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ABSTRACT

B-splines in EMD and Graph Theory in Pattern Recognition

Qin Wu

With the development of science and technology, a large amount of data is waiting for
further scientific exploration. We can always build up some good mathematical models
based on the given data to analyze and solve the real life problems. In this work, we
propose three types of mathematical models for different applications.

In chapter 1, we use Bspline based EMD to analysis nonlinear and no-stationary signal
data. A new idea about the boundary extension is introduced and applied to the Empirical
Mode Decomposition(EMD) algorithm. Instead of the traditional mirror extension on the
boundary, we propose a ratio extension on the boundary.

In chapter 2 we propose a weighted directed multigraph for text pattern recognition.
We set up a weighted directed multigraph model using the distances between the keywords
as the weights of arcs. We then developed a keyword-frequency-distance-based algorithm
which not only utilizes the frequency information of keywords but also their ordering
information.

In chapter 3, we propose a centrality guided clustering method. Different from tradi-
tional methods which choose a center of a cluster randomly, we start clustering from a
“LEADER” - a vertex with highest centrality score, and a new “member” is added into
an existing community if the new vertex meet some criteria and the new community with
the new vertex maintain a certain density.

In chapter 4, we define a new graph optimization problem which is called postman
tour with minimum route-pair cost. And we model the DNA sequence assembly problem
as the postman tour with minimum route-pair cost problem.



iii

Acknowledgements

First, I would like to express my sincere thanks to my advisor, Dr Sherman D. Riemen-
schneider and my dissertation co-advisor, Dr Cun-Quan Zhang for their guidance, encour-
agement, help and support during all these years. It is a great pleasure to work under
their supervision. What I learned from them will benefit me all my life.

Second, I’d also like to thank my committee members: Dr Eddie Fuller, Dr Mary Ann
Clarke and Dr Arun A. Ross, for their help during the completion of my dissertation.

Finally, I would like to thank the Department of Mathematics and Eberly College of
Arts and Sciences at West Virginia University for providing me with an excellent study
environment and continual support during my years as a graduate student.



Contents

1 Empirical Mode Decomposition 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic EMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 B-spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Boundary Extension for Nonlinear and Non-stationary Signals . . . . . . . 6
1.5 Stop Criteria for Sifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Graph Model for Pattern Recognition in Text 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Graph Model for Pattern Recognition . . . . . . . . . . . . . . . . . . . . . 17
2.3 The Algorithm and Complexity Analysis . . . . . . . . . . . . . . . . . . . 24
2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 A Centrality Guided Clustering (CGC) 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 The Centrality Guided Clustering (CGC) Algorithm . . . . . . . . . . . . 38
3.3 Applications of the Centrality Based Clustering Algorithm. . . . . . . . . . 43
3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Appendix: Measures of Centrality . . . . . . . . . . . . . . . . . . . . . . . 48

4 Postman Tour with Optimal Route-Pair Cost 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iv



CONTENTS v

4.2 An Algorithm for Postman Tour with Minimum Route-pair Cost . . . . . . 54
4.3 DNA Sequence Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Different Optimization Problems with Route-Pair Cost . . . . . . . . . . . 64
4.5 Appendix: Chinese Postman Tour . . . . . . . . . . . . . . . . . . . . . . . 66



Chapter 1

Empirical Mode Decomposition

1.1 Introduction

Signal analysis is an important tool in both pure research and practical applications. Tra-
ditional data analysis methods such as Fourier analysis, based on the linear stationary
assumption have been shown to be efficient for processing of linear and stationary data.
However, these methods are less suitable for analyzing nonlinear and non-stationary data.
The physically meaningful way to describe the non-linear system is in terms of the instan-
taneous frequency which reveals the intra-wave frequency modulations[1]. The easiest way
to compute the instantaneous frequency of any signal is by using the Hilbert transform.
For a real signal s(t) ∈ Lp, the Hilbert transform is defined as

H[s(t)] =
1

π
PV

∫ ∞
−∞

s(τ)

t− τ
dτ

where PV represents the principle value.
With the Hilbert transform, the analytic signal is define as

z(t) = s(t) + iH[s(t)] = a(t)eiθ(t)

with

a(t) =
√

[s(t)]2 + [H[s(t)]]2, θ(t) = arctan

(
H[s(t)]

s(t)

)
where a(t) is the instantaneous amplitude and θ(t) is the phase at time t.

1
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Then the instantaneous frequency is computed by

w(t) =
dθ(t)

dt
.

Recently, Huang et al. [1] presented a new data analysis method, the Empirical Mode
Decomposition (EMD) for analyzing nonlinear and no-stationary data. The Empirical
Mode Decomposition (EMD) decomposes any signal s(t) into a finite number of intrinsic
mode functions(IMFs)

s(t) =
M∑
j=1

ϕj(t), where ϕj(t) = aj(t) cos θj(t).

Over the past decade, the EMD has gained more and more recognition. Most of the
progress has been in its application. The underlying mathematical problems have been
mostly left untreated. Huang listed seven outstanding mathematical problems of EMD
in the book [2]. One of the outstanding problem is the data prediction problem for non-
stationary processes (end effects). Since we are dealing with finite data, the algorithms
must be adjusted to use some form of boundary conditions. For the EMD, the end
points are problems again. And the influence of the ends will propagate into the data
range during the sifting procedure. The extension of data, or data prediction, is a risky
procedure even for linear and stationary processes. It’s much harder for the nonlinear
and nonstationary processes. Huang et al. [2] mentioned that all that is needed to be
predicted for EMD are only the values and locations of the next several extrema, not all
the extended data. Such a limited goal not withstanding, the task is still challenging.
The traditional way to extend the data beyond the existing range for EMD is symmetric
extension around the boundary.

In this work, a new method of the boundary extension is proposed. Instead of the
traditional symmetric extension on the boundary, we suggest that the boundary should
be extended based on the trend of the signal. Namely, we predict the signal based on
the pattern of the signal. Although the signals we are dealing with are nonlinear and
non-stationary, the distance between extreme points still will indicate how the frequency
changes. Based on this fact, we will use the ratio of the distance between the nearest
successive extreme points to predict the location of added extremal points. Also, since
the signal is amplitude modulated, instead of supposing the amplitude of the following
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extremal points is the same as its mirror extrema, we will use quadratic interpolation to
determine the value at the added extremal points. Experimental results show that this
novel idea does work better than the original EMD algorithm.

This chapter is organized as follows. In section 1.2, we describe the current EMD
algorithm; in section 1.3, we define the B-spline function; in section 1.4, we present the
details of the ratio boundary extension; in section 1.5, we discuss the stop criteria of
the EMD algorithm; in section 1.6, we compare the numerical results of the original
EMD algorithm and the new boundary extension algorithm; some conclusions are made
in section 1.7.

1.2 Basic EMD

The EMD, in contrast to most of the earlier methods, works in temporal space directly
rather than in the corresponding frequency space; it is intuitive, direct, and adaptive,
with a posterior defined basis derived from the data. The decomposition is based on a
simple assumption that any data consists of different simple intrinsic modes of oscillation.
Each component is defined as an intrinsic mode function (IMF) satisfying the following
conditions [1]:

(I) In the whole data set, the number of extrema and the number of zero crossings
must be either equal or differ at most by one.

(II) At any data point, the mean value of the envelope defined using the local maxima
and the envelope defined using the local minima is zero.

With the above definition of an IMF, one can then decompose any function through
a sifting process.

In order to extract the first IMF c1(t), the component with the highest frequency
embedded in the original signal s(t), we using the following sifting process:

Denote by c1(t) the first IMF. Set r1(t) = s(t)−c1(t). And repeat the sifting procedure:

r2(t) = r1(t)-c2(t),
...

rN(t) = rN -1(t)-cN(t).

end when rN has at most one extrema.
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Algorithm 1.1 Sifting procedure
1. Compute a mean envelope m1(t) of the signal s(t).
2. Let h1(t) = s(t)−m1(t) be the residue.
3. If h1(t) is an IMF, STOP.
else, treat h1(t) (with its extrema) as a new signal to obtain h1,1(t).
4. If h1,1(t) is an IMF, STOP.
else, continue the same process

h1,1(t) = h1(t)−m1,1(t)

...

h1,k(t) = h1,k−1(t)−m1,k(t)

Generally, after a finite number k1 times, h1,k1(t) will be an IMF.

Thus s(t) =
∑N

j=1 cj(t) + rN(t) is decomposed into finitely many IMFs.

1.3 B-spline

As in the sifting procedure (algorithm 1.1), the first step is to compute the mean envelope.
There are different interpolation methods to find the mean envelope. The most frequently
used interpolation methods for EMD are Cubic Spline and B-spline. B-spline has some
good properties which make it more suitable for EMD than other interpolation methods.
In this section, we define the B-splines of order k for an arbitrary knot sequences.

For a nondecreasing sequence τj, j ∈ Z, we define the j-th B-spline of order k as

Bj,k,τ := (τj+k − τj)[τj, ..., τj+k](x− t)k−1+ , t ∈ R

where [τj, ..., τj+k]f represents kth divided difference of a function f at the knots
τj, ..., τj+k.

and

(x− t)k−1+ =

(x− t)k−1, if x ≥ t

0, if x < 0
.

For the first order B-splines, we have
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Bj,1,τ=

1, if τj ≤ t < τj+1

0, otherwise
.

These B-splines form a basis for the space of splines of order k with knots τj, j ∈ Z.
For any function f(t) in this space, f(t) can be written in terms of the bases Bj,k,τ , that
is

f(t) =
∑
j∈Z

αjBj,k,τ (t), t ∈ R

One important property of the B-spline is its recurrence relation. For k > 1,

Bj,k,τ (t) = ωj,k,τBj,k−1,τ + (1− ωj+1,k,τ )Bj+1,k−1,τ

where

ωj,k,τ =
t− τj

τj+k−1 − τj
They are normalized so that

q∑
j

Bj,k,τ (t) = 1, q ≥ p+ k

When we use the B-spline to interpolate the extreme points (say τ = (τ1, τ2, ...., τn))

in EMD, we define the following linear functional for a function f

λj,k,τ (f) :=
1

2k−2

k−1∑
p=1

(k − 1)!

p!(k − p− 1)!
f(τj+p)

We define

f̃k,τ :=
∑
j∈Z

λj,k,τ (f)Bj,k,τ

as an approximation to the mean envelope in the EMD algorithm.
Particularly, when k = 4,
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f̃k,τ :=
1

4

∑
j∈Z

[f(τj+1) + 2f(τj+2) + f(τj+3)]Bj,k,τ

which is the cubic B-spline approximation.

1.4 Boundary Extension for Nonlinear and Non-stationary

Signals

The basic operation in the sifting procedure is the estimation of the mean envelope.
There are two typical methods to calculate the mean envelope. One is using cubic Spline
interpolation of the local maxima (respectively local minima) of s(t) to get the upper
envelope U(t) (respectively lower envelope L(t) ), then compute the average m(t) =

(U(t) + L(t))/2 as the mean envelope. Another way is using the moving average of
the extrema as combination of B-Spline as proposed by Chen et al. [3, 4], the mean is
calculated as

m(t) =
∑ 1

4
[s(τj+1) + 2s(τj+2) + s(τj+3)]Bj,4,τ (t),

where τj are the local extrema point of s(t).
Due to the finite observation lengths of the signal, we have to extend the extrema before

we apply the Cubic Spline interpolation to find the upper/lower envelope or use B-splines
to find the mean envelope. The general method is to add extrema by mirror symmetry
with respect to the end points or with respect to the extrema which are closest to the end
points. In this section, we will focus our attention on the following two problems:

1. How to predict the proper location of the following extrema?

2. How to predict the proper value of the extrema?

We will use the right hand end of the data to illustrate our idea. Since we are dealing with
nonlinear and non-stationary signals, the frequency of the signal (i.e, the distance between
two extrema) will change with time. If we use symmetric extension with respect to the last
extrema, the distance between the extended two extrema is the same as the the distance
between the two extrema which are closest to the end points. It works for a signal with
constant frequency, but it fails when the frequency is not fixed. Let us look at the signal in
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Figure 1.4.1. For this signal, we would expect that the frequency of the signal is decreasing,
so the distance between two successive will become larger. But mirror extension will not
predict the correct location of the added extremal points. Since the distance between the
extreme reveal the frequency information, we can predict the location of the next extrem
point based on the pattern of the current extremal points. Here is our strategy: we use
linear approximation to estimate the change of the frequency of the signal at the end of
the signal. Suppose the locations of the last three maximum points of the signal s(t) are
τ−3, τ−2, τ−1. Let rmax = (τ−2 − τ−3)/(τ−1 − τ−2) and the location of the first extended
maximum be τ1. Then the distance between any two successive maximum should keep
the constant ratio rmax, i.e., τ1 should satisfy (τ−1 − τ−2)/(τ1 − τ−1) = rmax. Similarly,
suppose the locations of the last three minimum points of the signal s(t) are η−3, η−2, η−1.
Let rmin = (η−2− η−3)/(η−1− η−2) and the location of the first extended minimum be η1.
Then η1 should satisfy (η−1 − η−2)/(η1 − η−1) = rmin. To get better result, we take the
mean ratio, r = (rmax + rmin)/2, and find τ1, η1 such that (τ−2 − τ−3)/(τ−1 − τ−2) = r

and (η−1 − η−2)/(η1 − η−1) = r. Thus, we get the location of the two added maximum
and two added minimum (see Figure 1.4.2(b) ).

