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ABSTRACT 

 

We developed a novel in vivo model utilizing acute stretch to investigate 

endothelial cell (EC) proliferation as a marker of vascular growth in healing SKH1 

mouse skin.  We also used human umbilical vein endothelial cells (HUVECs) as 

an in vitro model system to validate postulated tissue insulin-mediated signal 

transduction pathway(s) using paradigms that would prove lethal in the animal 

model. 

Dorsal distally based flaps of skin were stretched for 3 min using linear 

(skin hook) plus hemispherical load cycling (inflated subcutaneous silicone 

catheter).  Unstretched, wounded skin along the back and sternum served as 

postoperative controls.  Laser Doppler flowmetry demonstrated a three-fold 

increase in flap perfusion at postoperative day 7.  A stretch-induced six-fold 

increase in EC mitogenesis accompanied enhancements in blood flow and 

extracorporal wound healing over the sternum.  Western blots revealed up-

regulation / activation of insulin and mitogenic signaling intermediates in 

stretched skin.  Activated insulin and insulin growth factor receptors (pIR/pIGFR), 

protein kinase B (Akt, pAkt), vascular endothelial growth factor (VEGF) and 

vascular endothelial growth factor receptor 2 (flk-1) were among the identified 

stretch-responsive intermediates.  These results indicated the benefits of acute 

stretch are mediated through enhanced vascularity as evidenced by EC 

mitogenesis and up-regulation / activation of insulin and key angiogenic effectors 

in dorsal distally based skin flaps. 
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Colorimetric analyses (MTT based) demonstrated that insulin enhances 

proliferation and viability of HUVECs.  Western blot analysis revealed insulin 

induces the up-regulation and activation of mitogenic signaling intermediates in 

ECs.  Activated insulin and insulin growth factor receptors (pIR / pIGFR), protein 

kinase B (pAkt308, pAkt473) and vascular endothelial growth factor (VEGF) were 

the insulin-responsive intermediates in HUVECs.  The beneficial effects of insulin 

were abrogated by the inhibition of IR / IGFR or phosphoinositide kinase-3 (PI3-

K), indicating that insulin-induced EC proliferation and viability are mediated 

through pIR / pIGFR and PI3-K effectors.   

Together the data from in vivo and in vitro studies provide new knowledge 

about the beneficial effects of insulin on vascularization and tissue viability, 

providing a mechanistic link to enhanced wound healing in acutely stretched skin. 
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PREFACE 

 This dissertation will begin with a review of the literature that constitutes 

the scientific foundation on which this research was based.  The studies that 

constitute the dissertation work will then be presented in manuscript form, 

followed by a general unified discussion of the findings. 
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LITERATURE REVIEW 
 
1.  Skin 
 
A.  Physiological Contribution:  General Considerations 
 
 The skin and all appendages make up the integumentary system.  Skin is 

the largest organ, constituting up to 20% of total body mass.  The skin of all 

animals has two common functions: it enables the organism to live in a specific 

environment and it maintains that organism in communication with its 

environment, sustaining the homeostasis of the organism (Montagna, 1971).  All 

other functions of the cutaneous system are secondary to these two functions.  

These two functions are maintained by the following: the barrier action of skin, 

immunological responses to antigen information, body temperature regulation, 

sensory input, endocrine function, and excretion.  Skin also aids in locomotion 

and allows individual recognition.  Therefore, skin not only acts as a barrier and a 

means to communication with the outside world, but is dynamically involved in 

defense mechanisms.     

B. Histological Architecture 
 
 The skin and it’s derivatives constitute a complex organ.  This organ is 

composed of numerous cell types within two main layers: the epidermis and 

dermis.  The epidermis, ectodermally derived, is composed of stratified, 

keratinized squamous epithelium.  The dermis, a mesoderm derivative, is dense 

connective tissue that provides strength and support to skin.  A third layer, the 

hypodermis, contains variable amounts of adipose tissue, microvessels, and 

innervation.  Epithelial skin appendages consist of hair follicles and hair, glands, 
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and nails.  Skin is characterized as thick (hairless; i.e. palms and soles) and thin.  

This nomenclature is based solely on the thickness of the epidermis.   

 There are five main layers of the epidermis: stratum basale, stratum 

spinosum, stratum granulosum, stratum lucidum, and stratum corneum.   The 

stratum basale is the layer closest to dermis and is the source of mitotic cells that 

generate the other layers of the epidermis.  The stratum spinosum contain cells 

that are “prickly” as a result of cytoplasmic processes that attach to adjacent cells 

by desmosomes.  The stratum granulosum, making up the most superficial layer 

of the nonkeratinized portion of the epidermis, contains numerous keratohyalin 

granules.  The stratum lucidum layer, a subdivision of the stratum corneum, is 

found only in thick skin.  Keritinization is well advanced in this layer.  Cells in the 

stratum corneum lose their nucleus and organelles and become filled almost 

entirely with keratin.  This layer varies the most in thickness. 

 There are four cell types found in the epidermis: keratinocytes, 

melanocytes, Langerhans’ cells, and Merkel’s cells.  Keratinocytes are the 

predominant cell type in each layer and contain numerous ribosomes that 

synthesize keratin.  Melanocytes are derived from neural crest cells and migrate 

to the epidermis.  They are spread throughout the stratum basale and are often 

referred to as dendritic cells because they have extensions between 

keratinocytes in the stratum spinosum.  These cells function to produce melanin 

to protect the integument against ultraviolet radiation.  Langerhans’ cells are 

dendritic appearing cells that are antigen presenting cells of the epidermis.  Their 

nuclei stain heavily with hematoxylin and the cytoplasm remains clear.  These 
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cells are often involved in delayed-type hypersensitivity reactions (e.g. contact 

allergic dermatitis).  Merkel’s cells are sensory cells located in the stratum basale 

and are most abundant where sensory perception is most acute (e.g. fingertips).  

The nucleus is lobed and the cytoplasm is denser than that of melanocytes and 

Langerhan’s cells.     

 Hemidesmosomes connect the epidermis to the dermis by attaching 

intermediate filaments of the cytoskeleton to the basal lamina beneath the 

stratum basale.  The dermis is composed of two layers: a papillary layer and the 

reticular layer.  The papillary dermis is composed of loose connective tissue and 

is the most superficial dermal layer.  It is in this layer where nerve endings and 

blood vessels are concentrated and serve the epidermis.  The microvasculature 

generally takes the form of small loops coming up from the deeper layer that 

contains larger muscular arteries, each supplying a local area of skin. The 

luminal size of the blood vessels in these loops is controlled by neurogenic 

signals, myogenic mechanisms, and local factors (e.g., prostacyclin and NO).  

Also, flow can be altered through anatomical shunting (glomus body regulation) 

and physiological shunting of blood into existing vessels.   At any given time the 

skin can receive up to 25% of the cardiac output (Feldschuh, 1977).  However, 

normally it receives only ~3% due to low metabolic demands during resting 

conditions.   

Collagen type I and III and elastic fibers make-up an irregular network in 

this layer.  The reticular dermis lies deep to the papillary dermis and is 

considerably thicker and less cellular.  Collagen type I predominantly and elastin 
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are not randomly organized and form lines (Langer’s lines) that maintain skin 

tension.  Layers of adipose tissue and smooth muscle cells may be seen below 

the reticular dermis and make-up the hypodermis.  The smooth muscle cells that 

form the arrector pili muscle (attached to hair follicles) and the striated muscle 

cells of the panniculus carnosus muscle are found in this layer. 

 The skin is supplied with various sensory perception and motor nerve 

terminals to blood vessels, arrector pili muscles, and sweat glands.  Free nerve 

endings are the commonest type, and are primarily found in the stratum 

granulosum and perform nociception.  Encapsulated nerve endings of 

mechanoreceptors consist of Pacinian (sense pressure and displacement), 

Ruffini’s (sense displacement of collagen), and Meissner’s (sense light touch) 

corpuscles.  Pacinian corpuscles are large and ovoid and are located in the deep 

dermis and hypodermis especially at joints.  Ruffini’s corpuscles are the simplest 

mechanoreceptor.  They have an elongated, fusiform shape and respond to the 

displacement of adjacent collagen fibers.  Meissner’s corpuscles appear as 

tapered cylinders and are located in the papillary layer of the lips, palmar and 

volar surfaces.   

 There are predominantly two types of glands in skin: sebaceous and 

sweat.  Sebaceous glands coat the hair and skin with sebum.  Sweat glands 

consist of two types:  eccrine and apocrine.  Eccrine sweat glands are not 

associated with hair follicles and are ubiquitous.  Apocrine glands are located at 

the axilla, areola, nipple of the mammary gland, and around the anus and 

external genitalia.  
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 There are important differences to note in the comparative anatomy between 

mouse and human skin (Sakai et al., 2003).  Mice have a thinner stratum corneum 

and no stratum lucidum (Montagna, 1971).  The thin skin of mice contains a 

flattened papillary dermis with rete ridges that are scarcely discernable (Montagna, 

1971).  Also, murine skin has less elastic connective tissue.  There is no 

thermoregulatory response as sweat glands are only located on foot pads 

(Montagna, 1971). 

 Scientists have long been searching for animal models representing the 

biological properties of skin that impact human health and disease (Montagna, 

1971).  It is important to note, no one animal exists that can serve as an 

experimental model for human skin (Montagna, 1971).  Traditionally, porcine skin 

has been regarded as representative model, but it’s modulus of elasticity is much 

higher than in humans.  This suggests that it may in fact be a poor model for 

studying the beneficial effects of mechanical stretch (Bartel and Mustoe, 1989).  In 

contrast, the dorsal distally based skin of our SKH1 nude hairless mouse has an 

elastic modulus of 9.85 (1.02) N/mm2 that approximates the human face (Hochberg 

et al., 1994).  It permits blood flow measurements using in vivo microscopy and 

laser Doppler flowmetry without subjecting the animal to hair removal (Sakai et al., 

2003).  This is important because removal induces reactive hyperemia in response 

to shaving of the animal.    

C.  Mechanism of Repair:  General Considerations 
 

Healing is the culmination of a complex cascade of cellular events that 

generates resurfacing, reconstitution, and restoration of the tensile strength of 
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injured skin (Gordon, 2002; Roesel et al., 1995).  Healing is a process explained 

in three classic phases: inflammation, proliferation, and maturation.  During the 

inflammatory phase, a clot forms and inflammatory cells debride injured tissue.  

Epithelialization, fibroplasia, and angiogenesis occur during the proliferative 

phase (Bhushan et al., 2002; Bielenberg et al., 1998).  The wound begins 

contracture as granulation tissue forms.  Lastly, during the maturation phase, 

tight cross-links form between collagen itself and protein molecules.  This 

increases the tensile strength of the scar. 

Many aspects of wound healing have yet to be elucidated.  The 

inflammatory phase occurs in tandem with injury, generating vascular and 

cellular responses to injury.  An incision made through the full thickness of skin 

causes a disruption of the microvasculature and immediate hemorrhage. 

Following incision of the skin, a 5- to 10-minute period of vasoconstriction 

ensues, mediated by epinephrine, norepinephrine, prostaglandins, serotonin, and 

thromboxane.  Vasoconstriction temporarily blanches the wounded skin and 

functions to reduce hemorrhage immediately following injury.  This aids in platelet 

aggregation and localizes healing factors to the wound. 

Recent studies show that endothelial cells respond to exposed collagen 

surfaces, allowing for the attachment of platelets.  This attachment occurs 

through adhesive glycoproteins: fibrinogen, fibronectin, thrombospondin, and von 

Willebrand factor.  This aggregation forms a primary platelet plug and activates 

platelets.  This triggers platelets to degranulate and release chemotactic and 
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growth factors, such as platelet-derived growth factor, proteases, and vasoactive 

agents.  

Coagulation then occurs via two different pathways.  The intrinsic pathway 

begins with the activation of factor XII (Hageman factor) when blood is exposed 

to extravascular surfaces.  The extrinsic coagulation pathway is activated by 

tissue factors found in extravascular cells in the presence of factors VII and VIIa.  

Both mechanisms activate thrombin, leading to the conversion of fibrinogen to 

fibrin.  This is the primary component of the wound matrix into which 

inflammatory cells, platelets, endothelial cells, pericytes, and plasma proteins 

migrate.  Thrombin also facilitates migration of inflammatory cells to the site of 

injury by increasing vascular permeability. 

Clot formation begins when platelets aggregate and the coagulation 

cascade ensues.  It is limited to the site of injury as healthy endothelium 

produces prostacyclin, which inhibits clot formation.  Next, plasminogen is 

converted to plasmin, an enzyme that performs cell lysis.  

During the inflammatory phase, cellular recruitment occurs within hours of 

injury.  Neutrophils are the predominant cell type for the first 48 hours after injury,  

but are not essential to healing.  Their function is to cleanse the wound site of 

bacteria and necrotic matter.  Macrophages are essential to wound healing.  

Macrophages phagocytose debris and bacteria and secrete collagenases and 

elastases, digesting injured tissue.  In addition, macrophages release PDGF, an 

important cytokine that stimulates the chemotaxis and proliferation of fibroblasts 

and smooth muscle cells.  Finally, macrophages secrete substances that attract 
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endothelial cells to the wound and stimulate proliferation, promoting 

angiogenesis.  T-lymphocytes migrate into the wound ~ 72 hours following injury 

(Wada et al., 1995).  They secrete lymphokines such as heparin-binding 

epidermal growth factor and basic fibroblast growth factor (a potent stimulant of 

angiogenesis).  Lymphocytes also play a role in cellular immunity and antibody 

production. 

