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Abstract 

MODELING AND FLIGHT TESTING OF DIFFERENTIAL THRUST AND THRUST 
VECTORING ON A SMALL UAV 

by Zachary J. Merceruio 

The primary objectives of this research are to mathematically model the propulsion forces 

applied to the aircraft during nominal, differential thrust, and thrust vectored flight 

configurations, and verify this modeling through simulation and flight testing experiments. This 

thesis outlines the modeling process, simulator development, design, and implementation of a 

propulsion assisted control system for the WVU Flight Control Systems Lab (FCSL) research 

aircraft. Differential thrust and thrust vectoring introduce additional propulsive terms in the 

aircraft force equations that are not present when the thrust line passes through the center of 

gravity. These additional forces were modeled and incorporated into a simulator of the research 

aircraft. The effects from differential thrust were small and difficult to quantify. The thrust 

vectoring effects were also found to be small with the elevator having significantly more pitch 

control over the vectored motors at the simulated flight conditions.  

Differential thrust was implemented using the on-board computer to command a different 

thrust level to each motor. The desired thrust differential was programed into a flight scheme 

based on simulation data, and activated during flight via a control switch on the transmitter. The 

thrust vectoring mechanism was designed using SolidWorks
®
, built and tested outside of the 

aircraft, and finally incorporated into the aircraft. A high torque servo was used to rotate the 

motor mounting bar and vector the motors to a desired deflection. Utilizing this mechanism, the 

thrust vectoring was flight tested, mimicking scenarios tested in simulation. The signal to noise 

ratio was very low, making it difficult to identify the small changes in the aircraft parameters 

caused by the vectored thrust.   
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Nomenclature 

 a = linear acceleration (m/s
2
) 

A = state matrix, area 

b = wing span (m) 

B = input matrix 

C = aerodynamic coefficient 

c  = mean aerodynamic chord (m) 

e = error 

h = altitude (m) 

I = moment of inertia (kg m
2
) 

J = product of inertia (kg m
2
) 

m = aircraft mass (kg) 

p = roll rate (deg/s) 

q = pitch rate (deg/s) 

q  = dynamic pressure (psi) 

Q  = volumetric flow rate (m
3
/s) 

r = yaw rate (deg/s) 

S = wing surface area (m
2
) 

T = thrust (N) 

V = velocity (m/s) 

 

Greek Letters 

α = angle of attack (deg) 

β = angle of sideslip (deg) 

δ = control surface deflection (deg) 

θ = pitch angle (deg) 

  = roll angle (deg) 

ψ = yaw angle (deg) 

ρ = air density (kg/m
3
) 

 

Subscripts 

D = drag 

l = rolling moment 

L = lift 

m = pitching moment 

n = yawing moment 

T =  thrust 

xx = about the x-axis (body) 
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xz = about the x and z axes (body) 

Y = side force 

yy = about the y-axis (body) 

zz = about the z-axis (body) 

 

Acronyms 

AFB = air force base 

CFD =  computational fluid dynamics 

CG = center of gravity 

DOF = degree of freedom 

FCSL = Flight Control System Laboratory 

HARV  = High Angle of Attack Research Vehicle 

PAC =  propulsion assisted control 

PCA = propulsion controlled aircraft 

PCB = printed circuit board 

RANS = Reynolds Averaged Navier-Stokes 

RPM = revolutions per minute 

UAV =  unmanned aerial vehicle 

UCAV =  uninhabited combat aerial vehicle 

WVU = West Virginia University 
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1. Introduction and Motivation 

1.1 Research Background 

 The use of differential thrust and/or thrust vectoring presents an appealing option to 

maneuver an aircraft in the event of control surface failures or loss of control surface 

effectiveness. It may also prove useful in laterally trimming an aircraft in lieu of rudder-

deflections, possibly reducing drag. The potential advantages of differential thrust have led to 

research efforts in which the engine thrust is manipulated to provide an extra channel of flight 

control authority in unmanned aircraft. For example, commercial jetliner pilots have utilized 

asymmetric thrust to assist in yaw and roll control in the event of primary control surface 

failures
1
, and remote-controlled aircraft hobbyists have used differential thrust to assist in some 

aerobatic flight maneuvers. Thrust vectoring has been implemented in several fighter aircraft 

configurations, such as the McDonnell Douglas AV-8B Harrier II and the Lockheed Martin F-

35B Lightning, to assist in short take-offs and vertical landings in difficult environments like an 

aircraft carrier
2
. 

  For manned aircraft, the use of differential thrust to accommodate for adverse flight 

conditions is often determined at the discretion of the pilots and is mainly used as a last resort. 

Because the failure of primary control surfaces has been recognized as one of the main causes of 

accidents in military and civilian aviation, contributing to 25% of commercial aircraft accidents 

in the past 60 years
3
, the use of differential thrust accommodation in the event of these incidents 

has become common practice in pilot training. A prime example of pilots utilizing propulsion 

assisted flight control is the case of United Airlines Flight 232, where an uncontained failure of 

the vertical tail-mounted engine caused debris to rupture the hydraulic lines to the control 

surfaces
1
. These failures left the McDonnell Douglas DC-10 aircraft without three of its flight 

control systems and with no redundant power sources to operate them. However, using 

asymmetric thrust in the wing-mounted engines the aircraft was brought to a “marginally 

flyable
1
” condition.  
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  Additionally, the use of unmanned aerial vehicles (UAVs) has become an increasingly 

appealing option in research and military applications and the need for fault-tolerant flight 

controls in these applications is evident. Propulsion assisted control provides another degree of 

freedom for the flight control systems to apply in the event of adverse conditions such as primary 

control surface failures. In providing this additional degree of freedom, an accurate model of the 

engine or power source is required to implement within the flight computer. This includes 

accurately modeling the static and dynamic thrust of an engine as well as understanding the 

geometry of the aircraft which has a significant effect on the degree of control authority gained 

by differential thrust and thrust vectoring for that aircraft. With UAVs being used for a wide 

array of missions – reconnaissance, environmental research, and military attacks – it becomes 

increasingly necessary to have system robustness, and the ability to survive the elements and 

complete the given tasks. The research applied to UAV flight controls may also be directly 

applicable to assisting pilots in the event of failures in controlling their aircraft with differential 

thrust, allowing them to focus on other pressing tasks such as communicating with air traffic 

control to establish emergency landing plans. 

1.2 Project Overview 

 The Flight Control Systems Lab (FCSL) at West Virginia University (WVU) is developing 

and testing a fault-tolerant flight control system to handle both sensor and actuator failures. 

Within this effort, actuator and sensor failure detection, identification, and accommodation 

(AFDIA/SFDIA) schemes are being developed to maintain stable flight for a UAV under 

specific failure scenarios. A portion of this effort focuses on implementing and flight testing 

differential thrust and thrust vectoring on board the WVU Propulsion Assisted Control (PAC) 

research platform. The objective of this research is to accurately model the propulsive forces 

associated with differential thrust and thrust vectoring, and verify the modeling process through 

simulation and flight testing experiments.  

 To implement differential thrust and thrust vectoring capabilities on the WVU PAC research 

aircraft, an accurate model of the thrust produced by the engines was required. For this research, 
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both the static and dynamic thrust were modeled, as well as the transient response of the motors. 

For the static thrust modeling, one of the motors was mounted to an engine test stand where the 

static thrust could be measured for different engine throttle settings. To measure the dynamic 

thrust, the ducted fan engine was mounted within the WVU subsonic wind tunnel to estimate the 

thrust produced at different flight speeds for given engine revolutions per minute (RPMs). The 

transient response was determined by observing the delay between the input signal and the 

response of the motor. Additionally, a modeling effort was completed on how the thrust 

vectoring and differential thrust would perform on the PAC research aircraft, specifically the 

forces and moments that would be generated on the aircraft for a given thrust output. Following 

this detailed modeling effort, simulation studies were conducted to validate the identified 

parameters before incorporating them on the actual aircraft for flight tests.  

 A thrust vectoring test stand was developed to observe the performance of the engines under 

vectoring motion before implementing them onto the aircraft. The design of the mechanism for 

vectoring on the test stand was also incorporated in the final design of the actual thrust vectoring 

platform within the aircraft. This design was flight tested by performing thrust vector doublets as 

would traditionally be done using the conventional control surfaces, as well as step inputs on the 

thrust vectoring channel.   

1.3 Research Objective 

The objective of this research was to model the propulsive forces associated with differential 

thrust and thrust vectoring, in order to provide the FCSL with a propulsion assisted controlled 

aircraft with which an additional degree of freedom could be exploited within a fault tolerant 

flight control system. Specifically, a complete model of the motor including static thrust, 

dynamic thrust, and transient response was necessary, along with an understanding of the 

response of the aircraft to the forces and moments produced by differential thrust and the thrust 

vectoring system. 
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2. Literature Review 

 The following sections review prior work relevant to the proposed research effort on 

propulsion assisted control. Specifically, topics that are summarized include the aerodynamics of 

ducted fans and wind tunnel testing of engines, the use of differential thrust for emergencies and 

as augmented controls in full-scale aircraft, the use of thrust vectoring in full-scale aircraft, and 

the use of differential thrust and thrust vectoring in UAVs.  

2.1 Ducted Fans and Wind Tunnel Testing  

 The ducted fan dates back to as early as 1932 when an Italian engineer named Luigi Stipa 

invented the “intubed propeller” for the Caproni Stipa aircraft. Luigi Stipa was an aeronautical, 

hydraulic and civil engineer who applied his study of hydraulic engineering to aircraft in an 

attempt to increase the aircraft efficiency. Based on Bernoulli‟s principle in fluid dynamics, Stipa 

believed that directing the air behind the propeller through a Venturi tube of decreasing diameter 

would increase its velocity and improve the efficiency of the engine. After spending years 

mathematically studying this idea, Stipa published his work and convinced the Air Ministry to 

build a prototype aircraft to test the theory in order to prove his concept. This resulted in the 

Caproni Stipa experimental airplane which is credited as the first use of a “ducted fan” in an 

aircraft. On October 7, 1932, the prototype was flown proving Stipa‟s concept that the intubed 

propeller increases engine efficiency; however, his design also increased the drag on the aircraft 

to the point that it negated the gains made by the increased engine efficiency. Since his design 

did not offer an improvement in the overall performance over conventional aircraft, no further 

development took place
4
.  

 
Figure 1: Caproni-Stipa Aircraft (Reproduced from Reference 5) 
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More recently, research has been performed on ducted fans because of their potential for 

higher static thrust when compared to an isolated propeller of the same diameter. Additionally, 

they offer several advantages over isolated propellers including reducing blade tip losses which 

increases the efficiency of the blades especially at higher rotational speeds. Ducted fans also 

offer a supplementary safety feature by enclosing the rotating propeller, allowing for safer indoor 

flight or flights in congested areas making ducted fans an attractive option for unmanned aircraft. 

Ducted fans produce less noise than isolated propellers due to the reduction of the tip vortices 

and the smaller diameter reducing the tip speed of the blades
6
.  

Applying the principle of conservation of mass, conservation of momentum, and the 

Bernoulli principle to both an open propeller and a ducted fan in a free stream helps to model the 

aerodynamic differences between the two. For an open propeller, the velocity of the slipstream 

behind the propeller is higher than the free stream velocity and therefore forces the slipstream to 

contract. However the velocity of the slipstream exiting the duct is essentially equal to the free 

stream velocity and therefore does not contract
7
.  

