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Abstract 

MODELING AND DEVELOPMENT OF THE DYNAMIC ENVIRONMENTAL SIMULATION 

CHAMBER (DESC) FOR CALIBRATION OF AIR QUALITY MONITORING SENSORS 

 

Filiz KAZAN 

Ambient air quality has a significant impact on human health and the environment we live in with evidence 

showing that pollution increases the number of cardiovascular diseases, lung diseases, cancer, asthma cases 

and proven influences on the mortality rates. The United States Environmental Protection Agency (U.S. 

EPA) established the National Ambient Air Quality Standard (NAAQS) to limit exposure of the public to 

critical pollutants and monitors ambient air near highways and selected locations with elaborate monitoring 

stations. Instruments and analyzers utilized in current monitoring stations comprise laboratory-grade 

technology of high accuracy, which on the flipside, however, are characterized by high cost, complexity, 

and need for specialized operators. This effectively limits the number of monitoring stations and thus, the 

density of the monitoring network. Therefore, the development of low-cost sensors and gaining a better 

understanding of their responses and limits will benefit denser monitoring coverage of large areas with a 

growing number of monitoring stations. With recent sensor technology developments, increased numbers 

of miniaturized and low-cost sensors are commercialized and become available on the market. These 

sensors can be defined as low-cost (<$500) and are easy to operate due to the simplicity of the sensors. 

However, the response, accuracy, and possible interference of low-cost sensors must be characterized in 

detail. Numerous studies have been completed, focusing on the evaluation of low-cost sensor technologies 

and compare the sensor responses between laboratory testing versus field monitoring. Sensor readings were 

found to be affected by environmental conditions such as meteorology and from multi-constituent 

combinations in field experiments resulting in sensor cross-sensitivities. 

 

The primary objective of this study is to evaluate the ambient air gas sensor responses due to the activity 

and meteorological events such as temperature, wind speed, humidity, as well as possible cross-interfering 

constituents. The secondary objective of this work is to tune the calibration function and understand 

possible interfering factors of the commercialized gas sensors for indoor/outdoor air quality monitoring. 

For the purpose of evaluating and calibrating the low-cost sensors, a custom-designed Dynamic 

Environmental Simulation Chamber (DESC) was developed and commissioned. In a first step, analysis of 

the simulation chamber was performed as a function of different geometries, wind speeds, and air properties 

using a Computational Fluid Dynamics (CFD) analyzing software (Fluent, ANSYS, USA) for the 

determination of flow profiles, gas mixing homogeneity, and sensor location positioning in the loop where 

wind velocity is vital for sensor responses. Based on the modeling results, the DESC was built and 

connected to a computer-controlled system that allows changing the composition of pollutant 



concentrations via injection of synthetic gases, temperature (25-110 oC), relative humidity (0-95%), and 

wind speed (0-5 m/s) instantly by a custom-made control software. In the second step, CO2 gas sensors 

were evaluated in the DESC, including, i) a high and low-speed Senseair K30 (range 10000ppm), ii) a 

FIGARO FG-030 (range 5000ppm), and iii) a COZIR (range 2000ppm). The evaluated CO2 sensors were 

all based on nondispersive infrared detection (NDIR) technology which has interference with CO, humidity, 

and temperature. The experiments were performed with variable gas compositions and meteorological 

conditions using a design of experiment approach. The gas mixture components were CO, CO2 and zero 

air. Fourier-Transform infrared spectroscopy (FTIR, MKS 2030-HS) was used in order to measure the gas 

concentrations and to cross-reference with the sensor readings. The calibration functions were generated as 

a function of pressure, temperature, humidity (i.e. water content), and CO as interference gas. 

The calibration models improved the sensor responses when compared to raw measurements. For the K30 

sensors, the overall relative error was decreased from ±10 % to ±3 %. For the Figaro, the overall relative 

error was decreased from ±15 % to ±4 %. Moreover, for the COZIR, the overall relative error was decreased 

from ±22 % to ±14 %. The COZIR correction model was found to not significantly decrease the relative 

error, and thus, will need further investigation. 
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1 Introduction  

Ambient air is defined as the proportion of the atmosphere where is publicly accessible, outside of the 

buildings [1]. Air quality has a significant role in human health and the earth we live in. The technology 

has been developed within time; thus, the impact of the human sources has been increased on air pollution. 

Air pollution has a negative influence on mortality, and the evidence shows that pollution increases the 

number of cardiovascular diseases, lung diseases, cancer, and asthma cases [2]. The studies show the 

relationship between the mortality and primary pollutions such as Ozone (O3), particulate matter (PM), 

carbon monoxide (CO), Nitrogen dioxide (NO2) and sulfur dioxide (SO2) [3], [4]. Another study indicates 

that ambient air quality causes congenital disabilities [5] as well as damages the soil quality and causes 

climate changes [6].  

The World Health Organization (2015) links 3.7 million annual premature deaths as well as other diseases 

such as heart diseases and lung cancer [7] to the exposure to outdoor fine particulate matter (i.e. PM 2.5). 

Moreover, exposure to ozone causes around 150 000 deaths because of the respiration difficulties. Ozone 

and soot are also harmful to soil and plantation. 

The main pollutions can be linked to stationary and mobile sources which are built by human. The stationary 

sources are the factories and electric generation plants, and mobile sources are cars and any transportation 

vehicles. Another reasons for air pollution are natural events such as volcanic explosions, wildfires, etc. 

Air pollutants can be divided into two as primary pollutants (i.e. particulate matter (PM), carbon monoxide 

(CO), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2) and Lead (Pb)) which are 

produced directly from stationary and mobile sources; and secondary pollutants which are converted from 

primary pollutants with chemical reactions such as O3 and other particulate matters (PM) [6].  

Because of health and environmental concerns are mentioned above, governments and other organizations 

are continuously monitoring the ambient air via monitoring stations in favor of estimating the level of 

pollution and establish regulations. However, the number of the stations cannot cover all the environment 

due to the cost of the monitoring stations, hence the number of the low-cost ambient air sensor usage is 

increasing because of the cost-effectivity and simplicity of operation. The sensors have various operating 

principles such as electrochemical, metal oxide which depends on targeting gases. Although, the quality of 

low-cost sensors is still increasing, it has not yet reached the quality and accuracy of laboratory grade 

analyzers. For this reason, many researchers are focused on assessing ambient air quality sensors by 

counting the effect of environmental conditions and characterize possible cross-sensitivities. 
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1.1 Objective 

Gas sensors are vital for identification of the ambient air quality. The sensors are defined as low-cost sensors 

(<$500) because they are cost-effective and do not require professional knowledge to be operated by a user. 

However, the quality of the sensor responses is one of the significant concerns since the sensor responses 

can be affected by the meteorological events and cross-sensitivity to other gaseous components different 

from the target gas. Therefore, many researchers evaluated low-cost sensors to validate their responses and 

characteristics. 

The primary objective of this study is to build a testing bench for evaluation of low-cost sensors to assess 

the sensor responses for meteorological events. In order to evaluate the sensors, the dynamic environmental 

simulation chamber (DESC) will be designed and constructed at West Virginia University’s Center for 

Alternative Fuel, Engines and Emissions’ facilities. The test bench will be capable of simultaneously 

controlling the concentration of gases, temperature, humidity, pressure, and flow characteristics to simulate 

different test conditions. Moreover, gas bottles with known concentrations and zero air will be used to avoid 

the effect of independent variables. The sensor evaluation relies on the comparison between sensor 

responses versus a reference measurement. In this study, Fourier-transform infrared spectroscopy (FTIR) 

will be used as reference instrument. Because of the working principals of the FTIR the sampled gas 

components will not be altered, and thus, the sample stream leaving the FTIR can be feed back into the 

chamber. Due to this the inner concentration of the chamber will not be affected by the sampling system. 

The experiments will be performed at several concentration levels over the sensor’s full measurement range 

at the average metrological exposure conditions. The next step will be the identification of significant 

interferences. The sensors shall be exposed to a controlled environment of standard gas mixtures of selected 

pollutants in the exposure chamber. 

The secondary objective is tuning the sensor’s calibration function to increase the sensor accuracy using 

controlled experimental conditions. The focus of this study are CO2 sensors because carbon dioxide (CO2) 

has been identified to contribute to climate change. CO2 gas sensors were evaluated in the DESC, including, 

i) a high and low-speed Senseair K30 (range 10000ppm), ii) a FIGARO FG-030 (range 5000ppm), and iii) 

a COZIR (range 2000ppm). The sensors will be compared to an FTIR and will be calibrated under 

laboratory conditions using zero air and gaseous components including CO2 and CO. To develop the 

calibration function, several statistical methods will be applied, specifically, root mean square error 

(RMSE) calculation and stepwise multilinear regression (MLR). 
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2 Literature review 

2.1 Air pollution 

Before investigating the ambient air quality, the specifications for gas components need to be understood. 

The criteria pollutants defined by the US EPA and listed in EPA’s air guidebook specifies the detection 

limits, expected ranges, health effects, and environmental effects for some common air pollutants [6]. 

NIOSH provides a wide range of additional pollutants that are published in a comprehensive list on their 

webpage (https://www.cdc.gov/niosh/npg/npgd0103.html). 

Table 1 shows the most common air pollutants, detection limit, type, level, range to expect, and average 

concentration ranges to expect in ambient air in the USA. The type of the pollutants is explained below: 

Ozone (O3) is a secondary pollutant which is formed by UV (sunlight) from NOx and VOCs. Ozone has a 

crucial role in the ozone layer; however, the abnormal amount is caused by human activities such as fuel 

combustion sources. Useful detection limits are 10 ppb and the expected range 0-150 ppb. Ozone can cause 

chest pain, breathing problems, and worsen asthma. Besides the health effects, the ozone also damages the 

vegetation. It is one of the greenhouse gases which commits global warming. 

Carbon monoxide (CO) is a primary pollutant which is a product of the fuel combustion, for instance, 

mobile sources. Carbon monoxide gas is poisonous, colorless, and considers an odorless pollutant. The 

detection limit is around 0.1 ppm, and the expected range is 0-0.3 ppm. Carbon monoxide lowers the amount 

of oxygen inhaled into the lungs and increases the heart disease symptoms. It helps to the production of 

CO2 and ozone, which are causing climate changes. 

Sulfur dioxide (SO2) is another primary pollutant which a product of high-temperature fuel combustion is. 

Natural events such as volcanic explosions can also produce it. The useful detection limit is around 10 ppb, 

and the expected range is 0-100 ppb. Sulfur dioxide worsens the lung diseases indications and can cause to 

hospitalize for long-term exposure. The environmental effect of SO2 is formed by increasing the acidic level 

on soil and water, causing damages to vegetation and wildlife. 

Nitrogen dioxide (NO2) is a primary and secondary pollutant which is produced by fuel combustion mobile 

sources. The expected range is 0-50 ppb, and the detection limit is around 10 ppb. The expose of nitrogen 

dioxide mainly affects kids and older adults' respiration system. NO2 also increases the acidification like 

SO2 in soil and water. It defects the oxygen in the water, which causes the death of animals. 

