
Graduate Theses, Dissertations, and Problem Reports

2005

Learning to deal with COTS (commercial off the shelf) Learning to deal with COTS (commercial off the shelf)

Sreeram Bayana
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Bayana, Sreeram, "Learning to deal with COTS (commercial off the shelf)" (2005). Graduate Theses,
Dissertations, and Problem Reports. 1577.
https://researchrepository.wvu.edu/etd/1577

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1577&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1577?utm_source=researchrepository.wvu.edu%2Fetd%2F1577&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Learning to deal with COTS (Commercial off the Shelf)

Sreeram Bayana

Thesis submitted to the College of Engineering and Mineral Resources

at West Virginia University

In partial fulfillment of the requirements

For the degree of

Master of Science

In

Computer Science

Supratik Mukhopadhyay, Ph.D., Chair

Hany H. Ammar, Ph.D.

Tim Menzies, Ph.D.

Department of Computer Science and Electrical Engineering

Morgantown, West Virginia

2005

ABSTRACT

Learning to Deal with COTS (Commercial Off-the-Shelf)

Sreeram Bayana

With the advent of model based development technologies, dependence of COTS in

software development has increased considerably. Use of COTS is considered

economical and practical when it comes to integration of various software components.

However COTS are trapped with some pitfalls. COTS provided are not usually

accompanied by models or extensive specifications. This approach makes usage &

integration of COTS components with in house developed software components a very

challenging task. Conformance of the implementation with the specification forms the

basis for our approach. In this thesis, we analyze an approach where the model is

extracted from the COTS software that greatly aids in integration.

We developed a system that extracts the state machine model from the COTS

software using Dana Angluin’s L* Algorithm. We also developed a hierarchical approach

of viewing the state machine model by static analysis of assembly code.

Keywords: Machine Learning, COTS, Learning Algorithms, Model Checking, Static

analysis(Assembly), Type Inference, Model based development, L* algorithm, Type

Based Decompilation.

iii

DEDICATION

I feel honored to dedicate this publication to my family members, who encouraged and

supported me during my career. I express my deep love and affection to my parents,

Mr.Siva Ramakrishna Arya and Mrs.Kanya Kumari, for their continuous support and

motivation that helped me pursue my higher education. I also express my love for my

brother, Vinay, and sister, Manasa, for their affection.

iv

ACKNOWLEDGEMENTS

I express my sincere thanks to Dr. Supratik Mukhopadhyay, for giving me the

opportunity to work with him in his research at West Virginia University. I thank him for

his motivation and guidance throughout my research program. I would also like to thank

my other committee members Dr. Tim Menzies and Dr. Hany H. Ammar for their

valuable time and contributions during the course of study.

v

CONTENTS

1. Introduction 1

1.1 Motivation 1

1.2 Related Work 3

1.3 Objective 7

1.4 Uniqueness 8

2. Survey on Learning 9

2.1 Introduction 9

2.2 Components of a Learning System 10

2.3 Forms of Learning 10

2.3.1 Direct Learning 11

2.3.2 Unsupervised Learning 12

2.3.3 Reinforcement Learning 12

2.4 Types of Learning 13

2.4.1 Statistical Learning 13

2.4.2 Automata Learning 15

vi

2.4.3 Reinforcement Learning 16

2.4.4 Inductive Logic Programming 19

2.4.5 Knowledge Based Inductive Learning 20

3. L* Algorithm & its variant 21

3.1 Overview 21

3.2 Angluin’s Algorithm 22

3.3 Illustration of L* Algorithm 26

3.4 Case Study 31

3.4.1 Description of the Circuit 32

3.4.2 Implementation with L* Algorithm 33

3.4.3 Why Angluin’s Algorithm is not suitable 34

3.5 Predicate Based L* Algorithm 35

3.5.1 Implementation (Predicate Based L*) 37

4. Learning Hierarchical State Machine 40

4.1 Motivation 40

4.2 Valves Example 41

4.3 Static Analysis 43

vii

4.4 C Function Call Conventions & Stack Organization 44

4.5 Type Inference 51

4.6 Type Inference Algorithm 52

4.7 Intuitive Example 53

4.8 Experimental Setup 56

5. Conclusions & Future work 59

6. References 61

1

1 INTRODUCTION

1.1 Motivation:

Many existing software systems are using COTS, an acronym for “Commercial Off-the-

shelf”, ‘as-is’ in their products. COTS overlay a wide variety of software products

including operating systems, system software, application programs, word processors etc.

Mission critical systems are opting for COTS software as a result of their cost-

effectiveness. Use of COTS in and as part of the larger system has effects on all product

processes including architectural design, verification, validation and reliability. Such is

the dependence of COTS in the industry. While model based development methodologies

are being increasingly used within NASA, recent years have seen more and more

dependence of NASA on COTS purchased from third party vendors. COTS from third

parties are not usually accompanied by models or extensive specifications. This makes

their use as well as their integration with in house developed software a challenging task.

This thesis work describes a methodology to extract state machine models from COTS

executables and give us a precise understanding of the models that these COTS products

encompass. COTS software purchased from third party vendors is now being increasingly

used within NASA. There are several reasons for this trend.

 NASA developers can focus on the core of a project leaving the outer skin to third

party developers

2

 Lack of skilled personnel in certain areas

 Cost of developing certain components in house is prohibitively expensive

compared to outsourcing them to third party vendors

 Increasing use of component based technologies

 Easier to meet deadlines

While most of the organizations continued to depend to a large extent on third party

vendors, needs to amortize the cost of software development have led developers to

follow a new trend. Model based development techniques [3] are increasingly being used

in NASA projects. Examples of NASA projects include Livingstone [14], Remote Agent

[4]. The main reasons behind the trend are as follows.

 Models developed in one project can be reused in another

 Validation can be done at an early stage of the software development cycle

 Model based programming has been found to provide cost benefits in the order of

50%

 Automatic production of reliable code is possible from the models

 Engineers describe physical systems in terms of models

However the two trends above seem to be contradictory to each other. COTS purchased

from commercial organizations are usually proprietary and neither comes with the source

code nor with models. As a result it becomes difficult to integrate such software with the

inner core developed using model based techniques within NASA. Software from third

3

party comes with minimal specification. Often even the interface specifications that

accompany such software are wrong. As a result it becomes difficult to find out whether a

COTS product fits a requirement. Lack of models makes it difficult to validate such

software as neither model based testing nor model based verification techniques [6] can

be used. It is difficult to predict the behavior of such software. In case source code is

available, a model can be extracted from software using well known techniques from

compiler construction [5]. In our case unavailability of source code makes the problem of

extracting models more difficult. In order to mitigate the problems listed above, we

present a technique for extracting state machine models from executables of COTS

components that are accompanied by minimal interface specifications. The basis of our

method is Angluin’s L* algorithm [2] that can learn from an unknown regular set an

automaton recognizing it. A variant of Dana Angluin’s algorithm [2] called as Predicate

based L* algorithm developed as part of this thesis helps in understanding the extracted

model in a much better way by giving the details (predicate information) about each

particular state in the model.

1.2 Related Work

Model checking [6] and testing [13] are two of the main approaches in verification and

validation (V&V) of systems. With information about the design of the system, formally

checking the system for some properties to hold is model checking, where as testing is

checking an implementation with respect to the abstract design where the structure of the

4

implementation is not known. A combination of these two techniques is used in cases

where the software system is viewed as a black box. This methodology is called as Black

Box Checking (BBC) [8]. The COTS obtained from third party vendors is proprietary and

does not enclose either the source code or the model of the product procured from third

party vendors and is considered as a black box. A combined approach called the BBC is

used in cases where the software system is viewed as a black box. The system can be

automatically verified by BBC [8] where a model is not known at the beginning and the

model is obtained as verifications are done. The model is learned here through a series of

experiments and checked using model checking [6]. Angluin’s algorithm is used in BBC

for learning and quickly detecting errors in the system.

Another methodology, based upon black box checking, is called the Adaptive model

checking [9] which uses Black box checking as well as machine learning concepts for

automatic verification of the model. Discrepancies exist between a system and its model.

This can be due to errors or any modification done to the system. The availability of an

approximate model that reflects the original system with respect to properties is typically

assumed here. In Adaptive Model Checking, an inaccurate model is used to expedite the

updates [9]. These updates are made possible by using Angluin’s algorithm. This

approach is applied in cases

 When a model consists of an error

 When a new feature is added to the existing system.

 When the system is upgraded to a newer version.

Adaptive model checking has been found to be more efficient than using only black box

5

checking [8]. A model that approximates the original system is present at any stage of the

verification process. So building the model from scratch is avoided alleviating the

problem further.

A technique called regular extrapolation [15] provides descriptions of systems or aspects

of the system in a largely automatic way. Descriptions are available in the form of

models. The model built by this approach gets updated in a system’s life cycle. The input

knowledge from many sources, i.e. observations, test protocols, specifications and

knowledge of experts, is expressed as a finite automaton. Observations can be seen as

traces of the system. These concrete traces are abstracted into an automaton whose

language contains abstract images of the traces. The automaton yielded is refined by

using machine learning algorithms and expert knowledge. Learning aims at classification

of superficially similar states and also discovering new system traces. Expert knowledge

probes in the form of declarative specifications (expressed as temporal logic). These are

used to eliminate certain patterns in the model leading to a refined one.