 

Figure 2: Slipstream Profile for an Open Propeller (Left) and a Ducted Fan (Right) 

(Reproduced from Reference 7) 

Researchers at California Institute of Technology in Pasadena, California developed a testbed 

for nonlinear flight control techniques using a platform centered on a ducted fan
8
. The Caltech 

ducted fan is a scaled model of the longitudinal axis of a flight vehicle that allows for research 

and development of nonlinear flight guidance and control laws. Figure 3 shows the experimental 

setup of the Caltech ducted fan. 
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Figure 3: Caltech Ducted Fan (Reproduced from Reference 8) 

 The Caltech ducted fan is a tethered representation of the longitudinal dynamics of a flight 

vehicle, with flight tests conducted indoors. Thrust vectoring of the ducted fan allows for a larger 

flight envelope, as well as a range of stability and modeling options which are available due to 

the ease with which it is reconfigured
8
. The purpose of the scaled model was to apply the 

guidance, surface allocation, and flight control algorithms to advance the technology for 

uninhabited combat air vehicles (UCAVs). The test bed objectives included: assessment of future 

direction of UCAV guidance and control, and the safety risks and cost of such a research 

platform. Initial flight tests were conducted in an open-loop configuration where the wings were 

positioned so the ducted fan was statically stable. As the ducted fan was operating, elevator 

pulses were performed at defined trim conditions to provide a visualization of the short period 

dynamics. Additionally, setting up the thrust vectoring paddles and operating the trimmed system 

at a constant velocity of 6.5 m/s allowed for additional identification of the short period 

dynamics. Following these initial experiments, researchers were able to show that the Caltech 

ducted fan test bed “qualitatively exhibits the natural longitudinal dynamics of a flight vehicle”
8
. 

Researchers at the University of California also performed a study on the design and 

construction a ducted fan for use in non-linear control experiments. The ducted fan was designed 
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to include a high efficiency electric motor driving a 6-inch blade, with the ability to produce 9 N 

of thrust. The ducted fan used flaps to direct the exhaust and produce thrust vectoring capability. 

This vectored thrust motor provided a challenging platform for non-linear robust control theory. 

The research concluded that the system “contained a large uncertainty since detailed modeling of 

the flow of air through the unit is not easily obtained in a form useful for control”
9
.  

Performance studies have been conducted on ducted fan systems to identify how changes to 

the system parameters affect the performance of the ducted fans. One such performance study 

was conducted at NASA Ames Research Center in the 7- by 10-foot wind tunnel. The tested 

ducted fan had a 38-in diameter, 10-in duct chord, and a 5-bladed fixed-pitch fan. The variable 

experimental parameters included the angle of attack, exit vane flap length, flap deflection angle, 

and duct chord length. The tests were performed for axial and forward flight conditions, and the 

axial tests yielded a decrease in the figure of merit with an increasing advance ratio. The forward 

flight tests yielded an increasing propulsive force with a decreasing duct angle of attack. This 

study also showed that extending the duct chord did not affect the duct performance. The exit 

vane flap deflection angle and the flap chord length were found to be effective methods of 

producing duct side forces. Figure 4 shows the ducted fan experimental setup in the NASA Ames 

7- by 10-foot wind tunnel
10

.  

 

Figure 4: Ducted Fan Test in the NASA Ames 7- by 10-Foot Wind Tunnel (Reproduced 

from Reference 10) 
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A 10-inch ducted rotor VTOL UAV was tested in the US Army 7 x 10 foot wind tunnel for 

performance and flow field measurements. The tests ranged from 0° to 110° angle of attack and 

0 to 128 ft/s wind speeds. Tests were performed with and without a rotor present in the duct to 

determine the difference in stall. Figure 5 shows the results from this test with the stall of the 

rotor and duct not occurring until 40° while the duct without the rotor stalled at 15 degrees
11

.
 

 

Figure 5: Comparison of Stall Performance of Isolated Duct and Rotor/Duct Combination 

V0=35 kts, 9000 RPM (Reproduced from Reference 11) 

2.2 Full-Scale Aircraft Use of Differential Thrust 

Differential thrust has been used by pilots in emergency situations when individual control of 

the engines has been necessary to maintain control of the aircraft.  Japanese Airlines Flight 123, 

a Boeing 747-100, was an aircraft that experienced a catastrophic failure leaving the pilots with 

only the asymmetric thrust of the engines for control
12

. During the climb phase of the flight, the 

rear pressure bulkhead was torn open, removing a significant portion of the vertical stabilizer. 

The four hydraulic lines used for controlling the surfaces on the aircraft were also ruptured, 

leaving the elevators, ailerons, and rudders unusable. Although the pilots were ultimately unable 

to control the aircraft to a safe landing, the use of differential thrust proved successful in 

maintaining more stable flight. Once the pilots began to implement the use of asymmetric flaps 

in conjunction with the differential thrust, they began to once again lose stability in the aircraft. 



9 

 

The crew of Flight 123 was able to utilize asymmetric thrust to keep the aircraft aloft for 32 

minutes, longer than any crews trying to recreate the incident in a simulator during the 

investigation
12

. 

 Several studies
13,14

 have been conducted to implement propulsion assisted control and thrust 

vectoring in flight controls for commercial aircraft. These studies have been fueled by aircraft 

accidents and incidents where the pilots have needed to utilize differential thrust to maintain safe 

flight. There, however, has been difficulty in trying to control both the lateral and longitudinal 

modes with differential thrust alone
15

, specifically on commercial transport aircraft 

configurations such as the Boeing 747. Inspired by this challenge, a team at the University of 

Leicester in conjunction with the Volvo Aero Corporation Military Engines conducted a study on 

the design of integrated flight and propulsion control systems for large civil transport aircraft. 

They utilized a detailed model of the Boeing 747-100 aircraft within a Matlab/Simulink software 

environment to study the ability to use differential thrust and thrust vectoring for the purposes of 

emergency flight control
15,16

. 

 The project implements the capability to combine aerodynamic control surfaces, thrust 

vectoring, and differential thrust capabilities within the flight controller. The dynamic response 

of the engine was modeled for the simulation study because of the need for an accurate thrust 

representation. The engine dynamics were modeled as a second-order filter in conjunction with 

operating-point-dependent eigenvalues to represent the “spool dynamics of a typical turbofan 

engine”
15

. Additionally, the engine model was extended to incorporate thrust vectoring, with the 

assumption that it can be considered “perfect” meaning that the effective thrust vector angles are 

equal to the measured mechanical vector angles. It was also assumed that there existed no losses 

in engine efficiency when the engines are vectored
15

. 

 Within the flight control laws, thrust vectoring and differential thrust were used to 

simultaneously control the lateral and longitudinal modes. Functions were implemented to 

distribute the thrust and vectoring commands between the four wing-mounted engines on the 

Boeing 747 aircraft. Additionally, the commands could be blended between the lateral and 
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longitudinal controls using a fixed-distribution method dependent on flight condition and flight 

mode. It was designed in this manner so it could potentially be used in conjunction with a failure 

detection system to accommodate for failures by optimally redistributing the controls
15

. 

Simulations from this study indicated that stable flight in large civil transport aircraft could be 

achieved using differential thrust to provide lateral control and collective thrust to provide 

longitudinal control. This study also showed that propulsion only control could be a viable 

means of maintaining stable flight in emergency situations, such as the case of control surface 

failures. The use of thrust vectoring about the yawing body axis showed significant improvement 

in lateral control, and when thrust vectoring was combined with differential thrust within the 

control scheme, the flying qualities were greatly improved during failure scenarios
15

. 

 According to a NASA study
17

, in the 20-year period between 1976 and 1996 the Boeing 747, 

B-52, L-1011, C-5A, and DC-10 aircraft have experienced “major” flight control system failures 

during which the pilot was required to use asymmetric throttles for emergency flight control. The 

Boeing 747, DC-10, and C-5A accidents claimed over 1200 lives. NASA Researchers at Dryden 

Flight Research Center began conducting flight test studies to evaluate the amount of control 

available from asymmetric thrust on several different aircraft platforms including both military 

and civilian aircraft. The study proved that sufficient control was available using both symmetric 

and asymmetric thrust to control the flight path and generate sideslip, respectively
17

. Dryden 

researchers also developed a propulsion controlled aircraft and tested it during landing scenarios. 

From this research, they began to develop and test a propulsion controlled aircraft which uses 

only engine thrust for control. This type of emergency flight control system was implemented on 

a MD-11 aircraft
17,18,19,20,21

 which “augments pilot flightpath and track commands with aircraft 

feedback parameters to control engine thrust
18

.” Control in the lateral-directional plane was 

produced from differential thrust generating sideslip which, through the dihedral effect, resulted 

in the aircraft rolling, causing a turn and heading change. Control in the longitudinal plane was 

more complex with the pitch of the aircraft being driven by an offset of the thrust line from the 

vertical center of gravity (CG)
17

. Research was also extended to use thrust modulation to control 

flight path during the tests on the MD-11 aircraft. The goal of this project was to develop a 
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Propulsion-Controlled Aircraft Emergency Backup System to assist a pilot in safely landing an 

aircraft in the event of having engines as the only control effectors or an inoperative flight 

control system
22

. Similar work was also conducted using a modified F-15 aircraft for both 

simulation and flight test studies using throttles for flight control
23

. NASA has also conducted 

simulations to show the applicability of propulsion control for the total loss of the rudder for a 

manned transport aircraft. The simulations showed that although the necessary thrust differential 

generation was slower than the typical moment generated by the rudder for yaw control, it 

provided a sufficient means to control the aircraft
24

.  

NASA Dryden Flight Research Facility conducted a study in 1991 to determine the 

emergency flight control capability of multiengine airplanes using throttle-only control
25

. Both 

simulations and flight tests were performed to determine the level of control available for various 

types of aircraft including piston-powered light twin-engine aircraft, high performance fighter 

aircraft, and commercial transport aircraft. It was found through simulations that most aircraft 

had significant control power with manual throttle-only control but were difficult to control due 

to lags in the system response. The aircraft tested in the piloted simulators in which throttle-only 

control was implemented included the F-15, B-720, B-727, MD-11, C-402, and the B-747. In 

order to improve the aircraft performance using differential thrust, an augmented control system 

was developed and tested on the B-720
25

. 

Prior to the augmented control system, the available control power from manual throttle-only 

control could be used to maintain gross control including holding heading and altitude and 

making a controlled decent. However, landing on a runway proved extremely difficult for the 

pilot because of a one second lag in pitch and roll before the aircraft began to respond to the 

throttles
25

. The augmented control provided feedback for phugoid damping, flight path angle 

control, and bank angle control, while allowing the pilot to fly using normal flight control 

effectors (control wheel, stick, or autopilot trim wheels). It was found that with the augmented 

control system it was possible to make repeatable landings on a runway. Cooper-Harper pilot 

ratings for the augmented control system were approximately four times higher than they were 

for manual control, indicating a substantial control improvement
25

.  
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The National Defense Academy performed a study to determine the feasibility of an 

automatic approach and landing for a Boeing 747 propulsion controlled aircraft
26

. A flight 

control system was designed for the propulsion controlled aircraft in which available control 

authority was provided only by thrust. This study focused on the approach and landing phases of 

flight, since they are often viewed as the most critical phases. The designed control system was 

able to achieve satisfactory approach and landing using the amount of thrust available. The 

landing speed was slightly higher than that of an aircraft landing with nominal conditions, but the 

sink rate at touchdown was small enough to make a safe landing. The wing mounted engines 

helped to provide lateral-directional control with adequate control power in yaw control, without 

unfavorable oscillations such as Dutch-roll
26

. 