The proliferative phase promotes formation of granulation tissue. 

Inflammatory cells, fibroblasts, and neovascularization are imperative to it’s 

formation (Grzeszkiewicz et al., 2001; Trabucchi et al., 1988).  Pericytes punch 

holes in the extracellular matrix and provide a scaffold for migrating endothelial 

cells to form new blood vessels.  This process occurs 3-5 days following injury 

and overlaps with the inflammatory phase. 

The formation of epithelium over a denuded surface is referred to as 

epithelialization.  This involves the migration of cells at the wound edges over a 

distance of less than 1 mm, from one side of the incision to the other. Incisional 

wounds are epithelialized within 24-48 hours after injury.  This seals the 

underlying wound from the environment.  Cells at the wound edges undergo 

structural changes, allowing them to detach from their connections to other 

epidermal cells and to their basement membrane (Grzeszkiewicz et al., 2002).  

Epidermal cells secrete collagenases that break down collagen and activate 

plasmin.  Plasmin promotes clot dissolution along the path of epithelial cell 

migration.  Upon completion, the epidermal cell assumes its original form, and 
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new desmosomal linkages to other epidermal cells and hemidesmosomal 

linkages to the basement membrane are restored. 

The fibroblast is a critical component of granulation tissue.  Fibroblasts 

produce collagen, elastin, fibronectin, glycosaminoglycans, and proteases.  

These cells increase in the wound as the number of inflammatory cells decrease.   

The synthesis and deposition of collagen, 3-polypeptide chains twisted into a left-

handed helix, is a critical event in the proliferative phase and to wound healing in 

general.  Three chains of collagen aggregate by covalent bonds and twist into a 

right-handed superhelix, forming the basic collagen unit.  A striking structural 

feature of collagen is that every third amino acid is glycine, a requirement for 

triple-helix formation.  Hydroxylysine and hydroxyproline moieties enable 

collagen to form strong cross-links.  Filaments aggregate to form fibrils. Collagen 

fibrils, in turn, aggregate to form collagen fibers.  Approximately 80% of the 

collagen in normal skin is type I collagen; the remainder is mostly type III. In 

contrast, type III collagen is the primary component of early granulation tissue.   

Elastin is a structural protein with random coils that allow for stretch and recoil 

properties of the skin and is present in wounds in smaller amounts.  It is 

responsible for stretch-back during skin expansion and, thereby, limits the 

benefits of mechanical stretch. 

A rich blood supply is vital to sustain newly formed tissue.  New blood 

vessels regress through vascular remodeling as metabolic demands decrease 

within the wound (Chang et al., 2002; Ko et al., 1995).  Wound contraction begins 

almost concurrently with collagen synthesis. Contraction is the centripetal 
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movement of wound edges that facilitates closure of a wound defect.  This 

process does not seem to depend on collagen synthesis.  Although the role of 

the peripheral nervous system in wound healing is not well delineated, recent 

studies have suggested that sympathetic innervation may affect wound 

contraction and epithelialization through unknown mechanisms.  

Collagen also remodels during the maturation phase.  This depends on 

the balance between collagen synthesis and destruction.  Collagenases and 

matrix metalloproteinases in the wound assist in the removal of excess collagen.  

Inhibitors of metalloproteinases limit these collagenolytic enzymes.  Type III 

collagen is replaced by type I collagen.  Water is resorbed from the scar.  These 

events allow collagen fibers to approximate, facilitating collagen cross-linking and 

ultimately decreasing scar thickness.  Structural and functional changes (i.e. 

remodeling) continue indefinitely following wound healing. 

Cytokines are released from various cell sources.  They bind to cell 

surface receptors to stimulate responses; therefore, emerging as important 

mediators of wound healing events.  Cytokines can reach their target cell by 

endocrine, paracrine, autocrine, or intracrine routes.  A short list of the most 

important mitogenic cytokines are described below (Perona, 2006): 

• Epidermal growth factor was the first cytokine described and is a potent 

mitogen for endothelial cells and fibroblasts.  Epidermal growth factor 

stimulates fibronectin synthesis, angiogenesis, fibroplasia, and 

collagenase activity.  
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• Fibroblast growth factor is a mitogen for endothelial cells, fibroblasts, 

keratinocytes, and myoblasts and an important stimulus for angiogenesis 

(Duraisamy et al., 2001).  It also stimulates wound contraction and 

epithelialization and production of collagen, fibronectin, and 

proteoglycans.  

• PDGF is released from the alpha granules of platelets and is responsible 

for the stimulation of neutrophils and macrophages and for the production 

of transforming growth factor-b (Franke et al., 1995; Luo and Miller, 1997).  

PDGF is a mitogen and chemotactic agent for fibroblasts and smooth 

muscle cells and stimulates angiogenesis, collagen synthesis, and 

collagenase.  Vascular endothelial growth factor is similar to PDGF but 

does not bind to the same receptors.  Vascular endothelial growth factor is 

mitogenic for endothelial cells and plays an important role in angiogenesis.  

• Insulin growth factor’s primary action is mediated by binding to specific 

IGF receptors localized on numerous cell types in many tissues.  The 

signal is transduced by intracellular events (Baserga, 1999).  IGF-1 is one 

of the most potent natural activators of the Akt signaling pathway, a 

stimulator of cell growth and multiplication and a potent inhibitor of 

programmed cell death (apoptosis). 

• Transforming growth factor-β is released from the alpha granules of 

platelets and has been shown to regulate its own production in an 

autocrine manner. This factor is an important stimulant for fibroblast 

proliferation and the production of proteoglycans, collagen, and fibrin 

http://en.wikipedia.org/wiki/Signal_transduction
http://en.wikipedia.org/wiki/Apoptosis
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(Lynch et al., 1989).  The factor also promotes accumulation of the 

extracellular matrix and fibrosis.  Transforming growth factor-β reduces 

scarring and reverses glucocorticoid-induced inhibition of wound healing.  

• Tumor necrosis factor-α is produced by macrophages and stimulates 

angiogenesis and synthesis of collagen and collagenase (Perona, 2006). 

Tumor necrosis factor-a is a mitogen for fibroblasts. 

2. Tissue Expansion 
 
A.  Chronic vs. Acute:  General Considerations 

 
The concept of chronic tissue expansion by progressive distention of an 

implanted subcutaneous balloon was introduced by Newman (Neuman, 1957) in 

1957 and propagated by Radovan (Radovan, 1979) since 1979.  This technique 

currently is used clinically to obtain large amounts of high quality skin for 

reconstructive surgery in almost all anatomical regions except lower extremity 

(Sasaki, 1987).  It is based on the rich 3D network of collagen and elastin that 

characterize skin mechanics and its natural ability to stretch in response to an 

applied force (Balestrini et al., 2005; Gibson, 1977; Johnson et al., 1993).  Chronic 

tissue expansion produces real gains in cutaneous tissue (Austad et al., 1986).  In 

the long term, the implanted balloon expander becomes encapsulated with fibrous 

tissue.  The neovascularization induced by this process is superior to that seen in 

the subdermal plexus (Pasyk et al., 1982).  Numerous biological events occur from 

stretching, resulting in biological tissue creep (tissue proliferation) that accounts for 

the tissue length gained (Johnson et al., 1993; Marek et al., 2005; Vander et al., 

1987).  The disadvantage of chronic implantation is its prolonged period of 
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postoperative recovery with numerous office visits as well as pain and discomfort, 

increased health risks and costs. 

With the introduction of acute expansion, immediate repair of moderately 

sized defects becomes a reality due to the skin's ability to stretch and increase skin 

surface area, thereby avoiding more complex and painful procedures (Greenbaum 

and Greenbaum, 1990; Greenbaum, 1993; Guida et al., 1993; Lam et al., 1994; 

Sasaki, 1987). Success is partly explained by mechanical tissue creep (constant 

stress relaxation) which accounts for the length gained when skin is stretched 

quickly under a constant load (Greenbaum, 1993; Johnson et al., 1993; 

Greenbaum et al., 1990; Shapiro et al., 1996).  Acute expansion offers the surgeon 

a less expensive technique with less morbidity potential (Machida et al., 1991; 

Ehlert et al., 1991).  The tissue expanders used clinically are filled with sterile 

isotonic saline by the surgeon to tolerances determined by inspection (skin pallor) 

and palpation (firmness) (Ehlert and Thomas, 1991; Greenbaum, 1993; Lam et al., 

1994; Shapiro et al., 1996; Siegert et al., 1993).  This fill-volume is maintained for 

several minutes creating a tissue tension as a single load cycle to maximize creep.  

Then, the expander is deflated by withdrawing saline to permit tissue reperfusion 

for 2-3 minutes (Ehlert and Thomas, 1991; Greenbaum, 1993; Lam et al., 1994; 

Shapiro et al., 1996; Siegert et al., 1993).  The procedure is repeated for 2 to 3 load 

cycles to produce additional skin for reconstruction (Gibson, 1977; Lam et al., 1994; 

Sasaki, 1987).  The fill-volume is routinely increased by 2-10 ml increments after 

each cycle, because additional initial stretch is thought to be needed to minimize 

tension and to maximize the total length gained. 
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Unfortunately, the optimal conditions for acute expansion have only been 

suggested empirically for there currently are no well-characterized animal models 

for assessing the best conditions for using acute stretch.  In the pig (Mackay et al., 

1990; McGuire, 1980), acute expansion offers no immediate advantage over simple 

undermining of skin.  However, the modulus of elasticity for this model is much 

higher than in human skin, suggesting that it may in fact be a poor model for 

studying expansion (Bartell and Mustoe, 1989).  Moreover, the longer-term benefits 

arising from the application of acute stretch have not been explored within the pig 

or any other model (Siegert et al., 1993). 

      1.  Architectural Changes and Benefits in Dermal Tissue 
 
The beneficial effects of tissue expansion are considered to be immediate 

and secondary to the: (a) relative dehydration of tissue by displacement of fluids 

and glycoconjugates from the ground substance; (b) parallel re-alignment of 

randomly positioned collagen fibers; (c) microfragmentation of elastic fibers; and (d) 

elongation of tissue into the surgical field by forces produced by the expansion and 

relaxation of the skin (Gibson, 1977; Johnson et al., 1993; Sasaki, 1987). 

           a. Wound Closure and Scar Formation 
 
 In response to the cited beneficial effects of tissue expansion, wounds 

become more responsive to closure and tissue more closely re-approximates 

wound dimensions.  These observations are responsible for decreased scar 

formation in expanded tissue. 

B.  Effects of Expansion on Wound Repair and Endothelium 
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Clinically, a few studies have shown that expansion of skin for 10 to 15 

minutes is too long for it can produce irreversible ischemia leading to progressive 

tissue necrosis (Lam et al., 1994).  The injury caused by this rapid expansion may 

narrow blood vessels, occlude venous and lymphatic drainage, and produce 

endothelial cell disruption leading to vasospasm and microthrombosis (Sasaki, 

1987).  In contrast, Doppler blood flow quantification in humans, rats, and mice 

demonstrated rapid decreases in blood flow during intermittent expansion, with 

subsequent recovery to near normal levels within one minute after each cycle of 

stretch and relaxation (Sasaki, 1987; Zhu et al., 2003).  Histological examination of 

the skin showed that shorter recovery periods between expansion cycles, larger 

volumes of inflation at each time interval, and longer durations of expansion, all 

produced more ischemia (Sasaki, 1987).  

  Others have reported initiation of the delay phenomenon as early as 24h 

after the creation of surgical flaps (Greenbaum and Greenbaum, 1990; Susuki et 

al., 1986; Wechsler and Fisher, 1978).  Beginning at 48 h, there is reperfusion of 

areas of random circulation following surgical delay incisions and by 4-6 days 

neovascularization (Garcia et al., 1991; Milton, 1969; Milton, 1970).  Blood flow 

remains elevated until day 14 (Li et al., 2005; Li, 2005).  Both the number and size 

of vessels are increased, and there is growth of new vessels from surrounding 

tissue 4-5 days postoperatively.  However, the reasons and underlying 

physiological, biochemical, and cellular and molecular, mechanisms involved in 

reducing necrosis and promoting wound healing and longer term viability are 
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unknown and need to be elucidated using well-characterized models and well-

established conditions. 

Therefore, a well-characterized model for studying acute stretch is required 

to develop the best conditions for the parameters associated with rapid intermittent 

expansion.  Underlying changes in nutrient blood flow that impact flap viability and 

long-term survival are unknown and need to be elucidated using contemporary 

cellular and molecular biology.  We hypothesize that rapid intermittent stretch 

triggers the release of endogenous factors that promote neovascularization 

(angiogenesis) and growth and this impacts the long-term viability of skin following 

elevation and closure of random flaps.  The mediators are postulated to prevent 

irreversible ischemia and necrosis and, thereby, to promote the healing of wounded 

skin.  We examine the identity and localization of the potential stretch-released 

proteins in a well-characterized model of mouse dorsal distally based flap.  The 

information is completely lacking and is essential for successful application of acute 

stretch. 

3.  Angiogenesis 
 
A.  Historical Perspective 
 
 Growth of blood vessels has intrigued scientists for centuries (Dvork, 

2005; Skalak, 2005).  They recognized that the formation of new vessels from 

existing capillary beds (i.e. angiogenesis) and vascular remodeling (e.g. 

apoptosis) control the structure and function of the microcirculation over the 

lifetime of an organism (Conway et al., 2001).  As early as 1794, John Hunter 

wrote about the development of vessels in the chick embryo.  Hunter noted that 
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vessels are not elongations from original ones, but are newly formed from 

mitogenic endothelium.  Meyer, in 1853, was the first to correctly sketch the 

growth of new capillaries from observations in tadpole tails and sheep embryos.  