In [10], behavior based model construction has been studied which views moderated

regular extrapolation [15] from the view point of abstract interpretation, model checking

and verification/validation of the model. Abstract interpretation serves as the key for

applying known learning techniques for practical usage. Model checking is used as a

guiding process for learning the model. Temporal logic formulas are used to depict the

system. The formulas are verified at each hypothesis generated by the learning algorithm

used to build the model. Any form of discrepancy in the learning process is used as a

counterexample that helps in building the approximate model. The realization of this

approach starts with a model (initially empty) and a set of observations. The observations

6

obtained in the form of traces are gathered from a reference system and preprocessed to

build the model iteratively. The traces are obtained passively, i.e. by observing an already

running inference system or actively, i.e. by running a simulation of the inference system

with some test cases. This approach depends upon the automata learning technique,

Angluin’s algorithm, for its model construction. The worst-case time complexity for the

algorithm is exponential with respect to the number of states where as the running time is

polynomial with respect to number of states.

Capturing of temporal patterns, like identification of trends, cycles and common

subsequences, from a time series data is shown in [16] using L* algorithm. Trends

indicate the ramping up or ramping down of values in a time-series data, cycles are

indicated by substring repetition. Subsequence can be expressed as dissimilar substrings

of varying lengths interspersed with common substrings. These patterns are expressed as

a Deterministic Finite Automata (DFA) which can be learned by Angluin’s algorithm.

The subsequences are learnt with a modified L* algorithm in the presence of a fallible

teacher [17]. Similarly, to learn more about the model, a variant of the algorithm has been

designed as part of our thesis. To discover sequences in a time-series data, a method

called sequential pattern mining approach can also applied. This approach exceeds a

predefined minimal support threshold. With the help of the minimum support, sequences

which are of no interest to the problem at hand are pruned making the process of learning

efficient. SPADE is one of the learning algorithms used in sequential pattern mining.

SPADE [41] outperforms sequential pattern algorithms like AprioriAll and GSP by a

factor of two. All the sequences using this approach are discovered with only three passes

over the database.

7

Compositional verification [12] is one approach which addresses the state explosion

problem associated with model checking. This approach employs the “divide and

conquer” policy where the properties of the system are decomposed into the properties of

the components. The properties of the system are proved by individually checking the

properties of the components. The properties of each component are checked in an

assume-guarantee style for proving the properties of the system. In order to check a

component against a property, this approach generates assumptions that the environment

needed to satisfy for the property to hold. The assumptions are generated with the help of

a learning algorithm, in this case L*. Several frameworks have been proposed for the

assume guarantee style of reasoning, but many suffer from requirement of human

interaction. Each of the iterations may deduce whether the property holds true or not.

This process is guaranteed to terminate. It converges into an assumption that is necessary

and sufficient for the property to hold. The approach provided in [12] is incremental and

fully automatic.

1.3 Objective

The objective of this thesis is to develop a learning technique that deal with problems

encountered or arising out of using COTS software within NASA projects. Models of the

COTS products, purchased from third party vendors, are not available. This work

suggests a methodology of extracting state machine models from COTS products where

the minimal interface specifications for the model are known. This work can be used to

8

 Check whether the component meets the requirement.

 Develop interface specifications for the component.

 Aid in integration and reuse of the component.

 Generate tests to be used in model-based and partition-based testing.

The learning technique that we propose can also be used to learn from a component its

operational profile that can help in requirement analysis. In conjunction with techniques

developed for static and dynamic code analysis tools, such a learning tool should be able

to provide more reliability guarantees for software that will be used in safety critical

missions.

1.4 Uniqueness

Machine learning techniques have been used for generating the assumptions in assume-

guarantee reasoning for compositional verification and validation of software. They have

been used in requirements engineering for requirements optimization, for early life cycle

quality indicators, analysis of defect data, software reuse and for testing truisms in

software engineering. To the best of our knowledge no work has been reported on using

learning techniques for dealing with COTS, in particular learning hierarchical state

models from COTS software.

9

2 SURVEY ON LEARNING

2.1 Introduction

This chapter gives us insight about the background information on concepts related to our

thesis. This includes a brief introduction about learning & applications of machine

learning that realizes the importance in real world applications. Learning systems are

developed and used in both commercial & research applications. This chapter provides a

survey on learning and explains in detail some of the learning strategies.

 Learning [18], according to Herbert Simon, is defined as “Any change in a System that

allows it to perform better the second time on repetition of the same task or on another

task drawn from the same population.”

Machine Learning is used for the following reasons cited below

 To improve the understanding capability and efficiency of human learning.

 Structures or new things unknown are discovered.

 Extracting incomplete specifications about a domain.

Machine learning is being applied in many areas including speech recognition, character

recognition, routing in communication networks, automatic automobile drive, program

generation etc and also in many fields including banking, web applications & Bio-

10

technology. The training given to the learner is an important aspect of learning.

Appropriate training helps the learner to generalize well on previously unseen examples.

2.2 Components of a Learning System

There are four components that make up a learning system, which are

 Performance System

 Critic

 Learning Element

 Experiment Generator

The above components form the crux for any learning system. The learning element

constructs the hypothesis. The performance element uses the learned hypothesis to solve

the problem at hand. Critic gives feedback to the learning element on how well it is

doing. The Learning element takes the training examples as input and in gives the

hypothesis in return. The experiment generator takes the hypothesis as input and suggests

new problems which help in further training of the system.

2.3 Forms of Learning

The forms in which a learner is learned are broadly classified as

11

 Direct Learning (Supervised).

 Indirect Learning (Reinforcement).

 Unsupervised Learning.

Each of the above learning forms is dealt in detail in the sections to follow.

2.3.1 Direct Learning

This is a form of learning where a teacher or external supervisor provides the learner with

examples from which the learning can take place. The examples given will act as the

training data which consists of input & output pairs. The principal task of the learner is to

formulate a function representation from the small training set which will represent the

input output pairs and should also work reasonably well when presented with unseen

input output objects. The output of the formulated function should be able to classify the

class label with respect to the input object. Hypothesis is derived based on the examples

at hand. The more the training, the better is the hypothesis. The supervisor/teacher then

tests the hypothesis learnt by the learner. If a counter example is found, the learner has to

modify the hypothesis in order to fit the counter example in the hypothesis. This cycle is

repeated until no counterexample is found. This approach of supervised learning is used

in areas like handwriting recognition, pattern recognition, speech recognition, spam

detection etc.

12

2.3.2 Unsupervised Learning

Unlike the supervised learning, there is no external supervisor or a teacher. Only set of

inputs are given without the outputs. From these inputs, a model is built that fits the data

provided. This model can be used for decision making, predicting and reasoning. This

kind of learning is often referred to as Self Organization. Unsupervised learning

facilitates natural groupings or clusters of patterns. The central goal of unsupervised

learning is to find clusters in the data and also model the density in the data. K-means

clustering, principal component analysis, hebbian learning & vector quantization are

examples of unsupervised learning algorithms. Clustering is an algorithm which, when

given a set of inputs, divides inputs into classes of inputs where every input is related to

other inputs in the class in some way or the other. The purpose of unsupervised learning

is to know about the hidden structure of the data, encoding of the data, compressing the

data etc. This paradigm is used in areas like data compression, classification etc.

2.3.3 Reinforcement Learning

Reinforcement learning (RL) is the problem faced by an agent that learns behavior

through trial-and-error interactions with a dynamic environment [20]. Reinforcement

learning [21] is learning what to do i.e. what actions must be performed in which

situations. This type of learning deals with agents in a complete unknown environment

where the agent learns by taking actions. The agent gets a reinforcement signal from the

13

environment when an action is taken. Based upon whether the signal is positive or

negative, the agent acts accordingly in the future. There is a trade-off between

exploration & exploitation which exists in RL. Exploration is search for new better

actions where as exploitation is selecting the best action using the past experiences. RL is

applied in areas like robot navigation, elevator scheduling etc.

2.4 Types of Learning

In this survey we will be focusing on some of the different types of learning strategies

which include

 Statistical Learning

 Automata Learning

 Reinforcement Learning

 Knowledge-based inductive learning.

2.4.1 Statistical Learning

Statistical Learning is learning from statistical data i.e. from a statistical model. The

statistical model is constructed from the statistical data. On applying probability theory

and decision theory to the statistical model, we can arrive at an algorithm to learn the

14

statistical model. Statistical learning can be applied to large number of statistical models

such as Hidden Markov Models, Linear regression, Gaussian process, Decision tree,

Linear Classifier, Logistic regression etc. Statistical learning is widely used in areas like

machine learning, robotics, pattern recognition (ex: handwriting recognition) etc.

The study of statistical learning can be broadly divided into 4 parts [19].

 Theory of consistency of Learning Processes.

 Non-Asymptotic theory of rate of convergence of learning processes.

 Theory of controlling the generalization ability of learning processes.

 Theory of constructing learning machines.