Researchers at the University of Virginia in Charlottesville along with the NASA Langley 

Research Center developed an aircraft model that incorporated independently adjustable engine 

throttles and ailerons within an adaptive control scheme for use in the presence of actuator 

failures
27

. Rudder and aileron failures were considered in this study with a large transport aircraft 

platform. Simulation results showed that the adaptive scheme was able to provide “satisfactory 

performance” in the presence of the failure scenarios observed
27

. Researchers at the University of 

California, Davis and the NASA Ames Research Center conducted a study to investigate 

adaptive control methods on a generic transport aircraft model under adverse flight scenarios 

such as damage or failures
28

. Within this research, differential thrust was applied under the 

assumption that the engine thrust vector was aligned with the aircraft body x-axis and that the left 

and right engines produced equal thrust when given the same input. Differential thrust throttle 

position would be utilized when the rudder control power was insufficient due to damages. Due 

to the lag between applying the differential engine thrust and it actually ramping up to perform 

the desired yaw trimming, the engine actuator dynamics had to be accounted for within the 

simulation to accurately portray the control authority on a real system
28

. Similar work was 

conducted on the development of an integrated neural flight and propulsion control system, 

which utilized a neural network-based approach to apply asymmetric control power in the 

presence of damage or failures
29

. Under these adverse flight conditions, integrated propulsion 
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control was used in conjunction with unconventional flight control surface maneuvers to achieve 

the desired performance. Again piloted simulation studies were performed on a commercial 

transport aircraft simulator, with the control laws demonstrating the potential for improving the 

aircraft handling qualities and increasing the likelihood of survivability rates for certain 

failures
29

. A study utilizing H∞ model matching for propulsion control of a “crippled” aircraft 

noted that the Dutch roll mode of an aircraft is excited with the use of differential thrust
30

. The 

engine signal produced by the controller to suppress the Dutch roll mode had significant 

oscillatory motion. This complicated throttle signal is difficult for a pilot attempting to fly a 

damaged aircraft by manual throttle-only control to achieve by intuition
30

. Because these 

complicated engine thrust signals have been common amongst many of the differential thrust 

studies, it has provided the community with further incentive to develop propulsion assisted 

control laws to assist pilots maintain the aircraft in adverse flight conditions.  

2.3 Full-Scale Aircraft Use of Thrust Vectoring as Augmented Control 

Thrust vectoring techniques have been successfully demonstrated to implement short 

take-off and landing, increased maneuverability during air combat engagements against 

conventional fighter aircraft, and high angle of attack flights. The majority of the early thrust 

vectoring research was performed at low speeds in a high angle of attack flight regime. The F-15 

ACTIVE Flight Research Program sought to expand the flight envelope in which thrust 

vectoring would be useful for increased performance, maneuverability, and controllability with 

production-representative nozzles. This was achieved through extensive simulations and flight 

testing procedures in which thrust vectoring was flown open loop first to establish the response 

of the aircraft. During the initial thrust vectoring flights, the response of the aircraft to thrust 

vectoring was significantly lower than predicted. With a greater understanding of the aircraft 

response, the program managed several important milestones including the highest speed (Mach 

1.6) yaw vectoring at that time. This study also found that Pratt & Whitney could provide a 

successful design for modern fighter aircraft with effective thrust vectoring capabilities. 

Additionally, thrust vectoring nozzles used as primary flight control effectors appeared to be 

realizable with this design approach
31

. 
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The multi-axis thrust vectoring (MATV) program proved the effectiveness of thrust 

vectoring in the F-16, stating that it was not aircraft, engine or technology limited, but budget 

limited. This study showed that thrust vectoring could be considered “a reliable and highly 

effective means of control for tactical jet aircraft and significantly enhanced the combat 

capability of the F-16,” and could be integrated economically. The vectoring technique 

implemented on the F-16 MATV system is the GE Axis-symmetric Vectoring Exhaust Nozzle 

(AVEN), which uses three actuators located 120 degrees apart to drive a vectoring ring. Figure 6 

shows the AVEN, whose configuration allows for control in pitch, yaw, and any combination 

thereof.  

 

Figure 6: The GE Axis-Symmetric Vectoring Nozzle (AVEN) 

The F-16 is one of the most maneuverable fighters in the world, but at angles of attack 

between 30 and 50 degrees, directional stability is lost due to the blockage of the vertical tail by 

the fuselage. The aircraft achieves maximum lift at an angle of attack of 32 degrees but flight 

control limiters are required to restrict command of angle of attack to 25.5 degrees. With the 

implementation of MATV, the F-16 was able to perform maneuvers like the “cobra” and the “J-

turn”
32

. 

Researchers at the Wright Laboratory at Wright-Patterson AFB conducted a simulation study 

utilizing the modified F-16 with full-envelope control laws
33

. The research morphed from 
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simulations being conducted utilizing the Variable Stability In-Flight Simulator Test Aircraft 

(VISTA) and the MATV nozzle where they could assess performance during high angle of attack 

flight. The control system evaluated for this project incorporated thrust vectoring for both low 

and high angle of attack maneuvers. The thrust vectoring was employed during the simulated 

maneuvers to provide additional control power in pitch and yaw
33

.  

Aircraft spin is one of the most complex and dangerous phenomena encountered in flight. A 

significant portion of aircraft accidents, both military and general aviation, are stall/spin related 

incidents
34

. A study was performed by the Indian Institute of Technology Bombay, exploring the 

use of nonlinear dynamic inversion with and without thrust vectoring as a method for aircraft 

spin recovery. Thrust vectoring was utilized to add two additional control effectors; pitch thrust 

vector deflection and yaw thrust vector deflection. This allowed the dynamic inversion algorithm 

to compute five control commands as opposed to only three without the use of thrust vectoring. 

The additional control effectors improved the spin recovery performance and through 

simulations proved to decrease recovery time by nearly 60% by removing the need for the two-

step recovery procedure necessary without thrust vectoring capabilities
35

. 

Researchers at NASA Langley Research Center developed a method for integrating thrust 

vectoring with convention aerodynamic control within a high performance fighter aircraft
36

. The 

method of pseudo controls, where several aircraft controls are integrated to achieve a desired 

operation, was implemented within the lateral/directional controls of the aircraft. The 

experimental set of lateral/directional controls as applied to the thrust vectoring was utilized to 

enhance stability and maneuvering capabilities over an expanded flight envelope and high angles 

of attack. For this study, the NASA High-Alpha Research Vehicle (HARV) was used as it is a 

high performance twin-engine jet fighter aircraft modified to house a thrust-vectoring apparatus. 

The thrust vectoring integrated within the pseudo controls allowed for the development of 

moments about the aircraft body axes to satisfy requirements of the stability augmentation 

feedback loops, pilot commands, and inertial decoupling observed in flight. The thrust vectoring 

apparatus generated pitch, roll, and yaw control moments by exhaust plume deflection. 

Symmetric vertical deflections of the two engines produced a pitching moment, while 
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differential vertical deflections caused a rolling moment. Horizontal deflection of the engines 

provided the necessary yawing moments for the desired maneuvers. The roll and yaw thrust-

vector angles were commanded to be proportional to the roll and yaw pseudo control variables as 

follows
36

: 

 TVr TVrm rollv  
 

(2.1) 

 TVy TVym yawv  
 

(2.2)  
 

where vroll and vyaw are the pseudo roll and yaw controls, respectively, and δ represents the roll 

and yaw thrust vectoring deflection angles. 

 The thrust vectoring control moments were then proportional to the deflection angles and 

engine thrust. The following equations describe the roll and yaw moments produced by the thrust 

vectoring controls with respect to the body axes
36

: 

 

z
TV roll TV yaw

TV

l
L L v N v

l
 

 

(2.3) 

 TV yawN N v
 (2.4) 

where L and N are the roll and yaw control moments, lz is he distance of the thrust vectored 

nozzles below the aircraft CG, and lTV is the distance from the CG to the thrust vectored nozzles. 

 The rolling and yawing moment capabilities of the thrust vectoring controls were a function 

of the maximum rolling and yawing thrust vector angle, respectively, the total engine thrust, the 

lateral position of the engines and the longitudinal distance between the vectoring nozzles and 

the airplane CG, respectively
36

.  

 180
TV y TVrmL l T




 
  

   

(2.5) 

 180
TV TV TVymN l T




 
  

   (2.6) 



17 

 

where ly is the lateral distance from the aircraft centerline to the nozzles. 

 Within the simulation studies, NASA researchers were able to schedule the thrust vectoring 

usage based on the relative effectiveness to that of aerodynamic controls. Additionally, a 

calculation of the interference in the lateral accelerometer output caused by the thrust vectoring 

was incorporated to correct the acceleration feedback signals in the pseudo controls
36

. Similar 

work was done using the same HARV platform at NASA Dryden Flight Research Center in the 

development of a research flight control system (RFCS) that incorporated a thrust-vectoring 

mixer
37

. The thrust-vectoring vanes on the HARV were incorporated within the flight control 

laws through a mixer which translated the pitch and yaw thrust vectoring commands from the 

RFCS into vane commands. The mixer was utilized to “compute the proper thrust-vane 

deflections required to achieve the desired moments”
37

. 

 Another thrust vectoring technique was explored at the University of Manchester, where 

fluidic thrust vectoring of low observable unmanned air vehicles was utilized
38

. A summary of 

fluidic thrust vectoring concepts is found in a paper by Gridley and Walker
39

. The method 

explored in this study used a coflow of fluid along a Coanda surface to vector the exhaust. The 

Coanda effect is the tendency of a moving fluid to adhere to a solid curved surface
40

. A 

secondary jet is blown along the Coanda surface which causes the exhaust to bend towards this 

curved surface, resulting in thrust vectoring. This study found that at low secondary jet mass 

flow rates, a “dead zone” appeared. This “dead zone” was dependent on the diameter of the 

Coanda surface, and the mass flow rate of the secondary flow. This method was found to 

successfully vector the thrust by a small amount, but proved to only provide small forces in the 

vectored directions
38

. 

 Additional control capabilities result from thrust vectoring techniques, but often the 

implementation of thrust vectoring using exhaust flaps and nozzle deflections lead to increased 

weight and decreased efficiency. Lockheed Martin Aeronautics Company demonstrated the use 

of fluidic throat skewing for thrust vectoring in structurally fixed nozzles. It was found through 

experimentation data, that “fluidic throat skewing is an effective and efficient means of 
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providing multi-axis thrust vectoring control in a fixed-geometry nozzle.” The quantification of 

the result was that 2 degrees yaw or 1.7 degrees pitch were achieved for every 1 percent of 

injected mass flow. This study also found that this method of thrust vectoring achieved multi-

axis control without significant impacts on thrust efficiency
41

.  

 A computational study was conducted at NASA Langley Research Center on fluidic thrust 

vectoring where three-dimensional simulations of a two-dimensional convergent-divergent 

nozzle with fluidic injection for pitch vector control was implemented. The computational fluid 

dynamics (CFD) code PAB was used with turbulence closure and linear Reynolds stress 

modeling, and simulations were conducted with static freestream conditions (M = 0.05) at range 

of Mach numbers from 0.3 to 1.2. The goal of the research was to show possible advantages of 

fluidic thrust vectoring since moving mechanical hardware is not involved, improving aircraft 

weight and drag compared to mechanical thrust vectoring
42

. 

 Fluidic injection for thrust vectoring has been studied since the 1990‟s, and concepts such as 

throat skewing and shock vector control have begun to mature
42,51,52,53

. The study conducted at 

NASA Langley focused on initiating external flow effects on the fluidic thrust vectoring. A 

secondary air stream was injected through an opening on the lower divergent wall of the nozzle, 

and the CFD code was utilize to simulate the nozzle at specified pressure ratios. The 

implemented code solved the three-dimensional Reynolds-averaged Navier-Stokes (RANS) 

equations and implemented turbulence modeling to predict the solutions across many flow fields. 

