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                                                                ABSTRACT  
             Gas-Phase Reactions of Methamphetamine with Hydroxyl Radicals and Ozone  
                                                            Crystal D. Forester  

Gas-phase reactions involving methamphetamine, the hydroxyl radical (OH·), and ozone (O3) at 
(297  3) K and 1 atmosphere total pressure were investigated.  A bimolecular rate constant, 
kOH·+methamphetamine, (960 ± 100) x 10-12 cm3molecule-1s-1, was measured using the relative rate technique 
for reactions of methamphetamine with OH·.  Pseudo first-order techniques were used to measure the 
bimolecular rate constant, kO3+methamphetamine, (2.7 ± 0.5) x 10-17 cm3molecule-1s-1 for reactions of 
methamphetamine with O3.  Product studies to determine the degradation of methamphetamine in the gas-
phase were conducted and the products of these reactions were identified.  The positively identified 
methamphetamine/OH· and methamphetamine/O3 reaction products were: benzaldehyde,  ethanedial 
(glyoxal),  and 2-oxopropanal (methylglyoxal).  The use of derivatizing agent O-(2,3,4,5,6-
pentafluorobenzyl)hydroxylamine (PFBHA) was used to propose phenyl-2-propanone as the other major 
methamphetamine/OH· and methamphetamine/O3 reaction product.  The elucidation of this other reaction 
product was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible 
methamphetamine/OH· and methamphetamine/O3 reaction mechanisms based on previously published 
volatile organic compound/OH∙ and volatile organic compound/O3 gas-phase reaction mechanisms. 
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Background 

Clandestine methamphetamine laboratories have been discovered in every state, including the 

District of Columbia, in the United States (DEA, 2011; ONDCP, 2010).  Surveys of  law enforcement 

agencies in 2005 site methamphetamine as a significant problem among the populations that they serve 

(Nicosia, et al., 2009).  Various synthesis methods are used including red phosphorous cook, Birch “Nazi” 

method and Leuckart method; however, all require the use of hazardous chemicals and precursors.  

Synthesis often involves pseudoephedrine as a precursor which can be extracted from common over-the-

counter cold medications.  The free-base form of methamphetamine is initially produced and is 

subsequently converted into methamphetamine hydrochloride.  After conversion to its hydrochloride salt, 

methamphetamine can be found in pill, powder and crystalline forms and may be ingested orally, snorted, 

smoked and injected.  During the “salting out” phase of synthesis, methamphetamine can deposit on 

surfaces at concentrations up to 1,000 µg per 100 cm2 (Nicosia, et al., 2009).  Activity within 

contaminated areas can re-suspend the methamphetamine into the air thereby making inhalation possible 

(VanDyke, et al., 2009).  Exposure hazards exist from the chemicals used in the synthesis and from the 

air-born final product. 

 Often, first responders such as fire, emergency medical or law enforcement personnel discover 

these clandestine methamphetamine labs.  In these situations, the personal protective equipment worn by 

these first responders may not provide adequate protection against methamphetamine and the hazardous 

chemicals used in its synthesis.  When evaluating Hazardous Substances Emergency Events Surveillance 

data (HSEES) collected by the Agency for Toxic Substances and Disease Registry (ATSDR) between 

2001 and 2008, Melnikova et al. found that 61% of the victims treated for exposure symptoms from 

clandestine methamphetamine labs were first responders (Melnikova, et al., 2011).   Respiratory irritation 

was the symptom reported by the majority of victims, followed by headache, chemical burns, eye 

irritation, gastrointestinal problems and dizziness/central nervous system effects (Melnikova, et al., 2011).   
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experiments in this study, methamphetamine hydrochloride was dissolved in methanol (25% w/v) and 

then mixed in a 1:1 ratio with 7 N sodium hydroxide (NaOH).  After addition of NaOH and mixing, an oil 

layer assumed to be the 100% free base, formed.  All analyses were performed using this free base.  

Methamphetamine hydrochloride                                                  Methamphetamine  

 
 

 

 

 

Structure 1                                                                                         Structure 2. 

   

Hydroxyl radicals, which are among the primary oxidizing radicals in the indoor environment, 

(Sarwar, et al., 2002; Sexton, et al., 2004; Weschler and Shields, 1996; 1997) were generated from the 

photolysis of methyl nitrite (CH3ONO) in the presence of nitric oxide (NO) in air. (Atkinson, et al., 1981)  

CH3ONO was prepared in gram quantities using the method of Taylor et al. (Taylor, et al., 1980) and 

stored in a lecture bottle at room temperature.  The CH3ONO purity (>95%) was verified by GC/MS.   