In the first section, Theory of consistency of Learning Processes, the necessary and

sufficient conditions for consistency of learning process based on empirical risk

minimization principle are studied.

The section, Non-Asymptotic theory of rate of convergence of learning processes, deals

with how fast the processes are learnt.

The section, Theory of controlling the generalization ability of learning processes, deals

with controlling the rate of convergence of the learning process.

The last section, Theory of constructing learning machines, deals with constructing of

algorithms that control the generalization ability.

The section, Theory of constructing learning machines, introduced a famous algorithm

called the support vector machine. Support vector machines are learning machines which

can perform both binary classification as well as regression estimation. Statistical

15

learning theory contains important concepts such as the VC dimension and structural risk

minimization. This theory is foundation of a real understanding of machine learning [19].

The VC dimension (or Vapnik Chervonenkis dimension) is a measure of the capacity of a

classification algorithm. It is one of the core concepts in statistical learning theory and

was originally defined by Vladimir Vapnik and Alexey Chervonenkis [19].

2.4.2 Automata Learning

Learning about the finite state automaton (FSA) of the program is called automata

learning. The FSA learning can be used to detect anomalous program behaviors as

presented in [11]. This FSA learning is based on learning sequences of system calls made

by the program. The sequences are represented using a finite state automaton. The

normal sequences of system calls made are learnt and any deviation from the normal is

treated as anomalous behavior. The FSA learning algorithm presented in [11] learns the

automata in an efficient manner which has faster learning capabilities, better detection,

reduction in false positives, compact representation & fast detection than earlier FSA

learning algorithms presented earlier like N-gram algorithm [22]. As each system call is

made, name of the system call as well as the program counter at the point of system call

are recorded. Different values of the program counter results in a different state in the

automaton. To build the transitions the pair (Syscall/Program Counter) and

(PrevSysCall/Previous Program Counter) are considered.

16

Angluin’s learning algorithm L* [2] is another type of automata learning which learns the

deterministic finite automaton for any regular set from a minimal adequate teacher in a

time polynomial to the number of states in the automaton. A minimally adequate teacher

is assumed to answer two types of queries about the unknown regular set. One type of

query is whether a particular string belongs to the regular set. The second type is a

conjecture where the teacher returns with a “yes” if the unknown regular set is learned

correctly or a counterexample if the regular set is not learned correctly. The learner will

ask membership queries based on which, the strings in the unknown regular set are

classified. At any time L* has information about finite number of strings namely

members and non-members. This information is organized into an observation table (S,

E, T), consisting of three entities: a nonempty finite prefix closed set S of strings, a

nonempty finite suffix closed set E of string and a finite function T mapping ((S U S).A)

to {0, 1} where A is the alphabet set. A set is prefix closed if and only if every prefix

member of the set is also a member of the set. Suffix-closed is defined analogously.

Some of the applications where automata learning is used are Process control, Pattern

recognition, Control of service activity, Task scheduling, optimization problems, Image

processing, Diagnosis, Computer vision, Concept learning etc.

2.4.3 Reinforcement Learning

Reinforcement learning (RL) [21] is learning in an environment where no information

about the environment is known. The agent learns to deal with the environment on a trial

17

and error basis. The agent takes actions in the environment through which it learns more

about the environment. The agent receives reinforcement signal from the environment

which is large negative number if the agent collides with an obstacle or a high positive

reinforcement signal if the agent reaches the final destination. This type of learning is

unlike supervised learning which is not sufficient to learn by interaction. In interactive

problems, it is often impractical to obtain examples of desired behavior that are both

correct and representative of all the situations in which the agent has to act [21]. One of

the challenges faced by reinforcement learning which is not seen in other types of

learning is the trade-off between exploration and exploitation. Exploration is searching

for best path to reach the destination. Exploitation is using the optimum best path

available to reach the final destination. The agent has to explore what it already knows to

obtain reward and also exploit for finding better paths for the future. There are four

elements of RL:

 Policy

 Reward function

 Value function

 Model of the environment.

 The policy basically defines the behavior of the agent i.e. it basically provides us with

information like which actions are to be taken from a particular state. The reward

function defines the goal of the agent. It basically maps state-action pairs to rewards. The

main aim is to maximize the reward in RL. The value function specifies what is good in

the long run of learning while the reward function specifies what is good in the

immediate sense. The value function of a state gives the total value that the agent may

18

accumulate over the future starting from that state. The model tries to imitate the real

environment. It is basically used for planning purposes. Given a particular state and an

action, the model is used predict the next outcome state and also the reward obtained

from that transition. There are two types of RL algorithms: Temporal Difference [21] and

Q-Learning [23]. Q-learning is a form of RL algorithm that does not require any model

for its environment. The Q-learning algorithm depends on estimating the values of state-

action pairs. The value Q(s,a) is defined as the expected discounted sum of future payoffs

determined by taking action ‘a’ from state ‘s’ and adopting an optimal policy from there

on wards. The optimal action of any state is the state with the highest Q-value. The

algorithm is as follows.

1. From the current state s, select an action a. This will cause a receipt of an

immediate payoff r, and arrival at a next state s'.

2. Update Q(s,a) based upon this experience as follows:

small changes in Q(s,a) = x[r + ymaxQ(s',b) - Q(s,a)] where x is the learning rate

and 0 < y < 1 is the discount factor

 3. Go to 1.

A Boltzmann distribution strategy is usually chosen that takes care of the trade-off

between exploration and exploitation. It will make sufficient exploration as well as

sufficient exploitation.

Temporal Difference Learning ideas blend Monte Carlo ideas and Dynamic

Programming (DP) ideas. Learning here is done directly from raw experience without the

19

model of the environment which is similar to Monte Carlo method. Based upon the

learned estimate, Temporal Difference Learning estimates in part without awaiting for the

final outcome, which is the idea behind Dynamic Programming. Some of the applications

of Reinforcement Learning include game playing and robotics & control.

2.4.4 Inductive Logic Programming

Inductive logic programming (ILP) is a research area which intersects the areas of

machine learning and logic programming. The essential goal of inductive logic

programming is to deduce theories and inducing hypothesis from computational logic. A

database contains certain facts and positive and negative examples. ILP tries to deduce a

program logically which makes sure that only positive examples are proved but none of

the negative examples. Generalization or specialization has to be done on the hypothesis

with respect to the status of the example. The hypothesis should be generalized if a new

example is not covered by the old hypothesis. If a new example contradicts the old

hypothesis, then the hypothesis should be specialized. The theory of ILP is based on the

proof theory and model theory for the first order predicate calculus. The techniques that

are included are inverse resolution, relative least general generalizations, inverse

implication and inverse entailment. ILP is used in applications like data mining,

automated scientific discovery, knowledge discovery in databases, as well as automatic

programming [24].

20

 2.4.5 Knowledge-based inductive learning

Knowledge Based Inductive Learning (KBL) is set of first order logic sentences

describing knowledge of system as obtained from requirements. KBL has been studied in

the field of inductive logic programming. The task of inductive learning is to find a

model such that Model /\ Background ╞ Description. Logic program describes the

behavior of the system. It is implemented using inductive logic programming with

inverse resolution. Memorization is used to bound the search in KBL.

There two principles used are

 Generalize if the hypothesis is too specific (leaves out conclusions)

 Specialize if the hypothesis is too general (produces misconclusions)

KBL reduces the complexity in two ways. Firstly, since all the new hypotheses must be

in harmony with the existing knowledge, the search space of the hypothesis is reduced.

Secondly, if more knowledge is available in prior, the less is the knowledge required for

hypothesis. KBL can be used to learn the behavior of a logic program. We start of with

observations trying to deduce general rules.

For instance if we have observations like “Socrates was a man”, “Pluto was a man”,

“Socrates was mortal”, “Pluto was mortal”, we might infer the rule “All men are mortal”.

The rules learned can be used to predict information about new objects. It is noteworthy

that this process might also lead to wrong inferences. The more knowledge given, the

more accuracy is likely to be obtained in the framing of the rules.

21

3 L* ALGORITHM & ITS VARIANT

3.1 Overview

Angluin’s Algorithm [2] is used to identify an unknown regular set with the help of

examples in the member and non-member word concept & membership queries. The

algorithm is known as L*. These member and non member words are extended over an

alphabet ‘A’. Examples will be important source of information. The examples are likely

to be chosen in such a way that they are crucial and critical to the problem at hand.

Examples should represent structural completeness of the target problem. These

examples help in converging faster to the correct hypothesis. The algorithm also requires

a knowledgeable teacher called the minimal adequate teacher which learns the unknown

regular set in time polynomial with respect to the number of states and the maximum

length of any counter example provided by the teacher. A minimal adequate teacher is

one which is capable of answering two types of membership queries. The first query

answers whether a string belongs to the unknown regular set. The answer to this query

will be ‘yes’ if the string is a member of the unknown regular set or ‘no’ if the string is a

non-member of the unknown regular set. The second type of query validates a conjecture

set where a ‘yes’ is returned when the unknown regular set is learned correctly or a

counterexample is given otherwise. The counter example returned serves in correcting

the wrongly learned unknown regular set. In case of many counter examples observed by

the teacher, it returns any of the counter examples generated. With the help of the counter

22

example, a new conjecture set is formed and checked for validity by the teacher and this

cycle repeats until and unless the teacher is not able to find a counter example, which

implies the learner has completely learned the unknown regular set without any

discrepancies. The leaner describes regular sets by means of representing them by a

deterministic finite automaton (DFA).