In 1885, Bobritzky was the first to suggest endothelial cell migration during 

angiogenesis.  Clark (1918) noted that capillary sprouting occurred primarily in 

high flow vessels, while high flow capillaries tended to regress.  In 1965, 

Branemark suggested that vessels became functional as a result of oscillatory 

movement of erythrocytes.  This was confirmed by experiments conducted by 

Myrhage and Hudlicka in 1978.  More recently, it has been established that the 

angiogenic process occurs at the venular end of pre-existing capillaries under 

physiological and pathological conditions (Haas, 2002).  Folkman and numerous 

collaborators have contributed significant knowledge to endothelial cell 

proliferation that leads to capillary formation in response to factors in cell and 

tissue cultures. 

 Historically, many techniques have been utilized to study angiogenesis.  

Among these are intravital microscopy, quantitative light microscopy, electron 

microscopy, 3H-thymidine incorporation, tissue culture and chorioallantoic 

membrane (CAM) assays.  Intravital microscopy is limited to small range of 

tissues, and is one of the earliest methods used to study angiogenesis.  In the 

seventeenth century, often magnifying lenses were used for experiments.  Most 

data referring to growth of capillaries arise from quantitative light microscopy.  

We used quantitative light microscopy in immunohistochemical assays of 

proliferating cellular nuclear antigen (PCNA), factor VIII, and IR / IGFR in 
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combination with Western blot analysis and proliferation assays (Bravo et al., 

1987; Denizot and Lang, 1986; Freeman et al., 1993; Gerlier et al., 1986; Hong 

et al., 2003; Hoyer et al., 1981; Kindblom et al., 1982; Luo et al., 1996; 

Mosmann, 1983; Shrader et al., 2007; Takasaki et al., 1984; Woods et al., 1991).  

These data generally reflect changes in number or length of capillaries per 

volume of tissue.  Electron microscopy reveals the ultrastructure of the 

microvasculature.  Stereological quantification of capillaries has also been 

achieved with this method.   3H-thymidine incorporation has been used in vivo 

and in vitro to analyze mitotic activity of endothelial cells.  These experiments 

allowed for the detection and analysis of new capillaries.  Tissue culture 

techniques have been used extensively to study blood vessel formation and the 

response of cell types to angiogenic factors.  In 1974, Folkman described CAM 

assays to study angiogenesis.  Angiogenic agents could be easily applied and 

evaluated through the thin membranes of the chorioallantois. 

 In spite of centuries of investigation, a mechanistic understanding of the 

components of angiogenesis is poorly understood (Frantz et al., 2005).  

Research has focused on endothelial cells in vitro and in vivo, with the hope of 

discovering the mechanism(s) that control vessel growth.  For example, scientists 

hope to some day limit vessel growth in tumors, while stimulating vessel 

formation for collateral circulation in conditions where blood flow is impaired as in 

ischemia / reperfusion and healing.      

B.  Regulatory Factors:  General Considerations 
  



 19

Endothelial cells are very stable with turnover of about every 1000 days in 

capillaries.  However, these cells mitose in substantially higher numbers in 

younger animals.  For example, Schwartz and Benditt (1977) found that 13% of 

aortic endothelial cells were labeled in newborn rats.  This number reduced to 

0.2% by six months of age.  Although the growth and division of endothelium are 

not fully understood, there are key mechanisms and events that can be 

described in detail.  Cells can only divide and grow in the presence of nutrients.  

Various growth factors facilitate these processes.  These factors bind to their 

respective receptors and stimulate cell signaling that controls cell division.  

Capillaries bud (i.e. vascular splitting and sprouting) from existing capillaries in 

response to these growth factors (i.e. angiogenesis).  Endothelial cells coalesce 

and bind fibrin, which adds support to the vessel wall.  Angiogenesis enhances 

blood flow to the wound and, consequently an increase in tissue healing factors. 

Angiogenesis ceases as the demand for new blood vessels ceases.  New blood 

vessels disappear via programmed cell death (i.e. apoptosis).   

VEGF (Vascular Endothelial Growth Factor) has been demonstrated to be 

a major contributor to angiogenesis, increasing the number of capillaries in a 

given network (Akita et al., 2004; Bermont et al., 2000; Byrne et al., 2005; 

Ferrara, 2002).  Early in vitro studies demonstrated that bovine capillary 

endothelial cells proliferate and form tube structures upon stimulation by VEGF 

and basic fibroblast growth factor (bFGF) (Gerwins et al., 2000).  Responses 

were more pronounced to VEGF (Goto et al., 1993).  VEGF is up-regulated 

during exercise (Gitay-Goren et al., 1996).  VEGF is also suspected to have a 

http://en.wikipedia.org/wiki/VEGF
http://en.wikipedia.org/wiki/BFGF
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beneficial role in the treatment of vascular injuries (Ding et al., 2004; Gavin et al., 

2004; Kraus et al., 2004; Lloyd et al., 2003).  In vitro studies clearly demonstrate 

that VEGF is a potent stimulator of angiogenesis as plated endothelial cells will 

proliferate and migrate, eventually forming tubes that resemble capillaries (Chau 

et al., 2002; Ilan et al., 1998).  VEGF triggers a massive signaling cascade in 

these cells (Pai et al., 2001).  Binding to flk-1 initiates a tyrosine kinase signaling 

cascade that stimulates vessel permeability (eNOS, producting NO), proliferation 

/ survival (bFGF), migration (ICAMs / VCAMs / MMPs) and finally differentiation 

into mature blood vessels (Herve et al., 2005; Hoeben et al., 2004; Miller et al., 

2005; Senger et al., 2002).  Mechanically, it is expressed during muscle 

contractions from increased wall shear stress resulting from increased blood flow 

to exercised areas (Ingber, 2002; Joung et al., 2006).  NO is widely considered to 

be a major contributor to the angiogenic response because inhibition of NO 

significantly reduces the effects of angiogenic growth factors (Kuebler et al., 

2003; Murohara and Asahara, 2002; Murthy et al., 2000).  However, inhibition of 

NO during exercise does not inhibit angiogenesis indicating that there are other 

factors involved in the angiogenic response (Prior et al., 2004).  Dll4 (Delta-like 

ligand 4) is a recently discovered protein growth factor with important angiogenic 

properties similar to VEGF (Chai et al., 2004).  Dll4 is a transmembrane ligand, 

from the Notch family of receptors. 

The angiopoietins, Ang1 and Ang2, are required for the formation of 

mature blood vessels, as demonstrated by mouse knock out studies (Thurston, 

2003).  Ang1 and Ang2 are protein growth factors which act by binding their 

http://en.wikipedia.org/wiki/VEGF
http://en.wikipedia.org/wiki/Growth_factor
http://en.wikipedia.org/wiki/Notch_family_of_receptors
http://en.wikipedia.org/wiki/Angiopoietins
http://en.wikipedia.org/wiki/Knock_out
http://en.wikipedia.org/wiki/Ang1
http://en.wikipedia.org/wiki/Ang2
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receptors, Tie-1 and Tie-2 (Thurston, 2003; Unger et al., 2005).  While this is 

somewhat controversial, it seems that cell signals are transmitted mostly by Tie-

2; though, some papers show physiologic signaling via Tie-1 as well.  These 

receptors are tyrosine kinases.  Thus, they can initiate cell signaling when ligand 

binding causes a dimerization that initiates phosphorylation on key tyrosines. 

Another major contributor to angiogenesis is matrix metalloproteinase 

(MMP).  MMPs help degrade the proteins that keep the vessel walls intact.  This 

proteolysis allows the endothelial cells to escape into the interstitial matrix as 

seen in sprouting angiogenesis.  Inhibition of MMPs prevents the formation of 

new capillaries (Haas et al., 2000).  These enzymes are tightly regulated during 

vessel formation.   Destruction of the extracellular matrix decreases the integrity 

of the microvasculature (Prior et al., 2004)  

One of the most important functions of fibroblast growth factor-2 (FGF2) is 

the promotion of endothelial cell proliferation and the physical organization of 

endothelial cells into tube-like structures, thus promoting angiogenesis 

(Takahashi et al., 2005).  FGF2 is a more potent angiogenic factor than VEGF or 

PDGF (platelet-derived growth factor) (Detillieux et al., 2003).  As well as 

stimulating blood vessel growth, bFGF is an important player in wound healing 

(Odedra et al., 1987; Piotrowicz et al., 1999; Takahashi et al., 2005).  It 

stimulates the proliferation of fibroblasts that give rise to granulation tissue, which 

decreases a wound cavitation early in the wound healing process.  Akt is 

involved in the regulation of angiogenesis and promoting cell survival (Brognard 

et al., 2001; Burgering et al., 1995; Cantley et al., 1999; Datta et al., 1995; 

http://en.wikipedia.org/wiki/Tie-1
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http://en.wikipedia.org/wiki/Tie-2
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Murthy et al., 2000; Nakatani et al., 1999; Partovian et al., 2004; Rommel et al., 

1999; Zimmerman and Moelling, 1999). 

All of these factors regulate the two main types of angiogenesis.  Sprouting 

was the first identified form of angiogenesis, occuring in several well-

characterized stages.  Sprouts extend toward the source of the angiogenic 

stimulus.  Endothelial cells migrate in tandem using adhesion molecules, the 

equivalent of cellular grappling hooks, called integrins.  These sprouts then form 

loops to become capillaries at the site of angiogenesis.  Sprouting occurs at a 

rate of several millimeters per day, and enables new vessels to grow across gaps 

in the vasculature. It is markedly different from splitting angiogenesis (i.e. 

intussusception), however, because it forms entirely new vessels as opposed to 

splitting from existing vessels (Burri, 2004).  Intussusception was first observed in 

neonatal rats where the EC extends into the lumen and divides a single vessel 

into two.  

Mechanical stimulation of angiogenesis is not well characterized (Haas, 

2002; Shiu et al., 2005; Shukla et al., 2004; Von Offenberg et al., 2005).  There is 

a significant amount of controversy regarding the role of wall shear stress in 

promoting angiogenesis, although current knowledge suggests that increased 

muscle contractions increase angiogenesis (Prior et al., 2004).  New vessel 

growth is a complex process that relies heavily upon numerous factors. 

C.  Cellular Components 
 

This dissertation focuses on endothelial cell proliferation as a marker of 

angiogenesis.  Endothelial cells are the central focus of research as these cells 

http://en.wikipedia.org/wiki/Integrin
http://en.wikipedia.org/wiki/Lumen_%28anatomy%29
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are activated by numerous regulatory factors (Nakatsu et al., 2003).  Activation 

often promotes mitogenesis.  As the cells proliferate, they migrate toward 

angiogenic stimuli (e.g. bFGF, VEGF) (Kroll et al., 2000; Stephan and Brock, 

1996).  As maturation occurs, endothelium remodels and stabilizes to form a 

patent vessel that delivers blood flow.   

The macrophage is an essential component of angiogenesis as it 

produces macrophage-derived angiogenic factor in response to low tissue 

oxygenation (Kunz-Schughart et al., 2006).  This factor functions as a 

chemoattractant for endothelial cells. Basic fibroblast growth factor secreted by 

macrophages and vascular endothelial growth factor secreted by epidermal cells 

also trigger angiogenesis (Wiedlocha and Sorensen, 2004).  

Fibroblasts function to maintain the structural integrity of the connective 

tissue (Kunz-Schughart et al., 2006).  These cells secrete all of the precursors 

required for the formation of extracellular matrix.  As matrix is broken down to 

allow for endothelial cell migration, the fibroblast must construct new matrix to 

stabilize newly formed vessels.  Fibroblasts and smooth muscle cells have 

receptors for epidermal growth factor and platelet derived growth factor (Luo et 

al., 1997; Powers et al., 2000).  Endothelial cells do not contain these receptor 

types and, therefore, do not respond to these angiogenic agents`. 

Smooth muscle cells maintain blood vessel dimensions and vascular wall 

integrity against imposed loads.  The thin and thick filament bundles are fastened 

to the sarcolemma (plasma membrane) via dense plaques or focal adhesions.  

Individual smooth muscle cells are fastened to one another via adherens 

http://en.wikipedia.org/wiki/Adherens_junctions
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junctions.  Consequently, they are mechanically coupled to one another such that 

contraction of one cell invokes some degree of contraction in an adjoining cell. 

Gap junctions couple adjacent cells chemically, facilitating the spread of signals 

(e.g., calcium) across smooth muscle as a single-unit of contraction.  Tissue 

containing smooth muscle cells often is stretched, so that elasticity is an 

important attribute of smooth muscle and contributes to stretch-back during 

expansion (Haas, 2002).  Smooth muscle cells secrete a complex extracellular 

matrix containing collagen (predominantly types I and III), elastin, glycoproteins, 

and proteoglycans (Olsen et al., 1997).  They contract or relax in many different 

ways, responding to activation of the autonomic nervous system ("involuntarily" 

control) and other cell types (vasodilators or vasoconstrictors).  

Lastly, pericytes are relatively undifferentiated cells, associated with the 

walls of small blood vessels (Munoz-Chapuli et al., 2002).  They aid in the 

breakdown of the basal lamina and serve as a scaffold for endothelial cells to 

migrate and form new vessels during neovascularization.  These cells are 

pluripotent; that is, they are capable of differentiating into a fibroblast, smooth 

muscle cell, or macrophage.  