Carbon dioxide (CO2) which is one of the primary pollutants is an odorless and colorless non-toxic 

greenhouse gas which causes the ocean acidification. It is produced by fuel combustion, which can be seen 

in, electric facilities and mobile sources. The detection limit is 100 ppm, and the expected range is 350-600 

ppm.  

Particulate Matter (PM includes PM2.5 and PM10) is a primary and secondary pollutant. As a primary 

pollutant, it is produced by fuel combustion, dust, agriculture, and fire. The useful detection limit of fine 
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particulate matter (PM2.5) is 5 μg/m³, and the expected range is 0-40 μg/m3. For Particulate matter (PM10) 

the useful detection limit of fine particulate matter (PM2.5) is 5 μg/m³, and the expected range is 0-40 μg/m3. 

As a secondary pollutant, it is formed by primary pollutants and sunlight. The health effects of the PM are 

breathing problems, premature death, cardiovascular and lung diseases, and the environmental effects are 

deposited onto the surfaces which affect the ecosystem. 

Volatile Organic Compounds (VOC) are also primary and secondary pollutants which are produced by fuel 

combustion operations and gasoline evaporation. The detection limit is 1 μg/m³, and total VOC range 

expected 5-100 μg/m³. VOC’s can be separated as non-methane (NMVOCs) and methane (CH4). Methane 

is one of the greenhouse gases. NMVOCs are benzene, toluene, xylene. VOCs can cause cancer and help 

to the formation of ozone, which effects the atmosphere.  

Lead (Pb) is a primary pollutant which can be produced by electric facilities and lead-acid manufacturers. 

The detection limit is 0.05 μg/m³, and the expected range is 0-0.1 μg/m³. Lead affects the central nervous 

system and causes cardiovascular diseases. It can cause permanent damages in soil, vegetation, and animals. 

 

Table 1 Summary of the common air pollutants (Adapted from EPA Air Sensor Guidebook). 

Air Pollutant of 
Interest 

Type Source Example 
Useful 

Detection 
Limits 

Range to Expect Level 

Ozone (O3) Secondary 
Formed via UV (sunlight) 
and pressure of other key 

pollutants 
10 ppb 0-150 ppb 75 ppb (8 hr.) 

Carbon monoxide 
(CO) 

Primary 
Fuel combustion – mobile 

sources, industrial processes 
0.1 ppm 0-0.3 ppm 

9 ppm (8 hr.) 
35 ppm (1 hr) 

Sulfur dioxide (SO2) Primary 
Fuel combustion – electric 

utilities, industrial processes 
10 ppb 0-100 ppb 

75 ppb (1 hr.) 
0.5 ppm (3 hr) 

Nitrogen dioxide 
(NO2) 

Primary and 
Secondary 

Fuel combustion – mobile 
sources, electric utilities, 

off-road equipment 
10 ppb 0-50 ppb 

100 ppb (1 hr.) 
53 ppb (1 yr.) 

Carbon dioxide 
(CO2) 

Primary 
Fuel combustion – electric 

utilities, mobile sources 
100 ppm 350-600 ppm None 

Methane (CH4) Primary 
Industry (e.g., natural gas 

operations), agriculture, and 
waste management 

500 ppb 1500-2000 ppb None 

Volatile organic 
compounds (VOCs) 

Primary and 
Secondary 

Fuel combustion (mobile 
sources, industries) gasoline 

evaporation; solvents 
1 μg/m3 

5-100 μg/m3 (total 
VOCs) 

None 

Benzene (an example 
of a VOC and air 

toxics) 
Primary 

Gasoline, evaporative losses 
from above ground storage 

tanks 

0.01 – 10 
μg/m³ 

0-3 μg/m3 None 

Fine particulate 
matter (PM2.5) 

Primary and 
Secondary 

Fuel combustion (mobile 
sources, electric utilities, 

industrial processes), dust, 
agriculture, fires 

5 μg/m³ 
(24-hr) 

0-40 μg/m3 
(24-hr) 

35 μg/m3 (24 hr.) 
12 μg/m3 (1 yr.) 



 5  

 

Air Pollutant of 
Interest 

Type Source Example 
Useful 

Detection 
Limits 

Range to Expect Level 

Particulate matter 
(PM10) 

Primary and 
Secondary 

Dust, fuel combustion 
(mobile sources, industrial 

processes), agriculture, fires 

10 μg/m³ 
(24-hr) 

0-100 μg/m3 
(24-hr) 

150 μg/m3 (24 hr.) 

Lead (Pb) Primary 

Smelting, aviation gasoline, 
waste incinerators, electric 

utilities, and lead-acid 
battery manufacturers 

0.05 μg/m3 
(24-hr) 

0-0.1 μg/m3 
(24-hr) 

0.15 μg/m3 (3 mo.) 

Black carbon (BC) Primary 
Biomass burning, diesel 

engines 
0.05 μg/m3 0-15 μg/m³ None 

 

2.2 Monitoring ambient air 

In order to determine the current ambient air quality and develop new strategies ambient air pollutants have 

to be monitored. United States Environmental Protection Agency (US EPA) and South Coast Air Quality 

Management District (SCAQMD) monitors ambient air near the highway, and precise location with 

monitoring stations with different methods and analyzers adapted to the use for the purpose of these 

programs. Figure 1 shows the typical monitoring stations. At the stations, laboratory-grade analyzers are 

used for measuring the ambient air pollution levels. The advantages of these stations are highly reliable 

data, high accuracy, and long-lifetime. The disadvantages are that the stations cannot be relocated, high 

cost (higher than $20K) and for operating these stations, trained personnel is required. 

 

Figure 1 Typical US EPA stations for monitoring ambient air near highways and selected locations 

[8]. 

Within the sensor technology developments, the applicants can reach the commercialized sensors in the 

market. These sensors can be defined as low-cost (<$500) sensors and are easy to operate due to the 

simplicity of the sensors; however, low-cost sensor responses and accuracy must be questioned. Many other 

studies have been completed for the evaluation of the low-cost sensor technologies and compare the sensor 

responses between laboratory testing versus field monitoring. The sensors have to be evaluated for 

uncertainty, accuracy, range, response time, and cross-sensitivity [9]. Many researchers focused on ambient 
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air monitoring models, sensor calibration and various calibration methods on the sensor for the sensor 

evaluation and development; the studies are focused on validation of the low-cost ambient air monitoring 

sensor in laboratory and field conditions. The scope of the studies is wind velocity, humidity, uncertainty, 

interferences of the other pollutants, response time [10]–[12]. 

Pang et al. (2018) investigated impacts of the humidity and other pollutants on the low-cost electrochemical 

gas sensors which are used for monitoring the air quality. Five different gas sensors (O3, SO2, CO, NO, 

NO2) were evaluated in the study for cross-sensitivity of the water vapor and potential pollutants (O3, SO2, 

CO, NO2, NO, and CO2). The tests are performed in the laboratory environment with urban background air 

[13]. Another study focused on the use of semi-conducting oxides for gas sensors. The study points the 

usual semi-conducting sensor application areas are indoor and inside the passenger cars, however, with the 

screen printing technology the low-cost sensors can be used for outdoor air monitoring purpose and increase 

the monitoring station numbers [14]. 

 

2.3 Laboratory experiments  

The set-up of a laboratory is very vital for the sensor evaluation and development process. The primary 

purpose of the laboratory set up is simulating the ambient air in laboratory condition for the evaluation of 

the sensor technology with that way metrological, and gas mixtures can be controlled. Different laboratory 

set-ups were developed in time, and multiple test procedures were performed for various pollutants by the 

researchers. In laboratory experiments based on generating a homogenous mixture for sensor 

measurements, a fan placed inside the set-up is mandatory. According to these studies, the atmosphere 

generation structures can be used for variable sensors evaluation and calibration. Some of the studies are 

represented below. 

 

Gerboles et al. (1998) studied the uncertainty calculation for NO and SO2 gas mixtures; the researchers 

used a static volumetric method for the preparation of the gas mixtures. The vessel set-up is located at the 

ERLAB laboratories. The study adapted permeation and static volumetric methods and cross-checked the 

methods [15]. 
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Figure 2 Static volumetric system [15]. 

 

Figure 2 shows the static volumetric system. The fan is used for preparing homogeneous mixture inside the 

vessel (0.11184 m3). The main gas injected by syringe and also. Nitrogen/synthetic air is used for the 

preparation of the diluted gas mixture. The study concluded the value of the uncertainty for NO and SO2 

was calculated around ±0.5 % with 95% probability with the static volumetric method and with permeation 

method the uncertainty was around 1% with 95% probability and the leading cause of the uncertainty was 

the syringe volume determination. 

 

Ballesta et al. (1999) investigated ambient air volatile organic compound (VOC) mixtures by using 

atmosphere generation system. Atmosphere generation system simulates the field conditions by controlling 

the gas mixture concentration levels, humidity, and temperature. In the study, uncertainty also calculated 

around ±1.9%. Figure 3 represents the standard atmosphere generation system. The system covers 

permeation oven for the preparation of VOC’s and weighs in specific periods; the exposure chamber 

contains a fan to generate homogeneous gas mixtures. The study concluded that the main reasons for the 

uncertainty are weighing the permeation tubes and weighing time, which is linked to the isolation of the 

weighing procedure [16]. 
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Figure 3 Standard atmosphere generation system [16]. 

 

Plaisance et al. (2004) investigated the effects of the meteorological conditions on passive diffusive 

samplers for NO2 measurements. The researcher had been used the exposure chamber system to simulate 

and control the meteorological conditions such as wind velocity, humidity, temperature [17]. 

 

Figure 4 Schema of the exposure chamber system [17]. 

 

Figure 4 shows the schema of the exposure chamber. The study concluded that wind speed has a high impact 

on the sample rate, and the recommendation is protection for the sampler in order to reduce the wind effects. 

On the other hand, relative humidity (RH) and temperature changes had a low impact on the sampling rate 

compared to wind speed. Plaisance et al. (2008) used another design of the exposure chamber for the 
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estimation of the uncertainty of benzene measurement by using diffusive sampler [18]. The chamber is 

designed more advanced and controlled, placed in a thermostatic enclosure to sustaining the temperature. 

 

 

Figure 5 Scheme of the exposure chamber system [18]. 

 

Gerboles et al. (2005) studied the preparation and certification of reference materials for NO2 and SO2 in 

diffusive samplers by using exposure chamber set-up. The exposure chamber allows controlling 

concentration level, temperature, relative humidity, and wind velocity. The chamber is capable of holding 

up to 72 samplers. The study concluded that the samplers with cover boxes might have been created 

turbulence inside the chamber; thus, the specific samplers created bias. Figure 6 represents a schematic 

view of the exposure chamber [19]. 
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Figure 6 Exposure chamber [19]. 

