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Abstract

Optimal certifying algorithms for linear and lattice point feasibility in a system of
UTVPI constraints

by

Piotr Jerzy Wojciechowski
Master of Science in Computer Science

West Virginia University

K. Subramani, Ph.D., Chair

This thesis is concerned with the design and analysis of time-optimal and space-
optimal, certifying algorithms for checking the linear and lattice point feasibility of a
class of constraints called Unit Two Variable Per Inequality (UTVPI) constraints. In
a UTVPI constraint, there are at most two non-zero variables per constraint, and the
coefficients of the non-zero variables belong to the set {+1, −1}. These constraints
occur in a number of application domains, including but not limited to program
verification, abstract interpretation, and operations research. As per the literature,
the fastest known certifying algorithm for checking lattice point feasibility in UTVPI
constraint systems ([1]), runs in O(m · n + n2 · log n) time and O(n2) space, where m
represents the number of constraints and n represents the number of variables in the
constraint system. In this paper, we design and analyze new algorithms for checking
the linear feasibility and the lattice point feasibility of UTVPI constraints. Both of
the presented algorithms run in O(m · n) time and O(m + n) space. Additionally
they are certifying in that they produce satisfying assignments in the event that
they are presented with feasible instances and refutations in the event that they are
presented with infeasible instances. The importance of providing certificates cannot
be overemphasized, especially in mission-critical applications. Our approaches for
both the linear and the lattice point feasibility problems in UTVPI constraints are
fundamentally different from existing approaches for these problems (as described in
the literature), in that our approaches are based on new insights on using well-known
inference rules.
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Chapter 1

Introduction

In this thesis, we propose new certifying algorithms for checking the linear and

lattice point (integer) feasibility of a conjunction of Unit Two Variable Per Inequality

(UTVPI) constraints. A UTVPI constraint is a linear constraint of the form: a ·

x + b · y ≤ d, where a, b ∈ {−1, 0, 1} and d is an integer constant. A conjunction of

such constraints is called a UTVPI constraint system. Observe that UTVPI systems

subsume difference constraint systems [2], since in the latter, a and b must have

opposite signs.

UTVPI constraints occur in a number of problem domains including but not lim-

ited to program verification [1], abstract interpretation [3, 4], real-time scheduling [5]

and operations research. Indeed many software and hardware verification queries are

naturally expressed using this fragment of integer linear arithmetic, i.e., the case in

which the solutions of a UTVPI system are restricted to be integral. We note that

when the goal is to model indices of an array or queues in hardware or software, ratio-

nal solutions are unacceptable [1]. Other application areas include spatial databases

[6] and theorem proving. When the range restrictions on a and b are removed, i.e.,

they are permitted to be arbitrary integers, then the constraint system is called a

Two Variable Per Inequality (TVPI ) system. Checking integer feasibility in TVPI

systems is known to be weakly NP-complete [7].

This thesis deals with both the linear feasibility problem and the integer feasibility

problem in UTPVI systems. Our algorithms are based on the following ideas, which
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to the best of our knowledge have not been discussed in the literature:

1. We propose a new constraint network structure for UTVPI constraints that is

similar to the constraint network structure for difference constraints [8], but

incorporates many features that are unique to UTVPI constraint systems (see

Section 2). This constraint structure enables the extraction of both linear and

lattice point solutions.

2. We present theorems of the alternative for the recognition of the linear and

integer feasibility of UTVPI constraints, which are similar in spirit to Farkas’

lemma for a system of linear constraints. These theorems are crucial from the

perspective of designing certifying algorithms [9].

The algorithms that we present run in O(m ·n) time and use O(m+n) space on a

UTVPI constraint system with n variables over m constraints. For the case of integer

feasibility this is a marked improvement over the current state-of-the-art certifying

algorithm which runs in O(m · n+ n2 · log n) time and O(n2) space [1]. We note that

the fastest known strongly polynomial time algorithm for checking linear (and hence,

integer) feasibility in difference constraints is the Bellman-Ford procedure (or one of

its variants), which runs in O(m · n) time and O(m + n) space. It follows that our

algorithms for linear and integer feasibility checking in a UTVPI constraint system

are optimal, since UTVPI constraints subsume difference constraints. It is important

to note that unlike difference constraints linear feasibility does not imply lattice point

feasibility in UTVPI constraints (see Section 2).

We reiterate the fact that our algorithms are certifying, i.e., in the event that the

given UTVPI system is feasible, we provide a satisfying assignment and in the event

that it is infeasible, we provide a refutation, which explains the infeasibility. The na-

ture of the satisfying assignment and the nature of the refutation depends on whether

we are interested in linear feasibility or integer feasibility. Even algorithms that can

be proven correct, suffer the risk of being implemented incorrectly. One of the more

famous examples of this phenomenon is the error discovered in the planarity testing
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algorithm of the LEDA software [10]. Consequently, there is widespread interest in

the design and development of certifying algorithms, i.e., algorithms which provide

certificates that validate the answer that is provided. For instance, an algorithm for

graph planarity testing could provide a planar embedding when it declares a graph

to be planar, and a subgraph of the input graph that is homeomorphic to K3,3 or K5,

in the event that it declares the graph to be non-planar (Kurtowski’s theorem). It is

understood that the implementations of algorithms for verifying a planar embedding

and checking homeomorphism to K3,3 and K5 are trivial enough to be checked by a

simple, provably correct implementation.

The important contributions of this thesis are as follows:

(i) A new characterization of linear infeasibility in UTVPI constraint systems,

(ii) A new characterization of integer infeasibility in UTVPI constraint systems,

(iii) An optimal (time and space) certifying algorithm (LA) for checking linear fea-

sibility in UTVPI constraint systems, and

(iv) An optimal (time and space) certifying algorithm (IA) for checking integer

feasibility in UTVPI constraint systems.

The rest of this thesis is organized as follows: Section 2 formally specifies the

problem under consideration. A theorem of the alternative for linear feasibility in

UTVPI constraint systems is discussed in Section 3.1. In Section 3.2, we detail a

theorem of the alternative for integer feasibility in UTVPI constraint systems. These

theorems exactly characterize linear and integer feasibility in UTVPI systems and

can be used to extract refutations in the event of infeasibility. Section 4 describes

the motivation for our work, as well as related work in the literature. Our algorithm

for the linear feasibility problem in UTVPI systems is presented in section 5. The

proof of correctness of this algorithm is detailed in Section 6. Section 7 details the

new algorithm for the lattice point feasibility problem in UTVPI constraint systems.
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A detailed proof of correctness of this algorithm is provided in Section 8. Section 9

describes the working of our lattice-point algorithm on a sample UTVPI system. We

conclude in Section 10 by summarizing our contributions and outlining avenues for

future research.
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Chapter 2

Statement of Problem

In this section, we formally define the linear and integer feasibility problems in

UTVPI constraints and also define the various terms that will be used in the rest of

the thesis.

Definition 2.0.1 A constraint of the form ai · xi + aj · xj ≤ cij is said to be a Unit

Two Variable Per Inequality (UTVPI) constraint if ai, aj ∈ {−1, 0,+1} and cij ∈ Z.

Definition 2.0.2 A constraint of the form xi ≤ ci or xi ≥ ci where ci ∈ Z is called

an absolute constraint.

Absolute constraints are the subset of UTVPI constraints where one of the coeffi-

cients (ai or aj) is 0. They can be converted into constraints of the form: ai·xi+aj ·xj ≤

cij, where both ai and aj are non-zero (see Section 2.1).

Definition 2.0.3 The constant which bounds a UTVPI constraint is called the defin-

ing constant.

For instance, the defining constant for the constraint x1 − x2 ≤ 9 is 9. Example

(1):

Definition 2.0.4 A conjunction of UTVPI constraints is called a UTVPI constraint

system and can be represented in matrix form as A · x ≤ b. If the constraint system

has m constraints over n variables, then A has dimensions m× n.
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UTVPI constraints are also known as Generalized 2SAT constraints [11] and are

the invariants of the octagon abstract domain in [3].

Observe that a UTVPI system defines a polyhedron in n-dimensional space. Given

such a system, we are interested in the following questions:

(i) Is the defined polyhedron non-empty? This problem is called the Linear Feasi-

bility problem (LF).

(ii) Does the defined polyhedron enclose a lattice point? This problem is called the

Integer Feasibility problem (IF).

Our goal is to design certifying algorithms for the LF and IF problems. In other

words, our algorithms should produce models (satisfying solutions) for feasible in-

stances and refutations for infeasible instances. Our algorithms incorporate the fol-

lowing six properties of UTVPI constraints

(i) A UTVPI system has a constraint network presentation, analogous to the con-

straint network representation of a Difference Constraint System (see Chapter

24 of [8]).

(ii) A UTVPI system is linear feasible if and only if the corresponding constraint

network does not contain certain types of cycles (see Section 3.1).

(iii) A UTVPI system is integer feasible if and only if the corresponding constraint

network does not contain certain types of cycles (see Section 3.2).

(iv) Fourier-Motzkin with rounding (FMR) is a sound and complete procedure for

detecting integer feasibility in UTVPI constraints ([11]).

(v) A certificate of linear (and integer) infeasibility consists of at most 2 · n con-

straints (see Section 3.1 and Section 3.2).

(vi) Given a solution to the LF problem in a UTVPI system, we can obtain a lattice

point solution (or establish that none exists) by a rounding procedure in O(m·n)

time (see Sections 7 and 8).
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While integer feasibility in a UTVPI system immediately implies linear feasibility,

the converse is not true. For instance, consider the UTVPI system defined by the

following constraints:

x1 + x2 ≥ 1

−x1 + x2 ≥ 0

x1 − x2 ≥ 0

−x1 − x2 ≥ −1 (2.1)

It is clear that System (2.1) has no lattice point (integer) solution. However, it

contains the fractional point (1
2
, 1
2
) and is thus non-empty.
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2.1 Constraint Network Presentation

Let U : A · x ≤ b denote the UTVPI constraint system and let X denote the set of

all (fractional and integral) solutions to U. Corresponding to this constraint system

we construct the constraint network G = 〈V,E, c〉 as follows.

For each variable xi create a vertex in V . For ease of reference, both the variable

and its corresponding node are referred to as xi in this thesis.

Constraints are represented as edges using the following rules:

(a) A constraint of the form xi − xj ≤ cij is represented as a directed edge from the

node xj to the node xi having weight cij. These edges are called “gray” edges

and are represented by
cij← where c is the weight.

(b) A constraint of the form −xi − xj ≤ cij is represented by an undirected “black”

edge (
cij

� ).

(c) A constraint of the form xi + xj ≤ cij is represented by an undirected “white”

edge (
cij

� ) respectively.

A (k−1)-path in our constraint network, is a sequence of k vertices, x′1, x
′
2, . . . x

′
k,

and (k− 1) edges e1, e2, . . . ek−1, such that ei is the edge corresponding to one of the

constraints between x′i and x′i+1 in the UTVPI constraint system.

For a k-path to be considered valid, it must have the following property: For every

i from 2 to k − 1, the coefficients of x′i in the constraints corresponding to the edges

ei and e(i−1) have opposite signs.

The path defined by the sequence of vertices x1, x2, x3, x4 and the sequence of

edges x1

c1,2

� x2, x2

c2,3

� x3, x3

c3,4

� x4 is x1

c1,2

� x2

c2,3

� x3

c3,4

� x4. However this path is not

valid because the the coefficients of x2 in the constraints corresponding to the edges

x1

c1,2

� x2 and x2

c2,3

� x3 have the same sign; indeed, both of these constraints are of

the form −xi − xj ≤ cij. Example (2):

A closed walk is simply a valid (k − 1)-path for which x1 = xk. In this thesis,

we refer to closed walks as cycles. Note that a cycle, as defined above can consist

of edges and vertices that occur more than once. Thus, the notion of a cycle in this
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thesis differs from the notion of a cycle in a constraint network corresponding to a

difference constraint system.

x1 x2 x3

x4

x5

−3

1

1

1

1

0

1

Figure 2.1: Example Constraint Network (without node x0)

Suppose we have the system of constraints

1. x1 − x2 ≤ −3

2. −x1 + x4 ≤ 1

3. −x1 − x4 ≤ 1

4. x1 − x5 ≤ 1

5. −x1 + x5 ≤ 0

6. x2 + x3 ≤ 1

7. x2 − x3 ≤ 1

Then, as we can see in Figure 2.1 the 8-path

x1
−3← x2

1

� x3
1→ x2

−3→ x1
0→ x5

1→ x1
1→ x4

1

� x1

forms a cycle even though the nodes x1 and x2 and the edge x2
−3→ x1 are used multiple

times. Example (3):
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Since the “white” and “black” edges are directionless we will need to treat the

“gray” edges as directionless as well. As we will show in section 2.2,

xi
cij← xj

cjk

� xk
ckl→ xl is a valid path from xi to xl but requires gray edges to be

traversed in both directions.