4.  Insulin 
 
A.  Sources: Circulating vs. Tissue Derived 
 

Circulating insulin (from Latin insula, "island") is produced by beta cells 

in the Islets of Langerhans in the pancreas and has systemic effects.  

However, insulin can be tissue derived.  That is, insulin can be produced by 
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tissue (e.g. skin) to act locally, as well as systemically (i.e. tissue insulin or 

insulin 1) (Pelegrinelli et al., 2001). 

 
 
B.  Physiological Characterization 
 
           Typically, one thinks of insulin as a key metabolic protein, regulating the  

functions of the insulin-dependent tissues; for example, liver, adipose, and 

skeletal muscle (Bates et al., 2005; Kim et al., 2001; White et al., 1985; White et 

al., 1988).  It facilitates glucose uptake in these organs and tissues.  However, 

recent evidence also suggests that insulin acts as a key mitogen (Kawaguchi et 

al., 2001).  Insulin receptors are expressed on vasculature, but their functions are 

not completely understood.  While there is only a 40% amino acid sequence 

homology between insulin and insulin growth factor, both IR and IGFR respond 

to insulin activation and are associated with mitogenic insulin signaling (Adams et 

al., 2000, Baserga, 2000, Brown et al., 1997; Layton et al., 2006; Marino-Buslje 

et al., 1999; Oh et al., 2006; Scheidegger et al., 2000; Soos et al., 1993; Ullrich et 

al., 1986).  Insulin potentially stimulates differentiation, growth, and survival 

(Dickson, 1998; Gartner et al., 1992; Hernandez-Sanchez et al., 1995; 

Wertheimer et al., 2000).  Insulin is required for all animal life. Its mechanism of 

action is almost identical in nematodes, fish, and mammals, and it is a protein 

that has been highly conserved throughout evolution.  In humans, insulin 

deprivation from removal or destruction of the pancreas leads to death in days 

or, at most, weeks if left untreated (Beeson et al., 2003). 

1. Metabolic 
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          There are special proteins in cell membranes through which glucose is 

transported from blood into cells. These transporters are, indirectly, under 

insulin control in certain cell types (eg, muscle cells).  Low levels, or the 

absence, of circulating insulin will inhibit glucose uptake in these cells (e.g. 

Type 1 diabetes).  However, more commonly there is insulin resistance (e.g. 

Type 2 diabetes), blocking glucose absorption.  This resistance is believed to 

be the result of inflammation associated with peroxynitrites and glycosylated 

fatty acyl proteins (Asayami et al., 1984; Fuchs et al., 1997; Taub and 

Oppenheim, 1994).   

Activation of insulin receptors leads to intracellular mechanisms which 

control glucose uptake and utilization by regulating the number and activity of 

membrane bound proteins which transport glucose (Schumacher et al., 1993).  

The genes which specify these proteins have been identified and comprise 

the intra- and extra-membrane structure of the insulin receptor.  Two types of 

cells are most strongly influenced by receptor activation: myocytes and 

adipocytes.  The former are important because of their central role in 

movement, breathing, circulation, etc, and the latter as an alternative energy 

source to glucose.  These cells account for about two-thirds of all cells in a 

typical human body. 

2. Mitogenic 
 
          Following insulin binding to it’s receptor, the receptor tyrosine kinase is 

activated.  This, in turn, stimulates phosphorylation of insulin receptor substrates 

1 and 2 (IRS 1, IRS 2) and Shc (Morris and Schmid, 2000; Tavarez-Pagan et al., 

http://en.wikipedia.org/wiki/Cell_membrane
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2004).  These proteins lead to multiple intracellular signaling cascades that 

promote cell growth and differentiation (Sundell and Knuuti, 2003).  Among these 

are PI3-K signal transduction (Poulaki et al., 2003; Turinsky and Amrau-Abney, 

1999).  PI3-K has been implicated in insulin-induced gene transcription 

(Kobayashi et al., 2002; Xiaorui, 2004).  However, the increased transcription 

may not be biologically significant.  This dissertation focuses on insulin signaling 

and protein up-regulation and activation to determine if there is a central role for 

insulin in endothelial cell mitosis and viability that promotes angiogenesis in 

healing stretched skin.   

C.  Signaling Pathways: Mitogenic and Survival 
 
      Presented in figure 1. 

 
Figure 1.  Insulin signal transduction promoting metabolism, mitogenesis and cell   
                survival. 
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PURPOSE OF THIS DISSERTATION PROJECT 

The potential to promote wound healing is of tremendous clinical significance 

in injuries, e.g., lacerations, surgical incisions, reconstructive surgery, burns and 

peripheral vascular diseases.  There is a growing body of evidence that insulin 

released locally in tissues (tissue insulin or insulin-1) acts as an endothelial cell 

mitogen.  Tissue insulin is a ligand for insulin receptor (I-R) and/or insulin growth 

factor receptor (IGF-R).  However, the molecular mechanism(s) by which insulin 

triggers endothelial mitosis is largely unknown.  The lack of this knowledge 

hampers the development of rational and efficient strategies to enhance 

collateral vessel formation (angiogenesis) and promote wound healing.   

The long-range goal of our research is to elucidate the mechanisms by which 

acute stretch promotes vascular growth in healing skin.  Our preliminary data 

have shown that acute skin stretching provokes upregulation of the tissue insulin 

gene.  The expression is coincident with improved healing and viability as seen 

from decreased necrosis and increased blood flow in the skin.  The objective of 

the dissertation research is to characterize molecular mechanisms triggering 

endothelial cell mitogenesis in an animal model (mouse) and in primary cell 

culture (human).  The central hypothesis is that insulin is a stretch responsive 

endothelial cell mitogen that enhances vascular growth and viability by activating 

I-R/IGF-R, and that signal transduction is mediated by phosphatidylinositol 3-

kinase (PI3-K) effectors protein kinase B (Akt) and vascular endothelial growth 

factor (VEGF).  The rationale for the proposed research is that understanding of 

the mechanisms that promote angiogenesis will transform this stretch 
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methodology into a useful clinical tool to improve healing of the skin lesions. 

To test our central hypothesis and accomplish the overall objective of this 

research, the following specific aims are addressed within the dissertation: 

 

1. Characterize the response of endothelial cells to acute stretch.  Working 

Hypothesis:  Endothelial cells are the major cell type that in response to 

stretch temporally upregulate / activate the expression of insulin, IR / IGFR, 

Akt, and VEGF, and proliferate. 

2. Determine signal transduction pathway(s) for insulin-induced endothelial cell 

proliferation and survival in vitro.  Working Hypothesis: Insulin signaling is 

mediated by I-R/IGF-R that through PI3-K activate the Akt and VEGF.  

 

This study contributes new knowledge that will make a fundamental difference 

in the outcome and treatment of disorders where healing is compromised.  The 

research will provide novel insight into unexplored mechanisms of stretch-

induced mitogenic tissue insulin activity.  It will enhance a promising new 

research focus area into the molecular mechanisms of wound healing.  The new 

knowledge and techniques should translate into strategies that promote wound 

healing.  Strategies include the use of gene therapy, exogenously applied insulin, 

or the training of physicians to utilize acute stretch, to stimulate healing in the 

skin. 
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ABSRACT 

We have developed a novel in vivo model utilizing acute stretch to 

investigate endothelial cell proliferation as a marker of vascular growth in healing 

mouse skin.  This study is a follow-up to ones revealing immediate stretch 

improves blood flow, decreases total tissue necrosis, and induces tissue insulin 

transcription.  Dorsal distally based flaps of skin were stretched for 3 min using 

linear (skin hook) plus hemispherical load cycling (inflated subcutaneous silicone 

catheter).  Unstretched, wounded skin along the back and sternum served as 

postoperative controls.  Laser Doppler flowmetry demonstrated a three fold 

increase in flap perfusion at postoperative day 7.  A stretch-induced six-fold 

increase in endothelial cell mitogenesis accompanied enhancements in blood 

flow and extracorporal wound healing over the sternum.  Western blots revealed 

up-regulation / activation of insulin and mitogenic signaling intermediates in 

stretched skin.  Activated insulin and insulin growth factor receptors (pIR/pIGFR), 

protein kinase B (Akt, pAkt), vascular endothelial growth factor (VEGF) and 

vascular endothelial growth factor receptor 2 (flk-1) were among the identified 

stretch-responsive intermediates.  These results indicate the benefits of acute 

stretch are mediated through enhanced vascularity as evidenced by endothelial 

cell mitogenesis and up-regulation / activation of insulin and key angiogenic 

effectors in dorsal distally based skin flaps.   

mailto:freilly@hsc.wvu.edu
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INTRODUCTION 

We have reported long-term benefits and improved skin flap viability 

arising from the application of rapid, acute stretch in a SKH1 mouse model [43].  

These benefits were demonstrated with Doppler flowmetry and by measuring 

necrosis along the margin of a surgically created dorsal distally based skin flap.  

Increases up to 50% in nutritive blood flow and decreases of 75% in tissue 

necrosis were observed at post-operative day 5.  Despite numerous studies by 

others attesting to the benefits of tissue stretch, no thorough investigation into the 

underlying cell type(s) and molecular mechanism(s) that promote viability and 

improved healing have been reported [29, 35].    

The microvasculature bears the enormous task of maintaining systemic 

homeostasis following tissue wounding.  It must initiate clot formation, chemokine 

signaling, cellular recruitment, vasoreactivity, and immune response while 

maintaining normal functional and/or nutritive blood flow [3, 7, 23].  These 

processes are critical to survival and healing, and occur in three phases: an 

inflammatory phase, a proliferative phase, and a maturational phase.  The 

endothelial cell serves a pivotal role in each phase. 

Despite many advances in understanding the science of endothelium, 

there is a gap in knowledge of mitogenic stimuli, i.e., stretch and molecular 

mechanisms that trigger endothelial cell proliferation.  Mitogenic activity of 

endothelium promotes new vascular growth as seen from existing capillary beds 

during angiogenesis.  Angiogenesis is involved in a variety of physiological and 

pathological roles, and has become a central focus for many investigators [4, 8, 
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14, 21, 39].  Angiogenesis is imperative to the proliferative phase of healing as it 

sustains the process.  Chronic unhealed wounds result if angiogenesis becomes 

impaired [19, 20, 36].    

Characterization of the cellular and molecular mechanisms underlying 

improved viability and healing in stretched tissue carries enormous clinical 

significance, warranting further investigation.  Using differential display reverse 

transcription polymerase chain reaction (DDRT-PCR) and Northern blot analysis, 

we reported stretch-induced expression of tissue insulin mRNA [44].  Expression 

of insulin mRNA was coincident with improved healing as increased blood flow 

and decreased necrosis accompanied up-regulation.  Despite the traditional view 

of insulin as a metabolic regulatory hormone, recent evidence suggests insulin 

can serve as a key mitogenic regulator [2, 9, 22, 34, 40, 41]. 

In the current study, we demonstrate stretch-induced gene-specific tissue 

insulin expression and enhanced up-regulation / activation of multiple angiogenic 

signaling intermediates using Western blot analysis.  Immunohistochemistry 

revealed enhanced mitogenesis in endothelium of stretched tissue and confirmed 

activation of insulin receptor and insulin growth factor receptor (pIR/pIGFR).  

These data increase our understanding of the beneficial effects of acute stretch 

on skin flap viability and healing in local and remote (extracorporal) sites. 
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MATERIALS AND METHODS 

Animal care and anesthesia 

A total of 70 outbred Crl: SKH1-hrBR albino (hairless) male mice (20-30g) 

of 20-42 days of age were purchased from Charles River Laboratories 

(Wilmington, MA).  They were kept in a light and temperature regulated 

environment and were permitted free access to food and water while maintained 

on Tek fresh bedding.  The mice were anesthetized intraperitoneally with 

Nembutal (0.05 mg/g body weight) and 20 min later with ketamine (0.03 mg/g).  

The institutional Animal Care and Use Committee approved the project and key 

personnel were trained in Core Animal Welfare (protocol #: 03-0401).  NIH 

Publication 85-23 (revised in 1985) “Principles of laboratory animal care” was 

followed.  The animal care facilities and program met the requirements of the 

Laboratory Animal Welfare Act P2-89-541, 91-579 and 94-279, NIH policies and 

ONM Circular A-21, the Public Health Service Act, and the American Veterinary 

Medical Association on euthanasia.  

Treatment groups and surgical protocol 

The experimental design incorporated two groups of 4-6 anesthetized 

mice.  A dorsally based random flap measuring 30 mm in width by 35 mm in 

length was delineated on the animals using established methods [11, 12, 13, 43].  

Skin flaps from the control group were undermined, following a cranial apex 

incision, without the application of acute stretch.  Flaps from the experimental 

group were undermined and then a constant 5 g of linear tension plus a 

subcutaneous 3 min hemispherical load cycle (acute stretch) applied using a 
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Foley catheter (REF 0165L 12, C.R. Bard, Inc., Covington, KY).  Constant initial 

linear tension was accomplished by securing anesthetized mice with surgical 

tape to a custom built Plexiglas apparatus housing a tensiometer (Chatillon 

Tensiometer DGGRS-gram gauge, Greensboro, N.C.) so that movements of this 

instrument in relation to the flap were precisely controlled.  The flap was secured 

to the tensiometer with a suture hook.  Experimental animals, similar to control 

animals, received an apical incision allowing for undermining and stretching of 

the flap.  The skin hook was attached and an initial 5 g of linear tissue applied.  