Figure 1.4.1: A frequency modulated signal

After we estimate the location of the extended extrema, we need to predict the value
at the added extrema points. As mentioned in the previous section, the residual of the
signal usually is not a constant. The residual shows the trend of the signal and usually
it is monotonic or has one extrema. Let’s look at the simplest case, one IMF + one
monotonic trend as in Figure 1.4.3. If we use symmetric extension with respect to the
last extrema, the extremal points will be extended as Figure 1.4.4(a). Obviously the data
extension does not give the proper prediction of the original signal. It is naturally for us
to think that the extrema of the signal should be extended as in Figure 1.4.4(b).
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(a)

(b)

Figure 1.4.2: The circle on the graph denote the extended extrema. Fig (a) is with
symmetry extension, Fig (b) is with ratio extension.

Figure 1.4.3: A signal with one sinusoid and one straight line residue

Based on this fact, we propose to predict the value of extended maximum by quadratic
interpolation on the last 3 maximum of the original signal.

Combining the above mentioned ideas about predicting the location and value of the
new maximum, we set up the following algorithm:
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(a)

(b)

Figure 1.4.4: The circle on the graph denote the extended extrema. Fig (a) is with
symmetry extension, Fig (b) is with ratio extension.

Algorithm 1.2 Boundary Extension
1. Find the locations of the last three maximum points, say τ−3, τ−2, τ−1.
2. Calculate the ratio of the distance between the last three maximum points,
rmax = (τ−2 − τ−3)/(τ−1 − τ−2).
3. Find the locations of the last three minimum points, say η−3, η−2, η−1.
4. Calculate the ratio of the distance between the last three minimum points,
rmin = (η−1 − η−2)/(η1 − η−1).
5. Calculate the mean ratio r = (rmax + rmin)/2.
6. Find the location (say τ1) of the first extended maximum points , such that
(τ−1 − τ−2)/(τ1 − τ−1) = r

7. Quadratic interpolation on the last 3 maximum of the given signal.
8. Calculate the first extended maximum using the quadratic function.

The same idea is applied to estimate the location and values of the second extended
maximum points and two extended minimum points. And we extend extrema of the
other side of the signal by the same method. We call this boundary extension as Ratio

Boundary Extension since the distance of the extreme and the value of the extrema are
proportional to the existing extrema. In most of the cases, the ratio boundary extension
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works pretty well. But in some extreme situations, the ratio boundary extension may fail
the maximum and minimum points interlacing condition. In that case, we will use the
mirror extension about the first extreme point instead.

The results of ratio boundary extension of the signals in Figure 1.4.3, Figure 1.4.1 is
shown in Figure 1.4.4(b), Figure 1.4.2(b) respectively.

1.5 Stop Criteria for Sifting

In section 2, we gave the definition of an IMF. But it’s difficult to use this definition
directly to evaluate whether a signal is an IMF in the numerical implementation. Thus
we need to set up a stop criteria to determine whether a signal could be viewed as an
IMF during the sifting procedure. The choice of stopping criteria is very important to
the application of EMD, sifting too many steps may lead to loss of amplitude variation
and physical meaning.

The stopping condition imposed in [1] is to limit the standard deviation computed
from two consecutive results in the shifting process:

SD =

∑
t |hi,k−1(t)− hi,k(t)|2∑

t h
2
i,k−1(t)

.
If SD is smaller than a predetermined value, the sifting process will be stopped.
Instead of using the standard deviation SD as the stop criteria, Rilling et al [5] pro-

posed another stop criterion. For convenience, we call it Amplitude Ratio Stop Cri-

teria.

Algorithm 1.3 Amplitude Ratio Stop Criteria
1. Find the upper envelope U(t) and lower envelope L(t)

2. Introduce the mode amplitude a(t) = [U(t)− L(t)]/2

3. Calculate the evaluation function σ(t) = |m(t)/a(t)|
4. The sifting is stopped when σ(t) < θ1 for some prescribed fraction (1− α) of the total
duration and σ(t) < θ2 for the remaining fraction.

One typically set α = 0.05, θ1 = 0.05, θ2 = 10θ1. This stop criteria compares the
amplitude of the mean with the amplitude of the corresponding IMF. If the amplitude of
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the mean envelope is relatively small compared with the amplitude of the corresponding
IMF at all data points, then stop sifting. We adopted this idea to the B-spline algorithm.
Since the B-spline algorithm calculate the mean envelope without calculating the upper
envelope U(t) and lower envelope L(t), instead of calculating the mode amplitude a(t) =

[U(t)− L(t)]/2, we use B-Spline again and let

a(t) =
∑

1
4
[| s(τj+1)− s(τj+2)|+ |s(τj+2)− s(τj+3) |]Bj,4,τ (t)

=
∑

1
4
| s(τj+1)− 2s(τj+2) + s(τj+3) |Bj,4,τ (t)

where τj are the local extrema point of s(t).
The experiments show that the mode amplitude function a(t) defined by the B-Spline

function works similarly to the difference between the upper envelope and lower envelope.
The reason that we want to adopt the Amplitude Ratio Stop Criteria is that it is aimed
at guaranteeing globally small fluctuations in the mean while taking into account locally
large excursions.

1.6 Numerical Results

In this section, we will compare the decomposition results of some examples by the modi-
fied B-spline method with ratio boundary extension proposed in section 3 and Amplitude
Ratio Stop Criteria as in section 4. We will compare the results with the original B-spline
method by Chen et al. [3], the original Cubic Spline method by Flandrin et al. [6, 5] and
the modified Cubic Spline with ratio boundary extension.

Example 1. s(t) = 10 ∗ cos(( t
80

)1.5 ∗ π) + 2 ∗ cos(( t
100

)0.8 ∗ π) + ( t
500

+ 2), t = 20 : 211.

Figure 1.6.1 is the graph of the original signal and its components. Ideally, this
signal should be decomposed as 2 IMFs, (10 ∗ cos(( t

80
)1.5 ∗ π), 2 ∗ cos(( t

100
)0.8 ∗ π)) and

a residue ( t
500

+ 2). The two IMFs are Frequency Modulated signals. Figure 1.6.2 shows
the decomposition results of the four different methods. From the graph, we find that
due to the boundary effect, the original B-spline method and the original Cubic Spline
method can not decompose the signal correctly from the second IMF, and we can not get
the correct residue. The modified Cubic Spline with the ratio boundary extension and
the modified B-spline method with ratio boundary extension and amplitude ratio stop
criteria decompose the signal almost perfectly.
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Figure 1.6.1: Graph for Example 1: a signal with two FM components and a linear residue

Example 2. : s(t) = 5 ∗ cos(( t
120

)1.8 ∗π) + ( t
200

)1.5 ∗ cos( t
180
∗π) + ( t

200
− 5)2, t = 20 : 211.

Figure 1.6.3 is the graph of the original signal and its components. This signal has a
frequency modulated component 5 ∗ cos(( t

120
)1.8 ∗π), an amplitude modulated component

( t
200

)1.5 ∗cos( t
180
∗π) and a quadratic residue ( t

200
−45). Again, if we compare the result of

the four different algorithm as in Figure 1.6.4, we find that the original B-spline method
and the original Cubic Spline method over-decompose the signal, the right hand side
of the second IMF is bad due to the improper boundary extension and the residue do
not show any trend of the original signal. The modified B-spline method with ratio
boundary extension and amplitude ratio stop criteria, and the modified Cubic Spline
method with amplitude ratio stop criteria decompose the signal as two IMFs and one
residue as expected.

Based on the numerical results in the above examples, we conclude that the ratio
boundary extension and Amplitude Ratio Stop Criteria indeed give us an improved im-
plementation of the Empirical Mode Decomposition.

1.7 Discussions

The Empirical Mode Decomposition (EMD) is a promising tool for the analysis of non-
stationary and nonlinear signal processing. It has been applied with great success for
nonlinear and nonstationary signal analysis in various areas.

This chapter propose some new ideas on the EMD algorithm. We propose the ratio
boundary extension which is more adaptive to the signal compared with the symmetric
extension. We would like to emphasize the importance of the boundary extension. As
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mentioned in other papers, the influence of the ends will still propagate into the data range
in the low frequency components. And from the numerical experiments, we find that the
proper data prediction is important for us to get the correct IMFs. If we make a wrong
prediction at the first step, the whole signal will be decomposed incorrectly from the first
step and it will ruin all the following EMD decomposition steps. So it is important to
choose a proper boundary extension at every step. We also investigate the stop criteria
and applied the Amplitude Ratio Stop Criteria to our B-Spline algorithm.

Up to now, most of the progress with EMD are in its application. The decomposition
is only defined as the output of an algorithm. The mathematical ground for EMD has
not been set up yet. In the future, we will devote to the theoretical research on EMD.
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Figure 1.6.2: Fig(a) is the IMFs of Example 1 by the original B-Spline method with
symmetric boundary extension and original stop criteria; Fig(b) is the IMFs by Cubic
Spline method with symmetric boundary extension and amplitude ratio stop criteria;
Fig(c) is the IMFs by B-Spline method with ratio boundary extension and amplitude
ratio stop criteria; Fig(d) is the IMFs by Cubic Spline with ratio boundary extension and
amplitude ratio stop criteria.
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Figure 1.6.3: Graph for Example 2: A signal with one FM component, one AM component
and a linear residue
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Figure 1.6.4: Fig(a) is the IMFs of Example 2 by the original B-Spline method with
symmetric boundary extension and original stop criteria; Fig(b) is the IMFs by Cubic
Spline method with symmetric boundary extension and amplitude ratio stop criteria;
Fig(c) is the IMFs by B-Spline method with ratio boundary extension and amplitude
ratio stop criteria; Fig(d) is the IMFs by Cubic Spline with ratio boundary extension and
amplitude ratio stop criteria.



Chapter 2

Graph Model for Pattern Recognition

in Text

2.1 Introduction

For text archives containing a large number of documents, determining the similarity of
documents is an area of research that has seen a great deal of activity in recent years.
With the advent and ubiquity of internet communication the search for related documents
plays an important role in such applications as search, detection of fraud and the detection
of conspiring groups. Term frequency has long been used as a tool for estimating the
probabilistic distribution of features in a document. A number of applications have been
developed including language modeling [7], feature selection [10, 11] and term weighting
[12, 13]. Based on the term frequency information, documents can be classified by several
clustering methods such as decision trees [15], neural networks [8, 16], Bayesian methods
[17, 18] or support vector machines [9, 19, 14].

The term frequency method is an effective approach if a rough classification of docu-
ments based on their subjects or themes. However, if one would like to further determine
the similarity of writing patterns or determine the authorship of documents, the tradi-
tional term frequency method will provide only very rough estimates with little accuracy
or reliability. The main drawback of the term frequency method is the fact that it relies on
a bag-of-words [20, 21, 22] approach. It implies feature independence, and disregards any
dependencies that may exist between words in the text. The bag-of-words model may not

16
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be the best technique to capture keyword importance. If the text structure information
could be preserved properly at the same time, it would lead to a better keyword weighting
scheme [23].