We add a node x0 to the network. This node will be the starting point which

our algorithms will utilize for traversing the network. Without of loss of generality,

we assume that node x0 is assigned the value 0. This gives us a point of reference

and allows us to determine values for the remaining variables. For each node xi in

the network we add the four edges x0

n·C
� xi, x0

n·C
� xi, x0

n·C→ xi, and xi
n·C→ x0

where C is the largest absolute weight of any edge in the network. These edges

allow every vertex to be reached from x0 using the reachability technique employed

by our algorithms, without introducing infeasibility into the system. As discussed in

Section 3.1, a UTVPI system is infeasible if and only if there exists a cycle of negative

weight. Observe that any cycle that is introduced by the addition of x0, must use x0

and therefore, at least one edge that enters x0 and at least one edge that leaves x0.

However, these edges have such a large weight (n ·C), that the weight of such a cycle

cannot be negative, unless a negative weight cycle existed in the network to begin

with. This is clarified further in Lemma 6.0.3 of Section 6.

The newly added edges also permit the addition of absolute constraints. An

absolute constraint xi ≤ c is converted into a pair of constraints: xi + x0 ≤ c and

xi − x0 ≤ c, which are added to the UTVPI system (after the absolute constraint

is deleted from the system). The corresponding edges are added to the constraint

network by changing the weight of the appropriate edges from x0. In the preceding

example this would mean changing the weights of the edges corresponding to the

constraints x0 � xi and x0 → xi to c.

We will now argue that the above replacement strategy is solution-preserving,

i.e., if the original UTVPI system is feasible, then it stays feasible after the replace-

ment. Likewise, if the original system is infeasible, then it stays infeasible after the

replacement.

Let P1 : A · x ≤ b denote a UTVPI system with x1 ≤ c denoting an absolute
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constraint in this system. We consider the following cases:

(i) P1 is non-empty - We can set x0 = 0, thus after replacement the constraints

x1+x0 ≤ c and x1−x0 ≤ c both become x1 ≤ c thus the system remains feasible

with x0 = 0 part of a satisfying assignment.

(ii) P1 is empty - Observe that if there exists a subsystem of P1 that is infeasible and

which does not include the constraint x1 ≤ c, then it stays infeasible after the

replacement. Let us therefore consider the case in which the constraint x1 ≤ c

is part of the only infeasible subsystem of P1. In this case, we add x1 + x0 ≤ c

and x1 − x0 ≤ c, to produce the constraint 2 · x1 ≤ 2 · c which is equivalent to

the original constraint. Thus replacing x1 ≤ c does not affect the infeasibility

of the system.

Consider the following constraint system.

x1 + x3 ≤ 0

x2 − x3 ≤ −7

x4 − x2 ≤ 3

−x1 − x4 ≤ 5

x1 ≤ 6 (2.2)

The resulting network is shown in Figure 2.2.

We now contrast our constraint network construction with the representation in

[3], which was the basis of the network construction in [1].

The [3] network construction produces what is called a potential network, con-

structed as follows:

For each variable, two nodes (a positive version and a negative version) are added

to the constraint network. For instance, corresponding to the variable xi, we create

the nodes x+
i and x−i . Each constraint is replaced by a pair of equivalent constraints

is found. For instance, a difference constraint xi − xj ≤ c is equivalent to the two

constraints x+
i − x+

j ≤ c and x−j − x−i ≤ c. The exception is for absolute constraints,
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x
2
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3

x
0

Figure 2.2: Example constraint network.

each of which is simply converted to a single equivalent constraint. For instance,

xi ≤ c yields x+
i −x−i ≤ 2·c. Once all the equivalent constraints have been determined,

they are represented in a constraint network, as discussed in [8]. It is thus seen that

the network constructed as per [3] has 2 · n vertices (assuming n variables in the

constraint system) and up to 2 · m edges (assuming m constraints in the original

constraint system). The resultant graph is called the potential graph. Figure 2.3

shows the potential graph, corresponding to System (2.2).

It is important to note that even if the constraint system consisted solely of

difference constraints, our constraint network differs from the one proposed in [8] (for

instance, the weights on the edges from x0 to the other nodes are not 0).

Our method differs from [3] and [1] in several respects:

(a) Our constraint network contains undirected edges, with special rules on how to

follow them. Accordingly, we are not limited by the direction of the edges as used

in the potential network.

(b) We are able to retain the information related to the constraint types themselves

in the networks they produce. In other words, our network directly reflects the
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original input.

(c) Rather than converting an entire system of constraints into a format compris-

ing exclusively difference constraints, we directly handle all forms of constraints.

This allows us to easily reproduce a sequence of constraints based on the edges

in a subnetwork, such as a path. This is useful for producing a certificate of

infeasibility.

x

0

x

1

4

x
2

x
3

x
2

x
3

x
4

x
1

+

+

+

+

-

-

- -

0

-7

-7

3 3

5

5

12

Figure 2.3: Example potential graph.

Whereas [3] and [1] have one inference rule (the addition of difference constraints),

our algorithms have four inference rules, corresponding to edge reductions which are

explained below.
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2.2 Edge Reductions

We now introduce the notion of edge reductions.

Definition 2.2.1 An edge reduction is an operation which determines a single edge

equivalent to a two-edge path and represents the addition of the two UTVPI constraints

which correspond to the edges in question. If this addition results in a UTVPI con-

straint, the reduction is said to be valid. Valid reductions correspond to the following

transitive inference rule for UTVPI constraints:

a · xi + b · xj ≤ cij −b · xj + b′ · xk ≤ cjk
a · xi + b′ · xk ≤ cij + cjk

In the case of a valid reduction, since the resultant constraint is a valid UTVPI

constraint, the path reduces to an edge corresponding to the sum of the two con-

straints.

The following table lists the valid edge reductions:

Constraints Path Reduction Result

xj − xi ≤ a, xk − xj ≤ b xi
a→ xj

b→ xk xi
a+b→ xk xk − xi ≤ a + b

xj − xi ≤ a, −xk − xj ≤ b xi
a→ xj

b

� xk xi

a+b

� xk −xk − xi ≤ a + b

xj + xi ≤ a, xk − xj ≤ b xi

a

� xj
b→ xk xi

a+b

� xk xk + xi ≤ a + b

−xj − xi ≤ a, xk + xj ≤ b xi

a

� xj

b

� xk xi
a+b→ xk xk − xi ≤ a + b

Table 2.1: Valid Edge Reductions

Not all edge reductions are valid. For example, the reduction of the path xi

cij

� xj

cjk

� xk,

corresponding to the constraints xi + xj ≤ cij and xj + xk ≤ cjk, is not valid since

adding the constraints would produce the constraint xi + 2xj + xk ≤ cij + cjk which

is not a UTVPI constraint. However, the reduction of the path xi

cij

� xj

cjk

� xk, cor-

responding to the constraints xi + xj ≤ cij and −xj − xk ≤ cjk, is valid since adding

the constraints would produce the constraint xi − xk ≤ cij + cjk which is a UTVPI

constraint.
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Reductions can also be applied to longer paths by repeatedly applying the two

edge reductions until only one edge remains. A path P with k edges is said to reduce

to an edge e if there exists a series of (k− 1) valid edge reductions which can be used

to convert P to e. For instance, the path x1

c1
� x2

c2
� x3

c3
� x4 reduces to the edge

x1

c1+c2+c3
� x4.
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Chapter 3

Theorems of the Alternative

3.1 Linear Feasibility

In case of of difference constraints, it follows from Farkas’ lemma, that we can

construct a constraint network such that the original system of constraints is feasible

if and only if the constructed network does not contain a negative cost cycle ([8]).

In this section, we demonstrate an analogous result between a UTVPI constraint

system and its constraint network, which is constructed as per the specifications in

Section 2. Recall that U : A · x ≤ b denotes the UTVPI constraint system, X denotes

the set of all (both fractional and integral) solutions to U, and G is the constraint

network created from U.

Let U denote the following infeasible system of UTVPI constraints.

x1 + x2 ≤ 2

x1 + x4 ≤ −1

x1 − x4 ≤ −1

x3 − x1 ≤ 0

−x1 − x2 ≤ 2

−x1 − x3 ≤ −3 (3.1)

The corresponding constraint network G (except for the node x0) is shown in
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Figure 3.1. Example (4):

We shall be using Example 3.1 to illustrate several of the lemmata and theorems

in this section.

x1 x2

x3

x4

2

2

0

−3

−1

−1

Figure 3.1: Example Constraint Network (without node x0)

Theorem 3.1.1 Either X is non-empty or (mutually exclusively) there exists one of

the following paths in G:

(a) A path from a vertex xi to itself that can be reduced to a single gray edge of

negative weight. This will be referred to as a path of type (a).

(b) A path of negative weight from a vertex xi to itself that consists of two sub-paths

from xi to itself, viz., a path which can be reduced to a single white edge and a

path which can be reduced to a single black edge. This type of path will be referred

to as a path of type (b).

For example in Figure 3.1, the cycle x1
−3→ x3

0

� x1

−1
� x4

−1→ x1 is a path of type (b)

because:

1. The cycle has negative weight,

2. The sub-cycle x1
−3→ x3

0

� x1 can be reduced to the single black edge x1

−3
� x1,

and
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3. The sub-cycle x1

−1
� x4

−1→ x1 can be reduced to the single white edge x1

−2
� x1.

Example (5):

To prove Theorem 3.1.1, we will first need to prove a number of lemmata which

will build up to the desired result.

Lemma 3.1.1 Edge reductions are associative. When reducing a path down to a

single edge it does not matter in what order the reductions are performed.

Proof: Since each reduction corresponds to the addition of two constraints, the

lemma follows from the associativity of addition in inequalities. 2

Consider the path xi
cij← xj

cjk

� xk
ckl→ xl. If we first reduce the sub-path xi

cij←

xj

cjk

� xk, then the path xi
cij← xj

cjk

� xk
ckl→ xl reduces to xi

cij+cjk

� xk
ckl→ xl which in

turn, reduces to the edge xi

cij+cjk+ckl

� xl.

Likewise, if we first reduce the sub-path xj

cjk

� xk
ckl→ xl, then the path xi

cij←

xj

cjk

� xk
ckl→ xl reduces to xi

cij← xj

cjk+ckl

� xl which also reduces to the edge xi

cij+cjk+ckl

� xl.

Example (6):

Lemma 3.1.2 If there is a path of type (b) from xi to itself then there is a path of

type (a) from xi to itself.

Proof: Because edge reductions are associative (Lemma 3.1.1), the path of type

(b) can be reduced to a single white edge of weight c1 followed by a single black edge

of weight c2. These edges can then be reduced to a single gray edge of weight c1 + c2.

As the original path had negative weight, this resultant edge also has negative weight.

Similarly, the edge goes from xi to itself. This means that any path of type (b) is also

a path of type (a). 2

In Figure 3.1 the cycle x1
−3→ x3

0

� x1

−1
� x4

−1→ x1 is a cycle of type (a). In Example

3.1 we showed that it it is a path of type (b) and that it can be reduced to the path

x1

−3
� x1

−2
� x1. This path can then be reduced to the path x1

−5→ x1. Example (7):

Lemma 3.1.3 If a path of type (a) exists, then X is empty.
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Proof: Since edge reductions correspond to additions of UTVPI constraints that

produce other UTVPI constraints, the negative gray cycle corresponds to a series of

UTVPI constraints that can be added to produce the constraint xi − xi ≤ ci < 0.

