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ABSTRACT

Reducing Spatial Stochastic Models of Membrane Receptors to
Approximately Equivalent Chemical Reaction Networks through

Coarse Graining

Christopher Todd Short

Computational models are necessary for understanding how biological func-
tionality emerges from a complex network of molecular interactions such as
in cell signaling. Due to the complexity of biological systems, the normal
scientific method of hypothesizing then testing predictions is becoming in-
creasingly difficult. The large number of processes limits the level of modeling
detail; signaling models typically adopt a non-spatial representation where
each molecular process is characterized by a few parameters.

However, modern microscopic imaging of receptors on cell membranes
reveals an intricate structure of microdomains. Receptors, such as epidermal
growth factor receptor (EGFR), vascular endothelial growth factor receptor
(VEGFR), and others, tend to be grouped in the microdomains as clusters
that range from a few to hundreds of biomolecules. While the origin of
these clusters is not well understood, a likely explanation is the existence of
microdomains with an affinity for the receptors. Using this hypothesis, we
can ignore the underlying cause of the microdomains. The size and geometry
of these domains can be inferred directly from microscopy; however, the
relevant physical properties can only be verified through simulations. In
this thesis, I propose a flexible approach to performing such simulations
in a coarse grained model that is validated through solving the differential
equations when possible and through equilibrium calculations when not.

Due to the non-trivial nature of these cell membrane features, fully spatial
models need to be used to address these issues. However, fully spatial mod-
els are computationally intense and little insight can be gained from them,
because of this I propose a method to construct the well-mixed model from
the spatial one. The primary issue is the difficulty of extracting the correct
kinetic coefficients and that limits the predictive power of spatial models due
to the inherent challenges of estimating dynamical parameters. I will use the



Metropolis-Hastings Algorithm to extract these parameters from the fully
spatial simulations. I use the spatial model as an intermediary step because
the spatial simulations can be matched to experimental techniques that pro-
vide molecular level resolution, such as single particle tracking (SPT) data. I
will then discuss issues that emerge from a baseline comparison between spa-
tial and non-spatial simulations of a simple reversible dimerization process;
the spatial simulation employed an algorithm similar to Smoldyn.
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Chapter 1

Introduction

1.1 Overview

Mathematical, Quantitative, or Systems Biology all refer to an effort to in-
troduce a mathematical point of view in the practice of Biology, in hopes of
some day matching the success of the 400-year old alliance of Mathematics
with Physics.

The vital functions of a cell emerge from its component molecules and
their transformations. To develop a predictive understanding of exactly how
this occurs, we have to build an inventory of the elementary (molecular)
components, the processes they participate in and the physical laws that
govern those processes; then put them all together in a mathematical1 model
that captures the complete state of the cell and emulates all the processes
and their interdependence.

The potential impact of this level of understanding is hard to fathom;
continuing the analogy with Physics, consider that much of the technology
that came about after 1700, from the steam engine to computers and space
travel, was applications of Physics and Chemistry in various engineering set-
tings. Things could be designed and optimized because the mathematical
framework provided a way to summarize and analyze experimental facts,
and to predict the outcomes of experiments never done before.

For cell biology, the most obvious application is health and disease; a
complete understanding of the biochemistry of our cells would let us under-

1In the general sense of a system of mathematical objects that represent the states and
transformations of the real system.
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stand exactly how an adverse health condition emerges, and would also help
us figure out how to stop it from becoming a problem. The most important
obstacles to this vision are that (1) it is difficult to identify each relevant
molecular species or process, and even harder to quantify their physical laws;
(2) even in a single cell, there are a very large number of different molecular
species and processes at work, some of them involving no more than a hand-
ful of molecules. However, developments in the past few decades have been
promising. In addition to DNA sequencing and related methods, microscopic
imaging and labeling techniques can provide in vivo information on individual
molecules. Advances in computer technology made it possible to automat-
ically handle and reason about vast amounts of data. As biochemistry and
its techniques advanced, the amount of data and ergo our understanding of
cellular biology will also advance which will allow for an ever increasing level
of detail in our cellular models. Many cellular models are very complicated
and gaining insight from these models requires computer simulations. For
these models to be useful they require correct model parameters that match
experimental data. This thesis addresses some of these issues.

In this thesis I will consider two chemical reaction networks for cell sig-
naling, specifically starting with vascular endothelial growth factor (VEGF)
then moving to epidermal growth factor (EGF), although the methods de-
scribed can be applied to any chemical reaction network where the reactions
occur in subdomains with movement between the subdomains. This the-
sis focuses on VEGF and EGF because of medical relevance which will be
described later. We begin with a brief discussion of different mathematical
models involved.

We are modeling chemical reaction networks (CRNs). These reactions can
be modeled several ways; as ordinary differential equations (ODEs), stochas-
tically as with the Gillespie SSA, or fully spatially. When considering ODEs
or SSA, the reactions are treated as mass action. Mass Action Rate Laws
are used to construct differential equations from the CRN. Mass action is
also the assumption used for construction of the probabilities involved in the
Gillespie SSA. Fully spatial models utilize diffusing particles in a space. This
utilization allows for a direct comparison to experimental data.

Much cellular communication is accomplished without the signaling molecules
directly entering the cell and rather binding to a receptor first for propagation
of signal.[27]. The receptor exists on the cellular membrane with intracellu-
lar, extracellular and transmembrane domains. The extracellular domain of
the receptor include the ligand binding domain as well as domains that en-
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able receptor dimerization through the dimerizing arm of the receptor [20].
After being created by the cell and reaching the membrane, the receptor
performs a random walk on the cellular membrane attempting to locate its
target ligand[27]. When the exterior piece of the receptor becomes bound to
its target ligand, the intracellular kinase domain can become activated and
specific amino acid residues, such as a tyrosine residue, can be phosphory-
lated. Once phosphorylated, these residues serve as docking sites for other
proteins, which help to further propagate the signal internally.[27]. This pro-
cess of receptors binding to ligands and transmitting the information into the
cell is known as cell signaling, and this can lead to various cellular processes
such as cell proliferation, differentiation and survival.

One goal of simulating chemical reaction networks (CRNs) is to have a
scalable model of biochemistry employed by cells[37]. Another goal of the
simulation process of cell signaling is to predict how a cell will react to a set
of external conditions[27]. There are great limitations on simulations because
of the sheer number of combinations of substances that can be manufactured
by protein interactions, but some of the interactions can be characterized by
a set of rules, allowing the computer to generate the species set[61]. However,
some simulations can imply astronomical numbers of species[37].

The rules-based approach to the construction of CRN’s has been success-
fully applied to many systems. This is a computer programming approach
for constructing the stoichiometric matrices and rate vectors from a set of
rules. Receptor-ligand systems of interest include EGF using a graph of the
interactions[37]. There has also been success with the trivalent ligand, biva-
lent receptor model (TLBR), where large aggregates form in the equilibrium
model[61]. CRN’s generated by rules also have computational limits that
are on the order of log2M (M is the number of reactions possible) for kinetic
Monte Carlo. Much work has been done to lower the limit to the order of the
number of rules[61]. There also appears to be more structure to the cellular
membrane, which are domains and the heart of this thesis.

1.2 Biology and Experimental Background

1.2.1 Role and Importance of Membrane Receptors

Like all receptors, EGFR and VEGFR are created internally, but migrate to
the exterior of the cell. They become bound to the membrane with internal
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and external pieces. Then like all receptors, they diffuse across the cellular
membrane in an attempt to locate their target ligand. Once the receptor has
captured the ligand, in the specific cases of VEGFR and EGFR they must
dimerize in order to propagate the signal into the cell. This is not true of all
receptor-ligand systems. Once the signal has been transmitted into the cell,
the cell will then respond to the signal, leaving a delay between when the
receptors first send the signal and the cell responding.

EGFR is very similar to VEGFR in many ways. Both are receptor tyro-
sine kinases (RTK) receptors and possess a Src Homology 2 (SH2) domain.
Both play roles in cancerous development. VEGF promotes angiogenesis.
As such, both are subjects for pharmaceutical research. This makes both
receptor-ligand systems important for medical science. The starkest contrast
between the two systems comes from VEGF ligand being bivalent [21] while
EGF ligand is monovalent [39]. Because of this difference, VEGF receptors
can experience high dose inhibition while EGF cannot. This means that the
higher the concentration of ligand is for VEGF the higher the signal but only
to a point. If one fills too many receptors then they cannot find a partner.
A diagram of ligand concentration vs. signal would show a max value for
the ligand as compared to the signal. This is not the case for EGF. Any
diagram showing ligand concentration vs. signal would show a monotoni-
cally non-decreasing graph. Moreover that graph would be monotonically
increasing until all receptors are filled. High dose inhibition would occur in
any receptor-ligand system where the receptor is monovalent with a bivalent
ligand, and a lack thereof would also occur when both are monovalent. Also
in this paper we will limit the number of receptor and ligand variants we
look at due to the combinatorial explosion of numbers of species due to het-
erodimers. Many receptor-ligand systems have multiple variants and as such
share this combinatorial explosion of the number of species.

1.2.2 Microdomains

Experimental observations, such as Single Particle Tracking (SPT) and Trans-
mission Electron Microscopy (TEM), show that the receptors tend to reside
in smaller domains of the cell membrane which restrict or hinder the move-
ment of membrane proteins, such as receptors[36]. These domains place the
receptors in closer proximity to one and other than if the receptors were dis-
tributed throughout the cellular membrane, which should quicken the rate of
dimerization for VEGFR. This adds yet another layer of complexity to the

4
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Figure 1.1: Schematic of microdomains located on the cellular membrane
and their role in our hypothesis. (a) Microdomains that have an affinity
for receptors occupy a small fraction of the cell membrane. Schematically,
they may be represented as rectangles (b) whose measurements are extracted
from experimental images. (c) Although the receptors can move through the
non-attractive regions, they tend to remain in the smaller clusters. (d) In
the mesoscopic approach we discuss here, each microdomain, as well as the
rest of the membrane (the “normal” region), are represented as well-mixed
compartments that may exchange particles.

system as now we need to consider the VEGF network as occurring locally
over several microdomains with movement between the domains (See Figure
2). With this scheme, a new species and reaction are created for each species
and reaction in the original system for each domain, then movement reac-
tions are added to transport each species across domains. Considering the
homodimer case with ten linear locations and movement only between the
closest neighbors, we arrive at nearly 200 reactions. This is minor compared
to the over 200 reactions for the homodimer EGF case. As such detailed
explanations will be presented using VEGF, although the model works for
EGF as well.

Due to the sheer size of the VEGF system (which contains 7 species and
7 reversible reactions) including microdomains (the number of species and
reactions increases dramatically even with only 2 domain the system has 14
species and 56 reactions), in this thesis, we propose a method to compute the
stoichiometric matrices from knowledge of the local system and the move-
ments possible. This approach of combining the molecular components with
location information (which acts as a rule as in the rule based approach to
create CRNs from a set of rules) has several benefits but none more useful
than saving on computational power over a fully spatial model which would
be necessary to show this level of detail otherwise. In order to generate the
stoichiometry matrices, we treat each location as having a local stoichiometry
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100 nm

Figure 1.2: Identification of microdomains from microscopy studies. The
transmission electron microscopy image on the right was obtained by label-
ing membrane proteins similar to VEGF receptors with nanometer size gold
particles [45].

matrix for both the inputs of the reaction and the outputs. Using the local
CRN matrices, larger matrices yielding all molecular reactions are created us-
ing the Kronecker Product (will be explained later in the Appendix). Adding
transfer information to the total molecular reaction matrices will complete
the process and yield the total stoichiometric matrices.

1.2.3 Single Particle Tracking and Transmission Elec-
tron Microscopy

I begin with a more detailed discussion of Transmission Electron Microscopy
(TEM) imaging. TEM uses nanoscaled probe between 5 − 15nm [63]. This
method provided the first evidence of receptor subdomains [63]. Once a
cell is plated it is then imaged at 30 − 40, 000× magnification [63]. Then
positions are derived and statistics are used to prove the existence of receptor
subdomains [63]. In order to arrive at the proper kinetic coefficients for
the parameters of the Well-Mixed model of EGF, we must first consider
experimental data in the form of Single Particle Tracking (SPT) data. SPT

6
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Figure S1: Details of the experimental data and analysis method. A. Raw trajectories as captured by single
particle tracking analysis. Positions are determined by fitting a distribution to the light intensity captured
in a set of neighboring pixels. Trajectories in this recording extend over a rectangle of approximately
25µm ⇥ 45µm B. Detail of the trajectories shown in A. Red circles label points that are associated with
2-step displacements in the lower 70% of 2-step displacements in the entire recording. The labelled points
indicate limited movement. Different trajectories (represented by color) tend to slow down in the same
locations. As the trajectories are not simultaneous (due to the imaging method), this may indicate that the
regions of slow movement are localized. C. Given an incomplete record of a trajectory, for every integer
multiple of the time step, we choose as many non-overlapping pairs of recorded positions as possible.

Figure 1.3: Several receptor trajectories derived from Single Particle Track-
ing. We estimate the diffusion coefficients of monomer and dimer receptors
from videos of these images.
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involves tagging the EGF receptor with a fluorescent protein and taking
pictures at fixed time steps of the fluorescent protein move across the cellular
membrane. The caveat is determining where the particle is located since the
wavelength of green light (or any other wavelength of visible light) is much
larger than the protein. One can assume where the particle is by applying
a normal distribution to the intensity of the green light. We can infer when
a receptor is a monomer and a dimer through this method as well as the
diffusion constant for the system. These observations will be useful when
developing a spatial model for EGF; the first step towards the goal of a
Well-Mixed model.

1.3 Mathematical Foundations of Modeling

and Simulation

1.3.1 Chemical Reaction Networks

Chemical Reaction Networks describe any chemical reaction under certain
situations. The main assumptions are that; the chemicals involved can be
well represented by concentrations (the concentration of species Si is denoted
by [Si]), which is an amount of substance in a given space (and as such are
all non-negative) with base unit of concentration being molar, and the space
and distribution of particles is uniform. Mentioning concentration, the molar
is 1M = 1mol

1litre
. We use CRNs to describe the state of cells which is a natural

framework for the quantative description of the state and processes of a cell
as it is basically a chemical factory. We can track most any change in the
state of the cell using this framework such as a molecule of receptor migrating
from the interior of the cell to the membrane or even kinase activation of that
receptor[25].

Let us begin with an explanation of terms. First, a chemical species
represents a type of molecule for example methane CH4 or oxygen O2. A
reaction takes one or more chemical species and turns them into other chem-
ical substance(s) such as CH4 +2 ·O2 → CO2 +2 ·H2O. We should note that
this is not a reversible reaction and is denoted by → whereas a reversible
reaction would be denoted by �. We should also note that the above reac-
tion takes place between one molecule of methane and 2 molecules of oxygen
and generally the amounts of substance involved in the reactions are not the
same as the number of grams of each substance reacting. In this example

8



assuming only the standard isotopes of each element, 16g of methane would
react with 64g of oxygen (i.e. 1mol of methane to 2mol of oxygen) and not
1g of methane with 2g of oxygen.

CRNs are defined by the set of species they describe, S1, S2, ..., Sn, the
reactions possible, R1, R2, ...Rm. The reaction Rj is subject to a chemical
equation with a rate φj:

n∑
i=1

αijSi →
n∑
i=1

βijSi;φj = fj([S1], [S2], ..., [Sn]) (1.1)

It is also clearly defined by the stoichiometric coefficients αij, βij along with
the rate function fj(.) [25].

We generally gather the concentrations species at any time t into a vector
X = ([S1], [S2], ..., [Sn])T . If we look at the stoichiometric coefficients γij =
βij − αij, they form a m × n matrix, Γ = γij [25]. If we also write out the
fluxes as a column vector φ = (φ1, φ2, ..., φm)T , we can write the equations of
motion in the compact form:

dX

dt
= Γ · φ(X) (1.2)

Although several types of rate laws can be used the simplest is Mass
Action Rate Laws. Assuming mass action, the rate for Rj becomes:

φj = kj

n∏
i=1

[Si]
αij (1.3)

The rate constant kj relates the molecular properties with the continuum
description [25].

