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ABSTRACT 
 
 

The Utility of Fine-Scale Remote Sensing Data for Modeling Habitat Characteristics and 
Breeding Bird Species Distributions in an Appalachian Mature Deciduous Forest. 

 
 

James Sheehan 
 
 

In this study, I tested the potential for remote sensing data with a high spatial resolution to 
model breeding forest bird species and their habitat at a fine spatial scale. The research took 
place on ridgetops in a large, relatively contiguous Appalachian mature deciduous forest in 
northwestern WV, USA. The remote sensing data sources were a leaf-on QuickBird satellite 
image (0.6-m panchromatic and 2.4-m multispectral) and a 3-m digital elevation model (DEM). 

 For the first part of the study, I extracted spectral and textural measures from the satellite 
image and terrain information from the DEM. I then used these data to analyze avian community 
survey and habitat data collected at circular plots (n = 68) distributed across the ridgetops. The 
primary results of this analysis indicated that the satellite image provided information about 
trends in forest composition and structure across the study site, and further that a relatively 
simple plot-level measure of image texture (the panchromatic pixel standard deviation calculated 
at plot radii of 50 and 100 m) was a useful proxy of environmental heterogeneity for predicting 
the distributions of certain forest canopy gap-dependent bird species.  

For the second part of the study, I analyzed the habitat and remote sensing data at a finer 
spatial scale to develop remote sensing-based indices of forest structure and composition. These 
indices provided further insight into local variation in forest characteristics (e.g., in relation to 
topographic aspect) on the ridgetops. I also tested these indices, the DEM, and anthropogenic 
forest edge for modeling the breeding territory distributions of three focal species (Cerulean 
Warbler, Setophaga cerulea; Hooded Warbler, S. citrina; and Ovenbird, Seiurus aurocapilla) 
mapped over ~11 km of ridgetop transects. These models indicated the importance of local 
influences of terrain (e.g., east-facing aspects for Cerulean and Hooded Warbler, west-facing 
aspects for Ovenbird, and knolls for Cerulean Warbler), and forest edges (positive for Cerulean 
Warbler and negative for Ovenbird) on their distributions. Among the remotely-sensed indices, 
the index of forest structural complexity was primarily useful as a strong predictor of the 
distribution of the canopy gap-dependent Hooded Warbler.  

For the third and final part of the study, I used the locations of singing males of the three 
focal species collected across a greater extent of the site (~28 km of ridgetop transects) in point 
pattern analyses that incorporated the remote sensing data and the potential for intraspecific 
interactions (attraction and repulsion) between neighboring individuals. The results of these 
analyses supported that intraspecific interactions in addition to environmental influences as 
indicated by the remote sensing data explained the species’ fine-scale distribution patterns. 
While the individuals of all three species exhibited regular spacing over short distances that was 
consistent with competition for territorial space, Cerulean Warbler individuals exhibited more 
clustering than could be statistically accounted for by the remote sensing data, suggesting the 
importance of conspecific attraction in its distribution.  



In summary, my findings supported the potential application of fine-scale remote sensing 
data for purposes such as complementing coarse-scale environmental data (e.g., land cover 
maps) in predicting forest breeding bird species distributions, and for comparative analyses of 
the local spatial distributions of these species. The capacity for remote sensing data to provide 
useful environmental information at a fine spatial scale is likely to improve as the technology 
continues to develop.  
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CHAPTER 1: Introduction 

 

The research contained in this dissertation centers on testing the utility of fine-scale remote 

sensing data (here 0.6-m to 3-m spatial resolution) for modeling habitat characteristics and 

breeding bird species distributions on ridgetops in an Appalachian mature deciduous forest in 

WV, USA. I organized this dissertation into four chapters, with three of the chapters intended for 

publication and formatted as such. Chapter 1 provides a general dissertation outline, the primary 

motivations and some key background for my research, an introduction to the study site, and an 

overview of the remote sensing data used in the analyses. Chapter 2 is formatted for submission 

to the journal Remote Sensing of Environment and focuses on the use of the remote sensing data 

to model forest habitat characteristics and avian community point count survey data. Chapter 3 is 

also formatted for submission to the journal Remote Sensing of Environment and focuses on the 

development of remote sensing-based indices of forest structure and composition. These indices 

were then tested along with ancillary terrain data for modeling the distributions of the mapped 

territories of three focal forest songbird species (Cerulean Warbler, Setophaga cerulea; Hooded 

Warbler, S. citrina; and Ovenbird, Seiurus aurocapilla). Chapter 4 is formatted for submission to 

the journal The Auk: Ornithological Advances, and focuses on the singing male locations of the 

three focal species as point patterns. These patterns were analyzed using point process models 

that incorporated the remote sensing data, to assess their territorial spacing behavior in addition 

to the environmental factors underlying their distributions.  

There were two primary motivations for my research. The first was the avian community I 

studied, which I broadly define here as comprised of breeding forest bird species of central 

Appalachian deciduous forests. This community contained several species of high conservation 
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attention, including the severely declining Cerulean Warbler (Sauer et al. 2014), and the region 

in which I studied this community has been recognized particularly for its importance to mature 

forest bird species (Farwell 2016). The second motivation was the recent advancement of 

satellite remote sensing technology capable of providing environmental information at 

increasingly finer spatial scales (He et al. 2015, Velázquez et al. 2016). With the acquisition of a 

high resolution QuickBird satellite image (see details in Remote Sensing Data, below) of a large, 

mostly contiguous mature deciduous forest, I saw an important opportunity to test the use of this 

image along with ancillary remote sensing data on terrain and anthropogenic forest impacts for 

fine-scale modeling of this bird community and its ridgetop forest habitat.  

The modeling was a progression, both in what (and how) field data were analyzed and in the 

processing of the remote sensing data for these analyses. I began with the analysis of avian 

community point count survey data (Chapter 2) to examine broader community- and species-

level trends across the site. This required much initial processing of particularly the satellite 

image (and many lessons learned therein), to attempt to extract meaningful information for 

modeling the field data. At this point, I relied on individual remotely-sensed measures 

(particularly of image texture) for analyzing the avian and habitat data; for example to identify 

specific measures that were related to environmental heterogeneity and thus could potentially 

predict bird species richness and occurrence. I then used a multivariate analysis technique 

(Torontow and King 2011) to relate the remote sensing data to the field-collected habitat data 

and thus allow highly-detailed continuous mapping of predicted forest structure and composition 

on the ridgetops (Chapter 3). This was a critical development phase for testing the use of these 

maps, along with ancillary terrain and forest impact remote sensing data, for modeling the 

intensively mapped distributions of the three focal species at a finer within-ridgetop spatial scale. 



3 
 

Finally, in a more application-oriented study (Chapter 4), I used the forest structure map and the 

ancillary remote sensing data in point pattern analyses of the singing male locations of the three 

focal species that also incorporated the potential for attraction or repulsion between individuals. 

Because of their conspicuousness and potential value as indicator species of environmental 

conditions, birds have long been the focus of remote sensing-based ecological studies 

(Gottschalk et al. 2005). Several of these many studies were particularly important to the 

development of my research questions. St-Louis et al. (2006, 2009) first introduced me to the 

concept of using aerial and satellite image texture for predicting avian biodiversity. Although 

they investigated at a much coarser spatial scale (across the state of Maine) than I did, Hepinstall 

and Sader (1997) led me to focus on disturbance-dependent bird species as those likely to show 

trends in relation to remotely-sensed measures of fine-scale environmental heterogeneity. Melles 

et al. (2009) in their study of Hooded Warbler nesting patterns provided much of the inspiration 

behind my use of point pattern analysis and the remote sensing data at a finer spatial scale to 

better examine avian spacing behavior.  

In thinking about how my findings on the utility of fine-scale remote sensing data for 

studying forest birds and habitat could apply to avian management or conservation, I became 

most interested in two potential applications with multi-scale implications. One is the use of fine-

scale remote sensing data (e.g., on forest structural complexity; Chapter 2) to improve 

predictions of species distributions made using coarse-scale environmental data (e.g., see 

Camathias 2013). The other is for fine-scale remote sensing data to be used in comparative 

analyses of the local distribution patterns of species (Chapters 3 and 4). Such analyses may 

provide important information on how individuals of a species select habitat, including on the 

potential influences of both the environment and neighboring individuals, and thus contribute to 
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a better understanding of the likely multi-scale nature of avian habitat selection (Sherry and 

Holmes 1985). For my research, I used two remote sensing data sources among many of 

potential value (e.g., active remote sensing such as lidar; hyper-spectral imagery), simply 

because they were the ones available (albeit not without cost for the QuickBird image). While 

this investigation was at one site, these sources appeared to contain a variety of potentially useful 

fine-scale information that may be generally applicable to forest habitats elsewhere. Future such 

investigations will hopefully take advantage of the continual improvement (and hopefully greater 

availability at reduced cost) of remote sensing data for modeling avian habitat and species 

distributions. 

 

Study Site 

I conducted the research within the 5,500 ha (13,590 acre) Lewis Wetzel Wildlife 

Management Area (WMA), located in Wetzel County in northwestern West Virginia (Figure 1). 

The site is in the Permian Hills subdivision of the Western Allegheny Plateau Ecoregion, and 

well-represents the rugged topography and dense Appalachian Oak Forest and Mixed 

Mesophytic Forest that is characteristic of the Permian Hills (Woods et al. 1999). The WMA has 

also been recognized for supporting a large Cerulean Warbler breeding population (National 

Audubon Society 2013), a primarily ridge-associated species in this region (Weakland and Wood 

2005). At the time of the field work (ca. 2009–11), the site was >92% mature second-growth 

deciduous forest (Farwell et al. 2016) comprised of a mix of these two forest types. The field 

sampling took place entirely on the convoluted networks of ridgetops covering the site (right 

image in Figure 3). I sampled 68 locations with avian community point count surveys and for 

habitat data, and on six transects (totaling 28 km in length) for collecting territory distribution 
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data on the three focal bird species. The existence of a largely contiguous, mature forest on the 

complex topography of ridgetops, along with a diverse forest bird community with large 

populations of the three focal species, likely provided an ideal situation for conducting my 

remote sensing-based research. 

 

Remote Sensing Data 

In addition to the study site characteristics, the type and quality of the remote sensing data 

sources that were used were likely important to the research. The 6° off-nadir, August 2009 

QuickBird satellite image (left image in Figure 1) was acquired near mid-day (11:18 AM local 

time, solar azimuth = 127°) for good illumination of forest canopy characteristics, and the image 

quality appeared to be optimal, with no clouds or obvious haze visible over the study region. 

This image contained a 0.6-m resolution panchromatic band, and four 2.4-m resolution spectral 

bands (red, green, blue, and near-infrared), which allowed a relative comparison of their fine-

scale information for modeling the field data. The 1/9 arc-second (3-m resolution, ±3 m vertical 

accuracy) DEM (right image in Figure 1) was a seamless product downloaded for the study site 

from http://viewer.nationalmap.gov/. The DEM well-represented the complex topography, 

providing detailed terrain information such as knolls (local elevation high points) and the diverse 

aspects and slopes of the ridgetops. The DEM also produced accurate ridgetop centerlines for the 

transects, and helped ensure the placement of the sampling points on the absolute peak of the 

ridges for consistency and accuracy in the collection of the habitat and bird distribution data. 

Together, the two remote sensing data sources provided a large suite of potential environmental 

explanatory variables that were crucial to the fine-scale nature of the analyses.  
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Figure 1. Study site at the Lewis Wetzel Wildlife Management Area in northwest WV, with the 68 ridgetop sampling point locations 
and the six line transects overlaid on a QuickBird satellite 0.6-m resolution panchromatic image (left) and on a 3-m resolution (±3 m 
vertical accuracy) digital elevation model (DEM; right). The QuickBird satellite image was acquired August 2009 at 11:18 AM local 
time (solar azimuth = 127°). The 1/9 arc-second DEM was obtained as a seamless product from http://viewer.nationalmap.gov/. 
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CHAPTER 2: Fine-scale modeling of habitat and avian biodiversity in an Appalachian 

deciduous forest using a QuickBird satellite image. 

 

Abstract. High resolution satellite imagery shows promise for assessing biodiversity at a fine 

spatial scale. To test this, we used the panchromatic band (PAN; 0.6-m resolution) and the 

normalized difference vegetation index band combination (NDVI; 2.4-m resolution) from a leaf-

on QuickBird satellite image to model habitat and avian community data from circular field plots 

(n = 68) on ridgetops in a mature deciduous forest in WV, USA. We extracted the pixel value 

mean and standard deviation (s.d.) from the PAN and NDVI images, and from first- and second-

order PAN and NDVI image textures, using (1) a plot radius of 50 m to analyze 50-m radius-

scale habitat and avian species richness and occurrence; and (2) a plot radius of 100 m to analyze 

100-m radius-scale avian species richness and abundance. Several image textures and the PAN 

mean had the strongest vector fits to a principal components analysis-derived gradient in forest 

structure and composition among the field plots (PC1; 39.3% variance explained), which ranged 

from less complex, chestnut oak (Quercus montana)-dominated forest to more complex, sugar 

maple (Acer saccharum)-dominated forest. We used generalized additive models (GAMs) to 

then test if PC1, the satellite image variables, and additional topographic variables were 

predictors of the avian data. We evaluated model fit using the adjusted deviance explained (D2
a). 

Among the significant (p < 0.05) models, the PAN s.d. and NDVI s.d. usually provided the best 

fit. These likely proxies of environmental heterogeneity were positively related to total species 

richness, and the richness subset of relatively common (but not relatively rare) species, at the 50- 

and 100-m scales (range of D2
a = 0.14–0.23). However, the strongest fits at both scales (range of 

D2
a = 0.45–0.48) were for a positive relation between the PAN s.d. (also the best predictor of 
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PC1) and the richness subset of six forest canopy gap-dependent species. The occurrence and 

abundance GAMs for the 26 species tested also supported the PAN s.d. as the best overall 

predictor, likely most-indicative of habitat for the gap-dependent species. The lone species with 

an opposing trend in occurrence and abundance, the Eastern Wood-Peewee (Contopus virens), 

was positively related to the s.d. of a second-order PAN image texture likely indicative of 

chestnut oak composition. Our results supported the potential for remote sensing of forest habitat 

and avian biodiversity at a fine spatial scale, given careful consideration of the scale of field data 

collection and image data extraction, and the components of biodiversity being modeled.  

 

Keywords: Remote sensing, image texture, avian biodiversity, environmental heterogeneity 
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1. Introduction 

Concern over the continuing loss of the earth’s biodiversity (e.g., Rands et al. 2010, Dirzo et 

al. 2014) has spurred the use of advanced technology that allows biodiversity to be assessed 

remotely (Turner et al. 2003, Gillespie et al. 2008). For example, imagery from airborne and 

spaceborne remote sensors can be used to detect biodiversity hotspots and examine biodiversity 

changes over space and time (Rochini et al. 2015). Advantages of a remote sensing approach to 

biodiversity assessment include data collection for remote or otherwise inaccessible locations 

(Buchanon et al. 2008), and at broad spatial scales and temporal frequencies not possible in the 

field (Duro et al. 2007). However, the value of remotely-sensed data for biodiversity assessment 

depends on its information content, and this should be judged in comparison to what can be 

obtained by intensive field surveys (e.g., Rhodes et al. 2015). It is important to continue to 

collect field data on the locations of plants and animals so that researchers can continue to test or 

validate remote sensing-based biodiversity models (Gillespie et al. 2008).    

Remote sensing of biodiversity often relies on the link between environmental heterogeneity 

and species richness (the most common metric for characterizing biodiversity; von Wehrden et 

al. 2016). While potentially dependent on spatial scale and the taxonomic group considered, 

areas with higher environmental heterogeneity (e.g., habitats that are structurally more complex) 

often support a higher number of species (Tews et al. 2004). Remotely-sensed measures of 

environmental heterogeneity have been linked to species richness at multiple spatial scales. A 

common approach applied at coarse (i.e., landscape) scales is to model species richness using 

spatial heterogeneity metrics obtained from a remote sensing-based map of habitat patches (e.g., 

Luoto 2004, Schindler et al. 2013). Spectral heterogeneity obtained directly from remote sensing 

imagery is used to model species richness both within and among habitats (Rocchinni et al. 
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2010). Modeling species richness using increasingly fine-scaled measures of environmental 

heterogeneity has become possible through the use of remote sensing data of high spectral and 

spatial resolution (e.g., from hyperspectral sensors; Jones et al. 2013). These data may also be 

used along with coarse scale environmental data to improve models of species richness over 

large areas (Camathias 2013), and supplement or replace use of active remote sensing data such 

as lidar for biodiversity modeling (Wallis et al. 2016). 

Birds have often been the focus of remote sensing biodiversity assessment, due in part to 

their conspicuousness and potential usefulness as bioindicators (Gottschalk 2005). Among the 

remotely-sensed proxies of environmental heterogeneity, fine-scale image texture has shown 

promise for modeling avian species richness and other indices of avian biodiversity. Image 

texture is defined as the spatial variation in the tonal values of the pixels in an image (Harralick 

et al. 1973), and depends in part on image spectral characteristics and grain (i.e., pixel) size. 

Here, we consider fine-scale image texture as that obtained from high spatial resolution imagery 

(commonly ≤4 m pixels for multispectral images and ≤1 m pixels for panchromatic images). 

Image texture from 1-m resolution panchromatic aerial imagery predicted avian species richness 

among semi-arid habitats in New Mexico (St-Louis et al. 2006) and among grassland, savannah, 

and woodland habitats in Wisconsin (Wood et al. 2013). Similarly, image texture from 2.4-m 

resolution multispectral QuickBird satellite imagery predicted avian (Shannon) diversity and an 

index of community composition in a tropical mountain ecosystem comprised of multiple forest 

types in southeastern Ecuador (Wallis et al. 2016).  

Determination of a positive correlation between species richness and some measure of image 

texture (e.g., an increase in the variance of pixel values) likely requires that (1) the number of 

species and the amount of environmental heterogeneity are in fact positively correlated; (2) the 
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spectral heterogeneity of the image pixels adequately reflects this environmental heterogeneity; 

and (3) image texture sufficiently measures this spectral heterogeneity to model the richness 

data. While this predictive potential alone may be of value for biodiversity assessment, species 

richness provides no information about species composition. As individual species’ occurrences 

are the fundamental units of species richness, the occurrences of species with negative trends, or 

without trends, may be included in an overall positive image texture - species richness 

correlation. To better understand how biodiversity is being modeled by image texture, analyzing 

trends in individual species along with species richness is desirable, as is understanding the 

functional types of species involved. Other than several indicator species also tested by Wood et 

al. (2013), however, such combined approaches appear to be lacking. St-Louis et al. (2006) 

suggested that because image texture was related to the spatial heterogeneity of vegetation across 

the habitat cover types they studied, bird species associated with heterogeneous habitats were 

responsible for the observed image texture-species richness relations, but they did not provide 

species-specific results. Wallis et al. (2016) were unable to identify any morphological or life 

history trait patterns among the bird species in their (multivariate analysis-derived) community 

composition index in relation to image texture.   

To the best of our knowledge, there also have been no studies of the potential for image 

texture to predict trends in avian biodiversity metrics such as species richness within a single, 

relatively homogeneous habitat cover type. This capacity would be interesting to find, as studies 

such as those noted above have considerable variation in habitat cover types promoting a large 

range of species diversity values. Fine-scale image texture has been used to model individual 

bird species within a single habitat cover type. For example, in the Wood et al. (2013) study, 

image texture also predicted Grasshopper Sparrow (Ammodramus savannarum) density within 



14 
 

the grassland habitat, and 4-m Iknonos satellite image texture predicted Hooded Warbler 

(Setophaga citrina) nesting habitat within a forest in southern Ontario (Pasher et al. 2007). These 

single-species results suggest that fine-scale image texture can model within-habitat trends in 

species richness, assuming environmental heterogeneity in the habitat is positively correlated 

with enough individual species’ occurrences for a trend to exist. Information on what 

environmental heterogeneity is actually being measured by image texture also appears to be 

lacking. Understanding how specific image texture measures, of which there are many, relate to 

habitat characteristics that are important to particular species may guide the broader application 

of these measures for predicting the occurrence of these species or in modeling their habitat 

elsewhere. 

In this study, we obtained image texture measures from a QuickBird satellite image (0.6-m 

panchromatic and 2.4-m multispectral band resolution) of an Appalachian mature deciduous 

forest (~5,500 ha) and used them to model, at the level of individual field plots (n = 68) located 

on the ridgetops, forest composition and structure data along with breeding season avian survey 

data. We evaluated the general prediction that total avian species richness was positively 

correlated with image texture measures of environmental heterogeneity within this forest, and 

examined how trends in individual species occurrences compared to the total species richness 

trend. In particular, we expected that certain disturbance-dependent mature forest bird species 

(Hunter et al. 2001) would be modeled individually (and as a species richness subset) by image 

texture, if texture measures sufficiently indicated structural complexity in the form of gaps in the 

forest canopy with well-developed understories. In addition, because common species have often 

been found to largely determine total species richness patterns (e.g., Pearman and Weber 2007, 
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Sizling et al. 2009), we evaluated the richness of relatively common and relatively rare species 

(as we defined them; see section 2.4.3.) as subsets of total species richness.  

We investigated two spatial scales of data collection (50 and 100 m radii) for the plots to 

examine issues of scalability in both the avian data and the image texture measures. Because 

image texture measures are seldom the only geospatial (i.e., remotely-sensed) data included 

when modeling avian or habitat data (e.g., see St-Louis et al. 2006; Torontow and King 2011), 

we incorporated topographic and image spectral brightness variables in the models. These 

variables served as covariates potentially resulting in better fitting models (as in St-Louis et al. 

2006), and also allowed us to examine potential confounding of image texture effects with 

topography or image brightness effects. At the 50-m scale, at which the habitat data were 

collected, we examined the strength of the correlation between habitat characteristics and the 

geospatial data, and also compared the relative strength of the field-collected habitat data to the 

geospatial data for modeling the bird data. At the 100-m scale, we further examined the potential 

for the geospatial data to additionally model individual bird species abundances. Finally, in the 

discussion we add to the suggestions of others (e.g., Wood et al. 2012) on selecting among the 

many possible image texture measures, and choosing suitable analysis parameters for creating 

them. Through such efforts in multiple habitats, important contrasts or commonalities among 

image texture measures may become evident, and guide the selection and creation of appropriate 

image texture measures for future avian biodiversity assessment efforts. 
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2. Materials and methods 

2.1. Study site 

This study was conducted in mature deciduous forest on ridgetops at the Lewis Wetzel 

Wildlife Management Area, in northwestern WV, USA (Figure 1). The site is in the Permian 

Hills region of the Western Allegheny Plateau, and typifies the high topographic relief and 

extensive forest cover described for the Permian Hills (Woods et al. 1999). Elevation was 221–

480 m (x̅ = 356 m) above sea level. We used the Topographic Position Index function in 

Topography Tools for ArcGIS 10.1 (Dilts 2015) to perform a landform classification of a 3-m 

resolution (±3 m vertical accuracy) digital elevation model (DEM; source: 

http://viewer.nationalmap.gov/) of the site. We selected a circular neighborhood of 175 m and a 

4-landform classification (based on Jenness 2006) for the function, to generally define the 

ridgetops and associated steep side-slopes that were the focus of our study (Figure 1). We found 

our ad-hoc classification useful for characterizing the complex terrain; for example, the ridgetops 

that were broader and flatter and those that were more sharply defined (i.e., in closer proximity 

to steep side-slopes). We note, however, that our analyses are based on data obtained within a 

maximum distance of 100 m from locations established on the ridgeline (i.e., the peak of the 

ridgetop) as obtained by hydrological modeling of the DEM. We did this for logistical reasons 

because of the difficult terrain and the extent of the site that we wished to cover. We thus do not 

make specific inferences from our results regarding the ridgetops and side-slopes as defined by 

the classification, as this would require much more intensive field sampling to sufficiently cover 

these two landforms.  

Major tree species on the ridgetops included chestnut oak (Quercus montana), sugar maple 

(Acer saccharum), northern red oak (Q. rubra), red maple (A. rubrum), hickories (Carya spp.), 
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black oak (Q. velutina), white oak (Q. alba), and black locust (Robinia pseudoacacia) (Chapter 

3, Appendix A). The ridgetop forest at the site has been previously described as occurring in two 

general types: mesic and dominated by sugar maple, and xeric and dominated by chestnut oak 

(Perkins and Wood 2014). Canopy gaps located on topographic aspects with high solar exposure 

often contained dense grapevine (Vitus spp.) that appeared to inhibit forest succession, and 

occasionally the invasive tree-of-heaven (Ailanthus altissima). The understory of the xeric, 

chestnut oak ridgetops was often dominated by shrub-like greenbrier (Smilax spp.). 

2.2. Field sampling 

We conducted breeding season fixed-radius point count surveys of the avian community at a 

total of 68 points (42 in 2009–11; an additional 26 in 2011) that were located within mature 

forest lacking recent anthropogenic disturbances (Figure 1). The 42 initial 2009–11 points were 

obtained from 87 points systematically placed ≥250 m apart along the ridgetops for surveys 

analyzed by Farwell et al. (2016), by retaining the points that were located >150 m from 

anthropogenic canopy disturbances (e.g., forest roads, pipelines, and timber harvests) as 

indicated by aerial photos and site visits. The 250-m minimum distance between points was to 

reduce the potential that the same individual bird could be counted at more than one point. To 

increase the point sample size to 68 in 2011 (the primary focus of our analyses) we similarly 

placed an additional 26 points. Distances between the 68 points were 298–1021 m (x̅ = 446 m, 

SE = 17 m), and the points were located on the ridgeline using a Garmin© 60CSX Geographic 

Positioning System (GPS) unit (WAAS-enabled ±5–10 m positional accuracy). 

The points were visited twice during the peak of the breeding season (~May 15–June 30) to 

conduct the surveys, which followed standard avian point count survey protocols (e.g., Ralph et 

al. 1995). To survey during peak bird activity, the surveys were completed between local sunrise 
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and 4-hrs after sunrise, under optimal weather conditions (calm winds, no precipitation or heavy 

fog). For each bird detected during the 10 minute length of a survey, the species, detection type 

(singing, calling, or visual), sex (if possible), and distance category (0–50 m or >50–100 m from 

the point) were recorded. We used the distance categories to group the detections at two spatial 

sampling scales for the analyses: the 0-50 m distance category (50-m radius scale) and the 

combined 50 m and >50-100 m distance categories (100-m radius scale). Different starting 

locations were used within a season to vary the time of morning that a point was sampled over 

the two visits within a season. Surveys were conducted by observers trained in bird identification 

by sight and sound, and in distance estimation. Observers (n = 5–7) in each season were rotated 

among the points over the two visits as much as was logistically possible.  

We collected data on forest structure and composition at the points during July–August in 

2010 and 2011, using a 5-subplot arrangement designed to encompass the topographic variability 

(e.g., multiple aspects) of the often sharply-defined ridgetops. The subplot arrangement and 

vegetation measurements were adapted from standardized methods for collecting forest habitat 

data for bird studies (Martin et al. 1997). A central subplot was located on the point, and four 

surrounding subplots were located 35 m from the point using an initial random bearing and 90° 

intervals. Within an 11.3-m subplot radius, the species and dbh (diameter at breast height at 1.4 

m) to the nearest cm for each tree ≥8 cm dbh, the number of snags (≥8 cm dbh and ≥8 m in 

height), and the number of grapevines that ascended trees were recorded. Within a 5-m subplot 

radius, the number of saplings (<8 cm dbh and ≥1.4 m in height) by species, and visual estimates 

of the percent cover (to the nearest 5%) of saplings, low woody plants (including shrubs, tree 

seedlings, and shrub-like greenbrier), and herbaceous plants were recorded. A spherical 

densiometer was used to estimate the canopy closure in the four cardinal directions at the subplot 
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center, and a clinometer was used to measure the height of a tree visually selected to represent 

the dominant canopy height of the 11.3-m subplot. 

2.3. Remote sensing data  

A 6° off-nadir, cloud-free QuickBird 2 (DigitalGlobe®) satellite image (Standard 

OrthoReady product; 0.6-m panchromatic and 2.4-m multispectral band resolution) was acquired 

25 August 2009 at 16:18 GMT (solar azimuth = 127°) for the study area. The image was 

orthorectified in Erdas Imagine 9.3 using the 3-m DEM, the rational polynomial coefficients 

supplied with the image, and six ground control points obtained from 1-m resolution leaf-on 

orthophotos (2007 National Agriculture Imagery Program) matched to the panchromatic image. 

The root mean squared error of the rectified image was 3.3 m (X direction) and 2.6 m (Y 

direction). No major disturbances (e.g., severe windstorms) occurred between the date the image 

was acquired and the field sampling, and based on the 2009–11 field sampling new tree falls 

were infrequent, so for this study we assumed the image and the field data were a sufficient 

temporal match.  

We selected the panchromatic (PAN) band and also the normalized difference vegetation 

index (NDVI) band combination of the near-infrared (NIR) and the Red bands (NDVI = NIR-

Red/NIR+Red) images for this study. We selected the higher resolution PAN image as a 

potentially better indicator of fine textural detail (e.g., pixel variation within tree crowns) in the 

forest image. The NDVI is commonly used to remotely assess vegetation productivity and 

structural characteristics such as biomass (Pettorelli et al. 2011), and we selected it as a 

potentially better indicator of more coarse-scale forest structural variability via the lower 

resolution NDVI pixels. Because the NDVI was developed to minimize the effects of different 

sun illumination angles on remote sensing indices of vegetation (Rouse et al., 1973), we 
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suspected it could help compensate for brightness variation in the satellite image caused by the 

complex topography. Prior to the NDVI calculation, we used the absolute radiometric calibration 

factors and effective bandwidths supplied with the image to convert the Red and NIR bands to 

top-of-atmosphere reflectance. Although this did not correct for atmospheric effects, we had 

difficulty correcting haze with the method we tested (improved dark object subtraction; Chavez 

Jr. 1989), perhaps because of the complex topography and dense forest cover throughout the 

scene. While not ideal, we used the NDVI as calculated because it provided some image texture 

measures that were less correlated with those obtained from the panchromatic band, and thus 

potentially contained different information. 

2.3.1. Satellite image variables 

The satellite image processing and image variable extraction steps are diagrammed in Figure 

2. We used the zonal statistics function in ArcGIS 10.1 to extract the image variables for each 

sampling point using radii of 50 and 100 m (i.e., at the plot level) to match (respectively) the 

sampling radii of the bird data (50 m and 100 m), and for the 50-m radius image variables to 

match the radius of the forest data (subsampled within ~50 m). In extraction step 1 (middle of 

Figure 2), we obtained the plot-level mean and standard deviation (s.d.) of the PAN and NDVI 

pixel values directly. To potentially capture variability in pixel values at multiple spatial scales 

(e.g., within and between scene objects; Pasher and King 2010), in extraction step 2 (the sides of 

Figure 2) we obtained these plot-level pixel summaries from images of first- and second-order 

statistics (the two primary classes of texture; Mihran and Jain 1998). The texture images were 

processed from the PAN and NDVI images using the moving window analysis procedure in 

GRASS GIS 6.4.3 (GRASS Development Team, 2013). In this procedure, a square, odd-

numbered neighborhood of pixels (e.g., 3×3 pixels) is iteratively centered on each pixel of an 
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image, and a neighborhood statistic (e.g., mean value of the 3×3 pixels) is calculated for the 

pixel. A new image is then created that is comprised of the neighborhood statistic values. We 

used a range in size for the pixel neighborhoods from the smallest possible (3×3 pixels) to a 

neighborhood size representing ~25×25 m ground distance (PAN = 41×41 pixels, NDVI = 

11×11 pixels; Table 1). Preliminary tests of larger neighborhoods indicated that image statistic 

values leveled off or peaked within the 25×25 m range, suggesting larger neighborhoods would 

not provide additional textural information for this forest scene. To reduce the number of moving 

window analyses, we increased the neighborhoods for the PAN image in ~5 m ground distance 

increments following the initial 3×3 pixel neighborhoods. 

First-order texture statistics are based on the histogram of pixel values in a pixel 

neighborhood, such as their mean, s.d., and range (Mihran and Jain 1998). For our study, we 

selected the first-order mean and s.d., following St-Louis et al. (2006) who found that these 

textures best predicted bird species richness out of the first-order statistics they evaluated. 

Because of the two spatial scales of our image data extraction and the number of pixel 

neighborhoods used for the moving window analysis (6 PAN and 5 NDVI), we thus obtained n = 

88 plot-level measures of these first-order statistics per sampling point (2 plot-level pixel 

summaries × 2 scales × 2 texture statistics × 11 moving window analyses). We considered the 

plot-level PAN and NDVI pixel s.d. measures from extraction step 1 with these moving window 

analysis-based measures as a general class of first-order statistics. However, while technically 

also first-order statistics, for the purposes of this study we considered the PAN and NDVI pixel 

means from extraction step 1 as spectral measures, potentially providing different forest 

information than textural measures based on the variance of pixel values. We discarded the n = 

22 plot-level pixel means obtained from the first-order mean PAN and NDVI images, as these 
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were almost perfectly correlated (r > 0.98) with their respective PAN and NDVI spectral 

measures. 

Second-order texture statistics are based on the spatial relations of pairs of pixel values in a 

pixel neighborhood (Mihran and Jain 1998) and are calculated using the gray-level co-

occurrence matrix (GLCM; Hall-Bayer 2007). Additional parameters required by the GLCM are 

the offset, which is the distance between the pairs of pixels that are compared within the 

neighborhood, and the direction (0°, 45°, 90°, and 135°) of the offset. We selected an offset of 

one pixel because statistic values for larger offset distances within a particular neighborhood size 

became highly correlated with statistic values from other neighborhood sizes. Because image 

texture appeared to be isotropic (i.e., non-directional), we used an averaged statistic over the four 

offset directions. While the number of gray scale values (i.e., the image spectral resolution) is 

also an important GLCM consideration (Patel et al. 2008), we used the spectral resolution of the 

QuickBird imagery as acquired (8 bit = 256 gray scale values). Of the 14 second-order statistics 

defined by Harralick et al. (1973), we initially selected six that are commonly used in remote 

sensing image analysis: angular second moment, contrast, correlation, entropy, homogeneity, and 

variance (Kayitakire et al. 2006). Due to high plot-level correlation among these statistics, 

however, we retained only the contrast (CON) and correlation (COR). The COR statistic is 

computationally different and therefore often less correlated with other second-order statistics 

(Hall-Bayer 2007). As above for the first-order statistics, we obtained n = 88 plot-level measures 

of these second-order texture statistics per sampling point (of which none were discarded). 

The image variables used in this study are summarized in Table 2. To consistently label them 

in the text, tables, and figures, the image source (‘PAN’ or ‘NDVI’) is provided, followed by a 

subscript identifying the variable as a plot-level pixel mean or s.d. (‘AVG’ or ‘SD’; 
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respectively). If the measure was extracted from a moving window analysis texture image, a 

subscript is added after an underscore to identify the specific neighborhood statistic (first-order 

mean [‘AVG’] or s.d. [‘SD’]; second-order ‘CON’ or ‘COR’) and the pixel neighborhood size. 

As examples, PANSD denotes the plot-level pixel s.d. obtained from the original PAN image, and 

PANAVG_SD09 denotes the plot-level pixel mean obtained from the PAN first-order s.d. texture 

image calculated with a 9x9 pixel neighborhood. The 50- or 100-m radius plot-level scale of the 

measure is referenced as needed.  

2.3.2. Topographic variables 

We obtained three topographic variables from the DEM at the two plot-level scales using 

ArcGIS 10.1 geoprocessing tools: mean elevation (ELEV), an index of topographic variation 

(TVI) calculated as the surface area divided by the planar area, and an index of direct solar 

radiation (DSR) at the time of image acquisition (see Table 2 for details on the tools and 

parameter settings used to obtain these variables). The tools were applied using the native 3-m 

DEM resolution, as resampling to coarser resolutions (tested up to 9 m) to minimize noise in the 

elevation values had little effect on the variables as summarized at the 50 and 100 m scales. We 

selected these topographic variables as likely to be related to the bird and the forest habitat data 

collected at the sampling points. For example, variation in ridgetop elevation (sampling point 

range: 354–456 m) could relate to local variation in exposure to wind. Ridgetops that are flatter 

(low TVI values) likely retain more soil moisture than those that are more sharply defined (high 

TVI values). DSR may relate to productivity effects on forest structure (Pasher and King 2010). 

Furthermore, as obtained at the time of image acquisition, DSR may reflect sun illumination 

angle differences among the sampling points (e.g., sampling points on predominantly east-west 

ridges could encompass relatively darker north-facing slopes) and be an important control 
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variable when included with variables such as the satellite image spectral measures in the 

analyses. We rejected other potential topographic variables because the sampling point scales 

encompassed multiple aspects and slopes (e.g., the mean aspect was not informative) or because 

they were correlated with the selected variables (e.g., the s.d. of elevation with TVI).  

2.4. Statistical analyses 

2.4.1. Principal component analysis (PCA) of the forest data 

 We calculated forest composition and structure variables for each sampling point as the 

mean of the data collected at the five subplots. We selected for analysis 11 forest structure 

variables and three forest composition variables (basal area of chestnut oak and sugar maple, and 

tree species richness). Chestnut oak and sugar maple accounted for 51.8% of the total basal area 

(29.5 and 22.3%; respectively), and as the primary canopy dominants we expected the structural 

characteristics of these species to potentially have the greatest influence on image texture. These 

two tree species were distributed differently within as well as among the studied ridgetops (likely 

due to different shade and soil moisture tolerances) and have structural differences (e.g., in leaf 

shape, thickness, and arrangement; and in branching pattern) that potentially influence their 

reflectance, and subsequently their textural pattern. We initially tested the inclusion of additional 

tree species in the analysis (e.g., northern red oak; 10.5% of the total basal area), and tree species 

diversity measures, but these inclusions had no appreciable effects on the results. 

We used principal components analysis (PCA), a multivariate analysis technique that has 

been used previously to detect gradients in forest composition and structure (e.g., Torontow and 

King 2011). We conducted the PCA using the rda function in the vegan R package (Oksanen et 

al. 2012). Prior to the analysis, we checked the 14 variables to ensure linearity and normality 

(required by PCA; Franklin et al. 1995), and transformed them if necessary. Spearman’s pairwise 
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correlations for all 14 variables were r <0.80. Because the forest variables were measured in 

different units, we ran the PCA with the variables scaled to equalize the amount of variance they 

could contribute to the total variance explained by the entire set of variables (rda function scale 

parameter = TRUE). We retained the orthogonal (i.e., mutually uncorrelated) linear 

combinations of variables, referred to as axes or principal components, that were produced by the 

PCA if their eigenvalues (proportion of total variance explained) were >1.0 (Kaiser 1960). We 

graphically examined the retained principal components with ordination diagrams and used the 

component scores as candidate field-based explanatory variables for the avian models.   

2.4.2. Fitting of geospatial variables to the PCA 

As in Torontow and King (2011), we examined if the geospatial variables were related to 

gradients in forest composition and structure as characterized by the retained principal 

components from the PCA. The geospatial variables were fit as smooth surfaces and as vectors to 

the ordinations using the ordisurf and envfit functions in the vegan R package. Subsequently, the 

geospatial variables that provided the strongest explanatory potential as indicated by their level 

of fit (evaluated using R2) were retained as candidate explanatory variables, in addition to the 

retained principal components, for the avian modeling. Evaluating both the surface and the 

vector fits allowed us to determine when the nature of the relation of a geospatial variable to an 

ordination gradient was linear (surface R2 = vector R2) or non-linear (surface R2 > vector R2). To 

assess how well the remote sensing data could predict the ordination results (e.g., for use in 

forest complexity mapping; see Torontow and King 2011), we tested if multiple geospatial 

variables could more powerfully predict principle component scores, as well as dominant forest 

characteristics apparent from the ordinations, using multiple variable linear regression. To obtain 

the best fitting models, we used a forward selection procedure (Blanchet et al. 2008) that uses 
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two stopping rules (the significance of the added variable and the adjusted R2 of the global 

model) to avoid overestimating the amount of explained variance. We used leave-one-out cross 

validation in the boot R package (Canty and Ripley 2015) to evaluate the predictive ability of the 

models.  

Because the forest variables were sampled within a 50 m radius of the sampling points, we fit 

only the 50-m radius plot-level geospatial variables to the ordinations. To reduce the number of 

variables to fit, we examined Spearman’s correlations to obtain a set of plot-level variables with 

pairwise r <0.80. We selected this correlation threshold to balance variable reduction with the 

retention of variables that, despite being correlated, might contain different information to 

explain variation in the forest data. We first applied this threshold within each of the four 

categories of geospatial variables (Table 2). Of the two spectral variables, we selected PANAVG 

over NDVIAVG (r = 0.90). Within the other categories we selected 35 first-order texture, 44 

second-order texture, and 3 topographic variables. We then compared across the categories to 

further reduce the remaining variables to below the threshold, ultimately yielding 20 variables 

(Appendix B). In this second variable reduction step, we selected simpler statistics over more 

complicated ones. Thus, we retained PANSD and NDVISD over first-order texture measures 

obtained from the moving window analyses, and finally considered the second-order texture 

measures. We retained all three topographic variables, as these were relatively uncorrelated with 

the other geospatial variables.  

2.4.3. Avian modeling  

We calculated avian species richness and species-specific occurrence and abundance for each 

sampling point in each year based on the two visits, and at the 50-m and 100-m radius scales. We 

based occurrence and abundance on species-specific detection types (e.g., singing males for 
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small territorial songbirds; see Appendix A). We defined occurrence of a species as 1 (present) 

or 0 (absent) over the two annual visits, and abundance of a species as the maximum number of 

individuals detected over the two annual visits. We calculated a simple index of total species 

richness as the sum of all individual species’ occurrences. We selected this richness index over 

other potential indices for ease of comparison between the total species richness results and the 

results for individual species occurrences and different subsets of total species richness. To 

ensure that this index was a relatively stable estimate of species richness at a point, we also 

assessed the use of mean species richness over the two visits, and species richness per visit, and 

obtained similar results. 

In addition to total species richness, we calculated the richness of three subsets of species: 

relatively common species, relatively rare species, and the six species most closely associated 

with the understory of distinct canopy gaps in this forest (Appendix A). We ranked the species 

by their total number of occurrences using the 2011 100-m data, and selected the species above 

and including the midpoint of the ranking as relatively common, and below the midpoint of the 

ranking as relatively rare. We based canopy gap association on the literature (e.g., The Birds of 

North America Online: http://bna.birds.cornell.edu/bna/) and extensive knowledge of the species 

in the study area. We considered the six species to be those most often detected within canopy 

gaps, to differentiate them from other species that may associate with canopy gaps (e.g., 

Cerulean Warbler; Perkins and Wood 2014), but are also often detected away from them. 

Due to sample size considerations, we relied primarily on the 2011 data (n = 68) for the bulk 

of the avian modeling. We used generalized additive models (GAMs), which are a semi-

parametric alternative to generalized linear models (GLMs; McCullagh and Nelder 1989), to 

examine if, singly, the 50- and 100-m scale geospatial variables and 50-m scale principal 
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components representing forest gradients were related to the bird species richness measures as 

calculated at these respective scales in 2011. GAMs fit scatterplot smoother functions (e.g., 

regression splines) to response data and thus allow assessment of non-linear effects of model 

covariates (Hastie and Tibshirani 1990). We ran the GAMs with the mgcv R package (Wood 

2011) and used thin plate regression splines with smoothness selection (i.e., degree of 

smoothness) via restricted maximum likelihood (REML) estimation. Because the species 

richness data were counts, we used the Poisson (log link) error structure. We evaluated the 

significance of the smoother functions using α = 0.05. Nonlinear responses are indicated if the 

effective degrees of freedom (e.d.f.) of the smoother function is >1. We graphically examined the 

smoother functions to assess the nature of the linear or nonlinear relations between the 

explanatory variables and the richness measures, and evaluated model fit using the adjusted 

proportion of deviance explained (D2
a; Guisan and Zimmermann 2000). 

To determine if models could contain multiple variables as predictors of the bird species 

richness measures in 2011 at the 50-m scale, we used a GAM-based variable selection technique 

(Marra and Wood 2011). This technique uses shrinkage methods to essentially drop unimportant 

predictor variables from a model by shrinking their effects to zero (evaluated as e.d.f. ≈ 0 for the 

term), with the goal of achieving a parsimonious subset of variables that improve model 

interpretability and prediction accuracy. We used the double shrinkage approach (Marra and 

Wood 2011) option in the mgcv package. As with the single variable GAMs, we used thin plate 

regression splines and REML smoothness selection, and the Poisson (log link) error structure; 

however, because the variables were often in different units, we used scale-invariant tensor 

product smooths (Wood 2011). To reduce the potential for adverse effects of collinearity on 

variable selection (Mansfield and Helms 1982), we included variables in the models on the basis 
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of limiting their concurvity, a measure available in the mgcv package for GAMs that is a 

generalization of the collinearity measures for variables in linear models (Wood 2011). As with 

the single variable GAMs, we graphically examined the smoother functions and evaluated the 

D2
a model fit. 

To examine the effects of spatially scaling up the data for the multiple variable models, we 

recomputed the best-fitting 50-m scale GAMs for 2011 species richness obtained from the 

variable selection procedure using 100-m radius scale data. To examine the stability of richness 

results over the three years, we modeled species richness with single variable GAMs at both the 

50-m and 100-m radius scale in each year. We used only single variable models for this analysis 

because multiple variable models tended to be overfit with the reduced number of sampling 

points (n = 42) available over the three years. To examine which species likely contributed most 

to the 50-m scale 2011 richness results, we modeled the occurrence (50-m radius scale) of 

species in 2011 with single variable binomial (logit link) GAMs. For this analysis, we selected 

24 species with at least seven presences or absences across the 68 sampling points, because this 

was the minimum number for detecting significant effects without over-fitting. We did not use 

multiple variable binomial GAMs because these models were too often overfit. We also 

examined the effect of spatially scaling up the data at the species level, by analyzing these 

species with Poisson GAMs using their 100-m radius scale abundances. We did not attempt to 

model 50-m radius scale abundances because at this scale the data consisted primarily of ones 

and zeros 
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3. Results 

3.1. Forest variable PCA and geospatial variable fits 

The PCA of the 14 forest variables resulted in three principal components with eigenvalues 

greater than 1.0, which together accounted for 67.1% of the total variance. Examination of the 

ordination diagrams (e.g., Figure 3a) and the factor loadings for the forest variables (Table 3) 

indicated that the first PCA axis (PC1; 39.3% of the variance) reflected a gradient in forest 

composition and structure among the field plots. Compositionally, this gradient ranged from 

plots with higher chestnut oak basal area (negative on PC1) to plots with higher sugar maple 

basal area (positive on PC1). Structural variables most negative on PC1 along with chestnut oak 

included DBH s.d. and total basal area. Structural variables most positive on PC1 along with 

sugar maple included herbaceous cover and grapevine density. Other structural variables with 

lower factor loadings such as snag density and canopy cover were also clearly separated 

(positively and negatively; respectively) along PC1. Inspection of the plot images ordered by 

their site scores for PC1 (e.g., Figure 4; Appendix C) furthermore indicated a canopy closure 

gradient, with the plots most negative on PC1 appearing as a mostly closed forest canopy and the 

plots most positive on PC1 appearing as a more open forest canopy.  