However, this is an obvious contradiction. Thus, if a negative gray cycle exists in G

then there is no assignment to xi that satisfies this constraint. Thus X is empty. 2

We have now shown one direction of the implication in Theorem 3.1.1. The

following lemmata will help us show the other direction.

Lemma 3.1.4 If X is empty then there exists a subset of constraints that can be

added together (possibly with repeats) to produce a contradiction, namely a constraint

of the form xi − xi ≤ c < 0.

Proof: If X is empty then by Farkas’ Lemma there exists a rational vector y ≥ 0

such that yT ·A = 0 and yT · b < 0. We can assume without loss of generality that

y ∈ Zm. Let Uj represent the jth constraint of U. We can create the set S = {Uj :

yj > 0, j = 1 . . .m}, this is the set of constraints for which the corresponding element

of y is non-zero. Summing the constraints of S with the constraint Uj appearing yj

times in the sum, for each j = 1 . . .m, we get the constraint

xi − xi = 0 = yT ·A · x ≤ yT · b < 0

where xi is one of the variables that is involved in a constraint in S. 2

In System 3.1 all of the constraints can be added together, with no repeats, to

produce the constraint x1 − x1 ≤ −1. Example (8):

Lemma 3.1.5 If X is empty then there exists a subset of constraints that can be

added together (possibly with repeats), and an order to that addition, such that the

result of the addition is xi−xi ≤ c < 0 and at every point in the addition procedure a

valid UTVPI constraint is maintained (allowing for constraints of the form xi + xi ≤

ci).

Proof: Since X is empty, there is a set, S, of constraints and vector v > 0 such

that the the constraints in S can be added together, with each constraint Si repeated
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vi times in the sum, to produce the constraint xi − xi ≤ c < 0 (Lemma 3.1.4). We

can assume without loss of generality that this pair is minimal, that is there is no

0 ≤ v′ ≤ v, v′ 6= v, for which this property still holds.

Thus, we can construct a sequence of constraints T , which contains the constraints

in S with each Si appearing vi times. Therefore adding all the constraints in T yields

the constraint xi − xi ≤ 0. Since the left hand side of this resultant constraint is

simply 0, any variable introduced by adding one constraint must be canceled by the

addition of some other constraint. Otherwise that variable would remain in the final

sum. Utilizing this fact, the ordering of the set of constraints proceeds as follows.

(a) Start with the variable xi which appears in at least one constraint.

(b) Let a constraint that uses xi be the first constraint.

(c) Select as the next constraint one that eliminates the non-xi variable introduced

by the previous constraint.

(d) Repeat step (c), canceling each variable as it is introduced.

All constraints can be added in this fashion; however two situations need to be

addressed:

(a) At some point, prior to adding the last constraint, the sum yields a constraint of

the form xi− xi ≤ c ≥ 0 - In this case, the remaining constraints in T would add

to xi − xi ≤ c < 0 which contradicts the minimality of the pair (S, v).

(b) At some point, prior to adding the last constraint, we get a constraint of the form

xi − xi ≤ c < 0 - Once again the minimality of the pair (S, v) is contradicted.

Thus at every point in the addition sequence, a UTVPI constraint is maintained,

with the allowed exception of constraints having the form: xi + xi ≤ cii.

2

In System 3.1 we can start with x1 and add the constraints as follows:

1. Start with constraint x1 + x4 ≤ −1.
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2. Add the constraint x1 − x4 ≤ −1 to eliminate x4 and produce the constraint

x1 + x1 ≤ −2

3. Add the constraint x3 − x1 ≤ 0 to eliminate x1 and produce the constraint

x1 + x3 ≤ −2

4. Add the constraint −x1 − x3 ≤ −3 to eliminate x3 and produce the constraint

x1 − x1 ≤ −5

Example (9):

Let us now examine how repeats occur.

Lemma 3.1.6 If the network G has a path of type (a) then it has a path of type (a)

in which no edge is used more than twice.

Proof: Assume that there is a path of type (a) (say C), in which an edge is used

more than twice, say three times. Note that a path of type (a) is equivalent to a cycle

of negative weight that can be reduced to a single gray edge. This means that one of

its defining vertices is used three times. We will argue that the existence of such a

vertex (say xi) leads to a contradiction.

Observe that the negative gray cycle C can be subdivided into sub-cycles each of

which uses xi only once, for convenience we will count the first and last verticies of

a cycle as the same occurrence. Each sub-cycle is simply the part of the main cycle

between, and including, two occurrences of the vertex xi.

Because of how cycles are defined each of these sub-cycles can be reduced to the

equivalent of a single white, black or gray edge from xi to itself. Those sub-cycles

which can be reduced to black edges shall be referred to as black sub-cycles. White

and gray sub-cycles are defined similarly.

As stated before, when checking for unsatisfiability it suffices to search for negative

cycles which can be reduced to a single gray edge. Thus, as in Lemma 3.1.2, each

white sub-cycle can be paired with a black sub-cycle to produce a gray sub-cycle that

uses xi twice. As edge reductions are associative we can reduce the white cycle to a
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single white edge and the black cycle to a single black edge. Thus the entirety can

be reduced to a single gray edge. After each white sub-cycle is paired with a black

sub-cycle there can be no remaining white or black sub-cycles. Otherwise the whole

cycle would not reduce to a single gray edge. This is because the only reductions

which produce a valid gray edge are two gray edges and a white edge with a black

edge.

Thus the main cycle is equivalent to several gray sub-cycles each of which uses

xi no more than twice. Since the main cycle has a negative weight, at least one of

these sub-cycles must also have negative weight. Thus we have found a gray cycle of

negative weight which uses xi at most twice.

2 If U is equal to the infeasible system of constraints

x1 − x2 ≤ −3

−x1 + x4 ≤ 1

−x1 − x4 ≤ 1

x2 + x3 ≤ 1

x2 − x3 ≤ 1

x5 − x1 ≤ 0

x1 − x5 ≤ 1 (3.2)

Then G (except for the node x0) is shown in Figure 3.2.

In Figure 3.2 the negative cycle

x1
−3← x2

1

� x3
1→ x2

−3→ x1
0→ x5

1→ x1
1→ x4

1

� x1

uses x1 three times. However it can be divided into the gray sub-cycle,

x1
0→ x5

1→ x1

the white sub-cycle,

x1
−3← x2

1

� x3
1→ x2

−3→ x1
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x1 x2 x3

x4

x5

−3

1

1

1

1

0

1

Figure 3.2: Example Constraint Network (without node x0)

and the black sub-cycle

x1
1→ x4

1

� x1

We can then combine the white and black cycles to form the gray cycle

x1
−3← x2

1

� x3
1→ x2

−3→ x1
1→ x4

1

� x1,

which is a negative cycle that uses x1 twice. Also note that the edge x2
−3→ x1 is

used twice in this cycle and thus the constraint x1 − x2 ≤ −3 appears twice in the

corresponding sum of constraints. Example (10):

Lemma 3.1.7 If X is empty then a path of type (a) exists.

Proof: From the previous lemmata any inconsistency can be expressed as a series

of constraints that can be added to get a constraint of the form xi − xi ≤ c < 0 and

such that at every point in the addition sequence a UTVPI constraint is maintained.

Since edge reductions in G correspond to exactly such additions, such a series of

constraints corresponds to a series of edges which can be reduced to a single gray

loop of negative weight, namely a path of type (a). 2

With the preceding lemmata proved, we now return to Theorem 1.

Theorem 1 1 Either X is non-empty or (mutually exclusively) there exists one of

the following paths in G:
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(a) A path from a vertex xi to itself that can be reduced to a single gray edge of

negative weight. This will be referred to as a path of type (a).

(b) A path of negative weight from a vertex xi to itself that consists of two sub-paths

from xi to itself, one which can be reduced to a single white edge and one which

can be reduced to a single black edge. This will be referred to as a path of type

(b).

Proof: As shown by the preceding lemmata, if a path of type (b) exists then a

path of type (a) exists (Lemma 3.1.2). Thus it is enough to consider only paths of

type (a). Similarly we showed that if X is empty then a path of type (a), or type (b),

exists (Lemma 3.1.7) and that if a path of type (a), or (b), exists then X is empty

(Lemma 3.1.3). Thus the theorem holds. 2

3.2 Integer Feasibility

Theorem 3.1.1 applies when searching for a linear solution to the system of UTVPI

constraints. We now present an analogous theorem that is useful, when searching for

lattice point solutions.

Let G′ = 〈V,E ′, c〉 denote the constraint network corresponding to the system of

UTVPI constraints, U′, formed by the addition of new absolute constraints to U. A

constraint xi ≤ ci where ci ∈ Z, is added to U′, if

(1) There are two constraints in U, which can be added to produce either

xi + xi ≤ 2 · ci + 1 or xi + xi ≤ 2 · ci (type (1)), or

(2) The addition of the constraint −xi ≤ −ci−1 causes U′ to become infeasible (type

(2)).

Constraints of the form −xi ≤ ci are added in similar fashion.

Let X′ denote the set of feasible solutions to U′.
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Theorem 3.2.1 Either the constraint system U encloses a lattice point or (mutually

exclusively), G′ contains a path from a vertex xi to itself that can be reduced to a single

gray edge of negative weight.

To show this, we will first need to prove a number of lemmata which will build

up to the desired result.

Lemma 3.2.1 If G′ contains a path from a vertex xi to itself that can be reduced to

a single gray edge of negative weight then X′ is empty.

Proof: If such a path exists, then it is a path of type (a) as described before.

Thus from Lemma 3.1.3, we know that X′ is empty. 2

Lemma 3.2.2 If u is a lattice point in X, then u is a lattice point in X′ as well.

Proof: First observe that all the lattice points in X′ are lattice points in X, since

U′ is constructed by adding constraints to U. Suppose that the constraint xj ≤ cj is

in U′, but not in U. By the construction of U′, either the constraint xj +xj ≤ 2·cj +1

was deduceable from the constraints in U or the addition of −xj ≤ −cj − 1 caused

the system (U′) to become infeasible. In the first case, any lattice point satisfying

the original constraints must also satisfy xj + xj ≤ 2 · cj + 1. Thus this lattice point

must also satisfy xj ≤ b2·cj+1

2
c = cj. In the second case we have that no solution to

U satisfies −xj ≤ −cj − 1. Thus any lattice point satisfying the original constraints

must also satisfy −xj ≥ −cj, which is equivalent to xj ≤ cj. Thus any lattice points

in X must also be in X′. 2

Lemma 3.2.3 If G′ has a negative gray cycle, then X contains no lattice points.

Proof: From Lemma 3.2.1, we know that if G′ has a negative gray cycle, then X′

is empty and so contains no lattice points. Thus, by Lemma 3.2.2, X cannot contain

any lattice points either. 2

We have now shown one direction of the implication. The following lemmata will

help us show the other direction. We recall the two inference rules used in [1] viz.,

the transitive and tightening rules [12]. The transitive rule is
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a · xi + b · xj ≤ cij −b · xj + b′ · xk ≤ cjk
a · xi + b′ · xk ≤ cij + cjk

and the tightening rule is

a · xi + b · xj ≤ cij a · xi − b · xj ≤ c′ij

a · xi ≤ b
cij+c′ij

2
c

(3.3)

As shown in [1], both the above rules are lattice point preserving.

Lemma 3.2.4 If X contains no lattice points then X′ is empty.

Proof: Let U′′ be the system of UTVPI constraints obtained by adding to U,

all the constraints obtained by repeated applications of the transitive and tightening

inference rules of UTVPI constraints to the constraints in U. The process of adding

constraints stops, when no more constraints can be added to U′′. Let X′′ be the set

of all solutions to U′′. Thus by construction if X has no lattice points X′′ is empty.

As stated previously, applications of the transitive inference rule correspond to

edge reductions and so the constraints added in this fashion do not affect the linear

feasibility of the system. Thus, we are only concerned with the constraints added

through application of the tightening inference rule. We will now show that appli-

cations of the tightening rule correspond to the addition of absolute constraints, as

described just before Theorem 3.2.1.

Observe that if the constraint xi ≤ c is added in this way, then either xi+xi ≤ 2·ci
or xi + xi ≤ 2 · ci + 1 is derivable from the original constraints. In both of these cases

adding the constraint −xi ≤ −ci − 1 would create an inconsistency in the system.