Numerical Solutions of ODE Models

Analytical solutions to many CRNs cannot be found in a closed form. This
difficulty is due to several factors for example the number of variables involved
or the fact that many of the equations are non-linear. Generally the point of
a model is to produce typical behaviors of the system in question and these
systems are usually initial value problems (IVPs). Due to these facts, more
often than not the solution to a CRN is arrived using numerical methods. We
begin discussing the mathematics used in this thesis with the Euler Method of
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simulation. It is a simple and straight forward approach to solving differential
equations assuming that the equations are both continuous and deterministic
(we will discuss later why this is not accurate for chemical reactions except in
special cases). Again the method is straight forward, and requires knowing
only the n differential equations that describe the chemical reactions (this
method can be applied to any differential equations, but I refer to chemical
reactions because those are the only relevant equations to this thesis). We are
concerned with systems of first-order ordinary differential equations (ODEs)
that represent the time evolution of a set of state variables {X1, · · · , Xn}.
We assume the equations of motion can be written in the explicit form

dXi

dt
= fi(X1, ..., Xn) (1.4)

The caveat to the Euler Simulation is to pick a correct time step.
Any elementary numerical methods text should have a discussion of the

Euler Algorithm, but I will explain it here for clarity.
The idea is to approximate the time derivatives from the definition

F ′(t) = lim
∆t→0

F (t+ ∆t)− F (t)

∆t
⇒ F (t+ ∆t)− F (t) ≈ ∆t · F ′(t) (1.5)

The above is a special case of using the Taylor series to approximate F (t+∆t)
using the value of the function and its derivatives at t:

F (t+ ∆t) =
m∑
k=0

(∆t)n

k!
F (k)(t) +O((∆t)m+1) (1.6)

Here, O(∆tm+1) represents the remainder term, which is proportional to
∆tm+1 (i.e. it is of the form Rm = F (m+1)(ξ)∆tm+1/(m + 1)!, where ξ ∈
[t, t + ∆t]; hence in the limit lim

∆t→0
it goes to zero like ∆tm+1). The Euler

method corresponds to a first order approximation:

F (t+ ∆t) = F (t) + F ′(t)∆t+O(∆t2) . (1.7)

where the remainder term is proportional to ∆t2 (this term will go to 0 much
more quickly than ∆t showing that it converges as ∆t goes to 0 also giving
validity to our approximation method and meaning that the time step must
be sufficiently small).
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Once a sufficiently small time step has been picked the n differential
equations are multiplied by the time step. To see this consider the following:

∆Xi(t0) = fi(X1(t0), ..., Xn(t0)) ·∆t
Xi(t0 + ∆t) = Xi(t0) + ∆Xi (1.8)

This is one of the simplest, if not the simplest methods for simulation.
We only need to repeat the process until we reach the end of our simulation
time.

1.3.2 Stochastic Model / Simulations

A mathematical model is a mathematical system that emulates the system of
interest. Mathematical modeling has been utilized in the field of Physics for
hundreds of years. Models are useful because the help with our understanding
of the real system (i.e. how it works) and can make predictions on how the
system will behave. A simulation is a prediction of a model with regards
to most often a specific experiment. When investigating an ODE model,
the solution of the simulation (arrived at either numerically or analytically)
predicts the exact future behavior of the system as described by the model.
This exactness is not the case with a stochastic simulation however. Instead
for stochastic models the future behavior is a distribution and simulations
provide one possible version of the future.

Poisson Processes

We now switch to a discussion of Poisson Processes, which are necessary
because the ODE approach implies a continuum of uniformly distributed
molecules, but molecules are particles and as such they occur in discrete
quantities, so this approach gives a better approximation for the CRNs of
cellular processes. However the ODE approach becomes more ”correct” as
the number of molecules increase (we should note that Avogadro’s number
is the number of molecules in one mole of substance NAvogadro ≈ 6 · 1023).
Yet the number of copies of a given chemical substance within a cell can
be very small (in a human cell a chemical with a concentration of 100nM
has approximately 60 copies). Considering receptors, we must also account
for the spatial structure of the cellular membrane and we have seen from the
TEM images and SPT data that the receptors cluster, because of this we also
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cannot assume uniform distribution of molecules further removing ourselves
from the continuum and uniformity requirements [25].

The easiest example of a Poisson Process to understand is radioactive
decay. Let us assume we have an element A (with a number of particles NA)
which can undergo radioactive decay given by A→ ∅, with a rate k in inverse
time. If we look at it through the eyes of ODEs and Mass Action Rate Laws
we arrive at the differential equation dA

dt
= −k · A. An elementary Calculus

book would give the solution as NA(t) = NA · e−k·t, but this solution is only
valid when dealing with a continuum.

Our first concern is when a single particle of A will decay. The probability
that A will decay in a given time interval (t, t+ ∆t) is proportional to ∆t.

lim
∆t→0

∆pA(t, t+ ∆t)

∆t
= k → ∆pA(t+ ∆t) ≈ k ·∆t (1.9)

If we consider NA to be larger than 1 but not large enough to justify using
the continuum approach, then the number of particles of A that remain nA(t)
over (t,∆t) is approximated by:

nA(t)− nA(t+ ∆t) ≈ ∆pA(t, t+ ∆t) · nA(t) +O(∆t2) (1.10)

The above approximate equalities neglect differences on the order of 1√
∆nA

.

Assuming nA(0) = NA, molecule numbers comparable to NAvogadro and a
time step ∆t� 1

k
we can treat nA as continuous [25]. The above imply the

following equation and solution:

lim
∆t→0

nA(t+ ∆t)− nA(t)

∆t
=
dnA
dt

= −k · nA(t) (1.11)

nA(t) = NA · e−k·t (1.12)

This agrees with our earlier solution and demonstrates the connection with
the continuum approach.

Combining Poisson Processes

Poisson Processes have an interesting feature with regards to combining pro-
cesses. Let us assume we have two independent Poisson Processes with rates
k1 and k2, and we are only concerned with the first time either of them oc-
cur. Starting at t = 0, the total rate is kT = k1 + k2 and the probability
that event 1 occurs first is p1 = k1

kT
. If we consider the previous section, we
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verify that the probability to have nA(t) at time t is given by the probability
gA→∅ = nA · k.

The time any A would decay is given by the PDF:

f(τ) = gA→∅ · e−gA→∅τ (1.13)

This principle of Poisson processes can also be applied to when we have
several different types of reactions [25]. In general, we can combine any
number of Poisson processes using an inductive argument (i.e. if we have
n processes with rates k1, k2, · · · , kn and denoting the total again as kT the
probably that event i occurs first is ki

kT
). We will use this property of Poisson

processes for our simulations.

The Gillespie Stochastic Simulation Algorithm (SSA)

”The differential reaction-rate equations approach to chemical kinetics can-
not be denied, we should not lose sight of the fact that the physical basis
for this approach leaves something to be desired.” [22] The approach as-
sumes chemical reactions to be continuous and deterministic, but molecular
changes are in integer amounts [22]. Because of this the Euler Simulation is
only correct for large numbers of molecules where we can assume a continu-
ous amount of substance. For small numbers a different method is required.
We will use the Gillespie Algorithm (more precisely the Next Event Method
which will be discussed in detail later) to simulate the time evolution of
chemical processes. The Gillespie Algorithm ”take explicit account of the
fact that the time evolution of a spatially homogeneous chemical system is a
discrete, stochastic process instead of a continuous, deterministic process.”
[22]

Chemical reactions, in general, occur during collisions between molecules
[22] the exception being unimolecular reaction such as radioactive decay. At
thermal equilibrium, the collisions and subsequent reactions occur randomly
[22]. One advantage to the Gillespie Algorithm is that it is equivalent to
the Chemical Master Equation approach [22], but this author finds it much
easier use the Gillespie approach.

The algorithm is fairly easy to implement. Assume one has n distinct
reactions, with propensities call them Φ1 ... Φn that are the rates for Pois-
son processes (in our previous example gA→∅). We then generate a random
number for each of the propensities of the reactions Φi (given by the PDF
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of reaction i). This random number is the time, ti that reaction i will oc-
cur. We allow the reaction m to occur if tm is the smallest time among
times generated. Because each reaction rate depends on the number of each
molecule present, we then update the amount of substances due to reaction
m and generate new random numbers for the reactions. We then continue
this process until we have reached the time limit for our simulation [22].

Spelling it out in more detail, we obtain a differential equation n′A(t) =
−knA(t) and should note it has the same form as mass action if we replace nA
with [A]. Because concentration depends directly on the number of molecules,

we can approximate the ratios [A]′

[A]
≈ n′A

nA
and the propensity per particle of

A is:

[A]′

[A]
= lim

V→∞

gA→∅
nA

= −k (1.14)

The Gillespie Algorithm generates one possible history of the chemical
reactions. This history will not be the same from one running of the simula-
tion to the next because of the random nature of stochastic simulations. This
method has advantages over the deterministic approach, but is computation-
ally expensive if the number of reactions is large enough. The generation
of many random numbers is taxing on the computer. This is why we will
consider using the Next Event Method.

Next Event Method

The Next Event Method is an improvement upon the Gillespie Algorithm
using the property of combining Poisson processes. Again assume we have
n reactions, instead of generating n random numbers as with the Gillespie
Algorithm, the Next Event Method only requires two random numbers per
update. Since we have propensities of n reactions Φ1 ... Φn, the Next Event
Method looks at the total probability of any event occurring, ΦT , and gener-
ates a time based on that total. This t is one random number necessary for
the algorithm. The next random number necessary picks the reaction that
occurs by dividing the propensity of the reaction Φi by propensity of Φtotal

and assigning the probability Φi
Φtotal

= Pi to reaction Φi. By listing the prob-

abilities in a vector (P1, P1 + P2, ..., 1) then generating one random number
between 0 and 1, we pick the reaction that occurs.

This method is computationally less expensive than the standard Gillespie
Algorithm for large numbers of reactions. Because of this fact all stochastic
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chemical reaction simulations by this author are done using this algorithm.

1.3.3 Diffusion, Smoldyn and Spatial Models

Brownian Motion (Diffusion)

Brownian motion is a random walk, meaning that given the position of a
particle (x0, y0) at t = 0 we cannot know the position at any future time,
but only know the probability of the location. Consider the position vector
of a particle, r(t) = (x(t), y(t)). The two dimensional motion of particle is
considered Brownian if the components of the displacement ∆x and ∆y of
the displacement vector ∆r = r(t+∆t)−r(t) over the time interval (t, t+∆t)
are distributed according to the following PDF [25]:

f(∆x,∆y; ∆t) =
1

4πD∆t
e

∆x2+∆y2

4D∆t (1.15)

This means that the variables x and y are distributed independently with
variance σ2 = 2D·∆t where D represents the diffusion constant (a measure of
the particles mobility) [25]. Since Brownian motion is random, even knowing
the position (x0, y0) at time t = 0 we can only know the probably of the
position of the particle at a later time. The localization probability density
agrees with the PDF (1.15) from above with ∆x = x− x0, ∆y = y − y0 and
∆t = t.

p(x, y; t) =
1

4πDt
e−

(x−x0)2+(y−y0)2

4Dt

We should note that this is normalized for all t > 0 (i.e.
∫∫

p(x, y; t)dxdy =
1). The evolution in time is consistent with the PDF(1.15). If we let ∆t = s
for simplicity, the localization density at time t = t0 + s is given by the
equation:

p(x, y : t0 + s) =

∫∫
p(x′, y′; t0)f(x− x′, y − y′; s)dx′dy′

If we ignore the issue of overlapping particles, we can describe n particles
undergoing Brownian motion with the sum of the individual localization
probability density functions pj(x, y; t) and the joint function in normalized
to the number of particles n.

p(x, y; t) ≡
n∑
j=1

pj(x, y; t);

∫∫
p(x, y; t)dxdy = n (1.16)
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The equation defined in (1.16) also verify the diffusion equation:

∂p

∂t
= D(

∂2p

∂x2
+
∂2p

∂y2
) (1.17)

Brownian motion simulations

To simulate simple Brownian motion on a computer, we need to keep track
of the position of each particle (i.e. {(xj, yj, sj)}j=1···Np where Np is the total
number of particles). Given the position of each particle {rj = (xj, yj)}j=1···Np
at time t the coordinates at time t+ ∆t are obtained by generating random
numbers according to (1.15). A general implementation would make use of
a fixed time step ∆t depending on the other elements of the simulation.

Now consider simulating Brownian motion of receptors on a cellular mem-
brane. We must take into account the computational limitations as the
cellular membrane is too large to simulate the entire area because of the nec-
essarily short time steps required by other considerations of the simulation.
Due to this, we will focus on smaller patches of the membrane (say a box
[0, Bx] × [0, By] with a proposed update of (x∗, y∗)) and apply reflecting or
periodic boundary conditions.

If we apply reflecting boundary conditions, if x∗ < 0 we update with
x∗ → −x∗ and if x∗ > Bx we update with x∗ → (Bx − x∗). We’ll use a
similar procedure for y∗. If instead we consider periodic boundary conditions,
if x∗ > Bx we update with x∗ → (x∗ − Bx) and for x∗ < 0 we update with
x∗ → (x∗ +Bx) and again a similar procedure is used for y∗. However, both
procedures have attached artifacts that have no relation to reality such as
strange geometries. When we consider particles that interact, the reflecting
boundary conditions can also cause particles to pile up about the boundaries
so instead we will use periodic boundary conditions [25].

Now we need to concern ourselves with combining reactions with diffusion.
First consider first order reactions (like radioactive decay) we can treat the
diffusion as independent of the reaction. We now not only have to keep
track of the position of each particle but also its chemical state. We will
chose the time a reaction occurs similarly to a well-mixed simulation by
using the PDF of the reaction (1.13) (call it τReact), but now we must also
chose the individual particle which reacts. This can be done by generating
a random number to pick the particle reacting. We do this by generating a
random number rε[0, 1] and partitioning the particles as { 1

nA
, 2
nA
, · · · nA−1

nA
}.
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The random number r falls into any given subinterval [ j−1
nA
, j
nA

] is the same
for all j and the resulting j determines the transitioning particle [25]. Since
the time of reaction is independent of diffusion and the particle number does
not change in first order reactions where A→ B, we can apply the previous
discussion of Brownian motion (1.15) to all particles from (t, t+ τReact).

Things become more complicated when we consider second order reac-
tions. Consider reaction A+B → · · · . For the reaction to occur the molecules
must be in close proximity which we can judge based on the distance between
the position vectors of the particles rj = (xk, yk) and knowledge of the size
of the molecules. If we consider two molecules with position vectors rA, rB
then we can tell if they are close enough to react based on the distance:

|rA − rB| ≤ dcollAB (1.18)

Once we know that two molecules have collided we need to determine if
those molecules react or bounce off of each other. If the molecules do not
react (an elastic collision), we have to resolve the fact that the molecules
may now overlap which is physically impossible. One approach is similar
to the solution of reflective boundaries, and another is to leave the colliding
particles in their original position. The main issue now is to determine if the
particles that have collided react. We can do this one of two ways: the first
would be to generate a random number and the other is to use a binding
radius that is smaller than the molecules. Another consideration is to ensure
that the time step is sufficiently small enough to avoid missing collisions.

Smoldyn

To make use of the SPT data, we need to construct a spatial model for the
EGF system from the inferred diffusion constant, dimerization rate and dis-
sociation rate we discovered from the STP data. We use an algorithm based
on Smoldyn which simulate both Brownian motion as described above and
chemical reactions. In Smoldyn, a time step ∆t, diffusion coefficient D0,
binding radius (BR) and unbinding radius (UBR) are needed [3]. The dif-
fusion coefficient is used to simulate the motion of the receptors along the
cellular membrane as described in the previous section. The binding radius
takes into account the likelihood of a binding event given a collision and is
generally smaller than the physical size of the reacting molecules (this pre-
vents us from needing to generate a random number to determine if colliding
molecules react making the simulation run faster). The binding radius can be
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determined by comparing the SPT data to a Smoldyn simulation and adjust-
ing the binding radius until the simulation matches the data. The unbinding
radius is taken to be 5 times the binding radius as suggested by Andrews
and Bray to prevent rebindings [3]. The time step ∆t needs to be chosen to
be small enough to avoid missing collisions between molecules.