 The second PCA axis (PC2; 16.3% of the variance) appeared to primarily reflect a negative 

relation between tree density/tree species richness and the DBH mean. Along this axis, the plots 

negative on PC2 had a lower density and less species of trees that were larger in diameter, and 

the plots positive on PC2 had a higher density and more species of trees that were smaller in 

diameter. The third PCA axis (PC3; 11.2% of the variance) was more difficult to interpret, and at 

least in part appeared to be influenced by several plots with low canopy cover yet high shrub 

cover. In contrast, for PC1 canopy cover and shrub cover were positively associated, likely due 
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to the increased cover of shrub-like greenbrier, Vaccinium, and tree seedlings (all classed as 

shrub cover) that we observed under the more closed chestnut oak-dominated forest canopy. For 

PC1, low canopy cover was instead associated with high herbaceous cover and grapevine 

density. With no clear interpretation of a habitat gradient among the plots for PC3, we did not 

consider this axis further, and only fit geospatial variables to the PC1:PC2 ordination.  

Of the 13 image geospatial variables with significant vector fits to the ordination (Table 4), 

we focused on four (PANAVG, PANSD, NDVISD, and PANSD_COR09) because of their relative 

strength and differences in how they were oriented to the ordination axes (Figure 3b). The 

remaining significant image variables were similarly oriented (e.g., PANSD_COR41 with 

PANSD_COR09) but with weaker fits, and so provided no additional interpretation. The fits of 

PANAVG, PANSD, and NDVISD were all positively correlated with PC1, thus oriented toward 

higher complexity sugar maple plots. The strongest vector fit was obtained for PANSD (R2 = 

0.63). Despite PANSD and NDVISD being close to the correlation threshold (r = 0.74), the fit of 

NDVISD (R2 = 0.29) was oriented more toward PC2, in the direction of plots with lower tree 

density but larger diameter trees. While PANAVG and PANSD were also relatively correlated (r = 

0.69), the fit of PANAVG (R2 = 0.40) was oriented slightly towards plots with higher grapevine 

density. The next strongest vector fit was obtained for PANSD_COR09 (R2 = 0.52), which was 

negatively correlated with PC1 and thus oriented toward lower complexity/chestnut oak plots. 

Most of the surface fits for the image variables were equivalent or nearly so to their vector 

fits (Table 4; e.g., for NDVISD the surface R2 was +0.03), so we did not consider them further. 

While other surface fit increases were more substantial, none were particularly large. The largest 

increase was for PANSD_SD41 (surface R2 = 0.25), from a non-significant vector fit. As indicated 

by tighter contours (Figure 3c), this surface mostly indicated decreasing plot values for the 
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statistic toward the extremes of the PC1 gradient. The increase in surface fits for NDVISD_SD11 

and NDVISD_COR03 (R2 = 0.24 and 0.27; respectively) in part reflected their weaker vector fits 

(Figure 3d and e), but helped to identify that these vectors did not represent general gradients 

across the axes, and were somewhat biased as a result. For example, the surface fit for 

NDVISD_SD11 indicated that a vector fit would best apply to the plots negative on the PC2 axis, 

and be oriented more closely along the axis. Similarly, the surface fit for NDVISD_COR03 indicated 

that a vector fit would best apply to the plots positive on the PC1 axis, and be oriented more 

toward PC2.  

Of the topographic variables fit to the ordination, ELEV and TVI were significant as vectors 

and surfaces (Table 4). While as surface fits ELEV and TVI increased, the fits remained low (R2 

< 0.20). As vectors, ELEV was positively related to PC2 and TVI was negatively related to PC1. 

The surface fits for ELEV and TVI supported these linear relations, but also indicated some 

inconsistency in how well these topographic variables reflected general gradients across the 

ordination axes (Figure 3f and g). In the case of ELEV, plots also increased in value toward the 

positive and negative extremes of PC1; while for TVI, plots also increased in value toward the 

positive and negative extremes of PC2. DSR was not significant as a vector or a surface, even 

though this measure of solar radiation at the time of image acquisition was correlated with 

PANAVG (r = 0.62). The PANAVG measure thus appeared to be primarily related to variation in 

the spectral brightness of vegetation in the image, rather than simply being a function of general 

solar illumination differences as calculated by DSR. 

3.1.1. Selection of multiple variable linear regression models 

Because PC2 explained relatively little of the field data, and was not well-modeled by the 

geospatial variables, we performed the forward selection using only PC1 and its associated forest 
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variables. Multiple geospatial variables more strongly modeled PC1 and five of the six forest 

variables that were most differentiated along this axis (Table 5). In all cases, PANSD was selected 

first and explained most of the variance as measured by cumulative R2
a, with PANSD_COR09 the 

next most frequently selected (for PC1 and four forest variables) to explain additional variance. 

The highest cumulative fits were obtained for PC1 (R2
a = 0.70), followed by chestnut oak basal 

area (R2
a = 0.67), sugar maple basal area (R2

a = 0.65), herbaceous cover (R2
a = 0.64), and 

grapevine density (R2
a = 0.54). The most substantial addition to the cumulative fit was made by 

PANSD_COR09 for chestnut oak basal area (R2
a +0.13). PANAVG and NDVISD were not included in 

any model. Of the topographic variables, ELEV provided a small increase in cumulative fit for 

sugar maple basal area and herbaceous cover (R2
a +0.02 for both), and TVI a more substantial 

increase for grapevine density (R2
a +0.09). The cross validation indicated that adding geospatial 

variables reduced prediction error, although this remained relatively high when calculated as a 

percentage of the range of the response variable. The best model for prediction was PANSD + 

PANSD_COR09 for PC1, with a cross validated RMSE of 15.1% of the range of PC1 values. 

3.1.2. Spatial trends in principal components and geospatial variables 

A number of moderate to broad scale spatial gradients across the study area were evident for 

the PCA axis scores and geospatial explanatory variables. The PC1 plot scores (Fig 5a) exhibited 

a clear southwest to northeast increase from negative to positive, as well as some clustering of 

similar values. The PC2 plot scores (not shown) were spatially more mixed, but tended to be 

more highly negative in the north and more highly positive in the south. Not surprisingly, a 

pattern similar to PC1 was evident for the plot values for PANSD (Fig 5b), the geospatial variable 

most highly (and positively) correlated with PC1, and the other image variables (not shown) also 

had a general southwest to northeast directional pattern, albeit not as strong. Of the topographic 
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variables, ELEV (Fig 5c) generally increased from north to south, and TVI (Fig 5d) indicated 

that steeper plots tended to be located in the central portion of the study area. No clear spatial 

patterns were evident for DSR (not shown). This accounting of spatial trends, while qualitative 

and not exhaustive, indicated the presence of spatial structure in explanatory environmental 

variables, and we considered this in evaluating the results of the avian models. 

3.2. Single and multiple variable 50-m scale avian species richness models 

For the single variable avian models at the 50-m scale (Table 6), we focused on PC1, PC2, 

the image variables with the highest PC1-associated vector fits, and the topographic variables. 

While other image variables in the reduced set were also related to the richness measures, they 

produced results mostly similar to those obtained for the PC1-associated image variables. In 

several cases where different results were obtained, model fits for these image variables were 

low and difficult to interpret based on the PCA results. We considered these image variables later 

for inclusion in the multiple variable models. Total, gap, and common species richness were 

positively related to PC1 (i.e., avian richness increased with forest structural complexity/sugar 

maple basal area), with gap species richness providing the strongest fit (D2
a = 0.36). No avian 

species richness measures were related to PC2. Total, gap, and common species richness were 

also positively related to PANAVG, PANSD, and NDVISD; furthermore, for total and common 

species richness the fits for PANSD (D2
a = 0.20 and 0.23; respectively) and NDVISD (D2

a = 0.21) 

increased over those obtained for PC1 (D2
a = 0.10 and 0.11; respectively). Only PANSD had a 

stronger fit than PC1 for gap species richness (D2
a = 0.45), however. Gap species richness was 

also the only richness measure related (negatively) to PANSD_COR09. Rare species richness was 

not related to PC1 or any of the image variables. Of the three topographic variables, TVI and 
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DSR provided only weak fits (D2
a <0.05) to total and gap species richness (both negatively 

related to TVI) and to rare species richness (positively related to DSR).    

We used PANSD, NDVISD, and PC1 as the initial basis for the GAM multiple variable 

selection (Table 7). We chose PANSD and NDVISD because they were among the strongest of the 

image explanatory variables for the avian richness measures, and varied in how strongly they 

modeled gap species richness. We included PC1 so we could compare between models with 

geospatial variables added to PC1 (i.e., remote sensing data plus field data) and geospatial 

variable-only models for modeling the avian data. To test the inclusion of topographic effects, 

we added two of the three topographic variables (ELEV and TVI) to the models after preliminary 

testing indicated the unimportance (i.e., e.d.f. ≈ 0) of DSR as an effect for all the richness 

measures. Model concurvity measures remained uniformly low when ELEV and TVI were added 

to the models. Substantial increases in model concurvity prevented the inclusion of PANAVG and 

PANSD_COR09 in the models, as well as all potential combinations of PC1, PANSD, and NDVISD in 

the same model. We evaluated the addition of other, less-related image variables following the 

addition of the topographic variables.  

The inclusion of topographic effects, even if insignificant as single explanatory variables 

(e.g., ELEV), often improved the fit of the models, albeit slightly over their respective single 

variable models (D2
a increases <0.10; Table 7 vs. Table 6). The inclusion of ELEV and TVI 

improved the fit of the PC1 models for all richness measures but gap species richness. The 

inclusion of ELEV and TVI improved the fit of the PANSD and NDVISD models for total and 

common species richness, which remained higher than their respective PC1 model fits. The fit of 

the PANSD model for gap species richness remained the highest of all models, with a small 

increase in fit (to D2
a = 0.47) because of the inclusion of TVI. The models for rare species 
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richness resulted in only minimal fits, although with ELEV and TVI included the NDVISD model 

fit increased, and NDVISD became significant.  

We chose the best of the single image variable plus topographic effects models for each 

richness measure to test the inclusion of additional image variables (Table 8). No additional 

image variables were selected for the gap species richness PANSD model. For both the total and 

common species richness NDVISD models, a single image variable (PANSD_COR03) uncorrelated 

with NDVISD (r = -0.25) was selected and increased the fit (to D2
a = 0.42 and 0.39 for total and 

common species richness; respectively). The other variables remained in the total and common 

species richness models largely unchanged, other than a small increase in evidence for an ELEV 

effect (see e.d.f. and P-values; Table 8 vs. Table 7). For the rare species richness NDVISD 

models, another image variable (NDVISD_COR03) somewhat more correlated with NDVISD (r = 

0.47) was selected and provided an increase in fit (to D2
a = 0.16). In this case, ELEV and TVI 

remained in the rare species richness model largely unchanged, but the evidence for the NDVISD 

effect was somewhat lessened.  

  We present the GAM curves from the best-fitting multiple variable models for total and gap 

species richness (Figure 6) to illustrate the various relations we found between the explanatory 

variables and the species richness measures. For total, common, and gap species richness, PC1 

and the PANSD/NDVISD image variables tended to provide the dominant effect, as indicated by 

the relative steepness of the relation to species richness in comparison to the topographic effects, 

and any additional image variables. The ELEV effect was a slightly curved one, with higher 

species richness at middle elevations. The TVI effect was a slightly negative one, with species 

richness decreasing as the topography of the plots ranged from flatter to steeper. The increase in 

gap species richness showed some evidence of leveling off at high values for PC1, PANSD, and 
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NDVISD. In contrast, only linear relations with PC1, PANSD, and NDVISD were found with the 

larger counts for total and common species richness. The PANSD_COR03 and NDVISD_COR03 

relations were more distinctly hump-shaped than ELEV. 

3.2.1. Effect of 100-m scale on species richness results 

We found fewer significant results for single image variable models at the 100-m scale than 

at the 50-m scale for both total and common species richness (Table 6). These richness measures 

remained positively related only to NDVISD, although the model fits were somewhat reduced 

from those at the 50-m scale (from D2
a = 0.21 to D2

a = 0.14 for both measures). The gap species 

richness models, however, remained significant for all four image variables at the 100-m scale 

and had comparable model fits. The PANSD model for gap species richness again had the highest 

fit at the 100-m scale, which increased slightly from that obtained at the 50-m scale (from D2
a = 

0.45 to D2
a = 0.48). We found no significant results for single image variable models of rare 

species richness at the 100-m scale, and across the richness measures the few topographic 

models that were significant at the 50-m scale were no longer significant. 

There were also some differences in how the image variables fit the 100-m richness measures 

that we assessed graphically. The relation of total species richness to NDVISD at 100 m (Figure 

7a) showed an increase in species richness over that found at 50 m. Notably, the NDVISD values 

for most of the plots increased but not beyond the maximum NDVISD value at 50 m (i.e., the 

NDVISD gradient was shortened). While the 100-m scale total species richness relation to 

NDVISD was still positive, it became flatter at high NDVISD. The relation between gap species 

richness and PANSD at the 100-m scale (Figure 7b), as with total species richness, also showed a 

species richness increase (fewer points had no species and one point had the maximum six 

species) and a shortening of the PANSD gradient. The 100-m scale gap species richness relation 
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to PANSD was positive with a similar slope to that of the 50-m scale relation, but did not exhibit 

the slight flattening at high PANSD. 

When the best multiple variable models for species richness were tested at the 100 m scale, 

the total species richness model retained three of the four model terms (NDVISD e.d.f. = 1.40 and 

P = 0.018; ELEV e.d.f. = 0.99 and P = 0.077; TVI e.d.f. = 0.70 and P = 0.065; PANSD_COR03 

e.d.f. ≈ 0) and model fit decreased somewhat from D2
a = 0.31 to D2

a = 0.26. Similar results were 

found for common species richness (PANSD_COR03 e.d.f. ≈ 0), although TVI no longer had an 

effect. The rare species richness model remained similarly and weakly modeled (D2
a = 0.09), 

with three of the four model terms retained (NDVISD e.d.f. = 1.45 and P = 0.096; ELEV e.d.f. = 

0.51 and P = 0.193; TVI e.d.f. = 0.68 and P = 0.075; NDVISD_COR03 e.d.f. ≈ 0). The best gap 

species richness model tested at the 100-m scale retained only PANSD (e.d.f. = 1.00 and P < 

0.001) but the model fit remained similar (D2
a = 0.48).  

3.2.2. Effect of year on species richness results  

Across the three breeding seasons with the reduced set of 42 sampling points, total and 

common species richness were only positively related to NDVISD in 2011 at the 50-m scale 

(Table 9). While the fits in 2009 (at both scales) and in 2011 at the 100 m scale were not 

significant, the general trends in relation to NDVISD were still positive (Figure 8a). In 2010, 

however, at both scales the trend for higher total and common species richness at high NDVISD 

was lost, with a large reduction in species richness particularly obvious for the point with the 

highest NDVISD. With this potential influential outlier removed and the data reanalyzed, the 

downward trend for species richness at high NDVISD remained. No significant results were 

found for rare species richness. In contrast to the variable nature of the total and common species 

richness results across years, gap species richness was significantly and similarly related to 
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PANSD in all years at both the 50- and 100-m scales (Table 9; Figure 8b). Also, within all years 

the gap species richness fit was highest at the 100-m scale, although marginally so in 2011. In 

comparison to 2009 and 2011, the 2010 gap species richness fits at both scales were somewhat 

lower, however. A slightly nonlinear fit for gap species richness was also only apparent in 2011 

at the 50-m scale.     

3.3. Species occurrence and abundance models  

Of the 24 species analyzed for 2011 occurrence at the 50-m scale, five species (Eastern 

Towhee, Hooded Warbler, Kentucky Warbler, Northern Cardinal, and Ovenbird) were positively 

related to PC1, and one species (Eastern Wood-Peewee) was negatively related to PC1 (Table 

10). Except for Ovenbird, the species positively related to PC1 were gap species. Occurrences of 

11 species (the same PC1 species plus American Redstart, Black-and-white Warbler, Cerulean 

Warbler, Red-eyed Vireo, and Rose-breasted Grosbeak) were positively related to their 

respective best image textures (i.e., to increasing plot level pixel heterogeneity). Additionally, for 

the four gap species fit by PC1, their respective image texture model fits increased, and were 

among the highest overall for these models (D2
a range: 0.18–0.28). While the image texture 

model fit for Eastern Wood-Peewee was also relatively high (D2
a = 0.19), the PC1 model fit was 

higher (D2
a = 0.25). The image texture models fits for Ovenbird and the five additional species 

were relatively low (D2
a < 0.10). 

At the 100-m scale, abundance was positively related to image texture for six species (Table 

10). The highest abundance fits were obtained for the gap species Eastern Towhee, Hooded 

Warbler, and Northern Cardinal (D2
a range: 0.20–0.25); and for Eastern Wood-Peewee (D2

a = 

0.40). Two additional species (the gap species Indigo Bunting and Kentucky Warbler) were 

detected only as lone individuals and thus analyzed with 100-m scale binomial models. Indigo 
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Bunting occurrence was positively related to image texture, and provided the highest fit of any 

binomial model at either scale (D2
a = 0.41). Kentucky Warbler occurrence remained positively 

related to image texture, but model fit (D2
a = 0.11) decreased from the 50-m scale model (D2

a = 

0.28). The modeled abundances of the remaining species provided relatively weak fits (D2
a < 

0.10). These included one new species, Hairy Woodpecker, negatively related to PANSD; and 

two species (American Redstart and Rose-breasted Grosbeak) with similar fits to those obtained 

at the 50-m scale. Four species (Black-and-white Warbler, Cerulean Warbler, Ovenbird, and 

Red-eyed Vireo) were no longer related to image texture at the 100-m scale. 

 

4. Discussion 

We found that fine-scale satellite image texture was related to several habitat features that 

represented environmental heterogeneity in this forest, and that much of this heterogeneity 

appeared to be structural in nature. An increase in grapevine density, herbaceous cover, and snag 

density at the sampling locations (as calculated at the 50-m scale) was most closely tied to an 

increase in the s.d. of the pixel values in the panchromatic image (50-m scale PANSD). This 

image texture appeared to reflect a forest canopy that was structurally more heterogeneous (i.e., 

more open), thus allowing more light to reach through it. A more open forest canopy is also 

consistent with the lower basal area for these sampling locations. Because the mean of the pixel 

values in the panchromatic image (50-m scale PANAVG) increased along with the s.d., it seems 

likely that spectrally brighter vegetation, such as the grapevines and understory found in canopy 

gaps, contrasted with a relatively darker forest canopy to cause much of the higher variability in 

the image pixel values. Images for the sampling locations at the high end of the PANSD spectrum 

(e.g., Figure 2c and d; Appendix C) have noticeably brighter patches of pixels in support of this. 
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At the low end of the PANSD spectrum were the sampling locations with the highest basal 

area, and an additional texture measure; the s.d. of the second-order COR calculated with a 9x9 

pixel neighborhood (50-m scale PANSD_COR09) was positively correlated with these locations. 

While the field-based canopy cover estimate did not strongly differentiate among the sampling 

locations in the PCA ordination, canopy cover was positively correlated with basal area. This 

tendency, in addition to the large patches of smooth canopy at these locations (e.g., Figure 2a and 

b; Appendix C), appeared to characterize a forest canopy exhibiting greater closure. Underneath 

this canopy, sapling cover increased and we observed that the increased woody understory cover 

was often dominated by greenbrier, Vaccinium spp., and tree seedlings. Unlike the locations with 

a more open forest canopy, the saplings and understory at these locations would not be directly 

reflected in the satellite image from within canopy gaps. Further, because the canopy had fewer 

gaps it would have fewer bright patches of pixels in the image, and this contributed to less 

variation in the pixel values for the PANSD measure.  

Beyond the structural characteristics that were linked to image texture, the chestnut oak-

sugar maple dichotomy in the PCA suggested a strong gradient in forest composition among the 

sampling locations. Forest composition and structure are often considered as separate influences 

in avian studies (e.g., Lee and Rottenberry 2005, Jayapal et al. 2009); however, they are also 

likely interdependent (Hewson et al. 2011). That the basal areas of chestnut oak and sugar maple 

were closely aligned with the most important structural variables in the PCA suggested that the 

observed structural gradient was closely intertwined with the compositional one. It is likely that 

the structure of this forest depends at least in part on its composition; for example, there may 

have been increased tree fall rates and more grapevines present to inhibit gap succession where 

sugar maple is dominant, leading to more and longer-term canopy gaps. While structure leading 
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to composition is also a likely possibility, teasing out these different influences would be 

difficult if not impossible. We focus here on forest composition as a likely underlying influence 

on structural heterogeneity, as we suspect structure is more directly linked to the strongest of the 

image texture measures. 

The contrast between the relatively xerophytic chestnut oak and the relatively mesophytic 

sugar maple as canopy dominants also suggested potential productivity differences among the 

sampling locations. In support of this, as a productivity measure (Pettorelli et al. 2011) the NDVI 

pixel value mean (NDVIAVG) was highly correlated (r = 0.90) with PANAVG at the 50 m scale 

and was thus also indicative of sugar maple dominance. However, this meant that NDVIAVG was 

indicative of the associated structural characteristics as well. The NDVI has been linked to 

vegetation structure within and among habitats elsewhere, at least as obtained from coarser-scale 

(30-m resolution) Landsat satellite imagery (e.g., Wood et al. 2012), so determining what 

NDVIAVG is actually measuring here does not seem to be possible. Still, it is important to 

recognize that productivity may be an underlying influence in this forest that has led to some of 

the observed patterns in its structure and composition, and thus correlation with information in 

the satellite image. The ability of fine-scale multispectral imagery, such as that used here, to 

detect productivity gradients within forests warrants further study. 

Other than PC1 as the dominant PCA axis, other gradients within this forest as indicated by 

the PCA were more difficult to discern, with only relatively weak associations with the remote 

sensing data. One potential issue for the PCA (and subsequent fitting of geospatial variables) was 

the ridgetop sampling arrangement, because the field subplot data were summarized at the 

sampling point level for the analysis. This analysis decision prevented the ordination of potential 

influences such as aspect and slope on forest structure and composition within the sampled area 
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surrounding each point. The solution for this is to perform additional analysis at the individual 

field subplot level, which is the focus of Chapter 3. Still, some additional interpretation was 

provided by PC2 (e.g., tree density/species richness versus DBH mean), and elevation was 

aligned with this axis, albeit partially according to the surface fit. Also, PC2 indicated some 

differentiation at the extremes of PC1, and this resulted in the orientation of spectral brightness 

more toward grapevine density and NDVI pixel variation more toward sugar maple basal area.  

While there were relatively strong vector fits aligned primarily with PC1, additional 

geospatial information relevant to the PCA ordination was scarce, and when found was not 

strongly modeled even if fit as a nonlinear surface. The surface modeling did serve an important 

purpose, however, in supporting stronger fits such as PANSD as being consistently linear across 

the PC1 gradient. It was also important to include surface modeling to fully test the potential for 

confounding of topography, including how this relates to sun angle-induced brightness effects in 

the satellite image, with the image variables seemingly providing useful information about the 

habitat. The solar radiation index and the other topographic variables did not appear to have 

much influence on this information, however. Although relatively weak, elevation and the index 

of topographic complexity instead provided some additional interpretation, and also were of 

some use for the avian modeling. Finally, the opportunity for spurious fits should also be noted. 

For example, the PANSD_SD41 surface fit (Figure 3c) did not provide much interpretation 

regarding PC1, and could have been simply a consequence of fitting a large number of geospatial 

variables.    

4.1. Avian relations to principal component 1 (PC1) and image texture   

Of the richness measures, gap species richness was most strongly related to the PC1 forest 

structure/composition gradient. This suggested that an important component of the forest 
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heterogeneity indicated by this PCA axis was canopy gaps with well-developed understories. 

The Indigo Bunting and Blue-winged Warbler in this richness group are species that are also 

found in open habitats outside of forests, and unlikely to be found within mature forests without 

the presence of large, well-vegetated canopy gaps. Their occurrence when added to that of the 

other gap species is a particularly strong indication of areas with high structural heterogeneity 

within the largely contiguous ridgetop forest at this site. PANSD, the texture most highly 

correlated with PC1, modeled gap species richness even more strongly than PC1. Promisingly, 

Wood et al. (2013) also found that image texture was more strongly related to avian species 

richness, and also the densities of three species, than field-measured habitat structure. Here, 

perhaps PANSD reflected structural characteristics over the entire area of the sampling locations 

more comprehensively than the sub-sampled field data, or more accurately indicated canopy 

gaps and their associated vegetation, which were not directly measured in the field. If so, PANSD 

may be a relatively strong remote sensing proxy of this kind of structural heterogeneity, 

potentially useful if applied elsewhere within this forest type. 

Not surprisingly given the species richness results, four of the six species with significant 

occurrence trends in relation to PC1 were gap species. At the 50-m scale, the PANSD binomial 

model produced the best fit for these gap species, and furthermore the model fit increased over 

that of PC1. Of the gap species that were relatively common, the Hooded Warbler (occurrence: 

41/68 points) had the strongest results. That PANSD may have indicated the presence of canopy 

gaps with well-developed understories is consistent with other research for this species. Satellite 

(Ikonos and Landsat) image texture also discriminated between Hooded Warbler nest and non-

nest sites in Ontario, where nesting was linked in the field to the presence of overhead canopy 

gaps (Pasher et al. 2007). Occurrences of Eastern Towhee, Kentucky Warbler, and Northern 
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Cardinal were also more strongly modeled by PANSD, and these species are also likely to be 

primarily dependent on canopy gaps for nesting within this forest. As noted above, canopy gaps 

are likely required for nesting by Indigo Bunting and Blue-winged Warbler. While Indigo 

Bunting occurrence was not significantly related to PANSD at the 50 m scale, it was strongly so 

at the 100 m scale. Blue-winged Warbler could not be modeled with only five occurrences (at 

both scales), but given a greater sample size would likely have been strongly related to PANSD as 

well, since its occurrences were all at higher PANSD values.  

The lone species that was negatively related to PC1 was the Eastern Wood-Peewee, thus its 

occurrence was linked to locations with higher chestnut oak basal area and a more continuous 

forest canopy. This species favored nesting on drier ridgetops dominated by xeric oaks including 

chestnut oak in southeastern Ohio (Newell and Rodewald 2011). The PANSD_COR09 binomial 

model was the best for Eastern Wood-Peewee among the image texture models, although the fit 

was not as strong as that obtained using PC1. It may be that both composition and a closed 

canopy structure contribute to the occurrence of Eastern Wood-Peewee on forested ridgetops at 

this site, since PC1 represented both potential influences. However, the species is known to 

tolerate a wide range in the amount of tree cover (Kendrick et al. 2013), and for Newell and 

Rodewald (2011) was an abundant nester in both shelterwood harvests and closed canopy mature 

second growth. At the 100-m scale, Eastern Wood-Peewee abundance was relatively strongly 

modeled by PANSD_COR09 as the best image texture. As this texture when added to PANSD more 

strongly modeled chestnut oak basal area, this lends support to chestnut oak composition over 

canopy closure as the primary influence on its occurrence in this forest. 

The positive trends in total species richness in 2011 in relation to PC1 and image texture 

need to be considered in light of the species with the strongest trends in occurrence. Because 
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there were relatively weak positive trends, or no apparent trends, for most of the species tested 

(17 of the 24 species), much of the total species richness trend was due to the occurrences of the 

gap species. As a group, the gap species occurrences would also overwhelm the competing 

negative occurrence trend for the Eastern Wood-Pewee. We tested the removal of the gap species 

and Eastern Wood-Pewee occurrences from the best total species richness single variable model 

(NDVISD) and still found a positive, albeit considerably weaker trend (D2
a = 0.12; P = 0.001). 

This occurred despite the gap species not being as strongly modeled by NDVISD. It is likely that 

this “remainder” of the trend in species richness was mostly due to the occurrences of species 

that were positively but relatively weakly modeled with image texture (species with D2
a <0.10 in 

Table 10). Thus, in addition to the gap species, these species in tandem probably contributed 

most to the total species richness pattern observed in 2011.  

With the reduced across-year dataset, the total species richness trend was not significant in 

2009 and 2010, and showed evidence of diverging toward lower richness at high NDVISD in 

2010. The 26 additional 2011 sampling points helped to fill in the rather sparse sample at the low 

end of the NDVISD spectrum, so perhaps if these points had been sampled in 2009, the slightly 

positive trend in this year would have been stronger. More surprising is the drop in total species 

richness suggested for high NDVISD in 2010. Examination of the 2010 data at the visit level 

supported this pattern, with weather and wind conditions, observers, time of morning, and survey 

date appearing to have little bearing on the lower 2010 species counts for these points. 

Potentially some unmeasured environmental influence had an effect in 2010 but not the other 

years, or total bird species richness as measured for this study has abundant annual variation 

causing inconsistent results. As discussed below (section 4.3), more sampling at the point level 
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may be needed to gain a better estimate of total species richness, particularly if sampling is done 

within one habitat cover type.  

In terms of relatively common versus relatively rare species, the occurrences of common 

species were likely more responsible for the total species richness trends we observed. In all 

analyses, the trend for common species richness was closely similar to the trend for total species 

richness, whereas rare species richness had no trend, or was only weakly related to the total 

species richness trend. It is notable that this occurred despite the fact that the rare species group 

included the occurrences of three of the gap species. One potential explanation is that rare 

species are dispersed more randomly than common species (Ricotta et al 2008), and therefore are 

less likely to exhibit a group-level trend in relation to specific environmental factors. In contrast, 

common species are more likely to influence trends in total species richness simply due to their 

commonness (Lennon et al. 2004). Of the species included in common species richness, the most 

common (Red-eyed Vireo) showed some positive trend, along with Hooded Warbler (ranked 2nd 

in occurrence) with its considerably stronger positive trend, and so were influential in 

determining the overall positive trend. On the other hand, there were common species with no 

apparent trends (e.g., Scarlet Tanager; ranked 3rd in occurrence), and one with a negative trend 

(Eastern Wood Peewee; ranked 9th in occurrence). This suggests the importance of including 

analyses also at the species level, or using other functional groupings of species (e.g., as in the 

gap-associated species for this study), if possible. 

The attempt to use multiple geospatial variables for the avian modeling was at least partly 

successful. While the topographic influences on species richness were relatively weak, their 

interpretation was rather straightforward (e.g., flatter topography and mid-elevations supporting 

more species), and they resulted in some model improvements. It was also important to include 
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them, as in the PCA, to potentially control for these effects. The same could not be said of 

additional image information beyond that which was most strongly linked to the PCA results. 

This was actually beneficial for this study because interpretation of image information content 

was the goal. In the few cases where an additional image variable resulted in model 

improvement, we could not interpret what it meant in terms of habitat information. For example, 

while PANSD_COR03 was interesting in that it produced stronger models for total and common 

species richness when added to NDVISD and the topographic variables, it did not explain any 

PCA results. As this statistic only applied in 2011 at 50 m scale, it is perhaps safer in the absence 

of additional research to consider the potential, as noted above for the PCA geospatial variable 

fitting, for spurious effects (including nonlinear ones) to be found when considering a large 

number of explanatory variables. 

Depending on the scale of the analysis, some of the species richness responses in relation to 

image texture suggested threshold effects, although none were particularly strong. For example, 

at the 50-m scale the increase in gap species richness in relation to PANSD began to plateau. This 

result would be expected if a level of environmental heterogeneity was reached prior to the 

maximum heterogeneity (as measured at this scale), that tended to support the maximum number 

of the species in this group (also as measured at this scale). Why this threshold would not also 

occur at the 100-m scale for this group is more difficult to explain, but could be related to the 

increase in heterogeneity as measured by PANSD at the low end of the gradient, which supported 

more gap species and increased this portion of the trend. Curiously, a threshold was also 

apparent for total species richness at high NDVISD, but only at the 100-m scale. In comparison to 

gap species richness there was considerably more scatter in the richness values, so perhaps a total 

species richness trend was only modeled for lower NDVISD at the 100-m scale. While both of 
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these thresholds are very subtle, they do emphasize the importance of carefully considering the 

spatial scale of the sampling. Sampling at a large enough scale within this habitat would likely 

cause any species richness trend to vanish, with an increasing tendency for the maximum 

richness to be obtained for each sample. Finally, it may be helpful to study response thresholds 

for individual species, including the use of abundance data as this could allow for stronger 

modeling of thresholds. For example, a relatively strong threshold was indicated for Eastern 

Wood-Peewee abundance at the 100-m scale, which confirmed its occurrence trend.  

4.2. Spatial trends 

As previously described, forest composition at the site was known to differ on the ridgetops 

(Perkins 2006); however, it was not known to be so spatially structured (i.e., exhibiting a 

southwest to northeast trend across the study area). The image textures and the forest structure 

and composition characteristics that were differentiated along PC1 exhibited closely related 

spatial trends. It seems unlikely that image texture measures such as PANSD were idiosyncratic in 

their spatial distribution at this study area, and merely correlated with the observed forest 

composition and structure differences rather than indicate them. It is also unlikely that the 

occurrences of the gap species were the result of other influences on their distribution, rather 

than the presence of increased structural heterogeneity that was captured with image texture. 

These multiple lines of evidence strengthen support for image texture as truly representing 

environmental heterogeneity in this forest that is important to some species. It is also interesting 

that this heterogeneity was so spatially structured, as this may indicate a larger (i.e., 

macroecological) environmental pattern such as a broad-scale trend in forest composition across 

the region. While this study was likely too small and opportunistic, future studies in the region 

could perhaps detect pure spatial versus pure environmental control of avian diversity patterns 



50 
 

(sensu Gianuca et al. 2013) with a larger number of sampling locations distributed more 

regularly over a larger spatial scale. 

4.3. Comparisons with other studies 

Comparing our results with those from other studies that use image texture to model avian 

species richness is complicated by a number of factors, including differences in study design, 

habitats studied, and remote sensing data sources. Probably the most important study design-

related difference was that we modeled species richness using image texture obtained for a single 

habitat cover type (mature forest), whereas the other studies modeled species richness using 

image texture obtained for multiple habitat cover types. For instance, the habitats studied by St-

Louis et al. (2006) ranged from finer-textured grasslands to coarser-textured shrublands and a 

woodland, and avian species richness was previously known to increase as the structural 

complexity of these habitats increased from the grasslands to the shrublands to the woodland 

(Pidgeon et al. 2001). Image texture appeared to strongly reflect this gradient in structural 

complexity, and thus strongly modeled avian species richness (St-Louis et al. 2006). Although 

we cannot exactly quantify the differences between our studies, ours probably lacked the amount 

of contrast in both species richness and image texture values that is to be expected from multiple 

habitat cover types. It is perhaps not surprising, therefore, that we did not find particularly strong 

(or consistent) results for total species richness in relation to image texture. Comparison with 

Wallis et al.’s (2016) forested sites is somewhat complicated by our use of different biodiversity 

measures. Assuming richness is well correlated with Shannon diversity, their sampling of three 

forest types over a 700 m elevation gradient (including valleys, midslopes, and ridges) likely 

provided much more contrast in forest composition and structure than the ridgetop forest we 

studied, for modeling species richness.  
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Another study design-related factor pertains to the avian richness data itself. Both St-Louis et 

al. (2006) and Wood et al. (2013) conducted avian point counts over more within-breeding 

season visits (4–5 and 3–4; respectively) to their sampling points. Furthermore, St-Louis et al. 

(2006) combined three breeding seasons of data to obtain species richness for their sampling 

points and then calculated average species richness for their plot-level analyses using 12 

sampling points in each plot. Wood et al. (2013) also combined three breeding seasons of data to 

obtain species richness for their point-level analyses. Through greater sampling effort, both of 

these studies likely had a more stable and perhaps more accurate estimate of species richness 

than our study, for which we analyzed species richness computed for each sampling point based 

on two visits. We chose not to combine the three breeding seasons of data that we had based on 

sample size considerations for the multiple variable models (i.e., because of problems with over-

fitting). Future studies should consider increased sampling effort, within and perhaps across 

multiple breeding seasons, and use of species accumulation curves to assess the stability of the 

species richness estimate (see Wood et al. 2013) if analysis at the point-level is the goal and 

sample sizes are expected to be minimal.  

For Wood et al. (2013), the best image texture for predicting Grasshopper Sparrow density 

within grassland habitat was the plot-level pixel s.d. from second-order contrast derived from a 

1-m resolution infrared air photo, and the best predictor for Ovenbird density within forest 

habitat was the plot-level pixel mean from a 30-m resolution Landsat NDVI image. Despite the 

difference in habitats and remote sensing data, the measures appeared to capture similar types of 

habitat information (low contrast representing unbroken grasslands important for the sparrow, 

and high NDVI values representing dense forest for the Ovenbird) and model the species 

relatively strongly (Wood et al. 2013). Other than the Eastern Wood-Peewee, the best modeled 
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species in our study were gap species, and a plot-level image statistic (PANSD) likely 

representing habitat structural variability was the strongest. Comparing among our studies is 

difficult due to the myriad of differences. However, based on this limited comparison we suggest 

future studies include focus at the species level, with attention to how image texture and other 

remote sensing data characterize the habitat(s) in question, and features important to particular 

species within the habitat(s). With greater understanding at the species level, how remote sensing 

information relates to broader community-level trends (e.g., in species richness) may be better 

understood.  

4.4. Image texture analysis and application considerations 

We found that the best image texture measure for modeling the forest characteristics 

indicating high structural heterogeneity, as well as the avian species associated with this 

heterogeneity, was PANSD. This first-order statistic was also easy to obtain, being the s.d. of the 

pixel values extracted at the plot level from the original panchromatic image. The pixel value s.d. 

from the coarser grained NDVI image was not as effective, which suggests that the panchromatic 

image provided a spatial resolution that was a better match to the forest structural variability 

important to some of the bird species we evaluated. Pasher and King (2010) degraded 0.2-m 

resolution aerial photos of a northern hardwood forest to 0.6-m and 1-m resolutions, and found a 

loss of canopy spatial information and a decrease in the visibility of canopy gaps, so a finer grain 

than the 0.6 m panchromatic image we used could perhaps have provided a more powerful 

measure than PANSD. On the other hand, during the reduction of highly correlated image texture 

variables to a more manageable set, we found that the second-order NDVIAVG_CON measure 

increased to the r = 0.80 correlation threshold with PANSD as the NDVI neighborhood size 

increased to 11x11 pixels (Appendix D). Processing of the coarser 2.4 m resolution NDVI image 
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thus provided information that was similar to PANSD, so it could have been a potentially useful 

alternative if the finer-grained panchromatic image had not been available. 

Processing of the panchromatic image provided plot-level measures of first- and second-

order statistics that were nearly to completely redundant with PANSD (Appendix D). 

Interestingly, there were competing trends in the moving window pixel neighborhood sizes for 

particular measures to achieve redundancy. For example, both the PANSD_AVG and the PANSD_SD 

measures became most redundant (r = 1.00 and 0.95; respectively) with PANSD at the smallest 

neighborhood size (3x3 pixels) whereas for the PANAVG_SD measure the most redundancy (r = 

0.98) was achieved at the largest neighborhood size (41x41 pixels). Thus, at the 50-m scale at 

which the correlations were computed, the mean of the pixel s.d. obtained with the largest (24.6 

m x 24.6 m) neighborhood was most redundant with the s.d. of the pixel mean and s.d. obtained 

with the smallest (1.8 x 1.8 m) neighborhood. This suggests that the scale at which a statistic is 

summarized at the plot level is important to consider, for example, when attempting to interpret 

the meaning of the scale of a moving window statistic (e.g., is fine- or course-scale variability 

being characterized?). The differences we found when scaling up the statistics to 100 m (e.g., 

increasing the values, but shortening the range of pixel heterogeneity) also suggests caution in 

choosing a spatial scale for summarizing texture values. If the remote sensing data are available 

prior to collecting the field data, to help select the most appropriate spatial scale(s) for the field 

data collection, calculating area summaries of pixel values from raw and processed images at 

multiple spatial scales and evaluating their correlation may be useful.  

We addressed in two ways the potential confounding influence of topography and 

acquisition-induced (e.g., sun angle) image brightness variations on the image spectral and 

texture information. First, we used the NDVI image in part to potentially correct for these 
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brightness variations (Rouse et al. 1973). However, NDVIAVG was only slightly less correlated 

with DSR (r = 0.55) than PANAVG was with DSR (r = 0.62). For the image textures, there was a 

reduction in NDVI correlation with DSR for a given statistic (e.g., r = -0.06 and 0.25 for 

NDVISD and PANSD; respectively), but all pairwise correlations with DSR were r <0.50 

(Appendix D). Second, we assessed the inclusion of DSR as a variable throughout the modeling. 

Despite the moderate correlation with PANAVG, the fit of DSR to the PC1:PC2 ordination was 

small and not significant while the fit of PANAVG was relatively strong and significant. DSR also 

was unimportant as a single variable and in combination with other image variables in the avian 

models. The summer date and the near-solar noon acquisition time for the QuickBird image were 

probably close to optimal for texture calculation in rough terrain such as this. Imagery collected 

under less than optimal acquisition conditions may require removal of brightness variation prior 

to image texture calculation. Pasher and King (2010) review brightness correction techniques 

and apply one of these techniques to airborne imagery exhibiting much brightness variation to 

good effect. At a minimum, estimating a measure of solar illumination at the time of image 

acquisition should be done to examine if it relates more strongly to image brightness variation 

(i.e., noise) than to field data.  

Wood et al. (2012) recommend using a subset of first- and second-order texture measures to 

characterize vegetation heterogeneity due to the often high correlation between texture measures. 

The results from this study support this. While we found that a first-order statistic was most 

strongly related to forest composition and structure, one of the less correlated second-order COR 

statistics (PANSD_COR09) appeared to provide unique information related to a more closed canopy 

dominated by chestnut oak. For their texture measures, Wood et al. (2012) found that while the 

pixel mean summaries were usually highly correlated, the correlations among the pixel s.d. 
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summaries were more variable. We calculated a number of the latter (e.g., PANSD_SD41) that were 

relatively uncorrelated with other image texture statistics (Appendix D). While these additional 

s.d. summaries did not seem to be important in this study, such statistics may reflect important 

habitat variability at different spatial scales (St-Louis et al. 2006), and should be considered for 

inclusion. Finally, a spectral measure appeared to provide some unique vegetation information in 

this study and was useful when considered along with image texture for its likely contribution to 

the sampling point pixel s.d. To be comprehensive, studies using image texture should include 

spectral measures. In some cases (e.g., as in Wood et al. 2012), spectral measures may even 

provide more forest structural information than image texture.  

 

5. Conclusions 

The results of this study illustrate both the opportunities and the challenges for the use of 

high spatial resolution imagery to model forest habitat and avian biodiversity. Textural 

information contained in the satellite image was relatively strongly related to some of the forest 

characteristics measured in the field. The image information modeled the main structural 

complexity/chestnut oak-sugar maple composition gradient rather well, with potentially enough 

predictive accuracy to be ecologically informative if applied throughout the contiguous mature 

ridgetop forest at the site. As the model was assessed only within one site, it is important to 

attempt to validate these results elsewhere. These results also need to be validated with other 

imagery of a similarly fine resolution. Both the availability and quality of remote sensing data, 

including high resolution imagery, continues to increase (Li et al. 2014), so there is much future 

potential for studies such as this one. Although other kinds of remote sensing data should better 

provide certain information (e.g., vertical forest structure via active sensors such as Lidar), 
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standard optical imagery with a high spatial resolution should retain some advantages, such as 

the ease of producing relatively simple yet effect image statistics and for a larger area at a 

comparatively reduced cost (Wallis et al. 2016). This imagery also may add local, fine-scale 

information to other coarser-scale remote sensing data on forests (e.g., from the National Land 

Cover Database 2011; Homer et al. 2015). 

We found that the total avian species richness trend in relation to image texture was 

relatively weak, and results were inconsistent across the spatial scales of the analysis and when 

tested across years. This was a potentially interesting result in that it may call into question the 

general applicability of environmental heterogeneity as a driver of total species richness, at least 

when considered within a single, relatively homogeneous habitat cover type. Of likely greater 

interest was the relative strength and consistency of the gap species richness trends. This finding 

was encouraging, as it suggested that these bird species as a group may be a dependable signal of 

forest heterogeneity that can also be detected with high resolution imagery. The results at the 

species level, including both occurrence and abundance, also supported this finding. More 

intensive investigation at the habitat and species level may provide more certainty as to what is 

actually being measured by remote sensing data. he results of our study suggest that better 

estimation of point-based total species richness may be needed if the analysis is performed at the 

level of individual sampling points, with careful attention given to the spatial scale at which 

species are counted and remote sensing data are quantified. 
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Table 1. The moving window analysis neighborhood sizes and their respective ground distances 

for the panchromatic (PAN; 0.6-m resolution) and normalized difference vegetation index 

(NDVI; 2.4-m resolution) images. 

PAN image  NDVI image 

neighborhoods  neighborhoods 

pixels meters 
 

pixels meters 
3 x 3 1.8 x 1.8  3 x 3 7.2 x 7.2 

9 x 9 5.4 x 5.4  5 x 5 12.0 x 12.0 

17 x 17 10.2 x 10.2  7 x 7 16.8 x 16.8 

25 x 25 15.0 x 15.0  9 x 9 21.6 x 21.6 

33 x 33 19.8 x 19.8  11 x 11 26.4 x 26.4 

41 x 41 24.6 x 24.6    
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Table 2. The four categories of geospatial variables used in this study. The variables were 

obtained using geoprocessing tools in ArcGIS 10.1 (described in the footnotes) applied at the 

two plot-level spatial scales of the sampling points (50 and 100 m radii) to the data sources: the 

panchromatic (PAN) and normalized difference vegetation index (NDVI) images, the moving 

window analysis texture images from the PAN and NDVI images, and the digital elevation 

model (DEM). The pixel neighborhood size (see Table 1) is appended for identifying specific 

first- and second-order texture variables (e.g., PANAVG_SD03 indicates that the texture image from 

which this plot-level measure was obtained was calculated using a 3 x 3 pixel neighborhood). 