The hemispherical load cycle was achieved by inserting the inflation tube of the 

catheter under the flap through the cranial incision.  The catheter was inflated 

with 6 ml of sterile saline.     

Both stretched (experimental) and unstretched (control) flaps were raised 

by cutting the two lateral sides.  They were then re-approximated to the original 

donor site and closed with 5-0 nylon simple sutures.  A total of 15 sutures, 

distributed approximately 5 mm, were used for closure.   

Flaps were excised and hemi-sected at multiple post-operative time 

points.  One half was stored at -80oC and the other half was placed in 10% 

neutral buffered formalin prior to paraffin embedding.  After flap excision, mice 

were euthanized with an excess of pentobarbital.   

Anterior extracorporeal skin incisions, 15mm in length, were made along 

the sternum of both stretched, wounded and unstretched, wounded animals.  

Four sutures, 3mm apart were used to close these surgically created wounds.  
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Total wound length was measured using a micrometer between 6h and 

postoperative day 7.   

Laser Doppler flowmetry 

Blood flow measurements were repeated three times (triplicate) in each 

animal using a laser Doppler flowmeter Model ALF 21 (Transonic Systems, 

Ithaca, NY).  Means of triplicate measurements ± SEM were graphed.  The 

measurement site was 10 mm from the center of the caudal flap borders, and its 

exact position was determined from previous studies [13, 43].  Total flap 

perfusion was estimated by recording blood flow before surgery (baseline) and 

then again at postoperative time points. 

Immunohistochemistry        

Skin flaps were collected, fixed in 10% neutral buffered formalin and paraffin-

embedded.  The samples were fixed one day and processed the following day to 

preserve the antigenicity and morphology of the tissue.  Five micrometer sections 

were cut and mounted on poly-lysine coated slides and air dried overnight at 

room temperature.  Double-labeling of factor VIII (demonstrated with alkaline 

phosphatase – fast red chromagen) with pIR/pIGFR or proliferating cellular 

nuclear antigen (PCNA) (both demonstrated with DAB – brown chromagen) in 

vascular endothelial cells was assessed using established immunohistochemical 

methods [32, 33].     

The basic immunostaining protocol was as follows: Flaps were processed 

immunohistochemically for the presence of specific proteins using an 

avidin-biotin method [32, 33].  The proteins of interest (PCNA; Ventana, Tucson, 
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AZ, pIR/pIGFR; Chemicon International, Temecula, CA) were double-labeled with 

factor VIII (Ventana, Tucson, AZ) to identify endothelial cells.  Flaps were sectioned 

(5μm) with a microtome.  Sections were washed with 3.0% bovine serum albumin 

(BSA) and 2% normal goat serum (NGS) in 0.10 M phosphate buffer for 10 min 

each to block non-specific staining.  Antigen retrieval was performed to remove any 

cross-linking damage done during fixation and processing.  The samples were 

incubated for 30 min at 37ºC with primary antibodies (PCNA and/or pIR/pIGFR) 

diluted at 1:50 in a solution of 3% BSA in 0.15 M phosphate buffer.  Next, samples 

were washed in 1X tris buffered saline (TBS) and placed in horse radish peroxidase 

(HRP) polymer for 30 min.  Sections were washed in 1X TBS and DAB placed on 

them for 5-10 min.  Slides were then placed in a running water wash for 5 min.  

Double stain blocker was added for 10 min, followed by another 5 min rinse in 1X 

TBS.  A second primary antibody was added at this point (factor VIII) for 30 min, 

rinsed in 1X TBS for 5 minutes and placed in alkaline phosphatase (ALP) for 55 

min.  Samples were placed in 1X TBS for 5 min and Fast Red was added to slides 

for 5-10 min. Triple labeled samples were rinsed again in 1X TBS and placed in the 

third antibody (PCNA), then rinsed and placed in ALP for 55 min.  Finally these 

samples were rinsed in 1X TBS and placed in 5-bromo-4-chloro-3-indoxyphosphate 

/ nitroblue tetrazolium chloride (BCIP/NBT) (Ventana, Tucson, AZ) substrate for 5 

min.   Slides were then washed well in a running water rinse for 10 min.  

Hematoxylin (30-45 sec) was used as a counterstain on double labeled sections.  

Slides were again washed well and coverslipped as an aqueous media.  Due to 

light sensitivity, samples were stored in a dark area for up to one week.  Quantified 
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antigens were labeled with DAB and densitometry performed using Optimas 6.2.  

Incubation in NGS and omission of primary antibodies served as control reactions 

for non-specific binding.  The results of these controls were negative. 

Western blot analysis 

The quantitative immunoblotting protocol was similar to that used previously 

[27].  All analyses were repeated three times (triplicate) with new animal groups.  

Means of triplicate measurements ± SEM were graphed.  Time points preceding 

those graphed were not significant from baseline, and therefore not displayed in 

figures. 

Flaps were placed in liquid nitrogen for 1 min, pulverized, homogenized and 

lysed with ice cold RIPA buffer (150 mM NaCl, 50 mM Tris pH 8.0, 1.0% Polydet 

N-40, 0.10% sodium dodecylsulfate (SDS), 0.50% sodium deoxycholic acid, 0.10 

mg/ml phenylmethylsulfonyl fluoride, 1.0 mM sodium orthovanadate, and 3.0% 

aprotinin, Sigma) for 10 min.  The homogenates were centrifuged at 10,000 G for 

10 min, and the supernatant containing cellular proteins was collected and 

protein concentration determined with a Bio-Tek microplate reader.  Protein 

samples (50 µg/lane) were loaded on 10% SDS-polyacrylamide gels (PAGE), 

separated by electrophoresis and then transferred to nitrocellulose membranes.  

Non-specific activity was blocked by washing the membrane with 5.0% nonfat dry 

milk and 0.10% Tween-20 in 0.01 M PBS (TPBS) for 1 h at room temperature.  

The membranes were incubated overnight at 4ºC with primary antibodies against 

PCNA, insulin, Akt, VEGF, flk-1 (Santa Cruz Biotechnology, Santa Cruz, CA), 

pAkt (S473, Zymed Laboratories, San Francisco, CA) and pIR/pIGFR (Cell 
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Signaling Technology, Danvers, MA).  After two washes in TPBS, the 

membranes were incubated with a peroxidase-conjugated secondary antibody 

(Amersham, Piscataway, NJ ; 1:2000 in TPBS) for 1 h.  The immune complexes 

were detected by the enhanced chemiluminescence (ECL) method (Amersham, 

Piscataway, NJ).  As with the immunohistochemical studies, non-specific binding 

was assessed on immunoblots processed without the primary or secondary 

antibodies.  The results of such controls were consistently negative.   

In order to control for inter-sample variation of the total amount of protein 

loaded onto the gel, the membranes were stripped of antibodies directed against 

target proteins and re-probed with anti-tubulin Ab as an internal standard.  

Densitometric readings of target protein contents were normalized against those 

of the internal standard using Optimas 6.2.  The membranes were stripped by 

incubating in a solution containing 100 mM β-mercaptoethanol, 2.0% SDS, and 

62.5 mM Tris-HCl (pH 6.7) for 30 min at 50ºC or overnight at 4ºC.  The 

membranes were then washed twice with TPBS for 15 min.  Non-specific binding 

was blocked with either 5.0% milk or 2.5% BSA in PBS, and the membrane was 

reblotted as described above.  With this method, we were able to detect small 

differences in protein expression [28].  The relative amounts of stretch-induced 

protein expression in the films prepared from the immunoblots were quantified 

using an LKB Ultrascan XL Laser Densitometer.  For detection of low abundance 

proteins, such as phosphorylated kinases, the homogenates were concentrated 

using the Microcon Centrifugal Filter Device (Millipore Inc., Billercia, MA) prior to 
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electrophoresis.  We have successfully employed this method to detect low levels 

of specific proteins. 

Statistical analysis 

Differences among treatment groups were tested using a one-way 

analysis of variance (ANOVA) and Tukey’s (post hoc) test.  Differences with p-

values ≤ 0.05 were considered statistically significant.  Data are presented in 

figures as mean ± standard error of the mean (SEM).   
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RESULTS 

Doppler flowmetry demonstrated that all flaps were adequately perfused.   

Total estimated perfusion at the flap base was significantly higher (≤ 0.05) at 

postoperative day 7 (Fig. 1) in acutely stretched wounded skin.  This increase 

was accompanied by a significant reduction (p ≤ 0.05) in wound length along the 

sternum between post-operative days 1 (1d) and day 5 (5d) (Fig. 2).  These 

findings were consistence with those reported previously where marginal tissue 

necrosis along the cut edge of stretched flaps with elevated blood flow was 

significantly decreased at post-operative day 5 [43].  

PCNA antigen (brown chromagen) was isolated on factor VIII (red 

chromagen) positive endothelial cells of wounded skin (identified by arrows in 

Fig. 3A).  Quantification of brown chromagen as a percentage (%) of the total 

cross-sectional area of a blood vessel’s lining revealed significant stretch-

enhanced labeling (p ≤ 0.05).  This increase in expression was confirmed by 

Western blots that were stripped of PCNA antigen and re-blotted with tubulin as 

an internal standard (Fig. 3B).   

Insulin expression was significantly elevated (p ≤ 0.05) at 1d and optimal 

at 2d (Fig. 4A), while pIR/pIGFR activity peaked at 1d (Fig 4B) in stretched flaps.  

Triple-immunolabeling of tissue sections with pIR / pIGFR (brown chromagen), 

factor VIII (red chromagen) and PCNA (blue-grey chromagen) confirmed the 

presence of pIR/pIGFR on proliferating endothelium (Fig 4 C left and middle 

panels with arrows indicating pIR / pIGFR positive endothelial cells).  

Quantification of brown chromagen as a percentage of the total cross-sectional 
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area of a blood vessel’s lining demonstrated significant pIR / pIGFR activation (p 

≤ 0.05) on post-operative day 1 (Fig. 4C right panel).  

Acute stretching significantly upregulated (p ≤ 0.05) expression of VEGF, 

VEGF receptor 2 (flk-1) (Fig. 5), and Akt (Fig 6).  It also activated (pAkt) Akt 

above the levels provoked by wounding alone (Fig 6).  Protein levels for 

upregulated / activated angiogenic factors correlated positively with the timing of 

insulin and PCNA expression in stretched, wounded flaps (Fig. 7).  
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DISCUSSION 

One of the major challenges that currently faces microvascular research is 

vital knowledge of mechanisms that promote vascular growth.  Recent data 

demonstrate the importance of mechanical-chemical signaling that is transmitted 

throughout the endothelial cell and through extracellular matrix (ECM) adhesions 

on the surface of endothelium [6, 10, 15,16, 37].  Most of these experimental 

models have elucidated mechanisms of endothelial cell migration and 

tubulogenesis as physiologically relevant models to study angiogenesis [16, 25]. 

 We have recently developed a novel in vivo approach utilizing acute 

mechanical stretch to investigate endothelial cell proliferation as a marker of 

vascular growth in healing mouse skin [1, 5, 31].  This model has the following 

features: (1) the modulus of elasticity in the animal approximates the skin of the 

human face, (2) flowmetry demonstrates surgically created flaps are well 

perfused, (3) mechanical manipulation (acute stretch) drastically improves flap 

viability as assessed by decreases up to 75% in marginal tissue necrosis, (4) 

wounding alone (unstretched skin) enhances proliferation and protein kinase B 

expression, and (5) the dorsal distally based skin flap is a reliable model for 

studying wound closure. 

 

Mechanical stimulation enhances local flap perfusion and remote extracorporeal 

wound healing that is coincident with endothelial cell proliferation 

Acute stretching of a surgically created skin flap in our SKH1 hairless 

mouse model improves viability and healing.  As previously reported, increases 
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of up to 50% in blood flow and decreases of 75% in tissue necrosis were 

detected at post-operative day 5 [43].  After careful consideration of these results 

and a review of the literature, we chose to look at post-operative day 6 and 

beyond to determine the optimal time point for maximal increases in flap 

perfusion.  We discovered mechanical stimulation using acute stretch results in a 

maximal 3-fold increase in flap perfusion at post-operative day 7.  This 

observation was coincident with improved flap viability and healing. 

Our laboratory became interested in the effects, if any, of acute stretch 

beyond the local area of application.  This was accomplished by creating an 

unstretched wound on the animal in a location remote (extracorporal) to the 

stretched dorsal flap.  Extracorporeal wounding of skin overlying the sternum 

exhibited a significant improvement in healing with complete remission prior to 

that seen in unstretched, wounded animals.  This finding provided evidence that 

there are beneficial systemic effects of acute stretch beyond the localized site of 

application.  

The next major challenge was determining the mechanism of stretch-

responsive increases in flap perfusion.  We hypothesized stretch-induced 

temporal increases in blood flow, optimal at post-operative day 7, were a result of 

new vascular growth (arteriogenesis and angiogenesis).  Endothelial cell 

proliferation was selected as a marker for these experiments [1, 5, 31].  

Immunolabeling of endothelium specific factor VIII with proliferating cellular 

nuclear antigen (PCNA) was performed.  These double-labeled 

immunohistochemical preparations revealed a 6-fold increase in endothelial cell 
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proliferation at post-operative day 6 in acutely stretched skin.  The results were 

confirmed by Western blot analysis of PCNA.  These data support our hypothesis 

that acute stretch enhances endothelial cell mitogenesis by promoting increased 

vascularity in healing wounded skin.                