In this chapter, we introduce a new approach that exploits not only the keyword fre-
quency but also their location and ordering. We represent a document as a weighted
directed multigraph by taking keywords as the vertices and constructing arcs whose
weighting contains the relation information of a keyword to other keywords. The ad-
jacency matrix of the graph induces a signature vector for the document. A clustering
method is then applied to the set of signature vectors for grouping similar documents into
clusters. With this new approach, we are able to evaluate the similarity between any two
documents from a set of text documents within the SAME category.

A set of detailed algorithms for the estimation of signature vectors and clustering are
presented in this work. This algorithm has been applied to two sets of sample documents.

1. Nigerian Fraud Emails, each of which has the same topic: to transfer money into
some bank accounts in order to receive lager sum of payback.

2. Papers in academic journals in graph theory, some of which are known to be pla-
giarized.

Each group is in one category, and therefore, keywords may appear with similar frequen-
cies. The traditional method of sorting documents by keyword-frequency is able to filter
this group out off a lager subset of documents with many different subjects. However, by
considering the ordering and location of keywords, we are able to further evaluate their
similarity within their own group, i.e. to classify fraudulent emails authored by the same
person or copy-pasted types with slight modification, or to identify the plagiarized papers.

In next section, we describe the schema for representing a document as a weighted
directed multigraph. Section 2.3 discusses the computation complexity. In section 2.4,
we present some application examples of our algorithm. Finally, in section 2.5, some
discussions are presented and future research problems are outlined.

2.2 Graph Model for Pattern Recognition

The overall approach of this algorithm begins with the identification of a set of relevant
keywords. Once these are selected, we then aggregate the relative distances of the key-
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words with a document. This in turn is used to construct a weighted directed multigraph
that generates representing vectors for each document in a high dimensional feature space.
These vectors can then be used to determine similarity values for any pair of documents.

2.2.1 Summary of our Method

Step 1: Using a weighted directed multigraph to find a signature vector for each document.
Step 2: Calculate the similarities between any two documents via their signature vectors.
Step 3: Using Quasi-Clique Merge clustering method to classify all documents.

We will explain the details of each step by a simple example.

2.2.2 Details of the Step 1

To have a clear view of the algorithm, we will use the example illustrated in Figure 2.2.1
to explain the procedure [24].

Figure 2.2.1: A fraudulent email

2.2.2.1 Record the keyword information appeared in the document.

For a given document, the following steps are applied to it. Suppose we have already
chosen a set of words as keywords, say K = {K1, K2, ..., Km}. Record every keyword
and its position in the document. We will use the following notation:

• ki represents one of the keyword in the keyword set K .
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• i represents the order of the keyword appearing in the document. (It is possible
that ki, kj are the same element in K.)

• m̃ represents the total number of keywords appearing in the document .

• pi is a integer, which represents the total number of the words from the beginning
of the document to the word ki.

In addition we record the frequency of each keyword at the same time. Thus we have the
Keyword-Position information table(Table 2.1).

Keyword appears
in the document

Position
in the document

k1 p1
k2 p2
...

...
km̃ pm̃

Table 2.1: Keyword-Position table

The details of this process are illustrated as follows (with Figure 2.2.1 as an exam-
ple). For this example, we use the keyword set: {bank, fund, account, transfer}.
Its Keyword-Position information is listed in Table 2.2. Frequency information of each
keyword for the given example (Figure 2.2.1) is listed in Table 2.3

Keyword appears
in the document

Position
in the document

bank 91
fund 103
account 109
transfer 124
fund 153
transfer 155
account 158

Table 2.2: Keyword-Position information of the email in Figure 2.2.1
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keyword frequency
bank 1
fund 2
account 2
transfer 2

Table 2.3: Keyword-Frequency information of the email in Figure 2.2.1

2.2.2.2 Construct a weighted directed multigraph

For a given document D and a set of keywords K, let Gm be a weighted directed multi-
graph Gm with the vertex set K = {K1, K2, ..., Km}. constructed as follows.

Suppose that k1, · · · , ks is the sequence of words such that
(1) each kµ is a keyword of the given set K,
(2) k1, · · · , ks appear in the document D in this order,
(3) the position of the word kµ in the document D is pµ (the pµ-th word in the document
D, (1 ≤ p1 < · · · < ps).

Add an arc from the vertex ki to the vertex kj with the weight w_mij = pj − pi + 1,
which is the distance from the word ki to the word kj in the document D.

Note that if ki and kj are the same element of the set K, they are the same vertex in
the graph.

A large weight for a given arc indicates that the corresponding pair of keywords are
relatively far away from each other and, therefore, their logical connection are relatively
“weak” in the document. Thus, we may ignore those arcs with large weights. (We choose
a threshold = 200 in our example in Figure 2.2.1 and delete any arc with weight greater
than 200.)

Note that the resulted weighted directed multigraph may contain not only parallel
arcs but also loops.

For the given example (Figure 2.2.1), its corresponding weighted directed multigraph
is Figure 2.2.2.
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Figure 2.2.2: The weighted, directed multigraph of the email in Figure 2.2.1

2.2.2.3 Simplification of representing graphs

The weighted directed multigraph Gm constructed in the previous step is further simpli-
fied as follows (a directed graph Gs is constructed from Gm, in which, parallel arcs are
combined).

Let Eij = {kµkν | kµ = Ki & kν = Kj}, which is the set of all arcs from the vertex Ki

to the vertex Kj of the weighted directed multigraph Gm.
Let K = {K1, K2, ..., Km}. be the vertex set of the new directed graph Gs. For each

pair of vertices Ki and Kj ( i, j = 1, 2, ...,m), if Eij 6= ∅, put an arc eij from Ki to Kj.
The weight of the arc eij = KiKj is calculated as follows,

w_sij =
∑

kµkν∈Eij

1

w_mµν

, if Eij 6= ∅.

The terms 1
w_mµν

are constructed so that when two terms are closer to each other the
reciprocal of their small relative distance will contribute more strongly to the summa-
tion. When terms are farther apart, the reciprocal will be small and so these terms will
contribute less.

The simplified directed graph Gs of the given example is illustrated in Figure 2.2.3.
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Figure 2.2.3: the simplified directed graph of the email in Figure 2.2.1

2.2.2.4 Create a Signature Vector to Represent the Input Email.

Now we create a signature vector to represent an input email by the frequency information
of the keywords and the simplified weighted graph information.

1. We use fi to denote the frequency of the keyword Ki in the document. Use
F (D) = [f1, f2, ..., fm] denote the frequency vector of the document D.

2. We use the adjacency matrix to represent the simplified weighted directed graph
Gs.

Let w_sij = 0 if there is no arc from the vertices Ki to Kj.

W (D) =


w_s11 w_s12 · · · w_s1m
w_s21 w_s22 · · · w_s2m

...
... . . . ...

w_sm1 w_sm2 ... w_smm

 .

Then we rewrite it as an (m×m) vector.

W̃ (D) = [w_s11, w_s12, ..., w_s1m, w_s21, w_s22, ...w_s2m, ..., w_smm].

Let R(D) = [F (D), W̃ (D)]. The vector R(D) contains not only the frequency infor-
mation of the keywords, but also the structure information of the document. It is used
as the signature vector of the document.

Again, corresponding to the given example (Figure 2.2.1), we have
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F (D) = [1, 2, 2, 2]

W (D) =


0 0.0995 0.0705 0.0459

0 0.0200 0.3848 0.5668

0 0.0227 0.0204 0.0884

0 0.0345 0.3627 0.0323



R(D) = [1, 2, 2, 2, 0, 0.0995, 0.0705, 0.0459, 0, 0.0200, 0.3848, 0.5668,

0, 0.0227, 0.0204, 0.0884, 0, 0.0345, 0.3627, 0.0323]
.

2.2.3 Details of the Step 2

2.2.3.1 Find Signature Vectors for all Documents

Repeat the process of the Step 1, we create signature vectors for all documents.
Let R(Di) be the signature vector of the i-th document.
Let M = [R(D1), R(D2), ..., R(Dn−1), R(Dn)]T , then M is an n× (m+m2) matrix (

n is the total number of the documents, m is the cardinality of the keywords set K. Each
row of the matrix represents a document.

2.2.3.2 Normalization of the Matrix

We normalize the matrix M with respect to the columns for the purpose of the compati-
bility in every dimension. We denote the normalized matrix as

M̃ = [R̃(D1), R̃(D2), ..., R̃(Dn−1), R̃(Dn)]T .

And the details of the normalization is presented in next section.

2.2.3.3 Similarity

The similarity Sab between any two documents Da, Db is determined by the cosine simi-
larity as follows
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Sab =
|R̃(Da) · R̃(Db)|
|R̃(Da)| · |R̃(Db)|

where R̃(Da), R̃(Db) are the normalized signature vectors of the documents Da, Db.

2.2.4 Details of the Step 3

A variety of different clustering algorithms have been developed and implemented in
popular statistical software packages. A general review of cluster analysis can be found in
many references, for instance, [27, 28, 29], etc. None of these algorithms can, in general,
rigorously guarantee to produce a globally optimal clustering for non-trivial objective
functions [30].

After calculating the pairwise similarities of all documents, we then classify these docu-
ments into different groups by applying the Quasi-Clique Merge(QCM) method to cluster
the documents. It is observed that one of the most significant differences between the
QCM method and other clustering algorithms is that the QCM method constructs a much
smaller hierarchical tree. This tree structure leads to better identification of meaningful
clusters since there are fewer subdivisions of the data set due to the impact of irrelevant
or improperly interpreted information. Additionally, the QCM method results in multi-
membership clustering [31], which preserves some amount of the ambiguity inherent in
the data set rather than errantly suppressing it as many other clustering algorithms do.

2.3 The Algorithm and Complexity Analysis

2.3.1 Graph Theory Notation and Terminology

Let Σ be the set of the alphabets appearing in the key words which includes the special
symbol “�” as the space character.

Let D = {D1, D2, · · · , Dn} be a set of text documents for pattern detection. Each
document Di is a sequence di,0 · · · di,ti consisting of alphabets from the set Σ, where the
first and the last character di,0 = di,ti = �, ti + 1 is the length of the document Di.

Let K = {K1, K2, ..., Km}. be the set of selected keywords. For each keyword
Ki = ki,0 · · · ki,si , the first and the last character ki,0 = ki,si = �, si + 1 is the length of
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the keyword Ki.
Let G = (V,A) be a directed graph with vertex set V and arc set A.
N+(v) is the set of all out-neighbors of the vertex v. That is, N+(v) = {u ∈

V (G) : vu ∈ A(G)}.
N−(v) is the set of all in-neighbors of the vertex v. That is, N−(v) = {u ∈ V (G) : uv ∈

A(G)}.
Let L : A(G) 7→ Σ be a labeling of A(G). L+(v) = {l(vu) : u ∈ N+(v)}.

2.3.2 Construction of Searching tree

For the purpose of finding keywords efficiently, we use the following algorithm to set up
a searching tree for keyword searching.

2.3.2.1 Algorithm
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Algorithm 2.1 Construction of Searching tree
Input. K = {K1, K2, ..., Km}.: a set of keywords.

Output. A rooted tree (called “searching tree”) T : T has a root v0 and m leaves. Each
of the leaf represents a keyword; each arc of T is labeled with a character ∈ Σ; for each
leaf v`, let P be the unique directed path from the root v0 to v`, the sequence of labels
along the path P coincides with characters of the keywords K`. (Figure 2.3.1 gives a
simple example of a searching tree. )

Initial step. T has a root v0 and a vertex v1, and an arc v0v1 with the label
L(v0v1) = �.
i← 1: i is the keyword index (current keyword Ki = ki,0 · · · ki,si that is under
processing, ki,0 = ki,si = �, si + 1 is the length of the keyword Ki.)
λ← 1: λ is the level index (the character ki,λ is currently under processing, and λ is also
current level of the tree that is under construction).
v ← v1: (the current vertex whose out-neighborhood is under construction. )

Step 1.
Case 1. If λ < si. Consider N+(v).

Subcase 2-a. If N+(v) = ∅, or if ki,λ /∈ L+(v),
then go to Step 2.