 

Helwig et al. (2014) developed an automated gas mixing system. The focus of the study is a generation of 

VOCs by using permeation system and pre-dilution of test gases. The system can analyze very low gas 

concentration and evaluate the sensor responses. The gas mixing apparatus (GMA) adapted the dynamic 

volumetric methods. The GMA is a combination of 5 parts, gas mixing, humidification, permeation gas 

generation, gas dilution, and gas measurement. Figure 7 shows the schematic and 3D views of the GMA 

[20]. 
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Figure 7 Scheme of the gas mixtures apparatus and mechanical setup as a CAD model [20]. 

 

Another study focused on diffusive samplers by Martin et al. in 2003. The researchers developed a 

controlled atmosphere test facility (CATFAC) to generate VOC atmosphere. The CATFAC can generate 

various atmosphere. Figure 8 represents the CATFAC system [21]. 
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Figure 8 Controlled atmosphere test facility(CATFAC) [21]. 

South Coast Air Quality Management District (AQMD) has laboratory and field studies performed under 

the Department of Ambient Quality- Sensor Performance Evaluation Center (AQ-SPEC). The center also 

focused on low-cost sensor evaluation in the laboratory [22] and field conditions [23].  

 

2.4 Gas sensor types and sensor technologies 

Due to the cost of the traditional ambient air monitoring stations and requirements of the complex 

operations, the applicants tended to adopt the low-cost sensors regardless of the quality of the sensors. 

However, many studies focused on the evaluation of the sensors and calibration methods to increase the 

data quality of the measurements. The sensor technology is improving; hence, the quality is increasing, and 

the usage of the low-cost sensor is growing in the market. Another benefit of the low-cost sensors is the 

coverage of the significant areas; the number of monitoring stations is reducing. 

Most common sensor type for ambient air monitoring is electrochemical sensors, Photo Ionization detector 

sensor (PID), Non-Dispersive infrared radiation absorption (NDIR) and Metal Oxide Sensors. The sensor 

principals are briefly explained down below. Many researchers focused on the different type of sensor 

validation [24]–[30]. 

2.4.1 Metal oxide sensors  

Metal oxide sensors (MOS) are the most common sensors due to the simplicity of usage and low-cost in 

production. The MOS working the target gas reacts with the oxygen where it absorbed on the surface of the 

metal oxide. The reaction determines changes of the sensor resistance, which is recorded as a signal, and 
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the signal correlated with the concentration of the target gas. The metal oxide type differs for the reaction 

gases [31]. The general properties of the sensors, high temperature, sensitive, reacting any volatile, has 

stability issues. Water consumption lowers the sensor accuracy. However, it depends on the reaction 

temperature. The study investigates MOS gas sensors benzene as target gas with temperature cycle 

operation [25]. Metal oxide sensors can also be used for detection of NO2, SO2. Figure 9 represents the 

general schema of the metal oxide sensors. 

 

Figure 9 General schema of the MOS [32]. 

 

2.4.2 Electrochemical sensors 

A typical electrochemical gas sensor contains one sensing and one counter electrode, which are divided by 

a thin layer of electrolyte. Before the target gas contact with the electrode surface, it diffuses through 

hydrophobic barriers [33]. The barriers are separators, which allow ionic contact between electrodes. The 

electrochemical sensors are generally used for detection of CO2, NO2, SO2. The amplification has to be 

used due to the sensor electrical current being low. Figure 10  shows electrochemical cell electrodes such 

as working, reference, and counter electrodes. 

 

Figure 10 Schematic of an electrochemical cell. 
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2.4.3 Photo ionization detector (PID) sensor 

Photoionization detectors use high energy photons (ultraviolet) to ionize target gas molecules to positive 

and negative ions. The PID detects the ions or charges generated by the ions; the current is proportional to 

the gas concentration. Then the ions recombine to reform the sample gas which PIDs do not burn or 

permanently defects the sample gas. The PID sensors commonly used for detection of the volatile organic 

compounds (VOCs). The sensor needs frequent calibration [34]. Figure 11 represents the general schema 

of a PID sensor. 

 

Figure 11 General schema of a PID sensor [34]. 

 

2.4.4 Non-dispersive infra-red radiation absorption  

The Non-Dispersive infrared method is an optical method of gas detection; many target gases absorb 

specific wavelengths. The amount of absorbed IR lights is proportional to the target gas concentration. The 

NDIR sensors have the advantage of sensitivity, long-term durability, and power consumption. The 

detection range of these sensors goes from 5% vol. to 3000 ppm for hydrocarbon gases and CO2. The NDIR 

sensors show a too high limit of detection, but some calibrations could be used to lower those limits [26]. 

Figure 12 shows the simple schema of the NDIR sensor. The NDIR sensors are suitable for detecting CO2 

and CO, however, these sensors are sensitive to humidity and temperature.  

 

Figure 12 Simple schemas of non-dispersive IR sensor [35]. 
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2.5 Evaluation methods 

Evaluation methods compare the output of calibrated sensor data to a reference instrument. The section 

defines the primary statistical method, which many studies used these methods for evaluating sensor 

responses. 

2.5.1 The coefficient of determination (R-square) 

R2 can take a value between 0 to 1 where 0 is poor performance, and 1 is high. The R2 calculation is:  

 �� =
∑(����)�

∑(����)�  1 

Where yi=the predicted value, xi=the observed value and m=mean of the observed value. 

2.5.2 Mean bias error (MBE) 

MBE is a measure of overall bias error. 
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Where yi=the predicted value, xi=the observed value, and n is the number of the data. 

2.5.3 Root mean square error (RMSE) 

RMSE is an absolute measure to understand the standard deviation of the unknown factors in variance[36]. 

RMSE calculation is: 

 ���� = �
∑(�����)�

�
 3 

Where yi=the predicted value, xi=the observed value and n is a number of the data. 

2.5.4 Centered root mean square (CRMSE) 

The method corrects the RMSE method for bias [37]. 

  ����� = √����� − ���� 4 

2.6 Calibration methods  

The sensor calibration is vital for useful data. Many studies focused on the different calibration methods; 

most commonly used methods are linear regression, multilinear regression, and artificial neural 

network(ANN) [38]-[39]. 



 16  

 

2.6.1 Linear regression (LR) 

Linear regression, the linear model approximates independent variables into a dependent variable. For the 

calibration function of the sensors, the sensor measurements are assumed to be linear with the reference 

measurements [40]. 

 � = �(�, �) = �� + � 5 

Where y is a function of and m is slope and b is intercept. Then vector of � [41], 

 � = �
�
�

� 6 

The presence of error assumed as 

 �� = ��� + � +∈�  7 

We use the principle of Least squares regression for increasing the accuracy of the results. The method called 

minimization of the sum of the squared errors and the function is,   

 � ��
�
�

�� = ∑ ∈�
��

��� = ∑ (�� − (��� + �))��
���  8 

The study where ambient air quality measurements are performed in the Federal District-Brazil. The scope 

of the study is calibrating Micro-Sensors MiCS-5521 (CO/VOC). For creating the calibration function, LR 

method is used in order to determine the effect of other parameters [42]. 

 

2.6.2 Multivariate linear regression (MLR) 

Multivariate linear regression is another statistical model which has two or more response variables [43]. 

 ���������� =
����(����)�(����)�⋯�(����)

��
 9 

Where y is predicted sensor concentration value, a and b are independent variables such as RH, 

temperatures. The study interest in field ambient air monitoring and creating complex calibration function. 

The study compares the methods where they defined in this section. During the study, the researchers 

created calibration models as a function of relative humidity(RH), temperature(T) for various ambient air 

sensors [44]. 



 17  

 

2.6.3 Artificial neural network (ANN) 

The artificial neural network is another technique to calibrate the sensors where it simulates the human 

learning process. The operation of ANNs can be divided into two, first is learning(training) and second 

generalization(recalling) [45]. ANNs general working schema is like Figure 13. 

 

 

Figure 13 Model of a neuron. 

The study, as mentioned earlier, also consider ANN method which is trusts on the training data set. The 

researchers are used the MLR corrected sensor data set as training data set [44]. 
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3 Methodology 

This section explains the methods for evaluation and calibration steps and shows the details of the DESC 

laboratory set-up and experiments. 

3.1 Development of the chamber 

Similarly, to the previous studies, the DESC was developed for the purpose of the mixing gas components 

and creating homogeneous mixtures. The shape of the DESC is adapted from previous studies. The DESC 

is a loop-shaped tunnel, includes stainless steel four spool pieces and four elbows. The DESC diameter is 

254 mm (10 inches), and the spool piece contains a transparent window in order to place the sensors and 

visualization into the chamber.  

The process has three steps; the first step is a 3D design with a modeling software (SolidWorks). The 

primary consideration was the weight of the stainless-steel pieces for transportability to the laboratory 

location. Moreover, another consideration point is suitability to modifications for the possibility of the size 

changes or any other modifications such as discarded parts; for this reason, the eight pieces design to be 

assembled. With that design, if needed, any piece can be replaced.  

 

Figure 14 The DESC 3D drawing where the components are showed. 

According to 3D design and calculations, the loop is around 120 L that is similar to the JRC sensor 

evaluation chamber [46], and the DESC weight is 300 kg with bolts. 

Moreover, the support legs are also designed in house. The support legs have two parts; first parts directly 

welded under the spool pieces by Tungsten inert gas (TIG) welding method. Moreover, the Second part is 

the main leg part. For the leg parts, 2inx2in profiles are used and supported with 2.5 x 2.5 profiles and four 
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casters used for each leg. Later, the structural analysis performed in order to determine the strength of the 

support parts. Figure 15 represents the completed version of the 3D design. 

 

 

Figure 15 Final 3D modeled DESC. 

3.1.1 Flow simulation 

After the general design parameter and material properties were concluded, the computational flow analysis 

was performed for to characterization of the flow through the DESC before building up the laboratory. 

The fan was placed inside the chamber to generate continuous flow and helping to provide for a 

homogenous gas mixture. The CFD software (ANSYS Fluent) used for the analysis. 

The purpose of that particular geometry is creating continuous circulation in the geometry and create a 

homogenous mixture. The shape of the DESC facilitates the effects of turbulence. 

 

3.1.1.1 Turbulent flow analysis numerical approach  

As the turbulence model, the RNG k-ϵ model used for the reason of the accuracy and wider range than the 

standard k-ϵ model. Also, also, the RNG k-ϵ model gives improved simulations for swirling flows and flow 

separation [47]. 

The model is based on the following assumptions;  

 the flow is transient, turbulent, incompressible, 

 the flow is single phased, 

 isothermal. 
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Transport equations for the RNG k-ϵ model are represented in partial differential forms as follow:  
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Where �� is the generation of mean turbulent kinetic energy that arises mean velocity gradient, �� is the 

production of the kinetic energy the arises due to the buoyancy, �� is the contribution of the fluctuating 

dilatation. �� and �� are source terms. �� and �� are inverse effective Prandtl numbers for the turbulent 

kinetic energy and its dissipation. The default constant values are used for RNG model which are  

C�=0.0845, C��=1.42, C��=1.68, Pr�=0.85. 