Runs were conducted at static conditions with no fluidic injection to establish a baseline. A 

scenario matrix was run for different freestream conditions and nozzle pressure ratio 

combinations to achieve an overview of the performance. This study showed that the freestream 

flow decreased the vectoring performance and thrust efficiency when compared to static 

conditions. Specifically, the aerodynamic penalty to thrust vector angles was found to be 

between 1.5 degrees to 2.9 degrees based on the nozzle pressure ratio and Mach conditions
42

. 

Figure 7 shows one of the runs for a static (M=0.05) free stream condition with a nozzle pressure 

ratio of 5.2. 
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Figure 7: Mach Contours along Nozzle Centerline with NPR of 5.2 (Reproduced from 

Reference 42) 

2.4 UAV Use of Differential Thrust and Thrust Vectoring 

With the increased use of UAVs for research and military applications, there has been a 

growing need for advanced control design. As technology advances and drives the progression of 

UAV design, there is a push to reduce the size, noise, power usage, and cost of these platforms. 

Additionally, the use of differential thrust and thrust vectoring has become an appealing option 

to assist in the control and maneuvering of these aircraft. 

 Researchers at the California Institute of Technology developed the Caltech ducted fan 

(described in Section 2.1), a research platform utilizing a ducted fan to develop control laws 

applicable to UAVs
8
. One study

43,44
 focused on controlling the ducted fan in forward flight and 

modeled it as a thrust vectored flying wing within a simulator for application within UAV flight 

control laws. The Boeing Company is developing a solar-powered, long-duration aircraft, the 

Solar Eagle
45

, which may employ differential thrust for lateral-directional control. With 

computer-controlled asymmetric thrust capabilities on unmanned aircraft, the control system has 

an additional degree of freedom. Other research has considered using propulsion-only control for 
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small UAVs, such as the quad-rotor design
46

. In the quad-rotor UAV, the vehicle consists of four 

electric-motor-driven propellers that provide both attitude control and propulsion. Figure 8 

shows a schematic of a typical quadrotor design. 

 

Figure 8: Quadrotor Schematic (Reproduced from Reference 47) 

Researchers at Auckland University of Technology in New Zealand developed a quad-rotor 

UAV that is capable of vertical takeoff and landing (VTOL), hover, and transitioning between 

vertical and horizontal flight. The zero-angular-momentum (ZAM) UAV was designed as a 

research platform to test control algorithms to assist a pilot in the transition between vertical and 

horizontal flight when remotely operating the aircraft. Attitude adjustments are made through the 

complimentary pairing of rotors to maintain zero angular momentum while adjusting the 

orientation
46

. These types of VTOL UAVs are becoming increasingly appealing due to their 

ability to perform in urban, mountainous, and maritime environments, i.e. low altitude operating 

environments. Typically these aircraft will be smaller in size and lower in weight, and they can 

operate below controlled airspace free from cloud coverage. With the smaller size and lower cost 

of these platforms, they are also a strong candidate to perform in UAV swarms
48

.  

Following the September 11, 2001 attacks on the United States of America, research of the 

application of small VTOL UAVs for spying and defense has seen a substantial increase. VTOL 
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Technologies, a British company, has been developing a VTOL UAV that combines a flying 

wing with four thrust vectored motors. In 2009, the company completed a proof-of-concept study 

to showcase their ability to decrease weight by reducing the number of redundant mechanical 

systems. Additionally, VTOL Technologies described some of the advanced features that allow 

the UAV to maintain flight in adverse conditions utilizing thrust vectoring capabilities. The 

thrust vectoring capability allows the aircraft to have “almost instantaneous stall recovery, gust 

insensitivity, reverse thrust to enable the platform to be „sucked down‟ onto the deck of a ship 

pitching in heavy seas, and minimum power to rotate the thrust vectoring propulsion units”
49,50

. 

The modeling, control, and flight testing of a ducted fan aircraft known as the GTSpy was 

performed at Georgia Institute of Technology. The objective of the study was to use dynamic 

inversion and neural network adaptation to develop an adaptive controller for the aircraft. The 

modeling process focused on the major forces and moments acting on the vehicle. The exact 

values of these parameters were of secondary importance behind the proper functional 

dependence, correct sense, and order of magnitude. 

“The basic dynamic equations are given as:  
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in which pϵR
3
 represents the position vector, v ϵR

3 
is the velocity vector, q ϵR

4
 is the quaternion 

vector, and ωϵR
3
 represents the angular velocity vector. The vehicle mass is represented by m, i q 

represents the four components of the quaternion vector3, I is the vehicle inertia matrix, and the 
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F and M terms represent the sum of external forces and moment vectors acting on the vehicle
54

.” 

The force and moment vectors can be expressed as: 

 gear aero rotor duct cs gravF F F F F F F     
 

(2.11) 

 gear aero rotor duct cs gyroM M M M M M M     
 (2.12) 

 

Figure 9: The GTSpy Small Ducted Fan Aircraft (Reproduced from Reference 54) 

Errors in the model were successfully corrected for using the neural network adaptive 

controller. This model was successfully implemented in the feedback linearization through 

dynamic inversion. This approach has been proven to work on other vehicles and was found to 

be well suited to the small ducted fan GTSpy
54

. The force and moment parameters used in this 

study are applicable to the ducted fan aircraft configuration shown in Figure 9, but many of these 

terms will be negligible when applied to a conventional style aircraft with ducted fan propulsion.  

The Damselfly tactical UAV, built by SELEX Sensors and Airborne Systems, combines 

VTOL with a smooth transition to horizontal flight with thrust vectoring capabilities. The 

Damselfly operates in a quadrotor setup that allows the aircraft to take off and land within a 

constrained space and reach top speeds of 280 km/h. In April 2007 a subscale 1 m version of the 

aircraft powered only by electricity, completed successful hover trials and in November 
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demonstrated transition between vertical and horizontal flight once fitted with an internal 

combustion engine
55

. 

Researchers at the Department of Aerospace Sciences at Cranfield University in partnership 

with BAE Systems completed a computational investigation of the DEMON unmanned air 

vehicle thrust vectoring system
56

. The investigation studied the interaction of the thrust vectoring 

from the main engine with the subsonic flow around the DEMON UAV. The unmanned aircraft 

platform consisted of a cropped diamond wing planform and lacked a tail. Several simulations 

sets were run to evaluate the thrust vectoring jet entrainment effects caused by the aerodynamic 

forces and moments at varying angles of attack and flight speeds. Noting that a primary 

advantage of thrust vectoring is an increase in control moments unaffected by angle of attack, the 

study sought to show thrust vectoring as a feasible method to control the unmanned aircraft 

under high angle of attack conditions
56

. 

Although static thrust measurements provide an ideal estimate of the normal force 

component developed from thrust vectoring, additional contributions occur in nature from jet-

induced interference. This is due to the external flow of air altering the jet angle through a 

change in the pressure distribution. These induced forces must be added to the reaction forces to 

estimate the deflection angle of the jet through thrust vectoring. The computation study assessed 

these forces caused by fluidic thrust vectoring on the DEMON UAV to demonstrate longitudinal 

control without relying on aerodynamic surfaces. Results from the study showed that the pitching 

moment generated by the thrust vectoring was the primary component responsible for the jet-lift 

portion of the nozzle resultant thrust. The jet-interference contributions were found to not be 

negligible, and in some cases, proved beneficial in improving thrust vectoring performance. 

Additionally, the forces and moments caused by thrust vectoring were found to be independent 

of angle of attack, reaffirming its potential use at high angle of attack flight for UAVs. It was 

concluded that “reaction forces induced by the modified pressure on the integrated boundary of 

the body results in an enhancement of the thrust vectoring effectiveness in producing the forces 

and moments required for the flight vehicle trim and maneuvering”
56

. 
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Due to the nature of this research project, there is a limited amounted of directly related 

information. This literature review serves to explore the research topics that are closely related to 

the topic of this thesis but does not guarantee that the methods described were implemented in 

this research. Control systems utilizing differential thrust in the feedback were explored to better 

understand future applications of this work. Several thrust vectoring techniques were examined 

to gain a global understanding of research efforts in this field. This research is unique in that it 

utilizes ducted fan propulsion on a conventional configuration aircraft, while implementing 

thrust vectoring through rotational deflections of the entire duct. The aircraft response to 

differential thrust and thrust vectoring is very configuration dependent, changing with motor 

mounting location, inertial properties of the aircraft, and propulsive forces.  
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3. WVU Propulsion Assisted Control Test Bed 

  The following sections describe the WVU PAC research aircraft platform and its 

capabilities for flight testing.  

3.1 Propulsion Assisted Control Aircraft System 

 The WVU PAC research aircraft is an unmanned radio-controlled aircraft designed, 

constructed, and instrumented at West Virginia University and is continuously adapted for 

various research projects
57

. The fuselage is a carbon fiber and fiberglass composite body with 

plywood bulkheads within the aircraft body for structural integrity. The propulsion system 

consists of two 90 mm ducted fans, each powered by a brushless in-runner motor. These motors 

provide approximately 28.9 N (6.5 lbs) of thrust each for a total thrust of approximately 57.83 N 

(13 lbs). The aircraft is a T-tail configuration and has winglets mounted on the tips of the wings. 

The primary control surfaces – ailerons, elevators, and a rudder – are all commanded using 

digital servos. The takeoff weight is approximately 10.43 kg including an electronic payload 

consisting of an on-board computer utilizing a MOD-5213 microcontroller, several printed 

circuit boards for signal routing and hardware interfacing, a 6 DOF inertial measurement unit 

(IMU) and a Novatel 50Hz OEM-V GPS receiver. Figure 10 shows the PAC aircraft in flight.  

 

Figure 10: WVU Propulsion Assisted Control Test Bed 

Table 1 shows some of the geometric parameters of the PAC Aircraft, for the wing, horizontal 

tail, and vertical tail.  
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 Table 1: Geometric Parameters of the PAC Aircraft 

Total Wing Estimation 
HORIZONTAL TAIL  

(including elevators) 

VERTICAL TAIL  

(including rudder) 

Dimension Value Units Dimension Value Units Dimension Value Units 

AR 6.758 - ARH 4  - ARV 1.92  - 

ΛLE 0 (deg) ΛLE 5.04 (deg) ΛLE 21.09 (deg) 

Λ0.25 -1.77 (deg) Λ0.5 0.84 (deg) Λ0.5 10.3 (deg) 

Λ0.5 -3.58 (deg) Λ0.25 2.95 (deg) Λ0.25 15.24 (deg) 

  12 (in) 
 

8.38 (in) 
 

11.44 (in) 

b 80.25 (in) bH 34 (in) bV 11 (in) 

S 952.97 (in
2
) SH 288.94 (in

2
) SV 251.56 (in

2
) 

3.2 PAC Onboard Computer 

 The Advanced Research Integrated Avionic (ARIA) System was specifically developed for 

the PAC aircraft to test fault-tolerant flight control laws. This computer was developed by 

researchers at WVU, and was designed to have four Printed Circuit Boards (PCBs) with each 

providing a specific function to the system. The top most board is a custom designed printed 

circuit board which includes a compact flash card reader, a GPS receiver, indicator LEDs, and 

microSD data recorders. The second board is a Single Board Computer (SBC) with four serial 

ports. The third board is a PC-104 power supply with extra RS-232 serial ports. The bottom-most 

board is a custom board that was designed to act as a signal distribution system and an interface 

to onboard sensors. ARIA was also integrated with a MEMS IMU on the bottom board, and the 

need for a vertical gyroscope was eliminated by the use of a GPS/INS sensor fusion algorithm, 

thus reducing the platform weight
58,59

. Figure 11 shows the ARIA System developed for the PAC 

research aircraft. 
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Figure 11: ARIA System (Reproduced from References 58, 59)  

 ARIA consists of a 32-bit 66 MHz Freescale ColdFire MOD 5213® microprocessor 

integrated with a real-time operating system. The MOD 5213 enables the prioritization of tasks, 

such as interfacing with the MEMS IMU and reading control command signals from a ground 

pilot, with seven interrupt levels. The microprocessor also may receive inertial information 

through a serial peripheral interface (SPI) from a high precision tri-axis IMU made by Analog 

Devices. This allows for the recording of inertial information such as three-axis acceleration and 

angular rates. The primary flight computer within the ARIA system is the Diamond Systems‟ 

800 MHz Athena II general purpose SBC. The ARIA System provides six RS-232 ports for 

communication with devices such as the embedded microprocessor, GPS unit interface, and an 

RF modem
59

. 