Ozone was produced by photolyzing air with a mercury pen lamp in a separate Teflon chamber.  

Aliquots of this O3/air mixture were added to the Teflon reaction chamber using a gas-tight syringe.      

All compounds, with the exception of methamphetamine were used as received and had the 

following purities: Sigma-Aldrich (Milwaukee, WI):  terpinolene (90%), limonene (99%), acetonitrile 

(>99 %), O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) (98+%); Fisher 

Scientific (Fairlawn, NJ):  methanol (99%), sodium hydroxide micro pearls; Spectrum Analytical (New 

Brunswick, NJ):.  Nitric oxide  (99+% pure) was obtained as a 4942 ppm mixture in nitrogen from Butler 

Gases (Morrisville, PA).  Helium (UHP grade), the carrier gas, was supplied by Amerigas (Sabraton, 

WV).   Experiments were carried out at (297  3) K and 1 atmosphere pressure. 

1.2  Experimental Apparatus  
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Experiments to measure the gas-phase rate constant of the OH∙ + methamphetamine (Structure 2) 

reaction were conducted with an apparatus described here. (Atkinson, et al., 1981; Orji and Stone, 1992; 

Veillerot, et al., 1996; Williams, et al., 1993)  Reactants were introduced and samples were withdrawn 

through a 6.4-mm Swagelok fitting attached to a 40 - 60 L Teflon film chamber.  Compressed air from the 

National Institute for Occupational Safety and Health (NIOSH) facility was passed through anhydrous 

CaSO4 (Drierite, Xenia, OH) and molecular sieves (Drierite, Xenia, OH) to remove both moisture and 

organic contaminants.  This dry compressed air was added as a diluent to the reaction chambers and the 

fill rate was controlled with a 0 - 100 L min-1 mass flow controller (MKS, Andover, MA).  Analysis of 

this purified air by gas chromatography/mass spectrometry revealed no quantifiable contaminants present 

in the ppb range.  The filler system was equipped with a syringe injection port facilitating the introduction 

of both liquid and gaseous reactants into the chambers with the flowing air stream.  All reactant mixtures 

were generated by this system.  Irradiations were carried out in a light-tight chamber housing surrounding 

5-mil FEP Teflon-film chambers (40 - 60 L), which contained the following mix of lamps: six Philips 

TL40W/03; one GE F40BL; two QPANEL (Cleveland, OH) UV351 and seven QPANEL UV340.  This 

lamp mixture approximates solar radiation from 300 to 450 nm. 

1.3 Method Optimization 

 Methamphetamine hydrochloride was first diluted in methanol to yield a 50% w/v solution.  This 

methamphetamine solution was injected into the Teflon reaction chamber and gas-phase samples were 

taken using three SPME fibers, red (100 µm polydimethylsiloxane), black (75 µm carboxen-

polydimethylsiloxane) and blue (65 µm polydimethylsiloxane-divinylbenzene).  No quantifiable peaks 

were observed using the black (carboxen-PDMS) fiber.   

A series of experiments were conducted to optimize volatilization for the work described here.  

Increasing the pH of a solution increases the likelihood that the protonated compound will de-protonate 

forming its free-base (volatile) form.  When the solution pH equals the compounds pKa, half of the 

molecules will be deprotonated.  Further increases of the pH will allow the solution to accept additional 

protons from the compound, thereby increasing the concentration of the free-base form of the 
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methamphetamine.    Ratios of the 100% methamphetamine:7N ammonia were varied from 9:1 to 1:1 to 

determine the optimal ratios for volatilization of methamphetamine.  The ratio that gave the highest 

instrument response in peak area counts was 1:1.  The PDMS coated fiber (red) has a higher affinity for 

hydrophobic compounds such as the methamphetamine free-base and resulted in peak areas 3.5 times 

greater than those sampled with the mid-polarity PDMS-DVB fiber (blue).  As a result of these 

experiments, the PDMS coated fiber was utilized in all of the experiments described here. 

   After determining ratios and selecting the appropriate SPME fiber, sodium hydroxide (strong 

base) and ammonia (weak base) were compared to further optimize volatilization and increase peak area.  