Thus the constraint xi ≤ ci is a constraint of type (2) and is therefore added to U′.

Thus every constraint added to U′′ through application of the tightening inference

rule is added to U′. This means that if a point x satisfies U′ it also satisfies U′′. Thus

X′ ⊆ X′′ and so if X contains no lattice points then X′ is empty.

2

Lemma 3.2.5 If X contains no lattice points then G′ contains a path from a vertex

xi to itself that can be reduced to a single gray edge of negative weight.
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Proof: By Lemma 3.2.4, if X contains no lattice points then X′ is empty. Thus,

by Theorem 3.1.1, G′ contains a path of type (a). This is exactly the type of path

required. 2

With the preceding lemmata proved, we now return to Theorem 2.

Theorem 2 1 Either the constraint system U encloses a lattice point or (mutually

exclusively) G′ contains a path from a vertex xi to itself that can be reduced to a single

gray edge of negative weight.

Proof: As shown in Lemma 3.2.3, if G′ contains such a path then X contains

no lattice points. Also we have that, by Lemma 3.2.5, if X contains no lattice points

then G′ contains precisely such a path. 2

Theorem 3.2.1 is used in sections 7 and 8.



28

Chapter 4

Motivation and Related Work

Existing algorithms for deciding UTVPI systems require additional time and space

(asymptotically), if they are also required to produce certificates which validate their

output. For instance, the best known algorithm to date, which decides UTVPI sys-

tems ([1]), runs in O(m · n) time and O(m + n) space, if all that is asked is whether

a given UTVPI system is feasible. However, if it is also required to produce a model

for a system, then the time and space complexities of their algorithm increase to

O(m · n + n2 · log n) and O(n2) respectively.

The first known decision procedure for UTVPI constraints is detailed in [13].

Their algorithm processed a set of UTVPI constraints with the goal of finding its

transitive and tightening closure. Such a closure essentially is a finite representation

of all possible UTVPI constraints that can be inferred from the input set of constraints

(also see[14]). In other words, it found all deductions possible from any of its initial

constraints, including rounded constraints intended to force integral solutions, and

checked to see if the system of constraints thus generated was feasible by virtue

of having no contradictions. This algorithm, which is not certifying, runs in time

O(m ·n2) using O(n2) space. The procedure in [13] was improved in [15] from an ease-

of-implementation standpoint by combining the transitive and tightening closures

into a single step. However, the asymptotic complexity did not improve and the new

algorithm did not provide provide certificates either.

A rather different approach was used in [11] to decide UTVPI systems while
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also producing a model. Their algorithm uses Fourier-Motzkin elimination [16] to

project the polyhedron representation of a system of UTVPI constraints down to a

single variable in a solution-preserving manner, thereby determining bounds for that

variable. The algorithm then works in reverse order to assign values to the rest of the

variables. While producing a model for the system, this algorithm takes O(n3) time

and O(n2) space.

The algorithm in [1] as mentioned earlier is the best known algorithm to date for

deciding UTVPI systems. We will elaborate on their method, in order to provide the

proper background to contrast our procedures.

Their algorithm begins by converting each constraint to a pair of difference con-

straints with positive and negative versions of each involved variable. For instance,

a sum constraint xi + xj ≤ cij is converted into the following difference constraint

pair: x+
i − x+

j ≤ cij and x−j − x−i ≤ cij. Once all constraints are thus converted,

we represent the converted constraint system by a constraint network as detailed in

[8]. For instance, the constraint x−j − x−i ≤ cij results in an edge x−j
cij← x−i . The

resulting edges are then tightened by converting edges of the form xi
cii← xi where cij

is odd to xi
cii−1← xi in order to ensure integral solutions. A negative cycle detection

subroutine (such as the Bellman-Ford algorithm) then determines whether the system

is satisfiable.

We note that in order for the algorithm in [1] to produce a model, it must compute

the transitive and tightening closure of the original constraint system, even when such

a set of constraints is known to be satisfiable. Indeed, it uses a procedure similar to

the one in [13] and [15] to find bounds for all variables and assign values to them.

A naive implementation of this algorithm runs in O(n3) time and uses O(n2) space.

Utilizing Johnson’s algorithm [8] for the transitive closure, resource complexity can

be improved only to O(m · n + n2 · log n) time and O(n2) space. However, even the

improved algorithm is more expensive (asymptotically) to the ideal O(m ·n) time and

O(m + n) space complexity of the non-certifying decision algorithm.

Recently, there has been some work on incremental satisfiability of UTVPI con-

straints. For instance, [17] describes an algorithm for incremental satisfiability check-
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ing that runs in O(m+n·log n) time. Incremental algorithms are extremely important

from the perspective of SAT Modulo Theories [18].
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Chapter 5

Linear feasibility Algortitm

Algorithm 5.0.1 represents our approach for checking linear feasibility in a UTVPI

constraint system. This algorithm is a relaxation-based approach for traversing the

constraint network corresponding to the constraint system. It returns either a set of

of valid distance labels (which is a feasible solution), or a certificate of infeasibility of

the system.

Utvpi-Linear-Feas (system U of UTVPI constraints)

1: G← Construct-Network(U) [as described in Section 2]

2: R← Relax-Network(G)

3: if (R is a set of distance labels) then

4: Construct assignment R′ where where each xi =
�
di −

�
di

2
.

5: return R′ as “yes” certificate of valid linear solution.

6: else

7: return R as “no” certificate of linear infeasibility.

8: end if

Algorithm 5.0.1: Algorithm for checking linear feasibility

The algorithm maintains four distance labels for each vertex, xi, as follows:

1.
→
di - This label corresponds to a path, which reduces to an edge of type x0

c→ xi,

i.e., the shortest gray path from x0 to xi.

2.
←
di - This label corresponds to a path, which reduces to an edge of type xi

c→ x0,
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Relax-Network (network G as adjacency list)

1: Let L[t, x] denote the last edge of the current shortest path of type t from node

x0 to node x. {There are 4 L[ ] values associated with each vertex, for a total

space requirement of O(n).}
2: Let D[t, x] denote the set of distance labels corresponding to node x and edge

type t. {As an example, D[ � , xi] =
�
di . Observe that there are 4 D[ ] values

associated with each vertex, for a total space requirement of O(n).}
3: for (each node xi in G) do

4:
�
di ,

�
di ,

←
di,
→
di = n · C

5: for t ∈ { � , � ,←,→} do

6: L[t, xi] = x0 t xi

7: end for

8: end for

9:
�
d0 ,

�
d0 ,

←
d0,

→
d0 = 0

10: for (r = 1 to (2 · n + 1)) do

11: for each edge e in G do

12: Relax-Edge(e, D, L)

13: end for

14: end for

15: for (every edge xi

cij

� xj) do

16: if (
�
di >

←
dj + cij) then

17: Backtrack along L[ � , xi] to return negative cycle

18: end if

19: end for

20: [the other edge cases are analogous according to the relaxation rules]

21: return (set of distance labels, D).

Algorithm 5.0.2: Relax-Network
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Relax-Edge (edge e, distance labels D, and predecessor structure L)

1: if (e is an edge of type xi

cij

� xj) then

2:
�
di ← min(

�
di ,

←
dj + cij)

3: if (
�
di changed) then

4: L[ � , xi] = xi

cij

� xj

5: end if

6:
→
di ← min(

→
di,

�
dj + cij)

7: if (
→
di changed) then

8: L[→, xi] = xi

cij

� xj

9: end if

10: end if

11: [the other edge cases are analogous according to the relaxation rules in Figure 5]

Algorithm 5.0.3: Relax-Edge

i.e., the shortest gray path from xi to x0.

3.
�
di - This label corresponds to a path, which reduces to an edge of type x0

c

� xi,

i.e., the shortest white path from x0 to xi.

4.
�
di - This label corresponds to a path, which reduces to an edge of type x0

c

� xi,

i.e., the shortest black path from x0 to xi.

Three of these labels represent shortest path distances (of different types) from vertex

x0 to vertex xi. The fourth label represents a type of shortest path distance from

vertex xi to vertex x0.

These distance labels will be maintained so that the following four relationships

will always hold.

1. x0 + xi ≤
�
di

2. x0 − xi ≤
←
di

3. −x0 + xi ≤
→
di

4. −x0 − xi ≤
�
di
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This will be done by ensuring that after the kth iteration of the main for loop of

Algorithm 5.0.1 (Lines 7 through 15), three of the labels represent the lengths of the

shortest valid k-paths from x0 to xi and one of the labels represents the length of the

shortest valid k-path from xi to x0.

The label
�
di is the length of the shortest white k-path from x0 to xi. This path

reduces to the edge x0

�
di
� xi, which corresponds to the constraint x0 + xi ≤

�
di .

Therefore the relation x0 + xi ≤
�
di holds. Example (11):

The assignment of 0 to x0, permits us to construct ever-tightening bounds on xi.

Algorithm 5.0.1 needs to account for the four valid edge reductions described pre-

viously. These reductions correspond to the additions of pairs of UTVPI constraints

that produce UTVPI constraints. The relaxation procedure runs (2 · n + 1) times.

The different edge types also necessitate a more complex backtracking method once

a negative cycle is found. For each vertex, we store four predecessor nodes, one node

for each path type. For each path type it is also necessary to store the edge type used

to get to the current vertex. This ensures that the backtracking procedure knows

which path type to follow from the current vertex.

When we relax an edge in the network, we need to adjust the four distance labels

as per the following relaxation rules:

edge Changes to distance labels.

xi
cij→ xj

←
di =

←
dj + cij

�
di =

�
dj + cij

→
dj =

→
di + cij

�
dj =

�
di + cij

xi

cij

� xj

�
di =

←
dj + cij

→
di =

�
dj + cij

�
dj =

←
di + cij

→
dj =

�
di + cij

xi

cij

� xj

�
di =

→
dj + cij

←
di =

�
dj + cij

�
dj =

→
di + cij

←
dj =

�
di + cij

Table 5.1: Relaxation Rules

The above table has to be interpreted in the following manner: Consider the edge

type xi
cij→ xj. The corresponding row of the relaxation table indicates the following:

1. if
←
di >

←
dj + cij, then

←
di is assigned a value of

←
dj + cij,
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2. if
�
di >

�
dj + cij, then

�
di is assigned a value of

�
dj + cij,

3. if
→
dj >

→
di + cij, then

→
dj is assigned a value of

←
di + cij,

4. if
�
dj >

�
di + cij, then

�
dj is assigned a value of

�
di + cij.

We have that the values
←
dj,

�
dj ,

→
di,

�
di do not change as a result of relaxing the edge

xi
cij→ xj. Thus, the order the distance labels are updated does not matter as changing

one does not affect the changes made to the others. The remaining rows should be

interpreted in a similar fashion.

The relaxation rules ensure that the distance labels never increase in value.

Remark 5.0.1 The relaxation rules maintain valid bounds for the constraints. For

example, consider what happens when we relax the edge xi

cij

� xj, which corresponds

to the constraint xi +xj ≤ cij. We know from the definition of the four distance labels

that x0−xi ≤
←
di. Thus by adding these two constraints we get x0+xj ≤

←
di+cij, which

is a valid constraint. Hence,
←
di + cij is a valid value for

�
dj . Thus, if

←
di + cij <

�
dj

we can set
�
dj =

←
di + cij. The cases for the other distance labels and edge types can

be explained in similar fashion.

5.1 Resource Analysis

5.1.1 Initialization

This stage consists of converting the constraints into a constraint network. Since

the network is stored as an adjacency list, adding each constraint as an edge takes

O(1) time. Thus this entire conversion procedure takes O(m + n) time and O(m + n)

space.

Finding C, the largest absolute edge weight, requires a search through all the

edges and thus takes O(m) time and runs in O(1) space.

Adding the vertex x0 takes constant time.
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Adding the 4 · n appropriate edges, 4 to every other vertex, takes O(n) time and

space. Adding the absolute constraints takes O(m) time to locate all of the absolute

constraints and then O(n) time to change the appropriate edge weights. Thus, this

part of the initialization stage takes O(m + n) time and O(1) space.

Considering the dominant resources in this stage, the initialization process as a

whole takes O(m + n) time and O(m + n) space.