3.3 PAC Sensors and Communication Hardware 

 The WVU PAC aircraft is instrumented with a complete sensor suite for measuring flight 

data parameters. A MEMS IMU integrated on the PCB provides measurements of the linear 

accelerations and angular rates, while a GPS receiver provides position and velocity information 



28 

 

in three dimensions with respect to the earth centered earth fixed (ECEF) reference frame. A 

GPS/INS sensor fusion algorithm provides pitch and roll information for the aircraft, and allows 

for the elimination of the vertical gyroscope. Vanes designed and manufactured in-house are 

attached to frictionless potentiometers to provide measurements of the angle of attack and 

sideslip angle. The control surface deflections are determined through the measurement of the 

pilot inputs onboard the aircraft. A relationship between the commanded input and the actuator 

model was established to determine the control surface deflections. The following lists some of 

the sensor specifications for the suite onboard the PAC research aircraft
60

:  

 Inertial Measurement Unit (ADIS 16355® IMU), providing 14-bit measurements for the 

accelerations ax, ay, az (range ±10 g), and the angular rates p, q, and r (range ±150°/sec). 

 GPS Receiver (Novatel-OEM1), providing measurements for x, y, z, Vx, Vy, Vz with 

respect to an earth reference frame.  

 Vanes (designed/constructed at WVU), providing measurements of flow angles α and β, 

with ranges of ±30°.  

 Laser Range Finder with an accuracy of +/-1 m. 

 Temperature/Humidity Sensor with an accuracy of +/-3% RH 

 Castle Creations Electronic Speed Controller capable of recording motor RPM, battery 

voltage, current draw, speed controller temperature, power usage, and throttle setting. 

 Pitot Tube and Pressure Sensors for obtaining air speed.  
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4. Thrust Force Modeling 

4.1 Static Thrust Force Modeling 

 In order to properly implement differential thrust and thrust vectoring on the aircraft, a 

complete understanding of the forces generated by the motors must exist. This equates to 

identifying how the thrust forces change as a function of changes in the throttle setting, wind 

speed, and the angle of attack of the motor. Identifying the effects of these parameters on the 

total thrust of the motor was accomplished by dividing the testing into two categories: static 

thrust testing and dynamic thrust testing. The static thrust testing allowed for the establishment 

of the relationship between commanded pulse width modulation (PWM), RPM, and thrust. The 

dynamic thrust established the relationship between PWM, airspeed, angle of attack, and thrust. 

Understanding the results of these two tests allowed for the modeling of the forces generated by 

the motor in various flight conditions.  

 The static thrust is the thrust produced by the engine when it is stationary or not moving 

through the air. This basic test serves as a good starting point for modeling the capabilities of the 

motor. Figure 12 shows the test setup used to obtain the static thrust mapping.  

 

Figure 12: Static Thrust Testing Setup 
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 The test setup consisted of a mount to stabilize the motor in a vertical position, a scale for 

measuring thrust, and a data recorder board for recording the throttle command (PWM). The 

motor was placed in the mount so that the force produced by the motor would point directly 

downward. This mount was placed on the scale so that an increase in thrust would correspond to 

an increased “weight” read by the scale. The motor was connected to a Phoenix Ice 100 speed 

controller which converts the PWM signal into a voltage to drive the motor. This speed 

controller was selected because of its logging capability, which was utilized to record the RPM 

of the motor as well as the power driving the system. The speed controller was connected to a 

2.4GHz receiver through a “Y” harness, so that the command going to the speed controller could 

also be sent to the data recorder board.  

The test consisted of setting the throttle on the transmitter to a user defined value, and 

reading the corresponding force applied to the scale. This was repeated as the throttle was 

stepped down from full to zero throttle, so that the thrust level would not be affected by a 

decreased voltage in the battery as the test was performed. Once the entire range of throttle 

settings had been explored, the recorded data was downloaded from the recorder board and the 

speed controller. The PWM and RPM values were recorded and matched to the corresponding 

forces. From this a mapping could be produced between any of these three parameters. This 

experimental process was repeated three times, each time with a fresh battery and covering the 

entire operational range of the motor, to obtain a more accurate relationship which helped to 

mitigate errors due to varying battery voltage, imperfections in motor mounting, and other 

unforeseen errors.  

Table 2 shows the results from the first static thrust test performed.  
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Table 2: Static Thrust Measurements for Test One 

Data Number RPM (Rounded) PWM  Thrust (lbs) Thrust (Newtons) 

1 32100 207 6.5 28.9 

2 28500 188 5.2 23.1 

3 27000 178 4.6 20.5 

4 25000 166 3.9 17.3 

5 23500 160 3.5 15.6 

6 19800 142 2.4 10.7 

7 17000 129 1.7 7.6 

8 15800 122 1.5 6.7 

9 14500 117 1.3 5.8 

10 12000 103 0.8 3.6 

11 9000 92 0.4 1.8 

12 5400 81 0.1 0.4 

Table 3 shows the second set of data collected from the static thrust testing. Comparing  

Table 2 and Table 3, it should be noted that the same throttle settings were not used for both 

tests. This was in an attempt to validate several points and gain additional points along the curve 

to establish the relationship between the parameters.  

Table 3: Static Thrust Measurements for Test Two 

Data Number RPM (Rounded) PWM  Thrust (lbs) Thrust (Newtons) 

13 32300 207 6.6 29.4 

14 29000 188 5.3 23.6 

15 27000 177 4.6 20.5 

16 25000 166 3.9 17.3 

17 22500 153 3 13.3 

18 21000 147 2.7 12.0 

19 19700 141 2.4 10.7 

20 18100 134 2.1 9.3 

21 17000 128 1.7 7.6 

22 15500 122 1.5 6.7 

23 13250 110 1 4.4 

24 10300 97 0.6 2.7 

25 7350 86 0.3 1.3 

26 0 67 0 0.0 
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Table 4 shows the third set of data collected from the static thrust testing. Again the throttle 

settings were determined at the discretion of the experimenter at the time of testing.  

Table 4: Static Thrust Measurements for Test Three 

Data Number RPM (Rounded) PWM  Thrust (lbs) Thrust (Newtons) 

27 32000 207 6.5 28.9 

28 29750 193 5.5 24.5 

29 27800 182 4.8 21.4 

30 25900 172 4.1 18.2 

31 24700 166 3.8 16.9 

32 23300 159 3.4 15.1 

33 22200 153 3 13.3 

34 19700 141 2.4 10.7 

35 18300 135 2 8.9 

36 17000 128 1.7 7.6 

37 14600 116 1.3 5.8 

38 12000 104 0.8 3.6 

39 9000 92 0.5 2.2 

40 7300 86 0.3 1.3 

41 5100 80 0.1 0.4 

42 0 67 0 0.0 

 

These data sets were plotted together to produce a second order polynomial curve fit. An 

expression for determining the thrust given a PWM was desired since the PWM is the signal 

which is commanded through the onboard computer. For this reason, the PWM data points were 

plotted on the x-axis while the thrust data points were plotted on the y-axis. Figure 13 shows the 

plotted data points along with the second order polynomial trend line. Eq. (4.1) shows the 

relationship defined by the second order polynomial curve fit where y is the thrust produced by 

the motor in Newtons, and x is the commanded PWM signal.  



33 

 

 

Figure 13: Relationship between PWM and Thrust Established from Static Thrust Testing 

 

 2y  0.0010x  0.0504x  1.4819    (4.1) 

4.2 Transient Response 

The transient response of the motor was found by comparing the timing between the input 

signal and the motor response. These signals were recorded using the Castle Creations electronic 

speed controller logging capability. Figure 14 shows the throttle command and the RPM 

response to that input.  
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Figure 14: Normalized Throttle Command and RPM Response Time 

The magnitudes of the input and response have been normalized to more easily observe the 

difference between the two signals. The test was performed by repeatedly stepping the throttle 

down from full throttle until zero RPM was achieved. The delay was determined by measuring 

the lag between the input signal and the commanded output. Figure 15 shows the delay 

throughout the test to be approximately .02 seconds. This value can be considered negligible 

when modeling the motor dynamics. The large spikes seen in the plot are from imperfections in 

the data caused by drop outs and noise.  
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Figure 15: Transient Response of the Motor to a Throttle Command 

4.3 Wind Tunnel Testing 

One way to analyze the dynamic thrust is to use the momentum formulation of Reynolds 

Transport Theorem
61

. Equation (4.2) shows this formulation where ρ is the density of the fluid, v 

is the velocity, V is volume, M is the momentum, n is a unit vector, and S is the control surface.  

  
V S

dM d
vdV v v n dS

dt dt
      (4.2) 

This expression is simplified by eliminating the triple integral because of steady flow. The 

(v∙n)dS term can be rewritten as the product of the velocity and the change in the area. This 

expression now becomes Newton‟s second law. 

 ( )
S

dM
F v vdA

dt
    (4.3) 
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Figure 16: Control Volume Defined for Reynolds Transport Theorem 

The integral is evaluated at the inlet and exit of the control volume shown in Figure 16, ignoring 

the static pressure difference, so that the expression becomes: 

  * ( )*out out out in in inT v A v v A v    (4.4) 

 This value for dynamic thrust was used in the force and moment equations as part of the 

nominal and differential thrust modeling processes. A full momentum exchange is assumed to 

establish a relationship between the inlet and exit. With respect to the ducted fans, the air that 

enters the front of the duct must also exit the duct. A simple expression can be derived for this 

relationship using the volumetric flow rate
62

. 

 i eQ Q
 (4.5)

 

 The volumetric flow rate Q  was found using Eq. (4.6) where A represents the area of the inlet 

or exit of the control volume, and v represents the average velocity of the flow, assuming no 

losses in the system.   

 Q Av  (4.6) 

The area of the duct was found using the expression for the area of a circle. Combining Eq. (4.5) 

and Eq.(4.6), and including the expression for the respective areas of the inlet and exit, Eq. (4.7) 
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may be defined as:
 
 

 

2 2

4 4

i e

i e

d d
v v

 


 (4.7) 

Equation (4.7) neglects the area of the hub with the assumption that the control volume exceeds 

the ducted fan beyond where the hub is present. The velocity at the exit of the duct was 

determined experimentally using wind tunnel experiments implementing a wake rake, while the 

velocity at the inlet was calculated using Eq. (4.7). The wake rake utilizes 5 static ports and forty 

stagnation ports, whose difference defines the dynamic pressure measurement. The velocities 

were derived from wind tunnel measurements as a function of a pressure differential recorded 

using manometers. The pressures measured by the wake rake were converted to a velocity using 

the expression shown in Eq. (4.8), where ρ is the air density, and pe is the exit pressure defined 

as the difference between stagnation pressure and static pressure.
 