Geospatial variable Plot-level measurea Source 

Spectral   

PANAVG mean PAN image 

NDVIAVG mean NDVI image 

First-order texture   

PANSD s.d. PAN image 

NDVISD s.d. NDVI image 

PANAVG_SD03–41 mean 6 PAN moving window s.d. images 

NDVIAVG_SD03–11 mean 5 NDVI moving window s.d. images 

PANSD_AVG03–41 s.d. 6 PAN moving window mean images 

NDVISD_AVG03–11 s.d. 5 NDVI moving window mean images 

PANSD_SD03–41 s.d. 6 PAN moving window s.d. images 

NDVISD_SD03–11 s.d. 5 NDVI moving window s.d. images 

Second-order texture   

PANAVG_CON03–41 mean 6 PAN moving window CON images 

NDVIAVG_CON03–11 mean 5 NDVI moving window CON images 

PANSD_CON03–41 s.d. 6 PAN moving window CON images 

NDVISD_CON03–11 s.d. 5 NDVI moving window CON images 

PANAVG_COR03–41 mean 6 PAN moving window COR images 

NDVIAVG_COR03–11 mean 5 NDVI moving window COR images 

PANSD_COR03–11 s.d. 6 PAN moving window COR images 

NDVISD_COR03–11 s.d. 5 NDVI moving window COR images 

Topographic   

ELEV mean Elevation from DEM 

TVI area ratio Topographic variation index: 3D DEM area/2D areab 

DSR mean Direct solar radiation at time of image acquisition from DEMc 
a. The plot-level pixel summary statistic: mean or standard deviation (s.d.) as obtained using the Zonal Statistics tool, or the area 
ratio (for TVI), at radii of 50 and 100 m for the sampling points (n = 68). 
b. For TVI, the 3-dimensional (3D) area was calculated from the DEM using the Surface Volume tool, which also provided the 2-
dimensional (2D) area. 
c. The DSR image was calculated using the Area Solar Radiation tool. The parameters for the tool were: Latitude = 40°; Sky size = 
200; Julian date = 237 (August 25); Start/End (local) time = 11:18; Azimuth directions = 32; Zenith divisions = 8; Azimuth divisions = 
8; Diffuse radiation model = Uniform sky; Diffuse proportion = 0.3; Transmittivity = 0.5. 
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Table 3. Principal components (PC1-PC3) with eigenvalues >1.0 that were retained from the 

principal components analysis (% of the total variance each explained is in parentheses), and the 

factor loading for the 14 forest variables. The factor loadings that appeared to provide the most 

differentiation of the 68 sampling points for each retained component are in bold. 

  PC1 PC2 PC3 

Forest variable Label for Fig. 1a (39.3%) (16.3%) (11.5%) 

Chestnut oak basal area CHOA -0.38 -0.04 -0.08 

Sugar maple basal area SUMA 0.30 0.23 0.33 

Total basal area BA -0.33 0.04 0.34 

Tree density Tr_N -0.03 -0.51 0.36 

Tree height Hgt -0.21 0.25 0.05 

Tree species richness Tr_R -0.13 -0.51 0.14 

DBH mean xDBH -0.26 0.45 0.09 

DBH standard deviation sdDBH -0.33 0.17 0.17 

Snag density Snag_N 0.22 0.03 0.05 

Grapevine density Gv_N 0.33 -0.21 0.07 

Herbaceous % cover Hb 0.36 0.14 0.20 

Shrub % cover Sb -0.22 -0.15 -0.51 

Sapling % cover Sp -0.26 -0.21 0.20 

Canopy % cover Can -0.14 0.06 0.48 
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Table 4. Vector and surface fits of the reduced set of geospatial variables to the PC1:PC2 

(principal components 1 and 2) ordination (Figure 3a). Surface fits are not provided (--) if the R2 

fit was the same as the vector R2 fit. Geospatial variables in bold were used as the basis for the 

initial avian richness, occurrence, and abundance modeling. 

 Vector fit  Surface fit 

 axis correlation      

Geospatial variable PC1 PC2  R2 P  R2 P 
Image        

PANAVG 0.99 0.11 0.40 0.001  --  

PANSD 0.99 -0.15 0.63 0.001  --  

PANSD_AVG41 0.98 -0.22 0.26 0.001  0.33 <0.001 

PANSD_SD41 0.93 -0.37 0.03 0.414  0.25 0.007 

PANAVG_CON03 0.99 -0.11 0.43 0.001  0.44 <0.001 

PANSD_CON03 0.93 -0.38 0.26 0.001  --  

PANSD_COR03 -0.96 -0.26 0.05 0.165  --  

PANSD_COR09 -0.99 -0.17 0.52 0.001  --  

PANSD_COR41 -1.00 -0.05 0.35 0.001  0.38 <0.001 

NDVISD 0.83 -0.55 0.29 0.001  0.32 <0.001 

NDVISD_SD11 0.44 -0.90 0.11 0.025  0.24 0.005 

NDVIAVG_CON03 0.94 -0.35 0.39 0.001  --  

NDVISD_CON03 0.90 -0.44 0.20 0.002  --  

NDVIAVG_COR03 0.98 -0.22 0.38 0.001  0.42 <0.001 

NDVISD_COR03 1.00 -0.02 0.14 0.010  0.27 0.002 

NDVISD_COR05 -0.74 -0.68 0.01 0.791  --  

NDVISD_COR11 -1.00 0.10 0.00 0.874  --  

        

Topographic        

ELEV -0.16 0.99 0.11 0.026  0.19 0.008 

TVI -0.98 -0.19 0.10 0.040  0.18 0.014 

DSR 0.77 0.64 0.07 0.084  --  
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Table 5. Results of the forward selection procedure (Blanchet et al. 2008) of geospatial variables 

for predicting principle component 1 (PC1) and the dominant PC1 forest characteristics (the six 

forest variables in bold for PC1 in Table 3). Model fit was evaluated using leave-one-out cross 

validation and the cross validated root mean square error (RMSE) is reported along with the 

RMSE as a percentage of the range of the response variable.  

 Variable selection  Model fit 

Response variable Geospatial variables  F P  Cumulative R2
a RMSE % RMSE 

PC1 PANSD 103.0 0.001  0.61 0.431 17.3 

 + PANSD_COR09 21.8 0.001  0.70 0.377 15.1 

        

Chestnut oak basal area PANSD 78.0 0.001  0.54 0.208 19.9 

 + PANSD_COR09 27.5 0.001  0.67 0.178 17.0 

        

Sugar maple basal area PANSD 114.4 0.001  0.63 0.145 16.5 

 + ELEV 4.4 0.044  0.65 0.144 16.4 

        

Total basal area PANSD 27.5 0.001  0.29 4.76 16.8 

        

DBH standard deviation PANSD 18.8 0.001  0.21 1.80 21.0 

 + PANSD_COR09 5.0 0.028  0.26 1.76 20.5 

        

Grapevine density PANSD 46.7 0.001  0.41 0.594 19.8 

 + TVI 12.1 0.002  0.50 0.554 18.5 

 + PANSD_COR09 7.2 0.015  0.54 0.534 17.8 

        

Herbaceous % cover PANSD 78.4 0.001  0.54 0.182 18.5 

 + PANSD_COR09 13.9 0.001  0.62 0.167 17.0 

 + ELEV 5.8 0.017  0.64 0.163 16.5 
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Table 6. Single variable generalized additive model (GAM) results for the species richness measures at the two spatial scales 

(significant results are underlined). The principal components analysis (PCA) axes PC1 and PC2, which are 50-m scale field habitat 

data-derived variables (see Figure 3a), are presented for comparison with the 50-m scale geospatial (image and topographic) variables. 

The 100-m scale geospatial variables are presented for comparison with their respective 50-m scale results. 

   Richness 

   Total  Common  Rare  Gap 

Category (and scale) Variable T a edf Wald P D2
a  edf Wald P D2

a  edf Wald P D2
a  edf Wald P D2

a 

PCA axis (50-m) PC1 (+) 1.00 0.001 0.10  1.00 0.003 0.11  1.00 0.236 0.00  1.63 <0.001 0.36 

 PC2  1.00 0.202 0.00  1.00 0.147 0.01  2.01 0.645 0.00  1.00 0.434 0.00 

                  

Image (50-m) PANAVG (+) 1.00 0.012 0.05  1.00 0.016 0.06  1.00 0.370 0.00  1.00 <0.001 0.25 

 PANSD (+) 1.00 <0.001 0.20  1.00 <0.001  0.23  1.00 0.133 0.01  2.04 <0.001 0.45 

 NDVISD (+) 1.00 <0.001 0.21  1.00 <0.001 0.21  1.87 0.170 0.05  2.66 <0.001 0.23 

 PANSD_COR09 (-) 1.00 0.171 0.01  1.00 0.127 0.02  1.00 0.904 0.00  1.00 <0.001 0.19 

                  

Image (100-m) PANAVG (+) 1.00 0.703 -0.01  1.00 0.719 -0.01  1.60 0.572 0.00  1.00 <0.001 0.30 

 PANSD (+) 1.00 0.057 0.06  1.28 0.123 0.10  1.00 0.426 -0.01  1.00 <0.001 0.48 

 NDVISD (+) 1.60 0.034 0.14  1.00 0.028 0.14  2.01 0.235 0.05  1.36 0.001 0.24 

 PANSD_COR09 (-) 1.00 0.809 -0.01  1.00 0.616 -0.01  1.47 0.692 0.00  1.00 <0.001 0.23 

                  

Topographic (50-m) ELEV  2.58 0.072 0.07  2.52 0.116 0.08  1.11 0.228 0.01  2.14 0.568 0.01 

 TVI (-) 1.00 0.043 0.03  1.00 0.148 0.01  1.00 0.107 0.02  1.00 0.024 0.04 

 DSR (+) 1.64 0.430 0.00  1.45 0.731 0.00  1.00 0.048 0.04  3.19 0.091 0.06 

                  

Topographic (100-m) ELEV  2.41 0.148 0.12  2.12 0.336 0.10  1.59 0.478 0.01  1.29 0.533 0.00 

 TVI  1.73 0.305 0.05  1.27 0.777 0.00  1.25 0.237 0.02  1.00 0.799 -0.01 

 DSR  1.00 0.764 -0.01  1.00 0.336 0.01  1.68 0.485 0.01  1.00 0.567 -0.01 
a. For significant results, species richness trend is in relation to increasing forest structural heterogeneity/sugar maple composition (PC1 models), to increasing pixel heterogeneity 
(image models), and to increasing TVI and DSR (topographic models).  
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Table 7. Generalized additive model (GAM) multiple variable selection results for the species 

richness measures at the 50-m scale. 

 PC1 models  PANSD models  NDVISD models 

Richness Term edf a Wald P D2
a  Term edf a Wald P D2

a  Term edf a Wald P D2
a 

Total PC1  0.85 0.009 0.17  PANSD 0.94 <0.001 0.27  NDVISD 0.95 <0.001 0.31 

  ELEV 1.35 0.011   ELEV 1.20 0.025   ELEV 0.97 0.088  

 TVI 0.62 0.100    TVI 0.72 0.060    TVI 0.88 0.004  

               

Common PC1  0.87 0.005 0.16  PANSD 0.94 <0.001 0.27  NDVISD 0.94 <0.001 0.29 

  ELEV 1.16 0.047   ELEV 0.96 0.083   ELEV 0.84 0.154  

 TVI 0     TVI 0.36 0.210    TVI 0.80 0.027  

               

Rare PC1  0  0.05  PANSD 0.41 0.190 0.05  NDVISD 1.11 0.040 0.08 

  ELEV 0.83 0.112   ELEV 0.76 0.140   ELEV 0.32 0.255  

 TVI 0.67 0.082    TVI 0.63 0.100    TVI 0.72 0.059  

               

Gap PC1  1.55 <0.001 0.36  PANSD 1.96 <0.001 0.47  NDVISD 2.24 <0.001 0.30 

  ELEV 0    ELEV 0    ELEV 0.12 0.298  

 TVI 0     TVI 0.59 0.120    TVI 0.87 0.005  
a. Double penalized estimated degrees of freedom (Marra and Wood 2011). If edf = 0 then the term was completely penalized out of 
the model. 
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Table 8. Generalized additive model (GAM) multiple variable selection results for the addition 

of image variables to the best single image/topographic variable models for total, common, and 

rare species richness at the 50-m scale. 

Total species richness  Common species richness  Rare species richness 

Term edf a Wald P D2
a  Term edf a Wald P D2

a  Term edf a Wald P D2
a 

NDVISD 0.96 <0.001 0.42  NDVISD 0.94 <0.001 0.39  NDVISD 0.61 0.102 0.16 

ELEV 1.25 0.062   ELEV 1.29 0.096   ELEV 0.21 0.251  

 TVI 0.87 0.006    TVI 0.79 0.029    TVI 0.68 0.075  

PANSD_COR03 1.59 0.003   PANSD_COR03 1.38 0.017   NDVISD_COR03 1.60 0.011  
a. Double penalized estimated degrees of freedom (Marra and Wood 2011). 
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Table 9. Best single image variable generalized additive models (GAMs) for total, common, and 

gap species richness in 2009-11 at the two spatial scales using the reduced dataset of 42 sampling 

points (significant results are underlined). No significant results were found for rare species 

richness (not reported). 

   Year (n = 42 sampling points each year) 

   2009  2010  2011 

Richness Model  edf Wald P D2
a  edf Wald P D2

a  edf Wald P D2
a 

Total              

50 m NDVISD   1.00 0.203 0.02  3.06 0.064 0.20  1.00 <0.001 0.16 

100 m NDVISD   1.00 0.266 0.03  2.02 0.294 0.12  1.69 0.097 0.17 

              

Common              

50 m NDVISD   1.00 0.186 0.05  2.86 0.196 0.22  1.00 0.002 0.19 

100 m NDVISD   1.00 0.417 0.02  1.86 0.475 0.11  1.00 0.088 0.11 

              

Gap              

50 m PANSD  1.00 <0.001 0.28  1.06 0.012 0.18  2.12 <0.001 0.44 

100 m PANSD  1.00 <0.001 0.45  1.00 0.003 0.28  1.00 <0.001 0.47 
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Table 10. Single variable generalized additive model (GAM) results for species occurrence (50-m scale) and abundance (100-m scale) 
for the species with at least one significant effect (underlined) found for the principal component 1 (PC1) and best image texture 
models. The number of absences (N = 0) and presences (N = 1) for each species over the 68 sampling points at the 50-m scale are also 
provided. 

 
 

 
 

PC1 models 
 

Best image textures models 

 
 

N (50 m) 
 

50 m occurrence 
 

 
 

 50 m occurrence 
 

100 m abundance 

Species 
 

0 1 
 

T a edf Wald P D2
a  

Model 
 

T a edf  Wald P D2
a  

edf  Wald P D2
a 

American Redstart 
 

36 32 
 

 2.06 0.428 0.02 
 

NDVISD 
 

(+) 1.00 0.043 0.03 
 

1.00 0.023 0.05 

Black-and-white Warbler 
 

32 36 
 

 1.00 0.691 0.00 
 

NDVISD 
 

(+) 1.00 0.007 0.08 
 

1.00 0.744 0.00 

Cerulean Warbler 
 

45 23 
 

 1.00 0.151 0.01 
 

PANSD 
 

(+) 1.00 0.029 0.04 
 

1.76 0.268 0.04 

Eastern Towhee b 
 

39 29 
 

(+) 1.00 0.002 0.11 
 

PANSD 
 

(+) 1.44 <0.001 0.23 
 

1.00 <0.001 0.25 

Eastern Wood-Pewee 
 

40 28 
 

(-) 1.73 0.002 0.25 
 

PANSD_COR09 
 

(+) 1.00 <0.001 0.19 
 

2.50 0.003 0.40 

Hairy Woodpecker 
 

53 15 
 

 1.00 0.108 0.03 
 

PANSD 
 

(-) 2.09 0.157 0.08 
 

1.00 0.048 0.06 

Hooded Warbler b 
 

27 41 
 

(+) 1.00 <0.001 0.22 
 

PANSD 
 

(+) 1.22 <0.001 0.28 
 

1.00 0.004 0.20 

Indigo Bunting b, c 
 

61 7 
 

 1.82 0.092 0.26 
 

PANSD 
 

(+) 2.25 0.135 0.27 
 

1.00 0.001 0.41 

Kentucky Warbler b, c 
 

61 7 
 

(+) 1.00 0.009 0.21 
 

PANSD 
 

(+) 1.00 0.008 0.28 
 

1.00 0.006 0.11 

Northern Cardinal b 
 

49 19 
 

(+) 1.97 0.013 0.15 
 

PANSD 
 

(+) 2.56 0.041 0.18 
 

2.20 0.012 0.25 

Ovenbird 
 

34 34 
 

(+) 1.00 0.008 0.07 
 

PANSD 
 

(+) 1.00 0.022 0.05 
 

1.00 0.090 0.04 

Red-eyed Vireo 
 

16 52 
 

 1.00 0.052 0.04 
 

PANSD 
 

(+) 1.00 0.042 0.05 
 

1.00 0.121 0.07 

Rose-breasted Grosbeak 
 

57 11 
 

 2.01 0.283 0.04 
 

PANSD 
 

(+) 1.00 0.045 0.06 
 

1.00 0.026 0.07 

a. Trend (+ = positive, - = negative) is in relation to increasing forest structural heterogeneity/sugar maple composition (significant PC1 models) and to increasing pixel heterogeneity 
(significant best image texture models). 
b. Included in canopy gap-associated species richness. 
c. Binomial 100 m occurrence model applied because relative abundance per sampling point was not higher than 1 
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Figure 1. Study site at the Lewis Wetzel Wildlife Management Area in northwest WV, with the 68 ridgetop sampling point locations 

shown on the August 2009 QuickBird satellite panchromatic (0.6-m resolution) image (left). The points were located >150 m from 

anthropogenic forest impacts on the ridgeline (i.e., the crest) of prominent ridges (right), spaced ≥250 m apart for avian point count 

survey considerations. The 4-landform classification was obtained from a 3-m digital elevation model (used here as a shaded-relief 

underlay of the landform classification set at 50% transparency) using the Topographic Position Index function in Topography Tools 

for ArcGIS 10.1 (Dilts 2015).  
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Figure 2. Diagram of the QuickBird satellite image processing and extraction of the zonal 

statistics (i.e., the image variables used in the analyses) for the 68 sampling point locations at the 

50- and 100-m radius plot-level scales. In extraction step 1, the zonal statistics were obtained 

directly from the PAN and NDVI images. In extraction step 2, the zonal statistics were obtained 

from images of first- and second-order texture statistics processed from the PAN and NDVI 

images.  
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  (a) PC1:PC2 ordination plot   (b) Image variable vector fits 

  

  (c) PANSD_SD41 surface fit   (d) NDVISD_SD11 surface and vector fits 

  

Figure 3. Principal components analysis (PCA) results and geospatial variable fits. See Table 3 

for the key to the forest variable labels for the PC1:PC2 (principal components 1 and 2) 

ordination plot, and Table 4 for the vector and surface fits (R2) of the geospatial variables to the 

PC1:PC2 ordination plot. 
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  (e) NDVISD_COR03 surface and vector fits   (f) ELEV surface and vector fits 

  

  (g) TVI surface and vector fits  

 

 

Figure 3. cont. Principal components analysis (PCA) results and geospatial variable fits. See 

Table 3 for the key to the forest variable labels for the PC1:PC2 (principal components 1 and 2) 

ordination plot, and Table 4 for the vector and surface fits (R2) of the geospatial variables to the 

PC1:PC2 ordination plot. 
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Figure 4. Sampling point images ranked by principal component 1 (PC1) scores. The sampling 

points with the minimum and 25th percentile values (negative PC1 scores; see Figure 3a) are 

dominated by a smooth canopy. The sampling points with the 75th percentile and maximum 

values (positive PC1 scores; see Figure 3a) exhibit a more heterogeneous canopy, with distinctly 

brighter patches of pixels that likely indicate greater reflectance by understory vegetation in 

canopy gaps and/or grapevines.  
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(a) PC1 (b) PANSD 

  

(c) ELEV (d) TVI 

  

Figure 5. Spatial bubble plots of principal component 1 (PC1) scores and select geospatial 

variables for the 68 sampling points. The x- and y-axes are in Universal Transverse Mercator 

Zone 17, North American Datum 1983 coordinates. The sizes of the points are in proportion to 

their values. The values for PANSD, elevation (ELEV), and the topographic variation index (TVI) 

were mean-centered to more clearly illustrate spatial patterns.  
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Figure 6. Generalized additive model (GAM) response curves for the best-fitting multiple 

variable models for (a) total and (b) gap species richness at the 50-m scale. The curves show the 

functional forms of the responses (with 95% confidence bands) to the geospatial variables. The 

y-axes are at the scale of the linear predictor, and the labels provide the estimated degrees of 

freedom (e.d.f.) of the scale-invariant tensor product (te) smooths used in the GAMs to obtain the 

response curves. The tick marks above the x-axes indicate the geospatial variable values for the 

68 sampling points. Note that for gap species richness, elevation was effectively removed as an 

effect (e.d.f. ≈ 0) by the GAM variable selection technique (Marra and Wood 2011). 
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Figure 7. Generalized additive model (GAM) response curves plotted at the scale of the original 

response data (number of species) from the overall best-fitting single variable models for (a) total 

and (b) gap species richness at the 50- and 100-m scales. The dots indicate the individual 

richness values for the sampling points (n = 68).  
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(a) Total species richness: NDVISD models 

 
(b) Gap species richness: PANSD models 

 
Figure 8. Annual generalized additive model (GAM) response curves plotted at the scale of the 

original response data (number of species) for (a) total and (b) gap species richness at the 50- and 

100-m scales using the 42 sampling points surveyed 2009-11 (solid lines = significant trends). 

The black dots indicate the individual richness values for the sampling points. For the 2011 

graphs, the GAM response curves using the 68 total sampling points, and the individual species 

richness values for the 26 additional 2011 points, are shown in gray.  
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Appendix A. Bird species common names, scientific names, detection type(s) used for the 
analysis, and relatively common/relatively rare designation.  

Common name a Scientific name Detection type(s) (C)ommon or 
(R)are 

Acadian Flycatcher Empidonax virescens song R 

American Redstart Setophaga ruticilla song C 

American Robin Turdus migratorius song + call C 

Baltimore Oriole Icterus galbula song R 

Black-and-white Warbler Mniotilta varia song C 

Black-throated Green Warbler Setophaga virens song R 

Blue-gray Gnatcatcher Polioptila caerulea song + call R 

Blue-headed Vireo Vireo solitarius song R 

Blue Jay Cyanocitta cristata call + visual C 

Blue-winged Warbler Vermivora cyanoptera song R 

Carolina Chickadee Poecile carolinensis song + call R 

Carolina Wren Thryothorus ludovicianus song R 

Cerulean Warbler Setophaga cerulea song C 

Downy Woodpecker Picoides pubescens call + visual R 

Eastern Towhee Pipilo erythrophthalmus song + call C 

Eastern Wood-Pewee Contopus virens song C 

Great-crested Flycatcher Picoides villosus call R 

Hairy Woodpecker Picoides villosus call + visual R 

Hooded Warbler Setophaga citrina song C 

Indigo Bunting Passerina cyanea song R 

Kentucky Warbler Geothlypis formosus song R 

Mourning Dove Zenaida macroura song R 

Northern Cardinal Cardinalis cardinalis song C 

Northern Flicker Colaptes auratus call + visual R 

Northern Parula Warbler Seiurus aurocapilla song R 

Ovenbird Seiurus aurocapilla song C 

Pileated Woodpecker Dryocopus pileatus call + visual R 

Red-bellied Woodpecker Melanerpes carolinus call + visual R 

Red-eyed Vireo Vireo olivaceus song C 

Rose-breasted Grosbeak Pheucticus ludovicianus song C 

Ruby-throated Hummingbird Archilochus colubris call + visual R 

Scarlet Tanager Piranga olivacea song C 

Tufted Titmouse Baeolophus bicolor song + call C 

White-breasted Nuthatch Sitta carolinensis call C 

Wood Thrush Hylocichla mustelina song C 

Worm-eating Warbler Helmitheros vermivorum song R 

Yellow-billed Cuckoo Coccyzus americanus call R 

Yellow-throated Vireo Vireo flavifrons song R 
 
a Species in bold (n=6) are those whose occurrences appeared to be most closely tied to distinct canopy gaps in this forest and 
those underlined (n=24) were analyzed with binomial (occurrence) models. 
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Appendix B. Spearman’s correlations for the reduced set of geospatial variables. See Appendix D for the full set of correlations. 
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PANAVG  0.69 0.51 0.16 0.78 0.49 -0.26 -0.55 -0.54 0.17 0.04 0.14 0.23 0.32 0.18 -0.19 -0.08 0.18 -0.16 0.62 

PANSD 0.69  0.76 0.33 0.74 0.64 -0.32 -0.60 -0.60 0.74 0.45 0.62 0.56 0.76 0.43 0.04 0.05 0.00 -0.07 0.25 

PANSD_AVG41 0.51 0.76  0.16 0.52 0.30 -0.32 -0.40 -0.46 0.65 0.37 0.41 0.37 0.56 0.21 0.02 0.10 -0.05 0.11 0.07 

PANSD_SD41 0.16 0.33 0.16  0.10 0.21 0.08 0.07 0.30 0.36 0.60 0.04 0.33 0.32 0.04 0.17 0.23 0.07 0.11 -0.10 

PANAVG_CON03 0.78 0.74 0.52 0.10  0.71 -0.03 -0.51 -0.60 0.27 0.11 0.36 0.36 0.33 0.21 -0.26 -0.10 0.04 -0.11 0.36 

PANSD_CON03 0.49 0.64 0.30 0.21 0.71  0.13 -0.24 -0.29 0.45 0.35 0.36 0.38 0.33 0.37 0.05 -0.03 0.09 0.05 0.14 

PANSD_COR03 -0.26 -0.32 -0.32 0.08 -0.03 0.13  0.49 0.34 -0.25 0.07 -0.40 -0.19 -0.42 -0.13 -0.07 -0.01 0.09 0.15 -0.21 

PANSD_COR09 -0.55 -0.60 -0.40 0.07 -0.51 -0.24 0.49  0.76 -0.27 0.08 -0.55 -0.23 -0.48 -0.23 0.19 0.06 -0.06 0.28 -0.34 

PANSD_COR41 -0.54 -0.60 -0.46 0.30 -0.60 -0.29 0.34 0.76  -0.21 0.24 -0.55 -0.25 -0.43 -0.13 0.34 0.32 0.02 0.33 -0.40 

NDVISD 0.17 0.74 0.65 0.36 0.27 0.45 -0.25 -0.27 -0.21  0.72 0.65 0.52 0.72 0.47 0.36 0.25 -0.13 0.10 -0.06 

NDVISD_SD11 0.04 0.45 0.37 0.60 0.11 0.35 0.07 0.08 0.24 0.72  0.23 0.35 0.38 0.30 0.35 0.44 -0.03 0.32 -0.24 

NDVIAVG_CON03 0.14 0.62 0.41 0.04 0.36 0.36 -0.40 -0.55 -0.55 0.65 0.23  0.56 0.57 0.37 0.07 -0.01 -0.18 -0.13 0.01 

NDVISD_CON03 0.23 0.56 0.37 0.33 0.36 0.38 -0.19 -0.23 -0.25 0.52 0.35 0.56  0.39 0.29 0.20 -0.05 -0.07 0.02 0.01 

NDVIAVG_COR03 0.32 0.76 0.56 0.32 0.33 0.33 -0.42 -0.48 -0.43 0.72 0.38 0.57 0.39  0.33 0.05 0.13 -0.09 -0.15 0.02 

NDVISD_COR03 0.18 0.43 0.21 0.04 0.21 0.37 -0.13 -0.23 -0.13 0.47 0.30 0.37 0.29 0.33  0.39 0.11 -0.01 0.12 0.03 

NDVISD_COR05 -0.19 0.04 0.02 0.17 -0.26 0.05 -0.07 0.19 0.34 0.36 0.35 0.07 0.20 0.05 0.39  0.44 -0.02 0.12 -0.16 

NDVISD_COR11 -0.08 0.05 0.10 0.23 -0.10 -0.03 -0.01 0.06 0.32 0.25 0.44 -0.01 -0.05 0.13 0.11 0.44  0.09 0.09 -0.06 

ELEV 0.18 0.00 -0.05 0.07 0.04 0.09 0.09 -0.06 0.02 -0.13 -0.03 -0.18 -0.07 -0.09 -0.01 -0.02 0.09  0.00 0.15 

TVI -0.16 -0.07 0.11 0.11 -0.11 0.05 0.15 0.28 0.33 0.10 0.32 -0.13 0.02 -0.15 0.12 0.12 0.09 0.00  -0.43 

DSR 0.62 0.25 0.07 -0.10 0.36 0.14 -0.21 -0.34 -0.40 -0.06 -0.24 0.01 0.01 0.02 0.03 -0.16 -0.06 0.15 -0.43  
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Appendix C. Overview map of the 68 sampling points and the Quickbird satellite 0.6-m 

panchromatic band images of the points ordered by their principal component 1 (PC1) scores 

from the principal components analysis (PCA) of the field habitat data (collected within the inner 

50-m radius circle). For the images, the value in the parentheses is the 50-m radius pixel s.d. 

(PANSD), with the numeric rank for the point from low to high PANSD in brackets. Image labels 

for the 26 points added in 2011 are in bold.  
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-1.017  PC_C4 
(9.938 [22])  

-0.987  PC_A7 
(9.842 [17])  

-0.970  PC_C2 
(9.056 [7])  

-0.969  PC_CG4 
(8.547 [2])  

    
-0.909 PC_SR54 
(9.845 [18]) 

-0.894 PC_CG3 
(9.191 [11]) 

-0.768 PC_CG5 
(10.357 [28]) 

-0.764 C6_6 
(9.849 [19]) 

    
-0.724 PC_C1 
(8.959 [6]) 

-0.720 PC_A5 
(9.082 [8]) 

-0.711 PC_A8   
(10.145 [26]) 

-0.700 PC_CG2   
(9.797 [14]) 

    
-0.694 PC_CG1   
(9.939 [23]) 

-0.674 C4_7R   
(10.020 [24]) 

-0.637 PC_SR133   
(12.311 [46]) 

-0.635 C6_8R   
(8.631 [3]) 

    
-0.617 C1_5R   
(11.178 [34]) 

-0.614 PC_A6   
(8.934 [5]) 

-0.583 B3_3   
(10.643 [29]) 

-0.552 C1_8   
(9.932 [21]) 
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-0.548 PC_C3 
(8.286 [1]) 

-0.516 C5_3 
(9.103 [9]) 

-0.484 C6_7 
(9.811 [15]) 

-0.420 C1_9 
(9.190 [10]) 

    
-0.412 C3_6R 
(10.968 [32]) 

-0.399 PC_A1 
(11.606 [42]) 

-0.302 C5_5 
(9.541 [13]) 

-0.203 C5_4 
(9.814 [16]) 

    
-0.172 PC_CG7 
(10.790 [31]) 

-0.168 C6_5R 
(9.922 [20]) 

-0.163 B5_7 
(11.604 [41]) 

-0.142 PC_CG6 
(9.442 [12]) 

    
-0.125 B2_5R 
(13.131 [57]) 

-0.113 PC_A2 
(11.214 [36]) 

-0.111 A5_5R 
(8.748 [4]) 

-0.036 B6_3R 
(13.525 [61]) 

    
-0.032 C3_8R 
(12.447 [48]) 

0.000 PC_A4 
(11.575 [40]) 

0.055 PC_A3 
(11.184 [35]) 

0.056 A4_3 
(10.246 [27]) 
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0.175 B6_2R 
(13.918 [65]) 

0.180 A2_1R 
(10.130 [25]) 

0.213 PC_SR186 
(12.737 [51]) 

0.227 B1_7 
(11.385 [37]) 

    
0.244 A5_4 
(11.050 [33]) 

0.272 B5_1R 
(11.391 [38]) 

0.374 B1_1R 
(13.670 [63]) 

0.375 C1_7 
(11.617 [43]) 

    
0.447 PC_OR117 
(14.169 [67]) 

0.541 B6_4 
(13.077 [56]) 

0.559 B6_6 
(10.663 [30]) 

0.609 C3_7 
(13.331 [59]) 

    
0.647 B6_7 
(12.059 [45]) 

0.684 B3_7 
(12.048 [44]) 

0.687 B1_2 
(12.900 [53]) 

0.726 B5_5 
(11.493 [39]) 

    
0.813 PC_OR24 
(13.528 [62]) 

0.822 B3_9 
(13.077 [55]) 

0.828 B5_6R 
(12.651 [50]) 

0.868 B6_1 
(13.359 [60]) 
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0.962 PC_OR76 
(15.305 [68]) 

0.963 B2_6R 
(12.375 [47]) 

1.046 B5_3 
(12.548 [49]) 

1.074 B3_5 
(13.076 [54]) 

    
1.117 B1_3 
(14.059 [66]) 

1.201 PC_SR180 
(12.847 [52]) 

1.235 B5_8R 
(13.679 [64]) 

1.484 B6_5R 
(13.240 [58]) 
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Appendix D. Spearman’s correlations for the full set of geospatial variables.  

Name PAN 
AVG 

PAN 
SD 

PAN 
AVG 
SD03 

PAN 
AVG 
SD09 

PAN 
AVG 
SD17 

PAN 
AVG 
SD25 

PAN 
AVG 
SD33 

PAN 
AVG 
SD41 

PAN 
SD 
SD03 

PAN 
SD 
SD09 

PAN 
SD 
SD17 

PAN 
SD 
SD25 

PAN 
SD 
SD33 

PAN 
SD 
SD41 

PAN AVG 1.00              
PAN SD 0.70 1.00             
PAN AVG SD03 0.78 0.91 1.00            
PAN AVG SD09 0.74 0.95 0.98 1.00           
PAN AVG SD17 0.72 0.96 0.97 0.99 1.00          
PAN AVG SD25 0.72 0.97 0.96 0.99 1.00 1.00         
PAN AVG SD33 0.70 0.97 0.95 0.99 0.99 1.00 1.00        
PAN AVG SD41 0.70 0.98 0.95 0.98 0.99 1.00 1.00 1.00       
PAN SD SD03 0.76 0.95 0.96 0.98 0.98 0.98 0.98 0.97 1.00      
PAN SD SD09 0.67 0.91 0.86 0.91 0.92 0.93 0.93 0.93 0.95 1.00     
PAN SD SD17 0.46 0.71 0.62 0.66 0.68 0.69 0.70 0.71 0.73 0.87 1.00    
PAN SD SD25 0.31 0.52 0.42 0.45 0.47 0.49 0.51 0.51 0.53 0.71 0.94 1.00   
PAN SD SD33 0.21 0.40 0.30 0.33 0.35 0.37 0.38 0.39 0.41 0.59 0.86 0.97 1.00  
PAN SD SD41 0.16 0.33 0.24 0.26 0.28 0.29 0.31 0.32 0.34 0.51 0.80 0.93 0.99 1.00 
PAN SD AVG03 0.68 1.00 0.89 0.94 0.95 0.96 0.97 0.97 0.94 0.91 0.70 0.52 0.40 0.33 
PAN SD AVG09 0.62 0.98 0.83 0.88 0.90 0.91 0.92 0.92 0.89 0.87 0.70 0.54 0.43 0.35 
PAN SD AVG17 0.57 0.93 0.74 0.79 0.81 0.82 0.84 0.84 0.80 0.80 0.64 0.50 0.41 0.34 
PAN SD AVG25 0.55 0.86 0.67 0.71 0.72 0.74 0.75 0.75 0.72 0.71 0.54 0.42 0.34 0.28 
PAN SD AVG33 0.52 0.79 0.60 0.63 0.64 0.65 0.66 0.67 0.64 0.63 0.46 0.34 0.26 0.20 
PAN SD AVG41 0.51 0.76 0.56 0.60 0.60 0.61 0.62 0.63 0.61 0.60 0.42 0.31 0.23 0.17 
PAN AVG CON03 0.78 0.74 0.90 0.82 0.79 0.78 0.77 0.77 0.79 0.66 0.41 0.23 0.13 0.09 
PAN AVG CON09 0.78 0.89 0.99 0.96 0.94 0.93 0.92 0.92 0.94 0.83 0.60 0.40 0.29 0.23 
PAN AVG CON17 0.78 0.92 1.00 0.98 0.97 0.96 0.95 0.95 0.97 0.88 0.64 0.44 0.33 0.26 
PAN AVG CON25 0.78 0.92 1.00 0.98 0.97 0.96 0.96 0.96 0.97 0.88 0.65 0.45 0.34 0.27 
PAN AVG CON33 0.78 0.92 1.00 0.98 0.97 0.96 0.96 0.96 0.97 0.88 0.65 0.46 0.34 0.27 
PAN AVG CON41 0.78 0.93 1.00 0.98 0.97 0.96 0.95 0.96 0.97 0.88 0.65 0.45 0.34 0.27 
PAN SD CON03 0.48 0.63 0.70 0.65 0.65 0.65 0.64 0.65 0.65 0.59 0.46 0.33 0.27 0.22 
PAN SD CON09 0.75 0.92 0.94 0.94 0.94 0.94 0.93 0.93 0.96 0.91 0.70 0.52 0.40 0.33 
PAN SD CON17 0.70 0.88 0.87 0.88 0.88 0.88 0.88 0.88 0.92 0.91 0.78 0.62 0.51 0.43 
PAN SD CON25 0.66 0.81 0.82 0.81 0.81 0.81 0.81 0.82 0.86 0.86 0.77 0.64 0.53 0.46 
PAN SD CON33 0.60 0.75 0.76 0.75 0.74 0.75 0.75 0.75 0.80 0.80 0.75 0.64 0.54 0.47 
PAN SD CON41 0.56 0.70 0.72 0.70 0.69 0.69 0.70 0.70 0.75 0.75 0.72 0.63 0.54 0.47 
PAN AVG COR03 0.56 0.88 0.83 0.90 0.91 0.91 0.91 0.91 0.87 0.83 0.57 0.38 0.27 0.20 
PAN AVG COR09 0.56 0.89 0.83 0.91 0.92 0.92 0.92 0.91 0.88 0.83 0.56 0.36 0.25 0.18 
PAN AVG COR17 0.54 0.91 0.82 0.90 0.92 0.92 0.93 0.92 0.87 0.85 0.61 0.42 0.32 0.24 
PAN AVG COR25 0.52 0.90 0.80 0.88 0.91 0.91 0.92 0.92 0.86 0.85 0.63 0.44 0.33 0.25 
PAN AVG COR33 0.50 0.90 0.78 0.87 0.89 0.90 0.91 0.91 0.85 0.86 0.65 0.47 0.36 0.28 
PAN AVG COR41 0.49 0.90 0.77 0.85 0.88 0.89 0.91 0.90 0.84 0.86 0.67 0.50 0.38 0.29 
PAN SD COR03 -0.26 -0.33 -0.26 -0.33 -0.33 -0.33 -0.34 -0.33 -0.33 -0.30 -0.12 -0.02 0.06 0.09 
PAN SD COR09 -0.55 -0.61 -0.67 -0.68 -0.66 -0.65 -0.64 -0.63 -0.65 -0.52 -0.21 -0.06 0.03 0.08 
PAN SD COR17 -0.59 -0.66 -0.71 -0.73 -0.71 -0.70 -0.69 -0.68 -0.70 -0.56 -0.21 -0.05 0.02 0.06 
PAN SD COR25 -0.57 -0.66 -0.73 -0.75 -0.73 -0.71 -0.70 -0.69 -0.70 -0.56 -0.17 0.03 0.12 0.17 
PAN SD COR33 -0.55 -0.62 -0.70 -0.72 -0.70 -0.68 -0.67 -0.66 -0.66 -0.53 -0.13 0.10 0.21 0.26 
PAN SD COR41 -0.53 -0.59 -0.67 -0.68 -0.66 -0.65 -0.64 -0.63 -0.63 -0.49 -0.10 0.13 0.25 0.31 
NDVI AVG 0.90 0.70 0.80 0.76 0.74 0.74 0.72 0.72 0.79 0.72 0.52 0.38 0.28 0.23 
NDVI SD 0.17 0.72 0.48 0.56 0.60 0.62 0.64 0.65 0.58 0.63 0.61 0.52 0.45 0.37 
NDVI AVG SD03 0.21 0.76 0.62 0.70 0.73 0.74 0.75 0.76 0.69 0.71 0.61 0.47 0.39 0.31 
NDVI AVG SD05 0.20 0.76 0.60 0.69 0.72 0.73 0.75 0.76 0.69 0.72 0.63 0.50 0.41 0.33 
NDVI AVG SD07 0.18 0.75 0.57 0.66 0.70 0.71 0.73 0.74 0.66 0.70 0.64 0.51 0.43 0.34 
NDVI AVG SD09 0.17 0.74 0.56 0.65 0.68 0.69 0.72 0.72 0.65 0.68 0.63 0.52 0.44 0.36 
NDVI AVG SD11 0.16 0.72 0.54 0.62 0.65 0.67 0.69 0.70 0.62 0.66 0.62 0.52 0.45 0.37 
NDVI SD SD03 0.06 0.54 0.33 0.40 0.45 0.47 0.49 0.51 0.45 0.57 0.67 0.63 0.59 0.52 
NDVI SD SD05 0.01 0.45 0.24 0.30 0.35 0.37 0.39 0.41 0.35 0.48 0.62 0.63 0.60 0.55 
NDVI SD SD07 -0.01 0.41 0.20 0.26 0.30 0.32 0.35 0.36 0.30 0.43 0.60 0.63 0.62 0.58 
NDVI SD SD09 0.00 0.41 0.21 0.26 0.30 0.32 0.34 0.36 0.30 0.43 0.60 0.64 0.63 0.60 
NDVI SD SD11 0.04 0.43 0.23 0.28 0.32 0.33 0.36 0.37 0.32 0.44 0.60 0.63 0.63 0.60 
NDVI SD AVG03 0.14 0.67 0.40 0.47 0.51 0.53 0.56 0.57 0.50 0.55 0.54 0.48 0.43 0.35 
NDVI SD AVG05 0.11 0.60 0.31 0.38 0.41 0.43 0.45 0.47 0.40 0.46 0.44 0.40 0.35 0.28 
NDVI SD AVG07 0.15 0.56 0.29 0.34 0.37 0.39 0.41 0.42 0.37 0.41 0.37 0.33 0.27 0.21 
NDVI SD AVG09 0.16 0.54 0.28 0.32 0.34 0.36 0.38 0.39 0.35 0.38 0.34 0.29 0.24 0.18 
NDVI SD AVG11 0.19 0.51 0.26 0.30 0.31 0.33 0.34 0.35 0.33 0.36 0.32 0.28 0.23 0.17 
NDVI AVG CON03 0.14 0.62 0.57 0.63 0.64 0.64 0.65 0.65 0.58 0.51 0.30 0.15 0.09 0.04 
NDVI AVG CON05 0.22 0.70 0.63 0.71 0.71 0.71 0.72 0.72 0.66 0.60 0.40 0.25 0.17 0.11 
NDVI AVG CON07 0.28 0.77 0.68 0.75 0.77 0.77 0.78 0.78 0.72 0.69 0.53 0.37 0.29 0.22 
NDVI AVG CON09 0.28 0.79 0.68 0.76 0.77 0.78 0.79 0.79 0.74 0.72 0.56 0.41 0.32 0.25 
NDVI AVG CON11 0.29 0.80 0.68 0.76 0.78 0.79 0.80 0.80 0.75 0.74 0.59 0.43 0.35 0.27 
NDVI SD CON03 0.23 0.57 0.54 0.57 0.57 0.58 0.59 0.59 0.56 0.60 0.55 0.41 0.35 0.33 
NDVI SD CON05 0.31 0.71 0.56 0.63 0.65 0.66 0.67 0.68 0.66 0.71 0.67 0.58 0.52 0.46 
NDVI SD CON07 0.31 0.71 0.54 0.61 0.63 0.64 0.65 0.66 0.65 0.71 0.70 0.63 0.57 0.51 
NDVI SD CON09 0.29 0.69 0.52 0.58 0.61 0.62 0.63 0.64 0.63 0.68 0.68 0.61 0.55 0.50 
NDVI SD CON11 0.26 0.67 0.49 0.55 0.58 0.59 0.61 0.62 0.61 0.67 0.69 0.62 0.57 0.53 
NDVI AVG COR03 0.32 0.75 0.59 0.67 0.70 0.72 0.73 0.73 0.65 0.69 0.58 0.47 0.39 0.31 
NDVI AVG COR05 0.29 0.71 0.54 0.62 0.65 0.67 0.69 0.69 0.61 0.66 0.59 0.48 0.39 0.31 
NDVI AVG COR07 0.23 0.66 0.45 0.54 0.58 0.60 0.62 0.63 0.53 0.60 0.57 0.49 0.39 0.31 
NDVI AVG COR09 0.20 0.63 0.41 0.49 0.53 0.55 0.58 0.58 0.49 0.56 0.56 0.49 0.40 0.32 
NDVI AVG COR11 0.18 0.61 0.37 0.44 0.48 0.51 0.53 0.54 0.45 0.53 0.55 0.50 0.42 0.34 
NDVI SD COR03 0.18 0.43 0.37 0.41 0.44 0.44 0.43 0.43 0.43 0.36 0.24 0.13 0.06 0.03 
NDVI SD COR05 -0.18 0.04 -0.13 -0.10 -0.05 -0.04 -0.02 -0.02 -0.04 0.02 0.13 0.16 0.16 0.16 
NDVI SD COR07 -0.18 0.03 -0.17 -0.13 -0.09 -0.07 -0.05 -0.04 -0.08 -0.01 0.12 0.19 0.20 0.21 
NDVI SD COR09 -0.12 0.05 -0.13 -0.09 -0.06 -0.04 -0.02 -0.01 -0.04 0.04 0.14 0.22 0.23 0.23 
NDVI SD COR11 -0.07 0.06 -0.09 -0.07 -0.04 -0.03 -0.01 0.00 -0.03 0.05 0.15 0.22 0.22 0.23 
ELEV 0.18 0.00 0.03 0.01 0.02 0.02 0.02 0.02 0.06 0.07 0.05 0.06 0.08 0.07 
TVI -0.16 -0.08 -0.16 -0.16 -0.14 -0.14 -0.14 -0.13 -0.12 -0.07 0.03 0.08 0.11 0.12 
DSR 0.62 0.25 0.35 0.33 0.32 0.31 0.30 0.29 0.37 0.31 0.09 0.00 -0.05 -0.09 
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Name 
PAN 
SD 
AVG03 