Multi-parameter Nonlinear Optimization

The objective is to derive kinetic coefficients (i.e. kon and koff ) for a well-
mixed model of EGF using the spatial simulation data. First I have found an
analytical solution for the EGF system and then compare the distance be-
tween the analytical solution and the spatial simulation at several of points.
There are several methods for calculating extrema however the basic calcu-
lus method using the first and second derivative cannot be used, but instead
other options do exist. The Metropolis-Hastings Algorithm allows for di-
rected but random choices for our kinetic parameters. This algorithm will
randomly walk the parameters around the space of possible values until ei-
ther a max or min is achieved (in our case a minimum value of the distance
from the spatial values at given time points to the solution using the ran-
domly chosen parameter values). This extreme value will then serve as our
parameters for the Well-Mixed EGF model.
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Chapter 2

Coarse grained model of VEGF
signal initiation

This chapter of my thesis introduces a coarse grained approach to incorpo-
rate the attractive (trapping) regions for receptors found on the cell mem-
brane through TEM images and SPT data with an existing Chemical Reac-
tion Network (CRN) specifically applied Vascular Endothelial Growth Factor
(VEGF). This approach can be applied to any well-mixed model of species
occurring in two dimensions with regions that collect the chemicals in ques-
tion. The effects of these domains on cell signaling needs to be understood
as any change to the concentration of signaling complexes could drastically
alter the cell’s response to said signal.

2.1 Biology of VEGF

In the specific system we are studying, VEGF, the receptors are monova-
lent, meaning that they have one ligand binding site; however, the ligand is
bivalent, which allows it to bind to two receptors[6]. The VEGF receptors
(VEGFR) can also dimerize and the two receptors may dimerize even in the
absence of the ligand[6, 21]. In this case, receptors move in conjunction,
but are not activated (phosphorylated in this case) and, as such, are not
transmitting signals into the cell [21](See Figure 2.1).

VEGFR belong to the tyrosine kinase receptor family, with extracellular
ligand binding and receptor dimerizing domains and intracellular kinase and
regulatory domains. Ligand binding to the receptor is followed by receptor

19



R V 

V 

R R 

R RR VR VRR RVR Δ V 

V 

R 

V 

R R 

V 

R R 
R R V R 

V 
R R 

Δ 
V 

R R 

VRR 
V 

R R 

VR 
V 

R 

RR 

R R 

R 

R 

V 

V 
R R 

R 

4 3 

1 2 
5 

6 7 

RVR V 

R R 

Figure 2.1: Reactions and species for VEGF with a single receptor species
(based on [21]). This representation shows all species and reactions involved
in the local reaction network. Note that both species on the right (∆ as well
as RV R) are considered signaling.

dimerization, activation of the kinase domain and transphosphorylation of
specific tyrosine residues on the intracellular domain of the receptor [43]. The
phosphorylated tyrosine residues then serve as docking sites for other proteins
including the Src Homology 2 (SH2 domain) containing proteins. [21, 6].
These SH-2 domain containing proteins continue binding other proteins until
the signal is finally transmitted to the cell.

VEGF signaling is a major health concern because of the connection be-
tween VEGF and angiogenesis (formation of new blood vessels from existing
vascular system) [56]. In normal and healthy cellular function, for example,
VEGF is secreted after serious muscle strain or damage [7]. Another normal
cellular function of VEGF is in organ development [56]. The effects of ex-
ercise on angiogenesis via VEGF have been seen in mice with a significant
difference in blood vessel growth [33]. VEGF begins angiogenesis to both
repair damaged muscle tissue and create new vasculature to provide more
nutrients and oxygen so that the muscle tissue is better able to cope the
next time such exercise is performed. Other normal and healthy functions of
VEGF include: summoning blood vessels in wound repair[35] and embryonic
blood vessel development and creation [59]. An embryo would not survive
past day 11 without one VEGFA allele [52]. However it does not appear to
be necessary in maintaining vasculature once created [59].
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Concentration and gradient of VEGF signal have a role in angiogenesis
[56]. ”The spatial distribution of VEGF is a key regulator of angiogenesis”
[56]. Computational models have shown that the gradient of VEGF cannot
be explained by heparan sulfate proteoglycan (HSPG) bindings alone [56].
VEGF has several isoforms which lead to different types of blood vessel for-
mation [56]. Heparin-binding VEGF isoforms create narrow branching blood
vessels, whereas V EGF120 produces leaky vessels [56].

Despite the necessity of VEGF in normal cellular function, angiogenesis
also has a role in cancerous cellular division and proliferation [14]. Generally,
tumors overexpress V EGF121 [56]. In this context, VEGF contributes to
tumor growth beyond a small size limit by supplying the oxygen required for
continued cellular division and VEGF is a key ligand in this process. This
new vascular network not only provides the required oxygen and nutrients
for growth[9], but can also provide a path for the tumor to metastasize and
spread into other organs and tissues[6]. These new tumors can prove fatal
and, as such, are a major health concern. Expression of V EGF164 shows
the most rapid tumor growth [56]. ”VEGF-A also promotes a wide range of
functions, both in vitro and in vivo, all autocrine function on tumor cells,
including adhesion, survival, migration and invasion.” [47]

Pharmaceutical research has been aimed at preventing VEGF signaling
in order to inhibit or at least slow the process of angiogenesis [1]. Avastin has
been FDA approved for the treatment of some cancers [52]. Some preclinical
mouse models have shown promise in this area by decreasing the mass of
tumor [42]. ”Clinically, control of vessel morphogenesis through the VEGF
family would be of use in a wide range of diseases.” [56]

VEGF-A plays a role in age-related macular degeneration (AMD) which
is the leading cause of blindness in the elderly [31]. However, the response in
these cases to anti-VEGF drugs in not consistent [31] VEGF-A is also plays a
role in diabetic nephropathy(DN) [55] DN is ”the leading cause of end-stage
renal disease worldwide [55]. A better understanding of the VEGF system
should allow for a better understanding of how effective these drugs need to
be in order to hinder tumor related angiogenesis as well as other diseases.

Looking only at VEGF Receptor-1 (VEGFR1) and the ligand VEGF-A
gives rise to a seven species and fourteen reaction system (see Figure 1).
This is complicated by the existence of several distinct variants of the VEGF
receptor, which overlap on the type of VEGF ligand they can bind, as well
as several variants of the VEGF ligand. If we consider only one additional
receptor type (VEGFR2, which can also bind with VEGFA), the number of
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reactions possible grows to almost fifty[21], which gives rise to combinatorial
explosion if we consider all possible receptor and ligand types. Because of
this, we will restrict ourselves to the homodimer case of one type of VEGF
ligand and receptor.

2.2 Model Building

As mentioned earlier, VEGF receptors reside on the cell membrane and TEM
images and SPT data show a non-homogeneous spatial distribution of those
receptors. Due to this clustering of the receptors, I develop a transfer net-
work of domains with the connection information of the network compactly
contained in matrix which is referred to in this thesis as the adjacency matrix.

To simulate the VEGF chemical reaction network, the stoichiometric co-
efficients of both the inputs, and outputs contained in matrices call them α
and β respectively, must be obtained from information about the local re-
action network and the transfer network. The construction will be done in
pieces with the first being the total local behavior followed by the movement
behavior. Finally, the two pieces will be combined.

In order to facilitate analytics, we will also break the total VEGF sys-
tem into two simpler components and consider them individually. Firstly,
we will consider the Ligand Induced Dimerization (LID) only system which
allows for dimerization only in the presence of the VEGF ligand. Secondly,
we will also consider the VEGF system in the absence of ligand which al-
lows only Dynamic Pre-Dimerization (DPD). The DPD system is similar to
a completely liganded EGF system. The analytics of the LID system are
included in the text; the DPD system will be omitted as it is basically the
fully liganded EGF system.

2.2.1 Defining the problem

Local reaction network. Consider a generic chemical reaction network
(CRN) with NS molecular species S ≡ {S1, · · · , SNS

}; we will call it local to
distinguish from the composed system. The concentrations form the state
vector,

Xloc = (X1, X2, · · · , XNS
)T , where Xk ≡ [Sk] . (2.1)
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The NR (local) reactions are defined by two sets of stoichiometric coefficients,
{αij, βij}1≤i≤NR,1≤j≤NS

, and we assume that the reactions follow mass action
laws with rate constants ki:

NS∑
j=1

αijSj

ki
GGGGGA

NS∑
j=1

βijSj ; φi = ki

NS∏
j=1

X
αij

j , (∀) 1 ≤ i ≤ NR . (2.2)

It is useful to collect the rate constants into a vector Kloc ≡ (k1, · · · , kNR
)T ,

and to define net stoichiometry coefficients γij ≡ βij − αij. The equations of
motion for the local CRN can be written in matrix form:

dXloc

dt
= Γloc · Φloc(Xloc) , (2.3)

where Γloc ≡ {γij}1≤i≤NS,1≤j≤NR
is the NS × NR local stoichiometric matrix

and Φloc ≡ (φ1, · · · , φNR
)T is the NR × 1 vector of local reaction fluxes.

Network of locations. We assume that the local CRN defined above
is realized in NL different locations, L ≡ {L1, · · · , LNL

}. Each copy of the
CRN has the same set of reactions and (physical) rate constants,1 with gen-
erally different amounts of each species. In addition to the local, molecular
transformations, the NL locations may exchange substances, depending on
their proximity and physical characteristics. We will assume that substance
transfer is limited to a subset of the possible (oriented) pairs of locations.

The possible connections are summarized in a weighted adjacency matrix,
A = {al,m}1≤l,m≤NL

, that defines a connectivity graph. All nonzero entries
of A are positive, and alm is a measure of the transfer rate from location
l to location m. The connections and their strengths define the possibility
and relative ease of transfer between respective locations. We describe the
actual transfer processes as mass-action reactions, involving the respective
species in the origin and destination location. The transfer rate constant
is determined by the connection strength alm and a mobility factor µj that
characterizes each molecular species. For example, transfer of substance Sj

from location l to location m has the rate

ψ
(l→m)
j = alm · µj · [S(l)

j ] , (2.4)

1Locations will typically differ in terms of their physical extent, and this may impact
the effective reaction rate constants, even if the physical rate constants are the same. Of
course, the physical rate constants for corresponding reactions in different locations may
also differ, but for the sake of a clearer presentation we will assume them to be identical.
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where [S
(l)
j ] denotes the concentration of substance Sj in (the source) location

l.
We do not make any assumptions regarding symmetry: links may be

asymmetric, or even uni-directional. Since we generally expect A to be
sparse, it is useful to characterize its nonzero entries; let {(ρc, σc)}1≤c≤NC

be the list of nonzero entries of A, and denote by ωc the corresponding
connection strengths,

aij =

NC∑
c=1

δ i,ρcδ j,σcωc ; (∀)1≤l≤NL, 1≤m≤NL . (2.5)

where for the NC nonzero entries in the matrix, the column index σc gives
the exiting location and the row index ρc yields the entry location; we used
the Kronecker delta: δjl = 1 if j = l and δjl = 0 if j 6= l.

2.2.2 Putting things together

Let us now turn to the joint system formed by all substances at all locations.
This system will have NTS = NS ·NL molecular species, corresponding to the
species-location pairs of the Cartesian product

T ≡ L × S = {L1S1, L1S2, · · · , L2S1, · · · , LNL
SNS
} (2.6)

The entries of the full state vector correspond to the NTS concentrations,
rearranged into a single column vector:

Y = ([L1S1], [L1S2], · · · , [LmSj], · · · , [LNL
SNS

])T =

=
(
Y1, Y2, · · · , Y(m−1)NS+j, · · · , YNTS

)T
(2.7)

Our goal is to summarize the molecular reactions as well as the transfer
reactions between the elements of T as mass-action reactions, characterized
by stoichiometry matrices and rate constants as in Eq. (2.2), leading to
equations of motion similar to Eq. (2.3).
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Molecular processes: The NR · NL molecular transformations will have
the same form as the local reaction set,

NS∑
j=1

αij(LmSj)
k

(m)
i

GGGGGGGGA

NS∑
j=1

βij(LmSj) ;

φ
(m)
i = k

(m)
i

NS∏
j=1

Y
αij

(m−1)NS+j , (∀) 1 ≤ i ≤ NR , (2.8)

where φ
(m)
i is the flux, and k

(m)
i is the mass-action rate constant of reaction

i occurring in location m. We form the vector Φmol of molecular transfor-
mations and order the rate constants in a vector Kmol following the same
ordering convention as in Eqs. (2.6,2.7):

Φmol ≡
(
φ

(1)
1 , φ

(1)
2 , · · · , φ(1)

NR
, φ

(2)
1 , · · · , φ(NL)

NR

)T
Kmol ≡

(
k

(1)
1 , k

(1)
2 , · · · , k(NL)

NR

)T
(2.9)

We will sometimes assume that the values of the local rate constants are
independent of the location: k

(m)
j = kj, (∀) m = 1 · · ·NL. In this case, it is

useful to write the full (molecular) rate constant vector as

Kmol = 1NL×1 ⊗Kloc , (2.10)

where 1m×n is an m × n matrix whose entries are 1, and ⊗ denotes the
Kronecker product of two matrices (explained in the appendix)

Irrespective of the rate constants, the left and right stoichiometry matrices
can always be written as Kronecker products involving the αloc ≡ {αij},
βloc ≡ {βij} matrices and the identity matrix INL×NL

:

αmol ≡ INL×NL
⊗ αloc ; βmol ≡ INL×NL

⊗ βloc (2.11)

Finally, defining the net stoichiometry matrix Γmol, the equations of motion
corresponding to molecular transformations can be written as(

dY

dt

)
mol

= Γmol · Φmol(Y) ; Γmol ≡ INL×NL
⊗ Γloc . (2.12)

25



Transfer processes: We use the sparse matrix notation (2.5) for the nonzero
entries of the adjacency matrix A = {alm}. The transfer process correspond-
ing to element aρcσc = ωc, taking substance Sj from location Lρc to location
Lσc , is described as follows:

(LρcSj)

κ
(c)
j

GGGGGGGA (LσcSj) ; ψ
(c)
j = κ

(c)
j [LρcSj]

(∀)1 ≤ j ≤ NS, 1 ≤ c ≤ NC . (2.13)

The transfer rate constant κ
(c)
j is determined by the strength of the location-

to-location connection ωc and the mobility µj of the substance,

κc
j = ωc · µj , (∀)1 ≤ j ≤ NS, 1 ≤ c ≤ NC . (2.14)

We form the vector Ψtrans from the fluxes ψ
(c)
j , by enumerating the substances

first, then the processes:

Ψtrans ≡
(
ψ

(1)
1 , ψ

(1)
2 , · · · , ψ(1)

NS
, ψ

(2)
1 , · · · , ψ(NC)

NS

)T
. (2.15)

The fluxes represent the NC ·NS transfer processes that will be represented as
an additional set of mass-action reactions in the joint system. The vector of
rate constants Ktrans corresponding to the fluxes in (2.15) is easily represented
as a Kronecker product, based on (2.14):

Ktrans ≡ Ω⊗M where : Ω ≡ (ω1, · · · , ωNC
)T

M ≡ (µ1, · · · , µNS
)T . (2.16)

We need to construct stoichiometry matrices that summarize the action of
the NC ·NS transfer processes in Ψtrans on the NL ·NS substances in Y. First
define two NL×NC matrices that summarize the source (V) and destination
(W) locations of each link in the adjacency matrix:

V = {vlc} , vlc = δ l,σc

W = {wlc} , wlc = δ l,ρc

(∀) 1 ≤ l ≤ NL , 1 ≤ c ≤ NC . (2.17)

The joint stoichiometry matrices corresponding to the transfer processes are
Kronecker products of the above and NS ×NS identity matrices,

αtrans ≡ V ⊗ INS×NS
; βtrans ≡ W ⊗ INS×NS

. (2.18)
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The net stoichiometry matrix for transport Γtrans connects the transfer fluxes
2.15 to the corresponding rates of change in concentrations(

dY

dt

)
trans

= Γtrans ·Ψtrans(Y) (2.19)

Γtrans ≡ (W −V)⊗ INS×NS
. (2.20)

Joint system: Finally, the joint rate vector Φtot = (ΦT
mol,Ψ

T
trans)

T ob-
tained by concatenating the molecular and transfer parts, defines a mass-
action CRN as follows:

dY

dt
= Γtotal ·

(
Φmol(Y)
Ψtrans(Y)

)
with Γtotal ≡ (INL×NL

⊗ Γloc | (W −V)⊗ INS×NS
) (2.21)

with the reactions and rates (similar to (2.2) ) defined by the left- and right
stoichiometry matrices

αtotal = (INL×NL
⊗ αloc | V ⊗ INS×NS

)

βtotal = (INL×NL
⊗ βloc |W ⊗ INS×NS

) (2.22)

and the rate constant vector

Ktotal =

(
Kmol

Ktrans

)
=

(
1NL×1 ⊗Kloc

Ω⊗M

)
. (2.23)

2.3 Application to VEGF Signal Initiation

2.3.1 Application to VEGF Signal Initiation: Com-
plete Local Model

As an application of the formalism for combining a chemical reaction network
model with a spatial network of domains, consider the CRN model of VEGF
signal initiation [21]. The complete model describes two receptor types, which
can form homo- and heterodimers, resulting in 16 chemical species and 24
reactions.