A 25% w/v methamphetamine/methanol solution was made fresh weekly.  From that, fifty µL of the 25% 

w/v methamphetamine hydrochloride solution was injected through the septa of a 40 mL VOC vial.  A 

red SPME fiber was exposed to the headspace in the vial and immediately analyzed and integrated.  Next, 

50 µL of the 25% w/v methamphetamine hydrochloride solution and 50 µL of 7N ammonia were injected 

into a 40 mL vial, the contents were vortexed for approximately 15 seconds and the red SPME fiber was 

exposed for 1 minute to the headspace in the vial then immediately analyzed.  This procedure was 

repeated using 50 µL of 7M sodium hydroxide.  When the peak areas of the deprotonated samples were 

compared with the area of the salt head space sample, the increase of 7N NH3 peak area was 140 times 

that of methamphetamine only and the 7M NaOH peak area was 970 times greater.  The 100% 

methamphetamine/7M NaOH procedure was replicated 10 times.  The average increase in peak area 

counts was 900 fold from samples of methamphetamine/NaOH mixture compared to methamphetamine 

only.  The rapid conversion of methamphetamine HCl to the free-base using the NaOH increases the 

vaporization of the free-base and allows for rapid SPME sampling in the gas-phase. 

 From these experiments the optimal experimental parameters were determined to be a 1:1 ratio of 

the 100% methamphetamine hydrochloride solution:7M sodium hydroxide for extraction of the 

methamphetamine free base and a red (PDMS) SPME fibers for gas-phase sampling. 

1.4  Kinetics 

All reaction kinetic samples were quantitatively monitored using an Agilent (Palo Alto, CA) 6890 

gas chromatograph with a 5973 mass selective detector and a flame ionization detector (GC/MS/FID) and 
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Agilent ChemStation software.  Samples were collected using a 100 µm polydimethylsiloxane SPME 

fiber assembly (Supelco, Milwaukee, WI) that was inserted into a 6.4 mm Swagelok fitting attached to the 

45 L Teflon-film bag.  The SPME fiber was exposed for 5 minutes within the chamber, and then inserted 

into the injector of the Agilent 6890 gas chromatograph.  Compound separation was achieved using a 

Restek (Bellefonte, PA) Rtx-1701 (30 m long, 0.53 mm i.d., 1 µm thickness) column.  The GC 

temperature program used was: injection port 250 ⁰C; initial oven temperature 33 ⁰C for 5 minutes; ramp 

12 ⁰C/minute to 240 ⁰C final temperature and held for 2 minutes.  The Agilent 5973 mass selective 

detector was tuned using perfluorotributylamine (FC-43).  Full-scan electron impact (EI) ionization 

spectra were collected from m/z 35 to 650.  Preliminary compound identifications from the Agilent 

6890/5973 GC/MS data sets were made by searching the NIST 98 Mass Spectral Library.   

Experiments to measure the gas-phase reaction rate constant of O3 with methamphetamine were 

conducted using a similar chamber as described above, but the ozone concentration was measured using a 

UV photometric ozone analyzer (Thermo Environmental model 49-i Franklin, MA).  An additional port 

was added to the Teflon chamber to facilitate the injection of O3.   

The experimental procedures for determining the methamphetamine + OH∙ reaction kinetics were 

similar to those described previously. (Bradley, et al., 2001; Wells, 2004; Wyatt, et al., 1999)  

(1)   Methamphetamine + OH∙ 
                    
→                  Products 

(2)   Reference + OH∙  
    
→    Products 

The rate equations for reactions 1 and 2 are combined and integrated, resulting in the following equation: 

(3)    (
[               ] 

[               ] 
)   

                    

    
   (

[   ] 

[   ] 
)   

 

If reaction with OH· is the only removal mechanism for methamphetamine and reference, a plot of 

ln([methamphetamine]0/[methamphetamine]t) versus ln ([Ref]0/[Ref]t) yields a straight line with an intercept 

of zero.   Multiplying the slope of this linear plot by kRef yields kOH∙+methamphetamine.  The OH∙ rate constant 
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experiments for methamphetamine employed the use of two reference compounds: limonene and terpinoline.  

The use of two different reference compounds with different OH∙ rate constants aids to ensure the accuracy 

of the methamphetamine/OH∙ rate constant and demonstrates that other reactions are not removing 

methamphetamine. 