5.1.2 Checking for Linear Feasibility

This stage consists of (2 · n + 1) rounds of edge relaxations. In each round O(m)

edges are relaxed. Thus this stage runs in O(m · n) time and O(m + n) space.

5.1.3 Producing a Rational Solution

From the set of distance labels we compute (
�
di −

�
di )

2
for each xi, thus taking O(n)

time and space.

5.1.4 Producing a certificate of infeasibility

Once a contradiction is found we backtrack along the structure L to obtain a neg-

ative gray cycle. The details of this backtracking are described in the next subsection.

This step takes O(n) time and space.

5.1.5 Overall Analysis

It is thus clear that Algorithm 5.0.1 runs in O(m · n) time and O(m + n) space.
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Chapter 6

Correctness of the Linear

Algorithm

In Lemma 3.1.1, we showed that edge reductions are associative. This property

allows paths which can each be reduced to a single edge to be combined. Algorithm

5.0.1 invokes Algorithm 5.0.2, which in turn makes multiple calls to a relaxation pro-

cedure (Algorithm 5.0.3) to detect cycles which can be reduced to a single gray edge

of negative weight. The existence of such a cycle means that there exist constraints

that can be added to produce a constraint of the form xi−xi ≤ cii where cii < 0, i.e.,

a contradiction.

We first show that restricting the traversal to (2 · n + 1) iterations of the edge

relaxation procedure is sufficient to establish the presence of a negative gray cycle, if

one exists.

Lemma 6.0.1 At the end of the relaxation procedure the distance labels represent

the lengths of the appropriate shortest paths, with (2 · n + 1) edges or fewer.

Proof: We will show that after each relaxation involving xi,
�
di represents the length

of a white path from x0 to xi,
�
di represents the length of a black path from x0 to xi,

→
di represents the length of a gray path from x0 to xi, and

←
di represents the length of

a gray path from xi to x0.

At the beginning of the traversal, we have that
�
di is set to the weight of the white
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edge from x0 to xi and is thus the length of a white path. Similarly
�
di is the weight

of the black edge from x0 to xi,
←
di starts as the length of the gray edge from xi to x0,

and
→
di is the length of the gray edge from x0 to xi.

Thus at the start of the relaxation procedure, these four values represent the

length of the shortest 1-path (path having at most one edge) of the appropriate type.

Now we assume that this holds at the beginning of any relaxation. Furthermore,

assume that the edge being relaxed is of the form xi +xj ≤ cij (white edge). Observe

that if no distance labels were modified, then the values still represent the weights of

the appropriate paths. If
�
di is modified, then we have that

�
di becomes cij +

←
dj (see

Figure 5). Since
←
dj represents a gray path from xj to x0, and since edge reductions are

associative, that path, combined with the white edge from xj to xi, can be reduced

to a single white edge from x0 to xi with weight
�
di = cij +

←
dj. Thus this new path

from x0 to xi is a white path.

An analogous argument holds for each type of edge relaxed and for each of the

values
�
di ,

←
di, and

→
di using the various reduction and relaxation rules.

Assume that at the start of the kth round of relaxation, each distance label rep-

resents the length of the shortest path of the appropriate type with k or fewer edges.

During the kth round of relaxation, every edge in the network is relaxed. Thus, at

the end of the kth round all possible (k + 1)th edges have been considered. Since the

appropriate distance decrease each time a shorter path is found, we have that at the

end of the kth round of relaxation the distance labels all represent the length of the

shortest path of the appropriate type with (k + 1) or fewer edges.

Thus at the end of the relaxation procedure, after (2 · n+ 1) rounds we have that

the distance labels represent the length of the shortest paths (of the appropriate type)

in the network with (2 · n + 1) edges or fewer. 2

Lemma 6.0.2 (2 · n + 1) invocations of Algorithm 5.0.3 (the edge relaxation proce-

dure) are sufficient to establish the presence or absence of negative gray cycles.

Proof:
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We prove the contrapositive, i.e., we will show that if there are no negative gray

cycles, then at most (2 · n + 1) invocations of Algorithm 5.0.3 will cause the distance

labels to converge to their final values.

Note that if there are no negative gray cycles in the constraint network, then the

shortest path of any type from x0 to any given vertex xi cannot use any vertex, more

than twice. Thus this path cannot consist of more than (2 · n + 1) edges.

Therefore, by the preceding lemma, after (2 · n + 1) iterations of the relaxation

procedure the distance labels do in fact correspond to the lengths of the actual shortest

paths and so will not decrease with subsequent relaxations. 2

Thus (2·n+1) runs of the relaxation step are sufficient to find negative gray cycles.

We also need to show that adding the point x0 and the corresponding edges does not

cause the system to become infeasible. We will do this by showing that adding these

edges does not cause the introduction of negative cycles into the constraint network.

Lemma 6.0.3 The introduction of edges from x0 of weight n · C does not introduce

any negative cycles, if none were already present.

Proof: Assume that adding these edges causes the creation of a new negative

cycle. Since no negative cycles existed previously in the network, all the created

negative cycles must use the point x0. From Lemma 3.1.6, we know that at least

one newly added negative cycle uses each vertex no more than twice. Thus it uses

no more than 2 · n of the original edges. Thus the weight of the part of the cycle

in the original network has a weight no less than −2 · n · C, as no single edge has

weight less than −C. However, since the cycle uses the vertex x0, it must use at

least two of the newly added edges. Thus the total weight of the cycle is no less than

n · C + n · C − 2 · n · C = 0, contradicting the assumption that any negative cycles

were added. 2

Lemma 6.0.4 The invariants
�
di =

←
di and

�
di =

→
di for each vertex xi, are main-

tained through each invocation of Algorithm 5.0.3.

Proof: This will be shown through induction on the number of relaxations.
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Before the first relaxation, we have that for each xi either
�
di =

→
di = n ·C or, if the

list of constraints included the absolute constraint xi ≤ ci,
�
di =

→
di = ci. Similarly,

for each xi either
�
di =

←
di = n · C or, if the list of constraints included the absolute

constraint −xi ≤ ci, then
�
di =

←
di = ci.

Assume that the invariants are maintained at the beginning of the kth relaxation.

If the edge being relaxed is of the form xi + xj ≤ cij then we have that, either the

distance labels are unchanged or that some of them are changed. If no values are

changed then the invariants still hold. If
�
di is changed, then from Figure 5 we have

that, before the distance labels are updated,
→
di =

�
di > cij +

←
dj = cij +

�
dj .

From Figure 5 we know that relaxing the edge xi

cij

� xj does not change the values

of
←
dj or

�
dj . Thus after the distance labels are updated we have that

�
di = cij +

←
dj =

cij +
�
dj =

→
di, and so the invariant still holds.

An analogous argument shows that these invariants hold, regardless of the edge

being relaxed. Similar arguments also show that the invariant
�
di =

←
di is maintained

over all edge relaxations. 2

x0 x1x2

−1

1

1

1

1

1

1

1

1

Figure 6.1: Example Constraint Network

In Figure 6.1, we have that initially
→
d2 =

�
d2 = 1 and that

→
d1 =

�
d1 = 1. After

relaxing the edge x1
−1→ x2 we have that, from Figure 5,

�
d2 =

�
d1 + (−1) = 0 and

→
d2 =

→
d1 + (−1) = 0. Thus after the relaxation we still have that

�
d2 =

→
d2. Example

(12):

From this point onwards, we assume that no negative gray cycles were discovered
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by Algorithm 5.0.2 and that it returns a set of distance labels. We will first show

that there exists a rational solution; we will then show that our traversal determines

the bounds for such a solution.

Lemma 6.0.5 If Algorithm 5.0.2 returns a set of distance labels, then we have that

for each each xi,
�
di ≥ −

�
di .

Proof: We will show that after each relaxation involving xi,
�
di represents the

length of a white path from x0 to xi and that
�
di represents the length of a black path

from x0 to xi.

At the beginning of the traversal, we have that
�
di is set to the weight of the white

edge from x0 to xi and is thus the length of a white path. Similarly
�
di is the weight

of the black edge from x0 to xi,
←
di starts as the length of the gray edge from xi to x0,

and
→
di is the length of the gray edge from x0 to xi.

Now we assume that this holds at the beginning of any relaxation. If the edge

being relaxed is of the form xi +xj ≤ cij, then we have that if no distance labels were

modified then the values still represent the weights of the appropriate paths. If
�
di

is modified then we have that
�
di becomes cij +

←
dj. Since

←
dj represents a gray path

from xj to x0, and since edge reductions are associative, that path combined with the

white edge from xj to xi, can be reduced to a single white edge from x0 to xi with

weight
�
di = cij +

←
dj. Thus this new path from x0 to xi is a white path.

An analogous argument holds for each type of edge relaxed and for each of the

values
�
di ,

←
di, and

→
di using the various reduction and relaxation rules.

Thus at each stage of the relaxation process we have that
�
di and

�
di are the

weights of paths of the appropriate type.

If
�
di < −

�
di then there would be a gray cycle though x0 and xi, specifically the

one formed by the white path of weight
�
di from x0 to xi and the black path of weight

�
di from x0 to xi. This is a proper cycle because each of the previously described

parts can be reduced to a white edge of weight
�
di from x0 to xi and a black edge of
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weight
�
di from x0 to xi. These two edges, and thus the whole cycle, can be reduced

to a single gray edge from x0 to itself of weight
�
di +

�
di =

�
di − (−

�
di ) < 0.

This, however, is a negative cycle and so, as shown previously, there must be a

cycle which uses no vertex more than twice. Such a negative cycle would have been

detected and returned by the relaxation method and so this situation cannot occur.

Thus after running Algorithm 5.0.2 (the relaxation procedure), we have that for each

xi,
�
di ≥ −

�
di . 2

This means that, after running the relaxation procedure, for each xi, the interval

[−
�
di ,

�
di ] is non-empty. We will now show that if each xi is taken to be the center

point of this interval then a valid rational solution to the system of constraints is

produced. We will do this by showing that for variable xi all absolute constraints are

satisfied. Likewise, for each pair of variables xi and xj all two variable constraints are

satisfied.

Lemma 6.0.6 If Algorithm 5.0.2 returns a set of distance labels, then for each con-

straint of the form xi + xj ≤ cij we have that
�
di ≤ cij +

�
dj .

Proof: Observe that prior to returning the distance labels, Algorithm 5.0.2 checks

to see if any additional relaxations decrease any values in our table. We thus know

at this point that no relaxation modifies the value of
�
di . Relaxing the edge corre-

sponding to the constraint xi + xj ≤ cij, a white edge, would change the value of
�
di

to cij +
�
dj if the current value of

�
di is larger that cij +

�
dj . However, as the value

does not change we must have that
�
di ≤ cij +

�
dj . 2

Analogous proofs can be used to show that for each constraint −xi − xj ≤ cij we

have that
�
di ≤ cij +

�
dj , for each constraint xi−xj ≤ cij we have that

�
di ≤ cij +

�
dj ,

and for each constraint −xi + xj ≤ cij we have that
�
di ≤ cij +

�
dj .

We can use these properties to show that the previously described solution is

indeed valid.

Lemma 6.0.7 If Algorithm 5.0.2 returns a set of distance labels, then assigning each

xi a value of
�
di −

�
di

2
results in a satisfying assignment.
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Proof: There are two types of constraints we must consider, absolute constraints

and two variable constraints.

In the case of an absolute constraint, it is either of the form xi ≤ ci or of the form

−xi ≤ ci.

In the first case, i.e., xi ≤ ci, there is, by construction, a white edge from x0 to xi

of weight ci. Thus after the relaxation procedure, we must have that
�
di ≤ 0 + ci. As

shown before we also have that −
�
di ≤

�
di , so we have that

�
di −

�
di

2
≤

�
di ≤ ci which

satisfies the constraint.

In the second case, i.e., −xi ≤ ci, there is, by construction, a black edge from x0 to

xi of weight ci. Thus after the relaxation procedure ,we must have that
�
di ≤ 0+ci. As

shown before we also have that −
�
di ≤

�
di , so we have that (−

�
di −

�
di

2
) ≤ (

�
di −

�
di

2
) ≤

(
�
di +

�
di

2
) ≤

�
di ≤ ci which satisfies the constraint.