For the complete homodimer case (see Figure 2.1, let us consider the
VEGF system containing only one type of receptor and ligand. The local
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reactions possible are as follows:

R + R
1

GGGGBFGGGG

2
R · R ; V · R + R

3
GGGGBFGGGG

4
V · R · R

V + R · R
5

GGGGBFGGGG

6
V · R · R ; V · R · R

7
GGGGBFGGGG

8
∆

R · V · R
9

GGGGBFGGGG

10
∆ ; V · R + R

11
GGGGGGBFGGGGGG

12
R · V · R

V + R
13

GGGGGGBFGGGGGG

14
V · R (2.24)

This yields seven local species and fourteen local reactions. The local species
vector is

Xloc = (R,R ·R, V ·R, V ·R ·R,∆, R · V ·R)T . (2.25)

The species are as follows: there is one type of receptor which can be a free
monomer R or may be ligand-bound V·R, and receptors can bind to each
other, and may form dimers without ligand R·R. The VEGF ligand V has
two receptor binding domains, thus we distinguish three different complexes
that consist of two receptors and a ligand: V·R·R (ligand bound to one
receptor, receptors bound to each other), R·V·R (receptor dimer with ligand
bound to only on of them) and the fully bound complex ∆. It is generally
believed that the R−V −R structure is the key element in facilitating cross-
activation of VEGF receptors, and the combined amount of R·V·R and ∆ is
identified with the “signal” output of the model.

The incoming and outgoing stoichiometric coefficient matrices αloc, and
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βloc of the reaction network are as follows:

αloc =



2 0 1 0 0 0 0 0 0 0 1 0 1 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1
0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0



βloc =



0 2 0 1 0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1


(2.26)

The steady state of the system defined above (and the complete model in
[21]) has been investigated in [24] and a version of the (2.24) model with two
domains was studied in [12]; however, we were unable to provide a definite
answer regarding bistability.

2.3.2 Application to VEGF Signal Initiation: LID Only

Due to the number of species and reactions of the complete VEGF system
(which has 7 species and 7 reversible reactions before including domain in-
formation), consider the following simplified Ligand Induced Dimerization
(LID) only system (this simplification will allow for analytical calculations):

R + V
1

GGGGBFGGGG

2
V · R ; V · R + R

3
GGGGBFGGGG

4
R·V·R (2.27)

LID refers to ligand-induced dimerization, the mechanism where receptors
can only dimerize in the presence of ligand following the sequence in (2.27),
which remains after removing from (2.24) all reactions and species with direct
R− R binding. As a further simplifying hypothesis, we assume the VEGF
ligand V is present at a fixed concentration V0, so that the VEGF binding
/ dissociation reactions are represented as a reversible first order reaction,
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with an effective rate constant derived from V0 and the second order rate
constant kon,VR of [21].

R
1’

GGGGGBFGGGGG

2’
V·R ; ϕ1 = keff [R] , keff = V0kon,VR (2.28)

This system has species vector containing all three species seen in the
reactions, the receptor, the receptor VEGF complex, and RVR, i.e. the
signaling complex

Xloc = (R, V ·R,RV R)T (2.29)

We read the local stoichiometric coefficients from the reactions. To create
the local stoichiometric matrix, αloc, we arrange a matrix with a number
of rows representing the local species in order of appearance in the species
vector above (2.29), and columns representing the reactions (2.28). For each
column, we look at the inputs required for that individual reaction and place
the stoichiometric coefficient in the appropriate row.

αloc =

 1 0 1 0
0 1 1 0
0 0 0 1

 (2.30)

The same is done to construct the βloc except instead of inputs we focus
on the outputs of the reactions.

βloc =

 0 1 0 1
1 0 0 1
0 0 1 0

 (2.31)

The final step in converting the local system into usable information is
to construct the local rate vector by placing the rate constants into a vector
in the same order as α and β were constructed.

Kloc = (k1, k2, k3, k4)T (2.32)

To illustrate the transfer reactions, let us assume we have two identical
locations that are interconnected. The adjacency matrix A is as follows:
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A =

[
0 1
1 0

]
; L = (1, 2) (2.33)

Now we construct the total species vector, which is simply the local species
vector repeated two times.

Y = (R1, V ·R1,∆1, R2, V ·R2,∆2)T (2.34)

Using the Kronecker product we will expand the local alpha matrix, αloc

to αmol.

αmol =


1 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1

 (2.35)

This is simply repeating αloc along the block diagonal of the identity
matrix of size two which is NL. Repeating this process for β yields

βmol =


0 1 0 1 0 0 0 0
1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0

 (2.36)

Finally we construct the total local rate vector

Kmol = 12×1 ⊗Kloc = (k1, k2, k3, k4, k1, k2, k3, k4)T (2.37)

We can see the practical way to construct the transfer pieces is to read
the adjacency matrix, A from left to right and top to bottom. Reading it
this way the first connection is in the top middle and is a path from the first
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location to the second, the next is a connection from the second to the first.
Using this we construct the transfer pieces of the example as follows:

αtrans =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ; βtrans =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (2.38)

Assuming that the mobility rate vector for each species is given by M =
(µ1, µ2, µ3)T , and that each location is identical, then the complete rate
vector is simply M repeated twice.

Ktrans = (µ1, µ2, µ3, µ1, µ2, µ3)T (2.39)

The only remaining step is to put the molecular and transfer pieces together,
and will be omitted. This is the LID only system which the analytics in the
following section are based on as well as figures (2.5-2.6)

2.4 Analytical Equilibrium Calculations (Of

the LID system)

Chemical transformations occur in all domains. There are two types of reac-
tions (here to distinguish the analytical calculations from the previous section
and for simplicity I renamed the rate constants to a, b, c, and d respectively):

Rj 
 VRj; Θj ≡ −V c[R]j + d[VR]j

Rj + VRj 
 RVRj; Φj ≡ −a[R]j[VR]j + b[RVR]j (2.40)

Species can transfer between certain domain pairs. In this model, the only
allowed transfers are between the “normal” domain (labeled by j = 0) and
the other, “HD” domains. All three species may cross the boundary between
an attractive domain and the rest of the membrane. The flux one direction
is proportional to the concentration on the source side, with a universal
constant, modulated by:

• A permeability factor (proportional to the length of the boundary)
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• A mobility factor (dimers move at a reduced rate)

• The direction of the flux (transport into a high density domain is fa-
vored by a factor α > 1)

All of these factors were included in M = (µ1, µ2, µ3)T . We also assume that
µ1 = µ2 (i.e. both species of monomers have the same mobility) and that
the mobility of dimers are proportional to monomers (i.e. µ3 = δ · µ1). To
distinguish the analytical calculation from the previous section, I changed µj
to vj for this calculation.

2.4.1 Chemical Reaction Network Theory Applied to
the LID System

Before continuing with analytical computations of the LID system, I at-
tempted to apply some results from CRNT. With special thanks to Casian
Pantea, I compared the complete VEGF system with one domain, the LID
system, and the complete VEGF system with two domains to the Defi-
ciency One Theorem proven by Feinberg in 1995 [18] (stated in the Ap-
pendix see 4.3). Using software by Dr. Pantea (available at https://reaction-
networks.net/control/), it was determined that none of the CRNs satisfy the
conditions for the Deficiency One Theorem, which states that if the defi-
ciency of the CRN is 1 and the deficiency of the linkage classes add to 1
then there is a unique equilibrium if it exist, or (Theorem 6.1.1)[19] which
gives uniqueness and existence conditions for deficiency zero CRNs if they
are weakly reversible.

The terms used are as follows: L is the set of linkage classes, δ is the
deficiency of the CRN, δi is the deficiency of linkage class i, m is the num-
ber of complexes, l is the number of linkage classes, and s is the span of
stoichiometric matrix.

The details of the complete VEGF system with one domain:

L = {{R0, V R0}, {R0 +R0, V RR0, RV R0,∆0}}
rank(Γ) = 5

δ = m− l − s = 8− 2− 5 = 1

δ1 = 2− 1− 1 = 0

δ2 = 4− 1− 3 = 0 (2.41)
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The details of the complete VEGF system with two domains:

L = {{R0, V R0, R1, V R1},
{R0 +R0, V RR0, RV R0,∆0, R1 +R1, V RR1, RV R1,∆1}}

rank(Γ) = 11

δ = m− l − s = 16− 2− 11 = 3 (2.42)

The details of the LID system with two domains:

L = {{R0, V R0, R1, V R1}, {R0 + V R0, R1 + V R1, RV R0, RV R1}}
rank(Γ) = 5

δ = m− l − s = 8− 2− 5 = 1

δ1 = 4− 1− 3 = 0

δ2 = 4− 1− 3 = 0 (2.43)

As we can see from 2.41 2.42 and 2.43 neither of theorems apply, so I use
analytics to calculate the equilibrium.

2.4.2 Calculations Continued

We define the transfer fluxes for any number of HD domains:

ΨR,j = vj(−α[R]0 + [R]j)

ΨVR,j = vj(−α[VR]0 + [VR]j)

ΨRVR,j = vjδ(−α[RVR]0 + [RVR]j) (2.44)

Specifically when the number of high density domains is one, this becomes:

ΨR,1 = v1(−α[R]0 + [R]1)

ΨVR,1 = v1(−α[VR]0 + [VR]1)

ΨRVR,1 = v1δ(−α[RVR]0 + [RVR]1) (2.45)

For the transport equations, we must also take into account the change in
area when a particle moves from one location to another as the concentration
is inversely proportional to the area (call each Aj). The equations of motion
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are therefore for any number of HD domains is:

d[R]0
dt

= Θ0 + Φ0 +
1

A0

n∑
j=1

ΨR,j

d[VR]0
dt

= −Θ0 + Φ0 +
1

A0

n∑
j=1

ΨV R,j

d[RVR]0
dt

= −Φ0 +
1

A0

n∑
j=1

ΨRV R,j

d[R]j
dt

= Θj + Φj −
1

Aj
ΨR,j

d[VR]j
dt

= −Θj + Φj −
1

Aj
ΨV R,j

d[RVR]j
dt

= −Φj −
1

Aj
ΨRV R,j (2.46)

For only one HD domain (which we can solve):

d[R]0
dt

= Θ0 + Φ0 +
1

A0

ΨR,1

d[VR]0
dt

= −Θ0 + Φ0 +
1

A0

ΨV R,1

d[RVR]0
dt

= −Φ0 +
1

A0

ΨRV R,1

d[R]1
dt

= Θ1 + Φ1 −
1

A1

ΨR,1

d[VR]1
dt

= −Θ1 + Φ1 −
1

A1

ΨV R,1

d[RVR]1
dt

= −Φ1 −
1

A1

ΨRV R,1 (2.47)

Some special items:

Mj = [R]j + [VR]j

Ej = [R]j − [VR]j

Tj = [R]j + [VR]j + 2[RVR]j = Mj + 2[RVR]j (2.48)
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This yields the conservation law

n∑
j=1

Tj + T0 = K (2.49)

For the single HD domain case the conservation law becomes:

T1 + T0 = K (2.50)

At equilibrium we also should note that:

−1

Aj
(ΨR,j + ΨV R,j + 2ΨRV R,j) = 0

α([R]0 + [VR]0 + 2δRV R0) = [R]j + [VR]j + 2δ[RVR]j (2.51)

At equilibrium, we add and subtract the equations of motion of [R]0 and
[R]j and [VR]0 and [VR]j respectively, to arrive at

−A0Φ0 =
n∑
j=1

Φj

−A0Θ0 =
n∑
j=1

Θj (2.52)

Manipulating the equations in (2.47), we arrive at:

−(c+ d)Θj + (d− c)Φj +
1

Aj
(cΨR,j − dΨV R,j) = 0

−(c+ d)Θj + (d− c)Φj +
vj
Aj

(αΘ0 −Θj) = 0 (2.53)

We will return to the general case later, but let us focus on the one HD
domain case:

−(c+ d)A1Θ1 + (d− c)A1Φ1 + v1αΘ0 − v1Θ1 = 0

(c+ d)A0Θ0 + (c− d)A0Φ0 + v1αΘ0 +
v1A0

A1

Θ0 = 0

(c+ d+
v1

A1

+
v1α

A0

)Θ0 = (d− c)Φ0 (2.54)
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Let Ω =
c+d+

v1
A1

+
v1α
A0

d−c we arrive at:

ΩΘ0 = Φ0 (2.55)

Now we can attempt to solve the one HD case and will begin with removing
Φ0 from the equations:

d[R]0
dt

= (1 + Ω)Θ0 +
1

A0

ΨR,1

d[VR]0
dt

= (−1 + Ω)Θ0 +
1

A0

ΨV R,1

d[RVR]0
dt

= −ΩΘ0 +
1

A0

ΨRV R,1 (2.56)

Combining (31) and (33) with the conservation law and eliminating [R]1
and [VR]1:

A1α

A0

([R]0 + [VR]0 + 2δ[RVR]0) +
2A1(1− δ)

A0

[RVR]1 + T0 = K (2.57)

Now we can eliminate [RVR]1

[RVR]1 = α[RVR]0 +
A0Ω

δv1

Θ0 (2.58)

Substituting again:

A1α

A0

([R]0 + [VR]0 + 2δ[RVR]0) +
2A1(1− δ)

A0

(α[RVR]0 +
A0Ω

δv1

Θ0) + T0 = K

A1α

A0

([R]0 + [VR]0) +
2A1α

A0

[RVR]0 +
2A1Ω(1− δ)

δv1

Θ0 + T0 = K

Let:

KR,1 = 1 +
A1α

A0

KΘ,1 =
2A1Ω

δv1

(2.59)

we arrive at

KR,1[R]0 +KR,1[VR]0 + 2KR,1[RVR]0 +KΘ,1Θ0 = K (2.60)
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Now to eliminate [RVR]0:

[RVR]0 =
a

b
[R]0[VR]0 +

Ω

b
Θ0

K = KR,1[R]0 +KR,1[VR]0 + 2KR,1
a

b
[R]0[VR]0 + (KΘ,1 + 2KR,1

Ω

b
)Θ0

Let:

KΘ,2 = KΘ,1 + 2KR,1
Ω

b
(2.61)

K = (KR,1 − cKΘ,2)[R]0 + (KR,1 + dKΘ,2)[VR]0 + 2KR,1
a

b
[R]0[VR]0

For simplicity, one more substitution of constants:

KR,2 = KR,1 − cKΘ,2

KV R,2 = KR,1 + dKΘ,2

KR·V R,2 = 2KR,1
a

b
(2.62)

Leading to the following equation for [VR]0 in terms of [R]0:

[VR]0 =
K −KR,2[R]0

KV R,2 +KR·V R,2[R]0
(2.63)

For the second equation:

[R]1 = α[R]0 −
A0

v1

(1 + Ω)Θ0

[VR]1 = α[VR]0 +
A0

v1

(1− Ω)Θ0 (2.64)

[R]1 · [VR]1 = α2[R]0 · [VR]0 +
αA0

v1

(1− Ω)[R]0Θ0 −
αA0

v1

(1 + Ω)Θ0 · [VR]0

− A2
0

v2
1

(1 + Ω)(1− Ω)Θ2
0 (2.65)
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We can again simplify the equation by renaming the constants:

ZR2
0

=
αA0

v1

(1− Ω)c+
A2

0

v2
1

(Ω2 − 1)c2

ZV R2
0

=
−αA0

v1

(1 + Ω)d+
A2

0

v2
1

(Ω2 − 1)d2

ZR·V R = α2 +
αA0

v1

(1 + Ω)c− αA0

v1

(1− Ω)d− 2cd
A2

0

v2
1

(Ω2 − 1)

[R]1 · [VR]1 = ZR2
0
[R]20 + ZV R2

0
[VR]20 + ZR·V R[R]0 · [VR]0 (2.66)

Using Φ1 = − 1
A1

ΨRV R,1 along with the conservation law, we arrive at:

−a[R]1 · [VR]1 + b[RVR]1 =
−v1δ

A1

(−α[RVR]0 + [RVR]1)

A1a

v1δ
[R]1 · [VR]1 + α[RVR]0 = (1 +

A1b

v1δ
[RVR]1

XR1·V R1 =
A1a

v1δ
(1 +

A1b

v1δ
)−1

XRV R0 = α(1 +
A1b

v1δ
)−1

[RVR]1 = XR1·V R1 [R]1 · [VR]1 +XRV R0 [RVR]0 (2.67)

Recall:

[RVR]1 = α[RVR]0 +
A0Ω

v1δ
Θ0 (2.68)

By substitution:

α[RVR]0 +
A0Ω

v1δ
Θ0 = XR1·V R1 [R]1 · [VR]1 +XRV R0 [RVR]0

(α−XRV R0)[RVR]0 = XR1·V R1 [R]1 · [VR]1 −
A0Ω

v1δ
Θ0

YR1·V R1 = XR1·V R1(α−XRV R0)−1

YΘ0 = −A0Ω

v1δ
(α−XRV R0)−1

[RVR]0 = YR1·V R1 [R]1 · [VR]1 + YΘ0Θ0 (2.69)
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By substituting into the conservation law:

K = KR,1[R]0 +KR,1[VR]0 + 2KR,1(YR1·V R1 [R]1 · [VR]1 + YΘ0Θ0) +KΘ,1Θ0

Z
′

R0
= KR,1 − c(2KR,1YΘ0 +KΘ,1)

Z
′

V R0
= KR,1 + d(2KR,1YΘ0 +KΘ,1)

Z
′

R2
0

= 2KR,1YR1·V R1ZR2
0

Z
′

V R2
0

= 2KR,1YR1·V R1ZV R2
0

Z
′

R0·V R0
= 2KR,1YR1·V R1ZR0·V R0

Finally arriving at our second equation:

Z
′

R0
[R]0 + Z

′

V R0
[VR]0 + Z

′

R2
0
[R]20 + Z

′

V R2
0
[VR]20 + Z

′

R0·V R0
[R]0 · [VR]0 = K

(2.70)

Instead of solving the resulting 4th order equation analytically, it is solved
numerically (graphically) in section 2.5.1.