3.2 Angluin’s Algorithm (L*)

Angluin’s algorithm proved that it can learn a Deterministic Finite Automata (DFA) by

using queries. This algorithm is known as L* Algorithm [2]. The L* algorithm at any

given time has information in the form of strings extended over the alphabet ‘A’,

categorizing them as members and non-members of the unknown regular set ‘U’.

Information about the unknown regular set is stored in an observation table which acts as

a data structure. It also requires a teacher which can answer to membership queries and

give counterexamples if there are any for the hypothesized DFA. An observation table

consists of three things.

 A nonempty prefix closed set ‘S’ of strings

 A nonempty suffix closed set ‘E’ of strings

 ‘T’ is a mapping from ((S U S.A) .E) to {0, 1}

23

The observation table is denoted as (S, E, T). A set is considered as a prefix closed set if

and only if every prefix of every member of that set is also a member of the set. A set is

considered as suffix closed set if and only if every suffix of every member of that set is

also the member of the set. The mapping ‘T’ is the membership function for the unknown

regular set. The observation table initially has S and E as empty sets (S = E = {λ}) and

are populated as the algorithm progresses. The observation table (S, E, T) can be

envisaged as a two dimensional array. The rows are addressed by elements of the set

((S U S).A) and columns are addressed by elements of the set E, where the intersection of

row ‘s’ and column ‘e’ can be called as T(s.e). If ‘s’ is an element of (S U (S . A)), then

‘row(s)’ defines the finite function ‘f’ which ranges from E to {0, 1} defined by

f(e) = T(s.e) where ‘0’ indicates a non-member and ‘1’ indicates a member. The

algorithm uses the observation table to construct the deterministic finite automata for the

unknown regular set. The rows addressed by elements of the set ‘S’ are the candidates for

the states being accepted, and the columns addressed by elements of the set E are for

guiding distinguished experiments and the rows addressed by elements of (S.A) are used

for the purpose of constructing the transition function.

The furnishing of the observation table can be done in a cyclic process. First the

observation table is checked to see if it is closed and consistent.

The condition to be satisfied for the observation table (S, E, T) to be closed is:

For each ‘t’ in (S.A) there exists an ‘s’ in ‘S’ such that row(t) = row(s)

24

The condition to be satisfied for the observation table (S, E, T) to be consistent is:

Whenever s1 and s2 are elements of ‘S’ such that row(s1) = row(s2), for all a in A,

row(s1.a) = row(s2.a)

If the observation table (S, E, T) is not closed or consistent, it is made closed & consistent

by the discharge of the following blocks of algorithms.

If the observation table (S, E, T) is not closed

find s1 S and a A such that

row(s1.a) is different from row(s) for all s S

add (s1.a) to S

and extend T to (S U S. A) .E using membership queries.

If the observation table (S, E, T) is not consistent

find s1 and s2 in S, a A , and e E such that

row (s1) = row(s2) and T(s1.a.e) T(s2.a.e)

add (a.e) to E

and extend T to (S U S. A) .E using membership queries.

The table gets populated until the observation table is closed and consistent. Once the

observation table (S, E, T) is closed and consistent, the hypothesized DFA is then

constructed. The DFA thus formed is tested for equivalence. If the teacher returns a

counter example, a new DFA is formed and then is tested for closed ness and

25

consistency. The counterexample returned indicates that the learning has not completed

or the unknown regular set is not completely learned. This process goes on till no counter

example is returned by the minimally adequate teacher. The learning process will come to

a halt when no counter example is returned by the teacher and the resultant DFA is then

obtained. If (S, E, T) is a closed and consistent observation table, then we define a

corresponding acceptor M(S, E, T) over the alphabet A as follows

Q = {row(s): sS}

q0 = row (λ)

F = {row (s): sS and T(s) = 1}

δ (row(s),a) = row(s.a)

Where

Q is state set of the constructed DFA

q0 is the starting state (initial state) of the constructed DFA

F is the set of all final states of the constructed DFA

 defines the transition function

The next section explains the algorithm with the help of an example of learning an

unknown regular set.

26

3.3 Illustration of L* Algorithm

We present an unknown regular set and solve it by using the L* algorithm. The example

is as follows.

Unknown Regular Set: Set of all strings that contain the pattern “011” over the alphabet

‘A’ = {0, 1}.

Initially the observation table with sets S = {λ} & E = {λ} is shown below in a tabular

format. The closed ness property of the observation table is satisfied since

row(0) = row(1) = row(λ).

E

Λ

S λ 0

S. Σ 0 0

1 0

Table 3.3.1: Initial Observation table with sets S = E = {λ}.

The observation table is also consistent since

row(0) = row(0) & row(1) = row(1)

The above observation table is closed and consistent. The hypothesis or conjecture is

created. The teacher validates the DFA & generates a counter example “010”. The

counter example “010” and its prefixes are all added to the set S in the observation table

and the set (S.A) is updated accordingly using membership queries. The new observation

table is shown below.

27

E

Λ

S λ 0

0 0

01 0

010 0

S. Σ 0 0

1 0

00 0

01 0

010 0

011 1

0100 0

0101 0

Table 3.3.2: Observation table after adding ‘010’ & its prefixes to set S

The observation table represented by the table 2.3.2 is not closed since

row(011) is distinct from all rows in S.

The observation table has to be updated in order to make it closed. So ‘011’ is added to

‘S’ and (S.A) is updated using membership queries. The new observation table is shown

below.

28

E

Λ

S λ 0

0 0

01 0

010 0

011 1

S. Σ 0 0

1 0

00 0

01 0

010 0

011 1

0100 0

0101 0

0110 1

0111 1

Table 3.3.3: Observation table after adding ‘011’ & its prefixes to set S

The new observation table in table 2.3.3 is closed since

every row in S. Σ has a matching row in S.

The observation table is not consistent since

row(λ) = row(01) but row(1) ≠ row(011).

29

String ‘1’ which is the alphabet ‘a.e’ is added to E and the observation table is extended.

The resulting table is shown below.

E

Λ 1

S λ 0 0

0 0 0

01 0 1

010 0 0

011 1 1

S. Σ 0 0 0

1 0 0

00 0 0

01 0 1

010 0 0

011 1 1

0100 0 0

0101 0 1

0110 1 1

0111 1 1

Table 3.3.4: Observation table after adding ‘1’ to set E

The new observation table in table 2.3.4 is closed since

30

every row in S. Σ has a matching row in S.

The observation table is not consistent since row(λ) = row(0) but row(1) ≠ row(01).

String ‘11’ which is the alphabet ‘a.e’ is added to E and the observation table is extended.

E

λ 1 11

S λ 0 0 0

0 0 0 1

01 0 1 1

010 0 0 1

011 1 1 1

S. Σ 0 0 0 1

1 0 0 0

00 0 0 1

01 0 1 1

010 0 0 1

011 1 1 1

0100 0 0 1

0101 0 1 1

0110 1 1 1

0111 1 1 1

Table 3.3.5: Observation table after adding ‘11’ to set E

31

The observation table in table 2.3.5 is closed and consistent. Now the hypothesis can be

generated to check if the unknown regular set is equal to the generated hypothesis. If a

counterexample is returned, the observation table must be extended to fit the

counterexample. The hypothesis is generated. The teacher doesn’t turn up with a counter

example which states that the unknown regular set is learned completely. Thus the

algorithm converges until there are no counter examples. In some cases the teacher might

converge at a hypothesis which different from the expected hypothesis. This only

happens when the teacher is not given enough or crucial examples required for the

teacher to build the automaton. Since examples are a very important source, care must be

taken to see that crucial examples for the problem are given to the teacher.

3.4 Case Study

We consider a circuit taken from [1] as a case study for studying the L* algorithm. The

circuit is simulated and then learned by the algorithm with minimal interface

specifications (input/output specifications). We then construct the DFA of the learned

circuit. The circuit is an electrical circuit which is shown below

Fig 3.4

32

3.4.1 Description of the circuit

The circuit shown in the above figure 2.4 has three switches namely Sw1 (Switch 1), Sw2

(Switch 2) and Sw3 (Switch 3). Three bulbs are also the part of the circuit with

nomenclature B1 for Bulb 1, B2 for Bulb 2 and B3 for Bulb 3. The bulbs glow when the

switches are put ‘on’ depending upon the design of the circuit. The current flows from

positive terminal of the battery to the negative terminal. For the bulbs to glow, the circuit

should be closed. The combinations of switches make the circuit either closed or open.