There are four forms of two variable constraints and they are all satisfied as follows:

1. Constraints of the form xi + xj ≤ cij - From the previous lemma we have that
�
di ≤ cij +

�
dj and

�
dj ≤ cij +

�
di . Thus,

�
di +(−

�
dj ) ≤ cij and (−

�
di )+

�
dj ≤ cij.

Hence,

�
di −

�
di

2
+

�
dj −

�
dj

2
=

�
di + (−

�
dj )

2
+

(−
�
di ) +

�
dj

2
≤ cij

2. Constraints of the form xi − xj ≤ cij - From the previous lemma, we have that
�
di ≤ cij +

�
dj and

�
dj ≤ cij +

�
di . Thus,

�
di +(−

�
dj ) ≤ cij and (−

�
di )+

�
dj ≤ cij.

Hence,

�
di −

�
di

2
−

�
dj −

�
dj

2
=

�
di + (−

�
dj )

2
+

(−
�
di ) +

�
dj

2
≤ cij

3. Constraints of the form −xi +xj ≤ cij - From the previous lemma, we have that
�
di ≤ cij +

�
dj and

�
dj ≤ cij +

�
di . Thus,

�
di +(−

�
dj ) ≤ cij and (−

�
di )+

�
dj ≤ cij.

Hence,

−
�
di −

�
di

2
+

�
dj −

�
dj

2
=

�
di + (−

�
dj )

2
+

(−
�
di ) +

�
dj

2
≤ cij
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4. Constraints of the form −xi−xj ≤ cij - From the previous lemma, we have that
�
di ≤ cij +

�
dj and

�
dj ≤ cij +

�
di . Thus,

�
di +(−

�
dj ) ≤ cij and (−

�
di )+

�
dj ≤ cij.

Hence,

−
�
di −

�
di

2
−

�
dj −

�
dj

2
=

�
di + (−

�
dj )

2
+

(−
�
di ) +

�
dj

2
≤ cij

Thus setting each xi =
�
di −

�
di

2
satisfies all two variable constraints. 2 Since

�
di and

�
di are integers, setting each xi =

�
di −

�
di

2
results in a half-integral solution. It is to

be noted that the half-integral solution returned by Algorithm 5.0.1 is the starting

point for the integer feasibility algorithm discussed in Section 7.
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Chapter 7

Integer Feasibility Algortitm

We use Algorithm 7.1.1 to determine whether a system of UTVPI constraints, U,

encloses a lattice point. The principal idea underlying our approach is the following:

If the half-integral solution a, returned by Algorithm 5.0.1 is not integral, then there

exists a rounding procedure, which finds a lattice point within a 1
2
-neighborhood a.

(A 1
2
-neighborhood of a point a, is the set of all points b, such that ai − 1

2
≤ bi ≤

ai + 1
2
, ∀i = 1, 2, . . . , n.) Furthermore, if no such lattice point exists, then U does not

enclose a lattice point.

Rounding a variable xi, corresponds to adding an absolute constraint involving xi

to the system. For instance, rounding down a variable xi, is equivalent to assigning

xi the value baic, and adding the constraint xi ≤ baic to U. Similarly, rounding up

a variable, xi, is equivalent to assigning xi the value daie, and adding the constraint

−xi ≤ −daie.

If we start with a rational solution in which a1 = 5
2
, then rounding x1 down is

equivalent to setting x1 = 2 and adding the constraint x1 ≤ 2 to the system. Example

(13):

There are two types of roundings used by Algorithm 7.1.1, viz.,

1. Optional roundings - These are roundings in which a variable xi can be set to

either daie or baic, without causing an immediate contradiction.

2. Forced roundings - These are roundings in which one of the possible roundings
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of a variable, xi, causes an immediate contradiction.

A rounding causes an immediate contradiction, if the added constraint contradicts

a constraint of type (1) from Section 3.2 (See page 17).

Consider the following system of UTVPI constraints: l1 : x1 + x2 ≤ 0 and l2 :

x1 − x2 ≤ 1. Assume that a1 = 1
2
. Rounding x1 up would cause us to set a1 to 1 and

to add the constraint l3 : −x1 ≤ −1. Note that the set U′ (see page 17) contains the

constraint l4 : x1 ≤ 0, obtained by adding l1 and l2. Clearly, l3 and l4 contradict each

other, i.e., we have an immediate contradiction. This means that x1 is forced to be

rounded down. Example (14):

After rounding a variable xi, Algorithm 7.1.4 checks to see if any of the variables

sharing a constraint with xi needs to be rounded in order to satisfy all the constraints

involved.

If rounding xi in one direction eventually causes a contradiction (such a contra-

diction will be discovered in Line 18 of Algorithm 7.1.1 or Line 12 or Line 24 of

Algorithm 7.1.3), then xi is rounded in the other direction. If that rounding also

results in a contradiction, then the system is declared infeasible.

After a variable has been successfully rounded and all the resultant roundings are

performed, no future roundings will violate any constraint containing any of these

variables. Thus xi will not be rounded again. This is true on account of the structure

of UTVPI constraint systems; observe that a general integer program does not have

such a structure.

7.1 Algorithms

7.1.1 The Algorithm Produce-Solution()

Algorithm 7.1.1 finds an integral solution to the system of UTVPI constraints U,

or demonstrates that none exists. It starts with a half-integral solution a, and pro-

ceeds to round the variables until a solution is found, or a contradiction is established.

The algorithm creates Z to store the integer solution being constructed. In the
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Function Produce-Solution (set U of UTVPI constraints, and linear solution a

of U)

1: {This is the main function that calls all the other functions. It returns either a

feasible integral solution or a proof that none exists.}
2: for (each variable xi) do

3: Zi = M

4: end for

5: create tree T of constraints with node x0 at the root

6: for (each variable xi) do

7: if (ai is an integer) then

8: Zi = ai

9: else

10: Forced-Rounding(xi,Z,a,T ,U)

11: end if

12: end for

13: while (any Zi is updated) do

14: for (each Zi newly assigned) do

15: Check-Dependencies (xi, Z, a, T ,U)

16: end for

17: end while

18: for (every constraint in U) do

19: if (constraint is violated by current assignments to some Zi and Zj) then

20: return (violated constraint and constraints obtained by backtracking in T

from xi to x0 and xj to x0)

21: end if

22: end for

23: S ← Subset of U restricted to constraints consisting of only variables with Zi = M

24: O ← Optional-Roundings(S, Z, T , a) {These variables were not affected by

either the forced roundings or the resultant roundings.}
25: return O

Algorithm 7.1.1: Produce-Solution
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algorithm the variable M simple represents an arbitrary value that is much larger

than any value of a. This lets us easily see which variables have been rounded and

which haven’t. result of any rounding performed. This is necessary, because we need

to check whether or not a particular variable has been rounded. It also creates a tree

structure T , which will be used to return the constraints that demonstrate the integer

infeasibility of the system. Each node of T is a variable xi of the original system that

has been rounded and the set of one or three constraints that were used to round xi.

Observe that the node corresponding to xi in T contains three constraints if xi was

rounded because of a forced rounding, and one constraint if it was rounded because

of a resultant rounding.

The parent of a node xi, represents the rounding that necessitated the rounding

of xi. The children of the node represent all of the resultant roundings which stem

from rounding xi. Since each variable is rounded at most once, each node will occur

at most once in the tree.

Consider the system of constraints U, with the constraints l1 : x1 + x2 ≤ 1,

l2 : x1 − x2 ≤ 0, l3 : −x1 − x3 ≤ 2 and l4 : x3 + x4 ≤ 2. Let a be the valid linear

solution a1 = 1
2
, a2 = 1

2
, a3 = −5

2
and a4 = 9

2
.

From the constraints l1 and l2, and the tightening inference rule, we can deduce

the constraint l5 : x1 ≤ 0. Thus x1 is rounded down and Z1 = ba1c = 0. Accordingly,

Algorithm 7.1.2 will create the node x1 as a child of x0 and that node will contain

the constraints l1, l2 and l5.

Since x1 is rounded down, the constraint l3 will be violated, unless x3 is rounded

up to Z3 = da3e = −2. Thus Algorithm 7.1.4 will create the node x3 as a child of x1

and that node will contain the constraint l3.

Since x3 is rounded up, the constraint l4 will be violated, unless x4 is rounded

down to Z4 = ba4c = 4. Thus Algorithm 7.1.4 will create the node x4 as a child of x3

and that node will contain the constraint l4.

Therefore, after these steps the tree T will have the following structure:

Example (15):

Algorithm 7.1.1 does not alter the integer values of the linear solution a, since
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x0 x1 {l1, l2, l5} x3 {l3} x4 {l4}

Figure 7.1: Tree T

they will also be part of the rounded solution. On the fractional values of a, it calls

Algorithm 7.1.2, to perform forced roundings, as needed.

Algorithm 7.1.4 checks to see if other variables need to be rounded as a conse-

quence of variables being rounded by Algorithm 7.1.2. These roundings are called

resultant roundings.

Once the forced and resultant roundings are performed, Algorithm 7.1.1 checks

to see if any constraint is violated. If a constraint involving the variables xi and xj

is violated, then that constraint and all the constraints that caused xi and xj to be

rounded are returned as proof of integer infeasibility. To determine which constraints

caused variable xi to be rounded, the algorithm starts with node xi in the tree T and

proceeds to traverse up the tree until the root node is reached returning all of the

constraints stored in the nodes traversed. This is then repeated for variable xj.

If no constraint is violated, then Algorithm 7.1.3 is called to perform optional

roundings.

7.1.2 The Algorithm Forced-Rounding()

Algorithm 7.1.2 checks to see if a variable takes part in a forced rounding. If the

variable if forced to be rounded, then that rounding is performed and the appropriate

constraints are added to the tree T .

7.1.3 The Algorithm Optional-Roundings()

Algorithm 7.1.3 handles the rounding of variables that were left unaffected by the

forced roundings and the subsequent resultant roundings. It first rounds a variable

(say xi) down and then calls Algorithm 7.1.4 to evaluate all of the resultant roundings.

It then stores all of the new values in a temporary version of Z called ZT .
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Function Forced-Rounding (variable xi, variable weights Z, linear solution a,

constraint tree T , system U)

1: for (each xj that shares constraints with xi) do

2: Define R as the set of constraints in U involving both xi and xj

3: if ({xi + xj ≤ ai + aj, xi − xj ≤ ai − aj} ⊆ R) then

4: Zi = baic
5: create branch xi from x0 in T

6: add {xi + xj ≤ ai + aj, xi − xj ≤ ai − aj, and xi ≤ baic to T under xi}
7: end if

8: if ({−xi − xj ≤ −ai − aj, xj − xi ≤ aj − ai} ⊆ R) then

9: Zi = daie
10: create branch xi from x0 in T

11: add {−xi − xj ≤ −ai − aj, xj − xi ≤ aj − ai, and −xi ≤ −daie to T under

xi}
12: end if

13: end for

Algorithm 7.1.2: Forced-Rounding
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Function Optional-Roundings (set S of constraints, vector Z, tree T , linear

solution a)

1: create tree T T of constraints with node x0 at the root

2: create array ZT of temporary variable assignments

3: create list Q of constraints to be returned in case of infeasibility.

4: for (each variable xi) do

5: if (Zi = M) then

6: ZT
i = baic

7: create branch xi from x0 in T

8: add xi ≤ baic to T under xi

9: while (any ZT
i is updated) do

10: for (each ZT
i newly assigned) do

11: Check-Dependencies (xi, Z
T , a, T , S)

12: end for

13: end while

14: for (each constraint in S) do

15: if (constraint is violated by current assignments to some ZT
j and ZT

k ) then

16: Add the violated constraint and the constraints in T along paths from

xj to xi and xk to xi to Q

17: for (j = 1 to n) do

18: ZT
j = M

19: end for

20: ZT
i = daie, create tree T T of constraints with node x0 at the root

21: create branch xi from x0 in T T

22: add −xi ≤ −daie to T T under xi

23: while (any ZT
i is updated) do

24: for (each ZT
i newly assigned) do

25: Check-Dependencies (xi, Z
T , a, T T , S)

26: end for

27: end while
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28: for (each constraint in S) do

29: if (constraint is violated by current assignments to some ZT
j and ZT

k )

then

30: Add the violated constraint and the constraints in T T along paths

from xj to xi and xk to xi to Q

31: return set Q of constraints

32: end if

33: end for

34: for (i = 1 to n) do

35: if (ZT
i 6= M) then

36: Zi ← ZT
i

37: end if

38: end for

39: break out of enclosing for loop

40: end if

41: end for

42: if (no constraints violated as a result of rounding xi down) then

43: for (i = 1 to n) do

44: if (ZT
i 6= M) then

45: Zi ← ZT
i

46: end if

47: end for

48: end if

49: destroy ZT , T T , and Q, and T ← x0

50: end if

51: end for

52: return Z as a valid integer solution.