2.5 Simulations of VEGF

The values of the local rate constants for the VEGF system were taken from
a 2007 MacGabhann paper [21], however some of these numbers had to be
converted from use for ODE/PDE and concentrational values to Gillespie
rate constants. In the MacGabhann paper, the rates for dimerization were
given with the units cm2 · mol−1 · s−1. The others had units of M−1 · s−1

and s−1. To convert the units into Gillespie rates, for the first, the area
and Avogadro’s number had to be divided out, the next the volume and
Avogadro’s number, but the last required no change. This conversion was
necessary as we are keeping track of the number of individuals instead of the
concentration of those species.

2.5.1 Analytics and Validation

We calculated the equilibrium values for the system without ligand and im-
mobile dimers. More over this obviously has only one positive solution, mean-
ing there is a unique (positive) equilibrium. (See Figure (2.5)).

In order to validate the simulations, we computed the values of [R]0 and
[VR]0 at equilibrium and compared this result to the simulation. The results
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Figure 2.2: Effect of dimer mobility on signaling in the HD and normal
sector. The figure uses the rate coefficients from the MacGabhann paper.
This graph shows the effect of dimer mobility (one variable that is not present
in the MacGabhann model) on the concentration of signaling complexes. The
mobility is varied from completely immobile represented by 0 and half as
mobile as a monomer (a reasonable place to stop). We see the concentration
of signaling complexes in yellow increases in the attractive or High Density
Domain as the dimer mobility decreases.
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Figure 2.3: Effect of ligand concentration on signaling in the HD and normal
sector. The figure again uses the rate coefficients from the MacGabhann
paper. This graph on log scale shows that increasing the concentration of
ligand increases the signaling complexes in both the attractive and normal
domain. The ligand concentration does not reach a high enough level to
achieve high dose inhibition.
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Figure 2.4: Effect of domain attractiveness on signaling in the HD and nor-
mal sectors. The figure again uses the rate coefficients from the MacGabhann
paper. This graph shows the effect of increasing attractiveness of the attrac-
tive region on signaling complexes.
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can be seen in Figure (2.6). The points are values of the simulation as time
increases towards infinity. The red and blue graphs are the results of the
analytical calculations. We do arrive at two equations with two unknowns;
however, instead of solve that system we will graph it (using what we set for
default values) for comparison to on ODE simulation.

[VR]0 =
K −KR,2[R]0

KV R,2 +KR·V R,2[R]0

Z
′

R0
[R]0 + Z

′

V R0
[VR]0 + Z

′

R2
0
[R]20 + Z

′

V R2
0
[VR]20 + Z

′

R0·V R0
[R]0 · [VR]0 = K

2.6 Conclusions

The first part of thesis is the construction and analysis of a model that com-
bines a given Chemical Reaction Network with a spatial network of domains.
The starting point is a model of VEGFR signal initiation due to MacGab-
hann and Popel [21] (and previous work cited therein). The choice of this
biological system is due to its medical relevance. VEGF is responsible for the
development of blood vessels and has been proposed as a target for tumor
suppression strategies.

Experimental data (static TEM images revealing clustering of receptors,
highly unlikely for random placement and single particle tracking that points
to regions that ’trap’ receptors by slowing them down) indicates that the cel-
lular membrane is not homogenous. Rather than a uniform ’two dimensional
liquid’ that allows free diffusion, it exhibits a network of domains (presum-
ably induced by lipid rafts, cytosketal elements and others) that tend to
attract and group VEGF receptors. Thus, I was prompted to modify the
Popel and MacGabhann model [21] to include this spatial information. I in-
cluded the spatial structure by developing the microdomain/boxes model. In
the resulting model each spatial domain is represented by a well-mixed “com-
partment”. Each compartment (microdomain/box) contains a complete copy
of every species and reaction with transfer ”reactions” to represent diffusion
between the compartments. The resulting model is still a chemical reaction
network that can be analyzed in the context of CRNT and simulated both
as a system of ordinary differential equations or following a stochastic sim-
ulation algorithm such as the Gillespie SSA. This is an economical way to
incorporate the presence of nontrivial spatial structures, which is compu-
tationally less intense than going to a fully spatial model. Because of this
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Figure 2.5: Convergence to equilibrium. A check that our analytical com-
putations match with the simulation at equilibrium the concentration of R0,
the receptor in the normal domain. The analytical equilibrium value is the
line shown in blue and the results of an ODE simulation are shown in red.
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Figure 2.6: Convergence to equilibrium, parameter space view. Another
check that our analytical computations match with the simulation. The red
and blue curves are from the analytical calculations with the equilibrium
value at the intersection of the two graphs and the points are several time
points of an ODE simulation with convergence toward the equilibrium.
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simpler model, analytical computations and insight are possible, such as the
equilibrium calculation performed in the text.

The main technical contribution is the framework we use to derive the
joint CRN model, as a composition of the local CRN model and the spatial
network. From the knowledge that the VEGFR is monovalent while the
receptor is bivalent, combined with Mass Action Rate Laws we can develop
the local stoichiometric matrices as done by Popel and MacGabhann (they
also developed the rate constants we used for the reactions) [21].

Using the Kronecker Product, the local stoichiometric matrices, and loca-
tion information, I built the complete stoichiometric matrices for the coarse
grained model. In order to check my simulations, equilibrium calculations
were made and compared to the results from simulation at the final time
steps (as time approached ”infinity”).

After validating the simulation, we can allow values to vary and observe
the effects on signaling strength. We can see from Figures(2.2 2.3 2.4) that:

1) Lower dimer mobility favors signaling in the attractive region as with
lower dimer mobility, more monomers would become trapped in the attractive
region, become dimers and then be less likely to exit

2) Increased ligand (we did not reach high dose inhibition) increases the
signal in all domains, but more so in the attractive region and

3) Increasing the attractiveness beyond 8 fold leaves a higher actual con-
centration of signaling complex in the attractive region.

We should note that as time increasing we would expect a lower dimer
mobility as more proteins bind to the activated interior increasing the size
of the signaling complex as well as slowing it. This would also suggest that
a dimer breaking apart into its monomer components becomes exceedingly
less likely as time progresses. This model also ignores internalization which
would turn a large signaling complex back to only monomers.
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Chapter 3

Deriving effective non-spatial
kinetics from a spatial model of
ErbB2 / ErbB3 dimerization

3.0.1 Biology of EGF

EGFR is also a member of the receptor-tyrosine kinase family, one of the
largest families of membrane receptors [58] and one of the first growth fac-
tors discovered [4]. The epidermal growth factor receptor family consists
of the following receptors: EGFR (ErbB1), ErbB2, ErbB3 and ErbB4 [60].
EGF receptors, EGFR, tend to be transmembrane proteins [38]. ErbB3 is
dependent on heterodimerizing with an ErbB receptor for phosphorylation
and increasing its weak kinase activity. The preferred dimerizing partner
for ErbB3 is ErbB2. Known ligands for ErbB3 include Neuregulin -1 and
Neuregulin - 2. [62] Because of the nature of heterodimers, many different
signaling outcomes are possible [4]. ”EGFR plays important roles in the reg-
ulation of cell growth and development.” [58] The ERBB family also has roles
in ”normal embryonic development, angiogenesis, metastasis, cell prolifera-
tion and apoptosis resistance.” [29] Activated EGFR also prevents apoptosis
(cell death) [58] and play a role in cellular differentiation [4]. Proper EGF
signaling helps control proper haploid cell generation [11].

EGF acts as mitogens and motogens which transform epithelial cells into
carcinomas[38]. EGF also plays a role in lung cancer [30], and in cell prolifera-
tion and migration [34]. Getfitinib is given to inhibit EGF in lung cancer and
breast cancer [10]. Getfitinib is also used in combination with methotrexate
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to treat ectopic pregnancy [10]. EGFR is ”associated with poor prognosis of
breast cancer patients.” [38] It is known that EGF is correlated to ”malignant
transformation and all the steps of the breast cancer metastatic cascade.”[57]
This is partial because of a correlation between EGF and endocrine resistant
breast cancer.[57] Over expression of ERBB2 has been linked to gastric can-
cer [29]. Not only is the EGF family involved in tumor progression, but also
survival under the harsh conditions of chemotherapy and radiotherapy [38].
EGFR prevents the maturation of tumor suppressing microRNAs (miRNA)
[38].

The EGFR family of receptors is expressed in many types of cell [4].
Similarly to VEGF the receptors must not only find the target ligand, but
also find another receptor of the appropriate type in order to signal. Unlike
VEGF which has a bivalent ligand, EGF has only monovalent ligands. This
means that there is no high dose inhibition of EGF unlike VEGF (high dose
inhibition in VEGF is caused by too many receptors already bound to ligands
to signal).

Like VEGFR, EGFR has binding proteins that have a Src Homology 2
(SH2) binding domain [40]. Several downstream pathways are the target of
Ras [40]. ”Data suggest that the physiological outcome of tyrosine kinase sig-
naling strongly depends on the timing, duration, and amplitude of activation
of signaling components.” [40] This gives even more importance for finding
a suitable model for EGFR-EGF binding. Subtle differences in signals could
possibly create different responses [40]. miRNA regulation may be influenced
by growth factors[38]. For example, changes in expression of miRNAs were
seen in healthy cells after exposure to EGF [38]. This is complicated by the
fact that miRNAs also influence the expression of growth factor receptors
[38]. In this paper I will not include these complications to the model, but
include mentioning them because of the medical relevance. It also suggests
that other factors besides the SH2 domain must be responsible for cell to
tell a VEGF signal from an EGF signal. I have not seen any facts in the
literature searches explain how the cell can tell the two signals apart.
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3.1 Generating the well-mixed parameters for

the ErbB2 and ErbB3 system

3.1.1 Spatial stochastic model: Brownian motion sim-
ulation and binding radius

In the discussion below, we refer to a spatial simulation algorithm, as imple-
mented in [39] and references therein. The motion simulator and triggering
of reactions is essentially identical to Smoldyn [3]. Smoldyn is widely used
in the literature, although there is an array of other methods [49] [17] and
available software [13] [41] . We will focus on particle movement simulated
through a first principles Brownian motion approach, dimerization and disso-
ciation; we will not discuss zero- and first order reactions and other features
implemented in the Smoldyn software. The Smoldyn algorithm relies on a
fixed time step ∆t; particles are represented by geometric points that move
at each update according to Brownian motion and participate in reactions
according to rules as described below.

We will start our discussion of the Smoldyn simulation with dimerization
and dissociation and finish with Brownian motion. In the simulation, dimer-
ization is caused when two particles diffuse via Brownian motion (more on
this later) within a binding radius (BR) of each other. The BR (denoted
ρb) is determined using the kinetics of the system for each reaction type and
is such that the behavior of the simulation matches experimental data [3].
This means that whenever two eligible particles are within the BR of each
other dimerization will occur. In order to save computational time, the sim-
ulation ignores the probability of the reaction occurring provided the eligible
particles meet (the BR already took this probability into account).

Dissociation is controlled by a decay rate koff . As every first order reac-
tion, dissociation is triggered stochastically at each full update; the proba-
bility is ∆p = 1 − exp (−koff∆t) ≈ koff∆t for each existing dimer. The only
other consideration for dissociation is the unbinding radius (UBR, denoted
ρub). The UBR, denoted the distance dissociated particle are placed apart,
is usually around 5 times greater than the BR and is used to prevent the
particles from immediately rebinding [3].

The final item the simulation uses is a first-principles Brownian mo-
tion to simulate the movement (diffusion) of particles. Brownian motion
is the core element in the Smoldyn simulation. It allows all of the parti-
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cles to move around the simulation space by moving each molecule following
[x(t + ∆t), y(t + ∆t)] = [x(t), y(t)] + [∆x,∆y]. The displacements are de-
rived from a normal distribution with variance σ2 = 2D0∆t. The collision
rate is influenced by the choice of the time step. If the typical displacement√

2D0∆t exceeds BR, some collisions will be missed, reducing the reaction
rate.

In this paper we are attempting to create a well-mixed model of the dimer-
ization of ErbB2 and ErbB3. We will use Smoldyn simulation, characterized
by D0, k

(sim)
off ,∆t, BR and UBR, to compare to the solution of the well-mixed

model with yet undetermined rate constants k
(eff)
on and k

(eff)
off .

3.1.2 ODE model: well-mixed, continuous and deter-
ministic

The traditional (or vastly more widespread) model for bio-molecular pro-
cesses relies on well-mixed chemical reactions with continuous dynamics. In
this approach, a generic dimerization-dissociation reaction is represented by
the chemical equation A + B 
 C. The dynamics is described in terms
of the concentration of each substance [A],[B],[C]; their time evolution is
determined by rate laws that set the flux through each reaction.

d[A]

dt
=
d[B]

dt
= −d[C]

dt
= −ϕA+B→C ([A], [B], [C]) + ϕC→A+B ([A], [B], [C])

(3.1)

Rate laws used to describe signaling networks represent intricate reaction
mechanisms, but are ultimately are derived from mass action rate laws, which
state that the rate of a simple reaction is proportional to the product of the
amounts of the reacting substances. The proportionality constants kon, koff

are commonly used to characterize the rate of a given reaction:

ϕA+B→C = kon[A][B] ; ϕC→A+B = koff [C] ⇒
d[A]

dt
=
d[B]

dt
= −d[C]

dt
= −kon[A][B] + koff [C] (3.2)

The ODE model relies on two implicit simplifications. First, the state of the
system is sufficiently described by the amounts of each substance; spatial
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inhomogeneities are either negligible or can be abstracted away1. We will
refer to this as the well mixed assumption. Second, the amount of each
substance may be represented by a (non-negative), continuous quantity; this
becomes untenable when the number of molecules involved becomes small.
In a cell diameter of d ≈ 10µm and a concentration of [A] = 1 nM there are
only a few hundreds:

N ≈ π

6
× 103 µm3

cell
× 10−9 M× 6·1023 molec

litre
/M× 10−15 litre

µm3
≈ 314

molec

cell

(3.3)

ODE models of signaling networks give rise to complex dynamical systems re-
quiring specialized tools for simulation (rule based modeling [61] is often nec-
essary to deal with the combinatorial explosion of the number of species) and
theoretical analysis [5] [32]. On the experimental side, individual processes
are typically characterized by kinetic parameters related to the traditional
rate constants.

Thus, while spatial and stochastic models are a more faithful representa-
tion of the physical reality, their generalized use in signaling models would
raise the cost of simulations and further complicate the task of extracting bi-
ologically relevant insight. Given the uncertainty on kinetic parameters and
the nonlinear dynamics involved, the added value might be limited. Instead,
spatial simulations can focus on specific aspects where detailed experimental
insight exists. We need consistent abstractions that summarize this detailed
picture in terms of effective kinetic parameters that relate to larger scale
models and the vast majority of accumulated experimental information.