PAN 
SD 
AVG09 

PAN 
SD 
AVG17 

PAN 
SD 
AVG25 

PAN 
SD 
AVG33 

PAN 
SD 
AVG41 

PAN 
AVG 
CON03 

PAN 
AVG 
CON09 

PAN 
AVG 
CON17 

PAN 
AVG 
CON25 

PAN 
AVG 
CON33 

PAN 
AVG 
CON41 

PAN 
SD 
CON03 

PAN 
SD 
CON09 

PAN AVG               
PAN SD               
PAN AVG SD03               
PAN AVG SD09               
PAN AVG SD17               
PAN AVG SD25               
PAN AVG SD33               
PAN AVG SD41               
PAN SD SD03               
PAN SD SD09               
PAN SD SD17               
PAN SD SD25               
PAN SD SD33               
PAN SD SD41               
PAN SD AVG03 1.00              
PAN SD AVG09 0.99 1.00             
PAN SD AVG17 0.94 0.97 1.00            
PAN SD AVG25 0.87 0.92 0.97 1.00           
PAN SD AVG33 0.80 0.86 0.93 0.98 1.00          
PAN SD AVG41 0.77 0.83 0.91 0.97 1.00 1.00         
PAN AVG CON03 0.72 0.65 0.60 0.56 0.53 0.51 1.00        
PAN AVG CON09 0.86 0.80 0.72 0.65 0.58 0.55 0.92 1.00       
PAN AVG CON17 0.90 0.84 0.76 0.68 0.61 0.57 0.89 0.99 1.00      
PAN AVG CON25 0.90 0.84 0.76 0.69 0.61 0.58 0.89 0.99 1.00 1.00     
PAN AVG CON33 0.91 0.85 0.76 0.69 0.61 0.58 0.89 0.99 1.00 1.00 1.00    
PAN AVG CON41 0.91 0.85 0.77 0.69 0.62 0.58 0.89 0.99 1.00 1.00 1.00 1.00   
PAN SD CON03 0.60 0.56 0.49 0.40 0.34 0.31 0.70 0.73 0.70 0.71 0.71 0.71 1.00  
PAN SD CON09 0.91 0.86 0.80 0.73 0.66 0.63 0.79 0.92 0.95 0.95 0.95 0.95 0.67 1.00 
PAN SD CON17 0.87 0.84 0.78 0.72 0.65 0.62 0.70 0.85 0.89 0.89 0.89 0.89 0.55 0.95 
PAN SD CON25 0.80 0.78 0.73 0.68 0.61 0.58 0.66 0.80 0.83 0.83 0.83 0.83 0.51 0.91 
PAN SD CON33 0.74 0.72 0.68 0.62 0.56 0.52 0.61 0.75 0.78 0.78 0.78 0.78 0.45 0.86 
PAN SD CON41 0.68 0.68 0.63 0.58 0.51 0.48 0.57 0.71 0.73 0.73 0.73 0.74 0.44 0.81 
PAN AVG COR03 0.88 0.85 0.77 0.69 0.60 0.56 0.57 0.78 0.83 0.83 0.82 0.82 0.43 0.84 
PAN AVG COR09 0.89 0.85 0.77 0.69 0.61 0.57 0.58 0.78 0.83 0.83 0.83 0.83 0.44 0.83 
PAN AVG COR17 0.91 0.89 0.81 0.72 0.63 0.59 0.56 0.77 0.82 0.82 0.82 0.81 0.48 0.83 
PAN AVG COR25 0.91 0.89 0.82 0.72 0.63 0.60 0.54 0.75 0.80 0.80 0.80 0.80 0.49 0.82 
PAN AVG COR33 0.91 0.90 0.83 0.73 0.64 0.60 0.52 0.73 0.79 0.79 0.79 0.79 0.47 0.81 
PAN AVG COR41 0.91 0.90 0.83 0.74 0.65 0.62 0.50 0.71 0.77 0.77 0.77 0.77 0.46 0.80 
PAN SD COR03 -0.34 -0.34 -0.30 -0.30 -0.31 -0.30 -0.05 -0.20 -0.25 -0.24 -0.24 -0.24 0.14 -0.29 
PAN SD COR09 -0.60 -0.55 -0.50 -0.46 -0.41 -0.39 -0.52 -0.64 -0.66 -0.66 -0.66 -0.66 -0.23 -0.67 
PAN SD COR17 -0.65 -0.61 -0.56 -0.52 -0.47 -0.45 -0.60 -0.69 -0.71 -0.70 -0.70 -0.70 -0.29 -0.70 
PAN SD COR25 -0.65 -0.60 -0.55 -0.52 -0.48 -0.47 -0.64 -0.70 -0.72 -0.72 -0.72 -0.72 -0.32 -0.70 
PAN SD COR33 -0.61 -0.55 -0.50 -0.48 -0.46 -0.45 -0.63 -0.67 -0.70 -0.69 -0.69 -0.68 -0.29 -0.65 
PAN SD COR41 -0.58 -0.52 -0.47 -0.45 -0.43 -0.42 -0.60 -0.64 -0.66 -0.65 -0.65 -0.65 -0.26 -0.61 
NDVI AVG 0.67 0.61 0.55 0.50 0.47 0.45 0.79 0.81 0.81 0.81 0.81 0.81 0.57 0.80 
NDVI SD 0.74 0.79 0.80 0.75 0.69 0.66 0.26 0.45 0.49 0.50 0.51 0.51 0.45 0.57 
NDVI AVG SD03 0.77 0.77 0.72 0.64 0.56 0.53 0.36 0.58 0.62 0.62 0.63 0.63 0.48 0.65 
NDVI AVG SD05 0.77 0.78 0.72 0.63 0.55 0.51 0.34 0.56 0.61 0.61 0.62 0.62 0.48 0.66 
NDVI AVG SD07 0.76 0.77 0.73 0.63 0.55 0.51 0.31 0.54 0.58 0.59 0.59 0.59 0.47 0.64 
NDVI AVG SD09 0.75 0.77 0.72 0.63 0.55 0.51 0.30 0.52 0.57 0.57 0.58 0.58 0.46 0.62 
NDVI AVG SD11 0.74 0.76 0.72 0.63 0.54 0.51 0.28 0.50 0.55 0.55 0.56 0.56 0.45 0.60 
NDVI SD SD03 0.55 0.58 0.57 0.49 0.42 0.40 0.12 0.31 0.35 0.36 0.36 0.36 0.43 0.42 
NDVI SD SD05 0.46 0.49 0.50 0.43 0.36 0.34 0.06 0.23 0.26 0.27 0.27 0.27 0.40 0.33 
NDVI SD SD07 0.42 0.46 0.48 0.42 0.35 0.33 0.04 0.19 0.22 0.23 0.23 0.23 0.37 0.30 
NDVI SD SD09 0.43 0.47 0.49 0.44 0.38 0.36 0.06 0.20 0.22 0.23 0.24 0.24 0.36 0.31 
NDVI SD SD11 0.44 0.48 0.51 0.47 0.40 0.39 0.09 0.22 0.25 0.26 0.26 0.26 0.36 0.34 
NDVI SD AVG03 0.69 0.76 0.81 0.78 0.73 0.71 0.21 0.37 0.41 0.42 0.43 0.43 0.37 0.50 
NDVI SD AVG05 0.62 0.70 0.78 0.80 0.78 0.77 0.17 0.28 0.33 0.33 0.34 0.34 0.28 0.42 
NDVI SD AVG07 0.58 0.67 0.77 0.82 0.84 0.84 0.21 0.28 0.31 0.32 0.32 0.32 0.27 0.40 
NDVI SD AVG09 0.56 0.65 0.76 0.82 0.85 0.85 0.22 0.27 0.29 0.30 0.31 0.31 0.24 0.39 
NDVI SD AVG11 0.53 0.62 0.73 0.80 0.85 0.86 0.22 0.25 0.28 0.28 0.29 0.29 0.22 0.37 
NDVI AVG CON03 0.63 0.61 0.55 0.49 0.44 0.41 0.37 0.54 0.56 0.56 0.56 0.56 0.35 0.55 
NDVI AVG CON05 0.71 0.69 0.63 0.57 0.50 0.47 0.41 0.60 0.63 0.63 0.63 0.62 0.37 0.63 
NDVI AVG CON07 0.78 0.76 0.71 0.65 0.56 0.53 0.42 0.64 0.68 0.68 0.68 0.68 0.41 0.70 
NDVI AVG CON09 0.80 0.78 0.74 0.67 0.59 0.55 0.43 0.65 0.68 0.68 0.69 0.68 0.43 0.72 
NDVI AVG CON11 0.81 0.80 0.75 0.68 0.60 0.56 0.43 0.65 0.69 0.69 0.69 0.69 0.45 0.73 
NDVI SD CON03 0.57 0.55 0.51 0.44 0.39 0.37 0.36 0.51 0.53 0.53 0.53 0.53 0.38 0.52 
NDVI SD CON05 0.73 0.75 0.73 0.67 0.61 0.59 0.36 0.53 0.58 0.58 0.58 0.58 0.40 0.62 
NDVI SD CON07 0.73 0.75 0.76 0.71 0.65 0.63 0.34 0.52 0.56 0.56 0.56 0.56 0.41 0.62 
NDVI SD CON09 0.71 0.73 0.74 0.70 0.64 0.62 0.33 0.50 0.54 0.54 0.54 0.54 0.42 0.61 
NDVI SD CON11 0.68 0.71 0.73 0.68 0.63 0.61 0.31 0.47 0.51 0.51 0.52 0.52 0.42 0.59 
NDVI AVG COR03 0.77 0.79 0.74 0.66 0.58 0.54 0.33 0.54 0.59 0.60 0.60 0.60 0.31 0.61 
NDVI AVG COR05 0.72 0.75 0.70 0.61 0.53 0.49 0.26 0.48 0.54 0.55 0.55 0.55 0.28 0.58 
NDVI AVG COR07 0.68 0.72 0.69 0.60 0.53 0.49 0.17 0.39 0.46 0.47 0.47 0.47 0.24 0.51 
NDVI AVG COR09 0.65 0.70 0.68 0.60 0.53 0.49 0.14 0.36 0.42 0.42 0.43 0.43 0.23 0.48 
NDVI AVG COR11 0.63 0.69 0.68 0.61 0.54 0.51 0.11 0.32 0.38 0.39 0.39 0.39 0.22 0.45 
NDVI SD COR03 0.44 0.42 0.37 0.28 0.21 0.18 0.22 0.38 0.38 0.39 0.39 0.39 0.35 0.42 
NDVI SD COR05 0.05 0.08 0.09 0.02 0.00 -0.01 -0.25 -0.14 -0.13 -0.12 -0.12 -0.11 0.03 -0.01 
NDVI SD COR07 0.05 0.09 0.11 0.07 0.05 0.05 -0.22 -0.17 -0.17 -0.16 -0.15 -0.15 0.00 -0.03 
NDVI SD COR09 0.08 0.11 0.13 0.10 0.08 0.07 -0.16 -0.13 -0.13 -0.12 -0.11 -0.11 -0.01 0.00 
NDVI SD COR11 0.08 0.11 0.14 0.12 0.10 0.09 -0.09 -0.09 -0.09 -0.08 -0.07 -0.07 -0.03 0.00 
ELEV -0.02 -0.04 -0.03 -0.01 -0.03 -0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.09 0.07 
TVI -0.07 -0.03 0.03 0.08 0.11 0.13 -0.12 -0.15 -0.16 -0.15 -0.15 -0.15 0.07 -0.11 
DSR 0.24 0.19 0.13 0.10 0.08 0.07 0.36 0.33 0.35 0.35 0.34 0.34 0.14 0.32 
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Name 
PAN 
SD 
CON17 

PAN 
SD 
CON25 

PAN 
SD 
CON33 

PAN 
SD 
CON41 

PAN 
AVG 
COR03 

PANAV
G 
COR09 

PAN 
AVG 
COR17 

PAN 
AVG 
COR25 

PAN 
AVG 
COR33 

PAN 
AVG 
COR41 

PAN 
SD 
COR03 

PAN 
SD 
COR09 

PAN 
SD 
COR17 

PAN 
SD 
COR25 

PAN AVG               
PAN SD               
PAN AVG SD03               
PAN AVG SD09               
PAN AVG SD17               
PAN AVG SD25               
PAN AVG SD33               
PAN AVG SD41               
PAN SD SD03               
PAN SD SD09               
PAN SD SD17               
PAN SD SD25               
PAN SD SD33               
PAN SD SD41               
PAN SD AVG03               
PAN SD AVG09               
PAN SD AVG17               
PAN SD AVG25               
PAN SD AVG33               
PAN SD AVG41               
PAN AVG CON03               
PAN AVG CON09               
PAN AVG CON17               
PAN AVG CON25               
PAN AVG CON33               
PAN AVG CON41               
PAN SD CON03               
PAN SD CON09               
PAN SD CON17 1.00              
PAN SD CON25 0.98 1.00             
PAN SD CON33 0.95 0.98 1.00            
PAN SD CON41 0.91 0.96 0.99 1.00           
PAN AVG COR03 0.79 0.72 0.67 0.61 1.00          
PAN AVG COR09 0.77 0.70 0.64 0.58 0.98 1.00         
PAN AVG COR17 0.77 0.69 0.63 0.57 0.96 0.98 1.00        
PAN AVG COR25 0.77 0.70 0.63 0.58 0.95 0.96 0.99 1.00       
PAN AVG COR33 0.77 0.70 0.64 0.58 0.94 0.95 0.99 1.00 1.00      
PAN AVG COR41 0.77 0.71 0.64 0.59 0.93 0.94 0.98 0.99 1.00 1.00     
PAN SD COR03 -0.28 -0.26 -0.24 -0.21 -0.55 -0.54 -0.47 -0.47 -0.46 -0.45 1.00    
PAN SD COR09 -0.62 -0.58 -0.55 -0.50 -0.76 -0.77 -0.68 -0.64 -0.62 -0.59 0.50 1.00   
PAN SD COR17 -0.64 -0.58 -0.54 -0.49 -0.76 -0.79 -0.73 -0.70 -0.67 -0.63 0.42 0.93 1.00  
PAN SD COR25 -0.61 -0.55 -0.49 -0.44 -0.76 -0.79 -0.74 -0.71 -0.68 -0.65 0.42 0.86 0.96 1.00 
PAN SD COR33 -0.56 -0.49 -0.43 -0.38 -0.71 -0.74 -0.69 -0.67 -0.64 -0.61 0.38 0.79 0.89 0.97 
PAN SD COR41 -0.53 -0.47 -0.41 -0.36 -0.67 -0.70 -0.65 -0.63 -0.61 -0.59 0.35 0.76 0.84 0.93 
NDVI AVG 0.73 0.68 0.63 0.58 0.58 0.59 0.56 0.54 0.52 0.51 -0.20 -0.54 -0.55 -0.54 
NDVI SD 0.57 0.53 0.50 0.46 0.61 0.60 0.67 0.69 0.71 0.72 -0.24 -0.25 -0.27 -0.24 
NDVI AVG SD03 0.65 0.60 0.57 0.54 0.76 0.75 0.79 0.80 0.81 0.81 -0.30 -0.41 -0.45 -0.45 
NDVI AVG SD05 0.65 0.61 0.58 0.55 0.76 0.75 0.79 0.81 0.82 0.83 -0.30 -0.40 -0.42 -0.41 
NDVI AVG SD07 0.64 0.60 0.57 0.54 0.73 0.72 0.77 0.79 0.81 0.82 -0.28 -0.37 -0.38 -0.38 
NDVI AVG SD09 0.63 0.59 0.56 0.53 0.72 0.70 0.76 0.78 0.80 0.81 -0.28 -0.36 -0.38 -0.36 
NDVI AVG SD11 0.60 0.57 0.54 0.51 0.70 0.68 0.74 0.76 0.78 0.80 -0.26 -0.34 -0.36 -0.34 
NDVI SD SD03 0.42 0.39 0.36 0.34 0.41 0.39 0.47 0.51 0.53 0.55 0.01 0.02 0.01 0.05 
NDVI SD SD05 0.34 0.31 0.29 0.27 0.28 0.27 0.36 0.39 0.42 0.44 0.10 0.13 0.13 0.18 
NDVI SD SD07 0.32 0.29 0.27 0.25 0.24 0.22 0.32 0.35 0.38 0.40 0.12 0.15 0.15 0.21 
NDVI SD SD09 0.32 0.31 0.28 0.27 0.23 0.22 0.31 0.34 0.37 0.39 0.10 0.14 0.14 0.21 
NDVI SD SD11 0.35 0.33 0.31 0.30 0.24 0.24 0.32 0.34 0.37 0.39 0.08 0.10 0.10 0.17 
NDVI SD AVG03 0.50 0.48 0.45 0.42 0.54 0.53 0.60 0.62 0.64 0.66 -0.25 -0.22 -0.23 -0.20 
NDVI SD AVG05 0.42 0.40 0.38 0.35 0.44 0.44 0.51 0.53 0.55 0.57 -0.25 -0.17 -0.19 -0.18 
NDVI SD AVG07 0.40 0.39 0.36 0.33 0.37 0.38 0.43 0.45 0.47 0.49 -0.23 -0.15 -0.19 -0.19 
NDVI SD AVG09 0.39 0.37 0.35 0.32 0.34 0.34 0.39 0.41 0.43 0.45 -0.21 -0.14 -0.19 -0.19 
NDVI SD AVG11 0.37 0.36 0.34 0.31 0.30 0.30 0.35 0.37 0.39 0.41 -0.20 -0.11 -0.16 -0.17 
NDVI AVG CON03 0.50 0.46 0.43 0.40 0.73 0.72 0.72 0.70 0.69 0.68 -0.41 -0.55 -0.61 -0.63 
NDVI AVG CON05 0.61 0.57 0.54 0.50 0.81 0.79 0.78 0.77 0.76 0.76 -0.46 -0.58 -0.63 -0.63 
NDVI AVG CON07 0.69 0.65 0.62 0.58 0.85 0.83 0.83 0.83 0.83 0.82 -0.44 -0.57 -0.61 -0.61 
NDVI AVG CON09 0.71 0.66 0.63 0.59 0.84 0.83 0.84 0.83 0.84 0.83 -0.41 -0.55 -0.58 -0.58 
NDVI AVG CON11 0.71 0.67 0.63 0.59 0.83 0.82 0.84 0.84 0.84 0.84 -0.39 -0.53 -0.56 -0.56 
NDVI SD CON03 0.54 0.51 0.47 0.44 0.51 0.51 0.53 0.53 0.53 0.52 -0.19 -0.23 -0.32 -0.33 
NDVI SD CON05 0.62 0.58 0.56 0.53 0.61 0.61 0.66 0.67 0.67 0.67 -0.28 -0.24 -0.30 -0.28 
NDVI SD CON07 0.62 0.59 0.56 0.53 0.58 0.58 0.62 0.63 0.64 0.65 -0.22 -0.20 -0.25 -0.22 
NDVI SD CON09 0.60 0.57 0.54 0.51 0.55 0.55 0.60 0.61 0.62 0.63 -0.18 -0.17 -0.22 -0.20 
NDVI SD CON11 0.58 0.55 0.52 0.49 0.52 0.52 0.58 0.59 0.61 0.62 -0.16 -0.14 -0.19 -0.17 
NDVI AVG COR03 0.62 0.57 0.53 0.50 0.79 0.80 0.84 0.85 0.87 0.88 -0.42 -0.49 -0.51 -0.50 
NDVI AVG COR05 0.60 0.56 0.53 0.50 0.75 0.75 0.80 0.83 0.85 0.86 -0.41 -0.42 -0.42 -0.42 
NDVI AVG COR07 0.55 0.53 0.50 0.47 0.68 0.67 0.73 0.77 0.80 0.82 -0.42 -0.34 -0.32 -0.32 
NDVI AVG COR09 0.52 0.51 0.49 0.46 0.62 0.61 0.67 0.71 0.75 0.77 -0.40 -0.29 -0.26 -0.26 
NDVI AVG COR11 0.50 0.49 0.47 0.45 0.58 0.57 0.63 0.67 0.71 0.74 -0.38 -0.27 -0.24 -0.22 
NDVI SD COR03 0.33 0.29 0.25 0.24 0.41 0.41 0.43 0.42 0.41 0.41 -0.14 -0.24 -0.20 -0.20 
NDVI SD COR05 0.02 0.03 0.05 0.07 -0.01 -0.05 0.01 0.05 0.07 0.08 -0.08 0.17 0.21 0.26 
NDVI SD COR07 0.00 0.01 0.04 0.04 -0.01 -0.05 0.01 0.04 0.06 0.08 -0.10 0.13 0.19 0.28 
NDVI SD COR09 0.04 0.05 0.07 0.07 0.02 0.00 0.05 0.06 0.09 0.11 -0.09 0.07 0.14 0.23 
NDVI SD COR11 0.05 0.06 0.08 0.07 0.00 -0.01 0.02 0.03 0.05 0.07 -0.01 0.05 0.12 0.22 
ELEV 0.11 0.10 0.09 0.09 -0.04 -0.07 -0.08 -0.08 -0.08 -0.08 0.09 -0.05 -0.01 0.02 
TVI -0.14 -0.16 -0.17 -0.19 -0.21 -0.16 -0.12 -0.12 -0.12 -0.13 0.16 0.30 0.28 0.28 
DSR 0.29 0.25 0.23 0.20 0.26 0.26 0.22 0.20 0.18 0.17 -0.21 -0.34 -0.36 -0.33 
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Name 
PAN 
SD 
COR33 

PAN 
SD 
COR41 

NDVI 
AVG 

NDVI 
SD 

NDVI 
AVG 
SD03 

NDVI 
AVG 
SD05 

NDVI 
AVG 
SD07 

NDVI 
AVG 
SD09 

NDVI 
AVG 
SD11 

NDVI 
SD 
SD03 

NDVI 
SD 
SD05 

NDVI 
SD 
SD07 

NDVI 
SD 
SD09 

NDVI 
SD 
SD11 

PAN AVG               
PAN SD               
PAN AVG SD03               
PAN AVG SD09               
PAN AVG SD17               
PAN AVG SD25               
PAN AVG SD33               
PAN AVG SD41               
PAN SD SD03               
PAN SD SD09               
PAN SD SD17               
PAN SD SD25               
PAN SD SD33               
PAN SD SD41               
PAN SD AVG03               
PAN SD AVG09               
PAN SD AVG17               
PAN SD AVG25               
PAN SD AVG33               
PAN SD AVG41               
PAN AVG CON03               
PAN AVG CON09               
PAN AVG CON17               
PAN AVG CON25               
PAN AVG CON33               
PAN AVG CON41               
PAN SD CON03               
PAN SD CON09               
PAN SD CON17               
PAN SD CON25               
PAN SD CON33               
PAN SD CON41               
PAN AVG COR03               
PAN AVG COR09               
PAN AVG COR17               
PAN AVG COR25               
PAN AVG COR33               
PAN AVG COR41               
PAN SD COR03               
PAN SD COR09               
PAN SD COR17               
PAN SD COR25               
PAN SD COR33 1.00              
PAN SD COR41 0.98 1.00             
NDVI AVG -0.52 -0.49 1.00            
NDVI SD -0.19 -0.18 0.16 1.00           
NDVI AVG SD03 -0.40 -0.38 0.21 0.88 1.00          
NDVI AVG SD05 -0.37 -0.35 0.21 0.90 0.99 1.00         
NDVI AVG SD07 -0.33 -0.32 0.19 0.91 0.98 0.99 1.00        
NDVI AVG SD09 -0.31 -0.30 0.17 0.91 0.97 0.98 1.00 1.00       
NDVI AVG SD11 -0.28 -0.27 0.15 0.91 0.95 0.97 0.99 1.00 1.00      
NDVI SD SD03 0.08 0.10 0.06 0.85 0.74 0.77 0.79 0.79 0.79 1.00     
NDVI SD SD05 0.23 0.24 0.02 0.79 0.63 0.67 0.69 0.70 0.71 0.97 1.00    
NDVI SD SD07 0.27 0.29 0.00 0.76 0.57 0.61 0.64 0.65 0.66 0.92 0.98 1.00   
NDVI SD SD09 0.27 0.29 0.02 0.74 0.54 0.58 0.61 0.63 0.63 0.89 0.96 0.99 1.00  
NDVI SD SD11 0.24 0.27 0.06 0.73 0.52 0.56 0.59 0.60 0.62 0.85 0.93 0.97 0.99 1.00 
NDVI SD AVG03 -0.15 -0.13 0.12 0.97 0.78 0.81 0.83 0.84 0.84 0.78 0.74 0.73 0.74 0.73 
NDVI SD AVG05 -0.13 -0.11 0.08 0.90 0.67 0.69 0.71 0.72 0.73 0.67 0.65 0.66 0.67 0.67 
NDVI SD AVG07 -0.16 -0.14 0.11 0.82 0.57 0.58 0.59 0.60 0.61 0.58 0.56 0.57 0.60 0.61 
NDVI SD AVG09 -0.17 -0.15 0.12 0.77 0.52 0.52 0.54 0.54 0.55 0.53 0.51 0.52 0.55 0.57 
NDVI SD AVG11 -0.14 -0.13 0.13 0.72 0.46 0.46 0.48 0.48 0.49 0.50 0.48 0.50 0.53 0.55 
NDVI AVG CON03 -0.58 -0.55 0.12 0.63 0.84 0.80 0.78 0.78 0.77 0.38 0.27 0.23 0.22 0.22 
NDVI AVG CON05 -0.58 -0.56 0.20 0.69 0.90 0.87 0.84 0.83 0.81 0.45 0.33 0.28 0.27 0.26 
NDVI AVG CON07 -0.55 -0.53 0.27 0.77 0.94 0.92 0.90 0.89 0.87 0.54 0.42 0.38 0.37 0.36 
NDVI AVG CON09 -0.53 -0.50 0.28 0.81 0.96 0.95 0.93 0.91 0.90 0.60 0.48 0.43 0.42 0.42 
NDVI AVG CON11 -0.51 -0.49 0.29 0.83 0.97 0.96 0.94 0.93 0.91 0.63 0.52 0.47 0.46 0.46 
NDVI SD CON03 -0.30 -0.25 0.24 0.51 0.60 0.59 0.58 0.57 0.55 0.48 0.42 0.37 0.36 0.34 
NDVI SD CON05 -0.24 -0.21 0.32 0.80 0.76 0.76 0.75 0.74 0.72 0.71 0.65 0.62 0.62 0.63 
NDVI SD CON07 -0.18 -0.15 0.32 0.83 0.75 0.75 0.75 0.74 0.72 0.76 0.72 0.70 0.72 0.72 
NDVI SD CON09 -0.15 -0.12 0.30 0.83 0.74 0.74 0.74 0.73 0.71 0.78 0.74 0.73 0.75 0.75 
NDVI SD CON11 -0.12 -0.09 0.29 0.82 0.72 0.72 0.72 0.71 0.70 0.80 0.77 0.77 0.78 0.79 
NDVI AVG COR03 -0.46 -0.43 0.34 0.69 0.73 0.75 0.76 0.75 0.75 0.49 0.40 0.36 0.36 0.35 
NDVI AVG COR05 -0.38 -0.37 0.29 0.69 0.71 0.75 0.76 0.76 0.76 0.51 0.43 0.40 0.40 0.38 
NDVI AVG COR07 -0.29 -0.29 0.22 0.73 0.69 0.74 0.76 0.77 0.78 0.54 0.48 0.45 0.44 0.42 
NDVI AVG COR09 -0.22 -0.22 0.18 0.74 0.67 0.72 0.75 0.77 0.78 0.55 0.50 0.48 0.47 0.45 
NDVI AVG COR11 -0.18 -0.18 0.15 0.75 0.65 0.70 0.74 0.76 0.78 0.55 0.52 0.50 0.49 0.48 
NDVI SD COR03 -0.15 -0.15 0.23 0.44 0.40 0.42 0.42 0.41 0.42 0.31 0.31 0.28 0.26 0.25 
NDVI SD COR05 0.30 0.29 -0.13 0.32 0.17 0.22 0.25 0.26 0.28 0.30 0.34 0.34 0.32 0.30 
NDVI SD COR07 0.35 0.37 -0.16 0.34 0.17 0.21 0.25 0.28 0.31 0.32 0.39 0.42 0.41 0.40 
NDVI SD COR09 0.31 0.33 -0.12 0.31 0.17 0.21 0.24 0.27 0.30 0.29 0.37 0.41 0.41 0.42 
NDVI SD COR11 0.28 0.30 -0.08 0.24 0.11 0.14 0.17 0.19 0.23 0.26 0.35 0.40 0.41 0.43 
ELEV 0.02 0.03 0.12 -0.12 -0.13 -0.11 -0.11 -0.11 -0.12 -0.06 -0.01 -0.01 -0.01 -0.02 
TVI 0.32 0.35 -0.14 0.12 -0.08 -0.08 -0.06 -0.07 -0.07 0.18 0.26 0.29 0.32 0.34 
DSR -0.37 -0.39 0.55 -0.06 0.02 0.01 -0.02 -0.02 -0.04 -0.10 -0.17 -0.21 -0.23 -0.24 
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Name 
NDVI 
SD 
AVG03 

NDVI 
SD 
AVG05 

NDVI 
SD 
AVG07 

NDVI 
SD 
AVG09 

NDVI 
SD 
AVG11 

NDVI 
AVG 
CON03 

NDVI 
AVG 
CON05 

NDVI 
AVG 
CON07 

NDVI 
AVG 
CON09 

NDVI 
AVG 
CON11 

NDVI 
SD 
CON03 

NDVI 
SD 
CON05 

NDVI 
SD 
CON07 

NDVI 
SD 
CON09 

PAN AVG               
PAN SD               
PAN AVG SD03               
PAN AVG SD09               
PAN AVG SD17               
PAN AVG SD25               
PAN AVG SD33               
PAN AVG SD41               
PAN SD SD03               
PAN SD SD09               
PAN SD SD17               
PAN SD SD25               
PAN SD SD33               
PAN SD SD41               
PAN SD AVG03               
PAN SD AVG09               
PAN SD AVG17               
PAN SD AVG25               
PAN SD AVG33               
PAN SD AVG41               
PAN AVG CON03               
PAN AVG CON09               
PAN AVG CON17               
PAN AVG CON25               
PAN AVG CON33               
PAN AVG CON41               
PAN SD CON03               
PAN SD CON09               
PAN SD CON17               
PAN SD CON25               
PAN SD CON33               
PAN SD CON41               
PAN AVG COR03               
PAN AVG COR09               
PAN AVG COR17               
PAN AVG COR25               
PAN AVG COR33               
PAN AVG COR41               
PAN SD COR03               
PAN SD COR09               
PAN SD COR17               
PAN SD COR25               
PAN SD COR33               
PAN SD COR41               
NDVI AVG               
NDVI SD               
NDVI AVG SD03               
NDVI AVG SD05               
NDVI AVG SD07               
NDVI AVG SD09               
NDVI AVG SD11               
NDVI SD SD03               
NDVI SD SD05               
NDVI SD SD07               
NDVI SD SD09               
NDVI SD SD11               
NDVI SD AVG03 1.00              
NDVI SD AVG05 0.97 1.00             
NDVI SD AVG07 0.90 0.97 1.00            
NDVI SD AVG09 0.85 0.93 0.99 1.00           
NDVI SD AVG11 0.81 0.90 0.97 0.99 1.00          
NDVI AVG CON03 0.55 0.47 0.40 0.36 0.30 1.00         
NDVI AVG CON05 0.60 0.51 0.44 0.40 0.34 0.97 1.00        
NDVI AVG CON07 0.68 0.58 0.50 0.46 0.40 0.92 0.98 1.00       
NDVI AVG CON09 0.72 0.62 0.54 0.49 0.44 0.89 0.96 0.99 1.00      
NDVI AVG CON11 0.74 0.64 0.56 0.51 0.46 0.88 0.94 0.98 1.00 1.00     
NDVI SD CON03 0.44 0.38 0.32 0.28 0.26 0.56 0.59 0.62 0.64 0.64 1.00    
NDVI SD CON05 0.75 0.69 0.65 0.64 0.61 0.56 0.66 0.73 0.76 0.77 0.64 1.00   
NDVI SD CON07 0.79 0.74 0.71 0.69 0.67 0.51 0.60 0.70 0.74 0.76 0.58 0.96 1.00  
NDVI SD CON09 0.79 0.73 0.71 0.70 0.69 0.50 0.58 0.68 0.72 0.74 0.56 0.92 0.98 1.00 
NDVI SD CON11 0.78 0.74 0.72 0.70 0.69 0.46 0.54 0.64 0.69 0.72 0.56 0.89 0.96 0.99 
NDVI AVG COR03 0.66 0.58 0.48 0.43 0.39 0.57 0.66 0.73 0.73 0.73 0.39 0.61 0.57 0.52 
NDVI AVG COR05 0.68 0.59 0.48 0.42 0.38 0.54 0.62 0.70 0.71 0.71 0.37 0.60 0.56 0.52 
NDVI AVG COR07 0.72 0.66 0.53 0.47 0.43 0.52 0.59 0.67 0.68 0.69 0.36 0.58 0.56 0.51 
NDVI AVG COR09 0.75 0.69 0.56 0.50 0.46 0.50 0.56 0.63 0.65 0.66 0.36 0.56 0.55 0.51 
NDVI AVG COR11 0.78 0.73 0.61 0.54 0.50 0.48 0.54 0.62 0.63 0.64 0.34 0.54 0.54 0.51 
NDVI SD COR03 0.37 0.28 0.22 0.19 0.17 0.37 0.37 0.40 0.41 0.42 0.29 0.35 0.36 0.36 
NDVI SD COR05 0.34 0.32 0.23 0.19 0.18 0.08 0.06 0.08 0.11 0.13 0.19 0.14 0.15 0.17 
NDVI SD COR07 0.38 0.36 0.28 0.25 0.24 0.06 0.05 0.07 0.10 0.13 0.08 0.12 0.14 0.17 
NDVI SD COR09 0.35 0.32 0.25 0.22 0.21 0.06 0.06 0.08 0.10 0.12 0.02 0.08 0.11 0.15 
NDVI SD COR11 0.29 0.27 0.21 0.18 0.17 -0.01 -0.01 0.01 0.04 0.05 -0.05 0.03 0.07 0.10 
ELEV -0.11 -0.15 -0.16 -0.15 -0.16 -0.18 -0.14 -0.12 -0.12 -0.12 -0.07 -0.12 -0.10 -0.11 
TVI 0.17 0.23 0.31 0.34 0.37 -0.13 -0.15 -0.14 -0.12 -0.10 0.02 0.14 0.19 0.22 
DSR -0.10 -0.15 -0.16 -0.15 -0.15 0.01 0.05 0.06 0.05 0.06 0.01 0.09 0.04 0.01 

 



97 
 

Name 
NDVI 
SD 
CON11 

NDVI 
AVG 
COR03 

NDVI 
AVG 
COR05 

NDVI 
AVG 
COR07 

NDVI 
AVG 
COR09 

NDVI 
AVG 
COR11 

NDVI 
SD 
COR03 

NDVI 
SD 
COR05 

NDVI 
SD 
COR07 

NDVI 
SD 
COR09 

NDVI 
SD 
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PAN AVG               
PAN SD               
PAN AVG SD03               
PAN AVG SD09               
PAN AVG SD17               
PAN AVG SD25               
PAN AVG SD33               
PAN AVG SD41               
PAN SD SD03               
PAN SD SD09               
PAN SD SD17               
PAN SD SD25               
PAN SD SD33               
PAN SD SD41               
PAN SD AVG03               
PAN SD AVG09               
PAN SD AVG17               
PAN SD AVG25               
PAN SD AVG33               
PAN SD AVG41               
PAN AVG CON03               
PAN AVG CON09               
PAN AVG CON17               
PAN AVG CON25               
PAN AVG CON33               
PAN AVG CON41               
PAN SD CON03               
PAN SD CON09               
PAN SD CON17               
PAN SD CON25               
PAN SD CON33               
PAN SD CON41               
PAN AVG COR03               
PAN AVG COR09               
PAN AVG COR17               
PAN AVG COR25               
PAN AVG COR33               
PAN AVG COR41               
PAN SD COR03               
PAN SD COR09               
PAN SD COR17               
PAN SD COR25               
PAN SD COR33               
PAN SD COR41               
NDVI AVG               
NDVI SD               
NDVI AVG SD03               
NDVI AVG SD05               
NDVI AVG SD07               
NDVI AVG SD09               
NDVI AVG SD11               
NDVI SD SD03               
NDVI SD SD05               
NDVI SD SD07               
NDVI SD SD09               
NDVI SD SD11               
NDVI SD AVG03               
NDVI SD AVG05               
NDVI SD AVG07               
NDVI SD AVG09               
NDVI SD AVG11               
NDVI AVG CON03               
NDVI AVG CON05               
NDVI AVG CON07               
NDVI AVG CON09               
NDVI AVG CON11               
NDVI SD CON03               
NDVI SD CON05               
NDVI SD CON07               
NDVI SD CON09               
NDVI SD CON11 1.00              
NDVI AVG COR03 0.51 1.00             
NDVI AVG COR05 0.50 0.96 1.00            
NDVI AVG COR07 0.50 0.90 0.97 1.00           
NDVI AVG COR09 0.50 0.85 0.93 0.99 1.00          
NDVI AVG COR11 0.50 0.82 0.89 0.96 0.99 1.00         
NDVI SD COR03 0.35 0.34 0.38 0.39 0.40 0.38 1.00        
NDVI SD COR05 0.20 0.06 0.14 0.27 0.36 0.39 0.41 1.00       
NDVI SD COR07 0.21 0.08 0.13 0.24 0.33 0.38 0.27 0.82 1.00      
NDVI SD COR09 0.19 0.14 0.15 0.22 0.30 0.36 0.19 0.63 0.92 1.00     
NDVI SD COR11 0.14 0.14 0.12 0.17 0.24 0.29 0.12 0.44 0.76 0.93 1.00    
ELEV -0.14 -0.10 -0.08 -0.11 -0.11 -0.11 -0.02 -0.03 -0.05 0.00 0.09 1.00   
TVI 0.24 -0.17 -0.17 -0.16 -0.13 -0.10 0.09 0.10 0.10 0.09 0.09 0.02 1.00  
DSR -0.02 0.02 0.04 0.01 -0.01 -0.02 0.03 -0.17 -0.12 -0.07 -0.06 0.15 -0.43 1.00 
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CHAPTER 3: Development of remotely-sensed indices of fine-scale forest characteristics 

for modeling breeding bird species distributions in an Appalachian deciduous forest. 

 

Abstract. Recent developments in remote sensing technology allow forest characteristics to be 

assessed at increasingly finer spatial scales. For example, high resolution optical imagery and 

ancillary data can be used to create continuous, predictive maps of detailed forest characteristics, 

by relating the remote sensing data to data collected in the field. Such maps may also be useful 

for studying patterns in avian biodiversity within forests. To test this, we used a QuickBird 

satellite 0.6-m panchromatic image and a 3-m digital elevation model of a ridgetop Appalachian 

deciduous forest to develop and map indices of forest structure and composition based on field 

data. We then tested these indices along with topographic variables and anthropogenic forest 

edge for modeling the spatial distributions of three sympatric forest songbirds over two breeding 

seasons. The indices characterized a forest structural complexity gradient across the study site 

that was closely related to a chestnut oak (Quercus montana)-sugar maple (Acer saccharum) 

dominated forest composition gradient. Applied to the bird distributions, the indices suggested 

the importance of high structural complexity within this forest for the Hooded Warbler 

(Setophaga citrina), the species most dependent on the understory of forest canopy gaps, in 

addition to higher elevations and certain east-facing aspects. West-facing aspects were most 

important for the Ovenbird (Seiurus aurocapilla), but selection for moderate structural 

complexity (potentially also related to higher forest productivity) was also indicated, as well as 

some forest edge-avoidance. East-facing aspects on knolls, as well as forest edge-attraction, were 

most important for the Cerulean Warbler (Setophaga cerulea), suggesting that other remote 

sensing data (e.g., three-dimensional lidar) may provide better information on its forest habitat 
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characteristics. Overall, the indices suggested habitat-based explanations for many of the 

observed differences among the three species’ distributions, as well as new predictions to test 

regarding their spatial segregation on the ridgetops in this forest. 

 

Keywords: Forest complexity mapping, remote sensing, redundancy analysis, canonical 

correspondence analysis, avian habitat selection 
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1. Introduction 

Remote sensing of forest characteristics has a long history, and has become increasingly 

sophisticated. Aerial photography was used for rudimentary forest surveys as early as 1927 

(Standish 1945). By the 1940s, however, the availability of high quality aerial photos and 

advances in photogrammetric equipment and photo-mensuration techniques provided a powerful 

inventory and mapping tool for foresters (Spurr 1948). Currently, there are numerous aerial and 

satellite remote sensors capable of forest assessment from very coarse (global; e.g., Hansen et al. 

2013) to very fine (individual tree; e.g., Wulder et al. 2004, Ferraz et al. 2016) spatial scales. 

New active (i.e., radar-based) sensors such as synthetic aperture radar (SAR) and light detection 

and ranging (lidar) can provide detailed, three-dimensional forest structure information (Schmitt 

et al. 2013, White et al. 2016). Passive (i.e., reflection-based) sensors have also been developed 

that can provide detailed, albeit two-dimensional, forest structure information (Beguet et al. 

2012). While classifying forest composition at the species level may be best achieved using 

hyperspectral imagery (Martin et al. 1998, Ferreira et al. 2016) or active sensors (Korpela et al. 

2010), standard optical imagery can be used to map broad forest cover types (Homer et al. 2012), 

and high spatial resolution aerial and satellite imagery has been used to identify the species of 

individual tree crowns in a forest canopy (Erikson 2004, Waser et al. 2014).  

There have also been advances in the geostatistical techniques used to analyze remote 

sensing data. One development applicable to high resolution forest imagery is the use of 

constrained ordination to relate the image data (and potentially other geospatial data) to data 

collected in the field. For example, Pasher and King (2010) and Torontow and King (2011) 

obtained explanatory variables from aerial and QuickBird satellite imagery (respectively), and a 

digital elevation model (DEM), for use in a redundancy analysis (RDA) of forest data at the field 
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plot level. The RDA further provided, via statistical model coefficients applied back to the 

remote sensing data, highly detailed maps of forest complexity throughout their study sites (for a 

related use, see Gomez et al. 2011). In addition to the value of such maps for forestry purposes, 

they may also have value for the remote assessment of biodiversity within these forests 

(Torontow and King 2011), based on the established link between forest complexity and forest 

biodiversity (Beckschäfer et al. 2013).  

Eventually, active rather than passive remote sensing will likely be of greater value for 

collecting forest structure information at a fine spatial scale. Presently however, high spatial 

resolution imagery retains a number of advantages for this purpose. For aerial imagery, one is 

that its interpretation is more straightforward based on a long history of photographic image 

analysis (Pasher and King 2010). Some of the satellite imagery (e.g., Ikonos and QuickBird) with 

a spatial resolution comparable to that of aerial imagery appears to provide a comparably fine 

level of detail on forest structure (Beguet et al. 2012). Further, this satellite imagery has the 

advantage of greater spatial coverage with the narrow view angle per acquired image that is 

needed to detect fine-scale forest structure (Pasher and King 2010), and it lacks the uneven 

brightness and parallax distortion that is inherent in aerial imagery (Heumann 2011). Other 

advantages include cost and availability compared to actively-sensed data (Li et al. 2014). 

Research on the use of high resolution imagery for operational forestry is increasing (White et al. 

2016), which may further clarify and promote its use in studying forest biodiversity. 

For this study, we used a QuickBird satellite 0.6-m panchromatic image and a 3-m DEM to 

develop remotely-sensed indices of forest structure and composition on ridgetops in an 

Appalachian mature deciduous forest. We build on Chapter 2, where these remote sensing 

sources were used to separately model field-collected forest and avian point count survey data. 
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Here, we refined the analysis to better incorporate the ridgetop’s complex topography, and used 

constrained ordinations to (1) characterize gradients in forest structure and composition as 

indicated by the field and remote sensing data; and (2) map these gradients as continuous indices 

throughout the site. In addition to obtaining information about the forest itself, we wished to 

discover if the mapped indices could model the spatial distributions of Cerulean Warbler 

(Setophaga cerulea), Hooded Warbler (Setophaga citrina), and Ovenbird (Seiurus aurocapilla) 

breeding territories. We expected the territory locations of these abundant species to differ based 

on known differences in their breeding habitat selection. In turn, we predicted that indices that 

quantified forest characteristics important to their habitat selection would help to explain their 

spatial distributions, in addition to the likely effects of topography and anthropogenic forest 

impacts. We tested these predictions using species distribution models (SDMs) of their territories 

mapped over two breeding seasons on two ridgetop transects.  

 

2. Methods 

2.1. Study site 

This study was conducted primarily in mature deciduous forest on ridgetops at the Lewis 

Wetzel Wildlife Management Area, in northwestern West Virginia, USA. The site is in the 

topographically rugged Permian Hills region of the Western Allegheny Plateau (Woods et al. 

1999), and during our study (ca. 2010–11) was >92% mature forest (Farwell et al. 2016). 

Elevation was 221–480 m (mean 356 m) above sea level. Major tree species included chestnut 

oak (Quercus montana), sugar maple (Acer saccharum), northern red oak (Q. rubra), red maple 

(A. rubrum), hickories (Carya spp.), black oak (Q. velutina), white oak (Q. alba), and black 

locust (Robinia pseudoacacia) (Appendix A). The ridgetop forest at the site has been previously 
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described as occurring in two general types: mesic and dominated by sugar maple, and xeric and 

dominated by chestnut oak (Perkins and Wood 2014). Canopy gaps located on topographic 

aspects with high solar exposure often contained dense grapevine (Vitus spp.) that appeared to 

inhibit forest succession, and occasionally the invasive tree-of-heaven (Ailanthus altissima). The 

understory of the xeric, chestnut oak ridgetops was often dominated by shrub-like greenbrier 

(Smilax spp.). 