 

Mechanical stretch enhances up-regulation and activation of tissue insulin and 

angiogenic factors 

Although advantages of skin stretching have been demonstrated both 

clinically and experimentally, the cellular and molecular mechanisms underlying 

these benefits are unknown [33, 35, 38].  We have previously reported the up-

regulation of tissue insulin mRNA in stretched skin [44].  It was unclear if this 

increased transcription was biologically significant.  We hypothesized that acute 

stretch-induced endothelial cell proliferation was tissue insulin mediated through 

phosphoinositide-3 kinase (PI3-K) effectors, i.e., protein kinase B (Akt) and 

vascular endothelial growth factor (VEGF). 

Using Western blot analysis, we confirmed the up-regulation of tissue 

insulin in response to acute stretch.  Stretch also promoted activation of insulin 

receptor (pIR) and insulin growth factor receptor (pIGFR).  Despite only a 40% 

homology in insulin and insulin growth factor, both receptor types respond to 

insulin activation and are associated with mitogenic insulin signaling [24, 30].  

Our preliminary studies (unpublished observation) demonstrated that stretch 

does not alter endothelial expression of these receptors (p ≥ 0.05).   However, 

stretch did significantly impact the activation of IR / IGFR.  Immunolabeling with 
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factor VIII and PCNA confirmed the presence and activation of these receptors 

on proliferating endothelium.  The relatively large increases in receptor activity in 

immunolabeled tissue sections compared to Western blots indicate that 

endothelial cells are the predominant cell type expressing the activated insulin 

receptors.  These data demonstrate that tissue insulin and its receptors are 

stretch-responsive and are located on mitotic endothelial cells.  Moreover, these 

results support recent evidence demonstrating insulin’s role as a key mitogenic 

regulator and indicate a biologically significant role for insulin in the observed 

benefits of acute stretch [9, 22, 26, 34, 40, 41]. 

Angiogenesis has been shown to be mediated through PI3-K and 

downstream effectors Akt and VEGF [6, 10, 15, 17, 18, 42].  We demonstrated 

that acute stretch up-regulates VEGF, VEGF receptor 2 (flk-1), and Akt, while 

enhancing activation (pAkt) of Akt.  Therefore, acute stretch, unlike wounding 

alone, works through both VEGF and Akt.  This could be the result of acute 

stretch-induced mechanical-chemical signaling that is transmitted throughout the 

endothelial cell and through extracellular matrix (ECM) adhesions [6, 10, 15, 16, 

37].  These results are coincident with the up-regulation of tissue insulin and 

receptor activation.  These intracellular signaling events may serve as the link 

between stretch-induced insulin release and endothelial cell proliferation.  

 

Mechanical induction of protein expression and activation provides temporal 

support for insulin-mediated endothelial cell proliferation 
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We hypothesized that acute stretch-induced endothelial cell proliferation is 

tissue insulin mediated through PI3-K effectors, i.e., Akt (pAkt) and VEGF.  The 

temporal relationships among proteins up-regulated / activated by acute stretch 

provides further evidence that insulin activates it’s receptors (pIR/pIGFR) and 

stimulates endothelial cell proliferation (indicated by PCNA) through PI3-K by Akt 

(pAkt), VEGF and flk-1 signaling in our in vivo mouse model. 

Conclusions 

We have presented a novel in vivo approach to study the benefits of a 

mechanical stimulus (i.e., acute stretch).  Although acute stretch plays a 

significant role in regulating endothelial cell proliferation and up-regulation / 

activation of insulin and key angiogenic factors, the exact mechanism that results 

in angiogenesis remains elusive.  The Western blot data presented here are 

representative of all cell types found in murine skin.  Future in vitro studies will 

focus on confluent endothelial cell (EC) monolayers.  This will allow for a 

conclusive characterization of the implicated angiogenic pathway(s) in ECs using 

blockade studies that are lethal in our in vivo model. 

It is important to note that our observations of improved viability, as 

assessed by increased blood flow and decreased necrosis, can be attributed to 

several variables working individually or in conjunction.  Among these are 

increased vascular density, vasodilation, and physiological shunting.  

Consequences of interactions among these variables remain unclear.   However, 

temporal observations of a steady increase in blood flow, becoming optimal at 

post-operative day 7 and regressing by day 10, are indicative of vascular 
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remodeling and support a potential role for arteriogenesis and angiogenesis in 

the initial stages of this process.   

Finally, these experiments demonstrate that acute stretch enhances the 

up-regulation / activation of proteins (e.g. PCNA, pAkt) that respond to wounding 

alone.  Therefore, we conclude that tissue stretch not only promotes up-

regulation / activation, but enhances underlying angiogenic mechanisms that are 

wound-responsive.  Interestingly, we did not demonstrate increases in perfusion 

from wounding alone in unstretched (control) flaps (Fig. 1).  This is attributed to 

vascular growth-related blood flow being below the detection sensitivity of the 

laser Doppler flowmeter [43].  

Although the exact mechanism(s) underlying stretch-responsive 

angiogenesis has yet to be determined, this study provides the framework for 

future in vitro studies that will explicate the underlying signaling cascade(s).     
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 Fig. 1.  Temporal changes in total flap perfusion at post-operative days 2, 5, 7, 
10 and 15.  Estimated total perfusion (%) = blood flow as a percentage of that 
measured at the flap base prior to surgery.  1 = significant (≤ 0.05) from 
unstretched, wounded skin. 
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Fig. 2.  Extracorporeal wound length at post-operative times 6h, 1d, 2d, 5d and 
7d.  1 = significant (p ≤ 0.05) from unstretched, wounded skin at indicated post-
operative times.   
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Fig. 3.  Post-operative expression and endothelial immunolabeling of PCNA.  A. 
Left and middle panels.  PCNA antigen (brown chromagen) is located on 
endothelium (factor VIII antigen - red chromagen) of wounded skin (identified by 
arrows).  Right panel.  Quantification of PCNA reveals significant stretch 
enhanced labeling in endothelium.  PCNA Level (%) = the total cross-sectional 
area of a blood vessel’s endothelium that stains for PCNA (brown chromagen).  1 
= significant (p ≤ 0.05) from unstretched, wounded skin.   B.  Western blot of 
PCNA with the corresponding quantification of expressed protein.  Tubulin 
served as an internal standard.  1 = significant (p ≤ 0.05) from unstretched, 
wounded baseline at 12h.  2 = significant (p ≤ 0.05) from unstretched, wounded 
skin at indicated post-operative times.  Time points preceding those represented 
on Western blots were not significant from baseline, and therefore not displayed 
in figures.   
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Fig. 4.  Post-operative expression of insulin and pIR/pIGFR, as well as 
immunolabeling of pIR/pIGFR on proliferating endothelium.  A.  Western blot of 
tissue insulin with the corresponding quantification of expressed protein.  Tubulin 
served as an internal standard.  1 = significant (p ≤ 0.05) from unstretched, 
wounded baseline at 3h.  2 = significant (p ≤ 0.05) from unstretched, wounded 
skin at indicated post-operative times.  B.  Western blot of pIR / pIGFR with 
quantification of expressed protein.  Tubulin served as an internal standard.  1 = 
significant (p ≤ 0.05) from unstretched, wounded skin at indicated post-operative 
times.  C.  Left and middle panels.  pIR / pIGFR, factor VIII and PCNA triple-
labeled sections.  Arrows indicate pIR / pIGFR positive endothelial cells.  [pIR / 
pIGFR (brown chromagen); factor VIII (red chromagen); PCNA (blue-grey 
chromagen)].  Right panel.  Quantification of activated receptor levels on 
endothelium at post-operative day 1.  pIR / pIGFR Level (%) = the total cross-
sectional area of a blood vessel’s endothelium that stains for pIR / pIGFR (brown 
chromagen).  1 = significant (p ≤ 0.05) from unstretched, wounded skin.  Time 
points preceding those represented on Western blots were not significant from 
baseline, and therefore not displayed in figures.   
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Fig. 5.  Post-operative expression of VEGF and flk-1.  A.  Western blot of VEGF 
with the corresponding quantification of expressed protein.  Tubulin served as an 
internal standard.  1 = significant (p ≤ 0.05) from unstretched, wounded skin at 
indicated post-operative times.  B.  Western blot of flk-1 with the corresponding 
quantification of expressed protein.  Tubulin served as an internal standard.  1 = 
significant (p ≤ 0.05) from unstretched, wounded skin at indicated post-operative 
times.  Time points preceding those represented on Western blots were not 
significant from baseline, and therefore not displayed in figures.   
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Fig. 6.  Post-operative expression of Akt and pAkt.  A.  Western blot of Akt with 
the corresponding quantification of expressed protein.  Tubulin served as an 
internal standard.  1 = significant (p ≤ 0.05) from unstretched, wounded skin at 
indicated post-operative times.  B.  Western blot of pAkt with the corresponding 
quantification of expressed protein.  Tubulin served as an internal standard.  1 = 
significant (p ≤ 0.05) from unstretched, wounded baseline at 3h.  2 = significant 
(p ≤ 0.05) from unstretched, wounded skin at indicated post-operative times.  
Time points preceding those represented on Western blots were not significant 
from baseline, and therefore not displayed in figures.   
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Fig. 7.  The temporal relationship of protein expression in stretched, wounded 
flaps.  Peak responses for pAkt, pIR/pIGFR, and PCNA appear small, because 
baseline values used for normalization were substantially elevated in Western 
blots.  
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ABSTRACT 

 Endothelial cell proliferation and viability plays an important role in both 

health and disease.  The multiple mechanical and chemical signals that regulate 

these processes are largely unknown.  This investigation is a follow-up to our 

previous in vivo studies revealing that rapid stretch increases tissue insulin in 

murine skin flaps, coincident with the up-regulation of key angiogenic effectors 

and enhanced vascularization.  In the present study, we used human umbilical 

vein endothelial cells (HUVECs) as an in vitro model system to determine the 

role of insulin in endothelial cell proliferation and survival.  Colorimetric analyses 

(MTT based) demonstrated that insulin enhances proliferation and viability of 

HUVECs.  Western blot analysis revealed insulin induces the up-regulation and 

activation of mitogenic signaling intermediates in endothelial cells.  Activated 

insulin and insulin growth factor receptors (pIR / pIGFR), protein kinase B 

(pAkt308, pAkt473) and vascular endothelial growth factor (VEGF) were the insulin-

responsive intermediates.  The beneficial effects of insulin were abrogated by the 

inhibition of IR / IGFR or phosphoinositide-3 kinase (PI3-K), indicating that 

insulin-induced endothelial cell proliferation and viability are mediated through 

pIR / pIGFR and PI3-K effectors.  These data provide new knowledge of the 

beneficial effects of insulin on vascularization and tissue viability, providing a 

mechanistic link to the enhancement of healing in acutely stretched skin.   

mailto:freilly@hsc.wvu.edu
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INTRODUCTION 

 Endothelial cells (EC) regulate the interaction between blood and tissue.  

ECs respond to various stimuli to maintain blood homeostasis and act as a 

selective barrier (e.g. filter) that regulates cell growth and metabolism, helps 

maintain the extracellular matrix, and modulates blood flow (Brewster et al., 

2006; Davis and Saunders, 2006; Laing et al., 2007).  All of these processes are 

critical to survival (Kawamura et al., 2006; Kelkar, 2003; Schramm et al., 2006).  

Moreover, ECs are of particular interest because of their involvement in many 

distinct and unrelated diseases.  There has been an extensive effort by scientists 

to understand the mechanisms that are tightly controlled by local factors (e.g. 

growth factors), alterations in the extracellular matrix, and changes in mechanical 

force (i.e. blood flow, rapid stretch, muscle strain overload) (Badr et al., 2003; 

Brey et al., 2005; Brown et al., 2003; Folkman, 2003; Hudlicka, 1998; Milkiewicz 

et al., 2001; Sieminski and Gooch, 2000).  In spite of numerous investigations, a 

mechanistic understanding has not evolved (Hudlicka, 1998; Shrader et al., 

2007). 

Our previous work implicated tissue insulin in rapid stretch-enhanced EC 

mitogenesis and vascularity in dorsal distally based skin flaps (Shrader et al., 

2007).  Our findings agreed with those reporting a role for insulin as a key 

mitogenic regulator, potentially involved in improving vascularization (Beeson et 

al., 2003; Gordon et al., 2002; He et al., 2006; Jiang et al., 2003; Kobayashi and 

Kamata, 2002; Pelegrinelli et al., 2001; Sundell and Knuuti, 2003; Wertheimer et 

al., 2000).  While there is only a 40% amino acid sequence homology between 
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insulin and insulin growth factor, both IR and IGFR respond to insulin activation 

and are associated with mitogenic insulin signaling (Layton et al., 2006; Marino-

Buslje et al., 1999; Ullrich et al., 1986).  However, these investigations do not 

directly link tissue insulin to EC activation, and the exact mechanism of enhanced 

proliferation and vascularity remains elusive.  Moreover, the Western blot data in 

our in vivo research represent the numerous cell types found in murine skin 

(Shrader et al., 2007).  In vitro analysis was warranted to focus solely on ECs.  

This allowed for a conclusive characterization of the implicated pathway(s) using 

paradigms that would prove lethal in an in vivo model. 