The goal of this paper is to investigate the relation between a popular
type of spatial simulation (based on Smoldyn [3][2] and implemented by this
group [39] [45]), ODE models, and non-spatial stochastic simulations. We
will not discuss numerical simulation of ODE systems, which is a mature
discipline with well-established methods [23]. We will make use of the exact
analytical solution of dimerization-dissociation with mass action rates [26].

1Abstractions may remain valid if significant inhomogeneities exist but their effect on
the total amount of substance (or average concentration) can be captured by appropriately
[re]defined rate laws.
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3.1.3 Non-spatial stochastic model: Gillespie simula-
tions and correspondence principle

Non-spatial stochastic simulations of mass-action reaction systems are fairly
standard. We follow the approach of the Gillespie SSA [22]. The amount
of each substance is represented by the respective number of molecules, and
individual reaction events are stochastically occurring transitions in the re-
sulting discrete state space. Reactions of a given type are triggered by Poisson
processes whose rate (probability per time or propensity γreaction) is equiva-
lent to the mass-action rate law.

The correspondence principle is that the rate per particle for each of
the reacting species in a reaction equals the effective time constant for that
species resulting from the continuous rate law. For dissociation (and any
other first order reaction), the stochastic rate constant equals the macroscopic
one

γC→A+B = koff ·NC ↔
γC→A+B

NC

=
ϕC→A+B

[C]
=
koff · [C]

[C]
= koff (3.4)

For second- and higher order reactions, a volume factor must be included.
For dimerization, assuming [A] = NAV0 and [B] = NBV0 we have2

γA+B→C

NA

=
ϕA+B→C

[A]
=
kon · [A] · [B]

[A]
= · · ·

kon · [B] = kon ·
NB

V0

→ γA+B→C =
kon

V0

·NA ·NB (3.5)

3.1.4 Biological model system

This work was motivated by our investigation [39] [50] of the EGF ligand
/ receptor family, in particular ErbB2 and ErbB3, which are important for
their role in cancer [15]. The membrane bound receptors are capable of
both homodimerization and heterodimerization [50]. The rationale of the
developing the spatial model is to connect to single particle tracking (SPT)
[53] data. In SPT, labeled molecules are directly observed diffusing across
the membrane and dimerizing. The spatial model was developed using this

2Note that when the reacting substances occupy different spatial realms (such as mem-
brane bound receptors binding ligand from the extracellular space), the reaction rates for
the two reacting species are in different units, i.e. mol per area versus mol per volume.
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method in the context of a recent study of the effect of membrane domains
on signaling [39]. ErbB2 and ErbB3 are receptor-tyrosine kinases (RTK)
[50]; that means dimerization is required for phosphorylation [58]. Moreover,
in the ErbB2/ErbB3 system, heterodimerization is required for phosphory-
lation/signal initiation [50].

3.2 Methods

3.2.1 Spatial stochastic simulation

In this work, we use a similar algorithm to the one in Smoldyn, as suggested
by Andrews and Bray [2] [45]. This is a fixed time step algorithm with a
Brownian Motion simulator for particle movement. Molecular species are
represented as geometric points. Binary reactions (dimerization) are trig-
gered by collisions between participating particles; all other transformations
(dissociation in the present case) are triggered stochastically, consistent with
the propensity (rate) associated with the espective process. Each binary re-
action is characterized by an associated “binding radius” (ρB); when two
potential partners are within this distance, a reaction happens with cer-
tainty. To avoid instant recombination, particles resulting from dissociation
are placed at a distance called the “unbinding radius” ρU > ρB. The actual
simulation proceeds with one-particle updates when one particle (receptor)
is selected randomly; it is first given a Brownian displacement corresponding
to ∆t; then we check for collisions and implement the resulting dimeriza-
tion if it is the case; if no binary reaction occurs, an intrinsic reaction is
implemented with probaiblity γ∆t. The nominal time step in the simulation
∆t corresponds to a full update of the state of all particles, therefore the
time counter is advanced by ∆t/Nparticles for each one-particle update. The
parameters are listed in the table 3.1.

3.2.2 Well mixed stochastic simulation

We also make use of the Gillespie Algorithm. We in particular use the Next
Event Method, where the total probability is used to generate the time any
event will occur then randomly select the event that occurs, because it is
less computationally intense compared to the original Gillespie. For the
general case we had to generate the stoichiometric matrices using a rules
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Table 3.1: Smoldyn-like algorithm parameters

Diffusion coefficient (monomers) Dmon = 3.1 · 10−2m2

s

Diffusion coefficient (dimers) Ddim = 0.5 ·Dmon = 1.55 · 10−2m2

s

Dissociation rate constant k
(sim)
off = 0.130 s−1

Simulation time step ∆t={30, 10, 3, 1, 0.3} × 10−6 s
Binding radius ρb = 4.35 · 10−4 µm
Unbinding radius ρub = 5 · ρb

based approach due to the astronomical number of species involved when we
consider the phosphorylation sites.

3.2.3 Biological system, ODE model, analytic solution

The biological model reactions in [39] [50] are as follows:

E2 + E2 
 D22 ; E2 + E3 
 D23 ; E3 + E3 
 D33 (3.6)

The complete system (3.6) is too difficult to solve by hand, but with a
simplification we arrive at the following reaction: 2M � D. Using Mass
Action Rate Laws we obtain the following equations of motion:

dM

dt
= −konM

2 + 2koffD ;
dD

dt
=

1

2
konM

2 − koffD (3.7)

This simple system has solution:

y(t) =
(R− S2)S1 − (R− S1)S2e

−kon(S1−S2)t

(R− S2)− (R− S1)e−kon(S1−S2)t
(3.8)

The values of S1 and S2 are given in formula (3.9) and for more details see
(4.4).

3.2.4 Extracting dimer and monomer lifetimes

We extracted the dimer and monomer lifetimes in two ways the first was by
sampling the system at discrete time intervals. At each discrete time step,
we checked each to see if each dimer pair was still partnered with its previous
partner, and if so it was assumed that the pair did not break up; the lifetime
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associated to this dimer instance would be the time step multiplied by the
number of steps the dimer was observed. This method led to an inaccurate
count the reason for this will be discussed in greater detail later. The error in
dimer and monomer lifetimes can however be corrected by recording the time
of each dimerization or dissociation event instead of observing the system at
discrete time intervals.

3.2.5 Fitting the ODE solution to stochastic simula-
tion outputs

Equilibrium

The two easiest methods for calculating the kinetic coefficients of the well-
mixed model are to use either the rise via the time course of the Smoldyn
algorithm or the equilibrium. When using the equilibrium, KD = kon

koff
is used

with fixed koff .

Monte Carlo optimization

When we chose both the kon and koff we use the Metropolis-Hastings Algo-
rithm, which randomly but somewhat directed selects values for both param-
eters until an optimum is found.

Choice of comparison points

We also have to choose our points for comparison well and the more points
chosen the better the results.

3.3 Results

3.3.1 Difficulties in matching the time course of a spa-
tial simulation with a non-spatial model

Our study was motivated by the problem of finding the proper correspon-
dence between a spatial simulation and a traditional rate based description of
the process. Comparing predictions on the time course of molecular species
in a model system such as the ErbB2-ErbB3 system [39] [50], we generally
found that non-spatial simulations resulted in similar, but seldom identical
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behavior. We set out to investigate these discrepancies in a simple system,
a reversible homo-dimerization process, represented as 2M 
 D; we com-
pare predictions of a spatial simulation similar to the one in [39][50] with the
traditional ODE-based, mass-action kinetics and non-spatial stochastic sim-
ulations. We focus on the evolution of the number of molecules of monomers
and dimers M(t), D(t) in this system, from an initial condition of no dimers
(i.e. ([M](0), [D](0)) = (RT , 0) ), until it reaches its steady state

( ¯[M], ¯[D]
)

.
The issues we encounter are illustrated in Figure 3.1 and 3.2. Tradition-

ally, the dimerization-dissociation process is characterized by the forward and
reverse rate constants kon, koff ; given the initial amount of each species, the
time evolution of the number (concentration) of monomers M(t) and dimers
D(t) can be obtained as an algebraic expression (3.9),

M(t) =
M0(S1 − φ(t)S2)− S1S2(1− φ(t))

M0(1− φ(t)) + S1 − S2

where : φ(t) = e−koff

√
1+4R/KD·t

S1 =
1

2
KD

(√
1 + 4R/KD − 1

)
; S2 = −1

2
KD

(√
1 + 4R/KD + 1

)
(3.9)

(Here, M0 is the initial amount of monomers and RT = M + 2D the (con-
served) total number of receptors; KD = koff/kon is the equilibrium constant;
refer to the appendix 4.4 for a derivation and the origin of S1, S2)

A spatial simulation (following the Smoldyn algorithm) of the reversible
dimerization process is characterized by six parameters: the diffusion coeffi-
cients of the two species (monomers and dimers) Dmon, Ddim, a binding and

an unbinding radius (ρub, ρb), a dissociation rate k
(sim)
off , and a simulation

time step ∆t. In the simulations discussed here, we set the dimer diffusion
coefficient to 1/2 of the monomer one: D0 = Dmon = 2 · Ddim, and (unless
otherwise specified), the unbinding radius is set to 5 times the binding radius,
following [3] : ρub = 5ρb. The spatial simulation provides a time course of
the number of particles of each species. Due to its stochastic nature, each
run of the spatial version results in a different particle number time course,
as illustrated by the green lines in Fig.3.1 (A). Individual time courses, or an
average over a number of runs, can be readily compared to the solution 3.9
or to non-spatial stochastic simulations.

Our goal is to identify the (k
(eff)
on , k

(eff)
off ) pair for an ODE model that best

approximates the average particle number time course resulting from the spa-
tial simulation with given parameters. The most straightforward approach
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Figure 3.1: The effective well-mixed on-rate k
(eff)
on for a given

spatial simulation is not uniquely defined. A. Time course of
the number of dimers from 8 spatial simulations (green/brown) and
best matching ODE time courses obtained using the same off rate

k
(eff)
off = k

(sim)
off as the spatial simulation and the on-rate k

(eff)
on (i.) de-

termined from the mean values of the monomer and dimer counts at
equilibrium (red) or (ii.) fit to the initial rise of the dimer count (blue).
B. Steady state fitting: distribution of the number of monomers in
the simulation and from well mixed stochastic (Gillespie) simulations

using the parameters of theoretical curves (k
(eff)
off = k

(sim)
off everywhere;

red - k
(eff)
on from steady state, blue - rise); the steady state based pre-

diction is very close to the spatial simulation; there is a significant
discrepancy with the rise based prediction. C. Detail of fitting the

on-rate k
(eff)
on from the rise of the number of dimers: we compare the

average dimer count over the 8 spatial simulations at 8 sample time
points, from t = 10−4 s to 2 · 10−2 s (from the approximate time of the

first reaction to about 50% dimerization); the k
(eff)
on value minimizes

the square differences, scaled by the standard deviation at each sample
time. The resulting ODE curve is shown in blue; the steady state fit
curve is shown in red. D. The procedure in (A) applied to a well-
mixed stochastic (Gillespie) simulation (kon matching the steady state
fit to the spatial simulation); the extracted parameters are not iden-
tical, but the difference is significantly smaller, below the stochastic
variability of the simulations.

58



Spatial Gillespie: kon=1.103 Gillespie: kon=0.501
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simulation type

Fi
tte

d 
on
−r

at
e 

(s
−1

)

On−rates in spatial and non−spatial simulations

 

 
Kd
rise

3.0e−071.0e−063.0e−061.0e−053.0e−05
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simulation time step dt (s)

Fi
tte

d 
k on

 (s
−1

)

 

 
Kd
rise On<rate&from&different&fits:&

Time step dependence E" F"On-rate from different fits: 
Spatial vs. well mixed 

Figure 3.2: Time course fitting issues (continued). E. Compar-

ison of the two k
(eff)
on values for the spatial simulation and two sets of

Gillespie simulations. The discrepancy is significantly smaller for the

non-spatial model. F. The two k
(eff)
on values for spatial simulations

using different time steps. The discrepancy increases as ∆t→ 0.

would be to identify the off-rates k
(eff)
off = k

(sim)
off in the two models, and to

estimate the on-rate k
(eff)
on from the simulation. There are two simple ways to

do this, based on the initial behavior of the dimer count, or from the dimer
/ monomer ratio at steady state.

We performed several spatial simulations with several different simula-
tion parameters, in sets of 8 individual runs for each combination of param-
eters. The spatial simulations shown in Figure 3.1 were performed using the
“base” parameter set: dimer off-rate k

(sim)
off = 0.130 s−1, monomer diffusion

coefficient Dmon = 3.1 · 10−2 m2

s
; binding radius ρb = 4.35 · 10−4 µm; with an

initial number of Nrec = 100 monomers (and no dimers). We set the dimer
diffusion coefficient to Ddim = Dmon/2 and unbinding radius ρub = 5ρb, and
kept the same simulation area of 0.35µm × 0.57µm = 0.1995µm2 in this
set and all other simulations discussed here. Sets of 8 simulations with
these parameter values were done using several time step values, ∆t =
{3 · 10−5, 10−5, 3 · 10−6, 10−6, 3 · 10−7} s; results shown in Figure 3.1 had the
smallest of these, ∆t = 3 · 10−7 s.

The five parameters of the spatial simulation k
(sim)
off , ρb, Dmon, Nrec,∆t need

to be compared or mapped to the three parameters that define non-spatial
simulations; kon, koff , Nrec. These are the same for the analytical ODE solu-
tion (the concentration is proportional to the particle copy number). For a
meaningful comparison, we require the number of particles and the area to
be the same in the spatial and well-mixed models; the most delicate element
is the correspondence between the on-rate constant kon on one hand and the
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binding radius and diffusion coefficient on the other; the time step, as well
as the unbinding radius and the dimer diffusion coefficient might also have
an impact.

Our initial approach was to obtain an effective k
(eff)
on for a given spatial

simulation with its complete set of parameters. Figure 3.1 (A) shows the
eight spatial simulations in green. The on-rate kon was fitted to the spatial
model in the two ways discussed below, resulting in two different values of
the parameter. The red and blue curves represent the two different ODE
solutions (3.9), using the same koff = 0.130 s−1 and Nrec = 100 as the spatial

model. The red curve uses the k
(eff)
on = 1.10294 s−1 value resulting from

fitting KD ≡ koff/kon from the steady state concentration (copy number) of
monomers ¯[M] and dimers ¯[D],

2M
kon

GGGGGGBFGGGGGG

koff

D , kon · ¯[M]
2

= koff · ¯[D] → ¯[M]
2

= KD · ¯[D] . (3.10)

The blue curve in Fig.3.1(A) uses k
(eff)
on = 0.50081 s−1, that best fits the initial

rise of the number of dimers in the initially all monomer system (detail in
Fig.3.1(C) ).

At a first glance, the discrepancy in the steady state values of the dimer
copy number ¯[D] for the two analytical solutions in Fig.3.1(A) does not ap-
pear to be very significant. The difference is more important when comparing
the steady-state number of monomers ¯[M], which is also necessary in esti-
mating the equilibrium constant (3.10).

As a check, we performed non-spatial stochastic (referred to as “well-
mixed” or Gillespie) simulations using the same parameters and initial con-
dition (kon = 0.130 s−1, Nrec = 100, M(0) = Nrec, D(0) = 0) with the

two different k
(eff)
on values for the on-rate. Fig.3.1(B) shows histograms of

the number of monomers at steady state in the spatial simulations (green)
and the two Gillespie simulation sets in red (kon = 1.10294 s−1) and blue
(kon = 0.50081 s−1). This indicates clearerly that the lower kon value is not
consistent with the steady state.

Applying the same two fitting procedures to the non-spatial simulations
results in significantly less discrepancy between the two fit modes: for a set
of 8 Gillespie simulations with k

(sim)
on = 1.103 s−1 we obtain k

(eff)
on = 1.0525 s−1

at steady state and k
(eff)
on = 1.4153 s−1 using the rise (Fig.3.1 (D) - compare

with (A) ); simulations with k
(sim)
on = 0.5008 s−1 result in k

(eff)
on = 0.507 s−1
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and k
(eff)
on = 0.613 s−1 respectively. The different k

(eff)
on values are compared

in Fig.3.2(E), indicating that statistical variability is unlikely to account for
the discrepancy observed for the spatial simulations.3

Another possibly relevant factor is the time step used in the spatial sim-
ulations. In the usual practice of time-discretized schemes, results are inter-
preted as approximations that should converge as ∆t→ 0. Even though we
do not pursue such a limit in this work, the time step dependence must be
taken into account as a possible cause of unexpected behavior. The bar plot
in Fig.3.2 (F) compares the k

(eff)
on obtained from the steady state and the rise

for sets of simulations performed with several time step values ∆t, ranging
over two orders of magnitude. The remarkable feature is that the discrep-
ancy between the rise and steady state increases as the time step is decreased.
This is an indication that the mechanism has to do with events that occur
on a fast time scale, and is likely not an artifact of time discretization.