2.2. Field sampling 

Data on forest structure and composition were collected during July–August in 2010 and 

2011 at 68 ridgetop sampling points located within mature forest >150 m from anthropogenic 

canopy disturbances (Figure 1; see Chapter 2 for additional details), using a 5-subplot 

arrangement designed to encompass the topographic variability of the often sharply-defined 

ridgetops (Figure 1 inset). The subplot arrangement and vegetation measurements were adapted 

from standardized methods for collecting forest habitat data for bird studies (Martin et al. 1997). 

A central subplot was located on the point, and four surrounding subplots were located 35 m 

from the point using an initial random bearing and 90° intervals. Within an 11.3-m subplot 

radius, the species and dbh (diameter at breast height at 1.4 m) to the nearest cm for each tree ≥8 

cm dbh, the number of snags (≥8 cm dbh and ≥8 m in height), and the number of grapevines that 

ascended trees were recorded. Within a 5-m subplot radius, the number of saplings (<8 cm dbh 

and ≥1.4 m in height) by species, and visual estimates of the percent cover (to the nearest 5%) of 

saplings, low woody plants (including shrubs, tree seedlings, and shrub-like greenbrier), and 

herbaceous plants were recorded. A spherical densiometer was used to estimate the canopy 

closure in the four cardinal directions at the subplot center, and a clinometer was used to measure 
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the height of a tree visually selected to represent the dominant canopy height of the 11.3-m 

subplot. 

Additionally, we established six ridgetop transects (Figure 1) for territory mapping (Bibby et 

al. 2000) of the three bird species. Each transect was a network of primary and secondary ridge 

centerlines that were obtained by hydrological modeling of the 3-m DEM. We selected transects 

based on logistical constraints (ease of access and efficient travel routes) to cover much of the 

forested ridgetop conditions. For analyses in the present study, we focused on the two transects 

with two breeding seasons (2010 and 2011) of territory mapping data. The OR transect was 4.9 

km in length and located completely within mature forest, with no obvious signs of human 

disturbance. The SR transect was 6.2 km in length and also within mature forest, but was 

impacted over a portion of this length (2.4 km) by a narrow forest road and pipeline (10–15 m 

wide) with four small (<0.4 ha) canopy openings for conventional natural gas and oil wells, and a 

20-ha single tree selection harvest. This harvest removed about 25% of the canopy trees and was 

applied during the 2006–07 winter. These transects represented the topographic diversity of the 

site, with each containing locally high and low elevations (knolls and saddles) and a variety of 

ridge orientations. The SR transect further provided the opportunity to incorporate the 

anthropogenic impacts in the SDMs.   

The territory mapping was conducted by J.S. over four sampling bouts per transect spread 

across each breeding season. Most of the sampling occurred between May 1 and June 30, the 

period of high breeding activity for the three species based on other avian breeding season 

research conducted at the site (Sheehan et al. 2014, Farwell et al. 2016), with some sampling in 

early July as long as breeding activity remained comparably high. Each bout was completed over 

1–2 days, depending on the transect length that could be covered during the peak daily period of 
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singing by the territorial males of these species (0 to 4 hrs after local sunrise). The sampling 

occurred under optimal weather conditions (calm winds, no precipitation or heavy fog) for 

recording bird activity. During a visit, the transect was walked at a slow, regular pace (~1–2 

kph), with short (<5 minute) pauses used as necessary to confirm locations of the species and 

record them on detailed field maps (1:5,000 scale). The maps included the transect ridgelines 

with points placed at 50 m intervals. A Garmin© 60CSX Geographic Positioning System (GPS) 

unit (WAAS-enabled ±5–10 m positional accuracy) containing these points was used to ensure 

accurate positioning for estimating the singing locations. 

Because of transect side branches and 2-day bouts, logical junctures (e.g., ridgeline 

intersections and prominent knolls) were used to perform the surveys in segments to which even 

survey effort was applied. When coming back to a juncture and beginning a new map, it was 

compared with the previous map to help ensure that the same individual was not double-

recorded. We considered 100 m to either side of the transect to be the maximum distance at 

which locations could be estimated with sufficient accuracy for their use in delineating 

territories. However, in practice the majority of individuals (>95%) were placed within 75 m of 

the transect. Over this distance we assumed there was little decline in detectability, although this 

could not be assessed because it was too difficult to also record the distance to each detected 

individual, especially when they were abundant. By conducting multiple surveys at the very top 

of the often sharply-peaked ridgetops (optimal for detecting the singing males in all directions), 

we also assumed that detection probabilities were sufficient for obtaining the locations of the 

majority of actively territorial individuals. A singing male was recorded as soon as possible after 

it was first heard and its location could be estimated, with adjustments for better accuracy when 

possible for individuals that continued to vocalize and did not appear to move. Lines were drawn 
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to connect simultaneous locations of individuals (conspecific males of all three species 

frequently countersing) and denote individual movements on the maps.   

Over the course of each season, the completed maps were scanned and then georeferenced 

(UTM NAD 83, Zone 17 N) and manually digitized in a geographic information system (GIS; 

ArcGIS 10.1, Environmental Systems Research Institute, Redlands, CA, USA) to obtain the 

individual locations as well as countersinging and movement events. At the end of the season, 

the bouts were overlaid in the GIS and ovals were drawn around clusters of locations to define 

individual territories. We used a minimum of two locations from >1 bout to define a territory 

(following Bibby et al. 2000 for when there are ≤8 visits), and often relied on counter-singing to 

separate territories. We did not consider the drawn ovals to represent physical territory 

boundaries because this would require more intensive techniques (e.g., burst sampling; Barg et 

al. 2005); instead, we determined the center coordinates of each oval in the GIS and used these 

points to represent the general locations of breeding territories (territory centers; hereafter). We 

collected habitat data as described above for a subplot for a preliminary analysis of forest 

characteristics at selected Cerulean Warbler and Ovenbird territory centers in 2010, and at 

Cerulean Warbler non-use points in 2011 (Appendix B). As collected over the extent of the SR 

and OR transects, this sampling also provided n = 97 habitat samples which we used as external 

data for validation of the remotely-sensed forest indices (section 2.4). 

2.3. Remote sensing data 

We obtained a cloud-free QuickBird 2 (DigitalGlobe®) satellite 0.6-m panchromatic image 

(acquired 25 August 2009 at 16:18 GMT, 6° off-nadir, solar azimuth = 127°) and a 1/9 arc-

second DEM (3-m spatial resolution and ±3 m vertical accuracy; source: 

http://viewer.nationalmap.gov/). The satellite image was orthorectified in Erdas Imagine 9.3 
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using the DEM, the rational polynomial coefficients supplied with the image, and six ground 

control points obtained from 1-m resolution leaf-on orthophotos (2007 National Agriculture 

Imagery Program). The root mean squared error of the rectified image was 3.3 m (X direction) 

and 2.6 m (Y direction). Because there were no major disturbances (e.g., severe windstorms) 

between the image date and the field sampling, and new tree falls were infrequent based on the 

2010–11 field sampling, we assumed the image and the field data were a temporal match.  

We used the zonal statistics function in ArcGIS 10.1 to obtain a set of variables from the 

satellite image and DEM to use in the constrained ordinations. We selected a 15-m radius from 

the subplot centers to extract the zonal statistics (i.e., pixel summaries; including the mean and 

s.d.) from the various layers (Appendix C). This was the maximum radius possible without 

overlapping adjacent subplots, and overall it produced remote sensing variables that were 

comparatively more strongly correlated with the field data variables than smaller radii (5 and 10 

m), based on preliminary testing.  

We first chose the three satellite image statistic measures that we previously found most 

useful for analyzing the forest data at a larger local scale (50-m radius plots; Chapter 2) for 

inclusion in the set of variables. These were the panchromatic image mean (PANAVG) and s.d. 

(PANSD), and the s.d. from a second-order correlation texture image computed from the 

panchromatic image using a 9x9 pixel moving window (PANSD_COR09). For topography, we 

included mean elevation, topographic slope, and the sine and cosine derivations of topographic 

aspect. These derivations transformed the circular aspect directions (0–360°) into linear values 

for eastness (-1.0–1.0; due west to due east) and northness (-1.0–1.0; due south to due north); 

respectively. We did not include a solar insolation index because it was highly correlated with 

northness (Spearman’s rank-order correlation rs = -0.87) and moderately correlated with eastness 
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(rs = 0.53). Use of northness and eastness allowed us to more flexibly model the complex ridge 

topography, and still infer the likely influence of solar insolation (e.g., on forest composition of 

north- versus south-facing aspects). Finally, to potentially represent different spatial scales of 

satellite image information, we included eight additional image texture statistic measures 

(Appendix C) from among a large number available (see Chapter 2 for full listing and 

computational details), ensuring a pairwise rs <0.80 among all variables (Appendix D) and also a 

variance inflation factor of <5 (for stability of the variable selection procedure; section 2.5.). 

For use only in the SDMs, we determined the coordinates of the tops of prominent knolls on 

the two transects based on 3-dimensional modeling of the DEM and field verification, and 

created a continuous distance grid from these locally high elevation points. We also digitized the 

anthropogenic impact to the SR transect, and created a continuous distance grid from the impact 

edges. This impact grid was also manipulated for inclusion as a local effect (likely more realistic 

for models applied at larger spatial scales) by truncating the continuous distance at various 

maximum distances, and also by transforming it to a categorical impact grid (i.e., “impacted” and 

“not impacted”) at a specified distance. We applied Gaussian filtering to the mapped forest 

structure and composition indices using a s.d. of 5 m at intervals up to 25 m, to examine the 

influence of different spatial scales for locally averaging the indices to reduce noise (and thus 

potentially maximize their information content). To speed processing time, all of the spatial data 

layers used in the SDMs (see section 3.3.) were resampled to a 5-m resolution. 

2.4. Remote sensing index development  

We evaluated the use of RDA and canonical correspondence analysis (CCA) for developing 

the indices of forest structure and composition. These constrained ordination techniques allow 

two matrices of data collected at the same locations to be analyzed simultaneously (Legendre and 
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Legendre 2012). For our study, the matrices (with one row per subplot; n = 340) were the field 

data as response variables and the remote sensing data as explanatory variables. RDA and CCA 

produce successive, orthogonal ordination axes that are linear combinations of explanatory 

variables, and these axes best explain (in decreasing amounts) the variation present in the matrix 

of response variables (Borcard et al. 2011). While closely related, RDA and CCA differ in 

application, with RDA more appropriate for linear trends in response variables over relatively 

short environmental gradients and CCA more appropriate for unimodal trends in response 

variables over longer environmental gradients (ter Braak and Prentice 1988). A common method 

to choose between them is to first use detrended correspondence analysis (DCA) on the paired 

data matrices to examine the gradient length of the first ordination axis. A gradient length of >4 

s.d. units of species turnover (e.g., for community composition data) indicates that at least some 

species exhibit unimodal responses and the use of CCA is advised (Borcard et al. 2011).  

 We used DCA, RDA and CCA as implemented in the vegan R package (Oksanen et al. 

2016) to analyze three sets of field variables (list and summary statistics in Appendix A), using 

the set of remotely-sensed explanatory variables for each of the analyses. Based on DCA as an 

initial step to check the gradient lengths, in the first analysis (RDAS) we used RDA to model 11 

forest structure variables; in the second analysis (CCAC) we used CCA to model tree species 

composition (percent of total basal area); and in the third analysis (RDAS+C) we used RDA to 

model the forest structure variables plus tree species richness and chestnut oak and sugar maple 

composition (29.5% and 22.3% of total basal area; respectively). We used percent of total basal 

area (i.e., a measure of relative importance) instead of actual basal area for species composition 

because doing so resulted in stronger CCAC and RDAS+C models. Prior to the analyses, to 

achieve normality and reduce the influence of outliers (Legendre and Legendre 2012), we 
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graphically examined the explanatory and forest structure variables and applied data 

transformations if necessary (noted in Appendix A and C). We applied the arcsine square root-

transformation to the tree species composition data.    

We used the ordistep function in the vegan R package to determine if there was a 

parsimonious set of explanatory variables for each of the analyses from among the full set. This 

function performs variable selection for constrained ordinations through the use of permutation 

tests (Oksanen et al. 2016). We used the default forward-backward variable selection, P ≤ 0.05 to 

add a term to the model and P > 0.1 to drop a term from the model, and 999 permutations. Based 

on the results of the selection procedure, we re-ran the analyses to produce a final RDAS, CCAC 

and RDAS+C model using the reduced set of explanatory variables that were selected for each 

model.   

For each final model, we made plots of the dominant ordination axes as judged by the 

proportion of the total variance they explained. These ordination plots displayed arrows 

originating from the plot center to represent the explanatory variables, which by their 

orientations and lengths (as determined by adjusted R2 vector fits) indicated how they were 

associated with the field variables, as well as their correlation with the ordination axes. We 

examined these plots to determine gradients in forest structure and composition as indicated by 

the ordination axes for potential mapping. To make the maps, we used the ArcGIS 10.1 raster 

calculator to multiply each pixel of the spatial data layers by their respective axis model 

coefficients (obtained with the vegan coef function), then summed these new layers. Prior to this 

calculation, we transformed the spatial data layers as needed for the applied model coefficients, 

and processed them using a 15-m radius circular moving window (focal mean or s.d., depending 

on the layer) to match the scale used for the ordinations. 
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We used leave-one-out cross validation (LOOCV) to evaluate the stability of the final models 

using the original data (i.e., internal validation), and also how well these models predicted the 

externally collected data (i.e., external validation). Both evaluations used the Pearson’s 

correlation (r) between the site (i.e., field plot) WA scores and the LC scores for the dominant 

ordination axes. Originally defined for CCA applied to community data (e.g., see Graffelman 

and Tuft 2004), WA scores are weighted averages of species scores and LC scores are linear 

combinations of environmental variables. The correlation between these scores is thus often 

called the ‘species-environment relationship’ (e.g., Legendre and Legendre 2012). Following 

McCune (1997), we refer to the species-environment relationship for our data simply as the WA-

LC correlation hereafter. To evaluate model stability, we used the vegan R package predict 

function to iteratively predict the scores for each row of held out data from a model using the rest 

of the data (n = 339), and obtained the WA-LC correlation between the set of predicted scores to 

compare with the WA-LC correlation obtained for the final models. To evaluate the predictive 

potential of the indices (which are the LC scores mapped as a continuous surface) for modeling 

the bird species territory habitat, we used the function to predict the WA and LC scores for the 

external data, and then applied LOOCV to linear regression models relating these scores. For 

both evaluations, we calculated the RMSE (root mean square error) as a percentage of the range 

of the WA scores. 

2.5. Species distribution modeling 

We used point pattern analysis (PPA) in the spatstat R package (Baddeley et al. 2015) to 

perform the distribution modeling. The point patterns were the territory centers of each species 

on the ridgetop transects in each year, and we used a buffer of 75 m to either side of the ridge 

centerlines to define the sampling window for each transect (Figure 1). In this paper, we follow 
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PPA terminology and use ‘intensity’ to refer to the average density of points per unit area. We 

tested if intensity varied in relation to spatial covariates (e.g., the mapped indices) covering the 

sampling windows. We assumed that using points (the territory centers) to represent selection by 

the species of territory areas was appropriate for the relatively large spatial scale of this 

investigation, and we also did not consider processes of attraction and repulsion between the 

points in the models. We chose this application of PPA because it can closely approximate other 

commonly used SDM techniques such as spatial logistic regression and Maxent (Baddeley 2010, 

Fithian and Hastie 2013). The chief advantages of PPA (and spatstat) for our study were the 

variety of techniques available for statistical modeling (both parametric and nonparametric) and 

visualization, model diagnostics, and data handling flexibility.   

The relation between intensity and a spatial covariate is tested in a spatstat point process 

model (PPM) through the use of quadrature points. These points provide background values for 

the covariate over the sampling window to compare with the covariate values obtained for the 

observed point pattern. To accurately estimate the background, it is important that the number of 

quadrature points be sufficiently large (Renner et al. 2015), and it is also important that the 

spatial resolution of the covariate be sufficiently fine so that individual points of the observed 

pattern do not share the same pixel (Aarts et al. 2012). For the point patterns of each species, 

inter-point distances were easily sufficient so that pixel values for the 5-m resolution covariates 

were unique to each point. We selected an appropriate number of quadrature points by 

successively increasing their number on a regular grid until the maximum likelihood estimates 

for the PPMs converged (Renner et al. 2015).  

Our primary goal was to seek SDMs that could apply across the combined OR-SR transect 

extent. We focused both on finding covariates that were consistently related to intensity over the 
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combined transect extent, and finding covariates that differed in how they were related to 

intensity between the two transects (e.g., those positively related to intensity at one transect but 

not the other). To help indicate these two general types of covariate effects, we attached 

categorical transect “marks” to the points and tested the significance of transect by covariate 

interaction PPMs using likelihood ratio tests. To infer the presence of single covariate effects on 

intensity, we examined the model parameter 95% confidence intervals (CI). We also sought to 

combine multiple covariates to explain intensity. To evaluate PPMs, we used the Akaike 

Information Criterion (AIC) provided by spatstat as a measure of relative fit, examined model 

diagnostic plots, and mapped the predicted intensity trends for the species across the transects. 

We used nonparametric techniques implemented in spatstat (the univariate rhohat and 

bivariate rho2hat functions) to visualize the relation between intensity and the spatial covariates. 

These functions allow covariate effects on intensity of no pre-specified form to be fit graphically, 

and further can provide this fit relative to a previously-fitted PPM (Baddeley et al. 2012). This 

second capability was valuable because it allowed us to visualize how additional covariates 

affected intensity, conditional to how intensity was already explained by a PPM. These 

additional effects could, for example, be indicated as separable from other effects (see examples 

in Baddeley et al. 2012). Along with the spatstat parres function, these nonparametric functions 

also helped to indicate if polynomial terms should be considered for covariates in the PPMs. 

2.5.1. Initial model predictions  

We tested a number of species-specific predictions for covariate effects on intensity. The first 

predictions were based on likely differences among the species according to habitat structure. 

While both the canopy-nesting Cerulean Warbler and the shrub-nesting Hooded Warbler have 

been associated with forest canopy gaps (e.g., Perkins and Wood 2014, Pasher et al. 2007; 
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respectively), during territory mapping Hooded Warblers were most often recorded within the 

understory of canopy gaps, whereas Cerulean Warblers were recorded on the edges of canopy 

gaps but also nearby in areas with a more continuous canopy. The Ovenbird has typically been 

associated with closed forest canopies with relatively open understories for nesting (Porneluzi et 

al. 2011), and during territory mapping it was primarily recorded in such areas. We thus 

predicted that Hooded Warbler intensity would be positively related to mapped indices that 

characterized forest structural complexity in the form of canopy gaps. We predicted that Cerulean 

Warbler intensity would also be positively related to these indices, but less strongly, and that 

Ovenbird intensity would be unrelated, or potentially negatively related, to these indices. 

Analysis of point count survey data at the site (Chapter 2) supported these predictions in part, as 

Hooded Warbler occurrence and abundance were positively and relatively strongly related to 

PANSD (calculated at a 50 and 100 m radius; respectively). For the other two species, however, 

only occurrence was positively (and relatively weakly) related to this image texture measure. 

We made two predictions related to likely topographic influences. Several studies have found 

that Cerulean Warblers select particular aspects for breeding activities (e.g., Hartman et al. 2009: 

east-facing aspects; Weakland and Wood 2005, Barnes et al. 2016: northeast-facing aspects). In 

contrast, we was able to find no published information on Hooded Warbler or Ovenbird breeding 

habitat selection in relation to aspect. However, we suspected that aspect strongly influenced all 

three species, as Ovenbirds were frequently detected on opposite-facing aspects from where the 

other two species were detected. Because of the highly convoluted ridge orientations at the site, 

we tested the general prediction that differences would be found among the species’ intensities in 

relation to eastness, northness, or both in combination. The second prediction was for a positive 

Cerulean Warbler distance to knoll association, as Cerulean Warblers were more often observed 
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near the tops of knolls, even minor ones, than the other species. We found no published 

information to support a potential knoll association, although prior research at the site conducted 

in 2008 and 2009 (included in Sheehan et al. 2014) was supportive, as particularly high Cerulean 

Warbler numbers were known to occur on two prominent knolls located on the SR transect, and 

elsewhere. 

The final predictions were for potential effects on intensity from anthropogenic impacts on 

the SR transect. The Cerulean Warbler in particular was likely to be attracted to the internal 

forest edges created by the narrow SR transect impact (Rodewald 2004, Weakland and Wood 

2005), and during territory mapping it was commonly recorded directly on the impact edges. 

Potentially the Hooded Warbler could be attracted to the impact as well (e.g., to shrubby edges 

for nesting), although no clear pattern in relation to the impact was observed for it during the 

mapping. In contrast, the Ovenbird could potentially exhibit repulsion from the impact, as found 

by Ortega and Capen (1999) also in a heavily forested landscape. In support of this, there 

appeared to be relatively few Ovenbirds in the impacted sections of the SR transect compared to 

unimpacted sections.  

 

3. Results 

3.1. Forest structure and composition modeling 

The forward-backward selection procedure resulted in a forest structure model (RDAS) with 

seven variables, and forest composition (CCAC) and forest structure plus composition (RDAS+C) 

models with eight variables each (Table 1). As indicated by the relatively low proportion of 

variance explained across the models (13.5–22.3%), there was considerable noise in the field 

data as fit by the remote sensing data. However, each model contained a number of significant 
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axes (four for RDAS and five for CCAC and RDAS+C), suggesting there were also some 

potentially informative signals in the field data (e.g., general multivariate gradients; Pasher and 

King 2011). The PANSD measure was also consistently the first variable selected for each model 

(indicative of its relative strength, see also Chapter 2). All models retained a mixture of image 

texture and topographic variables, and included spectral brightness (PANAVG) as well as a 

coarser-scale version of the second-order correlation texture s.d. (PANSD_COR17). Within each 

model, the majority of variance was explained by the first ordination axis (RDAS = 12.9%, 

CCAC = 8.6%, and RDAS+C = 17.0%; Table 1). We made ordination plots for each model (Figure 

2) using the first ordination axis and the second ordination axis, which explained an additional 

2.7%, 2.1%, and 2.8% of the variance for RDAS, CCAC, and RDAS+C; respectively. 

Basal area, herbaceous cover, and grapevine density had the most spread along the first 

ordination axis of RDAS (Figure 2a). This supported the existence of a forest structure gradient 

among the field plots, ranging from those with higher basal area (plots to the left in Figure 2a) to 

plots with higher herbaceous cover and grapevine density (plots to the right in Figure 2a). As in 

Chapter 2, inspection of the satellite image at the plots suggested that this gradient was related to 

the range of canopy closure present in mature, non-anthropogenically disturbed forest at the site. 

We characterized this gradient overall as one of forest structural complexity, with a less 

complex, closed canopy (associated with higher basal area), grading into a more complex, open 

canopy (associated with higher herbaceous cover and grapevine density). For CCAC, a gradient 

in tree species composition along the first ordination axis was indicated by the canopy dominants 

(Appendix A) chestnut oak (plots to the left in Figure 2b) and sugar maple (plots to the right in 

Figure 2b), and by additional species. For example, the other oak species were separated out with 

chestnut oak from tree-of-heaven and slippery elm, which were at the opposite end of the 
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gradient with sugar maple. While the RDAS+C ordination (Figure 2c) was otherwise similar to the 

structure variable-only RDAS ordination, the addition of chestnut oak and sugar maple 

composition resulted in these species being aligned with the first ordination axis, but having the 

greatest spread along it.  

The difference in the relative positions of sugar maple and chestnut oak for characterizing the 

first ordination axis of RDAS+C (located at the extremes) versus CCAC (differentiated, but other 

species located at the extremes) was a likely a function of the technique’s modeling of linear 

versus unimodal responses; respectively, and because common species have less of an influence 

on CCA than rare species (Legendre and Legendre 2012). Both techniques appeared to provide 

useful information. CCA helped to highlight less dominant tree species that were nonetheless 

important for characterizing the primary composition gradient. Adding chestnut oak and sugar 

maple composition to the structure variables in RDAS+C helped to highlight the association 

between these canopy dominants and the primary structure gradient. The association between the 

primary structure and composition gradients (as modeled by the remote sensing data) was further 

indicated by the relatively high correlation between the first ordination axes of RDAS and CCAC 

(rs = 0.71). Not surprisingly, the first ordination axes were highly correlated between RDAS and 

RDAS+C (rs = 0.93), and between CCAC and RDAS+C (rs = 0.86). 

The PANSD and PANSD_COR17 textures were most strongly correlated with the first ordination 

axis across the models (Figure 2), and were similarly orientated for each model, with PANSD 

positively correlated and PANSD_COR17 negatively correlated with the axes. Additional variables 

were closely aligned with PANSD (PANSD_CON09 for RDAS and RDAS+C, eastness for RDAS+C, 

and PANSD_AVG25 for CCAC), but had shorter arrow lengths (i.e., lower R2 fit; particularly 

eastness). The PANAVG measure was diagonal to the first and second ordination axis (lower right 
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quadrant) across the models. Compared to RDAS, the addition of forest composition to the 

structural variables for RDAS+C increased the PANAVG association with grapevine density and 

herbaceous cover. Thus, while PANAVG increased in the direction of these structure variables for 

both models, for RDAS+C this brightness measure also helped to separate these variables from 

sugar maple, likely indicative of larger canopy gaps. For CCAC, PANAVG was oriented toward a 

number of pioneer tree species that favor disturbance (e.g., tree-of-heaven, slippery elm, and 

black locust), and was also closely aligned with the weaker fit provided by eastness. 

The second ordination axis across the models appeared to primarily represent topographic 

influences on forest structure and composition (Figure 2). For RDAS and RDAS+C, elevation was 

negatively correlated with the axes in the direction of plots with higher tree density and shrub 

cover (and tree species richness for RDAS+C), while topographic slope and northness were both 

positively correlated with the axes in the direction of plots with greater tree height and the mean 

and s.d. of tree dbh. Although topographic slope and northness were also positively correlated 

with the CCAC second axis, the slope correlation was relatively stronger. Species such as white 

oak and black oak became more dominant in plots with flatter slopes (i.e., plots opposite the 

slope arrow), and there were also species favoring steeper slopes (e.g., American beech and tulip 

poplar). American beech and black oak in particular were related to north- and south-facing 

aspects; respectively. As noted above, eastness was diagonal to the first and second axes with 

PANAVG for CCAC, indicating some association between east-facing aspects and the higher 

spectral brightness that was related to the above-noted tree species. The image texture 

PANSD_CON03 was also diagonal to the CCAC axes (but in the upper right quadrant), and 

characterized plots with more American basswood, shagbark hickory, and sugar maple.   

3.2. Validation and mapping of the indices   
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The WA-LC correlations (Table 2) were moderately strong for the first ordination axis across 

the models. Constrained ordination techniques seek to maximize this correlation, however, so it 

is important to note that the correlations pertain only to the relatively low amount of variance 

explained by the models. The correlations were higher for CCAC (r = 0.81) and RDAS+C (r = 

0.79) than for RDAS (r = 0.72), but again this must be interpreted with caution because of the 

different sets of response variables analyzed. More importantly for prediction purposes, the 

internal LOOCV indicated stability for the correlations across the models, with only relatively 

small reductions in fit. For RDAS and RDAS+C, the external LOOCV produced correlations 

approximately equivalent to those of the original models, with a relatively small percent RMSE 

increase (<5%) over the internal validation. This suggested that these models, built using data 

from the full study area extent, predicted within the smaller extent of the two transects similar to 

how they predicted more broadly. For CCAC, the external LOOCV resulted in a larger 

correlation reduction (r from 0.81 to 0.66), and a larger percent RMSE increase (8%), so 

conversely this model predicted relatively less well when applied only within the smaller extent 

of the two transects. 

The lower WA-LC correlations for the second ordination axis were also relatively stable 

across the models according to the internal LOOCV, albeit with somewhat larger RMSE. 

However, predictive ability was poor to nonexistent according to the external LOOCV (e.g., r 

became near 0 for CCAC). For this reason, we opted to map only the first ordination axis for each 

model. As described above (section 2.4.), we produced continuous predictive maps (referred to 

hereafter as RDA1
S, CCA1

C, and RDA1
S+C) across the area of the two ridge transects (Appendix 

E). Visually, the RDA1
S and the RDA1

S+C maps were nearly identical due to their high first 

ordination axis correlation. Portions of the RDA1
S+C map (and associated panchromatic images) 
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are shown in Figure 3 to illustrate several key patterns. Locally within the transects, areas of 

predicted high structure/sugar maple composition often dominated south- and east-facing 

aspects. In the panchromatic image, these areas have a characteristically rough forest canopy 

which contains spectrally brighter gaps. Important for the generality of the index across aspects, 

the map also indicated a complex forest canopy on more north-facing aspects that were more 

shaded due to the sun angle at the time of image acquisition.  

The RDA1
S and RDA1

S+C maps also indicated areas of smooth canopy in the imagery, with 

predicted high basal area/chestnut oak composition (e.g., see arrows in Figure 3). Across the 

extent of the two transects, there was a general southwest to northeast trend from where such 

smoother canopies were more dominant, to areas where rougher canopies were more dominant 

(i.e., with predicted high structure/sugar maple composition). This pattern was similar to the 

broader pattern (across the full study area extent) observed for several image measures such as 

PANSD and PANAVG at the coarser resolution that was the focus of the Chapter 2 analyses. The 

RDA1
S and RDA1

S+C maps, however, more clearly showed the pattern according to the multiple 

aspects across the two transects, which is a consequence of modeling the field and remote 

sensing data at the finer subplot scale. For the CCA1
C map, while the coarser-scale pattern was 

still evident, much of the differentiation in the index values according to aspect appeared to be 

lacking. 

3.3. Territory maps and SDM covariate selection 

A similar number of Ovenbird territories were mapped in 2010 and 2011 (n = 69 and n = 68; 

respectively), but from 2010 to 2011 the number of Cerulean Warbler mapped territories 

substantially increased (from n = 71 to n = 96) and the number of Hooded Warbler mapped 

territories nearly doubled (from n = 55 to n = 97). Inspection of the point patterns as represented 
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by the species’ territory centers revealed several patterns of interest. As a combined species 

pattern in each year (Figure 4), there was relatively little unoccupied area across the transects. At 

the local (i.e., within ridge) scale, while the three species often occurred in relatively close 

proximity to each other, there also were areas in which they occurred more separately. The 

Cerulean Warbler exhibited greater clustering than both the Hooded Warbler and Ovenbird. For 

these species too, however, there were areas where they occurred more densely. In 2011, 

territories of each species were often located in the same areas as in 2010 (combined-year maps 

by species are in Appendix E). This was most obvious for the Ovenbird, but was also apparent 

for the other two species despite their 2011 increases. 

Based on preliminary modeling, we selected a 15 m s.d. for the Gaussian filtering of the 

mapped indices (done with the spatstat blur function). This amount of smoothing (shown for 

RDA1
S and CCA1

C in Figure 5a, b) provided a balance between preserving the indices’ spatial 

patterns and maximizing how strongly they could model the species. This filter also effectively 

smoothed over the narrow SR transect impact (represented on the elevation layer; Figure 5c, and 

in Appendix E). Because of this, we did not mask out the impact from the indices, and relied on 

the impact covariate to account for forest edge attraction or repulsion, and the indices to account 

for effects of the surrounding mature forest habitat, in models combining these covariates. In 

support of this decision, we detected no consistent spatial pattern in the values of the smoothed 

or original indices over the extent of the impact. We also let the indices alone represent the 

selection harvest at the SR transect (Appendix E), as we could not detect any obvious signs of a 

harvest (e.g., a boundary) in the satellite image from this low amount of canopy tree removal.  

We used the same topographic layers that were used for the constrained ordinations in the 

SDMs (Figure 5c-f). Of these, topographic slope (Figure 5d) remained relatively noisy despite 
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the 15-m radius focal mean and the 5-m resolution resampling. Further smoothing of the slope 

layer did not improve its ability to model the species however, and in its original form it depicted 

potentially interesting characteristics (e.g., flatter areas on knolls and particularly “spiny” ridges 

on the SR transect). Over the combined transect extent, the topographic layers were relatively 

uncorrelated with each other and with the indices (Appendix D), which facilitated the modeling. 

However, because elevation and slope were often locally correlated in modeling intensity (e.g., 

locally higher elevations often had flatter slopes), we selected only one of these for the multiple 

covariate SDMs, based on their individual AIC fit and consideration of model diagnostics. 

3.4. SDM single and multiple covariate effects 

We found a variety of single covariate effects on intensity among the species, and also 

models of combined covariate effects for each species (full results in Appendix F). We did not 

attempt to evaluate all possible covariate combinations, but focused on combining covariates to 

create plausible models of their habitat use, based on knowledge of a species and the annual 

consistency of effects. In summary regarding the initial predictions prior to the more detailed 

results presented below, the forest structure-based indices were most strongly related to Hooded 

Warbler intensity as predicted. Considered singly, however, the indices were mostly unrelated to 

Ovenbird and Cerulean Warbler intensity. Instead, topography and anthropogenic edge best 

differentiated them. Notably, eastness of aspect had opposite effects on their intensities (west-

facing for Ovenbird and east-facing for Cerulean Warbler, consistently across the transects), as 

did the SR transect impact (repulsion for Ovenbird and attraction for Cerulean Warbler, as 

predicted). Interestingly, while the eastness effects were strong (including for Hooded Warbler in 

certain areas), we found little to no effects of northness. Finally, the predicted Cerulean Warbler 

attraction to knolls was well supported across the transects. 
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3.4.1. Hooded Warbler  

Spatially, the Hooded Warbler intensity trend was largely consistent with the broad-scale 

patterns of the indices (e.g., as indicated in Figure 5a, b). Based on the predicted intensity from a 

PPM containing only the RDA1
S index (Figure 6), the strongest of the indices for modeling 

Hooded Warbler, this occurred in both years as higher intensity in the northern region of the SR 

transect, and at the OR transect overall. In 2010, the effect was somewhat stronger, with the 

relative scarcity of Hooded Warbler territories more pronounced in the central to southern region 

of the SR transect. Despite the territory number increase in 2011, however, this regional disparity 

remained. There was also no evidence in either year to support that the SR transect impact 

influenced this pattern.  

Eastness and elevation were also relatively strong predictors of Hooded Warbler intensity, 

with largely consistent between-year effects. Further, an improved model AIC fit occurred when 

the RDA1
S index was combined with eastness (AIC ∆ = 1.48 and 4.31 in 2010 and 2011; 

respectively) and with elevation (AIC ∆ = 4.08 and 6.18 in 2010 and 2011; respectively). The 

bivariate RDA1
S index by eastness plots (Figure 6) indicated that high Hooded Warbler intensity 

coincided with higher index and eastness values (the upper right plot quadrant) in both years 

(also see section 3.4.1.). This trend occurred as higher predicted intensity primarily on east-

facing aspects at the OR transect, however. A positively-sloped pattern in the territory covariate 

values (particularly discernible in 2011) was also evident for the RDA1
S index by eastness plots. 

This was largely an artifact of the SR transect, due to the large number of Hooded Warbler 

territories in low RDA1
S index areas and also ranging across west- to east-facing aspects there.   

The bivariate RDA1
S index by elevation plots (Figure 6) indicated that high Hooded Warbler 

intensity also coincided with higher index and elevation values in both years. Outside of this 
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dominant pattern, the vertical spread in the territory covariate values (again more discernible in 

2011) was also largely an artifact of the SR transect, because of the number of Hooded Warbler 

territories in low RDA1
S index areas at higher elevations. Spatially, these two predictors of 

Hooded Warbler intensity were also partly in opposition to each other, as there were higher 

elevations at the SR transect relative to the OR transect, and mostly the opposite pattern for the 

RDA1
S index (Figure 5). Combining all three covariates in one model, or just elevation with 

eastness, caused a number of fit issues (PPM diagnostic plots are in Appendix F), a not 

surprising finding given the different spatial patterns for these predictors. 

3.4.2. Ovenbird  

 The dominant trend for the Ovenbird was higher intensity on west-facing aspects in both 

years. This trend can be seen in the predicted intensity from a PPM containing only eastness 

(Figure 7), and the spatial consistency of this trend was supported by the lack of significance for 

the eastness by transect interaction in each year (P = 0.976 and 0.761 for 2010 and 2011; 

respectively). Of the indices, a peak in intensity occurred for intermediate values of the RDA1
S 

index, but only in 2010. This index was more informative in both years when considered in 

combination with the apparent selection by Ovenbird for west-facing aspects, however (also see 

section 3.4.1.). This was evident in the bivariate RDA1
S index by eastness plots (Figure 7) as 

higher Ovenbird intensity coinciding with moderate values for the index and west-facing aspects. 

A quadratic polynomial for the RDA1
S index added to the eastness model caused a small fit 

improvement in 2010 (AIC ∆ = 0.79) and a larger one in 2011 (AIC ∆ = 2.77), and improved 

models based on residual diagnostics in each year. Much of the selected moderate RDA1
S index 

area occurred in the north of the SR transect, and at the OR transect overall. 
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Some repulsion from the SR transect impact was indicated for the Ovenbird in each year, 

with a slightly stronger effect apparent in 2011 (Figure 7). We truncated the impact edge distance 

at 75 m to attempt to incorporate this repulsion as a local effect along with eastness and the 

RDA1
S index. This combined model resulted in better AIC fit in both years (AIC ∆ = 1.21 and 

7.48 in 2010 and 2011; respectively) and improvements based on residual diagnostics. Adding 

this modified impact covariate caused little change to the broader-scale eastness and RDA1
S 

index effects in 2010, but in 2011 the RDA1
S index effect decreased somewhat (model parameter 

estimate changes are noted in Appendix F), which meant that the impact and the index coincided 

in part in explaining Ovenbird intensity. While excluding the RDA1
S index produced competitive 

eastness+impact PPMs in terms of AIC fit (AIC ∆ = 0.06 and 0.29 in 2010 and 2011; 

respectively), these models were less valid based on residual diagnostics.   

Selection for flatter to moderate slopes was also indicated for Ovenbird intensity in both 

years (Figure 7). Adding topographic slope to eastness, the RDA1
S index, and the truncated 

impact improved model fit in both years (AIC ∆ = 2.80 and 4.42 in 2010 and 2011; respectively), 

with residuals diagnostics unaffected. For 2011, however, this combination caused a further 

decrease in the RDA1
S index effect, apparently related to the slope by transect interaction effect 

for 2011 (P = 0.048; with selection for flatter slopes at the OR transect), versus 2010 (P = 

0.675). We considered this 5-term model to be rather complex, also considering the relatively 

noisy nature of the slope covariate. One interesting spatial tendency related to slope, however, 

was that flatter slopes often occurred in proximity to the ridgelines (Figure 5d), and a number of 

Ovenbird territories in each year centered near the ridgelines were thus partly responsible for this 

effect.
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3.4.3. Cerulean Warbler  

Eastness combined with knolls more strongly modeled Cerulean Warbler intensity in both 

years than eastness alone based on fit (AIC ∆ = 14.08 and 13.24 in 2010 and 2011; respectively). 

This combined trend can be seen in the predicted intensity from an eastness+knolls PPM as 

higher intensity for east-facing aspects in proximity to the tops of knolls (Figure 8). Covariate by 

transect interaction models supported the spatial consistency of the eastness trend (P = 0.907 and 

0.169 for 2010 and 2011; respectively) and the knolls trend (P = 0.403 and 0.295 for 2010 and 

2011; respectively) across the transects. The bivariate knolls by eastness plots indicated that 

highest intensities occurred approximately <100 m from the tops of knolls and for eastness 

values >0.5 in both years (Figure 8). Notably, while some dense clusters of territories in 

proximity to knolls were evident at both transects (e.g., in their southern regions), this knoll 

proximity was also evident for smaller clusters and even lone territories. Despite the relative 

strength of the combined eastness-knolls model, however, the residual diagnostic plots in 

particular pointed to a lack of fit where the densest clusters occurred.  

Although Cerulean Warbler intensity was not related to any of the forest indices, it strongly 

increased near the SR transect impact in both years (Figure 8). We included this local effect with 

other covariates using a 10 m edge distance categorical covariate (i.e., ≤10 m from edge equals 

“impacted”), which produced a strong effect due to the number of territories centered on or close 

to the impact edges (including in the dense clusters). The addition of this impact covariate 

largely overwhelmed other covariate effects in terms of predicted intensity across the transects, 

however (e.g., see eastness+knolls+impact PPM in Appendix F). This also reduced the knoll 

effect somewhat, a consequence of the impact running through a number of the prominent SR 

transect knolls with abundant territories. Elevation was also a relatively strong predictor of 
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Cerulean Warbler intensity in both years (Figure 8), but as with Hooded Warbler, predicted 

intensity appeared to be positively biased toward the higher elevations of the SR transect. In 

combined models, the elevation effect reduced the knoll effect somewhat (i.e., intensity was 

modeled in part by higher elevations on knolls). The elevation and impact effects also competed, 

a consequence of the impact being located on the higher elevation SR transect. Despite increases 

in AIC fit when elevation and the impact were combined (singly or together) with eastness and 

knolls, residual diagnostics still indicated the fit issues apparently caused by the dense clusters. 

3.4.4. Separability of effects  

Along with those mentioned above, other covariates when combined sometimes competed 

with each other in modeling intensity. This occurred because the covariates, while relatively 

uncorrelated across the combined transect extent, could exhibit local correlation (e.g., as in 

elevation and topographic slope; described in section 3.3). Other effects were largely separable, 

indicated by the relative lack of parameter estimate changes when combined (e.g., 

eastness+knolls for the Cerulean Warbler), which could also be seen as little change in 

nonparametric rhohat functions after controlling for covariate effects on intensity. We was most 

interested in examining how the RDA1
S index and eastness together partly explained Hooded 

Warbler and Ovenbird intensity (Figure 9). For the Hooded Warbler, while the intensity trend in 

relation to the RDA1
S index remained in both years after controlling for eastness, it was 

weakened at higher index values relative to the univariate trends. In other words, some of the 

most east-facing aspects already partly explained Hooded Warbler intensity (conversely, this 

could also be seen for eastness after controlling for the RDA1
S index). For the Ovenbird, not 

controlling for eastness prior to modeling the RDA1
S index resulted in a rather weak unimodal 

peak in intensity at intermediate index values. Controlling for eastness, however, helped to 
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clarify that within west-facing aspects there was a positive intensity trend in relation to the 

RDA1
S index, and that this trend was more pronounced in 2011. 

 

4. Discussion 

As noted by Torontow and King (2011) for RDA similarly applied to a mixed hardwood 

forest in Quebec, Canada, we also found that the use of constrained ordination provided an 

information-rich display of the structure and composition of this ridgetop forest, and helped to 

define environmental gradients that were also characterized by the satellite image and DEM. 

This occurred despite the relatively low amount of variation in the field data that was explained 

by the remote sensing data, a result of the inclusion of a number of response variables in each 

analyzed set that did not contribute to the observed gradients. To manually pre-select the field 

variables that appeared to contribute most (e.g., through preliminary modeling) would simply 

have produced a deceptively high amount of explained variance. The multivariate gradients that 

were indicated however, notably by grapevine density, herbaceous cover, basal area, and 

chestnut oak and sugar maple composition, were strong enough to be related to the linear 

combinations of remote sensing variables. Importantly for modeling the bird species, the relative 

predictability of the primary forest structure and composition gradients found across the models 

received cross validation support. 

The satellite image measures that we previously found to be most useful for modeling forest 

characteristics at the plot level (Chapter 2) were also the ones most useful at the smaller subplot 

scale. The value of the selection procedure for a more parsimonious model of each set of 

response variables was in selecting a version of the second order Correlation texture 

(PANSD_COR17) that was a better predictor at the subplot scale, and further for indicating based on 
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selection order that the satellite image variables tended to be stronger predictors than the DEM-

derived topographic variables. While useful for explaining some forest gradients (e.g., a positive 

shrub cover-elevation correlation), the topographic variables mostly explained variation for the 

second ordination axes, and the stronger satellite image variables (PANSD, PANAVG, and 

PANSD_COR17), which indicated the primary structure and composition gradients, mostly 

explained variation for the first ordination axes. Effectively, this meant that the mapped indices 

were mostly independent of topography, which allowed, for example, structural complexity to be 

indicated for multiple topographic aspects (e.g., see Figure 3). This independence facilitated the 

modeling, as the indices could be included with relatively uncorrelated topographic variables. 

For Ovenbird for example, eastness appeared to serve as a controlling variable that helped to 

clarify how its intensity was related to the structural RDA1
S index.  

Of the indices, the one based only on tree species composition (CCA1
C) was a somewhat less 

reliable (albeit still significant) predictor when tested on the external data from the two transects. 

One likely reason was the relatively long gradient length for composition as collected across the 

full study area extent (hence the use of CCA over RDA). When analyzing a large number of tree 

species, including those that are relatively rare (Appendix A), composition will often vary more 

over a longer environmental gradient than over a shorter one. The CCA1
C index, more sensitive 

to rarer tree species, could therefore be expected to not predict as well when applied only to the 

extent of the two transects. In contrast, the primary structure gradient, even with the addition of 

composition variables, was relatively short (which makes sense as the models were built from 

data collected only within mature forest). The range of structural complexity (via RDA1
S), as 

well as with chestnut oak and sugar maple composition added (via RDA1
S+C), was predicted for 



130 
 

the two transects similarly to how it was predicted across the full study area extent, suggesting 

greater reliability for prediction (and SDMs) using these indices throughout the site. 

While the pure composition index may be a less reliable predictor when applied to smaller 

areas within the study area, the CCAC model itself was still informative. One important 

observation was that the sites (the field subplots) were mostly separated into two groups of 

points in the CCAC ordination plot (Figure 2b) along the first ordination axis, suggesting that the 

field data were collected in two relatively distinct forest types at the site. That two dominant 

forest types exist here is not new information (see Perkins and Wood 2014), but it was of value 

to examine this spatially across the full study area extent. For example, the two transects covered 

some of the transition from chestnut oak to sugar maple dominance (Figure 5b), and presumably 

an associated xeric to mesic moisture gradient. Topographic slope also helped to indicate this, as 

many of the narrower, more “spiny” ridges on the SR transect (Figure 5d) were dry, rocky and 

dominated by chestnut oak with an often dense greenbrier ground cover. Potentially, elevation 

was involved in the composition gradient as well, since the SR transect was generally higher in 

elevation than the OR transect (Figure 5c).    