  In this study, we directly examined the effects of insulin on EC proliferation 

and viability, and characterized the intracellular intermediates involved in these 

processes.  Cell cultures provide an environment free from a diverse variety of 

mediators that are released from wounded, stretched skin that may serve as 

potent EC mitogens.  Using human umbilical vein endothelial cells (HUVECs), we 

demonstrated that insulin impacts intracellular signaling, significantly altering 

proliferation and viability by activating PI3-K effectors Akt and VEGF. 
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MATERIALS AND METHODS 

Materials 

Reagents and other supplies were obtained from the following commercial 

sources: Cell proliferation kit (MTT) from Roche Diagnostics (Germany); HNMPA 

(hydroxy-2-naphthalenylmethyl-phosphonic acid) and tyrphostin 23 from BIOMOL 

International (Plymouth Meeting, PA); LY 294002 from Chemicon International 

(Temecula, CA); Antibodies against pAkt (Ser 473), pAkt (Thr 308), VEGF, pIR / 

pIGFR from Santa Cruz Biotechnology, Inc (Santa Cruz, CA); Bovine insulin from 

Sigma Aldrich (St. Louis, MO). 

Cell culture 

Primary cultured endothelial cells from the human umbilical vein 

(HUVECs) were isolated as previously described (Ashton et al., 1999; Beardsley 

et al., 2004) from consenting healthy, full-term patients according to approved 

institutional guidelines.  Purity was assessed by morphology and 

immunocytochemistry of CD31.  HUVECs were grown in medium MCDB 131 

containing 1% pen/strep, 1% L-glutamine, 20% heat-inactivated newborn calf 

serum, 5% heat-inactivated human serum and endothelial cell growth 

supplement for proliferation assays and Western blot analysis.  This growth 

medium (25% serum) was diluted 2-fold and 4-fold with serum free medium for 

viability analysis.  Cells were starved for one hour in serum free medium prior to 

any pharmacological treatment.  

Proliferation and viability assay 
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Cellular proliferation and viability were determined using a MTT analysis 

kit. Two thousand HUVECs were plated per well in 96 well microplates for 24h – 

72h and grew in100 µL of culture medium.  Cells were plated in three different 

concentrations of culture serum (25% serum, 12.5% serum, & 6.25% serum).  

They were treated with insulin (0.5 µM, 1.0 µM, 1.5 µM), PI3-K blocker LY 

294002, IR blocker HNMPA, IR / IGFR blocker tyrphostin 23, and insulin in 

combination with each blocker.  Each treatment was repeated in four individual 

culture wells and replicated three times on new 96-well microplates over 24h, 

48h, and 72h.  MTT labeling reagent (10 µL) was added for 4h followed by 

solubilization solution (100 µL) for overnight treatment.  Absorptions from 

microplates were read in a Bio-Tek microplate reader.  

Western blot analysis 

The quantitative immunoblotting protocol was similar to that used previously 

(Luo and Miller, 1996).  All analyses were repeated three times.  Means of the 

triplicate measurements ± SEM were graphed.  Time points represented on 

figures were chosen based on recent publications (Burgering et al., 1995; 

Folkman et al., 1989; Lammers et al., 1989). 

Protein extraction from cells was accomplished by the following protocol: cell 

medium was carefully removed and 0.5 ml of RIPA buffer (1X PBS, 1% NP-40, 

0.5% sodium deoxycholate, 0.1% SDS; inhibitor – 10 mg / ml PMSF at 10  µL / 

ml RIPA, aprotinin at 30 µL / ml RIPA and 100mM sodium orthovanadate at 10 

µL / ml RIPA) with inhibitors were added.  A cell scraper was used to remove 

cells from plates and the supernatant (containing cell lysate) was extracted into a 
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micro-centrifuge tube and placed on ice for 10 min.  Samples were then spun 

down at 10,000 G for 10 min at 4ºC.  The supernatant was then transferred to 

clean eppendorf tubes and samples were stored at -20ºC.  Protein concentration 

was determined using the Lowry assay with a Bio-Tek microplate reader.  Protein 

samples (50 µg/lane) were loaded on SDS-polyacrylamide gels (PAGE), 

separated by electrophoresis and then transferred to nitrocellulose membranes.  

Non-specific activity was blocked by washing the membrane with 5.0% nonfat dry 

milk and 0.10% Tween-20 in 0.01 M PBS (TPBS) for 1 h at room temperature.  

The membranes were incubated overnight at 4ºC with primary antibodies.  After 

three washes in TPBS, the membranes were incubated with a peroxidase-

conjugated secondary antibody (Amersham, Piscataway, NJ ; 1:2000 in TPBS) 

for 1 h.  The immune complexes were detected by the enhanced 

chemiluminescence (ECL) method (Amersham, Piscataway, NJ).  Non-specific 

binding was assessed on immunoblots processed without the primary or 

secondary antibodies.  The results of such controls were consistently negative.   

In order to control for inter-sample variation of the total amount of protein 

loaded onto the gel, the membranes were stripped of antibodies directed against 

target proteins and re-probed with anti-tubulin Ab as an internal standard.  

Densitometric readings of target protein contents were normalized against those 

of the internal standard using Optimas 6.2.  The membranes were stripped by 

incubating in a solution containing 100 mM β-mercaptoethanol, 2.0% SDS, and 

62.5 mM Tris-HCl (pH 6.7) for 30 min at 50ºC or overnight at 4ºC.  The 

membranes were then washed twice with TPBS for 15 min.  Non-specific binding 
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was blocked with either 5.0% milk or 2.5% BSA in PBS, and the membrane was 

reblotted as described above.  With this method, we were able to detect small 

differences in protein expression (Luo et al., 1998).  The relative amounts of 

insulin-induced protein expression in the films prepared from the immunoblots 

were quantified using an LKB Ultrascan XL Laser Densitometer. 

Statistical analysis 

Differences among treatment groups were tested using a one-way 

analysis of variance (ANOVA) and Tukey’s (post hoc) test.  Differences with p-

values ≤ 0.05 were considered statistically significant.  Data are presented in 

figures as mean ± standard error of the mean (SEM).   
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RESULTS AND DISCUSSION 

 A major challenge in understanding vascular regulation is the lack of 

knowledge regarding the mechanisms that activate endothelium.  More 

specifically, the mitogenic stimuli and intracellular signaling pathways triggering 

proliferation and viability are largely unknown despite their demonstrated 

importance in both health and disease.  Mitogenesis and survival are critical in 

controlling new blood vessel growth (e.g. angiogenesis) and delaying vascular 

remodeling (e.g. apoptosis). These processes are closely regulated to prevent 

disease formation (Kawamura et al., 2006; Kelkar, 2003; Schramm et al., 2006).  

For example, during angiogenesis, mitogenic activity of endothelium promotes 

new capillary formation from existing capillary beds.  It is involved in a variety of 

physiological and pathological roles, and has become a central focus for many 

investigators (Brey et al., 2005; Folkman, 2003; Hudlicka, 1998; Sieminski and 

Gooch, 2000).   

Our previous in vivo studies in wounded, stretched skin indicate a role for 

tissue insulin in enhanced EC proliferation and survival, coincident with increases 

in nutrient blood flow and improved tissue viability (Shrader et al., 2007; Zhu et 

al., 2002; Zhu et al., 2003).  We hypothesized that insulin, working through IR / 

IGFR, stimulates PI3-K to promote the activation and up-regulation of Akt and 

VEGF which augment proliferation and survival (Fig. 1).  This, in turn, improves 

blood flow by enhancing vascularity in rapidly stretched skin.  We chose an in 

vitro approach to evaluate insulin’s role in these EC activities. Our cell culture 

model has the following features: (1) cultured cells allow investigation of EC 
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proliferation and viability in a controlled, highly reproducible environment, (2) 

culture systems permit blockade studies that are lethal in animal models, (3) 

HUVECs express insulin receptors, allowing for the characterization of insulin 

signaling, and (4) these cells are easily cultured and maintained for 

experimentation and evaluation over a duration of several days. 

 

Insulin induces proliferation of HUVECs through IR / IGFR and PI3-K intracellular 

signaling 

Application of exogenous insulin over the physiological range (0.5 µM, 1.0 

µM, 1.5 µM) induced significant dose-dependent increases in proliferation 

(absorbance units) to 1.0 µM insulin and 1.5 µM insulin in HUVECs containing 

25% serum (Fig. 2 A and B).  The 0.5 µM insulin dose had no effect on EC 

mitogenesis.  These responses were attenuated with LY 294002 (PI3-K 

blockade), and with HNMPA (IR blockade) and tyrphostin 23 (IR / IGFR 

blockade) (Fig. 2 A and B).  Results of culture medium alone and with LY 

294002, HNMPA, and tyrphostin 23 were statistically identical and therefore 

pooled and represented as control (Fig. 2 A and B; Fig. 6 A & B).  These results 

indicate that insulin, working through both IR / IGFR, stimulates endothelial cell 

proliferation by activating PI3-K effectors.   

Since EC mitogenesis has been shown to be mediated through PI3-K and 

downstream effectors Akt and VEGF (Chau et al., 2002; Haas, 2002; Ingber, 

2002; Kanda et al., 2003; Kawaguchi et al., 2001, Xiaorui, 2004), we 

hypothesized that insulin-induced increases in proliferation were mediated 
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through PI3-K downstream effectors pAkt (Thr 308), pAkt (Ser 473), and VEGF.  

The optimal dose of insulin (1.5 µM), determined from Fig. 2, was used to test 

this hypothesis.  Western blots revealed activation of IR / IGFR (Fig. 3).  This 

response was not antagonized by PI3-K blockade (Fig. 3).  Although pAkt (Ser 

473) played no role in insulin-induced proliferation, pAkt (Thr 308) activation and 

VEGF expression were confirmed and inhibited by LY 294002 (Figs. 4 and 5).   

These data demonstrated that insulin induces proliferation through IR / IGFR-

provoked pAkt (Thr 308) and VEGF activation and up-regulation.  They also 

support recent evidence attesting to insulin’s role as a key mitogenic regulator 

and indicate a biologically significant role for insulin in vascular biology (Gordon 

et al., 2002; He et al., 2006; Kobayashi and Kamata, 2002; Linn, 2003; 

Pelegrinelli et al., 2001; Sundell and Knuuti, 2003; Wertheimer et al., 2000). 

     

Insulin enhances viability of HUVECs through IR / IGFR and PI3-K intracellular 

signaling 

Application of exogenous insulin over the physiological range (0.5 µM, 1.0 

µM, 1.5 µM) provoked significant dose-dependent increases in survival 

(absorbance units) to 1.0 µM insulin and 1.5 µM insulin in HUVECs containing 

12.5% serum (Fig. 6 A and B).  The 0.5 µM insulin dose had no effect on EC 

viability.  These responses were attenuated with LY 294002 (PI3-K blockade) 

and with HNMPA (IR blockade) and tyrphostin 23 (IR / IGFR blockade) (Fig. 6 A 

and B).  These results indicated that insulin, working through both IR / IGFR, 

enhances endothelial cell survival via PI3-K effectors.   
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PI3-K signaling promotes cell viability (i.e. survival) through downstream 

effectors, predominantly by activating Akt (Chau et al., 2002; Haas, 2002; Ingber, 

2002; Kanda et al., 2003; Kawaguchi et al., 2001, Xiaorui, 2004).  Therefore, we 

hypothesized that insulin increased survival through PI3-K downstream effectors 

pAkt (Thr 308), pAkt (Ser 473), and VEGF.  The optimal dose of insulin (1.5 µM), 

determined from Fig. 6, was used to conduct these experiments.  Western blots 

revealed activation of pIR / pIGFR. This response was not antagonized by PI3-K 

blockade (Fig. 7).  Simultaneous activation of pAkt (Thr 308) and pAkt (Ser 473) 

also was confirmed and blocked by LY 294002 verifying a role for both 

phosphorylated states of Akt in insulin signaling (Fig. 8 A and B).  In contrast to 

proliferation assay results, VEGF played no role in insulin-enhanced survival.  

These data demonstrated that insulin enhances EC viability through pAkt (Thr 

308) and pAkt (Ser 473) up-regulation and activation.  

Concluding remarks  

 We have presented a novel in vitro approach to study the effects of insulin 

on proliferation and viability of endothelial cells.  These investigations 

characterize the mechanism(s) triggering insulin-induced intracellular signaling 

that promote mitogenesis and survival.  This study also bridges the gap in 

knowledge by clarifying insulin’s role in the reported benefits of mechanical 

stimulation (e.g. rapid stretch) in our murine model.  Moreover, the data from 

cultured human cells confirm the validity of data obtained from this animal model.  