 
2

e
p

V


  (4.8) 

The air density was found using Eq. (4.9) where p∞ is the pressure at infinity, R is the universal 

gas constant, and Ttunnel is the temperature inside the tunnel.  

 
air tunnel

p

R T
   (4.9) 

The wind tunnel experiments were used to identify how the dynamic thrust of the motor is 

affected by the throttle setting, wind speed, and angle of attack. A predefined angle of attack and 

wind speed were held constant while the throttle setting was cycled through six positions ranging 

from zero to half throttle. The wind speed was then set to a new, predefined value while the 

angle of attack was held constant. The throttle was again cycled through the same values. This 

process was repeated until the eleven desired air speeds ranging from 0 m/s to approximately 30 

m/s were evaluated. Once all of the air speed and throttle setting combinations were tested, the 

angle of attack of the motor was changed to the next specified value. Figure 17 shows the ducted 

fan mounted in the wind tunnel with the wake rake positioned at the duct exit.  
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Figure 17: Ducted Fan and Wake Rake in Wind Tunnel 

This testing scheme allowed for the evaluation of the dynamic thrust at constant throttle 

settings with varying wind speeds and angle of attack. Table 5 shows the testing matrix used to 

identify the dynamic thrust.  

Table 5: Wind Tunnel Testing Scheme with Recorded Motor RPM Values 

 Air Speed (m/s) 

Throttle Setting 0 9.222 13.042 15.974 18.445 20.622 22.59 24.4 26.085 27.667 29.164 

0 Clicks (trim) 0 0 0 0 0 0 0 0 0 0 0 

10 Clicks (trim) 5385.2 5806.75 5793.7 6024.4 6112.75 6348.5 6833 6867.25 7016.35 7307.25 7490.45 

20 Clicks (trim) 10700.2 10991.05 10802.5 10785.3 10705.05 10772.85 11418.5 11317.5 11235.95 11317.5 11317.5 

30 Clicks (trim) 14198 14439 14184.4 14069.7 13908 13832.5 14604 14439 14266.2 14227.15 14217.5 

3/8 Throttle 17748.5 18221.8 18004 17570.5 17480 17502.15 18393.5 18022.3 17996.7 17714.2 17640.45 

1/2 Throttle 23051.75 23000 22689.8 22535 22289 22144 23043.5 22718.8 22535 22436 22281.15 

An accurate way to interpret the pressure measurments obtained using the wake rake, would 

be to multiply the derived velocity of a single stagnation port by the incremental area associated 

with that port location. This would be repeated for each stagnation port in the slip stream and 

these products would then be added together to obtain the average exit velocity. Figure 18 shows 

an example of the segmentation of the exit area, corresponding to the stagnation ports on the 

wake rake.  

 i i
avg

Total

V A
V

A
  (4.10) 
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Figure 18: Incremental Areas Corresponding to Respective Stagnation Ports 

 This method was not used due to limitations in the test setup. The manometer bank used to 

read the wake rake pressures contained leaks and therefore rendered this incremental method 

unusable. Alternatively, several accurate ports were selected along the exit profile and their 

average was assumed to be the total exit pressure and average exit velocity. Some error could be 

associated with this assumption. A comparison of the wind tunnel tests and static thrust was 

performed by looking at the error between the dynamic thrust measurement at zero wind speed 

and the static thrust mapping. Table 6 shows the thrust values for a given RPM found through 

wind tunnel tests at zero wind speed and the static thrust mapping.  

Table 6: Wind Tunnel Thrust Measurements and Static Thrust Comparison 

RPM  

Thrust Measured with 
Wind Tunnel (N) 

Thrust Calculated with Static 
 Thrust Mapping (N) 

% Error 
 

0 0 0 0 

5300 0.48 0.56 14.29 

11000 3.19 3.07 3.91 

14200 5.43 5.33 1.88 

18100 9.1 8.91 2.13 

23000 14.86 14.7 1.09 
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 Figure 19 shows how the thrust changes at constant RPM values with an increasing wind 

speed. This change in thrust signifies how much the thrust is affected by wind speed at the given 

RPM values.  

 

Figure 19: Change in Thrust for Constant RPM and Varying Wind Speed 

 It is shown in the plots that at lower RPM values the thrust begins to drop off with an 

increase in air speed, while at higher RPM values the thrust first increases before decreasing. The 

sharp increase in thrust occurring around 22 m/s is due to a higher voltage on the battery. The 

test was performed with one battery for the first half of the data points, and then a second fresh 

battery was used for the second half of the data points. A constant power supply was considered 

but due to the high current draw of the motor (50 amps), the battery was a better option. The 

trend matches the theory that an increase in air speed decreases the velocity differential from the 

inlet of the duct to the exit of the duct. A decrease in the velocity differential means a decrease in 

thrust according to the conservation of mass. An increased air speed also assists in forcing more 
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air into the duct and therefore produces a slight increase in thrust. However, this slight thrust 

increase does not offset the loss of thrust from the reduction in velocity differential from the inlet 

to the outlet of the duct. Drag was not measured in this experiment and therefore must be 

subtracted out, along with the overall drag of the aircraft, during the aircraft modeling process.  

 Data was also collected at various angles of attack ranging from zero up to 30 degrees to test 

stall on the propeller. The wake rake was still positions directly behind the duct to measure the 

flow being forced straight out the duct exit. Once again drag was not measured during these 

experiments. At the various angles of attack, the difference in thrust was again measured using 

the procedure described above to assure that during the tested range, there is no stall on the 

propeller.  

 At the testing conditions, minimal changes were observed for a difference in thrust. The 

forward thrust becomes a function of the angle of attack but this was modeled outside of this 

experiment. The results of this test showed that the motor performance was not affected by 

angles of attack less than 30 degrees, with respect to propeller stall.  
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5. Simulator 

5.1 Overview of the Simulator  

The WVU PAC simulator is based in the Flight Dynamics and Control (FDC) toolbox
63

. 

FDC is a graphical tool used to design, develop, and analyze flight dynamics and control systems 

in a MATLAB and Simulink environment. It was originally developed to aid in the design of an 

auto-pilot for the Beaver aircraft but now has evolved into an advanced “proof of concept” 

package, which can be easily modified to model different aircraft, and analyze their flight 

characteristics
63

. The WVU FCSL has developed a model of the PAC testbed which was inserted 

into FDC to design and test various control laws and flight configurations. Figure 20 shows the 

FDC graphical tool used at WVU.  

 

Figure 20: FDC Block Diagram 
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The PAC Testbed block models the aircraft using the stability and control derivatives, as well 

as models the control surface deflections and the propulsive forces. Figure 21 shows inside the 

PAC Testbed block, where changes to the aircraft model were implemented.  

 

Figure 21: Aircraft Modeling Block 

The forces and moments caused by the propulsion system are critical to the design of differential 

thrust and thrust vectoring. These forces and moments were modeled inside the actuators block, 

along with the control surface deflections. Figure 22 shows the control surface deflections driven 

by the commands from the controller output.  
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Figure 22: Actuators Block 

5.2 Differential Thrust and Thrust Vectoring Simulator 

The engine model block was developed to determine the propulsion forces and moments. 

Figure 23 shows the structure of the engine model, with propulsion assisted control capability.  

 

Figure 23: Engine Model for Differential Thrust and Thrust Vectoring 
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The modeling of the engine occurred in several steps. First, the relationship gained from the 

static thrust testing, which converts a PWM signal to a thrust value, was implemented using a 

polynomial block. The PWM command was generated by the controller using the inverse 

relationship, based on the required level of thrust. If no thrust vectoring or differential thrust was 

necessary, this polynomial relationship is sufficient to model the propulsive forces. The net force 

produced from the engine thrust would be acting along the x-axis of the aircraft and the other 

forces and moments would be equal to zero under nominal conditions. The introduction of 

differential thrust and thrust vectoring causes these other parameters to be non-zero. The 

mathematical modeling of these non-zero forces and moments are described in detail in the 

following sections of this paper.  

 The differential thrust forces were introduced using the known geometry of the aircraft and 

the forces produced by the motors. They were modeled as a moment balance between the 

counteracting moments produced by each motor mounted off of the x-axis of the aircraft. When 

the thrust forces produced from each engine are equivalent, the total z-moment is zero; however, 

when the forces are not equal, a non-zero z-moment is introduced. A gain on each motor is used 

to model the level of thrust produced, with a value of 1.0 signifying the actual commanded 

PWM. A number less than 1.0 would decrease the thrust to a value less than the commanded 

PWM, while a number greater than 1.0 would increase the thrust to a value greater than the 

commanded PWM. This allowed for the independent control of thrust produced by each motor. 

The total force along the x-axis is equal to the sum of these two values. After setting the thrust 

value on each motor, the force is multiplied by the moment arm as determined from the aircraft 

geometry. These two moments are added, leading to the resultant z-moment. A thrust differential 

implemented for the configuration of the WVU PAC testbed only adds a moment about the 

aircraft body z-axis, assuming the thrust line runs perfectly through the CG.  

The implementation of thrust vectoring into the simulator required additional changes. It was 

designed to work in conjunction with the differential thrust model implementation as to 

accommodate for future research applications where the two methods could be used 

simultaneously. The addition of thrust vectoring introduces a force component along the z-axis 
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of the aircraft. This additional force also produces a pitching moment about the y-axis of the 

aircraft. The additional force component along the z-axis was modeled by multiplying the thrust 

force by the sine of the thrust vector angle. Additionally, the force along the x-axis could no 

longer be considered as the total combined force from the two engines. Instead, it was modeled 

as the cosine of the thrust vector angle multiplied by the force. Once the force along the z-axis is 

determined, it is inverted to follow the z-body-axis positive down convention. The force from 

each engine along the z-axis is then multiplied by the moment arm determined by the geometry 

of the aircraft. This yields the magnitude of the pitching moment about the y-axis. A 

combination of differential thrust and thrust vectoring was modeled by comparing the 

counteracting moments produced by the forces along the z-axis, multiplied by the moment arm 

from the engines to the body x-axis.  
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6. Differential Thrust 

6.1 Differential Trust Modeling 

A thrust differential creates additional forces and moments that require modeling for estimating 

the stability and control derivatives
64-66,67

.  

 The differential thrust may be defined based on the aircraft geometry and the asymmetric 

thrust between the two motors. The motors are mounted off of the x-axis of the aircraft behind 

the center of gravity (CG) and produce counteracting moments around the CG. The motor 

producing the greater thrust force will create a larger moment causing yawing motion about the 

aircraft z-axis. Eq. (6.1) shows the parameters that affect the moment caused by differential 

thrust.  

  , , , ,Left RightMoment f RPM RPM airspeed   (6.1) 

 In equation (6.1), RPMLeft and RPMRight are the revolutions per minute for the left and right 

motor respectively, λ is the angle of the motors with respect to the aircraft body x-axis, β is the 

sideslip angle, and airspeed is the flight speed of the aircraft. The resulting total moment applied 

to the aircraft is the difference between the moments produced by each motor. Figure 24 shows a 

conceptual sketch of the thrust differential and the resulting moment applied to the aircraft.  

 

Figure 24: Differential Thrust Definition 
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 The previously defined moment equations have additional terms corresponding to the yawing 

moment caused by the thrust differential that require modeling. Based on the aircraft geometry, 

differential thrust also results in an asymmetric pressure distribution on the vertical tail and 

generates a side force as well as additional yawing and rolling moments, but these effects are 

expected to be minimal
64-66

. Eq. (6.2) represents the moment equations in matrix form with the 

additional terms due to the incorporation of differential thrust. The terms TLeft and TRight 

correspond to the thrust produced by the left and right motors respectively, while lT is the 

moment arm between the thrust line of the motor and the x-axis of the aircraft.  