Subcase 2-b. If ki,λ ∈ L+(v),
say, ki,λ = L(vu) for some u ∈ N+(v),
then go to Step 3.

Case 2. If λ = si. (Reach the end of the keyword Ki.)
If i < m then

i← i+ 1

λ← 1

v ← v1
and go back to Step 1;

If i = m (reach the last keyword) then go to Step F.

Step 2. (This is the step that adds a directed path with tail at the vertex v).
Add a directed path u0 · · ·uz with {u1, · · · , uz} as new vertices and u0 = v and

l(u0u1) = ki,λ, l(u1u2) = ki,λ+1, · · · , l(uz−1uz) = ki,si .

Then
λ← si
and go to Step 1.

Step 3. (In this step, an existing arc vu will be used since l(vu) = ki,λ).
λ← λ+ 1,
v ← u,
go to Step 1.

Step F. Final step: Output.
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Figure 2.3.1: A searching tree with keyword {circle, clique, color, flow, forest}

2.3.2.2 Complexity

Let lenK =
∑m

i=1 |Ki| denote the total length of all keywords in K. Steps 1 - 3 form a
loop that repeats lenK times. For Case 1, and Subcase 2-a, each costs 1 unit for each
character of Ki; for Subcases 2-b, it costs at most |Σ| units (for comparisons). For each
subcase, an iteration of Step 2 or 3 is followed and afterward, return back to Step 1 for
another loop.

Hence, the complexity of constructing the searching tree is O(lenK).
Remark: since we only build up this tree once in the whole procedure, the complexity

of constructing the searching tree will not be counted into the total complexity.
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2.3.3 Keyword Searching and Location in Documents

2.3.3.1 Algorithm

Let K = {K1, K2, ..., Km}. be the set of selected keywords. A keyword searching tree
T was constructed in Algorithm 2.1 ready for use. Let Θ(T ) be the set of leaves of the
rooted tree T . For the sake of convenience, each leaf of T is denoted by its corresponding
keyword. That is, Θ(T ) = K = {K1, K2, ..., Km}.

2.3.3.2 Complexity

Each character di,j of the document Di is compared with N+(v) or N+(v) ∪ N+(v0) for
some vertex v ∈ V (T ). That is, it costs at most (|Σ| + 1) units for comparisons. So,
the total cost is (|Σ|+ c)× ti where c is a small constant cost for re-indexing of j, v and
updating the records P (Kµ).

Thus, the complexity of keyword searching is O(ti), where ti is the length of the input
document Di.

2.3.4 Signature Vector of a Document

The signature vector R(Di) for a given document Di is to be calculated in this section.

Input: The collection of sets P (Kµ) for all keyword Kµ (provided in Algorithm 2.2).
Output: An 1× (m+m2)-vector R(Di).

Calculation:

Let F (Di) = [fµ] = [f1, · · · , fm] be a (1×m)-matrix where fµ = |P (Kµ)|.
Let W (Di) = [αµ,ν ] be an (m×m)-matrix with

αµ,ν =
∑ 1

pµ − pν + 1

where the summation is over all pairs pµ ∈ P (Kµ) and pν ∈ P (Kµ) with pµ > pν .
Note: this is not a symmetric matrix, parallel arcs in opposite directions in the graph

are considered differently.
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Algorithm 2.2 Keyword Searching and Location in Documents
Input. A text document Di = di,0 · · · di,ti where the first and the last character
di,0 = di,ti = �.

Output. The position sets of each keyword in the document. Each keyword Kµ is
associated with a set P (Kµ) of integers, where: p ∈ P (Kµ) if and only if the keyword
Kµ appears in the document Di at position p.

Initial Step. j ← 0 (the character di,j of the document Di is currently in iteration).
v ← v0

P (Kµ)← ∅, for each Kµ.
w ← 1: w is the position of current word in the document.

Step 1. If j < ti, go to Step 2.
If j = ti, go to Step F.

Step 2.
If di,j ∈ L+(v), say l(vu) = di,j where u ∈ N+(v), then go to Step 3.
If di,j /∈ L+(v), then go to Step 4.

Step 3.
If N+(u) 6= ∅ ( u is not a leave of the tree T ), then

v ← u,
j ← j + 1,
go to Step 1.

If N+(u) = ∅ ( u is a leave of the tree T ), then
P (u)← P (u) ∪ {w},
v ← v0,
j ← j + 1,
w ← w + 1,
go to Step 1.

Step 4.
Case 1. If dij 6= �,

j ← j + 1

and go back to Step 4;

Case 2. If dij = �,
v ← v0,
w ← w + 1,
Go to Step 1.

Step F. Output: P (Kµ), for each Kµ ∈ VL.
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Let R(Di) = [F (Di), W̃ (Di)]. Here we rewrite the matrix W (Di) as a 1 × m2 row
vector W̃ (Di) .

Complexity: It costs |P (Kµ)| for the calculation of fµ, and it costs |P (Kµ)||P (Kν)|
for the calculation of αµ,ν and αν,µ for every µ, ν ∈ {1, · · · ,m}. So, the complexity is
O(m2φ2), where φ = average of |P (Kµ)|| (the average appearance of a keyword in the
document Di).

2.3.5 Similarity Calculation

Let D = {D1, · · · , Dn} be a set of documents.

2.3.5.1 Date Normalization

Input: Let R(Di) be the (1× (m+m2)) vector calculated in Section 2.3.4. Additionally,
let M(D) = [βi,j] be the (n× (m+m2))-matrix, with the i-th row of the signature vector
R(Di), so that βi,j is the j-th component of the signature vector R(Di).
Calculation and output: For each j ∈ {1, · · · ,m+m2}, let Aj be the average of all cells

in the j-th column of the matrix M(D).

M̃(D) := [β̃i,j] = [
βi,j
Aj

].

Complexity: O(nm2)

2.3.5.2 Similarity

The similarity between two documents Da and Db is then calculated as

sab =
R̃(Da) · R̃(Db)

|R̃(Da)| · |R̃(Db)|

where R̃(Di) is the i-th row of the matrix M̃(D), namely, the normalized signature vector
of the document Di.

Complexity: O(n2m2).
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2.3.6 Clustering

The final stage is to use Quasi-Clique Merge algorithm (QCM [31]) to cluster all doc-
uments. We suppose h is the level number of the hierarchical system. Then, by the
estimation in [31], the number of iterations is bounded by O(hn2log(n)). Note that, for
an input set of n documents, the number of hierarchical levels is log(n) in average. Thus,
the complexity of QCM is O([nlog(n)]2).

2.3.7 Total Complexity

By summing up all steps, the total complexity is
O(t+m2φ2 + nm2 + n2m2 + [nlog(n)]2),
where |Σ| is the number of the distinct alphabets appearing in the key words, t is the

average length of the documents, φ is the average appearance of a keyword in a document,
m is the total number of keywords, n is the total number of documents.

Since we compare lots of documents, φ (the average appearance of a keyword in a
document) is much smaller than n (the total number of documents), and t is usually less
than n2m2. Thus, the complexity is further simplified as O(n2m2 + [nlog(n)]2).

2.4 Experimental Results

In order to evaluate the effectiveness of our algorithm, we will compare the results of our
method with the usual keyword frequency method. We calculate the similarity between
every pair of documents the following two different ways:
KF method: only use keyword frequency information.
KFP method: use keyword frequency and structure information, which is based on the
weighted directed multigraph model described in this work.

In the following analysis we will show that the KFP method is superior to the KF
method.

2.4.1 Nigerian Fraud Emails

We acquired 542 different Nigerian Fraud Emails from an internet archive [24]. We wish
to cluster these emails in order to determine any commonality in the authorship of the
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texts.
In the following experiment, we choose {bank, account,money, fund, business, transaction}

as the keyword set. Consider two emails: 2001-10-11.html, 2002-08-27.html (Figure 2.4.1)
.

Figure 2.4.1: Emails: 2001-10-11.html and 2002-08-27.html

The similarity between these two emails via theKF method is 1; the similarity between
these two emails via the KFP method is 0.999992. Reading both emails shows that they
are almost the same. For these two emails, both algorithms provided proper estimation
of their similarity.

This does not hold in general, for the following example shows a “false positive” out-
put by KF method. Consider the pair of emails: 2002-02-20a.html, 2002-07-04b.html
(Figure 2.4.2).

Inspection of the documents clearly shows that they are written in very different styles.
The similarities estimated by KF and KFP methods are 1 and 0.43177, respectively. It
is evident that one is not able to distinguish these two emails by KF method, while the
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Email: 2002-02-20a.html

Email: 2002-07-04b.html

Figure 2.4.2:

estimation of similarity by KFP method is much more reasonable.

2.4.2 Plagiarism Papers

Plagiarism in academic articles is a well-known issue. The widespread use of computers
and the Internet has made it easier to plagiarize the work of others. Most cases of
plagiarism are found in academia, where documents are typically scientific papers, essays
or reports [25]. Our experiments show that the KFP method can be used to detect the
plagiarism very efficiently.

In this case study our methodology involved the acquisition of a well-known plagiarized
paper [26] (named Paper-1A) on the independence number of a graph and its correspond-
ing original paper (named Paper-1B). In order to test whether our algorithm can detect
the plagiarism, we randomly download a set of another 35 academic papers from the
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internet (named Paper-2, Paper-3, ... , Paper-36), which are all related to the same sub-
ject, that is the independence numbers of graphs. Figure 2.4.3 is the first pair of papers:
Paper-1A and Paper-1B .

Figure 2.4.3: Paper-1A and Paper-1B

All of the papers are obtained as pdf files. Due to the limitation of the technology,
when we convert those pdf files into text files, mathematical formulas are not able to be
converted in a proper way: the same formula from different pdf files may converted into
very different sequences consisting of special symbols separating with various number of
spaces. It will definitely introduce errors when calculating the distance between keywords.
In order to eliminate the errors introduced when converting the pdf files into text files, we
will use the number of alphabets between the keywords (instead of the number of words
between keywords) as the distance between keywords.

The keywords set consists of 23 frequently used terminologies in graph theory. Ta-
ble 2.4 and Table 2.5 indicate the significant difference in the applications of both methods:
KF and KFP .
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KFP Method KF Method
Similarity
betweenPaper-1A and
Paper-1B

0.778566 0.97074

Similarity between 1. All less than 0.6. 6 pairs of papers have
other pairs of papers 2. Most of them are

far less than 0.2.
similarities greater than 0.97.

Table 2.4: Similarity Comparison 1

Similarity By
KFP Method

Similarity By
KF Method

Paper-1A Paper-1B 0.778566 0.97074
Paper-25 Paper-34 0.345626 0.994996
Paper-21 Paper-34 0.203773 0.985672
Paper-13 Paper-25 0.098588 0.980111
Paper-7 Paper-16 0.077647 0.973067
Paper-16 Paper-23 0.055026 0.971901

Table 2.5: Similarity Comparison 2

From Table 2.4, estimated by KFP method, the similarity between the Paper-1A (the
plagiarism paper) and Paper-1B (the original paper) is 0.78, and the similarities between
all other pairs of papers are less than 0.6, most of them are far less than 0.2. This strongly
indicates that the KFP method works perfectly for the detection of a plagiarism paper.

However, if we use KF method, the similarity between the plagiarism paper and the
original paper is 0.97074(see Table 2.5). And we also find other 6 pairs of papers have
similarities greater than the similarity between the plagiarism paper and the original
paper. For example, the similarity between Paper-25 and Paper-34 is above 0.99, (note
that the similarity between these two papers by KFP method is 0.35). From Table 2.5,
we can see that KFP method performs better than KF method.
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2.5 Discussions

In this chapter, we introduced a weighted directed multigraph to model a text document.
This method considers not only the keyword frequency information, but also the struc-
ture information in the form of the relations between keywords in documents. Through
experiments performed on a set of emails and a set of research papers on graph theory, it
is evident that the weighted directed multigraph model achieves significantly better than
the commonly used frequency only model.

We performed experiments on two sets of documents. For the set of graph theory
publications, publicly accessible knowledge about identified plagiarized papers provides
us a meaningful “yardstick” for the measurement of the accuracy and effectiveness of our
novel method. We may summarize our result with the following conclusion: the KFP
method is able to single out the plagiarized pair with the highest similarity which is much
larger than any other pair of papers, while the KF method produces may results without
any meaningful gap of similarity to distinguish positive and negative results.