Based on the satellite image variable contribution alone, the CCAC model was likely weaker 

than the RDAS and RDAS+C models because the PANAVG measure explained less of the variation 

in composition than it did for structure (indicated by the relatively low order in which it was 

selected for CCAC; Table 1). Its subsequent contribution to the dominant first ordination axis of 

CCAC was also less, and it was oriented more toward the second ordination axis. This in turn 

was reflected in the CCA1
C index map as a relative lack of differentiation according to 

topographic aspect. However, in the CCAC model PANAVG was still of interest in helping to 

explain an association between topographic aspect (both northness and eastness) and several of 
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the tree species. For example, the invasive tree-of-heaven is indicative of disturbed sites (Call 

and Nilsen 2003), so higher spectral brightness where it is found may indicate the presence of 

long term canopy gaps (potentially due to arrested succession) on south- and east-facing aspects. 

Oriented away from PANAVG, the shade-tolerant American beech (Poulson and Platt 1989) 

occurred most on cooler, spectrally darker north-facing aspects.  

4.1. SDM-based habitat selection and predictions  

While we did not statistically test among the three bird species, based on the SDMs there 

were some important differences in their breeding territory placement in this forest. The degree 

to which individuals of a species placed territories in 2011 near where the prior year’s territories 

were located helped lead to consistent between-year results, further reinforcing the differences 

that we found. This stability also suggested potential site fidelity by returning males, perhaps 

related to reproductive success in the previous year (e.g., as found for Ovenbird by Thériault et 

al. 2012). Whether by site fidelity or some other cue used by individuals of these taxonomically-

related species, the models suggested that much of their favored breeding habitat was spatially 

segregated on the ridgetops. To make predictions for subsequent investigation (e.g., Chapter 4), 

here we summarize the study findings that appeared to best support their individual habitat 

selection, for which we also relied on pertinent literature on these well-studied species. We also 

include consideration of the species themselves as potential indicators of information (or lack 

thereof) contained in the remote sensing data. 

4.1.1. Hooded Warbler  

The occurrences of Hooded Warbler and several other forest canopy gap dependent 

songbirds were positively correlated with the measure of spectral heterogeneity (PANSD) that 

was the best indicator of structural complexity across this forest at a broad spatial scale (Chapter 
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2). At the finer spatial scale examined in this chapter, the PANSD measure again was clearly the 

single strongest variable in the development of the mapped indices. The results for Hooded 

Warbler intensity in relation to the RDA1
S index helped to reinforce the specific type of 

structural complexity that was indicated, namely the presence of a more open canopy. In a 

deciduous forest in southern Ontario, Canada, Pasher et al. (2007) found that Hooded Warbler 

nest sites had less canopy cover (as measured using skyward hemispherical photographs) than 

non-use areas. It is likely that the same habitat preference applied here, and was responsible for 

more territories placed in or near areas mapped by the RDA1
S index as having high (presumably 

horizontal) structural complexity. Importantly, this tendency held despite the species’ territory 

increase in 2011.   

The results suggest the utility of the RDA1
S index alone to predict Hooded Warbler intensity 

throughout the site. However, higher structural complexity on east-facing aspects appeared to be 

particularly favored. While east-facing aspects were well represented across the transects (Figure 

5e), those with higher structural complexity were mostly on the OR transect. The reason for this 

is unknown, but may involve forest composition differences as well as past land use in the study 

area (Perkins and Wood 2014). Regardless, it was in these areas that the potential arrested 

succession for canopy gaps noted above (section 2.1.) was most obvious. Hooded Warblers were 

often detected in these areas, and open-habitat species not often detected in mature forest (e.g., 

Blue-winged Warbler; Vermivora cyanoptera) were also found there. Although the RDA1
S index 

and eastness were uncorrelated overall, in these areas their effects on Hooded Warbler intensity 

were not completely separable, which suggests topography is partly responsible for some of the 

structural complexity in this forest important to this species. 
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Elevation also coincided with the RDA1
S index in part to model Hooded Warbler intensity. 

However, higher elevations at the SR transect that were not structurally complex according to the 

index also appeared to be selected. Although not a site-wide trend based on the cross validation, 

the positive correlation between elevation and shrub cover for the second ordination axis of 

RDAS (Figure 2a) suggests elevation alone as a potential habitat indicator, and in support of this 

the higher elevations of the SR transect had dense greenbrier-dominated areas under a chestnut 

oak-dominated canopy in which the species was frequently detected, and likely nesting. The 

factors behind this understory characteristic are unknown, as the forest here is older with little 

evidence remaining of past land use, but may involve tolerance by greenbrier species (both S. 

rotundifolia and S. glauca occur here) for drier conditions. Regardless of the reason, elevation 

appeared to provide an alternative explanation for Hooded Warbler intensity other than structural 

complexity as mapped by the RDA1
S index. While the satellite image is obviously limited for 

detecting shrub cover under a forest canopy, elevation may be a suitable surrogate indicator 

where ridgetops are dominated by chestnut oak according to the satellite-derived indices. 

4.1.2. Ovenbird  

West-facing aspects alone mostly explained Ovenbird intensity, albeit not on east-west 

oriented ridges where Ovenbirds also occurred but north- and south-facing aspects dominate. 

Partly, this apparently strong selection may be explained by avoidance of east-facing aspects 

where the forest canopy was too open, and instead Hooded Warblers were more prevalent (e.g., 

the northern portion of the OR transect; Appendix E). This habitat selection dichotomy is 

interesting, and makes for a testable prediction that these species are similarly segregated 

elsewhere at the site. In support of this, the highest territory densities of these species occurred at 

opposite ends of a wide timber harvest residual basal area gradient (Ovenbird: high, Hooded 
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Warbler: low) for prior research here and at six other sites in the Appalachians (Sheehan et al. 

2014). In a natural disturbance context, albeit without the Hooded Warbler present, Ovenbird 

abundance declined in sites with forest canopy loss relative to undisturbed control sites following 

a severe ice storm in a northern hardwood forest in Vermont, USA (Faccio 2003).  

Ovenbird selection for greater canopy closure conflicts with the lower intensity indicated for 

a less open forest canopy dominated by chestnut oak, however. Modeling its intensity with 

eastness and the RDA1
S index helped to clarify that west-facing aspects with greater structural 

complexity, which in turn occurred more in sugar maple dominated forest, were likely selected. 

An alternative to a strictly habitat structure-based explanation for this result comes from studies 

of Ovenbirds in relation to habitat quality. Its reproductive success was positively related to 

forest productivity and invertebrate biomass in a Maryland, USA forest similar to this one 

(Seagle and Sturtevant 2005). Ovenbirds also had larger territory sizes and lower densities in 

selection harvest plots with decreased litter invertebrate abundance in a New Brunswick, Canada 

managed forest (Haché et al. 2013). It seems likely that the drier, chestnut oak dominated 

ridgetops were poorer quality Ovenbird habitat. This relative quality could be based on lower site 

productivity and thus prey biomass, and also on fewer open, deep leaf litter areas which 

Ovenbird may prefer to nest in (Mattsson and Niemi 2006, Leblanc et al. 2011). The mesic sugar 

maple dominated ridgetops had more of these areas, including on west-facing aspects. As with 

shrub cover, the satellite image could not detect leaf litter under the forest canopy, but perhaps 

did so indirectly via the closely related forest structure and composition gradients.  

The level of Ovenbird edge avoidance we found is consistent with other research in 

predominantly forested regions on this species. In an extensive northern hardwood forest in 

Vermont, USA, Ortega and Capen (1999) found lower Ovenbird territory density up to 150 m 



135 
 

from the edges of narrow (7–10 m wide) forest roads. Pertinent because of the energy industry 

activity in our study area, Lankau et al. (2013) found lower Ovenbird territory density near 

narrow (5–12 m wide) linear seismic lines used for oil and gas exploration in a boreal forest in 

western Canada. Other than at the few small clearings, the access road and pipeline on SR 

transect was similarly narrow (10–15 m wide), and within a large, relatively contiguous forest. 

The relatively weak avoidance of this edge facilitated its inclusion with other covariate effects 

for a more generally applicable model. Potential avoidance by Ovenbirds of edges from higher-

intensity timber harvests, wider roads, and larger clearings at the site requires additional testing, 

however, prior to including these edges in models with other covariates. 

4.1.3. Cerulean Warbler  

It was somewhat surprising that the forest structure index did not explain Cerulean Warbler 

intensity, because of its known association with forest canopy gaps (including at this site; 

Perkins and Wood 2014). Potentially, as indicated by its attraction to the anthropogenic edge, 

other forest edges not detected by the satellite image or our image processing techniques were 

responsible for much of its distribution. Such edges do not necessarily occur at distinct canopy 

gaps, and their selection could have diluted any association with the structure index. Using lidar 

to study Cerulean Warbler habitat use in a central hardwood forest in Indiana, Barnes et al. 

(2016) found no evidence to support selection for canopy gaps, but suggested that ridgetops and 

steep slopes created canopy edges that the species may favor (e.g., for song projection). The 

knoll attraction found here is potentially an indication of such topographically-induced edge, 

with the refinement that favored edges are mostly on the east-facing aspects of knolls.  

The strong local attraction to the SR transect impact needs to be considered in light of prior 

research on the species here (Sheehan et al. 2014). Large clusters of Cerulean Warbler territories 
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were mapped during the 2006–10 breeding seasons near the two prominent knolls where the 

species was most densely clustered for this 2010–11 study. The portion of the impact occurring 

over the winter of 2008–09 was through these two knolls, so comparatively high numbers existed 

here both pre-impact (2006–08 breeding seasons) and post-impact (2009–11 breeding seasons). 

The impact likely caused a shift in the locations of a number of individuals to incorporate this 

new edge, while overall densities remained similar. Comparatively dense clusters were also 

found elsewhere in the study area in non-impacted forest, including on the OR transect for this 

study. Complicating the situation, the light selection harvest occurred here over the 2006–07 

winter, a likely cause of a moderate territory density increase observed for 2008 (the season prior 

to the impact). Because of the number of potentially coincident factors (e.g., impact edges, 

knolls, east-facing aspects, and timber harvests), teasing out which are responsible for Cerulean 

Warbler territory selection is obviously complicated. Also, due to the potential strength of local 

edge attraction, models that also include covariates representing broader environmental gradients 

may under predict intensity away from the impact. 

A final consideration is the degree of clustering exhibited by the Cerulean Warbler. Such 

strong clustering implies strong second-order effects (e.g., conspecific attraction; Ward and 

Schlossberg 2004) on the observed distribution pattern in addition to the environmental effects. 

Conspecific attraction as a cause of clustering has also been implicated elsewhere for this species 

(Roth and Islam 2007). This is a potential modeling issue unless controlled for in some way, 

because clustering causes the variance of an estimator (e.g., the CIs for the intensity functions in 

Figure 8) to be underestimated (Baddeley et al. 2012), thus potentially biasing inference. In 

contrast, estimator variance is likely to be overestimated (thus statistical tests are conservative) 

when a point pattern exhibits regularity (Baddeley et al. 2012), and regularity may better 
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characterize the Hooded Warbler and Ovenbird distributions than clustering, especially if this is 

evaluated within their apparently preferred habitats. Despite this potential issue, the 

environmental effects on the Cerulean Warbler distribution appear to be rather strong in this 

forest, so it is unlikely that sociality would completely negate the observed effects. Still, for 

potentially more robust modeling of the Cerulean Warbler, or even the other species, the 

inclusion of second-order interaction terms (of which there are a variety available in spatstat) 

along with spatial covariates in PPMs may be useful.  

 

5. Conclusions 

For this study, the forest structure-based index most capably modeled the distribution 

patterns of two of the three bird species, probably because the satellite image relatively strongly, 

and predictably, indicated forest structural characteristics. These characteristics in turn appeared 

to be relevant to their habitat selection, albeit in different ways. However, it is unlikely that only 

this form of environmental heterogeneity is important to these (and other) bird species in this 

forest. While the tree species composition index was less useful for the bird SDMs, it provided a 

potentially valuable broad-scale perspective on forest composition patterns across the study area. 

This perspective warrants consideration going forward, since the additional transects more fully 

cover a forest composition gradient previously found useful for considering trends in the bird 

community here (Chapter 2). In any case, as the index that included chestnut oak and sugar 

maple composition with the structure variables suggested, it is important to continue to try to 

understand the close relation between structure and composition in this forest. It may also be 

interesting to separately model within these two dominant forest types.     



138 
 

Overall, topographic effects appeared to dominate in terms of contrasting the bird 

distribution patterns, perhaps because of limited information on the part of the satellite image. 

That topography would be important for these bird species in helping to define their breeding 

habitat is perhaps characteristic of a ridgetop forest of such high topographic complexity. 

Certainly, there may be alternative explanations (e.g., based on microclimate and solar exposure) 

for the distribution patterns. However, topography as a major underlying factor leading to 

differences in forest composition (e.g., chestnut oak dominance on drier, more sharply-defined 

ridgetops) and forest structure (e.g., arrested succession in canopy gaps on certain east-facing 

aspects) provides a likely powerful explanation for much of the observed distribution patterns. 

Although the satellite image was a weaker predictor overall for the bird species, it helped to 

elucidate the dominant patterns in forest structure and composition over this complex 

topography. The results for the Cerulean Warbler also helped to rule out the use of optical 

imagery, at least as processed and analyzed here, for predicting its distribution.  

We view this study as an important first step for incorporating novel remote sensing data in 

“next-generation SDMs” (He et al. 2015). One exciting possibility is that better accounting of 

potentially fine-scale environmental effects on a species’ point pattern may allow detection of 

second-order point interactions (attraction or repulsion). Our results show initial promise in this 

regard, as remote sensing technology for forest inventory purposes should continue to advance 

(White et al. 2016) and the remote sensing data thus obtained will hopefully also be available for 

such spatially-explicit avian studies. This applies not only for the high spatial resolution (now 

relatively standard) optical imagery such as used here, but also for hyperspectral and three-

dimensional active remote sensing data, and these technologies may further be merged to better 

predict forest characteristics. Our study was geared toward using remote sensing to explain forest 
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gradients and subsequently the bird species distributions, but the ability of the birds themselves 

to explain what the remote sensing data do, and do not, indicate should also be considered. This 

was most clearly seen for the Hooded Warbler and the likelihood that it indicated the presence of 

a more open forest canopy, but also by the Ovenbird and Cerulean Warbler for suggesting other 

heterogeneity that was not indicated by the satellite image, at least not directly. Finally, this 

study provided a basis for generating new spatially-explicit predictions regarding the breeding 

distributions of these species that we further tested in Chapter 4. Ultimately, we wish to stimulate 

more study of the potential for remote sensing data to determine fine scale patterns in forest-

associated biodiversity over considerably broad spatial extents. 
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Table 1. Forward-backward selection of explanatory variables for the forest structure (RDAS), forest composition (CCAC), and forest 
structure plus composition (RDAS+C) models, and model significance tests. Percent values in parentheses are the proportions of the 
total model inertia (i.e., variance in the field data) explained by the models. See Appendix C for the key to the labels for the 
explanatory variables and their descriptions. 

Structure RDA  Composition CCA  Structure plus composition RDA 

Variable Df AIC F P  Variable Df AIC F P  Variable Df AIC F P 

PANSD 1 771.87 36.04 0.005  PANSD 1 686.10 25.60 0.005  PANSD 1 836.58 54.18 0.005 

PANAVG 1 762.94 11.01 0.005  SLOPE 1 682.48 5.61 0.005  PANAVG 1 828.93 9.71 0.005 

ELEV 1 759.43 5.48 0.005  PANSD_COR17 1 680.26 4.20 0.005  ELEV 1 825.37 5.54 0.005 

SLOPE 1 756.99 4.40 0.005  SIN 1 678.22 4.00 0.005  COS 1 822.24 5.09 0.005 

PANSD_COR17 1 754.59 4.36 0.005  PANAVG 1 677.14 3.04 0.005  SLOPE 1 819.04 5.14 0.005 

COS 1 752.41 4.12 0.005  COS 1 676.04 3.05 0.005  PANSD_COR17 1 816.01 4.96 0.005 

PANSD_CON09 1 750.78 3.56 0.010  PANSD_CON03 1 676.03 1.97 0.015  PANSD_CON09 1 814.26 3.68 0.005 

      PANSD_AVG25 1 676.20 1.79 0.035  SIN 1 814.05 2.17 0.025 
                 
ANOVA RDAS model (18.3% of inertia explained)  ANOVA CCAC model (13.5% of inertia explained)  ANOVA RDAS+C model (22.3% of inertia explained) 

 Df Var. F Pr(>F)   Df ChiSq F Pr(>F)   Df Var. F Pr(>F) 

Model 7 2.01 10.43 0.001  Model 8 0.54 6.38 0.001  Model 8 3.20 12.09 0.001 

Residuals 327 8.99    Residuals 326 3.42    Residuals 326 10.80   
                 
ANOVA RDAS model by axis  ANOVA CCAC model by axis  ANOVA RDAS+C model by axis 

Axisa Df Var. F Pr(>F)  Axisa Df ChiSq F Pr(>F)  Axisa Df Var. F Pr(>F) 

RDA1 (12.9%) 1 1.42 51.53 0.001  CCA1 (8.6%) 1 0.34 32.49 0.001  RDA1 (17.0%) 1 2.38 71.87 0.001 

RDA2 (2.7%) 1 0.29 10.63 0.001  CCA2 (2.1%) 1 0.08 7.85 0.001  RDA2 (2.8%) 1 0.38 11.47 0.001 

RDA3 (1.9%) 1 0.21 7.46 0.001  CCA3 (1.0%) 1 0.04 3.80 0.001  RDA3 (1.6%) 1 0.22 6.75 0.001 

RDA4 (0.5%) 1 0.05 1.96 0.044  CCA4 (0.7%) 1 0.03 2.58 0.001  RDA4 (0.6%) 1 0.08 2.50 0.005 

RDA5 1 0.03 0.93 0.495  CCA5 (0.6%) 1 0.03 2.45 0.002  RDA5 (0.5%) 1 0.06 1.90 0.046 

RDA6 1 0.01 0.37 0.949  CCA6 1 0.01 0.92 0.549  RDA6 1 0.04 1.30 0.25 

RDA7 1 0.00 0.14 0.998  CCA7 1 0.01 0.63 0.903  RDA7 1 0.02 0.68 0.743 

Residuals 327 8.99    CCA8 1 0.00 0.31 1  RDA8 1 0.01 0.26 0.989 

      Residuals 326 3.42    Residuals 326 10.80   
a. Percent of constrained inertia explained provided for each significant ordination axis.
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Table 2. The WA-LC (i.e., ‘species-environment’) Pearson’s correlations (r) for the first and 

second axes of the constrained ordination models, and results of the leave-one-out cross 

validation (LOOCV). The internal validation was for the stability of r between the site (i.e., field 

subplot) WA scores (weighted averages of the field variables) and LC scores (linear 

combinations of the remote sensing explanatory variables), by resampling the data used to create 

the models. The external validation was for the r between the WA and LC scores predicted at the 

locations (n = 97) where additional habitat samples were collected (see Appendix B). The RMSE 

(Root Mean Squared Error) of the model is given as a percentage of the WA score range. 

    LOOCV 

  Model output  Internal  External 

Axis Modela r RMSE  r RMSE  r RMSE 

First RDAS  0.72 11.1%  0.69 10.7%  0.74 15.6% 

 CCAC 0.81 11.7%  0.79 12.2%  0.66 20.2% 

 RDAS+C 0.79 12.4%  0.77 12.3%  0.78 15.9% 

          

Second RDAS 0.47 13.3%  0.41 13.7%  14.4 18.6% 

 CCAC 0.58 13.3%  0.50 16.0%  0.05 23.2% 

 RDAS+C 0.48 13.2%  0.41 13.2%  0.26 23.3% 

a. forest structure (RDAS), forest composition (CCAC), and forest structure plus composition (RDAS+C) models. 
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Figure 1. QuickBird satellite 0.6-m panchromatic band image (August 2009) of the study area 
showing the 68 ridgetop sampling points located in mature forest >150 m from anthropogenic 
canopy disturbances. Also shown are the six ridgetop transects where the breeding territories of 
the three bird species were mapped. The OR and SR transects (shown with the boundaries used 
to define the point pattern analysis windows) had two years of territory mapping data (2010 and 
2011) for analysis. The inset shows the 5-subplot habitat sampling arrangement per point where 
forest composition and structure data were collected for the remote sensing-based forest indices.   
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a. RDAS 

 

b. CCAC  
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c. RDAS+C 

 

Figure 2. Constrained ordination triplots (axes 1 and 2) showing species scores (red labels = 

field variables), site scores (open circles = subplots), and environmental constraints (blue arrows 

= remote sensing variables) from the (a) redundancy analysis of forest structure (RDAS), (b) 

canonical correspondence analysis of forest composition (CCAC), and (c) redundancy analysis of 

forest structure plus tree species richness and chestnut oak/sugar maple composition (RDAS+C). 

See Appendix A for field variable label key and Appendix C for remote sensing variable key. 
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Figure 3. Panchromatic QuickBird satellite and 

RDA1
S+C index images for portions of the SR and 

OR transects (indicated with boxes in the overview). 

The arrows point to deep blue patches of very 

smooth canopy on each transect, with predicted high 

basal area/chestnut oak composition. Deep red 

patches indicate high structural complexity/sugar 

maple composition. 
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Figure 4a. Mapped territory centers of the three species in 2010. 
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Figure 4b. Mapped territory centers of the three species in 2011. 
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Figure 5. Spatial covariates used in the species distribution models. A Gaussian (15 m s.d.) filter was applied to the forest indices 
RDA1

S, CCA1
C, and RDA1

S+C (similar to RDA1
S and not shown). Knolls (triangles) and the SR transect impact (lines) used to compute 

distance grids (not shown) are mapped on the elevation layer. The eastness and northness layers were arcsine square-root transformed.



156 
 

 

2010 nonparametric intensity functions: 

 

 

 

2011 nonparametric intensity functions: 

 

 

Figure 6. Hooded Warbler 2010 and 2011 territory intensity (λ) as predicted by the fitted PPMs 
and as nonparametric functions of spatial covariates. The bivariate functions show λ as a 
function of two spatial covariates (circles indicate covariate values for the individual territories).  
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2010 nonparametric intensity functions: 

 

  

 

2011 nonparametric intensity functions: 

 

  

Figure 7. Ovenbird 2010 and 2011 territory intensity (λ) as predicted by the fitted PPMs and as 
nonparametric functions of spatial covariates. The univariate functions show λ with pointwise 
95% confidence limits (gray shadings). The bivariate functions show λ as a function of two 
covariates (circles indicate covariate values for the individual territories). 
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2010 nonparametric intensity functions: 

 

  

 

2011 nonparametric intensity functions: 

 

  

Figure 8. Cerulean Warbler 2010 and 2011 territory intensity (λ) as predicted by the fitted PPMs 
and as nonparametric functions of spatial covariates. The univariate functions show λ with 
pointwise 95% confidence limits (gray shadings). The bivariate functions show λ as a function of 
two covariates (circles indicate covariate values for the individual territories).  
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a. Hooded Warbler  

2010 2011 

  

b. Ovenbird  

2010 2011 

  

Figure 9. Hooded Warbler and Ovenbird 2010 and 2011 territory intensity (λ) as nonparametric 

functions of the RDA1
S index. The functions show λ with pointwise 95% confidence limits (gray 

shadings) after controlling for eastness effects on λ using a parametric point process model. For 

comparison, the dashed lines show λ modeled separately using only the RDA1
S index.  
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Appendix A.  List of field variables with subplot statistics and data transformations. 

Field variablea Label Mean s.d. min, max Units Subplotb Transformation 

Basal area (1, 3) BA 30.25 10.57 1.95, 68.18 m2/ha 11.3 m none 

Tree density (1, 3) Tr_N 17.72 4.89 5, 33 # 11.3 m none 

Tree heightc (1, 3) Hgt 23.71 4.91 4.00, 42.00 m 11.3 m none 

DBH mean (1, 3) xDBH 25.49 4.62 11.36, 40.17 cm 11.3 m none 

DBH s.d. (1, 3) sdDBH 15.15 3.86 2.83, 30.18 cm 11.3 m none 

Snag density (1, 3) Snag 0.63 0.84 0, 5 # 11.3 m log(x+1) 

Grapevine density (1, 3) Gv_N 3.68 6.79 0, 48 # 11.3 m log(x+1) 

Herbaceous cover (1, 3) Hb 20.78 25.43 0.00, 95.00 % 5 m arcsine square-root(x) 

Shrub cover (1, 3) Sb 21.27 23.08 0.00, 100.00 % 5 m arcsine square-root(x) 

Sapling cover (1, 3) Sp 19.43 17.62 0.00, 80.00 % 5 m arcsine square-root(x) 

Canopy cover (1, 3) Can 95.65 7.59 16.67, 100.00 % center log(x+1) 

Tree species richness (3) Tr_R 5.17 1.99 1, 12 # 11.3 m square-root(x) 
 
Tree species composition data: 
    % of subplot BAd 

Common namea Scientific name Label % of total BAd Mean s.d. min, max 

Chestnut oak (2, 3) Quercus montana choa 29.54 26.07 28.12 0.00, 100.00 

Sugar maple (2, 3) Acer saccharum suma 22.31 25.89 26.96 0.00, 100.00 

Northern red oak (2) Q. rubra nroa 10.54 8.97 13.98 0.00, 59.84 

Red maple (2) A. rubrum rema 5.68 5.74 10.19 0.00, 85.66 

Black oak (2) Q. velutina bloa 4.93 4.54 11.67 0.00, 76.46 

Hickory spp. (2) Carya spp. hick 4.46 4.76 10.17 0.00, 68.91 

White oak (2) Q. alba whoa 3.21 3.08 9.33 0.00, 76.44 

Black locust (2) Robinia pseudoacacia bllo 3.09 3.24 8.71 0.00, 70.08 

Ash spp. (2) Fraxinus spp. ash 2.52 2.66 8.65 0.00, 76.62 

American basswood (2) Tilia americana bass 2.51 2.67 7.64 0.00, 46.12 

Scarlet oak (2) Quercus coccinea scoa 2.09 1.83 6.81 0.00, 65.56 

Tulip poplar (2) Liriodendron tulipifera tupo 1.94 2.25 8.71 0.00, 77.39 

Sassafrass (2) Sassafras albidum sass 1.39 1.70 6.42 0.00, 51.98 

Black cherry (2) Prunus serotina blch 1.06 1.06 4.14 0.00, 30.55 

Shagbark hickory (2) Carya ovata shhi 1.03 1.05 5.32 0.00, 57.30 

Black gum (2) Nyssa sylvatica blgu 0.73 0.73 2.90 0.00, 24.20 

Black walnut (2) Juglans nigra blwa 0.57 0.59 3.51 0.00, 45.36 

Tree-of-heaven (2) Ailanthus altissima heav 0.49 1.16 8.16 0.00, 94.25 

Cucumber magnolia (2) Magnolia acuminata cuma 0.48 0.41 2.24 0.00, 17.98 

Sourwood (2) Oxydendrum arboreum sour 0.36 0.33 1.36 0.00, 12.95 

American beech (2) Fagus grandifolia ambe 0.33 0.32 2.04 0.00, 27.61 

Slippery elm (2) Ulmus rubra slel 0.29 0.44 2.76 0.00, 40.57 

Eastern hophornbeam (2) Ostrya virginiana hoho 0.28 0.30 0.99 0.00, 9.70 
a. Inclusion in constrained ordination model noted in parentheses: 1 = RDAS; 2 = CCAC; 3 = RDAS+C 
b. Data collected within a radius of 5 m or 11.3 m of the subplot center (canopy cover estimated overhead at the center) 
c. For tree selected to represent the dominant canopy height  
d. Percent of total BA based on the sum of the 340 field subplots; subplot data arcsine square-root transformed prior to analysis
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Appendix B.  Comparative analyses of forest habitat characteristics at Cerulean Warbler and 

Ovenbird territory centers, and at Cerulean Warbler territory centers and non-use locations.  

 

Purpose 

We performed an exploratory analysis to test if field-collected forest habitat data differed 

between Cerulean Warbler and Ovenbird territory centers across the extent of the six ridgetop 

transects at our study site (blue and yellow points in Figure B1). The Hooded Warbler was 

excluded from this analysis because many of its territory centers were inaccessible due to dense 

vegetation. We also performed a separate analysis to test if the forest habitat data differed 

between the Cerulean Warbler territory centers and non-use locations (red points in Figure B1) 

randomly placed in apparently unoccupied forested areas based on the territory mapping and 

other field activities (e.g., regularly traversing the ridges in between the transects). As collected 

over the extent of the SR and OR transects, the habitat samples (n = 97) were further used as 

external data for validation of the mapped remotely-sensed indices of forest structure and 

composition on these transects (section 3.2). 

 

Methods 

We selected Cerulean Warbler and Ovenbird territory centers in 2010 for the habitat data 

collection by choosing an initial territory center as mapped on a transect for each species (e.g., 

the first territory center encountered from an access point), then by selecting additional territory 

centers that were >50 m apart (within a species) as we moved along the transect. Thus we did not 

obtain a completely random sample of territory centers but sampled as many over the extent of 

each transect as we could, given the distance requirement and time constraints of other 
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concurrent field work (e.g., habitat data collection at the 68 sampling points used for point count 

surveys). For the Cerulean Warbler non-use points, we used the ArcGIS 10.1 random point tool 

to generate points over the extent of each transect that were a minimum of 50 m apart and within 

areas of the transect buffered at >50 m from the species’ 2010 and 2011 territory centers (for the 

SR and OR transect only), from its 2011 territory centers for the remaining transects (which were 

only sampled in 2011), and also in several areas near the transects that we often frequented but 

seldom observed them. We then randomly selected 9–10 of these points per transect. We 

excluded any territory centers or non-use points that would have encompassed anthropogenic 

impacts (e.g., forest roads, pipelines, and timber harvests) from the sampling. The data collection 

at the territory centers and non-use points was done in the same manner as for an individual 

sampling point subplot (i.e., within a 15-m radius with the same data collected; see section 2.2).  

We used binomial logistic regression models to analyze single forest variables for comparing 

Cerulean Warbler and Ovenbird territory centers, and in a separate analysis also for comparing 

Cerulean Warbler territory centers and non-use points. We combined the data across the transects 

for both analyses due to sample size considerations (e.g., the DR transect had few Ovenbirds 

territory centers to sample) We evaluated model significance (α = 0.05) using likelihood ratio 

tests. The forest variables were transformed as necessary (see Appendix A) prior to analysis, but 

we report here untransformed data means and standard errors (SE). We analyzed the same 12 

forest structural variables that were used for the remote sensing index development, and for tree 

species composition the percent of total basal area accounted for by the canopy dominants 

chestnut oak and sugar maple. 
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Results and Discussion 

We found relatively few significant differences for the forest variables with either analysis 

(Table B1), although several of the differences that we found potentially indicated selection of 

habitat for breeding territories by the species at our study site. Grapevine density was higher at 

the Cerulean Warbler territory centers than at the Ovenbird territory centers, and grapevines have 

been noted as important to nesting Cerulean Warblers (Bakermans and Rodewald 2009, Buehler 

et al. 2013). Herbaceous cover was lower at Ovenbird territory centers than at Cerulean Warbler 

territory centers, which may be a consequence of Ovenbirds favoring more open, deep leaf litter 

areas for nesting (Mattsson and Niemi 2006, Leblanc et al. 2011; see also section 4.1.2.). The 

greater sugar maple percent composition at Ovenbird territory centers than at Cerulean Warbler 

territory centers could indicate selection by the Ovenbird for more mesic habitat with greater 

food resources because of higher forest productivity (Seagle and Sturtevant 2005; see also 

section 4.1.2.). Tree heights were higher at the Cerulean Warbler territory centers than at the 

non-use locations, which is consistent with research suggesting Cerulean Warbler favor areas 

with taller trees (e.g., perhaps for maximizing the height of song perches; Barg et al. 2006).  
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Table B1. Means (and standard errors) for the forest structural characteristics, and chestnut oak 

and sugar maple composition, for Cerulean Warbler (CERW) and Ovenbird (OVEN) territory 

centers, and for Cerulean Warbler non-use locations (CERW_N)  for in bold were significantly 

different (p < 0.05). See Appendix A. for field variable descriptions.   

 CERW CERW_N OVEN 

Field variable (n = 83) (n = 56) (n = 85) 

Basal area 28.30 (1.17) 27.53 (1.53) 29.08 (1.18) 

Tree density 17.10 (1.43) 17.66 (1.70) 17.53 (1.63) 

Tree height 26.36 (2.14) 24.01 (1.71) 25.81 (1.62) 

DBH mean 24.29 (2.19) 24.17 (2.55) 25.31 (2.24) 

DBH s.d. 16.40 (2.33) 15.04 (1.95) 15.13 (1.95) 

Snag density 0.03 (0.03) 0.05 (0.05) 0.03 (0.03) 

Grapevine density 7.17 (33.60) 7.32 (26.08) 2.88 (18.19) 

Herbaceous cover 28.30 (8.94) 21.54 (8.22) 20.58 (10.85) 

Shrub cover 11.98 (2.90) 17.63 (3.59) 14.71 (3.17) 

Sapling cover 17.02 (4.62) 16.98 (4.00) 19.38 (5.27) 

Canopy cover 91.84 (1.29) 91.97 (1.22) 92.47 (0.61) 

Tree species richness 5.90 (0.81) 6.04 (0.82) 5.35 (1.22) 

% Chestnut oak 0.15 (0.56) 0.18 (0.56) 0.20 (0.51) 

% Sugar maple 0.22 (0.13) 0.23 (0.16) 0.32 (0.18) 
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Figure B1. The Cerulean Warbler (CERW) and Ovenbird (OVEN) territory centers, and 
Cerulean Warbler non-use locations, at which the habitat sampling occurred (data collected as 
described for a subplot in section 2.2.). The transect boundaries used as sampling windows for 
the point pattern analysis of the species’ complete territory center data on the SR and OR 
transects are shown. 
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Appendix C. List of remote sensing variables with subplot statistics and data transformations. 

Sourcea Summaryb  Processing  Label Mean s.d. min, max Unitsc Transformation 

PAN mean n/a (original image) PANAVG 52.66 4.43 41.26, 66.25 DN none 

PAN s.d. n/a (original image) PANSD 10.47 2.01 6.15, 16.35 DN none 

PAN s.d. 2nd order correlation 
(9x9 pixel moving window) PANSD_COR09 1.03x10-1 1.02x10-2 8.02x10-2, 1.37x10-1 DN none 

PAN s.d. 1st order s.d.  
(41x41 pixel moving window) PANSD_SD41 3.54x10-3 1.34x10-3 1.11x10-3, 9.07x10-3 DN log(x) 

PAN mean 1st order s.d.  
(3x3 pixel moving window) PANAVG_SD03 1.16x10-2 4.32x10-3 3.39x10-3, 2.64x10-2 DN none 

PAN mean 2nd order contrast  
(3x3 pixel moving window) PANAVG_CON03 6.03 0.34 5.15, 7.01 DN none 

PAN s.d. 2nd order contrast  
(3x3 pixel moving window) PANSD_CON03 2.53 0.10 2.31, 2.86 DN none 

PAN s.d. 2nd order contrast  
(9x9 pixel moving window) PANSD_CON09 10.14 2.32 5.92, 17.25 DN log(x) 

PAN s.d. 2nd order correlation 
(3x3 pixel moving window) PANSD_COR03 1.92x10-1 3.67x10-3 1.81x10-1, 2.03x10-1 DN none 

PAN s.d. 2nd order correlation 
(17x17 pixel moving window) PANSD_COR17 6.15x10-2 1.28x10-2 3.80x10-2, 1.11x10-1 DN log(x) 

PAN s.d. 2nd order correlation 
(41x41 pixel moving window) PANSD_COR41 2.44x10-2 9.38x10-3 8.38x10-3, 6.75x10-2 DN log(x) 

DEM mean n/a (original elevation) ELEV 418.07 21.13 347.87, 463.92 m none 

DEM mean Slope SLOPE 21.05 4.61 9.03, 34.13 degrees none 

DEM mean Cosine(Aspect) COS 0.03 0.60 -1.00, 1.00 northness  arcsine(x) 

DEM mean Sine(Aspect) SIN -0.03 0.59 -1.00, 1.00 eastness arcsine(x) 

a. Data source (PAN = QuickBird satellite panchromatic image; DEM = digital elevation model) 
b. Subplot pixel summary statistic (15 m radius extraction) 
c. DN = digital number 
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Appendix D. Spearman’s correlations for the set of remote sensing variables used in the constrained ordinations (top), and over the 
combined OR and SR transect extent for the species distribution model (SDM) spatial covariates (bottom). 

Name PANAVG PANSD 
PANSD 

_SD41 
PANAVG 

_SD03 
PANAVG 

_CON03 
PANSD 

_CON03 
PANSD 

_CON09 
PANSD 

_COR03 
PANSD 

_COR09 
PANSD 

_COR17 
PANSD 

_COR41 ELEV SLOPE COS SIN 

PANAVG  0.25 0.24 0.16 0.47 0.11 0.46 -0.09 -0.12 -0.13 -0.08 0.16 -0.25 -0.67 0.29 

PANSD 0.25  0.33 0.69 0.44 0.44 0.72 -0.18 -0.27 -0.28 -0.42 -0.04 0.11 0.07 0.18 

PANSD_SD41 0.24 0.33  0.36 0.03 0.14 0.34 0.02 0.09 0.17 0.39 0.00 -0.02 -0.13 0.19 

PANAVG_SD03 0.16 0.69 0.36  0.16 0.27 0.47 -0.09 -0.11 -0.09 -0.15 -0.07 0.01 0.06 0.11 

PANAVG_CON03 0.47 0.44 0.03 0.16  0.50 0.48 0.04 -0.19 -0.19 -0.16 0.05 -0.05 -0.01 0.37 

PANSD_CON03 0.11 0.44 0.14 0.27 0.50  0.46 0.15 -0.04 -0.03 -0.01 0.07 0.19 0.15 0.13 

PANSD_CON09 0.46 0.72 0.34 0.47 0.48 0.46  -0.18 -0.28 -0.28 -0.31 0.03 0.04 -0.14 0.32 

PANSD_COR03 -0.09 -0.18 0.02 -0.09 0.04 0.15 -0.18  0.28 0.17 0.23 0.03 0.07 0.13 -0.09 

PANSD_COR09 -0.12 -0.27 0.09 -0.11 -0.19 -0.04 -0.28 0.28  0.73 0.40 0.03 0.00 -0.01 0.02 

PANSD_COR17 -0.13 -0.28 0.17 -0.09 -0.19 -0.03 -0.28 0.17 0.73  0.54 0.05 0.00 0.00 -0.02 

PANSD_COR41 -0.08 -0.42 0.39 -0.15 -0.16 -0.01 -0.31 0.23 0.40 0.54  0.06 -0.02 -0.01 -0.08 

ELEV 0.16 -0.04 0.00 -0.07 0.05 0.07 0.03 0.03 0.03 0.05 0.06  -0.10 -0.09 -0.02 

SLOPE -0.25 0.11 -0.02 0.01 -0.05 0.19 0.04 0.07 0.00 0.00 -0.02 -0.10  0.26 0.04 

COS -0.67 0.07 -0.13 0.06 -0.01 0.15 -0.14 0.13 -0.01 0.00 -0.01 -0.09 0.26  -0.11 

SIN 0.29 0.18 0.19 0.11 0.37 0.13 0.32 -0.09 0.02 -0.02 -0.08 -0.02 0.04 -0.11  

OR and SR transect SDM spatial covariates:  
Name RDA1Sa CCA1Ca RDA1S+Ca ELEV SLOPE SIN COS Knolls Impactb 

RDA1Sa   0.86 0.96 0.14 -0.17 0.33 -0.14 -0.10 0.02 

CCA1Ca 0.86   0.92 0.21 -0.06 0.36 0.14 -0.11 0.16 

RDA1S+Ca 0.96 0.92   0.13 -0.10 0.38 0.07 -0.10 0.12 

ELEV 0.14 0.21 0.13   -0.28 -0.04 0.04 -0.37 0.23 

SLOPE -0.17 -0.06 -0.10 -0.28   0.05 0.27 0.14 -0.31 

SIN  0.33 0.36 0.38 -0.04 0.05   0.03 -0.02 0.00 

COS -0.14 0.14 0.07 0.04 0.27 0.03   -0.04 0.02 

Knolls -0.10 -0.11 -0.10 -0.37 0.14 -0.02 -0.04   -0.12 

Impactb 0.02 0.16 0.12 0.23 -0.31 0.00 0.02 -0.12  
a. A 15 m s.d. Gaussian filter applied to the RDA1S, CCA1C, and RDA1S+C indices 

b. The correlation based on reclassifying the impact distance at ≤15 m as 1, and > 15 m as 0, at the SR transect only.
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Appendix E. SR and OR transect QuickBird satellite image and remote sensing index maps, and 
combined-year territory center maps by species. 
 

 
a. QuickBird satellite panchromatic band image (0.6 m spatial resolution; acquired 25 August 
2009 at 16:18 GMT, 6° off-nadir) of the two ridgetop transects that were the focus of this study. 
The edges of the road/pipeline (with four small clearings for conventional gas and oil wells) are 
indicated, as well as the approximate boundary of the light selection harvest that occurred over 
the 2006–07 winter. 



169 

 
b. RDA1

S index map, computed as a continuous predictive surface from the RDAS model 
coefficients for the linear combinations of remote sensing variables for the first ordination axis 
(see Figure 2a).
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c. CCA1

C index map, computed as a continuous predictive surface from the CCAS model 
coefficients for the linear combinations of remote sensing variables for the first ordination axis 
(see Figure 2b). 
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d. RDA1

S+C index map, computed as a continuous predictive surface from the RDAS+C model 
coefficients for the linear combinations of remote sensing variables for the first ordination axis 
(see Figure 2c). 
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e. Cerulean Warbler combined-year territory center map, overlaid on a kernel-smoothed intensity 
function from the combined year point pattern to help illustrate areas of high between-year 
selection for territory locations. The intensity function was made using the spatstat R package 
(Baddeley et al. 2015) density.ppp function, with a 50 m standard deviation of isotropic Gaussian 
smoothing kernel and Diggle’s edge correction.  
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f. Hooded Warbler combined-year territory map, overlaid on a kernel-smoothed intensity 
function from the combined year point pattern to help illustrate areas of high between-year 
selection for territory locations. The intensity function was made using the spatstat R package 
(Baddeley et al. 2015) density.ppp function, with a 50 m standard deviation of isotropic Gaussian 
smoothing kernel and Diggle’s edge correction.  
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g. Ovenbird combined-year territory map, overlaid on a kernel-smoothed intensity function from 
the combined year point pattern to help illustrate areas of high between-year selection for 
territory locations. The intensity function was made using the spatstat R package (Baddeley et al. 
2015) density.ppp function, with a 50 m standard deviation of isotropic Gaussian smoothing 
kernel and Diggle’s edge correction.  
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Appendix F. Complete annual point process model (PPM) results by species. All single spatial 
covariate and covariate by transect interaction model results are presented. For models including 
multiple spatial covariates, those presented vary by species (see section 3.4.). Modeling 
comments, diagnostic plots, and predicted intensity plots are also provided for select models. 
 

 

 
Example PPM (point process model)  
output: 
 

 Eastness (AIC 1510.9) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.285  0.142  -10.563  -10.007 
Eastness      -0.619  0.127   -0.868   -0.370 
 
Eastness by transect interaction (P = 0.976) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.995  0.202  -11.392  -10.598 
SR             0.034  0.284   -0.522    0.590 
OR:Eastness   -0.623  0.181   -0.978   -0.268 
SR:Eastness   -0.615  0.178   -0.965   -0.266 
 

 
 
 
 
Example 4-panel diagnostic plot for a PPM (also see Baddeley et al. 2015):  
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and point pattern intensity) 
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a density surface 
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field plot  
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(indicating poor model 
fit for a portion of the 
pattern in this 
dimension) 
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plot for the 
x-coordinate 

Spatial covariate name 
and model AIC fit 
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2010 Hooded Warbler PPMs: Single covariate and by-transect interaction effects (covariates in 
bold were also considered in multiple covariate SDMs). 
 
RDA1S (AIC 1239.0) Elevation (AIC 1242.4) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.443  0.150  -10.737  -10.149 
RDA1s          0.475  0.145    0.191    0.760 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.406  0.145  -10.691  -10.121 
Elevation      0.404  0.147    0.115    0.693 
 

RDA1S by transect interaction (P < 0.001) Elevation by transect interaction (P < 0.001) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.635  0.304  -12.232  -11.039 
SR             0.630  0.358   -0.073    1.332 
OR:RDA1s       1.148  0.250    0.658    1.637 
SR:RDA1s      -0.026  0.189   -0.397    0.345 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.047  0.193  -11.426  -10.668 
SR            -0.397  0.330   -1.044    0.251 
OR:Elevation  -0.092  0.187   -0.460    0.275 
SR:Elevation   1.008  0.233    0.552    1.464 
 

RDA1S+C (AIC 1239.6) Slope (AIC 1248.3) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.441  0.150  -10.735  -10.146 
RDA1s+c        0.474  0.151    0.178    0.769 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.348  0.137  -10.617  -10.079 
Slope         -0.190  0.132   -0.448    0.069 
 

RDA1S+C by transect interaction (P < 0.001) Slope by transect interaction (P = 0.920) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.834  0.348  -12.515  -11.153 
SR             0.824  0.396    0.048    1.600 
OR:RDA1s+c     1.393  0.293    0.819    1.967 
SR:RDA1s+c    -0.100  0.187   -0.468    0.267 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.062  0.196  -11.447  -10.678 
SR             0.041  0.274   -0.496    0.579 
OR:Slope      -0.203  0.188   -0.572    0.165 
SR:Slope      -0.177  0.185   -0.540    0.186 
 

CCA1C (AIC 1243.2) Knolls (AIC 1241.6) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.402  0.144  -10.685  -10.119 
CCA1c          0.373  0.141    0.096    0.650 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.426  0.149  -10.719  -10.134 
Knolls        -0.476  0.175   -0.819   -0.133 
 

CCA1C by transect interaction (P < 0.001) Knolls by transect interaction (P = 0.384) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.441  0.266  -11.963  -10.920 
SR             0.434  0.327   -0.207    1.074 
OR:CCA1c       0.919  0.226    0.477    1.361 
SR:CCA1c      -0.075  0.189   -0.444    0.295 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.091  0.203  -11.489  -10.694 
SR            -0.077  0.302   -0.669    0.516 
OR:Knolls     -0.331  0.233   -0.788    0.125 
SR:Knolls     -0.637  0.263   -1.152   -0.121 

Eastness (AIC 1241.8) SR transect Impact (AIC N/A) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.421  0.147  -10.709  -10.132 
Eastness       0.411  0.144    0.129    0.694 
 

note: distance to impact tested at SR 
transect only (AIC comparison with other 
covariates in this table is not valid) 

Eastness by transect interaction (P = 0.013)             Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.516  0.196  -10.901  -10.132 
Impact        -0.271  0.213   -0.688    0.147 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.364  0.256  -11.865  -10.863 
SR             0.353  0.319   -0.272    0.977 
OR:Eastness    0.815  0.232    0.360    1.270 
SR:Eastness    0.086  0.191   -0.288    0.459 
 
Northness (AIC 1249.6)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.338  0.136  -10.605  -10.072 
Northness     -0.121  0.136   -0.387    0.145 
 

 

Northness by transect interaction (P = 0.160)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.045  0.193  -11.423  -10.666 
SR            -0.010  0.277   -0.553    0.532 
OR:Northness   0.070  0.192   -0.306    0.446 
SR:Northness  -0.314  0.196   -0.698    0.071 
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2010 Hooded Warbler multiple covariate PPMs. 
 