In summary, Fig.3.1 (A) illustrates the issue with trying to reproduce
the time course of monomer and dimer copy numbers in a system of freely
diffusing particles with a well-mixed model of the same. Using the same
koff = 0.130 s−1 for both models, it appears as though we cannot both fit the
rise (slope of the increase of dimers, the blue line) at the same time as match
the equilibrium, red line, values of dimers to monomers. The discrepancy
is significant (B, C), and is not seen when comparing non-spatial stochastic
simulations with the same ODE model (D, E). It also does not appear to be
an artifact due to time discretization in the spatial simulation (F); rather, it
becomes more significant as the time step is decreased.

3.3.2 Dimer lifetimes

Figure 3.3 (A) shows the difference between the actual dimer lifetimes, shown
in red, and the apparent dimer lifetimes, shown in blue and derived by splic-
ing together successive dimer events involving the same dimer pair (a re-
binding event) whose time separation is less than 1.0 · 10−3 s. Fig.3.3(A)
demonstrates the issues with the off-rate koff by showing how much longer
it appears that a dimer survives, again in blue, than it really does, shown
in red. There is a difference between the two of more than 6 seconds. This
difference reiterates that koff needs to be adjusted between the two types of

3The difference between k
(eff)
on values obtained through different fit modes reduces fur-

ther when a set of 100 non-spatial simulations are used.
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Figure 3.3: Dimer and monomer lifetimes. A. The distribu-
tion of exact dimer lifetimes (red) is consistent with the exponential
distribution f(τ) ∝ e−koff ·τ (and the underlying Poisson process). To
emulate the experimental method, which relies on images (snapshots)
collected at time intervals δT ≈ 1/20 s, consecutive dimer events in-
volving the same pair of particles separated by less than 20 s were
merged (spliced together), resulting in a smaller number of longer
events. The distribution of these apparent dimer lifetimes (shown in
blue / purple) is also consistent with an exponential distribution, with
a larger mean. B. The number (red) and mean life time (blue) of the
apparent dimer events obtained using different coarse graining time in-
tervals. The true distribution is recovered only for a surprisingly small
δT ≈ 10−5 s. C. Carpet plot indicating the state (dimer or monomer)
of individual receptors; dimer stretches are interrupted by very short
monomer intervals. D. A closer examination revealed that the very
short monomer events are overwhelmingly followed by dimerization
with the same partner.
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model, spatial and non-spatial, due to rebinding events. Fig.3.3 (B) deals
with our choice of time intervals for the time separation when comparing
apparent dimer lifetimes to actual dimer lifetimes. We see little difference
between t = 10−6 s and t = 10−5 s . Focusing on the blue and black lines
suggests we have reached an equilibrium of sorts with respect to the time
step with respect to the apparent dimer lifetimes. Also the number of total
dimerizing events, in red, is shown to decrease as the time step increases. In a
similar fashion, there is little difference between the t = 10−6 s and t = 10−5 s
time steps. This suggests that our simulation is best done at a time step in-
terval of approximately t = 10−5, and we still see the rebinding issue which
confirms that we need a new koff to go with the newly generated kon. The
non-spatial simulation sees the koff differently than the spatial simulation
as all particles are treated as well-mixed as soon as the dimer breaks up.
The behavior of apparent dimer lifetimes becomes clearer when we look at
the distribution of the time lengths of receptors spend as monomers between
moments of being dimers.

Looking at Fig.3.3(C), we see that receptors tend to spend little time as
a monomer as shown in blue. This tells us that if we look at time steps
longer that the shortest length of time in blue we will miss count the number
of dissociation events. If we look at monomer life times, seen in Fig.3.3(D),
we notice that the number of rebinding events (reactions where the recently
broken up monomers bind into a dimer that is indistinguishable from the
previous) that involve the same pair of receptors is drastically higher than
the number of partner switches and that the same pair rebindings occur much
more quickly than do the partner switching events.

3.3.3 Overall fit

In the preceding subsections we found that the discrepancy between differ-
ent ways of identifying the kon and koff parameters is caused by the presence
of rebinding events, where previous dimer partners re-create the dimer over
time scales that are significantly lower than the average time required for
the formation of a dimer between two monomers that are placed randomly
in the system. Depending on the circumstances, rebindings may be artifac-
tual or physical; our goal here is to develop an approach to identifying the
best-matching kon and koff parameters for a spatial simulation that features
rebindings.

Our approach is illustrated in Fig.3 . For a given set of simulations, we
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Figure 3.4: Fitting both the on-rate and the off-rate. A. We fit
both kon and koff by minimizing the distance between the analytical
solution (red line) and the mean of a set of simulations (green). For a
set of chosen time points, we compute the difference between the mean
of the simulations and the analytical expression (3.9), and divide with
the standard deviation of the simulation values at the same time (black
vertical bars). The sum of the squared normalized distances is the ob-
jective function to be minimized. B. The choice of comparison points

has an influence on the optimal parameter set k
(eff)
on , k

(eff)
off , resulting in

different fits. The two sets shown here focus on the late respectively
early behavior. C. The optimization landscape typically has a single
minimum; the landscape provides further insight into the uncertainty
on the parameter values extracted and implicitly, on the quality of the
fit. D. The landscape also varies with the choice of comparison points;
(left) fitting the late behavior has uncertainty along the first diagonal
(i.e. pins down the ratio koff/kon but less the magnitude, similarly to
fitting at steady state); (right) fitting the early behavior determines
kon tightly, but has a large uncertainty in koff , much like fitting on the
rise.
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consider the entire range of values for kon and koff ; we use a measure of fit
between the corresponding ODE solution and simulations in order to identify
a best-match. This measure relies on a choice of comparison time points. The
heat maps in Fig.3B and D represent the fitting landscape corresponding
to the simulations and choices of time points in Fig.3A respectively C. We
implemented a Monte-Carlo fitting algorithm that identifies the (kon, koff)
pair corresponding to the best fit (i.e. the point with the lowest discrepancy
measure) for a given set of simulations and choice of comparison points. A
look at Fig.3A / B vs. Fig3C / D should make it clear that the landscape
depends strongly on the choice of comparison points. .

The choice of comparison points gives us the different heat maps. We can
easily see that there is a best fit choice when we choose comparison points
that force a match of both the rise and the equilibrium (Fig 3 A/B). However
if we match only the equilibrium or the rise we end up with a larger section of
lowest distance (Fig 3 C/D). When matching the equilibrium we see a more
diagonal area of blue, the lowest discrepancy (as only the ratio of kon to koff

matter) and when matching the rise we see that the koff does not matter as
much as many values will still give us the lowest discrepancy again in blue.
This further shows that we need to use many points for comparison in order
to achieve a single pair of constant values.

Variability due to fitting method

In Fig. 3.5A we plotted the (k
(eff)
on , k

(eff)
off ) pairs resulting from different fitting

methods of sets of simulations performed with D0 = 0.031 m2

s
, Nrec = 100

and time steps ranging over two orders of magnitude ∆t = {3 · 10−7, 10−6, 3 ·
10−6, 10−5, 3 · 10−5} s. The marker type indicates the fitting method, and
the color indicates the simulation time step: triangles indicate a fit based
only on the equilibrium ratio (KD); all others represent two-parameter fits
as described, using different sets of points. The sets of comparison points
are indicated in the Appendix. The largest variability for the on-rate k

(eff)
off ,

ranging over orders of magnitude, results from the two fits that focus on the
initial rise in the dimer number. The variability simply reflects uncertainty
in estimating the off-rate from the early dynamics of dimerization, which is
dominated by dimerization events that reflect the on-rate. Conversely, the
variability of the estimated on-rate k

(eff)
on is the largest in the equilibrium-

based fit. The resulting values differ significantly from the corresponding
ones obtained in all the two-parameter fits. The discrepancy is not random,
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Figure 3.5: Parameter fit results across different sets of comparison
points, simulation time steps, and diffusion rate / density combina-
tions. A. Combined scatter plot of (kon, koff) fits for different com-
parison time point sets (indicated by marker shape) and simulation
time step values (indicated by color), for the “base” set of simulation

parameters (D0 = 0.031 m2

s , Nrec = 100). B. On-rate values versus
simulation time step, for different comparison time sets (base simula-

tion); the discrepancy with the KD only fit is due to the k
(eff)
off value

that is different from k
(sim)
off . C. Fit of the off-rate koff leads to consis-

tently smaller values than k
(sim)
off . The outliers are the two comparison

point sets that focus on the rise; these sets result in a very large uncer-
tainty for koff . DE. Same as B. and C., with 10 fold reduced diffusion
coefficient D0 = 0.0031 m2

s . FG. Same as B. and C., with Nrec = 475
particles.
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and is accompanied by a stronger dependence on the simulation time step;
the discrepancy increases as the time step is decreased. For this, the base set
of simulation parameters, the recovered on-rate k

(eff)
on values are remarkably

consistent for the largest simulation time step ∆t(sim) = 3 · 10−5 s. Other
than the two outlier cases, the two-parameter fit results are fairly consistent.
Still, the differences between fitting methods applied to the same exact group
of simulations (especially in estimating koff) are comparable to those result
within the same fitting approach, for different simulation time steps.

Variability due to the simulation time step

The effective parameter values k
(eff)
on and k

(eff)
off obtained from different fit

methods are plotted against the simulation time step ∆t(sim) in Fig. 3.5, pan-
els B and C. Fig. 3.5B reinforces the observation that the on-rate is fairly
consistent between two-parameter fits, but differs significantly between those
on one hand and the estimate derived from equilibrium (KD) on the other.
All fit methods exhibit the same trend of decreasing on-rate with increasing
∆t(sim); importantly, the discrepancy increases as ∆t(sim) is decreased. The
behavior of the recovered off-rate k

(eff)
off is less consistent. Aside the large

uncertainty seen in two parameter fits focused on the initial behavior (’nom-
inal’ and ’minR8’), there is significant variability between fit modes, that is
comparable to variations due to the different simulation time steps. There
is no clear trend with ∆t(sim), other than the recovered k

(eff)
off is consistently

smaller than the ’nominal’ k
(sim)
off and approaches it as ∆t(sim) increases.

Effect of physical time / length scales

In addition to the base simulation parameters (D0 = 0.031 m2

s
, Nrec = 100),

we performed the same analysis (sets of simulations with varying time steps
∆t(sim), followed by extraction of effective model parameters) for a physical
system with the same binding radius, but reduced diffusion coefficient (D0 =
0.0031 m2

s
, Nrec = 100), and for a system with the original diffusion coefficient

but higher density (D0 = 0.031 m2

s
, Nrec = 475 ).

The resulting dependence of k
(eff)
on and k

(eff)
off on the simulation time step is

shown in Fig. 3.5 D and E, respectively panels F and G. Simulations in the
’slow’ system (10-fold reduced diffusion coefficient) result in increased vari-
ability of the recovered effective parameters. The discrepancy between the
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k
(eff)
off estimated at equilibrium and in the two-parameter fits (Fig. 3.5 FG) ex-

hibits the same trends as before; however, it is larger and does not vanish even
for the largest time step value. In the higher density scenario (Fig. 3.5 FG),
we observe smaller variability between fit modes, and the absence of the
large ’random fluctuations’ seen for koff estimated from two parameter fits
weighted on the early behavior.

3.4 Discussion

Spatial stochastic models can connect molecular level
imaging to large scale signaling models

Spatial models, from continuous reaction-diffusion to agent based simula-
tions have been used successfully at the level of entire cells and organisms
in developmental biology [46], and tumor development [16] [44]. Here we are
concerned with spatial stochastic simulations of the movement and chemical
state of individual receptors in the context of signal initiation. Our main
motivation is the use of this type of simulation in conjunction with molecu-
lar resolution microscopy to potentially improve quantitative models of cell
signaling [48] [28].

Compared to the more commonly used non-spatial (”well-mixed”), stochas-
tic or deterministic approaches to cell signaling, spatial simulations generally
provide a richer and potentially more realistic picture. This is the case es-
pecially for membrane bound receptors whose movement may be influenced
by the membrane landscape [39] . In spite of mature methods and available
software [51] [54], the use of spatially extended models for cell signaling is
limited, due to the large added computational costs and limited benefit in
terms of predictive power. The computational cost of an agent-based spatial
simulation of a single dimerization-dissociation process involving N molecules
is between N to N2 times that of a well-mixed stochastic simulation of the
same [25]. Models of signaling networks deal with large numbers of processes4

[40] [8] and it is desirable to describe individual processes in terms of a small
number of effective kinetic parameters.

While the generalized application of spatial simulation methods is not
practical for the moment, they could be helpful in the integration of experi-
mental data across different levels of resolution to help alleviate the problem

4there are 25 rate constants in [40]; and 85 in [8], which control ≈ 20, 000 processes
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of parameter uncertainty. The predictive power of dynamical models (spa-
tial or not) is limited by parameter uncertainty; for high dimensional systems
such as signaling networks, this is exacerbated by nonlinear dynamics and
the resulting possibility of qualitatively different behaviors. Particle track-
ing and imaging methods make individual molecular events directly acces-
sible and could significantly improve on the parameter estimation problem.
However, as our experience illustrates, the mapping between molecular level
observations and cell level average behavior is not straightforward. Spatial
simulations might hold the key to extracting signaling dynamics from molec-
ular scale imaging results.

Our goal is to explore the use of spatial simulations to extract well mixed
parameters (such as equilibrium constants and reaction rates) from particle
tracking data. The principle is to use detailed experimental data to validate
a spatial simulation that serves as a “base level model” for the experimen-
tal system; then derive a simplified model of the simulated behavior, as a
controlled approximation in the mathematical sense.

The effective on-rate obtained from fitting the initial
rise of the number of dimers is not consistent with the
value derived from steady state

We focus on a single, reversible, homo-dimerization process, using our own
implementation of a spatial simulation algorithm, most recently used in
a study of ErbB2 / ErbB3 dimerization [39]. We were interested in the
well-mixed rate constants kon, koff that best approximate the simulated time
course of the number of molecules (i.e. dimers or monomers). In this algo-
rithm, which is essentially identical to Smoldyn [3], the dimer off-rate koff is
also the rate at which dissociation events are triggered. We performed a set
of 8 simulation runs of the dimerization-dissociation system, from an initial
state with zero dimers to equilibrium (Figure 3.1A). We estimated the effec-

tive on-rate k
(eff)
on by fitting the analytical solution (4.12) to time courses of

the number of dimers (Fig. 3.1A and C). The resulting value k
(eff)
on = 0.50 s−1

was significantly different from the value k
(eff)
on = 1.10 s−1 that resulted from

the average monomer and dimer counts at steady state (i.e. calculating KD

from (3.10) - Fig. 3.1A and B), using the same set of runs.
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The discrepancy is specific to the spatial simulation and increases
as the time step approaches zero To distinguish from effects due to the
finite number of molecules, we performed two sets of 8 well-mixed stochastic
(Gillespie) simulations using the koff = 0.13 s−1 and the two different k

(eff)
on

values obtained above. We used the two different fitting procedures on the
resulting dimer count time courses. Both fitting procedures, when applied to
the same group of well mixed simulations, resulted in virtually the same k

(eff)
on

value, consistent with the on-rate that was used in the respective simulations
(Figure 3.2E). Thus, the discrepancy was specific to the spatial simulation.
We also performed a series of spatial simulations with different time steps
(∆t) to assess the impact of the time step size. Generally, a discrete-time
simulation converges to the physical model as ∆t → 0. In our algorithm,
time discretization results in missed collisions; as the time step is reduced,
the effective on-rate should increase, approaching an upper bound5 [3]. We
found (Figure 3.2F) that the discrepancy increased as ∆t → 0; the on-rate
fitted to the initial rise in the dimer count seemed to converge, but the one
resulting from steady state kept increasing. While somewhat puzzling, this
indicates that the discrepancy was not a result of time discretization - or at
least, not the result of an excessively large time step.