3.1.1.2 Mesh 

For the meshing process, the default mesh properties are used. Figure 16 shows the meshed geometry in 

ANSYS. Table 2 shows the mesh statistics of the DESC. This study also performed grid independency 

study to understand that simulation accuracy is independent from the grid resolution at the section 4.1.1.1 

 

 

Figure 16 The DESC mesh view. 
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Table 2 Mesh characteristics and statistics. 

Number of Nodes 107138 

Number of Elements 509775 

Tetrahedra 499739 

Wedges 68 

Pyramids 4418 

Hexahedra 5550 

Polyhedra 0 

 

3.1.1.3 Boundary conditions 

The DESC flow simulation solver type is pressure based, absolute velocity and transient, and also gravity 

accounted to simulation. The simulation models are viscous- RNG k-ϵ model for turbulent flow and species 

transport model used for creating the proper mixture, the mixture contains air, water vapor (H2O) and CO2 

as a fraction of the mixture to determine CO2 mass fraction as a result of the mixing effect of the turbulent 

flow.  

 

Figure 17 Boundaries for the flow analysis. 

 

As boundaries shown at Error! Reference source not found. the boundaries are inlet 1 is A, inlet 2 B, fan 

domain C and outlet is D. The fan defined as rotational speed source (frame motion) and the speed defined 
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1000rpm, 600 rpm and 500 rpm. In the analysis, heat transfer is neglected, focused on the velocity profile 

in the chamber. 

3.1.2 Structural analysis 

The software calculates the design weight; it estimated around 300 kg of four support parts must carry the 

weight equally. The support parts have four pieces each. In order to decide the piece thickness structural 

analysis (ANSYS Mechanical) performed and calculated estimated displacement for 6.35 mm plates under 

92.1 kPa pressure. The pressure applied to 0.0017202 m2 where the spool piece welded-showed as red color 

in Figure 18 and Figure 19 show the mesh of the support where default mesh properties are used 

 

 

Figure 18 The supported geometry and the location of the pressure load. 

 

 

Figure 19 The mesh view of the support. 
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3.2 Laboratory set-up 

The DESC was placed at the sensor laboratory at West Virginia University’s CAFEE facility. As mentioned 

before, the chamber contains eight separated pieces and four spool parts has the support legs for the purpose 

of transportation and increase the height. Figure 20 shows the test set-up in the facility. The study focused 

on CO2 sensors although the testing bench is capable of holding various ambient air sensors to evaluate 

them. 

 

 

Figure 20 The DESC laboratory view. 

 

Figure 21 represents a schema of the laboratory set-up. The set-up has two portions, with the first part being 

the mixing chamber before the DESC. A manifold used for the mixing gas components flow including air 

generated by Parker Balston zero air generator. At zero air generation line, before zero air generator, a 

chiller connected in order to drop water content in compressed air. The generated airflow through the Alicat 

mass flow controllers. Water-vapor is produced by a Honeywell humidifier and is used as a source of 

humidity. The communication and control are provided with an in-house software for the humidifier and 

the thermocouples used for measurement of the chamber temperature. An ICP-CON used for digital input 
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and output, and 12 V power supply used for the ICP-CON. For the humidifier control set-up, a solid-state 

relay is connected to allow for water-vapor injection control. Table 3 shows the components before the 

mixing manifold. CO2 and CO gas bottles are used for the source of gas concentration and interference test 

components. 

 

Table 3 The parts before mixing manifold. 

Name Manufacturer Model Specifications 

Chiller Dominick Hunter    

Zero Air Generator Parker Balston HPZA-3500   

Humidifier Honeywell HM750A1000 
Water Supply: 30-100 PSIG 

HM750 produces 11 gallons per day 
(GPD) 

 

Mass Flow Controller AliCat MC-Series 
± (0.8% of Reading + 0.2% of Full Scale) 

± 0.2% Full Scale 
Air 

Mass Flow Controller AliCat MC-Series 
± (0.8% of Reading + 0.2% of Full Scale) 

± 0.2% Full Scale 
CO2 

Mass Flow Controller AliCat MC-Series 
± (0.8% of Reading + 0.2% of Full Scale) 

± 0.2% Full Scale 
CO 
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Figure 21 Scheme of the DESC and laboratory set-up. 
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The second part is the dynamic environmental simulation chamber (DESC) where the mixed gas 

components with water vapor injected. In the chamber, a fan located in favor of creating a homogenous 

mixture and circulate it. Figure 22 shows the fan which placed into the chamber. 

 

Figure 22 General look for the DESC circulation fan. 

For control the chamber humidity control and feedback, Dew Point Hygrometer is connected to the chamber 

for monitoring relative humidity in the DESC. A small pump supplied the sample to dew prime. Two lines 

are connected one for sample out and one for sample into the chamber for the reason to maintain the inner 

concentration constant. Table 4 shows the components which are connected directly to DESC. 

Table 4 The parts connected to DESC. 

Name Manufacturer Model Specifications 

Fan 
Mechatronics Fan 
Group 

UF25GC 
Voltage: 115 VAC 
Round 254 mm Dia. (10.0 Dia) 

AirFlow:550 CFM 
(15.40 m3/min) 
RPM:1650 RPM 

Fan Controller Yescom  
Router Speed Controller, fuse 
controlled 

Low, Medium, or 
High speed 

Dew Point Hygrometer EdgeTech 
2000 Dew 
Prime II 

Relative Humidity 
Accuracy: ±0.50 % 

Flow rate: 0.25 L/m to 
2.5 L/m 

Air velocity Probe Kanomax 0963-00 Uni-directional  

Air Flow Transducer Kanomax 6332   

Handheld Digital Calibrator Heise PTE-1 
AP module: 
DP module: 

 

FT-IR gas analyzers MKS MultiGas MG2000 
Sample Temperature: Ambient to 
191°C (calibration temperature 
dependent)  

Sample Flow 0.2 – 20 
L/min Sample 
Pressure 0.01 – 4 atm  

 

The chamber contains multiple pieces which they create concerns about the leak through the chamber 

connection and bolts. The leak check performed by injecting air and creating pressure in the chamber and 

the measured pressure monitored. The leaks where are they spotted are closed by sealing products. 

In order to measure the volumetric flow rate and air speed inside the DESC, four different pitot tubes are 
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tested on a flow bench. A NIST-traceable Laminar Flow Element (LFE, Merriam) is used for comparison 

and linearization. 

 

 

Figure 23 The final pitot tube for flow rate measurement. 

 

The velocity profile measured by a Kanomax air velocity probe was compared to the velocity profile 

simulated by ANSYS simulations. The simulations were performed in order to understand velocity profile 

before testing and used for locating the ambient air sensors. The fan has three levels of speed which is 

controlled by Yescom variable speed controller (VFC). The window section gives a chance to visualize the 

sensors and the inner section of the chamber. Moreover, also, at the top of the DESC, two more openings 

added for more sensor locations and additional probes. A heating cable is wrapped around the chamber as 

a heating source in order to control the testing temperature. 

 

3.3 Sensors and connections 

The CO2 gas sensors were evaluated in the DESC, including, i) a high (K30 FR) and low-speed Senseair 

K30 (range 10000ppm), ii) a FIGARO FG-030 (range 5000ppm), and iii) a COZIR (range 2000ppm). The 

evaluated CO2 sensors were all based on nondispersive infrared detection (NDIR) technology which has 

interference with CO, humidity, and temperature.  

K30 CO2 sensors manufacturer specifications, the sensor measurement range is 0-10,000ppm, the accuracy 

± 30 ppm ± 3 % of the measured value within specifications (0 - 5,000ppm in spec), operating temperature 

limits are 0 oC to+ 50 oC, and operating humidity range is 0 to 95 % RH non-condensed. FIGARO FG-030 

CO2 sensor manufacturer specifications, the measurement range, is 300-5,000 ppm within specifications. 

Sensor accuracy: ± 50 ppm ± 3 % of the measured value within specifications. Operating temperature range 

is 0 to + %50 C and operating humidity range is 0 to 85 % RH non-condensed. COZIR ambient CO2 sensor 

has the lowest measurement range which is 0-2000 ppm. The sensor accuracy is ± 50 ppm ± 3 % of the 

measured value within specifications, and operating temperature range is 0 to + 50 oC, and operating 

humidity range is 0 to 95 % RH non-condensed. 

As Figure 24 shows, the sensors are mounted on a transparent plate then placed into the DESC. The sensor 

location can hold up more than 20 sensors, and for more sensor, additional mounting plates can be added. 
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Figure 24 Sensors, sensor connections and sensor place in the DESC. 
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Table 5 Sensor specifications. 

Name Manufacturer Model Specifications 

K30 SENSE AIR 

Fast 

Response 

(FR) 

Measurement Range: 0-5,000 ppm within specifications 

Accuracy: ± 30 ppm ± 3 % of the measured value within 

specifications 

Response time t90: 2 seconds @ .5 l/min tube gas flow 

Rate of Measurement: 2 seconds 

Operating temperature ;0 to+ 50 C 

Operating Humidity: 0 to 95 % RH non-condensed 

CO2 NDIR 

K30 SENSE AIR 1% 

Measurement Range :0 – 10,000 ppm (0-5,000 ppm within 

specifications) Accuracy: ± 30 ppm ± 3 % of measured value 

within specifications Response time t90: 2 seconds @ .5 l/min tube 

gas flow 

Rate of Measurement: 2 Hz 

Operating temperature: 0 to + 50 C 

Operating Humidity: 0 to 95 % RH non-condensed 

CO2 NDIR 

FIGARO 

FG-030 
FIGARO CDM7160 

Measurement Range: 300-5,000 ppm within specifications 

Accuracy: ± 50 ppm ± 3 % of measured value within specifications 

Response time t90:2 min 

Rate of Measurement:2 seconds 

Operating temperature:0 to + %50 C 

Operating Humidity:0 to 85 % RH non-condensed 

CO2 NDIR 

Cozir 
GAS SENSING 

SENSOR 
Ambient 

Measurement Range:  0-2,000 ppm within specifications 

Accuracy:  ± 50 ppm ± 3 % of measured value 

within specifications 

Rate of Measurement: 2 seconds 

Operating temperature: 0 to + 50 C 

Operating Humidity: 0 to 95 % RH non-condensed 

CO2 NDIR 

 

3.4 Experimental procedures and operational steps 

In this section, laboratory operations and the procedures followed for the experiments will be explained. 

For tuning the calibration function, the test matrix is created. Various experiments are performed for each 

independent variables. Table 6 shows the test matrix for the testing sensors. The testing matrix designed 

consideration of the possible interference and variables such as temperature, pressure, humidity. 

The laboratory limits are temperature (25-110 oC), relative humidity (0-95%), and wind speed (0-5 m/s) 

instantly. Still, the laboratory limitations can be changed if needed for other sensor applications. 
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Table 6 Matrix of experiments. 