The switches shown in the above figure are all open. Initially when all the switches are

open, current tries to flow from positive terminal to the negative terminal. It has three

paths via Sw3, Sw2 and B3. Since all the three switches are open, the current doesn’t

flow and none of the bulbs glow. For any of the bulb to glow irrespective of the state of

the switches for Sw2 & Sw3, Sw1 has to be closed. From the circuit we could see that if

only Sw1 is closed, the current tries to flow through the above mentioned three paths of

which the current flows through only the path having B3. The other paths are closed as a

result of Sw2 and Sw3 being open. Thus B1 and B3 glow if only Sw1 is closed. When

Sw1 and Sw3 are closed, all the current is bypassed through the path via Sw3 because

there is no resistance offered via that path. As a result only B1 glows. Similarly different

combination of the switches being closed results in different combination of bulbs

glowing. The complete list of combination of the switches where at least one bulb glows

is given below. In all the other combinations no bulb glows since Sw1, which is the key

for the circuit to be closed, is open.

33

If Sw1 is closed, B1 and B3 glow.

If Sw1 and Sw2 are closed, all the three bulbs B1, B2 & B3 glow.

If Sw1 and Sw3 are closed, only B1 glows.

If Sw1, Sw2 and Sw3 are closed, only B1 glows.

3.4.2 Implementation with L* Algorithm

The circuit shown above in Fig 2.4 is simulated with the help of a program. The

propositions of the circuit are incorporated into the simulation. The program gives

information about the state of the three bulbs, when the state of the switches is given as

input. The program is a C program compiled using gcc. The type of the executable file

used for simulation is shown below.

a.out: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked

(uses shared libs), not stripped

 The algorithm questions the executable regarding membership queries. These

membership queries are answered by using the propositions fed into the executable. Our

aim is to build a DFA which accepts the strings (that represent states) where all the three

bulbs glow. This forms our member set. The strings where at least one of three bulbs does

not glow form the non-member set. The teacher categorizes the strings as members and

non-members depending upon the answer given by the executable. The alphabets used

here for the construction of the DFA are six, 3 for closing the switches and 3 for opening

the switches. Membership queries asked by the teacher are propagated to the executable

34

with the help of a driver program. This driver program is fabricated in java which links

the output stream of the learner program to the input stream of the executable file & vice

versa. The driver forwards the membership queries generated by the algorithm to the

circuit simulator and in turn returns the predicate to the algorithm which makes the

process automated. Running the algorithm with the above mentioned specification results

in the construction of the DFA that accepts strings where all the three bulbs B1, B2 & B3

glow.

The DFA obtained from the learner is described as follows.

Q = {‘0000’, ‘0001’, ‘0011’, ‘0101’, ‘1111’} forms the state set.

q0 = ‘0000’ is the initial state.

F = {‘1111’} forms the final state set.

Σ = {1, 2, 3, a, b, c} is the alphabet set.

Where {1, 2, 3} of the alphabet set represents switching ‘on’ and {a, b, c} of the alphabet

set represents switching ‘off’ the switches Sw1, Sw2 & Sw3 respectively.

3.4.3 Why Angluin’s Algorithm is not suitable

As we can observe from the above example, that we have very little information about

the states. The states for which we know enough data or propositions are the initial and

the final states. The initial state (‘0000’) has all the three bulbs B1, B2 and B3 in the ‘off’

state while the final state (‘1111’) has all the bulbs glowing. The automata constructed by

35

Angluin’s L* algorithm [2] does not give any information about the intermediate states;

for example on parsing the automata with the string ‘a, b, 1’, we reach at a state for which

we have no information of bulbs glowing. In particular, no information is provided about

the propositions that hold true in these intermediate states. The automata don’t give

information about the state i.e. given any name of the state except for the initial and the

final states, there is nothing much to interpret about it. This can be achieved by making

some modifications to the algorithm resulting in its variant. This variant can be useful in

giving more information about the deterministic finite automata. The next section

describes about the modified L* algorithm called the Predicate Based L* Algorithm.

3.5 Predicate Based L* Algorithm

The modified L* algorithm gives information about the propositions that hold true for

any particular state. This is called the Predicate Based L* algorithm where predicates

give information about states in the state machine. The following are the changes made to

the conventional L* algorithm [2] in order for the required improvements to reflect. In

the L* algorithm, the mapping function T maps to {0, 1} which classifies all the strings

of the unknown regular set into member set and non-member set. In the modified

algorithm, examples are classified into predicates rather than members and non-members

which make the function T map to the available predicates that conform to the automata.

For example, if there are four states in the automata namely ‘0’, ‘1’, ‘2’ & ‘3’, the

function T maps to {‘0’, ‘1’, ‘2’, ‘3’}. So the strings will be classified based on the

36

predicates unlike members & non-members in L* algorithm [2]. Therefore there will be

strings that belong to predicate 0, predicate 1, predicate 2, and predicate 3 &

combinations of predicates. When a membership query is asked for a particular string, the

name of the predicate to which the string belongs is returned unlike member/non-member

returned in the traditional algorithm. There were only two files (member/non-member)

where the strings are stored in the former approach. In the modified approach, each

predicate has a file that store strings which belong to that particular predicate.

If (S, E, T) is a closed and consistent observation table, then we define a corresponding

acceptor M(S, E, T) over the alphabet A as follows

Q = {row(s): sS}

q0 = row (λ)

δ (row(s),a) = row(s.a)

where

Q contains all the states that are formed from the predicates and their combinations.

qo is the initial state & the transition function δ are left unchanged.

The final state for the automata does not exist as the final state for each string differs.

Each string belongs to a particular predicate. So after the hypothesis has been created,

each string in the predicate file is tested to see whether the string belongs to that

particular predicate. If this test satisfies for all the strings in all the predicate classes, there

is no counter example, otherwise the string is returned for which the above condition

doesn’t hold and its acts like a counter example. The automaton is again build to

incorporate the changes which is free of any counter examples.

37

3.5.1 Implementation with Predicate Based L* Algorithm

The modified algorithm is tested with the same circuit taken from [1] as shown below.

This circuit is simulated with a C program specifying which bulbs glow, when given the

state of the switches. The states in this case with respect to circuit are

{0} - All the bulbs (B1, B2 & B3) are in the ‘off’ state.

{1} - Only B1 is glowing (‘on’ state).

{2} - Only B2 is glowing (‘on’ state).

{3} - Only B3 is glowing (‘on’ state).

{1, 2} - Bulbs B1 & B2 are glowing (‘on’ state).

{2, 3} - Bulbs B2 & B3 are glowing (‘on’ state).

{1, 3} - Bulbs B1 & B3 are glowing (‘on’ state).

{1, 2, 3} - All the three bulbs (B1, B2 & B3) are in the ‘on’ state.

Of the entire above present states/predicates, some of these states are not reachable for

this particular circuit because of design restrictions incorporated. So states like {2}, {3}

& {2, 3} are not appeared in the state diagram since Sw1 (acts like an “and” gate) has to

be closed for the circuit to be closed. Given the state of the switches in the circuit, i.e. for

example if switch 1 and switch 2 are on, the predicate returned is {1, 2, 3} (all the three

bulbs are glowing) instead of member/non-member getting returned. The predicate gives

information like what bulbs are glowing in a particular state unlike the tradition L*

38

algorithm. The finite automaton constructed is viewed with the help of Autograph [7],

which is used for displaying state diagrams graphically. Autograph is one of the graphical

editors available is used for displaying automata. The automaton is converted into a

format called the ‘fc2’ format. Autograph builds the state diagram by understanding the

automaton specified in the ‘fc2’ format with the help of the ‘fc2’ grammar. The

automaton constructed using the predicates algorithm for the above circuit is shown

below with the help of an “atg” snapshot.

Fig 3.5.1: DFA generated with Predicate Based L* algorithm (Atg Snapshot)

‘1’ indicates that switch 1 is in the “on” state, ‘2’ indicates that switch 2 is in the “on”

state and ‘3’ indicates that switch 3 is in the “on” state. Similarly ‘a’, ’b’ and ‘c’ indicates

that switch 1, 2 and 3 are in the “off” state respectively. For example in the above circuit,

if switches 1 & 2 are in the “on” state the three bulbs glow i.e. {1, 2, 3}. The states are

named in such a way that it has significant meaning. The states extracted from this circuit

are the following {‘0606’, ‘0707’, ‘0106’, ‘0107’, ‘1166’, ‘1177’, ‘6666’, ‘7777’} eight

states.

39

The state whose name start with a

‘0’ implies that no bulbs are glowing.

‘1’ implies that bulb B1 is glowing.

‘6’ implies that bulbs B1 & B3 are glowing.

‘7’ implies that all the bulbs B1, B2 & B3 are glowing.

Thus the propositions that hold true for the intermediate states are also obtained. These

propositions help in better understanding of the model when dealing with COTS.

The circuit as shown below is also learned by this algorithm which is also simulated like

the above circuit.

Fig 3. 5.2

The deterministic finite automata constructed using the algorithm and a circuit simulator

has 36 reachable states. As the number of states increases, we are challenged by the state

space explosion problem. So a hierarchical approach of constructing state diagrams is

chosen to get bypassed with the state space explosion problem. The next chapter explains

about the approach that was adopted to overcome the blowing up of states.