We also tried a weighted undirected multigraph model (i.e, neglect the direction from
one keyword to the other keyword in the graph). Although it will lose some structure
information of the document, the result is also very similar to what we described above.
The advantage of undirected version is the significant reduction of the usage of memory
space comparing with the weighted directed multigraph model.

These initial results indicated that the algorithm is much more effective at discriminat-
ing and clustering text documents and further improvement of accuracy and performance
is expected. Specifically, it is anticipated that one can construct an ontological represen-
tation of the semantic information [32, 33, 34] to further enhance the KFP measure and
that this information can then be used to set up the directed weighted multigraph. This
will in turn allow us to use centrality guided clustering which will be presented in chapter
3 or QCM method to cluster all documents with even better precision.

Representing a document as a weighted directed multigraph model is the novel idea
introduced in this chapter. This approach enables us to further distinguish documents
from the SAME category into smaller groups base on writing style, or subcategory. We
also believe this weighted directed multigraph model has a great potential to be applied
to other data mining research in information related fields.



Chapter 3

A Centrality Guided Clustering (CGC)

3.1 Introduction

Clustering is the process of partitioning a set of data into meaningful subsets (called
clusters or communities) so that every data in the same cluster are similar in some sense.
It is a method of data exploration and a way of looking for patterns or structure in the data
that are of interest. A general review of cluster analysis can be found in many references
such as [40, 41, 42]. Clustering has wide applications in social science, biology, chemistry
and information sciences. The system is usually modeled as a directed graph or undirected
graph G. The set of vertices in G represents the objects under investigation, e.g., people or
groups of people, molecular entities, computers, etc. Edges in G represent the relationship
(such as friendship between people, co-authorship, protein-protein interaction) of the
objects.

The commonly used clustering algorithms are hierarchical clustering algorithm and
partitional clustering algorithms. Hierarchical clustering algorithms are either agglomer-
ative or divisive. Agglomerative algorithms begin with each element as a separate cluster
and merge them into successively larger clusters; divisive starts with one big cluster and
splits are performed recursively as one moves down the hierarchy. Partitional algorithms
typically determine all clusters at once, but can also be used as divisive algorithms in the
hierarchical clustering. The K-means clustering algorithm is a typical partitional cluster-
ing technique. Given the number of cluster (say k), the procedure of K-means clustering
is as following: (i) randomly generate k points as cluster centers, assign each point to

37
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the nearest cluster center, (ii) recompute the new cluster centers. (iii) Repeat the two
previous steps (i)(ii) until some convergence criterion is met. The main advantages of
this algorithm are its simplicity and speed which allows it to run on large datasets. Its
disadvantage is that it does not yield the same result with each run, since the resulting
clusters depend on the initial random assignments.

In this chapter, we propose a novel idea of developing a new clustering algorithm:
search of dense subgraphs leaded by centrality ranking of vertices. Traditional clustering
methods, such as, K-means, usually choose clustering centers randomly. For the method
being proposed here, we start clustering from the vertex with highest centrality score. By
analyzing the communities of the social network data set, we will find that in each com-
munity there is usually some member (or leader) who plays an key role in that community.
It is well known that centrality is an important concept [49] within social network anal-
ysis. High centrality scores identify members with the greatest structural importance in
networks and these members would be expected to play a key role in the network. Based
on the result of the centrality analysis of social network, we propose to begin clustering
from the member with highest centrality score. That is, a community is formed starting
from its “leader(s)”, and a new “member” is added into an existing community based of
its total relation with the community. We repeat the following steps: choose the vertex
with highest centrality score which is not included in any existing community yet, we
call this vertex “LEADER”, and a new community is created with this vertex. We then
repeatedly add one vertex to an existing community which satisfies the following criterion:
the density of the newly extended community is above a given threshold.

The new clustering algorithm is described in Section 3.2. In Section 3.3, test results
of the new algorithm on some popular bench-mark data sets are presented. Different
centrality measurements will be discussed in section 3.5. Some discussions are presented
in Section 3.4.

3.2 The Centrality Guided Clustering (CGC) Algorithm

In this section, we will present the the centrality guided clustering algorithm. We first
introduce some notation which will be used in the algorithms.

Let C be a subgraph of G, we define the density of the subgraph C as
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density(C) =
2
∑

e∈E(C) w(e)

|V (C)|(|V (C)| − 1)
, if |V (C)| > 1

The density of the subgraph C could be looked as the intra-cluster similarity. Good
clustering should have high intra-cluster similarity and low inter-cluster similarity. i.e.,
we want density(C) to be large.

Within graph theory and network analysis, centrality of a vertex measures the relative
importance of a vertex within the graph (for example, how important a person is within
a social network or how well-used a road is within an urban network). There are various
measures of vertex centrality introduced in graph theory and data mining (see Section
3.5). We would expect that after clustering, each group has some center and the center
has relative high centrality score. On the other hand, if we start from the vertex (called
it a “LEADER”) with high centrality score and add its neighbor to the group, we should
expect those vertices with tight connection to the LEADER to be grouped together.
The clustering result will have high intra-similarity and low inter-similarity. That is the
motivation of the CGC algorithm. We denote the centrality score of the vertex v in the
graph G as score(v). In the CGC algorithm, the subgraph centrality [47] score is used to
calculate the centrality score for each vertex in G. For any set S, the number of element
in the set S is denoted as |S|.

For a vertex v /∈ V (C) and v ∈ V (G), we define the contribution of v to C by

contribution(v, C) =

∑
u∈V (C) w(uv)

|V (C)|
.

Given a subgraph C of G, we say a vertex u /∈ V (C) is a neighbor of C if there is
a vertex v ∈ C such that uv ∈ E(G). We say u is a candidate neighbor of C if u
satisfies the following three conditions: (a) u is a neighbor of the subgraph C, (b) there
exists a vertex v ∈ V (C) such that w(u, v) ≥ α ∗max{w(e)|e ∈ V (G)} if |V (C)| = 1 or
contribution(u, C) > β∗density(C) if |V (C)| > 1, (c) score(u) < max{score(v)|v ∈ Ci}.
The candidate neighbor set is a neighbor that will be considered to be clustered to the
current group C. Condition (b) is to control the decrease in the density of the current
group after adding the candidate neighbor to that group. Condition (c) is saying that
we only consider those vertices whose centrality score is lower than the centrality score
of some vertex in Ci, i.e., if we find a vertex v ∈ N(Ci) which has higher centrality score
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than any vertices in Ci, this means the vertex v has already been clustered into a previous
group so we will not group this vertex into the current group. α and β are used to control
the clustering so that the density of the new subgraph will not decrease too much after we
add a candidate neighbor to the subgraph C. We choose α = 0.8, β = 1− 1

2∗(|V (C)|+1)
.

In another paper [39], we proved that if α = 0.8, β = 1 − 1
2∗(|V (C)|+1)

, then the density
of the new subgraph with a set of candidate neighbors added to the subgraph C will not
decrease over 1

3
. We denote the set of all candidate neighbors of the subgraph C as N(C).

The overall structure of the CGC algorithm is shown in Algorithm 3.2. The details
of the GROUPING step is shown in Algorithm 3.2. For the GROUPING algorithm, we
always start clustering a new community from the vertex with the highest centrality score
which has not been clustered into any comunities yet, we call this vertex the center (or
leader) of the new community. Denote this vertex as the current community Ci. Then we
choose a vertex from the candidate neighbor set N(Ci) which has the largest contribution
to Ci comparing with all other vertices in N(Ci) .

The comunities after the GROUPing step may have some overlap elements. If the
number of overlap elements in two comunities exceed some threshold, it is better to merge
all vertices in the two groups into a new larger comunity. The MERGING algorithm
(see Algorithm 3.2) describes the details about how to merge two comunities. In the
MERGING algorithm, if the size of overlapping of two groups greater than half of the size
of the small one of the two comunities, we merge the two comunities into one comunity.

After the MERGING step, we contract each comunity Ci as a new vertex vi. If there
is an edge between two comunities Ci and Cj, then there will be an edge vivj in the
contracted graph and the weight of the edge w(vi, vj) is calculated in CONTRACTION
Algorithm (see Algorithm 3.2), where E(Ci, Cj) is the set of crossing edges which is
defined as E(Ci, Cj) = {xy : x ∈ Ci, y ∈ Cj, x 6= y}.
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Algorithm 3.1 CGC algorithm
Input: a weighted graph G
Output: clustering dendrogram of the graph G.
(Initialization) l = 1, Gl = G,
while |V (Gl)| > 1

(GROUPING) cluster the vertices in Gl into different comunities .
(MERGING) merge those comunities with large percentage of overlap.
(CONTRACTION) contract those vertices in the same comunity to a new vertex,

calculate the edge weights in the contracted graph.
Denote the contracted graph as Gl+1, l = l + 1.

Algorithm 3.2 GROUPING Algorithm
Input: a weighted graph Gl

Output: each vertex is assigned to a comunity.
Calculate the centrality score of each vertex v ∈ Gl,
Order v ∈ V (Gl) via their centrality scores, such that Q = (v1, v2, ..., vn) with
score(v1) ≥ score(v2) ≥ ... ≥ score(vn).
i← 0

While Q 6= ∅
i← i+ 1

create a new comunity Ci ← {vi1}, where vi1 is the first vertex in the vertex queue Q.
New_Q = Q− {vi1}
While |New_Q| < |Q|
Q = New_Q
find the candidate neighbor set N(Ci) of Ci.
calculate the contribution of all each vertex in N(Ci).
Sort v ∈ N(Ci) in decreasing order of contribution to Ci, i.e.,

QN = (vn1 , vn2 , ..., vnk) where vni ∈ N(Ci) and
contribution(vn1 , Ci) ≥ contribution(vn2 , Ci) ≥ ... ≥ contribution(vnk , Ci), k = |N(Ci)|
.

If N(Ci) = ∅, break.
else
Ci = Ci ∪ {vn1}
New_Q = Q− {vn1}, QN = QN − {vn1}
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Algorithm 3.3 MERGING Algorithm
Input: a weighted graph Gl which is already clustered into s comunities as in the
GROUPING Algorithm.
Output: each vertex is assigned to a new comunity.
List all comunities of Gl as L = {C1, C2, ..., Cs} such that
|V (C1)| ≥ |V (C2)| ≥ ... ≥ |V (Cs)|
h← 2, j ← 1

while j < h

If |Cj ∩ Ch| ≥ γ ∗min(|Cj|, |Ch|),
L = L ∪ {Cj ∪ Ch} − {Cj} − {Ch}
s← s− 1, h← max{h− 2, 1},
h← h+ 1, j ← 1

else
j ← j + 1

Algorithm 3.4 CONTRACTION Algorithm
Input: a weighted graph Gl which is already merged into s comunities as in the
MERGING Algorithm,
Output: each vertex is assigned to a new comunity.
List all the merged comunities of Gl as L = {C1, C2, ..., Cs}
generate a vertex vp for each comunity Cp.
for i = 1 to s
for j = 1 to s
w(vi, vj) =

∑
e∈E(Ci,Cj)

w(e)

|V (Ci)|∗|V (Cj)|
w(vj, vi) = w(vi, vj)
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3.3 Applications of the Centrality Based Clustering Al-

gorithm.

In this section, we present some applications of our method to some classical data sets
and compare the results with the benchmarks.

3.3.1 Synthetic Network

In order to test the performance of the CGC algorithm, we generated a graph G1 with
25 vertices as in Figure 3.3.1(a), and a graph G2 with 81 vertices as in Figure 3.3.1(b),
and we add two edges between G1 and G2 to generate the graph G as in Figure 3.3.2(a).
This graph is an unweighted graph. Ideally, if we try some clustering algorithm on the
network G, we would expect that the vertices in G1 should be clustered in one group, and
the vertices in G2 should be in another group. Figure 3.3.2(b) shows the clustering result
by CGC algorithm, the solid dots are clustered as one community and the squares are
clustered as another community. The result of CGC algorithm on the graph G matches
the expected result perfectly.