  

(6.2) 

In Eq. (6.2), the matrices M0, M1, and M2 are defined as follows: 

 

 
0

1

det( )

yy zz yz yz xy zz yz xz xy yz yy xz

xy zz yz xz xx zz xz xz yz xx xy xz

xy yz yy xz yz xx xy xz xx yy xy xy

I I J J J I J J J J I J

M J I J J I I J J J I J J
I

J J I J J I J J I I J J

   
 

    
    

 (6.3) 

 
1 0

0

0

0

yz yz

xz xz

xy xy

J J

M M J J

J J

 
 

  
  

 (6.4) 

 
2 0

yy zz xy xz

xy zz xx yz

xz yz xx yy

I I J J

M M J I I J

J J I I

  
 

   
   

 (6.5) 

 

with I being the inertia matrix of the aircraft, defined as: 
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The body-axis velocity equations are differentiated to give expressions for ,  and  ̇, and are 

represented by Eqs. (6.7)–(6.9)
64-66

. 

  
(6.7) 

  (6.8) 

  (6.9) 

Substituting the body-axis velocities and the updated force equations, the differential equations 

incorporating the differential thrust effects become:  
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6.2 Simulator Results for Differential Thrust 

The differential thrust simulations were performed to analyze the response of the aircraft to a 

thrust differential. Using the simulator described in Chapter 5 and utilizing the adapted engine 
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model, tests were run for various amounts of thrust differential while the roll angle was recorded. 

To exaggerate the effects of the differential thrust, larger differentials were tested including one 

motor producing zero thrust while the other produced a cruising thrust of 12 N. This test 

configuration simulated a motor failure during the cruise phase of flight. The roll angle was used 

to evaluate the effects of the thrust differential while the rudder and ailerons were set to zero 

deflection. As mentioned earlier in this paper, a differential thrust generates sideslip which, 

through the dihedral effect, causes a rolling moment in the aircraft. Figure 25 shows the roll 

angle for a differential thrust of 12 N with zero deflection on the lateral-directional control 

surfaces. This appears to be a significant effect with the roll angle reaching approximately -25°. 

It should also be noted that there was no controller applied to this simulation to compensate for 

the differential thrust.  

 

Figure 25: Simulated Aircraft Roll Response to a Thrust Differential 
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In order to better quantify these effects, another simulation was run for the same thrust 

differential, but an aileron deflection was added to counteract the rolling moment. Various 

aileron deflections were tested until a value was reached which would maintain a roll angle of 

approximately zero degrees. This value was found to be 0.578° deflection on the ailerons. The 

rudder was still set at 0° and once again no controller aided in the compensation. The aileron 

deflection was held constant for the duration of the test, as was the level of differential thrust. 

Figure 26 shows the roll angle as well as the rudder deflection and the aileron deflection. The roll 

angle drifts slightly from zero degrees but is kept within a small magnitude. The implementation 

of a feedback controller could regulate the aileron deflection to maintain a zero rolling angle.  

 

Figure 26: Simulated Aircraft Roll Response to a Thrust Differential with Aileron 

Compensation 
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To understand the relationshiop between the differential thrust and rudder defletion, a linear 

quadradic regulator controller on the rudder channel was utilized to compensate for a differential 

thrust injected after 30 seconds of simulation, while the aileron deflection was set to zero. Figure 

27 shows the rudder deflection as driven by the feedback controller reaching a value of 

approximately -5 degrees.  

 
Figure 27: Rudder Compensation for a Differential Thrust of 12 N 

Finally, the simulations were run with the linear quadratic controller actively tracking a pitch 

and roll angle of 2° and 0° respectively. As the differential thrust was increased, the 

compensation from the ailerons and rudder increased. Figure 28 shows the roll angle, aileron 

deflection, and rudder deflection for thrust differentials of 0 N, 6 N, and 12 N.  
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Figure 28: Simulated Aircraft Response to a Thrust Differential 

The ailerons have a greater control authority when compensating for the cross coupled 

effects of roll and yaw produced by the differential thrust.  

6.3 Flight Test Results for Differential Thrust 

Flight tests were conducted with the WVU propulsion assisted control test bed implementing 

differential thrust. The differential thrust was controlled by the on board avionics that commands 

the PWM signal to the electronic speed controllers. The on-board computer was controlled by a 

switch on the transmitter, which gave timing authority of the differential thrust to the pilot. The 

tests were set up to mimic an engine failure implying that the commanded PWM to one of the 

speed controllers was such that the thrust produced was equal to zero. This experimental setup 

was selected to produce a large thrust differential in order to accentuate its effects on the aircraft 

for modeling purposes.  
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Three types of maneuvers were performed to evaluate the effectiveness of the differential 

thrust. The first maneuver incorporated a simulated failed motor by setting the thrust to zero, 

followed by a quick recovery back to cruising thrust. This test was selected because of its 

similarity to a control surface doublet. This was repeated five times while the angular 

displacements, angular rates, and GPS coordinates of the aircraft were recorded. The second type 

of maneuver was designed to simulate a longer engine failure for which the computer set one 

motor to zero thrust and the aircraft was flown “hands-off” so the natural dynamics of the aircraft 

driven by this failure could be observed. This maneuver was carried out for approximately 4.5 

seconds while the angular displacements and rates were recorded. The third type of maneuver 

consisted of an engine failure with a duration of 13 seconds, in which one of the motors was set 

to deliver zero thrust. For this maneuver, however, the pilot attempted to maintain steady, level 

flight by incorporating a rudder deflection. This maneuver proved to be the most conclusive test 

of the three, providing quantitative results.  

Figure 29 shows the recorded control switch for the 13-second maneuver described above, 

where a value of zero constitutes the switch in the “off” position while a value of one constitutes 

the switch in the “on” position. The rudder deflection during the simulated engine failure is also 

shown in Figure 21, which shows a slight delay between the control switch and the rudder 

deflection while the pilot compensated using ailerons. However a clear relationship between the 

rudder deflection and differential thrust exists, providing evidence to support this concept. The 

rudder deflection required to compensate for the differential thrust was approximately 6 degrees, 

supporting the concept that differential thrust has the necessary authority to trim an aircraft; a 

potential application to replace or aid the rudder deflection, which can significantly increase drag 

or lead to the saturation of the control surface deflection.  
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Figure 29: Rudder Deflection Required to Compensate for Engine Failure 

This result is the only available data point at this time and therefore cannot be considered 

conclusive evidence. The differential thrust test parameters were maximized with one motor 

producing zero thrust while the other produced a cruising thrust of approximately 12 N. This 

result is similar to simulation tests but future tests need to be conducted to verify this result.  
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7. Thrust Vectoring 

7.1 Thrust Vector Modeling 

For thrust vector modeling, the angle λ is defined as the difference between the motor 

deflection and the trim position, with a positive angle corresponding to an upward deflection. 

This configuration implies that the propulsive forces are no longer only acting along the x-axis of 

the aircraft. When the motors are vectored the force along the x-axis corresponding to the aircraft 

velocity is reduced to the cosine of the deflection angle. There is an additional force along the z-

axis of the aircraft, corresponding to the pitching moment that is driven by the sine of the 

deflection angle. A combination of the differential thrust and thrust vectoring capabilities leads 

to the ability to roll the aircraft using only propulsive forces. Eq. (7.1) represents the moment 

equations with the additional terms produced from both differential thrust and thrust vectoring.  
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 (7.1) 

In Eq. (7.1), TLeft and TRight represent the thrust forces being produced by the respective motors, λ 

is the deflection angle of the motors, lT-x is the moment arm from the thrust line to the aircraft x-

axis, and lT-CG is the moment arm from the motor to the center of gravity. The small additional 

terms produced from varying flow on either side of the vertical tail are represented by ε. 

Following the same procedure as was described in Section 6.1 and adding the additional terms 

produced by thrust vectoring, the force equations become: 
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(7.4) 

7.2 Simulator Results for Thrust Vectoring  

Thrust vectoring was tested in the simulator by imposing several types of maneuvers on the 

motors, and observing the aircraft response. Thrust vectoring produces vertical forces that apply 

a pitching moment to the aircraft. For each of the thrust vectoring maneuvers imposed on the 

aircraft in the simulator, the change in the aircraft pitch and angle of attack is observed. The first 

type of maneuver was a doublet of the motors in which they were first angled to a desired 

deflection in the positive direction, followed by the same deflection in the negative direction. 

Figure 30 shows an example of a doublet on the motors with a deflection of 15 degrees.  
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Figure 30: Thrust Vectoring Doublet Maneuver Performed on the Motors 

 

The maneuvers were injected 50 seconds into the simulation, with all the control surfaces set 

to trim values. The aircraft was flying a straight trajectory at the simulated cruising velocity of 

30 m/s. Figure 31 shows the pitch angle and the angle of attack of the aircraft, following a motor 

doublet of 5 degrees.  
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Figure 31: Aircraft Response to a 5 Degree Thrust Vector Doublet 

The response was very insignificant with the angle of attack only changing 0.2 degrees in 

both the positive and negative directions. For direct comparison purposes the same maneuver 

was simulated with a higher deflection angle of 10 degrees, in an attempt to increase the effects 

on the aircraft response. Figure 32 shows the changes in aircraft pitch and angle of attack after 

the imposed 10 degree motor doublet. Throughout the maneuver the surfaces remained at trim, 

isolating the effects of the motor doublet.  



60 

 

 

Figure 32: Aircraft Response to a 10 Degree Thrust Vector Doublet 

The aircraft response was increased with respect to the 5 degree doublet, but remained small 

with approximately a 0.4 degree positive and negative change of angle of attack. It is unlikely 

this response would cause noticeable effects in flight. A greater response could be achieved by 

either increasing the magnitude of the maneuver of increasing the duration of the maneuver 

A change of the angle of attack by 0.4 degrees is well within the regularly observed 

magnitudes of this parameter. A very accurate sensor would be needed to measure changes of 

this magnitude, along with near perfect flight conditions. Any amount of wind gusting could 

cause a similar aircraft reaction. These results are very inconclusive and do not prove to 

accurately quantify the effect of thrust vectoring on the aircraft.  
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A different approach was explored in which a controller attempted to maintain a desired pitch 

and roll angle while the thrust vectoring maneuvers were performed. The desired outcome of this 

procedure was a relationship between the elevator deflection and the thrust vectoring. The three 

maneuvers were repeated, with the controller active, as the elevator deflection was observed. 

Figure 33 shows the aircraft response to these maneuvers, as well as the elevator deflection 

needed to compensate for the additional pitching moment.  

 

Figure 33: Simulated Aircraft Response to a Compensated Thrust Vector Doublet 

The maximum elevator deflection observed was approximately 0.8 degrees from the trim 

value corresponding to the 15 degree motor doublet. For the simulated flight conditions, the 

elevator was found to have approximately 19 times the effectiveness in pitching the aircraft as 

the thrust vectoring.  
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Keeping the test conditions constant at a velocity of 30 m/s, surfaces at trim, steady level 

flight, and injecting a maneuver after 50 seconds of simulation, a step on the thrust vector 

channel of 15 degrees was imposed on the aircraft. Figure 34 shows the step maneuver 

performed on the motors after 50 seconds of simulation.  

 

Figure 34: Thrust Vector Step Maneuver Performed on the Motors 

The response of the aircraft to the step maneuver was observed in the pitch and angle of attack. 

Figure 35 shows the response with the angle of attack changing approximately 0.6 degrees 

before leveling off 0.5 degrees from the initial value.  

 

Figure 35: Aircraft Response to a Thrust Vector Step of 15 Degrees 
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Similarly to the doublet maneuvers, a linear quadratic regulator controller was implemented 

to maintain a desired pitch and roll angle while the step maneuver was imposed on the system. 

Figure 36 shows the response of the aircraft with the pitch angle damping out more quickly than 

without the controller.  

 

Figure 36: Simulated Aircraft Response to a Compensated Thrust Vector 15 degree Step 

The initial changes in the aircraft pitch and angle of attack are lower, but a steady value is 

eventually reached and maintained, off of the initial trim value. The elevator deflection remains 

less than one degree as it did during the doublet maneuvers. To produce a stronger response, the 

test conditions would need to be altered, and the magnitude of the maneuver would need to be 

increased.  