Eastness+RDA1S (AIC 1237.5) Eastness+RDA1S diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.484  0.155  -10.789  -10.179 
Eastness       0.363  0.195   -0.020    0.746 
RDA1s          0.373  0.153    0.074    0.672 
 

 

Notes: Above effects partly not separable 
(indicated by parameter estimate changes when 
combined, compared to single covariate 
estimates).  

Elevation+RDA1S (AIC 1234.9) Eastness+Elevation+RDA1S diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.511  0.160  -10.824  -10.197 
Elevation      0.375  0.155    0.071    0.679 
RDA1s          0.443  0.147    0.155    0.732 
 

 

Eastness+Elevation+RDA1S (AIC 1232.5) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.555  0.165  -10.878  -10.232 
Eastness       0.408  0.197    0.022    0.794 
Elevation      0.395  0.153    0.095    0.696 
RDA1s          0.318  0.157    0.010    0.625 
 
Notes: Above effects partly not separable 
(indicated by parameter estimate changes when 
combined, compared to single covariate 
estimates). Inclusion of elevation also 
resulted in a model fit issue, as indicated 
by y-coordinate lurking variable plot 
(although the x-coordinate lurking variable 
plot looks somewhat improved versus the 
Eastness+RDA1S model).  

 
 

 0 

 0 

 8
e-

06
 

532500 533500 534500 535500

x coordinate

-8
-6

-4
-2

0
2

4
6

8

cu
m

ul
at

iv
e 

su
m

 o
f r

aw
 re

si
du

al
s

43
68

50
0

43
70

00
0

43
71

50
0

y 
co

or
di

na
te

8 6 4 2 0 -4 -8

cumulative sum of raw resi

 -8e-06 

 0 

 0 

 0 

 4
e-

06
 

532500 533500 534500 535500

x coordinate

-8
-6

-4
-2

0
2

4
6

8

cu
m

ul
at

iv
e 

su
m

 o
f r

aw
 re

si
du

al
s

43
68

50
0

43
70

00
0

43
71

50
0

y 
co

or
di

na
te

8 6 4 2 0 -4 -8

cumulative sum of raw resi



178 

2011 Hooded Warbler PPMs: Single covariate and by-transect interaction effects (covariates in 
bold were also considered in multiple covariate SDMs). 
 
RDA1S (AIC 2083.8) Elevation (AIC 2081.8) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.810  0.106  -10.018   -9.601 
RDA1s          0.299  0.105    0.093    0.505 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.818  0.107  -10.028   -9.608 
Elevation      0.343  0.110    0.128    0.559 
 

RDA1S by transect interaction (P < 0.001) Elevation by transect interaction (P = 0.003) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.027  0.223  -11.463  -10.590 
SR             0.592  0.265    0.072    1.112 
OR:RDA1s       1.063  0.186    0.697    1.428 
SR:RDA1s      -0.245  0.139   -0.518    0.027 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.510  0.147  -10.799  -10.221 
SR            -0.101  0.224   -0.541    0.338 
OR:Elevation   0.023  0.148   -0.267    0.313 
SR:Elevation   0.677  0.162    0.359    0.995 
 

RDA1S+C (AIC 2085.1) Slope (AIC 2090.4) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.803  0.106  -10.011   -9.596 
RDA1s+c        0.278  0.107    0.068    0.488 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.771  0.102   -9.972   -9.571 
Slope         -0.131  0.100   -0.327    0.065 
 

RDA1S+C by transect interaction (P < 0.001) Slope by transect interaction (P = 0.293) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.085  0.235  -11.546  -10.624 
SR             0.642  0.276    0.101    1.184 
OR:RDA1s+c     1.159  0.208    0.752    1.567 
SR:RDA1s+c    -0.276  0.137   -0.546   -0.007 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.509  0.147  -10.799  -10.220 
SR             0.078  0.206   -0.326    0.481 
OR:Slope      -0.018  0.147   -0.307    0.270 
SR:Slope      -0.229  0.136   -0.496    0.038 
 

CCA1C (AIC 2085.7) Knolls (AIC 2088.6) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.800  0.105  -10.006   -9.593 
CCA1c          0.262  0.104    0.057    0.466 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.783  0.104   -9.986   -9.580 
Knolls        -0.207  0.115   -0.432    0.019 
 

CCA1C by transect interaction (P < 0.001) Knolls by transect interaction (P = 0.998) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.803  0.190  -11.175  -10.431 
SR             0.388  0.237   -0.076    0.851 
OR:CCA1c       0.781  0.168    0.452    1.110 
SR:CCA1c      -0.148  0.139   -0.422    0.125 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.529  0.151  -10.824  -10.234 
SR             0.103  0.208   -0.304    0.510 
OR:Knolls     -0.207  0.167   -0.535    0.120 
SR:Knolls     -0.206  0.159   -0.517    0.104 
 

Eastness (AIC 2081.9) SR transect Impact (AIC N/A) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.825  0.108  -10.036   -9.613 
Eastness       0.334  0.107    0.125    0.544 
 

note: distance to impact tested at SR 
transect only (AIC comparison with other 
covariates in this table is not valid) 

Eastness by transect interaction (P = 0.050)             Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.896  0.142  -10.174   -9.617 
Impact        -0.169  0.150   -0.463    0.125 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.673  0.172  -11.011  -10.336 
SR             0.254  0.223   -0.183    0.691 
OR:Eastness    0.566  0.165    0.244    0.889 
SR:Eastness    0.144  0.142   -0.135    0.423 
 
Northness (AIC 2091.5)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.766  0.102   -9.966   -9.567 
Northness     -0.075  0.102   -0.274    0.125 
 

 

Northness by transect interaction (P = 0.373)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.510  0.147  -10.799  -10.221 
SR             0.091  0.205   -0.311    0.492 
OR:Northness   0.020  0.147   -0.268    0.308 
SR:Northness  -0.161  0.142   -0.439    0.116 
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2011 Hooded Warbler multiple covariate PPMs. 
 
Eastness+RDA1S (AIC 2080.3) Eastness+RDA1S diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.844  0.110  -10.059   -9.629 
Eastness       0.264  0.114    0.040    0.488 
RDA1s          0.206  0.111   -0.011    0.423 
 

 

Notes: Above effects partly not separable 
(indicated by parameter estimate changes when 
combined, compared to single covariate 
estimates).  

Elevation+RDA1S (AIC 2077.6) Eastness+Elevation+RDA1S diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.857  0.112  -10.076   -9.639 
Elevation      0.319  0.114    0.097    0.542 
RDA1s          0.264  0.107    0.054    0.474 
 

 

Eastness+Elevation+RDA1S (AIC 2072.7) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.897  0.115  -10.122   -9.671 
Eastness       0.300  0.115    0.074    0.526 
Elevation      0.342  0.112    0.122    0.562 
RDA1s          0.148  0.114   -0.076    0.373 
 
Notes: Above effects partly not separable 
(indicated by parameter estimate changes when 
combined, compared to single covariate 
estimates). Inclusion of elevation also 
resulted in a model fit issue, as indicated 
by y-coordinate lurking variable plot (the x-
coordinate lurking variable plot also looks 
somewhat worse versus the Eastness+RDA1S 
model).  
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2010 Ovenbird PPMs: Single covariate and by-transect interaction effects (covariates in bold 
were also considered in multiple covariate SDMs). 
 
RDA1S (AIC 1531.6) Elevation (AIC 1535.5) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.855  0.154  -10.158   -9.552 
RDA1s         -0.182  0.148   -0.471    0.107 
RDA1s^2       -0.309  0.139   -0.583   -0.036 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.110  0.121  -10.347   -9.872 
Elevation      0.113  0.124   -0.130    0.355 
 

RDA1S by transect interaction (P = 0.001) Elevation by transect interaction (P = 0.048) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.862  0.180  -11.215  -10.509 
SR            -0.047  0.262   -0.560    0.465 
OR:RDA1s       0.315  0.179   -0.035    0.666 
SR:RDA1s      -0.508  0.172   -0.845   -0.171 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.820  0.173  -11.159  -10.481 
SR            -0.025  0.249   -0.513    0.464 
OR:Elevation  -0.121  0.166   -0.446    0.205 
SR:Elevation   0.367  0.184    0.007    0.728 

RDA1S+C (AIC 1534.6) Slope (AIC 1532.3) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.115  0.122  -10.354   -9.877 
RDA1s+c       -0.156  0.119   -0.389    0.077 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.132  0.124  -10.375   -9.890 
Slope         -0.239  0.117   -0.469   -0.010 

RDA1S+C by transect interaction (P < 0.001) Slope by transect interaction (P = 0.675) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.862  0.180  -11.215  -10.508 
SR            -0.094  0.267   -0.617    0.430 
OR:RDA1s+c     0.316  0.184   -0.043    0.676 
SR:RDA1s+c    -0.588  0.170   -0.922   -0.254 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.853  0.178  -11.203  -10.504 
SR             0.053  0.248   -0.433    0.538 
OR:Slope      -0.289  0.166   -0.614    0.036 
SR:Slope      -0.190  0.165   -0.515    0.134 

CCA1C (AIC 1532.7) Knolls (AIC 1535.4) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.129  0.123  -10.370   -9.887 
CCA1c         -0.229  0.120   -0.465    0.007 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.111  0.121  -10.349   -9.874 
Knolls        -0.125  0.130   -0.380    0.130 
 

CCA1C by transect interaction (P = 0.002) Knolls by transect interaction (P = 0.455) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.824  0.174  -11.164  -10.483 
SR            -0.136  0.263   -0.652    0.380 
OR:CCA1c       0.149  0.174   -0.193    0.491 
SR:CCA1c      -0.604  0.175   -0.947   -0.260 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.836  0.176  -11.180  -10.491 
SR             0.052  0.244   -0.426    0.531 
OR:Knolls     -0.229  0.197   -0.614    0.156 
SR:Knolls     -0.034  0.173   -0.373    0.304 
 

Eastness (AIC 1510.9) SR transect Impact (AIC N/A) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.285  0.142  -10.563  -10.007 
Eastness      -0.619  0.127   -0.868   -0.370 
 

note: distance to impact tested at SR 
transect only (AIC comparison with other 
covariates in this table is not valid) 

Eastness by transect interaction (P = 0.976)             Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.974  0.217  -10.399   -9.550 
Impact         0.507  0.236    0.044    0.970 
Impact^2      -0.362  0.188   -0.731    0.006 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.995  0.202  -11.392  -10.598 
SR             0.034  0.284   -0.522    0.590 
OR:Eastness   -0.623  0.181   -0.978   -0.268 
SR:Eastness   -0.615  0.178   -0.965   -0.266 
 
Northness (AIC 1536.3)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.104  0.120  -10.340   -9.868 
Northness     -0.019  0.120   -0.254    0.216 
 

 

Northness by transect interaction (P = 0.108)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.827  0.174  -11.168  -10.486 
SR             0.022  0.245   -0.459    0.503 
OR:Northness   0.176  0.171   -0.160    0.512 
SR:Northness  -0.212  0.172   -0.549    0.125 
 

 

 



181 

2010 Ovenbird multiple covariate PPMs. 
 
Eastness+RDA1S (AIC 1510.1) Eastness+RDA1S diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.074  0.177  -10.420   -9.728 
Eastness      -0.637  0.136   -0.904   -0.370 
RDA1s          0.055  0.158   -0.254    0.364 
RDA1s^2       -0.255  0.141   -0.532    0.021 
  

 

Notes: Small AIC improvement versus Eastness 
only model (AIC = 1510.9); effects partly not 
separable (indicated by parameter estimate 
changes when combined, compared to single 
covariate estimates).   
 
Below: Including a 75 m truncated distance to 
impact covariate with eastness and the index 
improved model AIC and residual diagnostics 
somewhat. While model fit was about the same 
when the index was removed, residual 
diagnostics indicated more fit issues (not 
shown). Topographic slope was an additional 
effect that further reduced model AIC, but 
with residual diagnostics unchanged versus 
the Eastness+RDA1S+Impact model. 
 
 
 

Eastness+RDA1S+Impact (AIC 1508.9) Eastness+RDA1S+Impact diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.923  0.566  -12.031   -9.814 
Eastness      -0.623  0.137   -0.891   -0.355 
RDA1s         -0.007  0.160   -0.321    0.307 
RDA1s^2       -0.251  0.140   -0.526    0.023 
Impact(75 m)   0.013  0.008   -0.003    0.028 
 

 

Eastness+Impact (AIC 1509.0) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.209  0.554  -12.296  -10.123 
Eastness      -0.634  0.128   -0.886   -0.383 
Impact(75 m)   0.014  0.008   -0.001    0.029 
 
Eastness+RDA1S+Impact+Slope (AIC 1506.6) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.141  0.572  -12.262  -10.020 
Eastness      -0.591  0.139   -0.863   -0.319 
RDA1s         -0.080  0.163   -0.399    0.239 
RDA1s^2       -0.260  0.142   -0.539    0.019 
Impact(75 m)   0.015  0.008    0.000    0.031 
Slope         -0.263  0.126   -0.510   -0.017 
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2011 Ovenbird PPMs: Single covariate and by-transect interaction effects (covariates in bold 
were also considered in multiple covariate SDMs). 
 
RDA1S (AIC 1515.1) Elevation (AIC 1514.0) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.127  0.122  -10.366   -9.887 
RDA1s          0.122  0.123   -0.119    0.363 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.134  0.123  -10.376   -9.893 
Elevation      0.183  0.126   -0.065    0.430 
 

RDA1S by transect interaction (P < 0.001) Elevation by transect interaction (P = 0.633) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.905  0.194  -11.284  -10.525 
SR            -0.078  0.274   -0.614    0.459 
OR:RDA1s       0.607  0.182    0.249    0.964 
SR:RDA1s      -0.401  0.181   -0.755   -0.046 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.735  0.166  -11.060  -10.410 
SR            -0.199  0.248   -0.685    0.288 
OR:Elevation   0.128  0.169   -0.203    0.460 
SR:Elevation   0.250  0.190   -0.123    0.622 
 

RDA1S+C (AIC 1515.4) Slope (AIC 1509.2) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.125  0.122  -10.364   -9.885 
RDA1s+c        0.103  0.124   -0.139    0.346 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.169  0.127  -10.419   -9.920 
Slope         -0.312  0.117   -0.541   -0.083 

RDA1S+C by transect interaction (P < 0.001) Slope by transect interaction (P = 0.048) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.926  0.198  -11.315  -10.537 
SR            -0.074  0.279   -0.621    0.473 
OR:RDA1s+c     0.653  0.194    0.272    1.034 
SR:RDA1s+c    -0.442  0.178   -0.790   -0.093 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.869  0.185  -11.232  -10.505 
SR            -0.037  0.258   -0.543    0.469 
OR:Slope      -0.518  0.155   -0.822   -0.214 
SR:Slope      -0.052  0.179   -0.402    0.298 

CCA1C (AIC 1516.1) Knolls (AIC 1513.3) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.119  0.121  -10.357   -9.881 
CCA1c          0.022  0.122   -0.217    0.260 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.141  0.124  -10.385   -9.898 
Knolls        -0.222  0.138   -0.493    0.048 
 

CCA1C by transect interaction (P = 0.002) Knolls by transect interaction (P = 0.067) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.824  0.174  -11.164  -10.483 
SR            -0.136  0.263   -0.652    0.380 
OR:CCA1c       0.149  0.174   -0.193    0.491 
SR:CCA1c      -0.604  0.175   -0.947   -0.260 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.827  0.183  -11.186  -10.468 
SR            -0.077  0.256   -0.580    0.425 
OR:Knolls     -0.488  0.214   -0.908   -0.068 
SR:Knolls      0.018  0.177   -0.330    0.365 
 

Eastness (AIC 1504.4) SR transect Impact (AIC N/A) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.199  0.131  -10.456   -9.942 
Eastness      -0.416  0.123   -0.657   -0.174 
 

note: distance to impact tested at SR 
transect only (AIC comparison with other 
covariates in this table is not valid) 

Eastness by transect interaction (P = 0.761)             Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.157  0.230  -10.608   -9.707 
Impact         0.590  0.257    0.087    1.094 
Impact^2      -0.318  0.189   -0.689    0.053 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.795  0.175  -11.138  -10.451 
SR            -0.207  0.264   -0.724    0.310 
OR:Eastness   -0.382  0.166   -0.707   -0.056 
SR:Eastness   -0.457  0.183   -0.816   -0.097 
 
Northness (AIC 1515.6)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.123  0.122  -10.361   -9.884 
Northness      0.087  0.121   -0.150    0.325 
 

 

Northness by transect interaction (P = 0.508)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.741  0.167  -11.067  -10.414 
SR            -0.163  0.245   -0.644    0.317 
OR:Northness   0.161  0.165   -0.162    0.484 
SR:Northness   0.000  0.180   -0.352    0.352 
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2011 Ovenbird multiple covariate PPMs. 
 
Eastness+RDA1S (AIC 1501.7) Eastness+RDA1S diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.144  0.175  -10.488   -9.800 
Eastness      -0.524  0.135   -0.788   -0.260 
RDA1s          0.331  0.146    0.045    0.616 
RDA1s^2       -0.110  0.126   -0.357    0.137 
 

 

Notes: AIC improvement versus Eastness only 
model (AIC = 1510.9) when index added as a 
quadratic polynomial).   
 
Below: Including a 75 m truncated distance to 
impact covariate with eastness and the index 
improved model AIC and residual diagnostics 
somewhat (although the first-order index 
effect was reduced somewhat). While model fit 
was about the same when the index was 
removed, residual diagnostics indicated more 
fit issues (not shown). Topographic slope was 
an additional effect that further reduced 
model AIC, but with residual diagnostics 
unchanged versus the Eastness+RDA1S+Impact 
model (also note the additional reduction in 
the index effect). 
 

Eastness+RDA1S+Impact (AIC 1494.2) Eastness+RDA1S+Impact diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -12.173  0.907  -13.950  -10.396 
Eastness      -0.494  0.136   -0.760   -0.228 
RDA1s          0.229  0.146   -0.057    0.515 
RDA1s^2       -0.104  0.124   -0.348    0.139 
Impact(75 m)   0.029  0.012    0.005    0.053 
 

 

Eastness+Impact (AIC 1493.9) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -12.467  0.908  -14.246  -10.687 
Eastness      -0.433  0.125   -0.679   -0.187 
Impact(75 m)   0.032  0.012    0.008    0.057 
 
Eastness+RDA1S+Impact+Slope (AIC 1489.2) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -12.409  0.897  -14.166  -10.651 
Eastness      -0.443  0.138   -0.714   -0.173 
RDA1s          0.132  0.149   -0.161    0.424 
RDA1s^2       -0.119  0.127   -0.369    0.130 
Impact(75 m)   0.032  0.012    0.008    0.056 
Slope         -0.339  0.127   -0.587   -0.091 
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2010 Cerulean Warbler PPMs: Single covariate and by-transect interaction effects (covariates in 
bold were also considered in multiple covariate SDMs). 
RDA1S (AIC 1576.4) Elevation (AIC 1552.8) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.078  0.119  -10.311   -9.845 
RDA1s          0.063  0.120   -0.172    0.298 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.466  0.159  -10.778  -10.155 
Elevation      0.416  0.098    0.224    0.609 
Elevation^2    0.246  0.055    0.139    0.354 
 

RDA1S by transect interaction (P < 0.001) Elevation by transect interaction (P < 0.001) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.235  0.235  -11.695  -10.775 
SR             0.575  0.286    0.014    1.135 
OR:RDA1s       0.745  0.214    0.326    1.165 
SR:RDA1s      -0.352  0.155   -0.655   -0.049 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.001  0.191  -11.375  -10.627 
SR            -0.063  0.293   -0.637    0.511 
OR:Elevation  -0.236  0.174   -0.578    0.105 
SR:Elevation   1.036  0.190    0.664    1.409 
 

RDA1S+C (AIC 1575.9) Slope (AIC 1560.1) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.082  0.120  -10.316   -9.848 
RDA1s+c        0.110  0.121   -0.128    0.348 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.189  0.131  -10.446   -9.932 
Slope         -0.468  0.113   -0.690   -0.247 
 

RDA1S+C by transect interaction (P < 0.001) Slope by transect interaction (P = 0.027) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.194  0.229  -11.642  -10.745 
SR             0.570  0.278    0.025    1.115 
OR:RDA1s+c     0.693  0.224    0.255    1.132 
SR:RDA1s+c    -0.223  0.152   -0.521    0.075 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.278  0.234  -11.737  -10.819 
SR             0.644  0.283    0.089    1.200 
OR:Slope      -0.763  0.173   -1.103   -0.423 
SR:Slope      -0.256  0.150   -0.550    0.039 
 

CCA1C (AIC 1575.9) Knolls (AIC 1561.1) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.082  0.120  -10.316   -9.848 
CCA1c          0.107  0.120   -0.129    0.343 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.211  0.137  -10.480   -9.943 
Knolls        -0.578  0.161   -0.894   -0.262 
 

CCA1C by transect interaction (P = 0.309) Knolls by transect interaction (P = 0.403) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.006  0.192  -11.383  -10.629 
SR             0.405  0.247   -0.078    0.888 
OR:CCA1c       0.257  0.192   -0.119    0.633 
SR:CCA1c       0.007  0.155   -0.297    0.311 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.188  0.232  -11.642  -10.734 
SR             0.493  0.288   -0.071    1.057 
OR:Knolls     -0.751  0.271   -1.282   -0.220 
SR:Knolls     -0.472  0.200   -0.864   -0.080 
 

Eastness (AIC 1550.3) SR transect Impact (AIC N/A) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.294  0.145  -10.579  -10.010 
Eastness       0.658  0.136    0.392    0.925 
 

note: distance to impact tested at SR 
transect only (AIC comparison with other 
covariates in this table is not valid) 

Eastness by transect interaction (P = 0.907)             Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.503  0.434  -12.354  -10.652 
Impact         0.229  0.423   -0.601    1.058 
Impact^2       1.638  0.430    0.795    2.481 
Impact^3      -0.753  0.268   -1.279   -0.227 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.202  0.230  -11.652  -10.752 
SR             0.390  0.296   -0.191    0.971 
OR:Eastness    0.678  0.214    0.258    1.098 
SR:Eastness    0.645  0.176    0.300    0.991 
 
Northness (AIC 1571.4)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.779  0.165  -10.102   -9.457 
Northness     -0.159  0.139   -0.433    0.114 
Northness^2   -0.354  0.152   -0.653   -0.055 
 

 

Northness by transect interaction (P = 0.103)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.040  0.199  -11.430  -10.651 
SR             0.440  0.252   -0.054    0.933 
OR:Northness  -0.378  0.196   -0.762    0.005 
SR:Northness   0.024  0.154   -0.278    0.326 
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2010 Cerulean Warbler multiple covariate PPMs. 
 
Eastness+Knolls (AIC 1536.2) Eastness+Knolls diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.448  0.164  -10.769  -10.127 
Eastness       0.684  0.140    0.409    0.959 
Knolls        -0.591  0.163   -0.911   -0.270 
 

 

Eastness+Knolls+Impact (AIC 1519.3) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.605  0.172  -10.941  -10.268 
Eastness       0.678  0.137    0.409    0.946 
Knolls        -0.549  0.160   -0.863   -0.234 
Impact(10 m*)  1.476  0.292    0.905    2.048 
 
Notes: Eastness and Knolls effects mostly 
separable (indicated by relative lack of 
parameter estimate changes when combined, 
compared to single covariate estimates). 
Addition of impact covariate (*categorical 10 
m distance, effect is for category equals 
“impacted”) caused a large AIC reduction, but 
dominated other effects for across-transect 
predicted intensity (below).  
 
Residual diagnostic x- and y-coordinate 
lurking variable plots for both models point 
to particularly dense clusters of 
territories. 
 
Eastness+Knolls+Impact predicted intensity Eastness+Knolls+Impact diagnostics 
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2010 Cerulean Warbler multiple covariate PPMs (additional). 
 
Eastness+Knolls+Elevation (AIC 1518.8) Eastness+Knolls+Elevation diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.772  0.193  -11.149  -10.394 
Eastness       0.689  0.141    0.412    0.965 
Knolls        -0.433  0.171   -0.770   -0.097 
Elevation      0.278  0.116    0.050    0.506 
Elevation^2    0.242  0.058    0.129    0.355 
 

 

Notes: Elevation and Knoll distance effects 
related (indicated by parameter estimate 
changes when combined, compared to single 
covariate estimates). Model fit issues likely 
caused by the dense clusters remained. 

Eastness+Knolls+Elevation+Impact (AIC 1513.8) Eastness+Knolls+Elevation+Impact diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.820  0.192  -11.197  -10.443 
Eastness       0.673  0.139    0.401    0.946 
Knolls        -0.456  0.171   -0.791   -0.120 
Elevation      0.150  0.124   -0.092    0.393 
Elevation^2    0.199  0.061    0.079    0.319 
Impact(10 m)   1.160  0.326    0.520    1.800 
 

 

Notes: Elevation effect further reduced but 
knoll effect somewhat strengthened by 
addition of impact covariate. Model fit 
issues likely caused by the dense clusters 
remained. 
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2011 Cerulean Warbler PPMs: Single covariate and by-transect interaction effects (covariates in 
bold were also considered in multiple covariate SDMs). 
 
RDA1S (AIC 2072.1) Elevation (AIC 2055.2) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.777  0.102   -9.977   -9.576 
RDA1s          0.071  0.103   -0.130    0.272 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.869  0.112  -10.088   -9.649 
Elevation      0.455  0.113    0.233    0.676 

RDA1S by transect interaction (P < 0.001) Elevation by transect interaction (P = 0.010) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.402  0.271  -11.934  -10.870 
SR             1.083  0.305    0.485    1.682 
OR:RDA1s       1.171  0.221    0.739    1.603 
SR:RDA1s      -0.434  0.129   -0.686   -0.181 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.787  0.170  -11.120  -10.454 
SR             0.349  0.230   -0.102    0.799 
OR:Elevation   0.098  0.173   -0.240    0.436 
SR:Elevation   0.686  0.148    0.396    0.977 
 

RDA1S+C (AIC 2071.0) Slope (AIC 2065.4) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.783  0.103   -9.985   -9.581 
RDA1s+c        0.128  0.104   -0.077    0.332 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.811  0.106  -10.018   -9.603 
Slope         -0.267  0.099   -0.461   -0.074 
 

RDA1S+C by transect interaction (P < 0.001) Slope by transect interaction (P = 0.007) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.454  0.285  -12.013  -10.895 
SR             1.176  0.315    0.558    1.794 
OR:RDA1s+c     1.263  0.245    0.782    1.743 
SR:RDA1s+c    -0.325  0.126   -0.572   -0.079 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.980  0.198  -11.369  -10.591 
SR             0.751  0.236    0.287    1.214 
OR:Slope      -0.611  0.158   -0.920   -0.301 
SR:Slope      -0.058  0.127   -0.307    0.192 
 

CCA1C (AIC 2070.4) Knolls (AIC 2057.7) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.787  0.103   -9.989   -9.584 
CCA1c          0.152  0.104   -0.051    0.355 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.866  0.113  -10.087   -9.645 
Knolls        -0.469  0.132   -0.728   -0.210 
 

CCA1C by transect interaction (P < 0.001) Knolls by transect interaction (P = 0.295) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.039  0.211  -11.453  -10.625 
SR             0.803  0.248    0.318    1.289 
OR:CCA1c       0.726  0.189    0.355    1.098 
SR:CCA1c      -0.143  0.128   -0.393    0.108 
 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.958  0.203  -11.355  -10.560 
SR             0.671  0.245    0.191    1.150 
OR:Knolls     -0.666  0.238   -1.133   -0.198 
SR:Knolls     -0.370  0.158   -0.680   -0.061 
 

Eastness (AIC 2037.5) SR transect Impact (AIC N/A) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.990  0.125  -10.234   -9.746 
Eastness       0.653  0.117    0.424    0.883 
 

note: distance to impact tested at SR 
transect only (AIC comparison with other 
covariates in this table is not valid) 

Eastness by transect interaction (P = 0.169)             Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.287  0.274  -10.824   -9.749 
Impact         0.120  0.306   -0.479    0.719 
Impact^2       0.786  0.306    0.186    1.387 
Impact^3      -0.397  0.191   -0.771   -0.022 

            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -11.156  0.234  -11.613  -10.698 
SR             0.778  0.276    0.237    1.320 
OR:Eastness    0.880  0.209    0.470    1.290 
SR:Eastness    0.537  0.142    0.259    0.815 
 
Northness (AIC 2072.3)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)   -9.775  0.102   -9.975   -9.575 
Northness      0.052  0.102   -0.147    0.252 
 

 

Northness by transect interaction (P = 0.422)  
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.784  0.169  -11.116  -10.452 
SR             0.550  0.213    0.133    0.967 
OR:Northness  -0.056  0.169   -0.387    0.276 
SR:Northness   0.114  0.128   -0.136    0.365 
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2011 Cerulean Warbler multiple covariate PPMs. 
 
Eastness+Knolls (AIC 2024.2) Eastness+Knolls diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.448  0.164  -10.769  -10.127 
Eastness       0.684  0.140    0.409    0.959 
Knolls        -0.591  0.163   -0.911   -0.270 
 

 

Eastness+Knolls+Impact (AIC 2017.3) 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.179  0.140  -10.454   -9.904 
Eastness       0.674  0.119    0.441    0.906 
Knolls        -0.458  0.132   -0.716   -0.199 
Impact(10 m)   1.010  0.299    0.425    1.596 
 
Notes: Eastness and Knolls effects mostly 
separable (indicated by relative lack of 
parameter estimate changes when combined, 
compared to single covariate estimates). 
Addition of impact covariate (*categorical 10 
m distance, effect is for category equals 
“TRUE”) caused large AIC reduction, but 
dominated other effects for across-transect 
predicted intensity (below). In 2011, the 
impact also coincided with the knoll effect 
in part (i.e., the impact ran through some of 
the dense clusters on knolls).  
 
Residual diagnostic y-coordinate lurking 
variable plots for both models point to 
particularly dense clusters of territories. 
 
Eastness+Knolls+Impact predicted intensity Eastness+Knolls+Impact diagnostics 
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2011 Cerulean Warbler multiple covariate PPMs (additional). 
 
Eastness+Knolls+Elevation (AIC 2016.4) Eastness+Knolls+Elevation diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.137  0.138  -10.407   -9.867 
Eastness       0.683  0.118    0.451    0.915 
Knolls        -0.301  0.143   -0.582   -0.021 
Elevation      0.368  0.122    0.130    0.607 
 

 

Notes: Elevation and Knoll distance effects 
related (indicated by parameter estimate 
changes when combined, compared to single 
covariate estimates). Model fit issues likely 
caused by the dense clusters remained. 

Eastness+Knolls+Elevation+Impact (AIC 2012.9) Eastness+Knolls+Elevation+Impact diagnostics 
            Estimate   S.E.  CI95.lo  CI95.hi 
(Intercept)  -10.192  0.141  -10.468   -9.916 
Eastness       0.682  0.118    0.451    0.912 
Knolls        -0.315  0.143   -0.595   -0.035 
Elevation      0.300  0.123    0.059    0.542 
Impact(10 m)   0.789  0.311    0.178    1.399 
 

 

Notes: Elevation effect further reduced but 
knoll effect somewhat strengthened by 
addition of impact covariate. Model fit 
issues likely caused by the dense clusters 
remained. 
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CHAPTER 4: Modeling the distributions of three Appalachian deciduous forest songbirds 

as point patterns using fine-scale remote sensing data. 

 

ABSTRACT 

Fine-scale spatial patterns in the distributions of breeding territorial songbird species should 

provide valuable information on the processes involved in their habitat selection. In dense 

forests, however, collecting location data on these visually cryptic species is challenging. 

Fortunately, the singing males of these species can provide abundant, albeit often estimated, 

acoustic location data. Advances in species distribution modeling techniques suggest that these 

data can be analyzed as spatial point processes. We mapped Cerulean Warbler (Setophaga 

cerulea), Hooded Warbler (Setophaga citrina), and Ovenbird (Seiurus aurocapilla) singing 

males as point patterns over three periods of the breeding season on ridgetops in a mature 

Appalachian deciduous forest in WV, USA. We used point process models (PPMs) that 

incorporated fine-scale remote sensing data to examine environmental factors underlying these 

point patterns, as well as intraspecific spacing behavior over a distance of 0–300 m. All three 

species’ patterns exhibited short-distance regularity (likely indicative of competition for 

territorial space), which we accounted for in hard core interaction PPMs. We detected significant 

(p < 0.05) clustering in the patterns beyond the hard core distances for all three species based on 

evaluating the L-function (a linearized form of Ripley’s K-function) in Monte Carlo simulation 

envelope tests. Based on evaluating an inhomogeneous version of the L-function in these tests, 

remotely-sensed environmental covariates included in the PPMs fully explained the clustering in 

the Hooded Warbler and Ovenbird, but only partially in the Cerulean Warbler. Including inter-

point attraction effects in hybrid interaction (hard core-Geyer saturation) PPMs accounted for the 
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remaining Cerulean Warbler clustering, supporting conspecific attraction as an effect on its 

distribution. Overall, the PPMs likely produced more realistic environmental parameter estimates 

when inter-point interaction effects were included, and suggested considerable divergence among 

the species in their fine-scale habitat use and spacing behavior.  

 

Keywords: Forest birds, remote sensing, spatial point process models, spacing behavior, species 

distribution models  
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INTRODUCTION 

How species are spatially distributed in relation to the environment is a long-standing and 

fundamental question in ecology (Sutherland 2013). Species distribution models use a wide 

variety of statistical techniques to combine species location data with environmental data for 

purposes including ecological insight and predicting species distributions in space and time 

(Elith and Leathwick 2009). Increasingly refined distribution models may now be possible 

because of new, spatially-continuous environmental predictor variables derived from remote 

sensing data (He et al. 2015). For example, these new sources of environmental information 

allow models to be of increasingly higher spatial resolution over larger areas (Velázquez et al. 

2016). Among the statistical developments, the use of point process models (PPMs) as species 

distribution models has received much attention (reviewed in Renner et al. 2015). These models 

treat the locations of a species as a point pattern that is the realization of a spatial point process, 

and can test how environmental factors as well as interactions between the points (attraction and 

repulsion) or other spatial processes (e.g., dispersal limitation: Lin et al. 2011) are involved in 

their distribution. 

Many different kinds of distribution data have been used in species distribution models, 

which in turn have been applied to diverse taxa. Distribution data as point patterns are often 

comprised of the locations of fixed objects in space such as the trees in a forest (Lin et al. 2011) 

or the nests of birds (Gießelmann et al. 2008) or ants (Li et al. 2016); but also can be snapshots 

of the locations of moving organisms such as whales (Waagepetersen and Schweder 2006) and 

wild ungulates (Hibert et al. 2010). While the objects themselves may be idealized as 

infinitesimal points in PPMs (for an exception, see Wiegand et al. 2006), in reality this is often 

false (e.g., a tree has a crown). However, by making the spatial scale of the investigation 
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sufficiently large relative to the size of the objects, they can be considered approximately point-

like (Baddeley et al. 2015) and valid inference can be achieved. As extreme examples, abiotic 

events occurring over relatively large areas such as fires and earthquakes have been analyzed 

using PPMs (Liu et al. 2012, Van Lieshout and Stein 2012). 

Environmental data are usually incorporated in PPMs as continuous spatial grids, which 

provide the data values for both the observed (i.e., presence) points and some (usually large) 

number of background points within the observation window where the object of interest was not 

observed. These background points may represent true absences, perhaps obtained from a 

completely mapped pattern assuming sufficient positional accuracy and detection probability, but 

often this is not possible. Much of the motivation for using PPMs as species distribution models 

(e.g., see Warton and Shepard 2010) was to overcome the perceived limitations of other 

techniques for modeling presence-only data, which may be the only location data available (e.g., 

museum voucher specimens; Fithian et al. 2015). For presence-only data, the background points 

in a PPM make the analysis essentially similar to a habitat use-availability analysis (Aarts et al. 

2012), and with a large enough number of background points PPMs can closely approximate 

other commonly used species distribution modeling techniques such as spatial logistic regression 

and Maxent (Baddeley et al. 2010, Fithian and Hastie 2013). Spatial autocorrelation (i.e., non-

independence) in species distribution data is frequent and can strongly bias model coefficients 

(Dormann et al. 2007), and PPMs by incorporating inter-point interactions can account for spatial 

autocorrelation and thus allow valid model inferences to be made (Renner et al. 2015). 

For this study, we analyzed the estimated locations of singing males of three species of 

territorial songbirds as point patterns on ridgetops in a mature Appalachian deciduous forest. The 

patterns encompassed a high degree of topographic complexity over short distances, and forest 
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that varied in structure, composition, and the presence of recent anthropogenic disturbances. The 

species, Cerulean Warbler (Setophaga cerulea), Hooded Warbler (Setophaga citrina), and 

Ovenbird (Seiurus aurocapilla), were among the most abundant breeding passerines in this 

forest, and have contrasting habitat preferences (e.g., for amount of canopy closure; Sheehan et 

al. 2014) that would likely promote differences in their spatial distributions. We used PPMs to 

test, within three periods of the breeding season, how the point patterns of these species were 

influenced by the environmental heterogeneity in terrain and forest characteristics and examined 

the patterns for evidence of territorial spacing behavior. We incorporated fine scale 

environmental heterogeneity in the PPMs through the use of remote sensing data with a high 

spatial resolution: terrain variables obtained from a 3-m resolution digital elevation model 

(DEM) and a mapped index of forest structural complexity based on a 0.6-m resolution 

QuickBird satellite image (Chapter 3). 

In a seminal study, Sherry and Holmes (1985) performed a quadrat-based spatial analysis of 

the distributions of seven abundant breeding songbird species in what appeared to be a mostly 

homogenous northern hardwood forest. They found that the species exhibited a range of 

dispersion patterns, from the Least Flycatcher (Empidonax minimus) with a highly clumped 

distribution to several species (the Ovenbird among them) that were more evenly distributed. 

Sherry and Holmes (1985) used the territory mapping method (Bibby et al. 2000) to draw 

territories around clusters of singing males of these species recorded over a number of survey 

dates (thus likely representing relatively stable territories), and then obtained the territory centers 

for their analysis (as we did in Chapter 3). While territory mapping is of value for this and other 

purposes (e.g., the analysis of species densities rather than relative abundances; Newell et al. 

2013), the drawing of territories does require additional subjectivity on the part of the analyst. It 



195 

may be useful, therefore, if spatial analyses could rely on the individual bird locations obtained 

by the method (perhaps even from single visits without the greater effort involved in territory 

mapping). In our present study, one of our goals was to contrast the spacing of individual 

Cerulean Warblers, Hooded Warblers and Ovenbirds, as Cerulean Warbler territories appeared to 

be more strongly clustered (Chapter 3) and there is evidence for its clustered territoriality 

elsewhere (Roth and Islam 2007, Barnes et al. 2016). Finding a similar range in the dispersion 

patterns of the species we studied as that found by Sherry and Holmes (1985) thus may help 

confirm the singing male locations themselves as a viable level for spatial analysis.  

While our singing male point patterns were subject to sampling error (e.g., in the positional 

accuracy of the estimated locations) and factors influencing detection probability (e.g., males 

present but not singing; Farnsworth et al. 2002), we believed them to still be valuable for 

understanding spatial point processes influencing where these species place their breeding 

territories in this forest. For our first objective, despite the data issues we expected that PPMs 

containing inter-point interaction effects would help control for spatial autocorrelation and 

provide more realistic parameter estimates for environmental effects. For our second objective, 

we assumed that over the relatively short distance we focused on (0–300 m), the point patterns 

were complete and accurate enough for an investigation of territorial spacing behavior that 

otherwise would be difficult to achieve over the spatial extent we wished to cover. Controlling 

for environmental heterogeneity in the PPMs allowed us to assess the likelihood that interactions 

between individuals were involved in the spatial patterns we observed. Acoustic signaling is a 

potentially rich data source on fine-scale space use by forest songbirds that is relatively easy and 

inexpensive to collect. We wish to promote its use in spatially-explicit analyses, given careful 

consideration of likely data limitations. 
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METHODS 

Study Site 

This study was conducted in 2011 on ridgetops in the Lewis Wetzel Wildlife Management Area, 

in northwestern West Virginia, USA (39.5012°N, 80.6490°W; Figure 1). The site is in the 

Permian Hills region of the Western Allegheny Plateau, and represents the highly dissected 

topography and dense deciduous forest cover characteristic of the region (Woods et al. 1999). In 

2011, the site was ~93% mature second-growth forest (Farwell et al. 2016), with the remaining 

area comprised of a variety of anthropogenic forest impacts, including timber harvests, forest 

roads and pipelines, natural gas and oil well pads, and small clearings managed for wildlife. 

Elevation of the studied ridgetops was 221–480 m (mean 356 m) above sea level. Major tree 

species on the ridgetops included chestnut oak (Quercus montana), sugar maple (Acer 

saccharum), northern red oak (Q. rubra), red maple (A. rubrum), hickories (Carya spp.), black 

oak (Q. velutina), white oak (Q. alba), and black locust (Robinia pseudoacacia) (see Chapter 2 

for additional site details). 

Field Data Collection 

Six ridgetop transects, totaling 28 km in length, were established for mapping the singing males 

of the three bird species (Figure 1). Each transect was a network of primary and secondary ridge 

centerlines obtained by hydrological modeling of the DEM. The transects were placed to cover 

the range of ridgetop forest habitat conditions and topographic diversity existing at the site, given 

logistical constraints (ease of access and efficient travel routes). Each transect contained locally 

high and low elevations (knolls and saddles) and a variety of ridge orientations. One transect 

(OR) was located completely within mature forest, with no obvious signs of human disturbance. 
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The other five transects included some recent anthropogenic disturbances (see details in the 

Appendix Figure 6), but overall were located primarily within mature forest.  

The transects were surveyed by J.S. over three replicate sampling bouts in May and June, 

2011, to approximately coincide with the early (mean day = 5/8; range: 5/5–5/12), mid (mean 

day = 5/25; range: 5/19–5/31), and late (mean day = 6/10; range: 6/1–6/20) periods of the peak 

breeding season for these species based on overall seasonal trends in their singing activity, and 

prior bird survey work conducted at this site (included in Sheehan et al. 2014, Farwell et al. 

2016). Within a bout, each transect’s survey was completed over 1–3 days, depending on the 

transect length that could be covered during the peak daily period of singing activity (0–4 hrs 

after local sunrise). Surveys were conducted only during optimal conditions for bird activity 

(calm winds, no precipitation or heavy fog). During a survey, the transect was walked at a slow, 

regular pace (~1–2 km per hr), with short (<5 min) pauses as necessary to aurally estimate the 

locations of the singing males and record them on detailed field maps (1:5,000 scale). The maps 

included the transect ridgelines with points placed at 50 m intervals. A Garmin 60CSX 

Geographic Positioning System unit (WAAS-enabled ±5–10 m positional accuracy) containing 

these points was used to ensure accurate positioning for estimating the singing locations.  

Because of transect side branches and multiple-day surveys, topographic features (e.g., 

ridgeline intersections and prominent knolls) were used to perform the surveys in segments to 

which even survey effort was applied. When starting a new segment, the previous map was 

examined to avoid double-recording the same individual. Determining new individuals was also 

assisted by the frequent, simultaneous location of conspecifics (males of all three species 

regularly countersing). In the absence of countersinging, new individuals were not used if they 

were within 50 m (for Cerulean and Hooded Warblers) or 100 m (for Ovenbirds; generally 
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spaced further apart) of a previously mapped individual. A singing male was recorded as soon as 

possible after it was first heard and its location could be estimated, with adjustments for better 

accuracy when possible for individuals that continued to vocalize and did not appear to move. 

Lines were drawn on the maps to denote countersinging and individual movements. All 

individuals estimated to be within 100 m to either side of the transect were recorded. The 

completed maps were scanned and then georeferenced (UTM NAD 83, Zone 17 N) and 

manually digitized in ArcGIS 10.1 (Environmental Systems Research Institute, Redlands, CA, 

USA) to obtain the coordinates of the singing males. 

Analyses 

The PPMs were conducted using the spatstat 1.46-1 package (Baddeley et al. 2015) in R 3.3.1 (R 

Core Team 2016). The polygon observation window containing the singing male locations (the 

point patterns) was the combined area of the six transects buffered at 85 m (Figure 1), which 

encompassed >95% of the singing males (by species per bout). We used 85 m instead of the 100 

m maximum recording distance to help ensure that the most distant males, which were more 

difficult to place accurately, were in fact present within the observation window boundary. We 

combined the transects rather than analyze them separately or use spatially replicated models 

(see chapter 16 in Baddeley et al. 2015) to increase sample sizes and to more easily include both 

broad- and fine-scale spatial trends in the models. We considered the sampling bouts as 

providing three separate snapshots of singing activity over the course of the breeding season, 

which we examined for potential changes. For example, the early bout likely encompassed initial 

settlement patterns caused by variation in arrival dates, while the late bout likely encompassed 

post-breeding singing activity (which also could vary temporally; e.g., by species). Aside from 

our interest in the potential changes, three separate analyses also allowed us to assess the results 
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for stability. Finding consistent spacing within the species across the sampling bouts, for 

instance, would help support the general applicability of analyzing these data as point patterns.  