(a) G1 (b) G2

Figure 3.3.1: (a) is a graph with 25 vertices, (b) is a graph with 81 vertices

3.3.2 Zachary’s Karate Club Dataset

Zachary’s Karate Club Dataset is a typical dataset which is used to measure the clustering
algorithm for social network. It is a social network of friendships between 34 members
of a karate club at a US university in the 1970 [36]. Zachary recorded the interaction
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(a) (b)

Figure 3.3.2: (a) is the graph G which has G1 and G2 as subgraphs. (b) is the clustering
result of CGC algorithm, the solid dots are clustered as one community and the squares
are clustered as another community.

of a Karate club in a university for two years. The graph of the karate club is in figure
3.3.3(a). The weight on the edge represents the interaction between different members.
During the observation, the members in the Karate club encountered a disagreement that
subsequently led to a formal separation of the club into two organizations. The result of
CGC algorithm is shown in figure 3.3.3(b), the dashed line denotes the partition of the
clustering result. The vertices on left side of the dotted curve belongs to one community
and the vertices on the right hand side of the dashed curve belongs to another community.
Figure 3.3.4 is the corresponding hierarchical tree based on CGC algorithm. The results
are exactly same as the benchmark.

3.3.3 Dolphin Social Network

The dolphin social network dataset is another representative dataset to test the accuracy
of clustering algorithms. It is an social network of frequent associations between dol-
phins in a community living off Doubtful Sound, New Zealand [35]. The social network
of the dolphins are presented in the figure 3.3.5,there are 62 vertices and 159 edges in
this network: vertices represent the bottlenose dolphins, edges between vertices represent
associations between dolphin pairs occurring more often than expected by chance. During
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(a) (b) clustering result

Figure 3.3.3: (a) is original graph of the Karate club. (b) the dotted line denotes the
partition of the clustering result of CGC algorithm. The vertices on left side of the
dashed curve belongs to one community and the vertices on the right hand side of the
dashed curve belongs to another community.

26 32 26 9 16 24 27 28 30 33 34 31 15 23 29 21 19 10 2 3 1 8 14 4 13 20 22 12 18 6 7 17 5 11

Figure 3.3.4: the hierarchical tree of the Karate Club dataset by the CGC algorithm

the course of the study, the dolphin group split into two smaller subgroups following the
departure of a key member (represented as the triangle in the figure 3.3.5) of the popu-
lation. The groundtruth subgroups are represented by the shapes of the vertices in the
figure 3.3.5, the vertices represented as squares are in one group and the vertices repre-
sented as dots and triangle are in the other group. The dotted line denotes the division
of the network into two equal-size groups found by the standard spectral partitioning
method in which 11 out of 62 dolphins are misclassified. The solid curve represents the
division found by the modularity-based method by Newman [38] in which 3 out of 62
dolphins are misclassified. We applied centrality guided clustering method to the dolphin
social network, it divides the dolphins into two different groups giving the same result as
the benchmark result. Figure 3.3.4 shows the corresponding hierarchical tree based on
CGC algorithm.
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modularity method

spectral partitioning

Figure 3.3.5: The social network of the dolphins. The dotted line denotes the division
of the network into tow equal-size groups found by the standard spectral partitioning
method, and the solid curve represents the division found by the modularity-based method
by Newman [38].

43 46 42 41 44 45 47 50 51 54 55 52 5337 38 39 40 4 17 30 31 28 23 27 253 16 2 12 7 26 24 57 60 5914 32 33 56 621 15 29 33 619 8 6 22 34 35 10 13 5821 19 20 205 1148 49 36 18

Figure 3.3.6: the hierarchical tree of the dolphin dataset based on CGC algorithm

3.3.4 The Fisher Iris Data

The iris data set published by Fisher (1936) has been widely used for examples in dis-
criminant analysis and cluster analysis. The iris data set contains 150 iris specimens from
three different species: setosa, versicolor, and virginica. For each species, 50 observations
of the sepal length, sepal width, petal length and petal width of each iris are measured in
millimeters.

This data set offers a challenge as two of the species are contiguous in the 4 dimensional
space and are difficult to separate. The analysis of the Fisher Iris data using the K-means
algorithm and Ward’s algorithm are provided in SAS Institute [48]. A comparison of the
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results using K-means, Ward’s algorithm and our centrality guided clustering algorithm
(CGC) are shown in table 3.1. The overall misclassification rate by K-means and Ward’s
algorithm are both 10.7%, The overall misclassification rate by CGC algorithm is only
8.7%.

number of misclassification by different methods
species K-means Ward’s method CGC
setosa 0 0 0
versicolor 2 1 4
virginica 14 15 9
total misclassification 16 16 13
error rate 10.7% 10.7% 8.7%

Table 3.1: comparison of the results of Iris data by different clustering methods

3.4 Discussions

In this chapter, we discussed the importance of the centrality score of vertices in a network
and proposed a centrality guided clustering method. The CGC initiates the clustering
processing at a vertex with high centrality score, which is a potential leader of a commu-
nity. We have applied the CGC method to several benchmark data sets, the experimental
results show that CGC algorithm outperforms existing clustering methods.

Different centrality measurements are described in section3.5. The degree criterion
serves as a very local measurement for centrality, while betweenness centrality, closeness
centrality search for global “leaders” of the entire networks. Since the goal of clustering
is to identify local communities, instead of following global leaders, we suggest the use of
subgraph centrality or r centrality as a subprogram in our proposed algorithm since it is
an intermediate measurement of graph centrality. One research direction is to summarize
different types of networks and figure out which centrality measurement works best for a
given type of network system.

The CGC algorithm we developed is a hierarchical cluster algorithm. In the future,
we plan to apply the centrality score guided idea to other clustering methods (such as
K-means). We believe it will also produce promising clustering results.
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3.5 Appendix: Measures of Centrality

Within graph theory and network analysis, the centrality of a vertex measures the relative
importance of a vertex within the graph. There are various measures of the centrality of a
vertex. Centrality measures, such as degree centrality, betweenness, closeness, eigenvector
centrality and subgraph centrality, are among the most popular ones. Before we describe
the centrality measures in detail, we first introduce some notation and terminology in
graph theory which will be used in the this section and later sections.

Given an input dataset, we model the data set as a graph G = (V, E, w). The vertices
of G represent the elements of the dataset and the edges represent the relationships
between different pairs of elements. |V (G)| represents the number of vertices (or elements
in the dataset). We use w(u, v) or w(e) to denote the weight of the edge e between two
vertices u and v. If there is no edge between two vertices u and v, then we let w(u, v) = 0.
If the graph is an unweighted graph, then

w(uv) =

{
1 if uv ∈ E(G)

0 otherwise

Degree Centrality

Given a graph G, the degree centrality for any v ∈ G is defined as

cD(v) =
d(v)

n− 1

where d(v) is the degree of v ∈ G and n is the total number of vertices in G. Degree
centrality is a fundamental quantity describing the topology of scale-free networks. It can
be interpreted as a measure of immediate influence, as opposed to longterm effect in the
network [43].

Betweenness Centrality

Based on the assumption that transmission of information spreads along the shortest
paths, betweenness centrality of the node for any v ∈ G is defined as

cB(v) =
2

(|V (G)| − 1)(|V (G)| − 2)

∑
s 6=v 6=t

σst(v)

σst
,



CHAPTER 3. A CENTRALITY GUIDED CLUSTERING (CGC) 49

where s, v, t ∈ V (G), σst is the number of shortest paths from s to t, and σst(v) is the
number of shortest paths from s to t that pass through a vertex v. Betweenness centrality
characterizes how influential a node is in communicating between node pairs [44].

Closeness Centrality

The closeness centrality is defined as the mean geodesic distance (i.e., the shortest path)
between a vertex v and all other vertices reachable from it:

cC(v) =
|V (G)| − 1∑
u∈V \v dist(u, v)

where dist(u, v) is the length of shortest path from u to v.

Eigenvector Centrality

Eigenvector centrality is another popular measure of the importance of a node in a net-
work. It assigns relative scores to all nodes in the network based on the principle that
connections to high-scoring nodes contribute more to the score of the node in question
than equal connections to low-scoring nodes. The eigenvector centrality score of the ith
node in the network is defined as the ith component of the eigenvector corresponding to
the greatest eigenvalue of the following characteristic equation Ax = λx , where A is the
adjacency matrix of the network, λ is the largest eigenvalue of A and x is the correspond-
ing eigenvector. It simulates a mechanism in which each node affects all of its neighbors
simultaneously [45]. Eigenvector centrality is better interpreted as a sort of extended de-
gree centrality which is proportional to the sum of the centralities of the node’ neighbors.
Consequently, a node has high value of eigenvector centrality either if it is connected to
many other nodes or if it is connected to others that themselves have high eigenvector
centrality [46].

Subgraph Centrality

The subgraph centrality of any vertex i in a graph G is defined as the scaled sum of
closed walks of different lengths in the network starting and ending at vertex i . As this
sum includes both trivial and nontrivial closed walks we are considering all subgraphs,
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i.e., acyclic and cyclic, respectively. The number of closed walks of length k starting and
ending on vertex i in the network is given by the local spectral moments µk(i), which are
simply defined as the ith diagonal entry of the kth power of the adjacency matrix A of G:

µk(i) = (Ak)ii

And the subgraph centrality of vertex i in the network is given by [47]:

cS(i) =
∞∑
k=0

µk(i)

k!

Subgraph centrality measure characterizes the participation of each node in all sub-
graphs in a network. Smaller subgraphs are given more weight than larger ones, which
makes this measure appropriate for characterizing network motifs.

Laplacian Centrality

Consider the undirected simple graph G = (V, E, w). A simple graph is a graph without
loop and parallel edges, so se have w(vi, vi) = 0 for any vi ∈ V (G). Since it is an
undirected graph, we have w(vi, vj) = w(vj, vi). For simplicity, we write w(vi, vj) as wi,j.
Then the edge weight matrix of G can be written as

W (G) =


w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
...

...
...

wn,1 wn,2 · · · wn,n

 =


0 w1,2 · · · w1,n

w1,2 0 · · · w2,n

...
...

...
...

w1,n w2,n · · · 0

 .
Define

X(G) =


x1 0 · · · 0

0 x2 · · · 0
...

...
...

...
0 0 · · · x2


where xi =

∑n
j=1 w(vi, vj). Then the matrix L(G) = X(G) − W (G) is called the

Laplacian matrix of G. The Laplacian energy of G is defined as
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EL(G) =
n∑
i=1

x2i + 2
∑
i<j

w2
i,j.

The Laplacian centrality for any vertex v ∈ V (G) is defined as

CL(v) =
EL(G)− EL(G− v)

EL(G− v)

which is the relative change of the Laplacian energy caused by the deletion of the
vertex from graph G.

Laplacian centrality unveils more structural information about connectivity and den-
sity around v. It is an intermediate measure between the global and local characterization
of the importance (centrality) of a vertex.



Chapter 4

Postman Tour with Optimal

Route-Pair Cost

4.1 Introduction

The Chinese postman tour problem is to find a shortest closed walk that visits every edge
of a connected graph where a positive length is assigned to every edge. In this paper, we
introduce a new optimization problem for finding an optimal closed walk where a route
value matrix is defined at every vertex for every choice of consecutive edge pair along
the walk. This problem is motivated by the DNA sequence assembling for solving the
repeating subsequence problems.

We first introduce some mathematical notations and definitions which will be used in
the later sections.

Given a simple directed graph G, for any v ∈ V (G), denote the set of incoming
neighbors of the vertex v as

N−(v) := {x : x ∈ G, xv ∈ E(G)},

denote the set of outgoing neighbors of the vertex v as

N+(v) := {y : y ∈ G, vy ∈ E(G)},

denote the set of incoming edges of the vertex v as

52
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E−(v) := {xv : x ∈ G, xv ∈ E(G)},

and denote the set of outgoing edges of the vertex v as

E+(v) := {vy : y ∈ G, vy ∈ E(G)}.

The in-degree of v is denoted as d−(v) and the out-degree of v is denoted as d+(v).

Definition. Let G be a directed graph, G is Eulerian if and only if d−(v) = d+(v) for
any v ∈ V (G).