Test ID Test Spec 
Test CO2 range 

(ppm) 

Temperature 

(oC) 
Humidity (RH) CO level Pressure (Psi) 

1 High Speed 1000± 50 ppm 23± 0.2 16± 2 1ppm  

2 Medium Speed 1000± 50 ppm 23± 0.2 15 1ppm  

3 Low Speed 950± 50 ppm 23± 0.2 13 1ppm  

4 Zero Speed  970± 80 ppm 23± 0.2 12 1.5ppm  

5 All Speed 970± 80 ppm 23± 0.2 10± 0.6 1ppm  

6 
Step by Step CO2 concentration 

increase (40 levels)  
900-9000 ppm  26± 2  7.2± 1.5 7± 6 ppm 14.3 ± 0.2  

7 
Transient CO2 concentration 

decrease 
9000-500 ppm 27 7.2± 1.5 8± 2 ppm 14.3 ± 0.2  

8 
Transient CO2 concentration 

increase  

500ppm-

10000ppm 
28 26 4± 2 ppm 14.15 

9 
Transient CO2 concentration 

decrease 
10000-800 ppm 28± 2 30± 2 4± 2 ppm 14.15 

10 Temp increase 600± 50ppm 25-50 4± 2 5± 2  14 

12 Temp decrease 1100± 50ppm 36-28 5± 2 5± 2  14 

13 
CO concentration increase (3 

level) 
1250± 100 27.21 ± 0.5 8.2± 0.2 

5-650-800 

ppm  
14 

14 Humidity change (3 level) 1709 ± 120 31 6-30-60 11 ppm 13.9 

15 Pressure change  
1500ppm 

24 8 1ppm 14.5-14.33 

 

All the experiments are performed for only one independent variable; other variables are kept constant in 

the testing set-up limits. For the fan speed tests, the concentration and other meteorological and interference 

components are stabilized during the testing process. The step by step CO2 concentration test is recorded, 

but throughout the testing procedure, first, the CO2 concentration is increased until the desired level then 

holds until FTIR starts to read stably. Then the stable measurement sections are established as the sampling 

measurement, 40 concentration level considered for the test 

For the transient concentration changes, the CO2 gas injected continuously while the evacuation valve is 

open; therefore, the DESC inner pressure will stay constant. The concentration increased until the sensor 

detection limitation ranges; however, COZIR ambient sensor is stopped recording because the CO2 

concentration exceeds after 2,000 ppm. The temperature properties tests, the heating cable is used, the cable 

is capable of heating 110 oC however, during the tests experimental temperature is increased until 50 oC 

because high temperature might damage the circulation fan because it is the maximum operational 

temperature up to 65 oC and the sensors which have the maximum operational temperature up to 50 oC.  

CO considered as an only cross-sensitivity entity; three concentration levels are measured during the 

experiment. The concentration level increased to the aspired limit then the gas injection is stopped and hold 
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until FTIR reading starts to read stable CO concentration. Three levels considered as sample reading. 

Highest CO level is 650 ppm which is exceeding the EPA limits. The purpose of measuring the high 

concentration is observing the effects on the sensor.  

The humidity experiments are also considered; three levels of humidity are investigated to see the impact 

on the sensors. The chamber humidity increased to the specific level then hold until Dew Prime starts to 

read the desired level of the humidity. 

3.5 Data and unit corrections 

K30 FR, low-speed Senseair K30, and COZIR recording frequency are kept at 1 Hz, and Figaro and FTIR 

recording frequency are at 5 Hz. After the experiments, the recorded data processed for time alignment and 

the frequency up/down sampling. The recorded data corrected, and the sampling frequency became 2Hz for 

all which is belong to the sensors, FTIR and other measurement recorded by in-house software. 

For the humidity corrections, Dew Prime humidity output unit is relative humidity. The unit converted to 

water content. The water content is calculated by the EPA CFR 1065.645 [48]. The section explains how 

to calculate the amount of water content in an ideal gas. 

���
10

(��2�) = 10.79574. �1 −
273.16

����

� − 5.02800. ���
10

�
����

273.16
� + 1.50475. 10−4. �1 − 10

−8.2969.�
����

273.16−1
�
� +

0.42873. 10−3. �10
4.76955.�1−

273.16

����
�

− 1� − 0.2138602 12 

Where ���� (kPa) is water vapor pressure at the saturation point and ���� (K) is saturation temperature of 

water at measured conditions. 

 ���� =
��% .���� 

����
 13 

Where ���� is water content in ideal gas, RH% is relative humidity, ���� is water vapor pressure at 100 

% relative humidity at the location, ���� is wet static absolute pressure. 

 

3.6 Sensor calibration method 

As described in the literature review, the researchers are used various calibration method. In this study, the 

Multilinear regression method will be used for multiple variables with stepwise.  

As the first step, zero and span corrections will be completed after drift correction for reference analyzer. 

Then, for the independent variables, the multilinear regression method applied individually. For one 

independent variable, the method applied then after the variable correction the method repeated for the next 

variable if the new variable has a contribution to calibration accuracy then the variable applied to the process 

[49]. The generated calibration function is as shown in Equation 14 in section 2.6.  
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4 Results  

This section contains two parts; the first part contains the results which are generated before the DESC is 

developed for the purpose of the design and material selections such as fan selection and deciding to sensor 

locations. The second part comprises the sensor validation results after the calibration function had been 

generated as a function of pressure (P), temperature (T), water content (H) and CO interference. 

 

4.1 Before experiments 

At the early stage of this work, after the design process completed, the simulations are generated for the 

sake of understanding the velocity profile during gas injection and the fan circulation. Moreover, also, 

structural analysis is performed in order to determine the strength of the support legs because of the weight 

concerns since the overall chamber set-up is around 300 kg. 

The CFD simulation results consist of velocity profile compared with the experimental velocity profile 

where it is measured from the horizontal and vertical axis of the sensor window. Moreover, the mass 

fraction linearity is considered as another topic for concerning about the mixing time in the chamber even 

though the gas mixture generated in the small manifold. Still generating homogeneous mixture is 

concerned. 

Another experimental work is accomplished for the sake of preparing accurate pitot tube. The calibrated 

pitot tube and calibration coefficients are used for calculating the flow rate during the circulation and flow 

rate are monitored at the testing procedure. 

 

4.1.1 Flow analysis results 

Flow simulations are performed as they described in section 3.1.1. The experimental and calculated results 

are compared to experimental results as showed below. The center line of the pipe is taken as the origin on 

the coordinate system; however, Y-axis origin intersection point might vary which depends on the velocity 

values. 

 

4.1.1.1 Grid independence study  

Another important point is grid independence study. Fine mesh requirements cause to high computational 

time [50]. Coarse grid significantly decreases the computational time; however, it may affect our simulation 

results and the early design decisions. In order to optimizing the grid resolution versus the accuracy of the 

simulation, grid independence study is performed. 
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Table 7 The mesh models of the grid independence study. 

Case Number of nodes Number of the elements 

Mesh 1 (Case 1)  101307 509775 

Mesh 2 (Case 2) 476831 2411646 

Mesh 3 (Case 3)  26266 128081 

 

Table 7 shows the three cases that have been used for the high-level speed simulations and the results are 

compared for three cases in order to conclude the effects of the grid resolution to simulation accuracy.  

   

Figure 25 Velocity profile comparison for three cases. Figure a) Velocity profiles at horizontal axis. 

Figure b) Velocity profiles at vertical axis. 

Figure 25 a and b represent the velocity profile comparisons at horizontal and vertical axis. The grid 

independence study shows the grid resolution is not dependent to simulation accuracy since three grid 

resolution results have no difference. And also, the experimental results are confirmed simulation results.  

 

4.1.1.2 Velocity profile results 

The velocity profile results compared to the experimental result. For the rest of the results, the figures show 

the comparison of the experimental and simulation results and the background of the figures are applied to 

help visualization of the sampling location 3D model and also experiments. The purple circle shows the 

location where the Kanomax probe also inserted the yellow line shows the sampling line for the simulation. 

The transient flow simulation solved for 100 s. X-axis represents the sampling locations(in) through the 

cross-sectional area. Y-axis shows the velocity values (m/s).  

Figure 26 shows the horizontal velocity profile comparison between experimental and theoretical results 

through the cross-section. The experimental and simulated velocity profiles, both show the non-linear trend 

through the section except, the location between -4(in) to +3(in). At these locations’ velocity profiles have 

linear behavior if compared to the rest of the location. 
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Figure 26 Horizontal velocity profile comparison for low speed level. 

Figure 27 shows the vertical velocity profile comparison between experimental and theoretical results 

through the cross-section. The experimental and simulated velocity profiles, both show the non-linear trend 

through the section except, the location between -5(in) to +4(in). In this part, velocity linearly increased 

compared to rest.  

 

Figure 27 Vertical velocity profile comparison for low-speed level. 
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The additional results are shown in Appendix B: Additional simulation results for the velocity profile 

comparison for medium and high-speed levels. 

 

4.1.1.3 Simulated mass fraction through the cross sections 

This section shows the mass fraction across the pipe diameter as a result of the simulation. The plot 

background represents the cross-sectional area of the chamber at the sensor window. The x-axis represents 

the sampling locations in the chamber where it is the horizontal axis of the DESC and Y-axis show the mass 

fraction of CO2 at the end of the solution time. 

Figure 28  and Figure 29 show CO2 mass fraction through the vertical and horizontal line at high-speed fan 

simulation. The mass fractions are linear through the cross section, which the CO2 mass fraction calculated 

around 0.006 through the sampling area. 

 

 

Figure 28 CO2 mass fraction through the vertical line-high Speed. 
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Figure 29 CO2 Mass fraction through the horizontal line-high Speed. 

 

4.1.2 Structural Analysis Results 

This section shows the structural analysis of the support part which is designed for connecting the carrying 

legs with the DESC. Figure 30 represents the displacement of the support after 92.1 kPa loaded to welding 

points. The simulation shows a maximum 0.002979 mm displacement after the pressure load applied. 

 

 

Figure 30 The support displacement under 92.1 kPa pressure loads (6.35 mm plate). 

 

Error! Reference source not found. shows the support after the chamber assembly is completed. The 

support does not show displacement or any damage which can be detected which can cause to balance 

issues after the weight applied. 
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4.2 Sensor evaluation experiments 

In this section, the sensor responses are shown which are corrected responses and raw sensor responses. 

The plots show corrected response linearity at the left side, and raw response linearity at the left side and 

also best-fit line showed in order visualize the sensor response difference. Y-axis represents the sensor 

readings in ppm, X-axis shows FTIR readings in ppm. Before starting to correct sensor responses. Drift 

corrections are performed for the reference analyzer. 

The sensor calibration models are performed in order zero, span, environmental corrections. After the 

correction coefficients are generated, they are applied to test 7,8 and 9.  

The general calibration function is shown below. However, the function may vary to sensor responses such 

as the environmental responses may not be linear.  