Point pattern analysis background. A point pattern exists within a defined region and may 

exhibit first-order effects, which manifest as spatial variation in point density (often termed 

‘intensity’) and second-order effects, which are interactions (e.g., attraction or repulsion) 

between the points (Diggle 2003). The simplest spatial point process is the homogenous Poisson 

process, in which the points exhibit ‘complete spatial randomness’ (CSR). CSR is defined as a 

constant point intensity across the region and no interactions between the points (Diggle 2003). 

In contrast, a spatial point process often considered for species distribution models is the 

inhomogeneous Poisson process (Renner et al. 2015). In this process, the points do not interact, 

but their intensity varies spatially in relation to environmental heterogeneity (e.g., in soils, 

elevation). This intensity can be estimated from the point pattern itself, through the use of 

parametric (e.g., functions of Cartesian coordinates; Diggle 2003) and non-parametric (e.g., 

kernel density estimation; Baddeley et al. 2000) techniques. These techniques are often used to 

control heterogeneity as a nuisance effect, with the primary purpose being to assess the pattern 

for second-order effects. Alternatively, as in our study, environmental data can be obtained to 

model heterogeneity directly, which can be useful for also gaining insight into environmental 

effects on the patterns (e.g., see Li et al. 2016).  

Testing whether an observed point pattern is explained by a particular spatial point process 

can be done by considering the process as the null model, and comparing spatial properties 

obtained from the observed point pattern to the same properties obtained from point patterns that 

are Monte Carlo-based simulated realizations of the null model (Law et al. 2009). For example, a 

distance-based summary function such as the Ripley’s K-function (Ripley 1976) can be 
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calculated from the simulated patterns to obtain the upper and lower bounds of a graphical 

envelope representing the null model, to compare to the same function graphed for the observed 

point pattern. Ripley’s-K function calculates the average number of neighboring points within 

circles of increasing radii around the points of the pattern, to provide an assessment of their 

spatial randomness, clustering, or regularity. With a homogeneous Poisson process as the null 

model, a departure from CSR is indicated if, along the x-axis of the distance range the K-function 

is calculated for, the observed function wanders outside the simulation envelope. Where the 

function is above or below the envelope suggests spatial clustering or regularity; respectively, in 

the points, at a statistical significance level that is based on the number of simulations.  

In the case of an inhomogeneous Poisson process as the null model, there are inhomogeneous 

versions of summary functions (e.g., the inhomogeneous K-function; Baddeley et al. 2000) that 

employ the techniques described above to control for heterogeneity in assessing the spatial 

properties of the point pattern. In addition to incorporating heterogeneity, null models can be 

made considerably more complex by specifying the type of interaction between the points. We 

used Gibbs processes (Møller and Waagepetersen 2007) for flexibility in specifying the types of 

interactions for our models. Gibbs processes are commonly used to model repulsion but can also 

model moderately strong clustering (Baddeley et al. 2015). We were specifically interested in 

considering hybrid models that combine Gibbs processes, as these models are useful when 

interactions occur at different spatial scales (Baddeley et al. 2013).  

Assessing and controlling for first-order intensity trends in spatstat PPMs involves the use of 

quadrature points. These points provide background values for an environmental covariate over 

the sampling window to compare with the covariate values obtained for the observed point 

pattern. To accurately estimate the background, it is important that the number of quadrature 
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points be sufficiently large (Renner et al. 2015), and it is also important that the spatial resolution 

of the covariate be sufficiently fine so that individual points of the observed pattern do not share 

the same pixel (Aarts et al. 2012). For modeling second-order interaction effects, it is also often 

important to use some kind of edge correction, particularly when the pattern is contained within a 

complex observation window. Summary functions such as Ripley’s-K are influenced by points 

having fewer neighbors for estimating the function because they are nearer to the edge, but the 

pattern actually occurs within some larger unbounded region (Perry et al. 2006). Which 

particular edge correction method to use is often less important than the use of one (Baddeley et 

al. 2015), and edge correction is particularly important when the purpose, as in our study, is to 

parameterize a specific point process model (Yamada and Rogerson 2003).  

Environmental covariates. The remote sensing data layers used as covariates for 

environmental heterogeneity in the PPMs were based on preliminary modeling of the species’ 

mapped territories (as opposed to individual singing male locations) on two of the transects over 

two breeding seasons (SR and OR in 2010 and 2011; Chapter 3). We used the ArcGIS zonal 

statistics function to spatially smooth the layers processed from the 3-m DEM (±3 m vertical 

accuracy; source: http://viewer.nationalmap.gov/) to reduce the potential for the high resolution 

of the DEM to result in too much detail in the topographic covariates and a subsequent loss of 

explanatory power (Cavazzi et al. 2013). To represent topographic variation, we applied a 15-m 

focal mean to the sine (east–west) and cosine (north–south) linear derivations of 0–360° 

topographic aspect. This amount of smoothing preserved the diversity of topographic aspects 

possible on the ridges, which in the preliminary models was a dominant factor influencing the 

local (i.e., within-ridge) spatial distributions of these species (notably, east-facing aspects for the 

Cerulean and Hooded Warbler and west-facing aspects for the Ovenbird). To more generally 
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represent elevation gradients across the transects, we applied a 100 m focal mean to the DEM 

elevation values. Specifically for the Cerulean Warbler, we calculated a continuous distance grid 

from the tops of obvious knolls, obtained as point features through 3-dimensional modeling of 

the DEM and verified in the field. 

The mapped index of forest structural complexity (RDAS) was obtained from a redundancy 

analysis of field-collected forest structure data using the panchromatic band from a QuickBird 2 

(DigitalGlobe, Westminster, CO, USA) satellite image and the DEM, as fully described in 

Chapter 3. In brief here, RDAS was mainly comprised of a linear combination of several image 

variables, the strongest being a fine scale measure of image texture (the 0.6 m pixel standard 

deviation). RDAS indicated structural complexity that was primarily related to forest canopy 

openness, with a more closed forest canopy associated with greater tree basal area and a more 

open forest canopy associated with greater herbaceous understory cover and grapevine (Vitus 

spp.) density. RDAS was also correlated (Spearman’s ρ = 0.71) with another multivariate 

analysis-derived index based on tree composition data, suggesting that this structural complexity 

was also related to a chestnut oak (a more closed forest canopy) to sugar maple (a more open 

forest canopy) dominance gradient. We selected RDAS over the composition index because 

forest structure was more predictable based on external cross-validation, and RDAS more 

strongly modeled the Hooded Warbler, the species most directly linked to the presence of canopy 

gaps with well-developed understories in this forest. We applied a 15-m standard deviation 

Gaussian filter to RDAS (using the spatstat blur function) based on preliminary testing that 

indicated this amount of smoothing preserved the spatial patterns in the index and maximized 

how strongly it could model the species (Chapter 3). 
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Recent anthropogenic disturbances (all types combined) were represented by an impacted 

forest categorical covariate, with impacted forest defined as that existing ≤100 m from forest 

disturbance edges (hand-digitized in ArcGIS) which also incorporated the timber harvest areas. 

We selected this edge effect distance because it is often used in studies of the effects of 

anthropogenic forest disturbances on birds, including at this site (Farwell et al. 2016). While 

distance to edge itself was potentially interesting as a fine scale effect, directly modeling this 

across the combined transect extent was complicated because the disturbances were localized to 

five of the six transects. The majority of disturbances were narrow (roads and pipelines) or small 

in size (well pads and wildlife clearings), so we assumed that these disturbances caused similar, 

primarily habitat edge-related effects on these forest bird species. The potential effects of timber 

harvests likely differed because they could also contain the species in the habitat within their 

boundaries. However, we relied on the impacted forest covariate to also account for any effects 

from these somewhat larger but still isolated areas, rather than additionally represent them. 

Modeling procedure. Because the point patterns of each species clearly exhibited spatial 

regularity over the shortest inter-point distances that was consistent with territorial male spacing 

behavior, we first fit PPMs to each species in each sampling bout that included a simple hard 

core interaction (we subsequently refer to these as hard core models). With a hard core model as 

the null model, the points in the pattern cannot be closer than the hard core interaction distance, 

but at larger distances they do not interact (Baddeley et al. 2015). The hard core interaction 

distances were the species-specific minimum inter-point distances observed within the survey 

bouts. We fit both homogeneous hard core models (assuming no environmental heterogeneity) 

and inhomogeneous hard core models that contained environmental covariates to the patterns. 

Although a homogeneous hard core process was a priori likely false as a null model given the 
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species’ different habitat preferences, these models provided a valuable initial assessment of the 

spatial properties of the patterns for guiding subsequent modeling (Baddeley et al. 2015). 

Particularly, we assessed whether apparent deviations from the homogenous hard core models 

were controlled through the use of environmental covariates in the inhomogeneous hard core 

models. Finding evidence against such control subsequently led us to test PPMs containing 

hybrid interactions (described below) to further determine the species’ spacing patterns. 

For the simulation envelope-based testing to evaluate the goodness of fit of the PPMs, we 

used the rank envelope test available in the spptest 0.04 R package (Myllymäki et al. 2016). This 

is a global envelope test, in that it avoids an inflated statistical Type I error rate caused by the 

problem of multiple testing of distances over which the function may deviate from the envelope. 

The test further provides a p-value interval for the observed function, with clear evidence for 

rejecting the null model if the upper p-value is below the specified significance level (we used α 

= 0.05) and some evidence for rejecting the null model if the specified significance level is 

between the upper and lower p-value (Myllymäki et al. 2016). Low point sample sizes appeared 

to be the cause of simulation issues for the Ovenbird, which we solved by excluding the transect 

(DR) with the fewest points from its analysis. 

We assessed the properties of the L-function (Besag 1977) and an inhomogeneous version of 

the L-function (Baddeley et al. 2000), both available in spatstat, with the rank envelope tests. The 

L-function is a linear transformation of Ripley’s K-function, with the advantages that it helps to 

stabilize variance (Mencuccini et al. 2010) and as a linear transformation it is easier to examine 

the behavior of the function at short distances. Because of our complex observation window 

comprised of separate, relatively convoluted and narrow transects, we restricted testing for 

deviations from the fitted model envelopes by the observed L-functions over a distance range of 
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the hard core distances up to 300 m. The functions were also fairly stable over this range 

according to the different edge correction methods available in spatstat (Baddeley et al. 2015).  

Based on the results of the rank envelope testing of the inhomogeneous hard core models, we 

tested the use of a hybrid hard core-Geyer saturation interaction model (we subsequently refer to 

these as hard core-Geyer models) to attempt to obtain a better fit. As used here, the hard core-

Geyer models could fit the existence of additional clustering or regularity in the point patterns up 

to moderate distances beyond the hard core distance. We examined profile plots of the model 

pseudolikelihood (spatstat profilepl function), which is a strength of fit measure, to estimate the 

best interaction radius (r) and saturation value (σ; the number of neighboring points typically 

involved in the interaction) to set as parameters for the Geyer saturation (Geyer 1999) part of the 

hybrid, evaluating r at 5 m intervals above the hard core distance up to 150 m, and 2–5 

neighboring points for σ.  

To reduce computation time and still satisfy the resolution requirement (Aarts et al. 2012), 

we resampled the environmental covariates to a 5 m pixel resolution. Based on an evaluation tool 

(the parres function) and the Akaike Information Criterion (AIC) measure available in spatstat, 

linear terms were best for modeling all of the covariates but the RDAS index, for which we 

considered second-order polynomials. We tested each covariate individually with the different 

interaction models, and also with a Poisson model to obtain baseline parameter estimates for 

comparison. We then used a stepwise forward-backward procedure based on AIC (the R step 

function) to obtain the most parsimonious set of covariates to account for environmental 

heterogeneity in the different types of models. While the covariates were relatively uncorrelated 

(pairwise Spearman’s ρ < |0.38|), some correlation in their effects when combined was apparent 

from preliminary modeling. We were generally unconcerned over correlated effects as long as we 
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achieved a stronger parsimonious model, and attempted to interpret them. However, because of 

our focus on the fine scale knoll distance effect for the Cerulean Warbler, we excluded elevation 

from its stepwise procedure (higher elevations were often knolls). For all PPMs, we used a 

25x25 m grid quadrature scheme for the background points (n = ~8,000) as a compromise 

between maximizing the model fit and processing speed, and the translation edge correction. 

 

RESULTS 

Evaluated simply as the raw numbers of singing males, the Ovenbird was relatively stable across 

the survey bouts (early n = 103, mid n = 97, and late n = 113). The Cerulean Warbler was more 

variable, with greater numbers in the mid (n = 198) and late bout (n = 180) than in the early bout 

(n = 156). The Hooded Warbler increased across the bouts (early n = 116, mid n = 152, and late n 

= 173). Considered within bouts, the minimum inter-point distances were shortest for the 

Cerulean Warbler (early = 21.8 m, mid = 26.9 m, and late = 22.0 m), followed closely by the 

Hooded Warbler (early = 23.8 m, mid = 34.5 m, and late = 28.7 m), and more substantially by 

the Ovenbird (early = 57.1 m, mid = 46.8 m, and late = 46.5 m). Overall, the environmental 

covariate parameter estimates from the univariate hard core models utilizing these inter-point 

distances indicated some strengthening of effects compared to the Poisson models (Table 1). The 

final hard core models obtained from the AIC step procedure also indicated this strengthening 

(with several additional covariates also selected for the Ovenbird), and they were improved over 

the final Poisson models based on AIC (Table 2). The specific covariates are described in the 

context of the individual species results below, but these initial results supported the use of a 

hard core interaction to account for short-distance repulsion in all three species’ point patterns. 

Based on the rank envelope tests, the Cerulean Warbler homogeneous hard core null models 
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were clearly rejected for all survey bouts (upper p < 0.05), with the L-function suggesting that 

individuals were clustered up to the largest distance we evaluated (300 m) beyond the hard core 

distance (Figure 2; left). The departure of the function above the envelope was greatest for the 

late bout, indicating stronger clustering. This was qualitatively supported by changes in local 

Cerulean Warbler densities evident in the point patterns (contained in the Appendix for all 

species) that suggested it became more spatially concentrated in the late bout, with increases 

particularly in two locations within impacted forest (on the SR and RR transects, see the 

Appendix Figure 7) which had relatively higher densities in the early and mid bouts. Along with 

these increases there also appeared to be general decreases elsewhere.  

The univariate Cerulean Warbler inhomogeneous hard core models indicated positive effects 

for east-facing aspects and proximity to knolls across the survey bouts, for higher RDAS index 

values for the early and mid bouts, and for impacted forest for the mid and late bouts (Table 1). 

The final inhomogeneous hard core models for each bout contained the east-facing aspect and 

knoll effects, with the impacted forest effect also included for the mid and late bouts (Table 2). 

We attributed the lack of inclusion of the RDAS index effect in the early and mid bout final 

models to the inclusion of the stronger east-facing aspect effect, based on a positive correlation 

between these effects. While the rank envelope tests indicated that the final inhomogeneous hard 

core models (Figure 2; right) fit the Cerulean Warbler patterns better than the homogeneous hard 

core models, not all of the observed clustering appeared to be accounted for by the 

environmental covariates. For the early and mid bouts, clustering was indicated by the L-function 

departing above the envelope at distances <100 m. For the late bout, the departure was more 

substantial, peaking at ~150 m before falling within the envelope by ~250 m.  

We applied the hard core-Geyer models to the Cerulean Warbler patterns to attempt to 
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account for this remaining clustering. Profile plots indicated rather clear peaks in the 

pseudolikelihood for selecting the interaction radius r and saturation parameter σ for each survey 

bout, ranging from 80–90 m for r and increasing from 3–5 for σ across the bouts. The AIC step 

procedure for the hard core-Geyer model selected the same environmental covariates as the hard 

core model in each bout, although in contrast to the hard core models, the spatial covariate 

parameter estimates were somewhat weakened with the addition of a positive interaction effect 

(Tables 1 and 2). Based on the rank envelope test (Figure 3), these hard core-Geyer models 

substantially improved the fit over the hard core models (also supported by AIC; Table 2), with 

no evidence of clustering remaining. Across the survey bouts, the 95% CIs for the interaction 

parameter estimates were >0 (listed in Figure 3). As these CIs were from hybrid interaction 

models, they provided relatively strong evidence for inter-point attraction occurring beyond the 

initial repulsion indicated by the hard core interaction distance. The increase in σ across the 

bouts also suggested an increase in the typical number of interacting males. 

For both the Hooded Warbler and Ovenbird, some clustering beyond the hard core distance 

was suggested by the rank envelope tests of the homogeneous hard core null models (Figures 4 

and 5; left), although unlike the Cerulean Warbler this did not occur for all survey bouts for 

either species. Clustering for the Hooded Warbler was suggested for the mid and late bouts up to 

150 m where the L-function was at or slightly above the envelope. While larger sample sizes 

relative to the early bout were perhaps involved in detecting this clustering, a general increase in 

local Hooded Warbler densities across the survey bouts was apparent in the point patterns, 

particularly within some transects (e.g., HR, OR, and the northern part of SR; Appendix Figure 

8). Clustering for the Ovenbird was suggested only for the late bout, with the L-function at or 

slightly above the envelope across nearly the full range of distances beyond the hard core 
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distance. As Ovenbird numbers were fairly stable across the survey bouts, this increase in 

clustering suggested that individuals became more concentrated spatially by the late bout, and 

this was also apparent as density increases in the point pattern in some locations (e.g., overall 

within the OR transect; Appendix Figure 9).  

The univariate Hooded Warbler inhomogeneous hard core models indicated positive effects 

for east-facing aspects, higher elevations, and higher RDAS index values across the survey bouts 

(Table 1). Based on AIC, second-order polynomials more strongly modeled the RDAS index for 

the mid and late bouts. There were also positive effects found for impacted forest for the early 

bout, and for south-facing aspects for the mid bout. The final Hooded Warbler inhomogeneous 

hard core models contained the individual effects found for the respective survey bouts, with two 

exceptions likely related to the influence of the RDAS index (Table 2). A positive effect for 

north-facing aspects was included for the early bout, with the index apparently helping to clarify 

that there were higher densities on some north-facing aspects with greater structural complexity 

according to the index. Also, based on a positive correlation between effects, the south-facing 

aspect effect was not included for the mid bout because of the inclusion of the stronger RDAS 

index effect. Rank envelope tests of the final Hooded Warbler inhomogeneous hard core models 

no longer detected clustering (Figure 4; right). In the late bout, short distance regularity was 

nearly suggested (lower p = 0.06), perhaps indicating that for this bout the simple hard core 

interaction was not the best choice to model repulsion. Regardless, this model was a substantial 

improvement over a Poisson inhomogeneous model based on AIC (Table 2).  

The univariate Ovenbird inhomogeneous hard core models indicated positive effects for 

west-facing aspects and negative effects for impacted forest across the survey bouts, and a 

positive effect of elevation for the late bout (Table 1). The final Ovenbird inhomogeneous hard 
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core models included these respective effects, and several additional effects depending on the 

bout (Table 2). A positive north-facing aspect effect was included for the early and late bouts, 

whereas a positive elevation effect was included for the early and mid bouts. The RDAS index 

was included in the late bout as a positive linear effect, but in the early bout as a second-order 

polynomial effect that modeled higher density for intermediate index values. The reasons for the 

variation in covariate inclusion were difficult to discern, although for the RDAS index in the late 

bout the apparent spatial distribution changes were implicated (e.g., more individuals utilizing 

the OR transect, which had generally higher RDAS index values). In any case for the Ovenbird, 

based on AIC the final inhomogeneous hard core models were improved even if rather complex, 

and the rank envelope test of the late bout model no longer detected clustering (Figure 5; right).  

 

DISCUSSION 

In this study, we found support for treating the locations of the singing males of these three forest 

songbirds as point patterns that are likely realizations of spatial point processes. Clear and 

consistent differences among the species emerged, despite rather atypical point pattern data in 

terms of the locations being estimated by ear, and the dynamic nature of singing activity both 

within a survey and over the breeding season. All three species were abundant with broadly 

overlapping spatial distributions, yet the models indicated there were substantial differences in 

their fine-scale distributions in relation to the environment. The models also suggested that the 

Cerulean Warbler diverged considerably from the Hooded Warbler and Ovenbird in its territorial 

spacing. In the following discussion, we contrast the species patterns and also address how the 

types of conspecific interactions they exhibited affected the interpretation of environmental 
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effects. Finally, we identify some limitations of considering our survey data as point patterns and 

suggest ways to move forward in using such data to study ecological complexity. 

A well-recognized difficulty in analyzing the spatial properties of point patterns is that it may 

not be possible to distinguish the effects of inter-point interactions (first-order effects) from the 

effects of heterogeneity due to the environment (second-order effects), without making use of 

additional biological information (Diggle 2003). It is likely that both first- and second-order 

effects, perhaps operating at different spatial scales, are involved in the spatial distribution of the 

points. Particularly for plants, environmental influences are thought to dominate at broader 

spatial scales, whereas mechanisms such as attraction and repulsion operate at finer spatial scales 

(Wiegand et al. 2007). We suspect this general characteristic is also true for the point patterns of 

the singing males of the three forest bird species we studied, at least over the distance range we 

evaluated. For all three species, the most obvious spatial property of the patterns was for initial 

regularity as indicated by the hard core distances. These minimum inter-point distances did not 

appear to be an observer bias, for example, in not recording signaling individuals that were in 

very close proximity, because this was simply not observed. We believe it is much more likely 

that the initial regularity indicated competition for territorial space used to attract a mate, which 

itself is a primary driver of the evolutionary development of vocal signaling behavior in birds 

(Searcy and Andersson 1986). In dense tropical forests, song provides a means of non-visual 

communication between individual territorial males (Aubin et al. 2004), and this advantage was 

presumably important in the forest we studied as well. 

At distances beyond the hard core, the rank envelope tests indicated that environmental 

heterogeneity as measured by the remote sensing data explained clustering in the point patterns 

for all species, but to a much lesser extent for the Cerulean Warbler. The hard core models 
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indicated that the unexplained (or ‘leftover’) Cerulean Warbler clustering primarily occurred 

over moderate distances (<150 m), which increases the possibility it involved direct interactions 

between individual males. This observation led to the use of the hard core-Geyer models, which 

adequately controlled the leftover clustering while still including the environmental explanation. 

We cannot conclude that this leftover clustering was caused by some conspecific attraction 

mechanism and not by environmental heterogeneity we were unable to measure, however. Other 

studies have found that the Cerulean Warbler exhibits clustered territoriality (Roth and Islam 

2007, Barnes et al. 2016), but unlike some songbird species (e.g., Black-throated Blue Warbler, 

Setophaga caerulescens; Hahn and Silverman 2007) there is only weak experimental evidence 

through the use of artificial stimuli that conspecific attraction is involved and more study is 

needed (Barnes et al. 2016). Still, the very high densities of several of the clusters is at least 

suggestive of more than just an environmental explanation. Regardless, our results supported a 

very different spatial pattern for the Cerulean Warbler in terms of its potential for dense 

clustering, and indicated a spatial scale over which to investigate this potential further.  

We did not need hard core-Geyer models for the Hooded Warbler and Ovenbird point 

patterns because incorporating environmental heterogeneity sufficiently accounted for their 

observed clustering. To the best of our knowledge, there have been no Ovenbird studies and only 

one Hooded Warbler study (Melles et al. 2009) suggesting they exhibit clustering. 

Methodological differences with our study complicate direct comparisons, but Melles et al. 

(2009) found that nests were significantly clustered, mostly at scales between 240 and 420 m, 

within available nesting habitat as indicated by a habitat map obtained by classifying fine-scale 

satellite (Ikonos) imagery. For our study, even with the Hooded Warbler numeric increase over 

the survey bouts there was no marked increase as with the Cerulean Warbler in its clustering 
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according to the homogeneous L-functions. The initial regularity of the pattern, along with the 

relatively strong control over its heterogeneity by the environmental covariates, suggested a 

general expansion by Hooded Warblers to more fully occupy available habitat over the breeding 

season. Studies of clustering probably should consider abundance, as the Hooded Warbler was 

much more abundant in our study area compared to the Melles et al. (2009) Southern Ontario, 

Canada, study area near the northern extreme of its range. Conspecific attraction may be easier to 

support if there are few individuals relative to available habitat and they exhibit clustering.  

Although the simple inclusion of a hard core interaction had a relatively small effect on the 

parameter estimates for the environmental covariates compared to those obtained from the 

Poisson models, the estimates tended to consistently increase. Intuitively, this result is suggestive 

of competition by these species for limited resources as the covariates indicated them, with 

territorial individuals keeping other individuals from accessing these resources and thus driving 

up their importance. For example, an increase in the negative effect of impacted forest on 

Ovenbird intensity was indicated for the hard core models (Table 1; although note the 

overlapping 95% CIs with the Poisson models). An Ovenbird preference for undisturbed mature 

forest was thus supported by both models, but the hard core models suggested an increase in the 

importance of this habitat as a potential limiting factor on Ovenbird density. For all species, the 

minimum inter-point distances appeared to provide a rough, albeit likely conservative estimate of 

spacing behavior (e.g., if obtained from a pair of individuals singing near the boundaries of their 

respective territories), and assuming the existence of competition for space, led to more realistic 

parameter estimates (and for the Ovenbird selected additional covariates; Table 2).  

In contrast to the general strengthening of the environmental covariate effects obtained from 

the hard core models, the Cerulean Warbler hard core-Geyer models showed some weakening of 
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these effects. From a modeling perspective, this occurred because part of the environmental 

heterogeneity effect was instead accounted for by the attraction effect of the inter-point 

interaction. This has biological implications because conspecific attraction may exaggerate the 

importance of local environmental features involved in habitat selection (Roth and Islam 2007). 

Notably, the positive impacted forest effect on Cerulean Warbler intensity was substantially 

weakened in the late sampling bout by the addition of an attraction effect, which suggested some 

uncertainty over the underlying cause for the very large clusters observed in the impacted forest 

later in the breeding season. It is also possible that by then a substantial number of individuals 

were engaged in post-breeding activities such as caring for fledglings or prospecting for 

territories for next season (e.g., as may occur in the Black-throated Blue Warbler; Betts et al. 

2008). If so, these individuals apparently still exhibited similar spacing behavior and habitat 

selection, however. Among the species we studied, the Cerulean Warbler distribution appeared to 

be particularly dynamic, perhaps as a consequence of clustering behavior coupled with changes 

in the individuals involved in clustering over the breeding season. 

In addition to supporting spacing differences among the species, the PPMs indicated much 

contrast in their habitat use. The strongest such contrast involved topographic aspect. While 

selection of certain aspects for breeding has been found for the Cerulean Warbler (e.g., Hartman 

et al. 2009: east-facing aspects; Weakland and Wood 2005, Barnes et al. 2016: northeast-facing 

aspects), we were unable to find any Hooded Warbler or Ovenbird studies of this phenomenon. 

At least for the Hooded Warbler, the RDAS index effects on its intensity suggested that higher 

forest structural complexity on east-facing aspects was an important factor in its distribution. For 

the Cerulean Warbler, the east-facing aspect preference could involve higher grapevine density, 

as grapevines may be a preferred source of nest material for the species (Bakermans and 
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Rodewald 2009). East-facing aspects on knolls also may have provided the internal forest edges 

the Cerulean Warbler appears to prefer (Barnes et al. 2016). An alternative or complementary 

factor may be that topographic aspect influences microclimate, and microclimatic preferences 

may differ among these species. For example, perhaps the Ovenbird's strong west-facing aspect 

preference was because these aspects often had greater canopy cover and were thus more shaded. 

However, another consequence of this greater canopy cover was more open areas with deep leaf-

litter (see Chapter 2), which the Ovenbird may prefer to nest in (Mattsson and Niemi 2006). 

There are several limitations regarding our use of singing male locations as point patterns. 

One issue was detection probability, as this is well known to decline as a function of distance 

from the observer (Emlen 1971), can be influenced by a variety of temporal, environmental, and 

observer-related factors (see Ralph and Scott 1981), and it is likely that territorial males were 

present during a survey but not recorded because they did not sing (Farnsworth et al. 2002). It is 

also not possible to know if all of the recorded individuals had well-established territories. 

Further, because it was not generally possible to see the individuals, not all of them were 

necessarily male (female song in warbler species: Najar and Benedict 2015) or even their 

purported species (Cerulean Warbler singing a Hooded Warbler song: Boves et al. 2010). Despite 

these issues, we believe these snapshots of singing activity by these species over the course of 

the breeding season were at least minimally adequate for examining their territorial spacing, and 

how the environment influenced their spatial distributions. With separate analyses by sampling 

bout, we not only assessed the patterns for potential changes over the breeding season, but also 

gained confidence in the results by finding consistency among the species in their spacing as 

well as habitat use.  
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Our study site likely provided an ideal situation for the fine scale study of these small 

territorial songbirds. All three species were abundant, which increased the potential for the 

statistical detection of effects. Another advantage was the high degree of topographic complexity 

over relatively short distances, as topography alone provided much contrast among the species’ 

habitat use, and it was possible to effectively survey this topographic complexity from the 

ridgetops. Our study further benefited from the availability of a high spatial resolution DEM 

which allowed fine scale terrain modeling, and it was valuable to have at least for modeling the 

Hooded Warbler a measure of forest structural complexity through the QuickBird satellite-

derived RDAS index. Future comparative studies using the locations of birds as point patterns 

could benefit from satellite and/or aerial remote sensing data on fine-scale environmental 

heterogeneity applicable to multiple species (e.g., lidar, a type of active remote sensing data, 

would likely have been a useful addition to our study for the Cerulean Warbler; see Barnes et al. 

2016). More rigorous study designs for testing the relative influence of environmental 

heterogeneity and interactions on point patterns are also possible (e.g., see Getzin et al. 2008). 

The use of observation windows with a larger area to perimeter ratio (e.g., square or rectangular) 

may make edge correction less of a potential bias. Finally, studies in flatter terrain may allow 

more thorough coverage for collecting more accurate and complete location data on individuals. 

Conclusions 

Using the locations of singing males in PPMs, we found a number of apparent habitat 

associations among the three forest songbirds we studied. Several of these do not appear to be 

have been quantified to date, such as the Cerulean Warbler association with knolls, and the 

Hooded Warbler and Ovenbird association with particular topographic aspects (opposite ones at 

our study site). These alone are interesting, as are the implications of including inter-point 
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interactions on the parameter estimates for environmental effects in general. Perhaps most 

intriguing, however, was that the inter-point interaction PPMs suggested a range in the dispersion 

patterns of the small, territorial forest songbirds we studied that was similar to the range found 

by Sherry and Holmes (1985) using a different spatial analysis technique applied to territory 

centers. For our study it was the Cerulean Warbler exhibiting the highly clumped distribution 

similar to that of the Least Flycatcher, and the Ovenbird in both of our studies exhibiting a more 

evenly dispersed distribution. We emphasize that we are comparing our analysis of singing male 

locations to their analysis of territory centers obtained from a more intensive method, but the 

similarities we found between our studies located in different forests and using different analysis 

methods appear to help confirm the usefulness of our approach.  

We see an important parallel between our study and Sueur and Farina (2015), who suggested 

greater use of environmental sound to study ecological complexity. While our estimated singing 

location data was rather primitive compared to the acoustic data Sueur and Farina (2015) 

primarily consider (e.g., that obtained from automatic field recording devices), we found it very 

informative with respect to complex processes underlying how these species were distributed in 

this forest. We also cannot envision how else to feasibly collect this amount of singing location 

data over the spatial extent we covered, at the resolution needed for our analysis. As far as the 

data limitations, there may be ways to overcome them in point pattern analyses (e.g., use of 

covariates to account for detectability; Waagepetersen and Schweder 2006). Sherry and Holmes 

(1985) emphasized the relative rarity (which also appears to exist presently) and high value of 

comparative analyses of bird distribution patterns for understanding how habitat and interactions 

between individuals determine species distributions at multiple spatial scales. Much would 

appear to now be possible to achieve in this regard, given improved remote sensing data on the 
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environment and avian singing behavior as a reliable source of information on species’ habitat 

use and spacing behavior. 
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Table 1. Parameter estimates for the environmental covariates from univariate inhomogeneous 
Poisson (PS), hard core (HC), and hard core-Geyer (HC-G) point process models by species 
across the three sampling bouts. Environmental covariate estimate 95% confidence intervals (CI) 
in bold do not overlap zero. 

   Early bout Mid bout Late bout 

Parametera Model Coef. (95% CI) Coef. (95% CI) Coef. (95% CI) 

Cerulean Warbler        

Interceptb PS  -10.365 (-10.522, -10.208) -10.132 (-10.272, -9.992) -10.222 (-10.368, -10.076) 

 HC  -10.298 (-10.455, -10.141) -10.025 (-10.164, -9.885) -10.149 (-10.296, -10.003) 

 HC-G -10.855 (-11.143, -10.566) -10.629 (-10.865, -10.392) -10.853 (-11.093, -10.612) 

        

Impacted forest PS 0.166 (-0.158, 0.489) 0.552 (0.272, 0.831) 0.574 (0.281, 0.866) 

 HC 0.174 (-0.149, 0.498) 0.597 (0.317, 0.877) 0.601 (0.308, 0.893) 

 HC-G 0.154 (-0.116, 0.424) 0.402 (0.177, 0.627) 0.375 (0.130, 0.620) 

        

Eastness PS 0.545 (0.363, 0.726) 0.597 (0.432, 0.762) 0.731 (0.548, 0.914) 

 HC 0.560 (0.374, 0.746) 0.636 (0.468, 0.804) 0.754 (0.559, 0.949) 

 HC-G 0.490 (0.304, 0.677) 0.533 (0.371, 0.694) 0.613 (0.425, 0.802) 

        

Northness PS 0.000 (-0.158, 0.157) -0.005 (-0.145, 0.135) 0.017 (-0.129, 0.164) 

 HC 0.000 (-0.168, 0.168) -0.007 (-0.160, 0.146) 0.015 (-0.141, 0.170) 

 HC-G 0.021 (-0.144, 0.187) 0.023 (-0.122, 0.168) 0.019 (-0.129, 0.168) 

        

Knoll distance PS -0.427 (-0.612, -0.242) -0.498 (-0.667, -0.329) -0.217 (-0.376, -0.059) 

 HC -0.449 (-0.613, -0.285) -0.548 (-0.697, -0.400) -0.225 (-0.372, -0.079) 

 HC-G -0.364 (-0.508, -0.219) -0.401 (-0.523, -0.280) -0.172 (-0.276, -0.068) 

        

RDAs index PS 0.289 (0.102, 0.476) 0.163 (-0.002, 0.327) 0.107 (-0.065, 0.278) 

 HC 0.297 (0.117, 0.477) 0.177 (0.006, 0.349) 0.112 (-0.075, 0.299) 

 HC-G 0.228 (0.076, 0.380) 0.123 (-0.013, 0.260) 0.105 (-0.044, 0.254) 

        

Hooded Warbler        

Intercepta PS -10.662 (-10.844, -10.480) -10.391 (-10.550, -10.232) -10.262 (-10.411, -10.113) 

 HC -10.597 (-10.779, -10.415) -10.253 (-10.412, -10.094) -10.150 (-10.299, -10.001) 

        

Impacted forest PS 0.456 (0.090, 0.822) 0.124 (-0.206, 0.454) 0.155 (-0.153, 0.462) 

 HC 0.475 (0.109, 0.841) 0.137 (-0.192, 0.467) 0.170 (-0.138, 0.478) 

        

Eastness PS 0.349 (0.152, 0.546) 0.292 (0.122, 0.461) 0.469 (0.301, 0.636) 

 HC 0.360 (0.165, 0.555) 0.319 (0.153, 0.484) 0.497 (0.326, 0.667) 

        

Northness PS -0.009 (-0.191, 0.173) -0.183 (-0.343, -0.022) -0.054 (-0.203, 0.095) 

 HC -0.009 (-0.189, 0.171) -0.201 (-0.362, -0.040) -0.057 (-0.202, 0.088) 
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Elevation PS 0.200 (0.006, 0.395) 0.275 (0.102, 0.449) 0.191 (0.032, 0.350) 

 HC 0.207 (0.008, 0.406) 0.305 (0.130, 0.480) 0.206 (0.051, 0.362) 

        

RDAs index PS 0.439 (0.219, 0.658) 0.507 (0.274, 0.740) 0.717 (0.462, 0.973) 

    -0.2092 (-0.428, 0.010)2 -0.3682 (-0.603, -0.133)2 

 HC 0.453 (0.226, 0.681) 0.553 (0.306, 0.799) 0.765 (0.510, 1.020) 

    -0.2142 (-0.455, 0.027)2 -0.3892 (-0.619, -0.159)2 

        

Ovenbird        

Intercepta PS -10.709 (-10.908, -10.510) -10.751 (-10.954, -10.548) -10.601 (-10.790, -10.413) 

 HC -10.446 (-10.645, -10.247) -10.576 (-10.780, -10.373) -10.411 (-10.600, -10.223) 

        

Impacted forest PS -0.772 (-1.322, -0.222) -0.644 (-1.183, -0.106) -1.062 (-1.642, -0.482) 

 HC -0.928 (-1.478, -0.377) -0.718 (-1.257, -0.180) -1.182 (-1.762, -0.603) 

        

Eastness PS -0.332 (-0.540, -0.123) -0.239 (-0.449, -0.029) -0.320 (-0.517, -0.123) 

 HC -0.369 (-0.591, -0.146) -0.277 (-0.491, -0.062) -0.369 (-0.566, -0.171) 

        

Northness PS 0.131 (-0.071, 0.332) 0.101 (-0.104, 0.307) 0.076 (-0.114, 0.266) 

 HC 0.156 (-0.040, 0.352) 0.110 (-0.093, 0.314) 0.083 (-0.116, 0.283) 

        

Elevation PS 0.120 (-0.088, 0.329) 0.192 (-0.027, 0.410) 0.221 (0.016, 0.426) 

 HC 0.141 (-0.102, 0.383) 0.221 (0.000, 0.442) 0.264 (0.075, 0.453) 

        

RDAs index PS -0.070 (-0.327, 0.186) -0.006 (-0.239, 0.228) 0.127 (-0.092, 0.345) 

  -0.2212 (-0.479, 0.038)2     

 HC -0.080 (-0.336, 0.176) -0.008 (-0.237, 0.222) 0.159 (-0.063, 0.380) 

  -0.2432 (-0.527, 0.041)2     
a. Impacted forest was a categorical covariate, defined as forest existing ≤100 m from forest edges due to recent anthropogenic 
disturbances. Eastness and northness were the sine (east–west) and cosine (north–south); respectively, linear derivations of 0–360° 
topographic aspect (positive values = east-facing or north-facing aspects; negative values = west-facing or south-facing aspects). 
Elevation was mean elevation. The RDAS index was a mapped index of forest structural complexity (Chapter 3). Knoll distance was 
the distance to the tops of prominent knolls (used only in the Cerulean Warbler models instead of elevation). 
b. Intercept-only model; for clarity only the environmental covariate estimate is reported for the other models.  
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Table 2. Final inhomogeneous Poisson (PS), hard core (HC), and hard core-Geyer (HC-G) point process models by species across the 
three sampling bouts obtained from the AIC step procedure. The AIC values for the final models are presented for comparison within a 
species within a sampling bout. The model formula begins with the intercept followed by the covariate coefficients (key: IF = 
impacted forest, E = eastness, N = northness, El = elevation, RDAS = forest structural complexity index, Kd = knoll distance)a. 

  Early bout 
 

Mid bout 
 

Late bout 

Species Model AIC Model formula 
 

AIC Model formula 
 

AIC Model formula 

Cerulean Warbler PS 3479.1 -10.578 + 0.569 E + -0.444 Kd 
 

4272.6 -10.590 + 0.474 IF + 0.628 E + 
-0.494 Kd 

 
3940.5 -10.716 + 0.548 IF + 0.749 E + 

-0.211 Kd 

 HC 3462.2 -10.542 + 0.589 E + -0.470 Kd 
 

4223.0 -10.537 + 0.519 IF + 0.680 E + 
-0.554 Kd 

 
3917.0 -10.686 + 0.580 IF + 0.777 E + 

-0.223 Kd 

 HC-G 3436.5 -10.952 + 0.521 E + -0.400 Kd 
 

4187.4 -10.876 + 0.417 IF + 0.587 E + 
-0.447 Kd 

 
3840.3 -11.135 + 0.389 IF + 0.630 E + 

-0.184 Kd 

          

Hooded Warbler PS 2675.7 -11.002 + 0.626 IF + 0.195 E + 
0.157 N + 0.519 RDAS 

 
3428.6 -10.378 + 0.205 E + 0.397 RDAS 

+ (-0.187 RDAS)2 + 0.264 El 

 
3833.2 -10.250 + 0.351 E + 0.559 RDAS 

+ (-0.336 RDAS)2 + 0.182 El 

 HC 2664.6 -10.981 + 0.661 IF + 0.203 E + 
0.168 N + 0.546 RDAS 

 
3387.9 -10.266 + 0.225 E + 0.435 RDAS 

+ (-0.193 RDAS)2 + 0.296 El 

 
3795.2 -10.156 + 0.375 E + 0.600 RDAS 

+ (-0.358 RDAS)2 + 0.201 El 

          

Ovenbird PS 2249.4 
-10.328 + -1.067 IF + -0.301 E + 
-0.057 RDAS + (-0.255 RDAS)2 + 

0.254 El 

 

2168.8 -10.563 + -0.934 IF + -0.223 E + 
0.342 El 

 

2465.7 -10.377 + -1.421 IF + -0.298 E + 
0.433 El 

 HC 2190.4 
-10.009 + -1.295 IF + -0.375 E + 

0.176 N + -0.002 RDAS + 
(-0.285 RDAS)2 + 0.324 El 

 

2134.2 -10.372 + -1.097 IF + -0.269 E + 
0.417 El 

 

2412.3 -10.200 + -1.585 IF + -0.464 E + 
0.163 N + 0.257 RDAS + 0.540 El 

a. Impacted forest was a categorical covariate, defined as forest existing ≤100 m from forest edges due to recent anthropogenic disturbances. Eastness and northness were the sine 
(east–west) and cosine (north–south); respectively, linear derivations of 0–360° topographic aspect (positive values = east-facing or north-facing aspects; negative values = west-
facing or south-facing aspects). Elevation was mean elevation. The RDAS index was a mapped index of forest structural complexity (Chapter 3). Knoll distance was the distance to the 
tops of prominent knolls (used only in the Cerulean Warbler models instead of elevation).
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Figure 1. The six ridgetop transects in the Lewis Wetzel Wildlife Management Area, WV, for 
mapping the locations of Cerulean Warbler, Hooded Warbler, and Ovenbird singing males. See 
the Appendix for additional transect details. 
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Figure 2. Rank envelope tests of the homogeneous and final inhomogeneous hard core models 
for the Cerulean Warbler point patterns by survey bout using the centered L- and Linhom-functions 
(𝐿𝐿�(r) – r and 𝐿𝐿� inhom(r) – r; r = distance in m), which are linearized versions of the Ripley’s K-
function for detecting clustering or regularity in a point pattern. The thick line is the function 
obtained from the observed point pattern, the dashed lines are the upper and lower bounds of the 
95% global envelope for the distance interval (hard core distance to 300 m) based on 2499 
simulations of the fitted model, and the dotted line is the simulation mean (i.e., the estimated 
theoretical expectation of the null hypothesis). The p-value interval for the test is in parentheses 
(lower p-value, upper p-value) and where the function is above the envelope suggests distances 
up to which individuals exhibited clustering.
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Figure 3. Rank envelope tests of the final inhomogeneous hard core-Geyer interaction hybrid 
models for the Cerulean Warbler point patterns by survey bout (figure and test descriptions as in 
Figure 2). The table shows the key parameters for interpreting the Geyer saturation interaction: 
r(m) is the interaction radius distance, σ is the number of neighboring points typically involved 
in the interaction, Gamma is the interaction parameter (>1 indicates clustering), and the estimate 
is the positive attraction effect estimate and its 95% confidence interval (CI). 
 

 

 Geyer saturation interaction parameters 

Bout r(m) σ Gamma Estimate  
(95% CI) 

Early 90 3 1.26 0.230 
(0.112, 0.347) 

Mid 80 4 1.22 0.199 
(0.122, 0.276) 

Late 85 5 1.27 0.242 
(0.178, 0.306) 
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Figure 4. Rank envelope tests of the homogeneous and final inhomogeneous hard core models 
for the Hooded Warbler point patterns by survey bout (figure and test descriptions as in Figure 
2).  



233 

 
Figure 5. Rank envelope tests of the homogeneous and final inhomogeneous hard core models 
for the Ovenbird point patterns by survey bout (figure and test descriptions as in Figure 2). 
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APPENDIX 

Forest impacts mapped within the areas of the transects (Figure 6), and the point patterns of the 
singing male Cerulean Warblers, Hooded Warblers, and Ovenbirds by survey bout (Figures 7-9). 
 

 

Figure 6. Forest impacts within the areas of the transects delineated using a 2009 QuickBird 2 
(DigitalGlobe, Westminster, CO, USA) satellite 0.6 m panchromatic image (acquired 25 August 
2009 at 16:18 GMT, 6° off-nadir, solar azimuth = 127°).   
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Figure 7. Point patterns of singing male Cerulean 

Warblers by survey bout, overlaid on point intensity (i.e., 

density) functions. The intensity functions were made 

using the spatstat R package (Baddeley et al. 2015) 

density.ppp function, with a 100 m standard deviation of 

isotropic Gaussian smoothing kernel and Diggle’s edge 

correction. The functions were standardized across the 

survey bouts to depict changes in local densities. The 

transect impacts are outlined in white. The arrow points 

to the two highest local densities in the late bout. 
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Figure 8. Point patterns of singing male Hooded 

Warblers by survey bout, overlaid on point intensity (i.e., 

density) functions. The intensity functions were made 

using the spatstat R package (Baddeley et al. 2015) 

density.ppp function, with a 100 m standard deviation of 

isotropic Gaussian smoothing kernel and Diggle’s edge 

correction. The functions were standardized across the 

survey bouts to depict changes in local densities. The 

transect impacts are outlined in white.  
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Figure 9. Point patterns of singing male Ovenbirds by 

survey bout, overlaid on point intensity (i.e., density) 

functions. The intensity functions were made using the 

spatstat R package (Baddeley et al. 2015) density.ppp 

function, with a 100 m standard deviation of isotropic 

Gaussian smoothing kernel and Diggle’s edge correction. 

The functions were standardized across the survey bouts 

to depict changes in local densities. The transect impacts 

are outlined in white. 
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