Given a graph G, the weight w : E(G) → Z is called Eulerian weight if the total
weight of each edge-cut is even.

A directed graph is called strongly connected if for any v ∈ V (G), there is a path
from v to every other vertex.

A closed walk of a directed graph G is a postman tour if it passes through every
edge at least once. We call a postman tour an optimal postman tour if each edge is
passed by at least once and the total number of repeated edges is minimum. Given an
optimal postman tour Tp of G, we denote t(e) as the times of the edge e is visited in Tp.
We say that t(e) : E(G) → Z is an optimal Eulerian weight corresponding to the
optimal postman tour Tp.

Let v ∈ V (G). For each ei ∈ E−(v) and ej ∈ E+(v), the pair {ei, ej} is called a route-

pair at v. For each v ∈ V (G), define a route-pair cost φv : E−(v)×E+(v) 7→ R+. We
call the value of φv(ei, eo) as the route value of the length two path eiveo.

For each v ∈ V (G), suppose E−(v) = {e−1 , e−2 , ..., e−x }, E+(v) = {e+1 , e+2 , ..., e+y }, we
write a route-pair cost matrix at v as

R(v) =


φv(e

−
1 , e

+
1 ) ... φv(e

−
1 , e

+
y )

...
...

...
φv(e

−
x , e

+
1 ) ... φv(e

−
x , e

+
y )


For a postman tour W = v1e1v2e2 · · · eiviei+1 · · · emv1, the total route-pair cost of

W is defined as φ(W ) =
∑m

i=1 φvi(ei, ei+1) + φv1(em, e1). And we define the Minimum

route-pair cost (MRPC) Problem as:

Given a strongly connected digraph G and a route-pair cost φv for every v ∈ V (G),
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find a postman tour W = v1e1v2e2 · · · eiviei+1 · · · emv1, with the total cost φ(W ) as small
as possible.

4.2 An Algorithm for Postman Tour with Minimum

Route-pair Cost

In this section, we propose an algorithm to find a postman tour with minimum route-pair
cost for the special case that G is Eulerian digraph with d−(v) = d+(v) = 2 for every
vertex v ∈ V (G).

If G is strongly connected Eulerian digraph with d−(v) = d+(v) = 2 for every vertex
v ∈ V (G), then the route matrix R(v) for v could be written as

R(v) =

[
φv(e

−
1 , e

+
1 ) φv(e

−
1 , e

+
2 )

φv(e
−
2 , e

+
1 ) φv(e

−
2 , e

+
2 )

]
For this type of digraph G, we can always find a postman tour with minimum route-

pair cost. The algorithm we proposed for this problem is called as MRPC algorithm,
which is described in Algorithm 4.1. For any vertex v ∈ V (G), if ei is the incoming edge
to v and it is followed by eo in the postman tour, then we say that eo is an subsequent

edge of ei, denote as s(ei) = eo.
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Algorithm 4.1 the MRPC Algorithm
Input: A strongly connected digraph G with d−(v) = d+(v) = 2 and a route-pair cost
function φv for v ∈ V (G) .
Output: a postman tour with minimum route-pair cost for G.
Step 1.
Substep 1.1 find subsequent edge for each incoming edge
denote the vertex set as V = {v1, v2, ..., vn},
For i = 1 to n, denote E−(vi) = {e−i1, e−i2}, E+(vi) = {e+i1, e+i2}.
4(vi) = [φvi(e

−
i1, e

+
i1) + φvi(e

−
i2, e

+
i2))]− [φvi(e

−
i2, e

+
i1) + φvi(e

−
i1, e

+
i2)].

If 4(vi) < 0,
then s(e−i1) = e+i1, s(e

−
i2) = e+i2;

else, s(e−i2) = e+i1, s(e
−
i1) = e+i2.

Substep 1.2 find all closed walks generated in Substep 1.1.
W = ∅, i = 0

denote E as the edge set of graph G.
while ( E 6= ∅)

i← i+ 1

choose the first edge e in E,
Wi ← {e}, E ← E − {e}
while s(e) /∈ Wi

Wi = Wi ∪ {s(e)}, E ← E − {s(e)}
e = s(e)

end
end
We get a series of edge-disjoint closed walk, say W = {W1, W2, ..., Wk}.
Step 2.
If k = 1, then W1 is the postman tour with minimum route-pair cost of G, DONE.
Else, we construct an auxiliary graph A for G as following:
(i) V (A) = {W1, W2, ..., Wk},
(ii) ∀ v ∈ V (G), if v is in two closed walks, say Wi, Wj, then we add an edge to the
auxiliary graph A. Label this edge as vWiWj and let w(vWiWj) = |4(v)|.
Step 3. Find a minimum spanning tree T of the graph A by Kruskal’s Algorithm.
Step 4. For each edge vWiWj ∈ E(T ), alternate the paths of Wi and Wj at the vertex v.
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We claim that the MRPC ends up with one postman tourW . And the total route-pair
cost of W is φ(W ) =

∑k
i=1 φ(Wi) +

∑
e∈T 4(e). We claim that the MRPC algorithm

find one of the the postman tour with minimum rout-pair cost. And we will prove the
correctness of the MRPC algorithm in the theorem 3.

Before we prove theorem 3, let us look at the example in Figure 4.2.1. Without defining
any route value function, there are several different postman tours starting at the vertex v1.
Say for examples, v1av2bv3cv4dv5ev1fv4hv2jv5gv3iv1 and v1fv4dv5gv3cv4hv2bv3iv1av2jv5ev1.
And there are other solutions. If we define route-pair cost at each vertex as following:

R(v1) =

[
φv1(e, a) φv1(e, f)

φv1(i, a) φv1(i, f)

]
=

[
10 1

4 3

]

R(v2) =

[
φv2(a, b) φv2(a, j)

φv2(h, b) φv2(h, j)

]
=

[
0 1

1 0

]

R(v3) =

[
φv3(b, i) φv3(b, c)

φv3(g, i) φv3(g, c)

]
=

[
1 3

5 2

]

R(v4) =

[
φv4(c, d) φv4(c, h)

φv4(f, d) φ4(f, h)

]
=

[
15 2

1 4

]

R(v5) =

[
φv5(d, e) φv5(d, g)

φv5(j, e) φv5(j, g))

]
=

[
1 12

8 6

]
Then by the Substep 1.1 in the MRPC algorithm we find that
at v1: s(e) = f, s(i) = a,
at v2: s(a) = b, s(h) = j,
at v3: s(b) = i, s(g) = c,
at v4: s(f) = d, s(c) = h,
at v5: s(d) = e, s(j) = g,
And we find the walks

W1 = efd, W2 = iab, W3 = hjgc

which could be rewritten as
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W1 = v5ev1fv4dv5, W2 = v3iv1av2bv3, W3 = v4hv2jv5gv3cv4

Follow the step 2 in the MRPC algorithm, we get the auxiliary graph as in figure
4.2.2(a), there are one edge v1W1W2 between W1 and W2, two edges v2W2W3, v3W2W3

between W2 and W3 and two two edges v4W1W3, v5W1W3 between W1 and W3. The
weight of each edge is:

w(v1W1W2) = 8, w(v2W2W3 = 2, w(v3W2W3) = 5, w(v4W1W3) = 16, w(v5W1W3) =

13.
By Kruskal’s Algorithm, we find a minimum spanning tree as in figure 4.2.2(b) for the

augment graph. If we switch the length-two paths through v1 and v2, we get exactly one
walk v5ev1av2jv5gv3cv4hv2bv3iv1fv4dv5 which traverses each edge exactly once. And this
walk is equivalent to the path v1av2jv5gv3cv4hv2bv3iv1fv4dv5ev1 which is starting and end
at v1. The total route-pair cost is 28.

v1

v3v4

v2

v5

e

h

c

b
d

a

i

j

f

g

Figure 4.2.1: an example for the postman tour with minimum route-pair cost problem

Theorem 3. Given a digraph G and a route-pair cost function φv for every v ∈ V (G).
If G is strongly connected and d−(v) = d+(v) = 2 for every v ∈ V (G), then the MRPC

Algorithm find one of the optimal postman tours with minimum route-pair cost.

Proof. Claim 1. Step 1 in the MRPC algorithm produces a series of edge-disjoint closed
walks that covers every edge precisely once.

By Substep 1.1 in the MRPC algorithm, every edge has only one subsequent edge
and every edge is the subsequent edge of exactly one edge. So every edge is visited exactly
once in the following steps in the MRPC algorithm.
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w1

w3

w2

v1w1w2   
8

v4w1w3

16

v2w2w3

2

v5w1w3

13

v3w2w3

5

w1

w3

w2

v1w1w2   
8

v2w2w3

2

(a) (b)

Figure 4.2.2: (a) is the augment graph of the figure 4.2.1, (b) is the minimum spanning
tree of (a)

Since d−(v) = d+(v) = 2 for every v ∈ V (G), each walk in W = {W1, W2, ..., Wk}
at the end of step 1 in the MRPC algorithm is a closed walk. And for any two walks
Wi,Wj ∈ W , they must be edge-disjoint. Otherwise, some edge must be visited more
than once.

Claim 2. Step 4 in the MRPC algorithm joins all the edge-disjoint walks.
For each edge vWiWj ∈ E(T ), we alternate the paths of Wi and Wj at the vertex

v. Notice that d−(v) = d+(v) = 2, we have only two pairs of choices for the paths pass
through v, either {e−1 ve+1 ∈ Wi, e−2 ve

+
2 ∈ Wj} or {e−2 ve+1 ∈ Wp, , e

−
1 ve

+
2 ∈ Wq}. If

{e−1 ve+1 ∈ Wp, e
−
2 ve

+
2 ∈ Wq} , then we let s(e−2 ) = e+1 and s(e−1 ) = e+2 . Thus we alternate

the paths through v to e−2 ve
+
1 and e−1 ve

+
2 . As in the figure 4.2.3, Wi = ve+1 bpiae

−
1 v and

Wj = ve+2 bpjae
−
2 v are edge-disjoint walks. After alternate the paths through v to e−2 ve

+
1

and e−1 ve
+
2 , we get a new walk ve+1 piae

−
i ve

+
2 pje

1
2v which joinsWi andWj. If {e−2 ve+1 ∈ Wp,

e−2 ve
+
1 ∈ Wq} , then we let s(e−1 ) = e+1 and s(e−2 ) = e+2 and alternate the paths through v

to e−1 ve
+
1 and e−2 ve

+
2 .

Since T is a spanning tree of A, and each vertex of A is a walk in W , the edges in T
will join all walks in W to one walk.
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Figure 4.2.3: edge disjoint walk

By Claim 1 and Claim 2, we proved that the MRPC algorithm find a closed walk for
the digraph G.

Suppose the closed walk (say W = v0e1v1e2 · · · eµvµeµ+1 · · · em) found by the MRPC
Algorithm is not minimum, then there must be another closed walk, say W̃ , with φ(W̃ ) <

φ(W ).
Let W̃ = ṽ0ẽ1ṽ1ẽ2 · · · ẽµṽµẽµ+1 · · · ẽmṽ0.
We first show that W̃ could also be obtained from W by switching some length two

paths at some vertices in G.
Construct an auxiliary graph Ã for G as following:
(i) Let V (Ã) = {W1, W2, ..., Wk} as described in Step 1 of the MRPC algorithm,
(ii) ∀ v ∈ V (G), if v is in two closed walks, say Wi, Wj, then we add an edge to the

auxiliary graph A. We label this edge as vWiWj in order to distinct the parallel edges
between the vertex Wi and the vertex Wj derived from different vertex in G, the weight
of the edge vWiWj is defined as w(vWiWj) = |4(v)|. Similarly, if v is in only one closed
walk, say Wi, then add a loop to the auxiliary graph A. We label this loop as vWiWi in
order to distinct the parallel loops in Ã derived from different vertex v ∈ G, the weight
of the loop vWiWi is w(vWiWi) = |4(v)|.

(iii) Obviously, we can obtain the walk W̃ by connecting some walks in W . 1 Sup-
pose that T̃ is the subgraph of Ã which is used to obtain the walk W̃ , then V (T̃ ) =

V (Ã), E(T̃ ) ={the set of edges in Ã that join all edge-disjoint walks in W}.
Claim 3:

∑
e∈T w(e) ≤

∑
e∈T̃ w(e).