7.3 Thrust Vectoring Test Stand 

 Prior to implementing thrust vectoring on the aircraft, a test stand was designed and 

constructed to determine the design feasibility. The design process originated through the use of 
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computer aided design (CAD) software with which a model was developed to visualize 

component interaction. The test stand was designed to mimic the setup on the aircraft, including 

an aluminum support rod for the motors rotating in a carbon rod. Aluminum adapters were 

designed in-house to rigidly attach the motors to the aluminum rod via a duct. In the test stand, 

the aluminum rod is able to rotate inside of the carbon rod, causing the two motors to pivot 

around their connection point. A driving rod was attached to center of the aluminum rod to yield 

rotational control of the aluminum rod. The driving rod is linked to a high torque servo that was 

controlled through a transmitter by the experimenter. Figure 37 shows the CAD model of the 

thrust vectoring test stand with the two 90mm ducted fans mounted on the aluminum rod.  

 

Figure 37: CAD Model of the Thrust Vectoring Test Stand 

 The horizontally mounted servo (top board) pushes or pulls the driving rod, which then turns 

the aluminum rod and tilts the motors up or down. The degree to which the motors tilt is a 

function of the length of the servo arm, length of the driving rod, and the throw on the servo. 

Since small deflections are desired, a short servo arm was used and the throw on the servo was 

decreased using the transmitter settings.  
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 One of the major considerations when this thrust vectoring technique was being developed 

was the ability of the servo to both produce enough force to move the motors and maintain a 

desired deflection while minimizing vibrations. Several tests were run to ensure that the servo 

could handle the loads and achieve the desired deflection angles. First, the test stand was 

equipped with a single motor while the deflection was measured and assigned to a desired value. 

The servo was initially connected to a flap channel on the receiver in order to command a 

predefined thrust vector angle. The servo was centered so that a half flap deflection corresponded 

to a zero deflection angle. This allowed the motors to be moved both up and down for transmitter 

commands of zero flap and full flap, respectively. The angle of deflection was set using the 

“travel adjust” control inside the transmitter.  

 The first test performed was at a low RPM value and a low deflection angle to ensure 

everything was functioning properly. The motor was powered on and set to a low throttle setting 

while the deflection angle of the motors was set at zero. Once the motor was running the flap 

switch was moved to the full flap position, angling the motor to approximately five degrees in 

the positive (up) direction. The flap switch was then moved back to the half flap position before 

moving it to the zero flap position to test the negative deflection performance. There were no 

observable vibrations or undesired oscillations in the system so the throttle setting was increased 

to half throttle. The same procedure was repeated where the motor was first throttled up to half 

throttle, the flap switch was moved and the motor responded with an approximate five degree 

deflection angle.  

Next, the angle of deflection was increased to approximately ten degrees positive and 

negative deflection by changing the travel of the servo in the transmitter. The same tests were 

performed with a low throttle setting followed by tests at half throttle paired with the ten degree 

deflection angle. Finally, the servo was plugged into the elevator channel on the receiver to move 

the motor continuously instead of having a preset location. The motor was run at half throttle 

while the deflection was continuously changed through the entire range of 10 degrees each 

direction. These tests showed that the high torque servo was capable of handling the loads 
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applied by a single motor and could provide smooth thrust vectoring for deflection angles up to 

ten degrees.  

  With the success of the single motor tests, a second motor was mounted to the thrust 

vectoring test stand. The servo was connected to the elevator channel to once again allow the 

motors to be vectored continuously through the entire range of the servo. The deflection range 

was set to the full range of the servo which equated to about fifteen degrees of movement in 

either direction. The motors were run at a low RPM and the servo was driven to its full 

deflection up and down; the motors moved smoothly and the system did not show any immediate 

signs of significant vibrations. The RPM was increased to approximately half throttle (the 

cruising RPM), and the servo was again moved through its entire range. At specific deflections, 

the servo was held constant to examine the ability of the servo to hold the motors at a given 

deflection for a length of time. These tests were also successful in showing that there were no 

significant vibrations or other adverse effects.  

7.4 Implementation of Thrust Vectoring on the Aircraft 

 After the successful tests with the thrust vectoring stand, the design was integrated into the 

WVU PAC aircraft. The same “driver arm” was driven by a servo, which rotated the motors up 

or down. The initial design featured a second tier above the rudder servo plate, on which the 

vectoring servo was to be mounted. When this design was integrated into the aircraft, it was 

found that the vertical distance between the plate and the driver arm was too short. To 

compensate, the vectoring servo was moved to the bottom plate, switching positions with one of 

the speed controllers on the aircraft. This lengthened the linkage and provided sufficient travel to 

vector the motors through the desired range. Figure 38 shows a CAD model of the design at both 

a zero deflection and a positive (up) deflection.  
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Figure 38: Thrust Vectoring on the WVU PAC Aircraft 

 This configuration allows for a maximum of fifteen degrees positive and negative deflection. 

Additionally, limits were placed on the rotation of the motor mount to assure that, in the 

occurrence of a servo failure, the motors would remain within this deflection range.  

7.5 Flight Test Results for Thrust Vectoring  

The thrust vectoring was flight tested to validate the results gained from the simulations. The 

aircraft was flown in a track configuration with two straight sections parallel to the runway and 

two semi circles connecting the straight sections. The length of the track was about 400m while 

the width of the track was 200m. A scheme was developed to drive the thrust vectoring using a 

control switch on the transmitter. The scheme injected a single doublet of approximately 8 

degrees on the thrust vectoring channel for each activation of the control switch. The maneuver 

was implemented during the straight leg sections of the flight path followed by a “hands-off” 

period when the pilot refrained from deflecting the control surfaces to observe the natural 

response of the aircraft.  

A second scheme was also developed that incorporated the controller used to track a given 

pitch and roll angle. Upon activation of the switch, a step on the motors was injected while the 

controller used the elevator to compensate for the produced pitching moment. The size of the 

step would increase by two degrees, starting at 5 and finishing at 13 degrees. This would allow 

more data points to be collected during a single flight.  

The thrust vectoring was also enabled on the flap switch where the pilot could manually 

deflect the motors from the trim condition to positive 15 degrees. This simulates a step input on 
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the system, similar to what was performed during simulation. The pilot was asked to compensate 

for any noticeable effects to keep the aircraft flying straight and level. In this way the elevator 

deflection required to counteract the pitching moment caused by the thrust vectoring could be 

quantified.  

The first tested scenario was the 8 degree doublet scheme, injected on the straight legs with 

“hands-off” flight. Figure 39 shows the doublet performed by the motors.  

 

Figure 39: Thrust Vector Doublet Maneuver Performed In-Flight 

Recalling from simulation, this maneuver produced a change of 0.4 degrees in the angle of 

attack. In flight the signal to noise ratio was too low to observe changes of this magnitude.  

Figure 40 shows the angle of attack recorded during the 8 degree doublet maneuver as measured 

using directional vanes.  
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Figure 40: Angle of Attack during a Doublet Maneuver on the Motors 

This data is inconclusive as the noise is too high to show small changes in the parameter. 

There does not appear to be a trend present from which conclusions can be drawn. The pitch 

angle showed a similar result with too low a signal to noise ratio to provide quantitative results. 

Figure 41 shows the pitch angle with no clear trends corresponding to the control switch 

activations.  

 

Figure 41: Pitch Angle during the Doublet Maneuver 

The next tested scenario consisted of a step input on the thrust vectoring, manually injected 

by the pilot. During this maneuver the pilot used the elevator to compensate for the pitching 

moment created by the motors. Simulations proved that the pitching moment created by the 
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motors could be compensated by an elevator deflection of less than 1 degree. This test was 

performed to determine if this is an accurate relationship between the thrust vectoring and the 

elevators. Figure 42 shows the step maneuvers injected on the thrust vector through the flap 

channel.  

 

Figure 42: Thrust Vector Step Maneuvers 

Figure 43 shows the elevator deflection before, during, and after the thrust vector step maneuver. 

The blue and red lines signify the left and right control surfaces respectively and are offset 

because of the trim on these surfaces.  
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Figure 43: Elevator Deflection during Thrust Vector Step Manuever 

There does not seem to be a clear change in the elevator deflection during the maneuver. This 

serves to support the simulation data, where a small change in the elevator deflection can 

compensate for the moment produced by the thrust vectoring. With the pilot compensating for 

any pitch changes, there are no changes in angle of attack directly related to this step input.  

Additional flight tests were performed in which the motors were deflected negative 20° and 

negative 30°. This was done in an attempt to produce a larger vertical force and cause a greater 

pitching moment on the aircraft. For both the 20° and 30° deflections, the aircraft pitch response 

was once again masked by the measurement noise. The small moment arm associated with this 

aircraft configuration prevents the thrust vectoring from having significant pitch control 

authority.   
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8. Conclusions 

A ducted fan propulsion assisted control system was successfully designed, modeled, and 

implemented on the research aircraft. The propulsive forces were modeled and incorporated into 

a simulator that was adapted to facilitate differential thrust and thrust vectoring. Simulations 

were then performed to quantify the effectiveness of propulsion assisted control on this research 

aircraft. The simulation studies yielded a small effect on the aircraft dynamics from both 

differential thrust and thrust vectoring. For a differential thrust of 12 Newtons (only one motor 

running), control surface compensation was small with the rudder deflecting 0.25 degrees and 

the ailerons deflecting 0.6 degrees to maintain steady level flight. For a thrust vector angle of 

positive 15 degrees, the elevator compensation was only 0.8 degrees, making the elevator 

approximately 19 times more effective at pitch control than the vectored motors at the tested 

flight condition.  

Flight testing of differential thrust yielded similar results when compared to the simulations. 

The aircraft was easily controlled using a small aileron deflection or a slightly higher magnitude 

rudder deflection. One experiment yielded promising results with a rudder deflection 

corresponding to the thrust differential, but this result needs to be verified through future testing. 

The in-flight testing of the thrust vectoring showed minimal effects on the aircraft during the 

maneuvers. The on-board sensors recorded too much noise to be able to identify small changes in 

the parameters. For example, the angle of attack was expected to change approximately 0.5 

degrees to the injected maneuver but the noise on this channel was averaging two or three 

degrees. The flight results for thrust vectoring proved to be inconclusive, but did not disprove the 

simulation data.  

The modeling process outline in this paper proved to accurately predict the magnitude of the 

aircraft response to injected maneuvers of differential thrust and thrust vectoring. The exact 

response could not be verified due to the small responses expected in flight. The signal to noise 

ratio was too low to accurately measure changes in the parameters most affected by the 

propulsion assisted control system. A more accurate validation of the simulation results could be 
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achieved by changing the flight conditions such as velocity of the aircraft, angle of attack, thrust, 

and magnitude of the maneuvers.  
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9. Future Work 

The implementation of thrust vectoring on the WVU research aircraft opens up several new 

research opportunities. One area that often coincides with thrust vectoring research is high angle 

of attack flights. Aircraft with this capability can extend the fight envelope and increase 

maneuverability. The future direction of this research will be to increase the available thrust 

vector deflection from 15 degrees to 30 degrees (limited to only one direction) and attempt to put 

the aircraft into a controlled high angle of attack flight condition. In high angle of attack flights, 

the forward speed of the aircraft will decrease, causing the elevators to have less effect at a given 

deflection. The thrust from the motors can be increased to produce a stronger moment, increasing 

the effectiveness that the thrust vectoring will have on the pitch of the aircraft. Additional 

research objectives could include short takeoff and landing, stall recovery, and pitch control for 

fault tolerant flight control laws.  
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