Apparent vs. true dimer lifetimes and the impact of
geminate recombination

In early versions of our simulation, the complete state of the system was
recorded at time intervals δT ≈ 0.05 consistent with the frame rate 1/δT
used in the experimental setup, and thus much larger than the simulation
time step ∆t. For each recorded configuration, dimers were identified based
on the recorded (binding) state of each simulated receptor; the length or
lifetime of each dimer instance was estimated based on the number of con-
secutive frames where that specific pair was bound. This recapitulates the
way dimers are detected experimentally. It was realized early on that the
apparent dimer lifetimes resulting from this procedure were not consistent
with the expectation, the inverse of the dissociation rate k

(sim)
off . Our simula-

tion code records binding and unbinding events with their exact time. The
distribution of the resulting true dimer lifetimes follows the appropriate (ex-
ponential) distribution f(τ) ∝ exp(−koff · τ), where koff is the off-rate used

5that corresponds to the physical Smoluchowski model
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in the simulation, and provides a consistency check.
The mechanism for the significantly longer lifetimes obtained with frame-

rate sampling is that a dimer observed at time Tobs breaks up into a pair
of receptors, but the same receptors re-bind before the next recording time:
Tobs < toff < ton < Tobs + δT . In the simulations discussed here, we identified
all uninterrupted dimer instances in a given simulation, and sorted them by
the identity of the participating receptors. To emulate sampling at a given
time interval δT , we generated a “coarse grained” set of dimer events by
merging consecutive dimer instances that involve the same pair of receptors,
and which are separated by a time as monomers less than δT . The resulting
distribution of apparent dimer lifetimes is well approximated by an expo-
nential distribution with a longer characteristic time, consistent with a lower
apparent off-rate (Fig. 3.3A). When performing this analysis using different
coarse graining time intervals δT (Fig. 3.3B), we found that the difference
between the true and apparent lifetimes decreases with δT , but the differ-
ence persists for surprisingly small values of δT ≈ 10−4s, several orders of
magnitude smaller than the dimer lifetime.

This prompted us to look at the lengths of time spent by individual re-
ceptors as monomers, either from the beginning of the simulation to the first
dimerization, or between release from a dimer (dissociation) and the next
dimerization event. We further distinguished the monomer instances inter-
vening between dimerizations, depending on the identity of the previous and
next dimer partners. In Fig. 3.3C we mapped the state of the 100 receptors
in one simulation; we labeled monomer instances that ended in a new part-
ner and those that ended in rebinding with the same partner with different
colors (dark blue and red, respectively). While the overall appearance of
the map suggests that, in terms of the time spent as monomers, instances
followed by the formation of new dimers dominate, a closer look reveals the
existence of many short-lived instances of separation followed by rebinding
to the same partner. The distribution of the lengths of the corresponding
monomer lifetimes (Fig. 3.3C) reveals what in hindsight seems obvious: our
simulations had a significant number of rebinding events, when the same pair
of receptors dissociates, then quickly recombines. This phenomenon is called
geminate recombination [3] and is a concern in the development of spatial
simulation algorithms, such as the one we used.
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Geminate recombinations: are they all bad?

Spatial stochastic simulation algorithms (SpSSA), and especially Smoldyn
[3], can potentially generate artifactual geminate recombination events. The
core feature of any SpSSA is that they have a representation of individual
molecules and their position, and that binary reactions (typically association
reactions, A+B → C) are triggered by physical proximity between two spe-
cific partners, as opposed to triggering by a Poisson process and randomly
selecting a pair of partners from the entire system (which is what non-spatial
stochastic simulations do). This element is necessary for the ability to couple
the movement of molecules and their interaction. In the Smoldyn algorithm,
reactions are triggered when the potential partners are within a distance
called binding radius, ρB; this quantity is a simulation parameter that char-
acterizes each type of process.

Conversely, when a dissociation (C → A′ + B′) occurs, the resulting
molecules necessarily emerge at a small distance from each other, consis-
tent with physical reality; any SpSSA must have specific rules for placing
the dissociation products. For reversible processes, there is a possibility of
re-association; in a simulation, depending on the algorithm, the newly sepa-
rated particles will emerge in positions that make recombination likely. In the
Smoldyn algorithm, the distance where dissociation products are placed is a
simulation parameter called the unbinding radius ρU . If ρU = ρB, the just-
separated pair would immediately react in the next iteration; we followed the
recommended practice [3] of setting ρU = 5ρB. The need to set an unbind-
ing radius might be avoided in a more sophisticated approach, for example
by triggering association reactions with a probability that depends on the
mutual distance, or taking into account the distance as well as the relative
orientation of the molecules, or any level of integrating the well-developed
machinery of collision theory from particle physics [49]. However, it is not
clear how such an approach might eliminate geminate recombinations, and
indeed, whether this phenomenon is entirely unphysical.

There is no obvious, easily quantifiable, physical reason why two recep-
tors that previously formed a dimer should never recombine, with or without
other intervening reactions. On the other hand, it is likely that the molecular
dynamics of the dissociation results in conditions (relative momentum and
kinetic energy liberated by the reaction) that preclude immediate re-binding
at the rate it would occur in Smoldyn if we set ρU = ρB. Without a more de-
tailed knowledge of the molecular dynamics of the dimerization-dissociation
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process, it is not possible to distinguish the physically correct instances of
recombination from artifactual ones.

The question is when is it unphysical when in a SpSSA, a molecule (recep-
tor monomer) preferentially binds to its most recent partner, to the detriment
of all the other potential partners in the system. The following discussion
raises questions aimed at quantifying the notion of “preference” in the selec-
tion of dimer partners.

In a well-mixed situation, where there are many available monomers,
geminate recombination should be rare. Consider a pair of receptors {Rj, Rk}
that have just separated, and focus on Rj and its subsequent dimerization[s].
The probability that the next partner will be Rk (as opposed to any other
receptor), should be 1/Npartners, where Npartners represents the number of
receptor monomers that Rj could possibly dimerize with. Depending on the
semantics, this might be the total number of receptors in the system Nrec, or
just the number of monomers in the system [M] immediately following the
dissociation event. In the simulations discussed in Figure 3.1, we have Nrec =
100 and [M] ≈ 3 in the spatial simulation ([M] ≈ 5 in the well-mixed version).
The “fair” probability for recombination following a dissociation event ranges
from 1% to ≈ 33%. On one hand, it is unreasonable to accuse Rj of “bias”
against receptors that are bound inside other dimers and thus unable to
react with it; on the other, receptors may become available sometime after
the {Rj, Rk} breakup event. For a rational comparison, one should include a
time consideration - possible partners should refer to those distinct receptors
that are monomers at any time between the dissociation of the {Rj, Rk} pair
and the subsequent dimerization of Rj.

For a specific spatial simulation algorithm (in our case, Smoldyn) with a
given set of parameters (diffusion coefficients, binding and unbinding radii,
simulation time step), there are two aspects to consider:

Extraction of a non-spatial approximate kinetics that emulates the time
course of the number of particles of each species. How does the specific spatial
simulation algorithm and its parameters relate to the biological reality and
particle tracking observations?

When we look only at the time course of the copy numbers of monomers
and dimers, and ignore the spatial distribution of those receptors, geminate
recombination (rebindings of the same receptors) appears to be the major
cause of discrepancies between the spatial and well-mixed models. As we
saw a great deal of discrepancies between koff and kon that were obtained
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through our fitting procedures, we may be able to explain this abnormality
by looking more closely at the geminate recombinations. We see from Figure
4 by comparing the base condition to both one of lower diffusion coefficient
and one of high initial monomer density that the discrepancies are increased
by lowering the diffusion coefficient and are decreased by increasing the initial
monomer count. This is because when the diffusion coefficient is lowered the
monomers have an increased difficulty finding a different partner to prevent
rebindings. We also see a lowered rate of rebindings when we increased the
initial number of monomers because it then becomes easier for a newly broken
up dimer to find new partners for binding.

Despite setting the unbinding radius to 5 times that of the binding radius
as suggested by Andrews and Bray, rebindings of former dimer partners after
dissociation is an inherent feature of spatial dimerization-dissociation systems
using the Smoldyn Algorithm. Some of these geminate recombination events
should be regarded as simulation artifacts, however rebindings are a physical
phenomenon whose importance depends on the conditions in the system. The
main factor involved in these geminate recombinations is the probability that
a newly dissociated monomer can find a different partner. The probability
is firstly influenced by the unbinding radius which we set to 5 times that of
the binding radius again as suggested by Andrews and Bray. Secondly we
must consider the density of monomers as there is a proportional relationship
between the density of monomers and the likelihood of finding a new partner
for binding. Third, the diffusion coefficient is also a consideration in the
probability that a binding is not a rebinding because the faster the diffusion
the less likely a rebinding event occurs.

The geminate recombination difficulties imply that apparent dimer life-
times will increase rapidly as the time step decreases as we miss fast dissociation-
recombination events. This leads to higher apparent dimer lifetimes if the
time step is too large. This issue also gives rise to a higher apparent kon.
Using the Kd fitting method, we see that it is higher than what is obtained
by looking at the initial binding time course. These is really two sides of
the same coin as if we ignore dissociations followed by recombination events
altogether, it appears as though dimers dissociate less frequently, if however,
we count recombination events with dimerizations involving new partners,
the dimerization process appears to be faster. Regardless of the case, dimers
are favored over monomers meaning that the observed Kd is smaller than
purely looking at kon and koff .

Due to computational restrictions, most investigations of signaling net-
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works do not have either the time or resources to perform spatial simulations
of systems with tens to hundreds of different species. It is a critical task to
derive reliable approximations (sometimes referred to as abstractions) that
provide a simple description and capture the salient features of a complex
phenomenon. The follow is a suggested best practice. If SPT data is avail-
able, parameter extraction should begin with identifying a spatial simulation
(the set of parameters; Diffusion coefficient, binding radius, unbinding ra-
dius, and time step or etc. as required of the simulation) consistent with the
experimental data. Using this and the methods previously discussed, develop
the well-mixed model with kon and koff considering that one may have to pick
a fitting method. If both steady state and early behavior are important and
the discrepancy in fitting are great, we may need to introduce a new state
into the system, of quasi-bound monomers MM∗,

M + M
k′on

GGGGGGBFGGGGGG

k′off

MM∗
k′′on

GGGGGGGBFGGGGGGG

k′′off

D . (3.11)

There are four parameters for this system and should be fitted to the spatial
simulation. Physically, one expects the intrinsic off-rate and a measure of
recombination to appear in the MM∗ 
 D reactions. The M + M
 MM∗

reactions would be slower and governed by longer effective dimer lifetimes
and the apparent Kd.
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Chapter 4

APPENDICES

4.1 Appendix A:Kronecker Product Explained

(∀) A = {aij} ∈ Rm×n ,

(∀) B = {bkl} ∈ Rp×q ,
A⊗B =


a11B a12B · · · a1nB
a21B a22B a2nB

...
. . .

am1B · · · amnB

 . (4.1)

Note: This operation is not abelian. Also the matrices need not have any
matching dimensions.

4.2 Appendix B: EGF with Microdomains

I started with a functional rules based simulation for well-mixed EGF (which
has over 100 species). To add boxes, I had to take into account the perimeter
and area of each box. This information had to be combined with the diffusion
constant as well as information about the attractiveness of each region. I
assumed that there were two types of attractive regions which could overlap.
The regions differ in one tends to collect one type of EGF receptor Erb2 and
the other Erb3. This difference means that the overlapping region(s) would
collect heterodimers (dimers composed of both types of receptor monomers).
Because of this, I treated the overlap as a different box from the other two
types. This was all the additional information needed to make the simulation
work for boxes.
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Like the VEGF simulation in boxes, the Kron product was used to repeat
the local molecular reactions, αloc and βloc, for each box yielding αmol and
βmol. Also similarly to the VEGF simulation, the percent area was needed
to adjust the dimerization rates inside of each box, yielding kmol. Again, in a
similar way to the VEGF simulation, the final step was to combine the total
molecular reactions with the transfer reactions created using the previous
information. This process yielded αtotal , βtotal and ktotal.

I then initialized the simulation with the initial conditions being all un-
phosphorlated monomers in the normal region. The results of the simulations
are shown in figures. No analytical calculations were attempted for this EGF
system as the number of species is well over 400.

4.3 Appendix C: Deficiency One Theorem

The Deficiency One Theorem by Feinberg in 1995 [18] proves the uniqueness
of positive equilibrium for a Mass Action System of CRNs and existence of
said equilibrium (for weekly reversible networks) given the conditions:

• δi 6 1∀i = 1, · · · , l where l are the linkage classes and δi is the deficiency
of linkage class i

• ∑l
i=1 δi = δ where δ is the deficiency of the CRN

• Each linkage class contains a single terminal strongly linked component

Then if the mass action system has a positive equilibrium concentration it is
unique for every positive stoichiometric compatibility class and if the system
is weekly reversible then moreover a positive equilibrium must exist.
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4.4 Appendix D: Analytical solution for EGF

homodimerization

Continuous (ODE) model

Consider a reversible homo-dimerization, with monomer species M and dimer
species D.

2M
kon

EGGGGGGGGGGGGC

koff

D ; ϕ2M→D =
1

2
kon[M]2

ϕD→2M =
1

2
koff [D] . (4.2)

We assume mass-action rates for the fluxes ϕ ; kon and koff respectively are
the physical rate constants for dimerization and dissociation are.

Traditionally, the amount of species [M], [D] is a (molar) concentration,
proportional to the number of copies of each molecule per unit volume. For
the purposes of this work where we compare to simulations of individual
molecules, we take the amount of each substance as the actual number of
molecules in the simulation area. The physical unit for the on-rate constant
kon is (s ·#/simspace)−1, and it is equal to the reaction probability per time
for one pair of monomers in the simulation space. The off-rate constant koff

is simply a rate, the dissociation probability per second for one dimer.
The equations of motion are

d[M]

dt
= −[M]2kon + 2[D]koff

d[D]

dt
=

1

2
[M]2kon − [D]koff ⇒ [M](t) + [D](t) = R (4.3)

The last equality defines the total amount of receptors R; this is conserved
by the equations of motion, since d[R]

dt
= d[M]

dt
+ d[D]

dt
= 0. The steady state

condition for (4.3) is

2koff [D] = kon[M]2 ⇔ 2KDD = M
2

; KD ≡
koff

kon

. (4.4)

where KD is the traditional equilibrium constant.
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Analytical solution

Substituting [D] = (R− [M])/2 in the first equation of motion, we get

d[M]

dt
= kon

(
−[M]2 +KD([M]−R)

)
= −konf([M])

f([M]) ≡ [M]2 +KD[M]−KDR . (4.5)

The function f([M]) conveniently summarizes the equation of motion for
[M](t) and can also be used to defined the equilibrium condition: f(M̄) =
0. The two roots of this polynomial are given by the quadratic formula

S12 =
(
−KD ±

√
K2

D + 4KDR
)
/2, and it is convenient to write them out as

follows,

S1 =
KD

2

(√
1 + 4R/KD − 1

)
; S2 = −KD

2

(√
1 + 4R/KD + 1

)
. (4.6)

The two roots have the following properties (assuming R > 0, KD > 0):

0 < S1 < R because 1 <
√

1 + 4R/KD < 2R/KD

S2 < 0 , −KD < |S2| < KD +R same as above

S1 + S2 = KD , S1S2 = −KDR as roots of a quadratic (4.7)

Since S1 is the only positive value of [M] that verifies the condition f([M]) =
0, we conclude this is the only (possible) steady state, M̄ = S1. The other
solution can be written S2 = −(M̄ + KD); to summarize (also using f(x) =
(x− S1)(x− S2)):

M̄ = S1 =
KD

2

(√
1 + 4R/KD − 1

)
f([M]) = ([M]− S1)([M]− S2) = ([M]− M̄)([M] + M̄ +KD) (4.8)

The equation of motion is a separable ODE (denote y = [M]):

y′ = −kon(y − S1)(y − S2)→
∫

dy

(y − S1)(y − S2)
= −

∫
kondt (4.9)

rewrite the denominator under the first integral:

1

(y − S1)
− 1

(y − S2)
=

S1 − S2

(y − S1)(y − S2)
→∫ (

1

(y − S1)
− 1

(y − S2)

)
dy = −

∫
(S1 − S2)kondt (4.10)

79



perform the integrations and set the initial condition y(0)

ln

(
y(t)− S1

y(t)− S2

)
= −kon(S1−S2)t+C → y(t)− S1

y(t)− S2

=
y(0)− S1

y(0)− S2

e−kon(S1−S2)t

(4.11)
finally, the explicit solution for y(t) = [M](t) for [M](0) = R works out to:

y(t) =
(R− S2)S1 − (R− S1)S2e

−kon(S1−S2)t

(R− S2)− (R− S1)e−kon(S1−S2)t
. (4.12)
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