  Since AFAP-110 and cSrc 

are over-expressed in the same tumors, AFAP-110 may enhance cSrc activation by 

receiving input signals that enable cSrc activation or, alternatively, AFAP-110403C may 

result in a reduced capacity to self-associate resulting in the independent activation of 

cSrc.  Although not enriched in ovarian cancer tumors, the 403C variant may lead to a 

more aggressive and metastatic disease through its promotion of cSrc activation in those 

tumors in which it is found. Future studies using ovarian cancer cell lines and additional 

patient samples should address this issue. These data also indicate a mechanism by which 

an inherited genetic variation could influence ovarian cancer progression and be used to 

predict the response to targeted therapy.  
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Figure 1.  Focal and diffuse expression patterns of AFAP-110 and cSrc  

Ovarian cancer tissues were sectioned and immunohistochemistry performed with anti-

AFAP-110 (pAb F1) or anti-cSrc antibody (monoclonal antibody EG107 and the 

intensity of immunolabeling (brown color) qualitatively assessed by a pathologist.  

Samples that show focal (highly localized) or diffuse immunolabeling that exhibit deep, 

robust or weak immunostaining are shown for comparison and these types of images 

represent the assessment of tissue immunostaining shown in Supplemental Table 1. (A) 

AFAP-110 expressed strongly in focal areas of the tumor, (B) AFAP-110 expressed 

weakly in focal areas of the tumor, (C) cSrc expressed strongly and diffusely throughout 

the tumor or (D) cSrc expressed weakly and diffusely throughout the tumor.  
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Figure 2.  Co-expression of AFAP-110 and cSrc in ovarian tumors 

Serial sections of normal human ovary tissues, well differentiated, and undifferentiated 

human ovary tissues were immunolabeled for AFAP with pAb F1, cSrc antibody EG107, 

and H&E staining as described under Material and Methods.  (A) Normal ovary/AFAP-

110; (B) normal ovary/cSrc; (C) normal ovary/H&E; (D) well-differentiated 

tumor/AFAP-110; (E) well-differentiated tumor/cSrc; (F) well-differentiated tumor/H&E; 

(G) ovarian tumor/AFAP-110; (H) ovarian tumor/cSrc; (I) ovarian tumor/H&E; (J) 

undifferentiated tumor/AFAP-110; (K) undifferentiated tumor/cSrc; (L) undifferentiated 

tumor/H&E. In comparison to normal human ovaries (A-C), AFAP-110 and cSrc protein 

are over-expressed and colocalized in well-differentiated tumors (D-F), as well as 

desmoplastic regions of human ovarian tumors (G-I). AFAP-110 is over-expressed in 

undifferentiated tissue specimens (J-L); however, colocalization with cSrc was variable.  

All images were captured at a magnification of 100x. As stated in Supplementary table 1, 

33 ovarian tumors were analyzed. Of these, 20 were differentiatied tumors and 13 were 

undifferentiated. Six normal ovaries were analyzed. 
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Figure 3 
 

 
Figure 3. cSrc expression level in ovarian tumors match those levels detected in 

SYF-cSrc cells   

(A) 50 µg of SYFor SYF-cSrc cellular lysates or human ovarian tissue lysates were 

resolved by 8% SDS-PAGE, transferred to PVDF and western blot analysis performed 

with anti-cSrc antibodies.  Code numbers for de-identified patient samples are shown.  

Five samples had Ser403 encoded on at least one allele, and five samples had Cys403 

encoded on at least one allele. (B) cSrc and AFAP-110 expression levels are increased in 

ovarian tumors relative to normal, adjacent tissue.  Western blot analysis with antibodies 

to AFAP-110 or cSrc of two ovarian tumor samples (T) and matching, adjacent control 

tissues (N) from two patient samples (#77 and #82).  Patient #77 has the AFAP-110 

Ser403 wild-type isoform, while patient # 82 has the AFAP-110 Cys403 SNP on at least 

one allele. 
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Figure 4 
 

 
Figure 4.  Molecular modeling of the PH2 domain  

Homology models for AFAP-110 PH2-WT (A and B) and AFAP-110 PH2403C (C and D) 

demonstrated that the amino acid change occurs in a loop region between the 5th and 6th 

β-strand. Performing a hydrogen bond (dashed black lines) analysis for each structure 

predicted that AFAP-110 PH2-WT binds to water molecules (solid red lines) 71% of the 

time potentially forming a rigid binding region.  In contrast, AFAP-110 PH2403C was 

predicted to bind to water only 36% of the time.  Labeled amino acids occur at 

coordinates predicted to interact with phospholipid head groups. Intrastrand loops: green; 

β-strands: blue; α-helix: red. 
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Figure 5. Affinity precipitation of AFAP-110 with GST-PH2 and GST-PH2403C   

GST-affinity precipitation experiment comparing the differential ability of GST-PH2 and 

GST-PH2403C to bind AFAP-110 in MEF, SYF, SYF-cSrc, and CaOV3 cell lysates (A).  