Together they provide a framework for future in vitro studies that will explicate 

insulin’s role, if any, in endothelial cell migration and tubulogenesis. 
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Fig. 1.  Proposed insulin-mediated intracellular signaling pathways that stimulate 
endothelial cell proliferation and viability.  We hypothesize insulin activates IR / 
IGFR promoting PI3K signaling through Akt and VEGF, enhancing HUVEC 
proliferation and survival. 
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Fig. 2. A & B.  Colorimetric analyses revealed dose-dependent enhanced 
proliferation (measured by absorbance) of HUVECs in response to exogenous 
insulin under ideal culture conditions (25% serum).  Proliferation was inhibited by 
PI3-K blockade (LY), IR / IGFR blockade (tyrphostin 23) and by IR blockade 
(HNMPA). 1 = significant (≤ 0.05) from control and each treatment at 24h, 48h 
and 72h. 
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Fig. 3. Densitometry (right panel) of Western blots (left panel) revealed activation 
of IR / IGFR in response to exogenous insulin under ideal culture conditions 
(25% serum).  Receptor activation was not altered by PI3-K blockade (LY).  1 = 
significant (≤ 0.05) from control. 
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Fig. 4. Densitometry (right panel) of Western blots (left panel) revealed activation 
of Akt in response to exogenous insulin under ideal culture conditions (25% 
serum).  Activation was inhibited by PI3-K blockade (LY).  1 = significant (≤ 0.05) 
from control.  2 = significant (≤ 0.05) from Ins + LY. 
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Fig. 5. Densitometry (right panel) of Western blots (left panel) revealed up-
regulation of VEGF in response to exogenous insulin under ideal culture 
conditions (25% serum).  Up-regulation was inhibited by PI3-K blockade (LY).  1 
= significant (≤ 0.05) from control and 10 min post-insulin treatment.  2 = 
significant (≤ 0.05) from Ins + LY. 
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Fig. 6. A & B. Colorimetric analyses revealed dose-dependent enhanced viability 
(measured by absorbance) of HUVECs in response to exogenous insulin under 
non-ideal culture conditions (12.5% serum).  These responses were inhibited by 
PI3-K blockade (LY), IR / IGFR blockade (tyrphostin 23) and by IR blockade 
(HNMPA).  1 = significant (≤ 0.05) from control and each treatment at 24h, 48h 
and 72h. 
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Fig. 7. Densitometry (right panel) of Western blots (left panel) revealed activation 
of IR / IGFR in response to exogenous insulin under non-ideal culture conditions 
(12.5% serum).  Receptor activation was not altered by PI3-K blockade (LY).  1 = 
significant (≤ 0.05) from control. 
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Fig. 8. A & B. Densitometry (right panel) of Western blots (left panel) revealed 
activation of Akt in response to exogenous insulin under non-ideal culture 
conditions (12.5% serum).  Activation was inhibited by PI3-K blockade (LY).  1 = 
significant (≤ 0.05) from control.  2 = significant (≤ 0.05) from Ins + LY at 
indicated post-insulin treatment time point. 
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GENERAL DISCUSSION 

Most experimental models have elucidated mechanisms of endothelial cell 

migration and tubulogenesis as physiologically relevant models to study 

angiogenesis (Joung et al., 2006; Li et al., 2005).  Vital knowledge of 

mechanisms that promote vascular growth is critical to treat human disease.  

Recent data demonstrate the importance of mechanical-chemical signaling that 

is transmitted throughout the endothelial cell and through extracellular matrix 

(ECM) adhesions on the surface of endothelium (Chau et al., 2002; Haas, 2002; 

Ingber, 2002; Joung et al., 2006; Shiu et al., 2005).   

 We have developed a novel in vivo approach utilizing acute mechanical 

stretch to investigate endothelial cell proliferation as a marker vascular growth in 

healing mouse skin (Badr et al., 2003; Brown et al., 2003; Munoz-Chapuli et al., 

2002).  This model has the following features: (1) the modulus of elasticity 

approximates the skin of the human face, (2) flowmetry demonstrates surgically 

created flaps are well perfused, (3) mechanical manipulation (acute stretch) 

drastically improves flap viability as assessed by decreases up to 75% in 

marginal tissue necrosis, (4) wounding alone (unstretched skin) enhances 

proliferation and protein kinase B expression, and (5) the dorsal distally based 

skin flap is a reliable model for studying wound closure. 

These in vivo studies indicated a role for tissue insulin in enhanced EC 

proliferation and survival, coincident with increases in nutrient blood flow and 

improved tissue viability (Shrader et al., 2007; Zhu et al., 2002; Zhu et al., 2003).  

Therefore, our laboratory developed a novel in vitro approach using HUVECs to 
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study the effects of insulin on proliferation and viability.  Our cell culture model 

has the following features: (1) it allows investigation of EC proliferation and 

viability in a controlled, highly reproducible environment, (2) culture systems 

permit blockade studies that are lethal in animal models, (3) HUVECs express 

insulin receptors, allowing for the characterization of insulin signaling, and (4) 

these cells are easily cultured and maintained for experimentation and evaluation 

over a duration of several days. 

In vitro investigations characterized the mechanism(s) triggering insulin-

induced intracellular signaling that promote mitogenesis and survival.  The gap in 

knowledge was bridged by clarifying insulin’s role in the reported benefits of 

mechanical stimulation (e.g. rapid stretch) in our murine model.  Moreover, the 

data from cultured human cells confirmed the validity of data obtained from the 

animal model.  Together they provided a framework for future in vitro studies that 

will explicate insulin’s role, if any, in endothelial cell migration and tubulogenesis. 

Our important findings are described as follows: 

• Mechanical stimulation enhances local flap perfusion and remote 

extracorporeal wound healing that is coincident with endothelial cell 

proliferation 

Acute stretching of a surgically created skin flap in our SKH1 hairless 

mouse model improves viability and healing.  As previously reported, increases 

up to 50% in blood flow and decreases of 75% in tissue necrosis were detected 

at post-operative day 5 (Zhu et al., 2003).  After careful consideration of these 

results and a review of the literature, we chose to look at post-operative day 6 



 105

and beyond to determine the optimal time point for maximal increases in flap 

perfusion.  We discovered mechanical stimulation using acute stretch results in a 

maximal 3-fold increase in flap perfusion at post-operative day 7.  This 

observation was coincident with improved flap viability and healing. 

Our laboratory became interested in the effects, if any, of acute stretch 

beyond the local area of application.  This was accomplished by creating an 

unstretched wound on the animal in a location remote (extracorporal) to the 

stretched dorsal flap.  Extracorporeal wounding of skin overlying the sternum 

exhibited a significant improvement in healing with complete remission prior to 

that seen in unstretched, wounded animals.  This finding provided evidence that 

there are beneficial systemic effects of acute stretch beyond the localized site of 

application.  

The next major challenge was determining the mechanism of stretch-

responsive increases in flap perfusion.  We hypothesized stretch-induced 

temporal increases in blood flow, optimal at post-operative day 7, were a result of 

new vascular growth (arteriogenesis and angiogenesis).  Endothelial cell 

proliferation was selected as a marker for these experiments (Badr et al., 2003; 

Brown et al., 2003; Munoz-Chapuli et al., 2002).  Immunolabeling of endothelium 

specific factor VIII with proliferating cellular nuclear antigen (PCNA) was 

performed.  These double-labeled immunohistochemical preparations revealed a 

6-fold increase in endothelial cell proliferation at post-operative day 6 in acutely 

stretched skin.  The results were confirmed by Western blot analysis of PCNA.  
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These data support our hypothesis that acute stretch enhances endothelial cell 

mitogenesis by promoting increase vascularity in healing wounded skin.                

• Mechanical stretch enhances up-regulation and activation of tissue insulin 

and angiogenic factors 

Although advantages of skin stretching have been demonstrated both 

clinically and experimentally, the cellular and molecular mechanisms underlying 

these benefits are unknown (Neuman, 1957; Sasaki, 1987; Siegert et al., 1993).  

We have previously reported the up-regulation of tissue insulin mRNA in 

stretched skin (Zhu et al., 2002).  It was unclear if this increased transcription 

was biologically significant.  We hypothesized that acute stretch-induced 

endothelial cell proliferation was tissue insulin mediated through 

phosphoinositide-3 kinase (PI3-K) effectors, i.e., protein kinase B (Akt) and 

vascular endothelial growth factor (VEGF). 

Using Western blot analysis, we confirmed the up-regulation of tissue 

insulin in response to acute stretch.  Stretch also promoted activation of insulin 

receptor (pIR) and insulin growth factor receptor (pIGFR).  Despite only a 40% 

homology in insulin and insulin growth factor, both receptor types respond to 

insulin activation and are associated with mitogenic insulin signaling (Layton et 

al., 2006; Marino-Buslje et al., 1999).  Our preliminary studies (unpublished 

observation) demonstrated that stretch does not alter endothelial expression of 

these receptors (p ≥ 0.05).   However, stretch did significantly impact the 

activation of IR / IGFR.  Immunolabeling with factor VIII and PCNA confirmed the 

presence and activation of these receptors on proliferating endothelium.  The 
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relatively large increases in receptor activity in immunolabeled tissue sections 

compared to Western blots indicate that endothelial cells are the predominant 

cell type expressing the activated insulin receptors.  These data demonstrate that 

tissue insulin and its receptors are stretch-responsive and are located on mitotic 

endothelial cells.  Moreover, these results support recent evidence demonstrating 

insulin’s role as a key mitogenic regulator and indicate a biologically significant 

role for insulin in the observed benefits of acute stretch (Gordon, 2002; 

Kobayashi and Kamata, 2002; Linn et al., 2003; Pelegrinelli et al., 2001; Sundell 

and Knuuti, 2003; Wertheimer et al., 2000). 

Angiogenesis has been shown to be mediated through PI3-K and 

downstream effectors Akt and VEGF (Chau et al., 2002; Haas, 2002; Ingber, 

2002; Kanda et al., 2003; Kawaguchi et al., 2001; Xiaorui, 2004).  We 

demonstrated that acute stretch up-regulates VEGF, VEGF receptor 2 (flk-1), 

and Akt, while enhancing activation (pAkt) of Akt.  Therefore, acute stretch, 

unlike wounding alone, works through both VEGF and Akt.  This could be the 

result of acute stretch-induced mechanical-chemical signaling that is transmitted 

throughout the endothelial cell and through extracellular matrix (ECM) adhesions 

(Chau et al., 2002; Haas, 2002; Ingber, 2002; Joung et al., 2006; Shiu et al., 

2005).  These results are coincident with the up-regulation of tissue insulin and 

receptor activation.  These intracellular signaling events may serve as the link 

between stretch-induced insulin release and endothelial cell proliferation.  

• Mechanical induction of protein expression and activation provides 

temporal support for insulin-mediated endothelial cell proliferation 
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We hypothesized that acute stretch-induced endothelial cell proliferation is 

tissue insulin mediated through PI3-K effectors, i.e., Akt (pAkt) and VEGF.  The 

temporal relationships among proteins up-regulated / activated by acute stretch 

provides further evidence that insulin activates it’s receptors (pIR/pIGFR) and 

stimulates endothelial cell proliferation (indicated by PCNA) through PI3-K by Akt 

(pAkt), VEGF and flk-1 signaling in our in vivo mouse model. 

• Insulin induces proliferation of HUVECs through IR / IGFR and PI3-K 

intracellular signaling 

Application of exogenous insulin over the physiological range induced 

significant dose-dependent increases in proliferation.  These responses were 

attenuated with LY 294002 (PI3-K blockade), and with HNMPA (IR blockade) and 

tyrphostin 23 (IR / IGFR blockade).  These results indicated that insulin, working 

through both IR / IGFR, stimulate endothelial cell proliferation by activating PI3-K 

effectors.   

Since EC mitogenesis has been shown to be mediated through PI3-K and 

downstream effectors Akt and VEGF (Chau et al., 2002; Haas, 2002; Ingber, 

2002; Kanda et al., 2003; Kawaguchi et al., 2001, Xiaorui, 2004), we 

hypothesized that insulin-induced increases in proliferation were mediated 

through PI3-K downstream effectors pAkt (Thr 308), pAkt (Ser 473), and VEGF.  

The optimal dose of insulin (1.5 µM) was used to test this hypothesis.  Western 

blots revealed activation of IR / IGFR.  This response was not antagonized by 

PI3-K blockade.  Although pAkt (Ser 473) played no role in insulin-induced 

proliferation, pAkt (Thr 308) activation and VEGF expression were confirmed and 
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inhibited by LY 294002.   These data demonstrated that insulin induces 

proliferation through IR / IGFR-provoked pAkt (Thr 308) and VEGF activation and 

up-regulation.  They also support recent evidence attesting to insulin’s role as a 

key mitogenic regulator and indicate a biologically significant role for insulin in 

vascular biology (Gordon et al., 2002; He et al., 2006; Kobayashi and Kamata, 

2002; Linn, 2003; Pelegrinelli et al., 2001; Sundell and Knuuti, 2003; Wertheimer 

et al., 2000). 

• Insulin enhances survival of HUVECs through IR / IGFR and PI3-K 

intracellular signaling 

Application of exogenous insulin over the physiological range provoked 

significant dose-dependent increases in survival.  These responses were 

attenuated with LY 294002 (PI3-K blockade) and with HNMPA (IR blockade) and 

tyrphostin 23 (IR / IGFR blockade).  These results indicated that insulin, working 

through both IR / IGFR, enhances endothelial cell survival via PI3-K effectors.   

PI3-K signaling promotes cell viability (i.e. survival) through downstream 

effectors, predominantly by activating Akt (Chau et al., 2002; Haas, 2002; Ingber, 

2002; Kanda et al., 2003; Kawaguchi et al., 2001, Xiaorui, 2004).  Therefore, we 

hypothesized that insulin increased survival through PI3-K downstream effectors 

pAkt (Thr 308), pAkt (Ser 473), and VEGF.  The optimal dose of insulin (1.5 µM), 

was used to conduct these experiments.  Western blots revealed activation of 

pIR / pIGFR.  This response was not antagonized by PI3-K blockade.  

Simultaneous activation of pAkt (Thr 308) and pAkt (Ser 473) also was confirmed 

and blocked by LY 294002 verifying a role for both phosphorylated states of Akt 
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in insulin signaling.  In contrast to proliferation assay results, VEGF played no 

role in insulin-enhanced survival.  These data demonstrated that insulin 

enhances EC viability through pAkt (Thr 308) and pAkt (Ser 473) up-regulation 

and activation.  
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