40

4 LEARNING HIERARCHICAL STATE MACHINES

4.1 Motivation

This chapter describes a hierarchical way out from state space explosion problem using

static analysis of executable’s assembly code. One of the approaches in verifying the

correctness of a system is by using state spaces. The state space constitutes of all the

states a system can reach and all the transitions possible between the different states. The

construction of the state space by the learning algorithm [2] is fully automated. They

sound as the ideal verification technique, but they suffer from a big and fundamental

problem known as the state space explosion. Numerous systems have very large

unmanageable state spaces. The states grow exponentially with respect to number of

processes and variables. The exponential base depends upon the number of values a

variable can take or the number of local states available. Though many approaches are

proposed to pacify the state explosion problem, but they suffer from restriction of the

verification questions that can be answered. So we deviate from the above problem with

the construction of hierarchical state machines. In this approach static analysis is done on

the COTS executable at the assembly level to extract the hierarchy embedded in the

COTS executable. The hierarchical approach can be illustrated from the following valves

example.

41

4.2 Valves Example

As shown in the following fig 4.2, there are three valves named as V1, V2 & V3 which

facilitate the inflow through the vertical pipes. Similarly there are three other valves

named as X1, X2 & X3 which allow the inflow through the horizontal pipes. All the six

valves can be in one of the two states {‘open’, ‘close’}. Different acids flow through the

vertical pipes & water flows through the horizontal pipes. Each vertical pipe is connected

to exactly one horizontal pipe. The pipe with valve V1 is connected to pipe with valve

X1. Similarly pipe with valves V2 & V3 are connected to pipes with valves X2 & X3

respectively. The objective is to collect acidified water at the end of the pipes bearing the

valves X1, X2 & X3. In order to collect acidified water, the valves X1, X2 & X3 should

be open when V1, V2 & V3 are open respectively and valves X1, X2 & X3 should be

closed when V1, V2 & V3 are closed respectively. Thus we can guarantee the acidified

water can be collected. Sulphuric acid, Nitric acid & Hydrochloric acid flow through the

pipes with valves V1, V2 & V3 respectively. The number of states for the valves example

is 26. In real time many system state space explodes exponentially. We simplify this by

static analyzing source code of the COTS executable at the assembly level to get the

target state when an executable runs with the given input. When the input for the above

valves system is given as V1 = ‘open’, V2 = ‘close’ & V3 = ‘open’ and there is a

function ‘setvalve(X1, X2, X3)’ that assigns the value of these valves, we denote the final

state with values F1, F2 & F3 having the values i.e. F1 = X1, F2 = X2 & F3 = X3 for the

above example. The trace of the program along with function signatures is required to

specify the final state in this approach. This realizes the role of static analysis in

42

extracting type information. Type information for the function parameters is not available

at the assembly level. The typed information is retrieved by using an approach called type

based decompilation which is explained in detail in the coming sections.

Fig 4.2: Valves Example.

The static analysis of COTS at the assembly level yields to hierarchical state machine of

the valve example, when executed with a specified input. The state machine obtained

with the input X1, X2 and X3 in the function setvalve(X1, X2, X3) is shown below.

43

Fig 4.2.1: Hierarchical State Machine

Instead of spawning the entire state space of 26 states, we disembark at the above

hierarchical state machine specifying the final state reached. The final state is expressed

as F1 = X1, F2 = X2 and F3 = X3 where X1, X2 and X3 are passed as parameters into the

function ‘setvalve’ that decide on the final state being reached. Thus our approach deals

with the explosion of states avoiding all the state space except the final state. The next

section gives concise introduction about static analysis.

4.3 Static Analysis

Static Analysis is a form of program analysis where the analysis of the program is done

without executing the program. There exist several tools which are used for static

analysis. CodeSurfer [25], C Global Surveyor [26] & Vault [27] are some of the static

analysis tools used in today’s world. All the above stated tools require source code to do

the analysis. Assuming that the COTS are presented without the access to the source

44

code, many of the static analysis tools won’t be of much help to the problem at hand.

Although substantial research has been done in static analysis with respect to assembly

level code, most of the research is focused on security issues. [28] is one such example

where the aliasing analysis is done at the machine code level i.e. it checks whether two

instructions access the same memory. Assembly level static analysis is done in [29]

which checks for the compliance of rules. The COTS model is tested for the compliance

with these rules. Static analysis is used as an important tool to preserve quality assurance

[30]. We have done static analysis at the assembly level to obtain the type information of

the function parameters required to represent in this process of constructing hierarchical

state machine. The type information is obtained by evaluating type constraints imposed

on the function parameters. In order to impose constraints on the parameters of the

function, a necessary requirement is to know the function call conventions and the stack.

In particular we here are dealing with the C language using the compiler gcc on Linux,

running on Intel x86 architecture.

4.4 C Function Call Conventions and Stack Organization

The C function call conventions and the organization of the runtime stack is discussed in

detail in [31]. The following conventions are subjected to a system with Intel x86

architecture operating Linux with a gcc compiler on it. The caller and the called function

come to a consensus on how parameters are passed between the two and the organization

of the stack. These conventions may vary depending upon the compiler, architecture or

45

the operating system. The portion of the stack used for invocation of a function is called

stack frame or activation record. When ever a function is called, a new activation record

is created on the runtime stack and all the necessary information regarding the function is

stored in that activation record. The runtime stack grows upward i.e. smaller number

memory locations are located on the top. The caller’s activation record stays at the

bottom and the callee’s activation record is at the top of the caller’s record. Some of the

registers that are involved in the function call frame and their usage are described below.

ESP – Stack Pointer

This 32-bit pointer is manipulated by several instructions such as PUSH, POP, CALL,

RET etc. This pointer is used to point the top of the stack i.e. last element residing on the

runtime stack. The PUSH and the POP operations result in incrementing and

decrementing the ESP register respectively.

EBP – Base Pointer

This 32-bit pointer is used as a reference pointer to point to the local variables and all the

 function call parameters in the current activation record. The base pointer is also known

as “Frame Pointer”.

EIP – Instruction Pointer

This 32-bit pointer points to the address of the next instruction which is to be executed.

This pointer is saved on the runtime stack whenever a function is called so that the next

46

instruction after the function call is executed as soon as the control returns from the

function.

The stack organization will be demonstrated with an example where the main function

makes a call to a function named ‘foo’ with three arguments a, b & c.

x = foo (a, b, c)

 In our example the caller is the ‘main’ function and the callee is the ‘foo’ function.

Before the function ‘foo’ is called the main function is using ESP and EBP for its

activation record. One of the conventions used here is that the callee is allowed to use the

registers EAX, ECX and EDX. So these registers are stored by the caller on the stack and

retrieved on function exit. On the contrary, the callee must save the registers EBX, ESI

and EDI registers. If the values of these registers are changed by the callee, it is the

responsibility of the callee to restore the original values before the function returns.

Parameters passed from the main function to the foo function are stored on the stack. The

last argument is pushed first which apparently makes the first argument on top. The EAX

register is used to store the return value of 4 bytes. If the return value is more than 4

bytes, the caller passes an extra parameter which specifies the address of the location

where the return value is stored at. This is only the case where the return value is greater

than 4 bytes.

Caller’s action before function call

‘Main’ function pushes the contents of the registers EAX, ECX & EDX on the stack as

 needed. The next step is to push the parameters of the ‘foo (a, b, c)’ function call. The

last argument is pushed first and the rest are followed in the order.

47

push dword 18

push dword 15

push dword 12

Now ‘main’ can issue the call instruction.

call foo

After the call instruction has been executed, the contents of the instruction pointer are

pushed on to the top of the stack. This instruction pointer contains the address of the next

instruction to be executed after the function call in the ‘main’, which results in the return

address being on the top. After the function ‘foo’ has been executed and returned, the

stack returns back to this position. The above fig 4.4.1 shows the stack contents just

before a function call.

ESP

EBP

Fig 4.4.1: Runtime Stack Frame before calling function ‘foo’.

Return Address

Arg #1 = 12

Arg #2 = 15

Arg #3 = 18

Caller saved registers,

EAX, ECX & EDX

.

48

Callee’s actions after the function call

After the call instruction, the function ‘foo’ will get the control of the program. The

function has to do the following three things:

 The function has to set up its own activation record.

 Enough space should be allocated to store local information such as local

variables.

 Necessary registers must be saved.

Before setting up the stack, the EBP pointer is pointing to a location in the main’s stack

frame. So the main’s EBP is saved by pushing on to the stack & the contents of ESP are

stored into the EBP pointer. This arrangement facilitates us to access the function

parameters and local variables to be referenced with respect to EBP. The function call

results in the following two instructions being executed.

push %ebp

mov %esp, %ebp

The next step is to leave enough space for the storage of local variables and some

temporary information. Some complicated expressions involve storing the value of sub

expressions in some temporary location. The instruction which requires 12 bytes of space

can be showed as

sub $12, %esp

49

The last step implemented by the callee before returning the control to the caller is saving

any registers as needed. If the callee requires the use of EBX, ESI & EDI, they are stored

on the activation record. The callee now can push and pop things from the stack, but the

EBP pointer is fixed which makes the access to the local variables and parameters easy.

The first parameter of the function is located at a positive offset of 8 bytes from EBP i.e.

EBP+8. The function might result in other functions being called or the same function

being called recursively. As long as the EBP is saved on the stack, the references to local

variables and parameters can be made without any discrepancies. The location of the

local variables and parameters at offsets from EBP can be shown in fig 4.4.2.