Algorithm 7.1.3: Optional-Roundings
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If this rounding of xi succeeds, then the temporary values are made permanent and

the algorithm proceeds onto the next unrounded variable. If rounding xi down fails,

then the algorithm stores the constraints that cause a contradiction when xi ≤ baic

to Q and clears the temporary assignments.

Algorithm 7.1.3 then attempts to round xi up, again evaluating all of the resultant

roundings. This time, T T , a temporary version of the tree T is used in addition to ZT .

If this rounding of xi succeeds, then all temporary assignments are made permanent

and the algorithm proceeds onto the next unrounded variable. If this rounding also

fails, then the constraints that cause a contradiction when −xi ≤ −daie are added to

Q, and Q is returned as a certificate of integer infeasibility.

The list of constraints Q can be divided into two parts. The constraints in the first

part of Q add together to the constraint xi ≤ c < 0. Thus showing that the system

is inconsistent when the constraint xi ≤ baic is added to the system. Similarly the

constraints in the second part show that the system is inconsistent when xi ≥ daie is

added.

7.1.4 The Algorithm Check-Dependencies()

Algorithm 7.1.4 checks to see if rounding xi results in a constraint being violated;

if a violation occurs, other variables undergo a resultant rounding.

Consider a UTVPI system with l1 : x1 + x2 ≤ 1 as one of its constituent con-

straints. Let a1 = 1
2

and a2 = 1
2

denote a valid linear solution. If x1 is rounded up

to da1e = 1, l1 is violated. In order to ensure that this constraint is not violated, x2

needs to be rounded down to ba2c = 0. The rounding of x2 is a resultant rounding.

Example (16):
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Function Check-Dependencies (variable xi, vector ZT of assignments, a linear

solution, tree T of UTVPI constraints, system U of constraints)

1: for (each variable xj sharing constraints with xi) do

2: Set R to be the set of constraints involving both xi and xj

3: if (ZT
i = baic) then

4: if (−xi + xj ≤ −ai + aj ∈ R and ZT
j = M) then

5: Zj ← bajc
6: create branch xj from xi in T

7: add −xi + xj ≤ −ai + aj to T under xj

8: end if

9: if (−xi − xj ≤ −ai − aj ∈ R and ZT
j = M) then

10: Zj ← daje
11: create branch xj from xi in T

12: add −xi − xj ≤ −ai − aj to T under xj

13: end if

14: end if

15: if (ZT
i = daie) then

16: if (xi + xj ≤ ai + aj ∈ R and ZT
j = M) then

17: Zj ← bajc
18: create branch xj from xi in T

19: add xi + xj ≤ ai + aj to T under xj

20: end if

21: if (xi − xj ≤ ai − aj ∈ R and ZT
j = M) then

22: Zj ← daje
23: create branch xj from xi in T

24: add xi − xj ≤ ai − aj to T under xj

25: end if

26: end if

27: end for

Algorithm 7.1.4: Check-Dependencies
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7.2 Resource Analysis

7.2.1 Forced roundings

We argue that the Forced-Roundings() function and the subsequent call to

Check-Dependencies() can be accomplished in O(m + n) space and O(m · n)

time.

Checking each xi to see if it is forced to be rounded involves looking at all con-

straints involving xi. This takes O(m) time total, since each constraint is considered

at most twice, once for each variable involved in defining that constraint.

A forced rounding of a variable adds a constraint that can be deduced from existing

constraints using the tightening inference rule, (see System (3.3)). As each variable is

rounded, the resultant roundings of the new assignment are deduced, using Check-

Dependencies(). During these deductions each variable is assigned a value at most

once. Thus, as before, each edge (constraint) is processed at most twice, using a total

of O(m) time. Likewise, each time a variable is rounded, a constraint can be deduced

from the transitive inference rule.

The values given to these variables are now substituted back into the original

constraint system and the consistency of this assignment is checked. This takes O(m)

time. If an inconsistency is obtained, then the last constraint that was checked was

violated. We then backtrack along the tree T of constraints to produce a series of

constraints which produce a contradiction. Since, by construction, each such path

is of length at most n, and we traverse 2 such paths, the backtracking process takes

O(n) time.

7.2.2 Optional roundings

When there is a choice on the manner in which a variable can be rounded, per-

forming all resultant roundings of making a particular choice takes O(m) time, for

precisely the same reason that performing the resultant roundings of a forced rounding

takes O(m) time. As before, checking for consistency takes O(m) time.
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Each variable is rounded this way at most twice, once up and once down. Thus

evaluating the roundings of all variables takes O(m · n) time. Space is reused among

variables, thus this process runs in O(m) space.

If an inconsistency is obtained after both of the possible roundings of a variable, xi,

then for both roundings, we backtrack along the tree T . This creates two sequences of

constraints which produce contradictions. One contradiction assumes that xi ≤ baic

and the the other assumes that −xi ≤ −daie. By construction, each of the four

backtracked paths is of length at most n, so this process takes O(n) time. This only

occurs once, since only one refutation is necessary.

7.2.3 Overall analysis

All parts of the Algorithm 7.1.1 run in O(m · n) time and O(m + n) space and

therefore these are the resource bounds for this algorithm.
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Chapter 8

Correctness of the Integer

Algorithm

In this section, we argue the correctness of Algorithm 7.1.1. Note that Algorithm

7.1.1 starts with a feasible half-integral solution and performs a forced rounding (and

if needed, a resultant rounding) or an optional rounding (and if needed, a resultant

rounding) on variables which are not integral. In proof, we shall demonstrate that

every rounding (forced, optional or resultant) corresponds to a deducible constraint.

Lemma 8.0.1 Each forced rounding corresponds to a new constraint that can de-

duced from previously existing constraints by the tightening inference rule.

Proof: Let xi be the variable, with initial value ai, that undergoes a forced

rounding.

If xi is rounded down then by Algorithm 7.1.2, then there must exist a variable

xj, with initial value aj, such that there exist constraints xi − xj ≤ ai − aj and

xi + xj ≤ ai + aj. Using the tightening inference rule we can deduce the constraint

xi ≤ bai−aj+ai+aj
2

c = baic. This is the constraint that causes xi to be rounded down.

Likewise, if xj is rounded up by Algorithm 7.1.2, then there must exist a variable

xj, with initial value aj, such that there exist constraints −xi − xj ≤ −ai − aj and

−xi +xj ≤ −ai +aj. Using the tightening inference rule we can deduce the constraint

−xi ≤ b−ai−aj−ai+aj
2

c = −daie. This is the constraint that causes xi to be rounded
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up. 2

Consider a UTVPI system with the following two constraints: l1 : x1 + x2 ≤ 3

and l2 : x1 − x2 ≤ 0. Assume that we have a fractional solution a1 = a2 = 3
2
. As

per Algorithm 7.1.2, x1 should be rounded down. As stated previously this results

in adding the constraint l3 : x1 ≤ 1 to the UTVPI system. However, l3 can deduced

from l1 and l2 using the tightening inference rule. Example (17):

Lemma 8.0.2 Each resultant rounding that results from either a forced rounding or

an optional rounding, corresponds to a new constraint that can deduced from previ-

ously existing and deduced constraints by the transitive inference rule.

Proof: Let xi be the variable, with initial value ai, that is rounded due to a

resultant rounding, caused by rounding the variable xj, with initial value aj. Since

only non-integral values are rounded, in the algorithms discussed in Section 7, we can

assume without loss of generality that both ai and aj are odd multiples of 1
2
.

We need to consider the following four cases:

1. xi is rounded down as a result of xj being rounded down - From Algorithm 7.1.4,

there must be a constraint of type xi−xj ≤ ai−aj in U. Since xj was rounded

down, the constraint xj ≤ bajc = aj − 1
2

is deducible from the original system.

Using the transitive inference rule, we get the constraint xi ≤ ai−aj +aj− 1
2

=

ai − 1
2

= baic. This is the constraint that caused xi to be rounded down.

2. xi is rounded down as a result of xj being rounded up - From Algorithm 7.1.4,

there must be a constraint of type xi +xj ≤ ai +aj in U. Since xj was rounded

up, the constraint −xj ≤ −daje = −aj− 1
2

is deducible from the original system.

Using the transitive inference rule, we get the constraint xi ≤ ai +aj−aj− 1
2

=

ai − 1
2

= baic. This is the constraint that causes xi to be rounded down.

3. xi is rounded up as a result of xj being rounded down - From Algorithm 7.1.4,

there must be a constraint of type −xi − xj ≤ −ai − aj in U. Since xj was

rounded down, the constraint xj ≤ bajc = aj − 1
2

is deducible from the original
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system. Using the transitive inference rule, we get the constraint −xi ≤ −ai −

aj + aj − 1
2

= −ai − 1
2

= −daie. This is the constraint that causes xi to be

rounded up.

4. xi is rounded up as a result of xj being rounded up - From Algorithm 7.1.4,

there must be a constraint of type −xi + xj ≤ −ai + aj in U. Since xj was

rounded up, the constraint −xj ≤ −daje = −aj − 1
2

is deducible from the

original system. Using the transitive inference rule, we get the constraint −xi ≤

−ai + aj − aj − 1
2

= −ai − 1
2

= −daie. This is the constraint that causes xi to

be rounded up.

2

Let xj be a variable rounded as a result of a forced or optional rounding. Let V be

the set containing xj and all of the variables rounded as a result of xj being rounded.

Let xi be any unrounded variable. We will show that xi can be rounded up or

down without violating a constraint involving variables in V . Thus, if no constraint is

violated as a result of rounding xj, and performing all subsequent resultant roundings,

the values of the variables in V can be considered permanent. This follows, since no

subsequent roundings will violate a constraint involving any of these variables.

Lemma 8.0.3 Any unrounded variable (after rounding xj and performing any sub-

sequent resultant roundings) can be rounded up or down, without violating any con-

straints shared with a variable in V.

Proof: Let xi be an unrounded variable, where xi 6∈ V . Clearly, we are concerned

only with constraints of the form: ±xi ± xk ≤ cik, where xk ∈ V , since all other

constraints are satisfied with the current assignment to the variables.

We assume the contrary, i.e, we assume that a constraint involving xi and xk,

where xk ∈ V , is violated, when xi is rounded in a certain direction.

The following four cases need to be considered:
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1. xk was rounded down and rounding xi down results in a violation -

In this case, there is a constraint that was satisfied when xi = ai and xk = ak,

but violated when xi = ai − 1
2

and xk = ak − 1
2
. Thus, the violated constraint

must be −xi − xk ≤ −ai − ak. However, this constraint would cause Algo-

rithm 7.1.4 to round xi up as a result of rounding xk. But this contradicts our

assumption that xi was unrounded to begin with.

2. xk was rounded down and rounding xi up results in a violation -

In this case, there is a constraint that was satisfied when xi = ai and xk = ak,

but violated by xi = ai + 1
2

and xk = ak− 1
2
. Thus, the violated constraint must

be xi − xk ≤ ai − ak. However, this constraint would cause Algorithm 7.1.4 to

round xi down as a result of rounding xk. But this contradicts our assumption

that xi was unrounded to begin with.

3. xk was rounded up and rounding xi down results in a violation -

In this case, there is a constraint that was satisfied when xi = ai and xk = ak,

but violated by xi = ai− 1
2

and xk = ak + 1
2
. Thus, the violated constraint must

be −xi + xk ≤ −ai + ak. However, this constraint would cause Algorithm 7.1.4

to round xi up as a result of rounding xk. But this contradicts our assumption

that xi was unrounded to begin with.