����� = (� ∗ � + �) + (���� ∗ � + �) + (��� ∗ � + �) + (� ∗ ℎ + �) + (�� ∗ � + �)   15 

Where; 

�����: Corrected sensor response (ppm). 

Y: Raw sensor response. 

Temp: Temperature (oC). 

Hum: Water content. 

CO: CO concentration (ppm). 

P: Pressure (Psi). 

 

4.2.1 K30 fast response (FR) CO2 sensor evaluation results  

In this part, K30 FR corrected responses compared to raw measurements. At the sensor manual, the 

measurement range within 0 to 5000 ppm. During the experiments, CO2 concentration increased up to 

10000 ppm. The calibration function generated up to 10000 ppm. The calibration exceeds the range which 

can be used for high concentration more than 5000ppm.  

The calibration function for K30 FR is shown below;  

����� = (� ∗ � + �) + (���� ∗ � + �) + (���� ∗ � + ��� ∗ � + �) + (� ∗ ℎ + �) + (�� ∗ � + �)  16 

As the function shows, the variables have a direct contribution to sensor responses. However, humidity 

variable has a non-linear contribution. Table 8 shows the calibration function coefficients. 
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Table 8 K30 FR coefficients of the calibration function. 

a 0.064905 

b -469.78 

c 0.090632 

d 248.0868 

e -65.7754 

f 234.493 

g 3.958974 

h -18.2869 

i 0 

j -0.00124 

k 165.0875 

 

The coefficients show the most affecting parameter is pressure, and it has a negative impact on the sensor 

response, the temperature is influencing the sensor positively, and also humidity has a positive impact but 

fairly lower than temperature effect. CO interference is lower than all the other parameters. 

 

 

Figure 31 Test 8: K30 FR sensor responses compared to FTIR responses due to increasing 

concentration changes. 
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Figure 31 �hows corrected, and raw sensor responses compared to FTIR responses. The best fit line gives 

the ability to see the difference and compare raw and corrected responses. The plot shows the calibration 

model corrected measurement has better agreement with FTIR response  

Appendix C: Additional sensor calibration results.The error plots are divided into two; the parts are lower 

than 5000 ppm and higher 5000 ppm. 

Figure 32 shows error plots; the concentration is lower than 5000 ppm. The sensor response has high relative 

error lower than 2000 ppm. Figure 33 shows error plots; the concentration is higher than 5000 ppm. 

 

 

Figure 32 K30 FR -raw measurement relative error compared to corrected measurement relative 

error (0-5000ppm)-transient increase. 

 

 The error lower than 5000 ppm is showed at  

Figure 32. The model decreased the error closer when it compared to raw measurement, however the error 

band is still high. And the error lower than 2000 ppm is fairly higher when it compared to the portion higher 

than 2000 ppm. The reason is assumed because of the FTIR analyser noise might be causing to that problem. 

The study suggests further analysis for the range lower than 2000 ppm. 
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Figure 33 K30 FR -raw measurement relative error compared to corrected measurement relative 

error (5000-10000 ppm)- transient increase. 

 

The relative error is showed in Figure 33. The model decreased the relative error when it compared to raw 

measurements. The model has a better response to high concentration. The relative error for overall test 

results is shown in Table 9. 

Table 9 K30 FR errors for transient concentration changes. 

Test ID Test name Testing conditions Test CO2 

concentration 

range (ppm) 

Minimum 

error (%) 
Maximum 

error (%) 
Overall error 

(%) 

7 Raw-Transient CO2 

concentration decrease 

Temperature: 27 oC 

RH: 7.2± 1.5 

CO level: 8± 2 ppm 

Pressure: 14.3 ± 0.2 psi 

5000-0 ppm -9  34  12.7±21 

7 Corrected Transient CO2 

concentration decrease 

5000-0 ppm -3.3 
 

22 
 

9± 12 

7 Raw-Transient CO2 

concentration decrease 

10000-5000 

ppm 

9  13.8 11±2 

7 Corrected Transient CO2 

concentration decrease 

10000-5000 

ppm 
-4.4 -3.3 -3±0.5 

8 Raw-Transient CO2 

concentration increase  

Temperature: 28 oC  

RH: 26± 1.5 

CO level: 4± 2 ppm   

Pressure: 14.15 psi 

0-5000ppm -1.3  13.3 6±7 

8 Corrected Transient CO2 

concentration increase 

0-5000 ppm -5.6  6.6  ±6 

8 Raw-Transient CO2 

concentration increase 

5000-10000 

ppm 

6.8 12.4 9.6±3 
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8 Corrected Transient CO2 

concentration increase  

5000-10000 

ppm 
-3.3 2.5  ±3 

9 Raw-Transient CO2 

concentration decrease 

Temperature: 28± 2 oC  

RH: 30± 2 

CO level: 4± 2 ppm 

Pressure: 14.15 psi 

5000-0 ppm 9.7  35 22± 12 

9 Corrected Transient CO2 

concentration decrease 

5000-0 ppm -10  12.6  ± 11 

9 Raw-Transient CO2 

concentration decrease 

10000-5000 

ppm 
11.5 14.5 13±1.5 

9 Corrected Transient CO2 

concentration decrease 
10000-5000 

ppm 
-1.7 2  ±2 

 

K30 FR responses are compared before and after corrections for the tests at the 0 to 5000 ppm level. The 

comparison of the relative error is represented in Table 9 which the table shows, Raw measurement relative 

errors are -9 % to 34% for Test 7 under 5000ppm level. For same concentration level, raw measurement 

the relative error -1.3% to 13.3 % at Test 8 and 9.7 % to 35 % at Test 9. The corrected measurement relative 

errors are -3.3 % to 22 % at Test 7, -6 % to 6% at Test 8, -11 % to 11% at Test 9. The raw measurement 

relative errors are 9% to 13% for Test 7 above 5000ppm level. For the same concentration level, the raw 

measurement the relative error 6.8 % to 12.4 % at Test 8 and 11.5% to 14.5%   at Test 9. The corrected 

measurement relative errors are -3±0.5% at Test 7, ±3% at Test 8, ±2 % at Test 9.  

Overall, K30 FR CO2 sensor responses faster when it compared the other CO2 sensor which they are 

investigated at this study however the sensor significantly affected by temperature,ℎ�������, and pressure 

in the experimental range. The sensor should be calibrated to working environmental range. 

4.2.2 K30 1% CO2 sensor evaluation results 

The same procedure is followed as K30 FR since both sensors have a similar structure and working 

principles and the same non-linear behavior to humidity. The parameters have similar behavior for K30 1% 

CO2 sensor.����� = � ∗ � + � + (���� ∗ � + �) + (���2 ∗ � + ��� ∗ � + �) + (� ∗ ℎ + �) + (�� ∗ � + �) 

1 6 is used for the sensor. Table 10 shows the calibration coefficients for the sensor. 

 

Table 10 K30 1% coefficients of the calibration function. 

a 0.018011 

b 58.53 

c -0.99711 

d 171.1353 

e -46.1508 
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f 195.4114 

g 35.68038 

h 31.88192 

i -697.929 

j -0.01062 

k -5.69851 

 

The coefficients show the most affecting parameter is pressure and it has negative impact on the sensor 

response, the temperature is influencing the sensor positively and also humidity has positive impact but 

fairly lower than temperature effect as it observed for K30 FR. CO interference is lower than all the other 

parameters. However, the K30 1% is slower when it compared to K30 FR.  

 

 

Figure 34  Test 8: K30 1% sensor responses compared to FTIR responses due to increasing 

concentration changes. 

 

Figure 34 shows corrected, and raw sensor responses compared to FTIR responses. The best fit line gives 

the ability to see the difference and compare raw and corrected responses. The plot shows that the 

calibration model corrected measurement has better agreement with FTIR response  
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Appendix C: Additional sensor calibration results. The error plots are divided into two; the parts are lower 

than 5000 ppm and higher 5000 ppm. Figure 35 shows error plots; the concentration is lower than 5000 

ppm. The sensor response has high relative error lower than 2000 ppm. Figure 36 shows error plots; the 

concentration is higher than 5000 ppm. The relative error for overall test results is shown in Table 10. As 

it mentioned earlier, K30 1 % and K30 FR sensors are similar.  

 The model decreased the error closer when it compared to raw measurement, however the error band is 

still high. And the error lower than 2000 ppm is fairly higher when it compared to the portion higher than 

2000 ppm. The reason is assumed because of the FTIR analyser noise might be causing to that problem. 

The study suggests further analysis for the range lower than 2000 ppm. 

 

 

Figure 35   K30 1% -raw measurement relative error compared to corrected measurement relative 

error (0-5000ppm)-transient increase. 
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Figure 36  K30 1% -raw measurement relative error compared to corrected measurement relative 

error (5000-10000ppm)-transient increase. 

 

The relative error is shown in Figure 35 and Figure 36. The model decreased the relative error when it 

compared to raw measurements. The model has better response to high concentration. The relative error for 

overall test results is shown in Table 11.  

 

Table 11 K30 1% errors for transient concentration changes. 

Test ID Test name Testing conditions Test CO2 

concentration 

range (ppm) 

Minimum 

error (%) 
Maximum 

error (%) 
Overall error 

(%) 

7 Raw-Transient CO2 

concentration decrease 

Temperature: 27 oC 

RH: 7.2± 1.5 

CO level: 8± 2 ppm 

Pressure: 14.3 ± 0.2 psi 

5000-0 ppm  -12  31   9.5±22 

7 Corrected Transient CO2 

concentration decrease 

5000-0 ppm  -27 
 

22 
 

 ± 25 

7 Raw-Transient CO2 

concentration decrease 

10000-5000 

ppm 

3 8.7 6±2.7 

7 Corrected Transient CO2 

concentration decrease 

10000-5000 

ppm 
 -4.1 1.45  -1±3 

8 Raw-Transient CO2 

concentration increase  

Temperature: 28 oC  

RH: 26± 1.5 

CO level: 4± 2 ppm   

0-5000ppm  -1.5 30.5  14±17 

8 Corrected Transient CO2 

concentration increase 

0-5000 ppm  -36  8   -14±22 
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8 Raw-Transient CO2 

concentration increase 

Pressure: 14.15 psi 5000-10000 

ppm 

 5.8 11 % 8.5±2.5 

8 Corrected Transient CO2 

concentration increase  

5000-10000 

ppm 
 -4 2   ±3 

9 Raw-Transient CO2 

concentration decrease 

Temperature: 28± 2 oC  

RH: 30± 2 

CO level: 4± 2 ppm 

Pressure: 14.15 psi 

5000-0 ppm  8  33  20± 12 

9 Corrected Transient CO2 

concentration decrease 

5000-0 ppm  -9 12.3  ± 11 

9 Raw-Transient CO2 

concentration decrease 

10000-5000 

ppm 
 7 11 9±2 

9 Corrected Transient CO2 

concentration decrease 
10000-5000 

ppm 
 -1. 2.8  ±2 

 

K30 1% responses are compared before and after corrections for the tests at the 5,000 to 10,000 ppm level. 