Callee’s action before returning

The callee must return value to the caller. This can be done by storing the return value in

the EAX register. The registers EBX, ESI & EDI are restored by the values stored on the

stack and are popped off later. The temporary memory and the memory allocated for the

local variables are no longer required. So they are also popped off. This can be done by

reducing the stack frame with the following instructions.

mov %ebp, %esp

pop %ebp

This results in the same stack arrangement as shown in Fig 4.4.1. The return instruction is

executed next which stores the return address in the instruction pointer (EIP) & pops the

return address. I386 instruction set has the leave instruction which performs the task done

50

above by the mov and pop instructions. So it is very typical to have a C function which

ends with a leave instruction followed by the ret instruction.

ESP

EBP – 8

EBP – 4

EBP

EBP + 8

EBP + 12

EBP + 16

Fig 4.4.2: Offsets of parameters & local variables from EBP in Stack Frame

Callee’s action after returning

After the caller regains the control from the callee, the arguments passed by the caller are

Callee saved registers

EBX, ESI & EDI

Temporary storage

Local Variable #2

Local Variable #1

Main’s EBP

Return Address

Arg #1 = 12

Arg #2 = 15

Arg #3 = 18

Caller saved registers,

EAX, ECX & EDX

.

.

51

 no longer required by the caller. So they are popped and the esp is adjusted accordingly.

In this case there are 3 arguments and the esp is added by 12(4 bytes for each variable).

The last thing done by a caller is restore the caller-saved registers EAX, ECX & EDX.

4.5 Type Inference

Type inference is the converse process of constructing type information that was omitted

in compilation phase of the program. Inference is a process of constraint satisfaction.

Equations are deduced based on the relationships between the types. These equations are

solved by a process known as unification [32]. The equations can be classified as follows

 Overconstrained: There is no solution which means it relates to a type checking

error

 Underconstrained: There is more than one solution which means it has

ambiguous solutions.

 Uniquely determined: There is exactly one solution without any ambiguity.

Examples of type inferring languages include Haskell [33], ML, and MUMPS. Program

construction is done through type reconstruction which decompiles C programs from

target machine code by type inference techniques which uses Milner’s algorithm [34] as

the basis [35]. A type system used in a disassembler to produce enhanced assembly

output by using type library files was discussed in [36]. Another variant is the use of

proof carrying code in typed assembly language used by Morrisett et al [37]. Proof

52

carrying code facilitates the safe usage in a security domain. Preserving the type

information increases the reliability of the compiler. We take as reference the method

specified in [35]. We construct the signature of the functions by generating type

constraints on the function parameters & thereby unifying the constraints leads us to the

type information of the parameters. Target code from RTL (Register transfer language) is

used to infer the types. RTL code can be obtained by disassembly of assembler files,

object files, directly from compiler output or from Dynamically Linked Libraries. The

disassembler used in our case for type inference is ‘objdump’. A type inference engine is

developed which creates constraints on the basis of the context. After all the constraints

are obtained, these are solved leading to the parameter types. The type inference

algorithm, steps involving the deduction of parameter types, is explained in the next

section.

4.6 Type Inference Algorithm

This algorithm infers function signature concerning the parameters. Parameters are

referred as stack references. Inference is done by algorithm explained in the following

steps.

 Identification is done for all stack references that reflect the parameters.

 Constraints are generated based on the context in which the reference of the

parameter is involved.

53

 All the constraints are obtained and are evaluated. This evaluation of the

constraints is a process known as unification.

 If the unification process yields to under-constrained solution, then backward

analysis is applied. Backward analysis is the course of action of analyzing the

code in the caller’s stack frame for the stack reference being inferred. The caller’s

code is analyzed and constraints are formed which assists in reducing to an

unambiguous solution.

The unification process fosters some rules. The rules followed in the unification of

constraints are

 If all access via a pointer are of the same size, then the unified type is an array.

 If the constraints to a given pointed type are all ‘struct’ types, then the resulting

unified type is also a ‘struct’.

Unification of constraints is done after all the constraints are generated. We currently

implemented an inference engine which infers all the types except the C structure (struct

type. Some light can be thrown on the algorithm by the subsequent example.

4.7 Intuitive Example

Consider the following function written in C. This example illustrates the constraint

 formation and solving of constraints.

54

int Foo(int i, float k, char *d)

{

return (int)(k+i*d[5]);

}

Disassembling is done on the binary format of the above function with a disassembler- in

this case ‘objdump’ [38].

Disassemble is done using the following objdump options.

murdock:~> objdump –dr Foo.o

‘-dr’ are options given to ‘objdump’ which indicates disassemble and relocatable entries

respectively. The option ‘d’ displays assembler contents of executable sections, where as

option ‘r’ displays the relocatable entries in the file. The ‘Foo’ function has three

parameters which are i – integer, k – floating point & d – pointer to a character. Since we

are considering only the assembly code in the function itself, the constraints generated

might not be sufficient to infer a type. So we employ the backward analysis where we

also examine the caller for generating constraints. The assembly code for the ‘Foo’

function is shown below.

55

Foo.o: file format elf32-i386

Disassembly of section .text:

00000000 <foo>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 83 ec 08 sub $0x8,%esp
 6: 8b 45 10 mov 0x10(%ebp),%eax
 9: 83 c0 05 add $0x5,%eax
 c: 0f be 00 movsbl (%eax),%eax
 f: 0f af 45 08 imul 0x8(%ebp),%eax
 13: 50 push %eax
 14: db 04 24 fildl (%esp,1)
 17: 8d 64 24 04 lea 0x4(%esp,1),%esp
 1b: d8 45 0c fadds 0xc(%ebp)
 1e: d9 7d fe fnstcw 0xfffffffe(%ebp)
 21: 0f b7 45 fe movzwl 0xfffffffe(%ebp),%eax
 25: 66 0d 00 0c or $0xc00,%ax
 29: 66 89 45 fc mov %ax,0xfffffffc(%ebp)
 2d: d9 6d fc fldcw 0xfffffffc(%ebp)
 30: db 5d f8 fistpl 0xfffffff8(%ebp)
 33: d9 6d fe fldcw 0xfffffffe(%ebp)
 36: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 39: c9 leave
 3a: c3 ret

The parameters referenced here are 3 – ebp(0x8), ebp(0x10) & ebp(0xC). The function

may have 4 or more parameters of which it uses only three. For the complete function

signature, we also examine the number of parameters pushed on to the stack by the caller.

The first parameter, ebp (0x8), can be perceived as an integer because of the multiply

instruction ‘imul’. If there was an addition operation, it would have generated two

constraints – pointer (pointer arithmetic) or an integer. In this occasion, backward

analysis is applied to generate more constraints that serve in eliminating the ambiguity.

The second parameter is a floating point since all floating point operations are done

separately on a co-processor 80x87 FPU with special floating point instructions. All

floating point instructions start with the letter ‘f’. The 80x87 provides eight 80-bit data

registers organized as a stack. The third parameter can be a pointer to a character or

56

perhaps a ‘Struct S*’ where S is a struct(or union) with a char at offset 5 or even a char

array at offset less than 5.

One of the main problems with C is the expressiveness of C’s struct, union or array types

compared to those of Java. Arrays or structs containing other arrays cannot in general be

uniquely decoded [34]. Consider the situation where an array lives inside a struct, which

can be viewed as an array of structs or just an array. These are the points of interest

which should be addressed by proof carrying code. Given a proof carrying code,

inference of types in an efficient way is quite possible.

GNU GCC [39] is the compiler used in this case. GNU Compiler Collection is

abbreviated definition of GCC. GCC is an integrated distribution of compilers for several

major programming languages including C, C++, Objective-C, Java, Fortran, and Ada.

GCC is one of the most optimizing compilers (i.e. produce optimized code) in the

available lot. Since we have extracted the type information for all types (except

structures) quite comfortably, our method can be extended to any other compiler and is

bound to extract substantial type information.

4.8 Experimental Setup

Once the function signatures with respect to type information are available using the

approach specified above, we use GDB to debug the binary COTS executable and find

the values of the parameters. GDB stands for “GNU Project Debugger”. GDB [40] allows

57

seeing what is going inside other program while it executes or what happened when the

program crashes. The binary executable COTS file is debugged using GDB. The

command for debugging using gdb is

gdb <filename>

The above command lands at ‘gdb’ prompt. The names of all the functions in the binary

executable are obtained from ‘objdump’. Breakpoints are set at the start of all user

defined functions which facilitates seeing the exact values of the function parameters

before any modifications done in the course of execution of the program.

gdb>break <function-name>

The debugger is started by using ‘start’ or ‘run’ commands.

gdb> start

 The debugger starts executing and stops at the first function call made. The inference

engine developed as part of this thesis gives the number of arguments including their

types for a particular function. With this information, memory is examined at that

particular breakpoint which reveals the values of the parameters. The command for

examining memory at a given address is examined by

gdb>x/nfu <address>

n,f and u are optional parameters which specify how much memory to examine. ‘u’

specifies the unit of memory to examine. The different sizes of memory are specified by

b – specifies byte

h – examine halfwords (two bytes)

w – words (four bytes).