4. xk was rounded up and rounding xi up results in a violation -

In this case, there is a constraint that was satisfied when xi = ai and xk = ak,

but violated by xi = ai + 1
2

and xk = ak + 1
2
. Thus, the violated constraint must

be xi + xk ≤ ai + ak. However, this constraint would cause Algorithm 7.1.4 to

round xi down as a result of rounding xk. But this contradicts our assumption

that xi was unrounded to begin with.

Since all four cases result in a contradiction, it follows that no constraint involving

xk can be violated when xi is rounded. 2

The above lemma ensures that once the resultant roundings of rounding a variable

are fully computed, and they do not produce any inconsistency, then those variables
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do not need to be revisited. This stops the run time of the algorithm from exploding

exponentially.

Theorem 8.0.1 If Algorithm 7.1.1 declares a UTPVI system U to be feasible, then

the system has integral solutions.

Proof: Algorithm 7.1.1 declares U to be feasible, only if a valid integer solution

has been computed. Indeed, the valid integral solution is returned by Algorithm 7.1.3.

2

Theorem 8.0.2 If Algorithm 7.1.1 declares a UTVPI system U to be infeasible, then

the system U has no integral solutions.

Proof: The algorithms can declare the system infeasible as a result of a forced

rounding, and the subsequent resultant roundings, or as the result of an optional

rounding and the subsequent resultant roundings.

If the system is declared infeasible as a result of a forced rounding, then there is a

constraint between some xi and xj that is violated when all resultant roundings are

computed. Both xi and xj must already have been rounded. Thus, there are four

cases which need to be considered, depending on the type of constraint violated:

1. The violated constraint is of the form l1 : xi + xj ≤ cij -

Since the initial (linear) solution, a, was valid we have that ai + aj ≤ cij. Thus,

for l1 to be violated, xi and xj must both have been rounded up. So we have

that cij < ai + aj + 1.

Since xi and xj were rounded up, from Lemmas 8.0.1 and 8.0.2, we know that

the constraints l2 : −xi ≤ −daie = −ai− 1
2

and l3 : −xj ≤ −daje = −aj− 1
2
, are

deducible from the existing constraints in the system. When these constraints

are added to the violated constraint, we get that 0 ≤ cij−ai−aj−1 < 0, which

is a contradiction that establishes the integer infeasibility of U.

2. The violated constraint is of the form l1 : xi − xj ≤ cij -

Since the initial (linear) solution, a, was valid we have that ai− aj ≤ cij. Thus,
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for l1 to be violated, xi must have been rounded up and xj must have been

rounded down. So we have that cij < ai − aj + 1.

From Lemmas 8.0.1 and 8.0.2, we know that the constraints l2 : −xi ≤ −daie =

−ai − 1
2

and l3 : xj ≤ bajc = aj − 1
2

are deducible from existing constraints in

the system. When these constraints are added to the violated constraint, we

get that 0 ≤ cij − ai + aj − 1 < 0 which is a contradiction that establishes the

integer infeasibility of U.

3. The violated constraint is of the form l1 : xj − xi ≤ cji -

Since the initial (linear) solution, a, was valid we have that aj − ai ≤ cji. Thus,

for l1 to be violated, xj must have been rounded up and xi must have been

rounded down. So we have that cji < aj − ai + 1.

From Lemmas 8.0.1 and 8.0.2, we know that the constraints l2 : −xj ≤ −daje =

−aj − 1
2

and l3 : xi ≤ baic = ai − 1
2

are deducible from existing constraints in

the system. When these constraints are added to the violated constraint, we

get that 0 ≤ cji − aj + ai − 1 < 0 which is a contradiction that establishes the

integer infeasibility of U.

4. The violated constraint is of the form l1 : −xi − xj ≤ cij -

Since the initial (linear) solution, a was valid we have that −ai−aj ≤ cij. Thus,

for the constraint to be violated xi and xj must both have been rounded down.

So we have that cij < −ai − aj + 1.

Since xi and xj were rounded down, from Lemmas 8.0.1 and 8.0.2, we know

that the constraints l2 : xi ≤ baic = ai − 1
2

and l3 : xj ≤ bajc = aj − 1
2

are

deducible from existing constraints in the system. When these constraints are

added to the violated constraint, we get that 0 ≤ cij + ai + aj − 1 < 0, which is

a contradiction that establishes the integer infeasibility of U.

If the system is declared infeasible as a result of an optional rounding, then for

some variable xk, it is clear that that the systems U ∪ {xk ≤ bakc} and U ∪ {−xk ≤
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−dake} are infeasible. Since all possible integer values of xk are covered by one of the

two systems, we can conclude that U has no integer solutions. 2

As discussed above, Algorithm 7.1.1 starts with an arbitrary half integral solution

and always maintains baic ≤ Zi ≤ daie, for each Zi 6= M . Thus, we have the following

corollary.

Corollary 8.0.1 If a system U of UTVPI constraints is integer feasible, and a is a

valid half-integral solution to U, then there exists an integral solution Z such that for

each i = 1 . . . n, baic ≤ Zi ≤ daie.
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Chapter 9

An Illustrative Example

In this section, we apply the algorithms developed in previous sections to an

illustrative sample UTPVI system.

Consider the UTVPI system defined by System (9.1).

l1 : x1 + x2 ≤ 2 (9.1)

l2 : x1 − x2 ≤ 1

l3 : x3 − x2 ≤ 1

l4 : x4 − x2 ≤ 0

l5 : −x3 − x4 ≤ −2

l6 : −x1 ≤ −1

The constraint network corresponding to System (9.1) is provided in Figure 9. The

edges of weight 8 from x0 are not displayed.

x2 x1 x0

x3

x4

2

1

−1

−1

−2

0

1

Figure 9.1: Constraint network for example constraints.
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Our initial distance table is as follows:

xi

�
di

�
di

→
di

←
di

x0 0 0 0 0
x1 8 8 8 8
x2 8 8 8 8
x3 8 8 8 8
x4 8 8 8 8

Table 9.1: Initial Distance Values

We relax each edge of the constraint network, as discussed in Section 5. The

relaxations change the distance labels as indicated in the table below:

edge new distance values

xi xj

�
di

�
di

→
di

←
di

�
dj

�
dj

→
dj

←
dj

x0

1

� x1 0 0 0 0 8 −1 8 −1

x1
1→ x0 8 −1 8 −1 0 0 0 0

x1

2

� x2 8 −1 8 −1 1 8 1 8

x2
1→ x1 1 0 1 0 2 −1 2 −1

x2
1→ x3 1 0 1 0 2 8 2 8

x2
0→ x4 1 0 1 0 1 8 1 8

x3

−2
� x4 2 −1 2 −1 1 0 1 0

Table 9.2: First Round of Relaxations
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The distance table after the first round of relaxations is given below:

xi

�
di

�
di

→
di

←
di

x0 0 0 0 0

x1 2 −1 2 −1

x2 1 0 1 0

x3 2 −1 2 −1

x4 1 0 1 0

Table 9.3: Distance Values After First Round

The second round of relaxations alters the distance labels as recorded in the table

below:

edge new distance values

xi xj

�
di

�
di

→
di

←
di

�
dj

�
dj

→
dj

←
dj

x0

1

� x1 0 0 0 0 2 −1 2 −1

x1
1→ x0 2 −1 2 −1 0 0 0 0

x1

2

� x2 2 −1 2 −1 1 0 1 0

x2
1→ x1 1 0 1 0 2 −1 2 −1

x2
1→ x3 1 0 1 0 2 −1 2 −1

x2
0→ x4 1 0 1 0 1 0 1 0

x3

−2
� x4 2 −1 2 −1 1 0 1 0

Table 9.4: Second Round of Relaxations
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The distance table after the second round of relaxations is given below:

xi

�
di

�
di

→
di

←
di

x0 0 0 0 0

x1 2 −1 2 −1

x2 1 0 1 0

x3 2 −1 2 −1

x4 1 0 1 0

Table 9.5: Distance Values After Second Round

We observe that the distance table at the end of the second round of relaxations is

identical to the distance table at the end of the first round of relaxations. This means

that additional relaxations will not affect the distance table and hence we will not

show the relaxations from subsequent rounds. Indeed, this table is the final distance

table.

Thus the resultant linear solution to the system of equations is x0 = 0−0
2

= 0,

x1 = 2−(−1)
2

= 1.5, x2 = 1−0
2

= .5, x3 = 2−(−1)
2

= 1.5, and x4 = 1−0
2

= .5, which is a

valid solution.

Our next task is to compute an integer solution from the half-integral linear so-

lution obtained above. As discussed in Section 7, this requires the rounding of the

half-integral values in a consistency-preserving manner.

We execute the following steps:

1. Check x1 for forced roundings.

(a) The constraints involving x1 are l1, l2 and l6.

(b) The contraints l1 and l2 force x1 to be rounded down to x1 = 1.

2. Check x2 for forced roundings.

(a) The constraints involving x2 are l2, l3 and l4.
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(b) None of them forces x2 to be rounded; it follows that x2 does not undergo

a forced rounding.

3. Check x3 for forced roundings.

(a) The constraints involving x3 (and another variable) are l1 and l5.

(b) Neither of them forces x3 to be rounded; it follows that x3 does not undergo

a forced rounding.

4. Check x4 for forced roundings.

(a) The constraints involving x4 are l4 and l5.

(b) Neither of them forces x4 to be rounded; it follows that x4 does not undergo

a forced rounding.

Thus the only forced rounding is to round x1 down to 1. Now we need to check if

results in any other roundings.

1. Examine the two variable constraints involving x1; these constraints are l1, l2

and l6.

2. Neither l1 nor l2 force x2 to be rounded.

3. Thus rounding x1 does not force any other variables to be rounded; therefore

no contradictory roundings are obtained.

4. Thus x1 = 1 is a valid assignment for x1.

We now check optional roundings, always attempting to round down before at-

tempting to round up.

1. Round x2 down to 0.

(a) Examine the two variable constraints involving x2; these constraints are

l1, l2, l3, and l4.
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(b) Since x1 has already been rounded, we can ignore l1 and l2.

(c) l3 forces x3 to be rounded down to x3 = 1.

(d) l4 forces x4 to be rounded down to x4 = 0.

(e) We now check if rounding x3 and x4 requires any additional roundings,

however there are no remaining unrounded variables so no additional round-

ings are performed.

(f) Observe that the constraint l5 is violated by the current assignments to x3

and x4.

(g) Thus, x2 cannot be rounded down.

2. Round x2 up to 1.

(a) Examine the two variable constraints involving x2; these constraints are

l1, l2, l3, and l4.

(b) Since x1 has already been rounded, we can ignore l1 and l2.

(c) l3 does not force x3 to be rounded.

(d) l4 does not force x4 to be rounded.

(e) Since no additonal roudings we performed, no constranits are violated by

rounding x2 up.

(f) Thus, x2 = 1 is a valid assignment to x2, given that x1 = 1

3. Round x3 down to 1.

(a) Examine the two variable constraints involving x3; these constraints are l3

and l5.

(b) Since x2 has already been rounded, l3 can be ignored.

(c) Observe that l5 forces x4 to be rounded up to x4 = 1.

(d) Checking for the roundings that result from rounding x4, we find that there

are no resultant roundings.
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(e) No constraint is violated by the current assignments to x3 and x4 so they

are valid.

(f) Thus x3 = 1 and x4 = 1 are valid assignments for x3 and x4, given the

previous assignments x1 = 1 and x2 = 1.

4. We do not have to round x4, since it has been made integral.

Now all variable have been given valid integer assignments. Thus the generated,

valid, integer solution to the given system of equations is x1 = 1, x2 = 1, x3 = 1 and

x4 = 1. This concludes the example.
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Chapter 10

Conclusion

This paper introduced new algorithms for checking the linear and integer feasibil-

ity of a conjunction of UTVPI constraints. Our algorithms run in O(m · n) time and

O(m + n) space and are therefore optimal from the perspective of these resources.

The claim of optimality follows from the fact that UTVPI constraints subsume differ-

ence constraints and that all known algorithms for difference constraint systems run

in O(m · n) time and O(m · n) space. Additionally, our algorithms are certifying in

that they produce a model, when the input instance is feasible and a refutation in the

event that the input instance is infeasible. An important contribution of this paper

is the characterization of linear and integer infeasibility in terms of the existence of

certain paths and cycles in the appropriately constructed constraint network.
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