The comparison of the relative error is represented in Table 9 which the table shows, Raw measurement 

relative errors are  -12 % to 31 % for Test 7 higher than 5000ppm level. For same concentration level, raw 

measurement the relative error -1.5% to 30.5% at Test 8 and 8% to 33 % at Test 9. The corrected 

measurement relative errors are -27 % to 22 % at Test 7, -36 % to 8 % at Test 8, -11% to 11 % at Test 9. 

The raw measurement relative errors are 3 % to 8.7 % for Test 7 above 5000ppm level. For the same 

concentration level, the raw measurement the relative error 5.8 % to 11 % at Test 8 and 7% to 11 % at Test 

9. The corrected measurement relative errors are -4.1% to 1.45 % at Test 7, ±3 % at Test 8, ±2 % at Test 9. 

 

Overall, K30 1% CO2 sensor responses faster when it compared the other CO2 sensor which they are 

investigated at this study however the sensor significantly affected by temperature, humidity, and pressure 

in the experimental range. The sensor should be calibrated to working environmental range.  

 

4.2.3 FIGARO CO2 sensor evaluation results 

This section shows Figaro responses compared to raw measurements. The sensor range is up to 10000 ppm 

however, in the sensor manual the manufacturer’s accuracy limit is up to 5000 ppm.  

Figaro CO2 sensor has different response than K30 sensors this reason the calibration function is different 

than K30 sensors such as the sensor response is not linear for CO interference but for the humidity it has 

linear response. Since Figaro has slower than K30 sensors and the response is fluctuating during the 

measurements, the averaging time increased by 5 times for the sensor.  

����� = (� ∗ � + �) + (���� ∗ � + �) + (��� ∗ � + �) + (� ∗ � + ℎ) + (��^2 ∗ � + �� ∗ � + �)  17 
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Where;  

�����: Corrected sensor response (ppm). 

Y: Raw sensor response. 

Temp: Temperature (oC). 

Hum: Water content. 

CO: CO concentration (ppm). 

P: Pressure (Psi). 

 

As the function shows, the variables have a direct contribution to sensor responses. However, CO variable 

has a non-linear contribution. Table 12 shows the calibration function coefficients. 

 

Table 12 Figaro coefficients of the calibration function. 

a -0.0164 

b -40.1951 

c -2.38954 

d 136.0133 

e 104.5417 

f 125.2024 

g 543.679 

h -8033.9 

i 0.002601 

j -1.95101 

k 292.088 

 

Pressure has the highest impact on the sensor which is affected negatively. The second most influencing 

parameter is the CO interference which the sensor is affected positively, humidity variable follows pressure 

and CO inference. Temperature effect is lower than the other parameters. 
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Figure 37 Test 8: Figaro sensor responses compared to FTIR responses due to increasing 

concentration changes. 

 

Figure 37 shows corrected, and raw sensor responses compared to FTIR responses. The best fit line gives 

the ability to see the difference and compare raw and corrected responses. Appendix C: Additional sensor 

calibration results. The plot shows the calibration model corrected measurement has better agreement with 

FTIR response. 
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Figure 38 Figaro- raw measurement relative error compared to corrected measurement relative 

error -transient increase. 

The Figure 38 represents the relative error plots for raw and corrected measurements. The model 

significantly decreased the relative error. However, as it observed at K30 sensor responses, the sensor has 

higher error when the concentration is lower than 2000 ppm.  

 

 

Table 13 Figaro errors for transient concentration changes. 

Test ID Test name Testing conditions Test CO2 

concentration 

range (ppm) 

Minimum 

error (%) 

Maximum 

error (%) 

Overall error 

(%) 

8 Raw-Transient CO2 

concentration increase  

Temperature: 28 oC  

RH: 26± 1.5 

CO level: 4± 2 ppm   

Pressure: 14.15 psi 

0-2000ppm -30 3.5 -13±16 

8 Corrected Transient CO2 

concentration increase 

0-2000ppm -41  -6 -24±18 

8 Raw-Transient CO2 

concentration increase 

2000-10000 

ppm 

6 13 9±4 

8 Corrected Transient CO2 

concentration increase  

2000-10000 

ppm 
-4 4  ±4 

9 Raw-Transient CO2 

concentration decrease 

Temperature: 28± 2 oC  

RH: 30± 2 

2000-0ppm  8 42 25± 17 
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9 Corrected Transient CO2 

concentration decrease 

CO level: 4± 2 ppm 

Pressure: 14.15 psi 
2000-0ppm -2 35  16± 19 

9 Raw-Transient CO2 

concentration decrease 

10000-2000 

ppm 

5 18 12±6 

9 Corrected Transient CO2 

concentration decrease 

10000-2000 

ppm 
-4 9 2±5 

 

Figaro responses are compared before and after corrections for the tests at the 0 to 2000 ppm level. The 

comparison of the relative error is represented in Table 13 .The concentration level, raw measurement the 

relative error -30% to 3.5 % at Test 8 and 8 % to 42 % at Test 9. The corrected values are -41% to -6% at 

Test 8 and -2 % to 35 % at Test 9. 

The raw measurement relative errors are 6 % to 13% at Test 8, 5 % to 18 % at Test 9. The corrected 

measurement relative errors are -4% to 9% for Test 8 and -4% to 9 % above 2000ppm level. 

Over all the model has improved the sensor response if it is compared to raw measurement however lower 

than 2000 ppm level needs to further investigation for better understanding. The figaro CO2 sensor has 

sensitivity to meteorological events so the sensor needs calibration for desired working range.  

 

4.2.4 COZIR AMBIENT CO2 sensor evaluation results 

The sensor’s working range is up to 2000 ppm described at the sensor manual. The sensor cannot detect 

higher than 2000 ppm. The experiments are performed with the other sensors but the COZIR stopped 

measuring after 2000 ppm level and gave constant number. The environmental, zero and span corrections 

are performed on the sensor responses and compared to FTIR measurements.  

The calibration function is shown as below;  

����� = (� ∗ � + �) + (���� ∗ � + �) + (��� ∗ � + �) + (� ∗ ℎ + �) + (�� ∗ � + �)   18 

Where; 

�����: Corrected sensor response (ppm). 

Y: Raw sensor response. 

Temp: Temperature (oC). 

Hum: Water content. 

CO: CO concentration (ppm). 

P: Pressure (Psi). 

 

As the function shows, all the parameters have linear effect on the sensors. Table 14 shows the calibration 

function coefficients. 
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Table 14 COZIR coefficients of the calibration function. 

a 0.038134 

b -413.363 

c -0.85023 

d 101.0813 

f 234.493 

g -84.696 

h 873.9422 

i -12622.5 

j -0.08841 

k 349.828 

 

As the coefficients are showing, CO interference has significance positive impact on the sensor, pressure 

has also high impact on the sensor negatively. Temperature and humidity have lower impact when they 

compared to other parameters. 

 

Figure 39 Test 8: COZIR sensor responses compared to FTIR responses due to increasing 

concentration changes. 

Figure 39 shows corrected, and raw sensor responses compared to FTIR responses. The best fit line gives 

the ability to see the difference and compare raw and corrected responses. The plot shows that the 

calibration model corrected measurement has better agreement with FTIR response. Appendix C: 

Additional sensor calibration results 
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Figure 40 COZIR -raw measurement relative error compared to corrected measurement relative 

error -transient increase. 

Figure 40 shows the relative errors for corrected and raw measurements. As it observed with previous 

sensors, the COZIR has high relative error at lower concentrations. Since FTIR responses are suspected at 

the lower concentration. The COZIR air calibration function should be repeated when the range adjustments 

are completed for FTIR. 

 

Table 15 COZIR errors for transient concentration changes. 

Test ID Test name 
Environment 
Conditions 

Test CO2 
concentration 
range (ppm) 

Minimum 
error (%) 

Maximum 
error (%) 

Overall 
error (%) 

8 
Raw-Transient CO2 
concentration increase 

Temperature: 28 oC  
RH: 26± 1.5 
CO level: 4± 2 ppm   
Pressure: 14.15 psi 

5000-10000 
ppm 

-54 3 25±22 

8 
Corrected Transient CO2 
concentration increase  

5000-10000 
ppm 

-22 15 -3±18 

9 
Raw-Transient CO2 
concentration decrease 

Temperature: 28± 2 oC 
RH: 30± 2 
CO level: 4± 2 ppm 
Pressure: 14.15 psi 

10000-5000 
ppm 

-24 2 -11±13 

9 
Corrected Transient CO2 
concentration decrease 

10000-5000 
ppm 

-11 12 ±12 

 

COZIR responses are compared before and after corrections for the tests at the 0 to 2000 ppm level. The 

comparison of the relative error is represented in Table 15 .The concentration level, raw measurement the 

relative error -54% to 3 % at Test 8 and -24 % to 2 % at Test 9. The corrected values are -22% to 15% at 

Test 8 and -11 % to 11 % at Test 9. 
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Over all the model has improved the sensor response if it is compared to raw measurement however since 

lower than 2000 ppm level needs to further investigation for better understanding therefore the COZIR CO2 

sensor measurements should be repeated for high accuracy calculations. 
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5 Discussion 

The flow simulations are performed in order to determine the velocity profile at the chamber cross-section 

and also have an idea for fan selection. The simulated velocity profiles have similar trends with the 

experimental results; however, the magnitude of the velocity varies for each sampling point. The reason 

behind the difference because of the simulation defined revolution values(guessed) might be different from 

the real fan revolution. The fan is controlled by a VFC; during the experiments, the fan speed controlled 

manually.  

Another simulation results are mass fraction though horizontal and vertical mass fraction, CO2 mass fraction 

(0.01) is defined as a small portion when it is compared to overall air the mass fraction (0.98), the results 

show close to constant mass fraction at cross-sectional area which helps us to conclude the chamber will 

have homogenous mixture after 100s of experiment time.  

The sensors are evaluated in this study, which assumed they are affected by temperature, humidity, pressure, 

and CO interference. The calibration function is generated based on assumption. The calibration 

coefficients are applied to three tests, which concentration changes instantaneously. As they are shown in 

the Results section, the relative error considered separately for 5000ppm range. K30 FR and K30 1% have 

similar technology and working principles, which is observed during the testing procedure. The level which 

is lower than 5000 ppm, where K30 sensors raw measurement errors are higher than the manufacturer’s 

given accuracy. 