Since W̃ is a closed walk, T̃ must be a connected spanning subgraph of the auxiliary
1(need to modify the description here)
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graph Ã. Otherwise, some closed walk Wi, Wj will not be joined to the same component
of the graph.

From the way we construct the auxiliary graphs A and Ã, it is easy to see that A ⊂ Ã

with V (A) = V (Ã). Since T is a minimum spanning tree of A, it is also a minimum
spanning tree of Ã. So we must have

∑
e∈T w(e) ≤

∑
e∈T̃ w(e).

φ(W̃ ) =
∑k

i=1 φ(Wi)+
∑

e∈T̃ w(e) ≥
∑k

i=1 φ(Wi)+
∑

e∈T w(e) = φ(W ). Contradiction
with φ(W̃ ) < φ(W ).

4.3 DNA Sequence Assembly

As we mentioned in section 4.1, the optimization problem defined in section 4.1 was
motivated by DNA sequence assembling problem. Genome assembly problem is one of
the fundamental problems within bioinformatics research since the Sanger sequencing
method was introduced in 1977. A critical stage in genome sequencing is the assembly
of shotgun reads. Genome is broken into small reads whose sequence is then determined.
The problem of combining these reads to reconstruct the source genome is known as
genome assembly.

There are two different types of genome assembly approaches. One is Comparative
approach and the other is de novo approach. The comparative assembly use some available
reference sequence as a guide during the assembly process. This approach is usually
used when studying genomic variation within population. The de novo approach aimed
at reconstructing genomes that are not similar to any organism previously sequenced.
The main strategies for de novo assembly are overlap-layout-consensus (such as Celera
Assembler and Arachne) and Eulerian path [54]. One of the problem related to de novo
assembly is how to assemble those repeat segments. The overlap-layout-consensus such
as Celera assembler masks repeats, generate a large set of contigs.

In order to resolve the repeat problem, some local optimal selections have been pro-
posed in some pioneering works [51, 52, 53] The mate-pair information was used to deal
with the repeat problems. Chaisson etc.[50] suggested that “when there are multiple paths
in the repeat graph between a mate-pair, we may choose a path with maximum support
from mate-pairs”. They locally used the mate-pair information for resolving repeat prob-
lems. However, if a route is optimized at every vertex, the resulting assembly may not be
a single contig. Inspired by their work, we propose to generate route value function by



CHAPTER 4. POSTMAN TOUR WITH OPTIMAL ROUTE-PAIR COST 61

using mate-pair information and find the postman tour with minimum route value in the
DNA sequence graph. Instead of the local greedy approaches which may result in many
contigs, our main contribution for the DNA assembly problem is to find a global optimal
solution for resolving the collapsed repeats with only one contig.

For a set of strings R = {r1, r2, ..., rn}, define Sk as the collection of all k-mer strings
from R. Given a set of reads R = {r1, r2, ..., rn}, the de Bruijn graph G(V, E) is defined
as follows: V (G) is the set of all (k − 1)-mer strings from R, if there is a k-mer in Sk

that has the (k − 1)-mer u as prefix and (k − 1)-mer v as suffix, then uv ∈ E(G). Each
k-mer corresponding to an edge in G. An example of a de Bruijn graph for the sequence
is shown in Figure 4.3.1(a). A vertex v is called a source if d(v−) = 0. A vertex v is called
a sink if d(v+) = 0. A vertex is called nonbranching vertex if d+(v) = d−(v) = 1. Based
on the k-mer de Bruijn graph, we can replace all paths containing nonbranching vertices
by a single edge as in in Figure 4.3.1(b) and we call it condensed k-mer de Bruijn graph.
We can simplify the condensed de Bruijn graph as Figure 4.3.1(c). In order to find the
DNA sequence for the de Bruijn graph given in Figure 4.3.1, we need to find a walk that
pass through every edge in Figure 4.3.1(c) at least once. Notice that the edge e2 and e4
have to be visited twice if we want to find a walk visit all edges. The possible walks are

v1e1v2e2v3e3v2e2v3e4v4e5v3e4e6v5

and

v1e1v2e2v3e4v4e5v3e3v2e2v3e4v4e6v5

, the corresponding two possible DNA alignments are

ACGACTCAGACTATACTAA

and

ACGACTAGTACTCAAGACTAA.

In order to determine which one of them are the correct alignment, we need to use some
extra information. The mate-paired reads have been considered essential to de novo
sequencing. Reads (denote as (r1, r2)) from opposite ends of the same clone insert are
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known as clone mates. The distance between the mate pair (r1, r2) is always given. After
mapping every read to a path in the de Bruijn graph, we can map the mate pair (r1, r2)

to some path in the de Bruijn graph that connects the positions of the mate pair (r1, r2)

with path length approximately matches the clone length. In some case, this mapping
may not be unique as in figure 4.3.2, the edge e3 and e5 have the same length.

(a)

(b)

(c)

Figure 4.3.1: (a) is a 4-mer de Bruijn Graph of the sequence, (b) is the condensed 4-mer
de Bruijn Graph, (c) is a simplified graph of (b)

Based on the possible paths corresponding to each mate pairs, we can define the edge
weight of the de Bruijn graph as following:
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Figure 4.3.2: mate pairs which could be mapped to multiple paths in the de Bruijn graph

For any vertex v in the graph G, if ei ∈ E−(v) and ej ∈ E+(v) , we let φv(ei, ej) =

−(number of mate pair paths that pass through eivej).

Figure 4.3.3: An example of a de Bruijn graph with mate pairs

If we use Figure 4.3.3 as an example, then the route matrix at v2 is

R(v2) =

[
φv2(e2, e1) φv2(e2,e4)

φv2(e3, e1) φv2(e3,e4)

]
=

[
1 0

2 0

]
.

After we define a route matrix for each vertex v ∈ G, the DNA sequence assembly
problem could be formulated as finding the postman tour with minimum route-pair cost
problem. So at the vertex v2, we will choose e3v2e1 and e2v2e4 as the two paths that pass
through v2 by the MRPC Algorithm in section 4.2. The MRPC Algorithm will choose
e4v3e5 and e7v3e6 as the two paths that pass through v3. If v1 is the starting vertex and
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end vertex, then the final assembly by the MRPC Algorithm for the sequence in figure
4.3.3 will be v1e3v2e2v2e4v3e5v4e7v3e6v4v1.

Note that, the de Brujin graph may not be an eulerian digraph. If the de Brujin graph
has only one source and one sink, then we can add an edge from the sink to the source.
then we find the number of repeat of each edge by finding a minimal flow in a network
with lower capacity bounds and get an Eulerian graph [51].

4.4 Different Optimization Problems with Route-Pair

Cost

In section 4.2, we only discussed the solution for any connected Eulerian digraph with
d−(v) = d+(v) = 2, ∀ v ∈ V (G). If there are some vertices with d−(v) > 2 or d+(v) > 2,
then we conjecture that the problem is NP complete.

Further more, if the graph is not Eulerian, then some edges will be used multiple times.
Which edge will be used in multiple times? For the optimal problem without route-pair
cost matrix, it is simply the Chinese postman problem. However, with route-pair costs at
vertices, it is a more complicated optimization problem. Here we propose some different
optimization problems with route-pair cost for non-Eulerian digraph.

Given a strongly connected digraph G and a route-pair cost φv for every v ∈ V (G).
We propose the following problems:

• (I) If the optimal Eulerian weight of G is given as t(e) : E(G) → Z , find an
optimal tour W = v1e1v2e2 · · · eiviei+1 · · · emv1 such that every edge e is visited t(e)
times and the total route cost φ(W ) is minimum.

• (II) Under the restriction that t(e) : E(G) → Z is an optimal Eulerian weight of
G , find an optimal tour W = v1e1v2e2 · · · eiviei+1 · · · emv1 such that every edge e is
visited t(e) times and the total route cost φ(W ) is minimum.

• (III) Find an optimal tour W = v1e1v2e2 · · · eiviei+1 · · · emv1 such that every edge e
is visited at least once and the total route cost φ(W ) is minimum.
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v1 v2e1

v5

v6v7

e6e7

e8

e9

e10

v3
e3e2

v4

e4 e5

Figure 4.4.1: an example with different optimal solution to problem (I) and (II)

Notice that if a graph G is given, the total route costs of the optimal tours found in
the problem (I), (II) and (III) may be different from each other. And the optimal tour of
G found in the problem (III) may not be an optimal postman tour of G. The following
(Figure 4.4.1) is an example with respect to it.

Suppose the route costs are φv2(e1,e6) = 100, φv2(e1,e8) = 600, φv2(e3,e6) = 200, φv2(e3,e8) =

3, φv2(e5,e6) = 500, φv2(e5,e8) = 4, , all other route costs are 0. The tour is starting from v1

and end at v1. Then the one of the optimal Eulerian weight will be: t(ei) = 2 if i = 6, 7

t(ei) = 1 otherwise
(∗)

One of the optimal solutions for problem (I) with the given optimal Eulerian weight
in (*) is v1e1v2e6v5e7v1e2v3e3v2e6v5e7v1e4v4e5v2e8v6e9v7e10v1. The total route weight is
100 + 200 + 4 = 304. In this tour, only e6 and e7 are visited twice, all other edges are
visited once.

If we consider problem (III) for the same graph, we find one of optimal tours is
v1e1v2e6v5e7v1e2v3e3v2e8v6e9v7e10v1e4v4e5v2e8v6e9v7e10v1. The total route weight is 100 +

3 + 4 = 107. In this tour, e8, e9 and e10 are visited twice, all other edges are visited once.
Notice that this tour is not an optimal postman tour without considering the route-pair
cost.
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By this example, we want to show that under different conditions (whether we want
an optimal postman tour), we get different solutions for the same route-pair cost graph. If
we want to get an optimal tour with the minimum route-pair cost under the precondition
that the tour should be an optimal postman tour, then it is problem (III). In that case,
we usually need to find the optimal eulerian edge weight. Section 4.5 will present how to
find the optimal Chinese postman tour for an arbitrary unweighted digraph.

4.5 Appendix: Chinese Postman Tour

In this section, we discuss how to find the optimal solution and repeat times of each edge
for the Chinese postman tour problem.

Lemma 4. A digraph G contains a postman walk if and only if G is strongly connected.

Proof. ” ⇒ ” Suppose G is not strongly connected, then there exists some v, u ∈ V (G),
such that there is no path from v to u. If there exists a postman walk in the digraph G,
we can write the walk as W1 = v0p1vp2up3v0 or W2 = v0p1upvp3v0 . If W1 is the postman
walk, then vp2u contains a path from v to u. If W2 is the postman walk, then vp3v0p1u
contains a path from v to u. Contradiction with G is not strongly connected.

” ⇐ ” If G is strongly connected, choose a longest closed direct walk, say C =

v1e1v2...env1, which contains as many edges as possible. If every edge is in C, then C is
a postman walk of G. If there is an edge, say e = uw is not included in the walk C, then
there must be a path pu from v1 to u and a path pw from w to v1, then C̃ = v1e1v2...enpupw

is a walk longer than the walk C. Contradict with C is the longest walk.

If G is strongly connected but G is not an Eulerian graph, the postman walk must
visit some edge of G more than once.

For any v ∈ V (G), let δ(v) = d−(v) − d+(v) , let S = {v|v ∈ V (G) : δ(v) > 0} and
T = {v|v ∈ V (G) : δ(v) < 0}. We then create a cost-capacity network N = (GA, b, c),
where GA is an auxiliary graph for the graph G. It is created as following:

(1) GA is obtained from G by adding two extra vertices s and t.
(2) for each v ∈ S, add an edge from s to v into E(GA), b(sv) = 0, c(sv) = δ(v)

(3) for each v ∈ T , add an edge from v to t into E(GA), b(sv) = 0, c(sv) = −δ(v)
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(4) for each e ∈ G, add an edge e into E(GA), b(e) = 1, c(e) =∞
In order to find the minimum multiplicity of each edge e inG, it is equivalent to find the

solution of the minimum-cost maximum-flow problem in the network N = (GA, b, c). And
the minimum-cost maximum-flow problem can be solved by applying Klein’s algorithm
[55].
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