58

g – gaint words (eight bytes)

For example

gdb>x/w <address>

examines a word(four bytes) at the specified address.

The values examined are used to display the state machine in the hierarchical approach.

59

5. CONCLUSIONS & FUTURE WORK

This thesis presents the way of dealing with COTS software. We implemented a method

of extracting the model from a COTS executable. We used L* Algorithm, an algorithm

used to learn regular sets from queries and counterexamples, in our approach of

extracting the model. The learning of the model is incremental and fully automated. The

most important thing that differentiates our research from most of the related work is the

construction of model from COTS executable. The model is learned by learning

algorithm L* by querying the executable. This realizes the knowledge of the input and

output specifications of the COTS executable. The learning algorithm is assumed to have

additional information available to the learner. Thus the queries from L* may include

strings that do not belong to the set of original episode strings. The learner learns from

the teacher. A minimally adequate teacher is assumed to answer two types of queries.

Firstly membership query, the answer is yes or no depending upon whether the string is a

member of the unknown set or not. The conjecture contains description of the regular set.

The answer is yes if the unknown regular set is equal to the current description or a

counterexample which specifies the symmetric difference between the two regular sets.

The learning algorithm learns the model of the executable once the specifications are

obtained. A variant of the L* algorithm called the Predicate Based L* algorithm is

obtained by modifying the basic algorithm. This modified algorithm aids in

understanding the model better by providing with further information about the model

extracted. The model extracted may suffer from state explosion problem. So a

60

hierarchical approach is employed that deviates from this problem. The hierarchical

approach is obtained by static analysis of the assembly code of the executable. Assumed

is a function in the executable which results in the final state being decided. The values of

the function parameters realize the final state. These values are recovered by debugging

the executable after finding the type information which was lost during compilation. The

inference of types is done using static analysis at the assembly level. Constraints are

formed on the parameter types which when unified gives the type of the parameter.

Backward analysis (i.e. analysis at the caller function) is also performed in case the

constraints are not solved in the current stack frame. Thus the hierarchical approach

results in the final state being obtained based upon the input. As part of the future work,

the model thus obtained can be represented in temporal logic formulas to be fed into a

model checker for conformance of the model. Conformance of the abstract design is done

with the original design. We would like to analyze on the scalability of our work by

extracting the state machine model from a real time COTS product available in the

industry. We also like to investigate whether the learning algorithm can be made more

efficient in our milieu.

61

REFERENCES

1. I. Bratko, Prolog Programming for Artificial Intelligence, (third edition). Addison-

Wesley, 2001.

2. Dana Angluin, Learning Regular Sets from Queries and Counterexamples, Information

and Computation, 1987, Vol-75.

3. Brian C. Williams & P. Pandurang Nayak, A Model-based Approach to Reactive Self-

Configuring Systems. In Proceedings of AAAI-96, 1996.

4. Barney Pell, Douglas E. Bernard, Steven A. Chien, Erann Gat, Nicola Muscettola, P.

Pandurang Nayak, Michael D. Wagner, and Brian C. Williams, An Autonomous

Spacecraft Agent Prototype, In Proceedings of the First International Conference on

Autonomous Agents, Marina del Rey, CA 1997

5. A. V. Aho, R. Sethi & J. D Ullman, Compilers: Principles, Techniques and Tools,

Addison-Wesley, June 1987.

6. Edmund Clarke, Orna Grumberg & Doron Peled, Model Checking, The MIT Press,

Cambridge, Massachusetts, 1999.

62

7. A Quick Introduction to Autograph (Atg),

http://www-sop.inria.fr/meije/verification/index.html

8. Doron Peled, Moshe Y. Vardi & Mihalis Yannakakis, Black Box Checking, Journal of

Automata, Languages and Combinatorics, Volume 7 , 2001

9. Alex Groce, Doron Peled & Mihalis Yannakakis, Adaptive Model Checking, In

Computer Aided Verification (CAV), pages 521--525, Copenhagen, Denmark, July 2002

10. Bernhard Steffen & Hardi Hungar, Behavior-Based Model Construction, VMCAI

2003, LNCS 2575, pp 5-19, 2003.

11. R. Sekar , M. Bendre , D. Dhurjati , P. Bollineni, A Fast Automaton-Based Method

for Detecting Anomalous Program Behaviors, Proceedings of the IEEE Symposium on

Security and Privacy, p.144, May 14-16, 2001

12. Jamieson M. Cobleigh, Dimitra Giannakopoulou, Corina S. Pasareanu, Learning

Assumptions for Compositional Verification, In Proceedings of the 9th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2003.

13. G. J. Myers, The Art of Software Testing, Wiley International, 1979.

63

14. Barney Pell, Douglas E. Bernard, Steven A. Chien, Erann Gat, Nicola Muscettola, P.

Pandurang Nayak, Michael D. Wagner, and Brian C. Williams, A Remote Agent

Prototype for Spacecraft Autonomy, In Proceedings of the SPIE Conference on Optical

Science, Engineering, and Instrumentation, 1996.

15. A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model generation by moderated

regular extrapolation. In R. Kutsche and H. Weber, editors, Proc. of the 5th

Int. Conference on Fundamental Approaches to Software Engineering (FASE ’02),

volume 2306 of Lecture Notes in Computer Science, pages 80–95. Springer Verlag,

2002.

16. Lynne Vettel, Raj Bhatnagar, Learning Automata to Capture Temporal Patterns,

Proceedings of the 2002 International Conference on Machine Learning and

Applications, ICMLA 2002.

17. Ron D, Rubinfeld, Learning fallible finite state automata. Machine Learning, 18:149-

185, 1995.

18. G. F. Luger and W. A. Stubblefield, Artificial Intelligence: Structures and Strategies

for Complex Problem Solving, The Benjamin/Cummings Publishing Company, Inc.

1989.

19. The Nature of Statistical Learning Theory by Vladimir N. Vapnik.

64

20. Leslie Kaelbling, Michael Littman, Andrew Moore. Reinforcement Learning: A

Survey, Journal of Artificial Intelligence Research 4 (1996).

21. Richard Sutton & Andrew Barto, Reinforcement Learning, MIT Press, 1998.

22. S.Forrest , S.A.Hofmeyr, A.Somayaji, Intrusion Detection using sequences of system

calls, Journal of Computer Security Vol 6(1998) pg 151-180.

23. Watkins, Christopher J.C.H. (1989), Learning from delayed rewards, PhD thesis,

University of Cambridge, Psychology Department.

24. Advances in Inductive Logic Programming (Frontiers in Artificial Intelligence and

Applications, 32) by L. De Raedt.

25. Anderson, P., Reps, T., and Teitelbaum, T., Design and implementation of a fine-

grained software inspection tool. In IEEE Trans. on Software Engineering 29 8 (Aug.

2003), 721-733.

26. Brat, G., and, Klemm, R. "Static Analysis of the Mars Exploration Rover flight

software." In Proceedings of the 1st International Space Mission Challenge for

Information Technology, pp. 321-326. Pasadena, California, 2003.

65

27. Robert DeLine and Manuel Fähndrich. "Enforcing high-level protocols in low-level

software." In Proceedings of the ACM Conference on Programming Language Design

and Implementation, June 2001, pages 59-69.

28. W. Amme, P. Braun, E. Zehendner, F. Thomasset. Data Dependence Analysis of

Assembly Code. Proc.PACT 1998.

29. R Venkitaraman and Gopal Gupta, Static Program Analysis of Embedded Executable

Assembly Code. Compilers, Architecture, and Synthesis for Embedded Systems (ACM

CASES), September 2004.

30. David A. Wagner. Static analysis and computer security: New techniques for

Software Assurance. University of California at Berkley, PhD Dissertation, Dec. 2000.

31. © Richard Chang, 2001, http://www.cs.umbc.edu/~chang/cs313.s02/stack.shtml.

32. http://www-2.cs.cmu.edu/~rwh/introsml/core/typeinf.htm.

33. Glasgow Haskell Compiler, http://www.haskell.org/ghc/.

34. Mycroft Alan, Type-Based Decompilation. Lecture Notes in Computer Science: Proc.

ESOP'99, vol. 1576, Springer-Verlag, 1999.

66

35. Milner R, A Theory of Polymorphism in Programming, JCSS 1978.

36. Guilfanov, A Simple Type System for Program Reengineering. WCRE 2001: 357-

361.

37. Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to Typed

Assembly Language. In TwentyFifth ACM Symposium on Principles of Programming

Languages, pages 85--97, San Diego, January 1998.

38. http://www.gnu.org/software/binutils/manual/html_chapter/binutils_4.html.

39. GCC – GNU Compiler Collection, http://gcc.gnu.org/.

40. GDB – GNU Project Debugger, http://www.gnu.org/software/gdb/gdb.html

41. Zaki, M. J. 2001. SPADE: An efficient algorithm for mining frequent sequences.
Machine Learning 42, 1/2, 31-60.

	Learning to deal with COTS (commercial off the shelf)
	Recommended Citation

	Learning to deal with COTS (Commercial off the Shelf)

		2005-04-22T09:33:20-0400
	John H. Hagen
	I am approving this document