Additionally, at the comparison results, the highest relative errors are observed lower than 2000 ppm level, 

the reason might be because of the reference instrument limitations. The recipe for FTIR gas detection has 

a high concentration level. At the lower concentration, FTIR has higher noise. The sampling time of the 

FTIR is increased during the experiments in order to maintain the transient concentration changes at the 

low concentration level still the measurements might be affected by a high noise level. At the above 5000 

ppm level, the raw measurement relative errors are higher than manufacturer accuracy despite the relative 

error relatively lower than below 5000 ppm level. The calibration functions decreased the error below % 

±3 higher than 5000 ppm CO2 concentration. The manufacturer limits the accuracy specification up to 5000 

ppm. However, the corrected sensors can reach to low error measurement.  
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6 Conclusions 

The study aimed to generate calibration functions for K30 FR and K30 1% (range 10000ppm), FIGARO 

FG-030 (range 5000ppm), and COZIR (range 2000ppm) low-cost miniature gas sensors. In order to 

complete the study and perform the necessary experiments a test bench, specifically, the dynamic 

environmental simulation chamber (DESC) had to be designed, built, and characterized. 

During the first stage, the design stage, a 3-D model of the chamber was built after general dimensions 

taken from literature. In order to understand the flow inside the closed-loop shaped test chamber, a CFD 

analysis was performed. After building the chamber from stainless steel, the actual flow characteristics 

were measured using a hotwire anemometer inserted into the chamber and moved across the horizontal and 

vertical cross-sectional plane at different airflow speeds, namely, high, medium, and low speeds. 

Comparison of experimental and simulated values indicated the velocity profiles to agree qualitatively.   

Differences were observed in the magnitude of the air velocity and were concluded to originate from the 

differences in actual fan speed in the chamber and the guessed fan speed used for the simulation. 

Additional flow simulations were performed to understand the characteristic time scale for homogeneous 

mixing to occur in the chamber upon injection of different gaseous constituents or steam. The simulation 

showed the mixture to become homogeneous in less than 2 minutes. Therefore, for the experimental stage, 

it was decided to add a stabilization time of 5 minutes in order to allow for achieving homogeneous mixture 

before the start of data collection. 

Moreover, a structural analysis was also performed to assure the supports are designed strong enough to 

carry the full weight of the DESC of 300 kg. The structural analysis results showed that the selected support 

design was capable of carrying the DESC. 

A stepwise multi-linear regression approach taking i) temperature, ii) pressure, iii) water content in the 

sample gas, as well as iv) CO as interfering gas in consideration, was used to develop calibration models 

for the different CO2 sensors investigated. Results showed that the calibrations models improved the sensor 

responses when the corrected responses were compared to raw measurements. 

For the two K30 sensors, the overall relative error was observed to decrease from ±10 % to ±3 %. The K30 

sensors are affected by pressure, temperature, and humidity. Pressure has a negative impact on the sensor 

response; the temperature is influencing the sensor positively, and also humidity has a positive impact but 

significantly lower than the temperature effect. CO interference was found to be lower than impacts from 

all the other parameters considered (i.e. T, P, H). 

For the Figaro sensor, the overall relative error was seen to decrease from ±15 % to ±4 % after calibration 

of the response model. The Figaro sensor is affected by pressure, which has the highest impact on the sensor 

and was observed to affect it negatively. The second most influencing parameter is the CO interference, 
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which is affecting the sensor positively, humidity has a similar positive effect like CO. The effect of 

temperature is considerably lower compared to the other parameters. 

Finally, for the COZIR sensor, the overall relative error was decreased from ±22 % to ±14 %. CO has a 

significant positive interfering impact on the sensor. Pressure has a high negative impact on the sensor. 

Temperature and humidity show a lower impact when compared to other parameters. The COZIR sensor 

correction model did not decrease the error as desired, and thus, further investigation is needed for this 

specific sensor. 
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7 Recommendations for future work 

The simulated velocity profiles showed the guessed fan rotations are closer to real fan rotation, however, 

for better agreement between simulation and experiments, the fan rotation values should be investigated for 

the purpose of validation.  

Overall, temperature and CO concentration have a negative impact on sensor readings, which cause under-

prediction, while humidity and pressure have a positive impact leading to over-prediction. The calibrated 

K30 CO2 sensors are capable of reading higher than 5000 ppm with high accuracy, however, due to 

increased FTIR noise levels at lower concentrations, the study cannot conclude the same for lower than 

5000 ppm concentration ranges. The low concentration levels need to be investigated with an FTIR that is 

setup for lower detection limits and decreased noise levels. 

The laboratory and sensors have environmental limitations; therefore, experimental temperature ranges 

were limited in this study. The laboratory metrological ranges can be easily modified for different gas 

sensors and technologies which have a widened operational temperature, humidity, pressure ranges.  
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9 Appendix 

Appendix A: Sensor specifications 

The performance characteristics of sensor specifications are briefly explained below [6]. 

9.1.1.1 Bias  

A common error of measurement can be higher or lower. There can be multiple bias calculation; one of the 

calculation methods is:  

 � = �
�

��
� − 1 19 

Where B is the bias, C is the average of the measurements, and CR is the reference concentration of the 

pollutant. 

Precision 

The precision is an important indicator to measure the same concentration under similar conditions. 

Precision can be calculated and checked whether it is accurate or not for the related issue.   

 � = ��/�� 20 

Where P is the precision, Cs is the standard deviation of the measurements, and Cm is the measurement 

means at a given concentration. 

Calibration 

The procedure checks and tunes sensor measurements by making a comparison with a reference instrument. 

Many calibration methods were used for the sensor over time by researchers and developers. The most 

common methods are explained in section 2.3.3. 

Detection limit 

The detection limit can be determined as the lowest concentration that the sensor can detect. Usually, the 

manufacturer provides the detection limit information. However, the detection limit may vary by the time. 

There are many ways to measure the detection limit; the most common method is the method detection 

limit (MDL). The MDL is defined as the minimum measured 

Concentration of a substance that can be reported with 99% confidence [51]. The calculation of the MDL 

is: 

        ��� = �(���,   ��∝��.��)� 21 

Where MDL is a method detection limit, �(���,   ��∝��.��) is t-value appropriate for a single-tailed 99th 

percentile t statistic and a standard deviation estimate with n-1 degrees of freedom and S is sample standard 

deviation of the sample analyses. Figure 41 shows the graphical detection limit 
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Figure 41 Representation of a detection limit [52]. 

 

Response time 

The amount of the time that the sensor reacts to the change in concentration is vital because it shows how 

rapidly it responds for instant changes in concentration. They are typically used t90 which means response 

time to measure 90% of the pollutant to concentration by the sensor [6]. 

 

Figure 42 Response time to measure 50% and 90% of the gas [6]. 
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Sensor response 

Useful sensor response is collected for each concentration measured. Figure 43 shows the ideal sensor 

response. 

 

 

Figure 43 Ideal sensor response. 

 

Selectivity 

The ability of a sensor to respond to particular pollutant is called selectivity. 

Interferences 

The ideal sensor would only respond to the target pollutant described as selectivity. However, sensors may 

respond to other pollutants or meteorological conditions.  

Drift 

A gradual change in instrument response, quantitative characteristic (i.e., a standard concentration or zero 

air) is called drift. 

Climate susceptibility 

Climate susceptibility is a measure of an instrument’s ability to variations in meteorological conditions, 

including changes in temperature and humidity. 
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Appendix B: Additional simulation results 

A. Velocity profile comparison 

 

 

Figure 44 Vertical velocity profile comparison for medium speed level 

 

 

Figure 45 Vertical velocity profile comparison for high speed level 
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Figure 46 Horizontal velocity profile comparison for medium speed level 

 

 

Figure 47 Horizontal velocity profile comparison for high speed level 
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B. Mass fraction through the cross section 

 

Figure 48 CO2 Mass fraction through the vertical line-low Speed 

 

 

Figure 49 CO2 mass fraction through the horizontal line-low speed 
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Figure 50 CO2 mass fraction through the vertical line-medium speed 

Figure 51 CO2 mass fraction through the horizontal line-medium speed 
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Appendix C: Additional sensor calibration results 

Comparison of all sensor responses 

 

Figure 52 Comparison of the sensor responses with the reference instrument. 

i. K30 Fast response (FR) CO2 sensor evaluation results  

Figure 53 Test 9: K30 FR sensor responses compared to FTIR responses due to decreasing 

concentration changes. 
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Figure 54 K30 FR- raw measurement relative error compared to corrected measurement relative 

error (0-5000ppm)-transient decrease. 

 

 

Figure 55 K30 FR- raw measurement relative error compared to corrected measurement relative 

error (5000-10000ppm)-transient increase. 

 

 

-20

-10

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000 7000

R
e

la
ti

ve
 E

rr
o

r 
(%

)

FTIR concentration(ppm)

Raw Measurement Relative Error

Corrected Measurement Relative Error

-10

-5

0

5

10

15

20

5000 6000 7000 8000 9000 10000 11000R
e

la
ti

ve
 E

rr
o

r 
(%

)

FTIR concentration(ppm)



 71  

 

 

Figure 56 Test 7:  K30 FR sensor responses compared to FTIR responses due to decreasing 

concentration changes-step-by-step. 
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Figure 57 K30 FR -raw measurement relative error compared to corrected measurement relative 

error (0-5000ppm)-step by step decrease. 

 

 

 

Figure 58 K30 FR- raw measurement relative error compared to corrected measurement relative 

error (5000-10000ppm)-step by step decrease. 
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ii. K30 1% CO2 sensor evaluation results 

 

Figure 59 Test 9: K30 1% sensor responses compared to FTIR responses due to decreasing 

concentration changes. 

 

Figure 60 K30 1%- raw measurement relative error compared to corrected measurement relative 

error (0-5000ppm)-transient decrease. 

 

y = 0.9349x - 189.61
R² = 0.9995

y = 0.9991x - 44.222
R² = 0.9995

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

K
3

0
 F

R
 C

o
n

ce
n

tr
at

io
n

 (
p

p
m

)

FTIR Concentration (ppm)

Corrected K30 1%
response

Raw  K30 1%
response

Best 
Fit

-15

-10

-5

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000 5000 6000

R
e

la
ti

ve
 E

rr
o

r 
(%

)

FTIR concentration(ppm)

Raw Measurement Relative Error

Corrected Measurement Relative Error



 74  

 

 

Figure 61 K30 FR- raw measurement relative error compared to corrected measurement relative 

error (5000-10000ppm)-transient increase 

 

Figure 62 Test 7: K30 1% sensor responses compared to FTIR responses due to decreasing 

concentration changes-step by step. 
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Figure 63 K30 1%- raw measurement relative error compared to corrected measurement relative 

error (0-5000ppm)-step by step decrease. 

 

 

 

Figure 64 K30 1% -raw measurement relative error compared to corrected measurement relative 

error (5000-10000ppm)-step by step decrease. 
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iii. Figaro 

 

Figure 65 Test 9: Figaro sensor responses compared to FTIR responses due to decreasing 

concentration changes. 

 

Figure 66 Figaro- raw measurement relative error compared to corrected measurement relative -

transient decrease 
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iv. COZIR 

 

 

 

Figure 67 Test 9: COZIR sensor responses compared to FTIR responses due to decreasing 

concentration changes. 

 

 

Figure 68 COZIR -raw measurement relative error compared to corrected measurement relative -

transient decrease 
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