Equal quantities of GST-fusion proteins were used to affinity precipitate AFAP-110 from 

equal amounts of cell lysates. (A) Western blot analysis with pAb F1 indicate that GST-

PH2 is more efficient in binding AFAP-110 then GST-PH2403C.  CaOV3 cells serve as 

the negative control in these experiments as this cell line has low to undetectable amount 

of AFAP-110.  Western blots of cell lysates for AFAP-110 (B) and actin loading controls 

(C) are also shown. 
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Figure 6 
 

 
Figure 6. cSrc activity in SYF cells expressing cSrc and AFAP-110403C   

(A) Flag-tagged AFAP-110 or AFAP-110403C was transfected into SYF-cSrc cells and 

expression levels detected with anti-Flag antibodies.  cSrc expression levels and 

immunoreactivity with anti-pSrc416 antibodies were determined. (B) 50 µg of MEF, SYF 

or SYF-cSrc cellular lysates were resolved by 8% SDS-PAGE, transferred to PVDF and 

cSrc detected with anti-cSrc antibodies.  
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Figure 7. cSrc activation and podosome formation in SYF-cSrc cells expressing 

AFAP-110403C   

(A) MEF cells were transfected with GFP-AFAP-110 or GFP-AFAP-110403C and 

analyzed for activation of endogenous cSrc or changes in actin filament integrity and 

podosome formation. Bars = 20 µm. (B) SFY-cSrc cells similarly transiently transfected 

with GFP-AFAP-110 or GFP-AFAP-110403C and immunolabeled with anti-Src antibody 

(b and f) and phospho-Src family (Y416) antibody (c and g).  Unlike wild-type GFP-

AFAP-110, expression of GFP-AFAP-110403C resulted in the formation of punctate 

structures on the ventral surface of the cells enriched for GFP-AFAP-110403C (e) that 

exhibited an increase in c-Src phosphorylation at the Y416 position (merged image, h). 

(C) Punctate structures resulting from the expression of GFP-AFAP-110403C were also 

enriched for actin and cortactin (merged image, q).  In contrast, cells expressing wild-

type GFP-AFAP-110 maintained actin filaments and did not exhibit the formation of 

actin-rich podosomes (j-m).  Bars:  10 µm (panels a-d, e-h, n-q) and 20 µm (panels j-m). 
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Figure 8 
 

 
Figure 8.  AFAP-110403C directed podosome formation in SYF-cSrc cells   

(A) Podosomes were counted in the transfected cells and the percentage of cells 

expressing podosomes was quantified.  (*p = 0.015, n=500 cells).  (B) The number of 

podosomes per cell was quantified. The podosome distribution was determineed by 

comparing AFAP-110 to AFAP-110403C.  While 80% of the cells transfected with AFAP-

110 wild type (empty bars) exhibit between 0-3 podosomes/cell, cells transfected with 

AFAP-110403C (hatched bars) exhibit a broad distribution with greater than 50% 

exhibiting more than 8 podosomes per cell.   
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Figure W1. The PH2 domain does not bind to phospholipids 

(A) Lipid dot blot analysis was used to examine the ability of GST-AFAP1-PH2 domain 

to bind immobilized phospholipids. GST-DAPP1-PH was used as a positive control and 

bound both PtdIns-3-4-P2 and PtdIns-3-4-5-P3, consistent with published data [36]. The 

GST-AFAP-110-PH2 did not bind any immobilized phosphoinositides tested. (B and C) 

A lipid vesicle sedimentation assay was performed with GST-PH2 (B) or the positive 

control GST-DAPP1-PH (C). After SDS-PAGE of the supernatants (S) and the pellets 

(P), the gels were stained sith SYPRO orange. Data are consistent with lipid dot-blot 

analysis.  
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