 For the methamphetamine/OH· kinetic experiments the typical concentrations of the pertinent 

species in the 40 - 60 L Teflon chamber were 1.7 – 3.0 ppm (4.2 – 7.4 x 1013 molecule cm-3) 

methamphetamine, 1.7  3.3 ppm (4.2 – 8.1 x 1013 molecule cm-3) reference, 10 ppm (2.5 x 1014 molecule 

cm-3) CH3ONO, and 0.6 ppm (1.5 x 1013 molecule cm-3) NO in air.  The gas-phase mixtures were allowed 

to reach equilibrium before initial species concentration ([X]0) samples were collected.  Typically, three 

photolysis intervals of 5 to 10 seconds each were used on the reaction mixture for a combined total 

photolysis time of approximately 20 25 seconds.  The peak area from the total ion chromatogram (TIC) 

from the Agilent 5973 mass selective detector was used to determine methamphetamine and reference 

concentrations. 

The experimental procedures for the determination of the methamphetamine + O3 reaction kinetics 

were similar to those described previously. (Atkinson and Aschmann, 1984) 

(4)  Methamphetamine + O3 
                   
→                 Products 

The methamphetamine/O3 rate constant was determined using a pseudo-first-order technique 

where the concentration of methamphetamine was effectively held constant in relation to the O3 

concentration.  This allowed the O3 to decay in a first-order manner (Espenson, 1995).  Ozone was 

injected into the reaction chamber as it was being filled with air and methamphetamine.  Assuming a 

100% conversion of methamphetamine HCl to the free-base, the range of methamphetamine 

concentrations inside the Teflon chamber was 0.56 – 1.67  ppm (1.4 – 4.1 x 1013 molecule cm-3).  The 

additions of O3 in the chamber resulted in an O3 chamber concentration of 0.073 – 0.087 ppm (0.18 – 0.21 

x 1013 molecule cm-3).    The chamber was connected  within 5 seconds to the Thermo Electron UV 

photometric ozone analyzer Model 49i and ozone concentration measurements integrated over 10 second 
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time intervals were collected up to a total of 600 seconds.  Methamphetamine did interfere with the 

absorbance signal at 254nm.  To overcome this, experiments were performed at all concentration levels 

with and without ozone and the interference background was subtracted.  The plot of the uncorrected data 

can be seen in the supplemental information. 

Methamphetamine and each of the reference compounds were injected into separate Teflon 

chambers and the peak area was monitored over a period of several hours.  No changes in peak area were 

noted, therefore, wall losses in these experiments were determined to be negligible.   

To determine possible chromatographic interferences from reference/OH∙ reaction products, both 

methamphetamine and the reference compounds were reacted with the OH∙ radical in separate 

experiments and analyzed as described previously. (Wells, 2004)  No chromatographic interferences were 

observed.  All measurements were duplicated.  A relative standard deviation of 3.4% was achieved with 

the described sampling methods utilizing the Agilent 6890/5973 GC/MS system (Wells, 2004). 

1.5  Reaction Product Studies 

Identification of reaction products was made using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine 

(PFBHA) to derivatize carbonyl products. (Fick, et al., 2003; Yu, et al., 1998)  Experimental methods for 

reaction product identification were similar to methods used for kinetic experiments, except the reference 

compound was excluded from the reaction mixture.  An additional port was added to the Teflon chamber 

to facilitate the injection of ozone. 

Derivatized reaction products were analyzed using a Varian (Palo Alto, CA) 3800/Saturn 2000 

GC/MS system operated in both the EI and CI modes. (Yu, et al., 1998)  Compound separation was 

achieved by a J&W Scientific (Folsom, CA) DB-5MS (0.32 mm i.d., 30-m long, 1 m film thickness) 

column and the following GC oven parameters: 60 oC for 1 minute then 20 oC/min to 170 oC, then 3 

oC/min to 280 oC and held for 5 minutes. 

  Samples were injected in the splitless mode, and the GC injector was returned to split mode one 

minute after sample injection, with the following injector temperature parameters: 60 oC for 1 minute then 

180 oC/min to 250 oC and held to the end of the chromatographic run. (Yu, et al., 1998)  The Saturn 2000 
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ion trap mass spectrometer was tuned using FC-43.  Full-scan EI ionization spectra were collected from 

m/z 40 to 650.  Acetonitrile was the chemical ionization reagent used for all CI spectra.  When possible, 

commercially available samples of the identified products were derivatized and subsequently analyzed to 

verify matching ion spectra and chromatographic retention times.  Derivatized chromatographs were 

compared to background chromatographs and peaks to determine product peaks.   

Derivatization of the carbonyl reaction products was initiated by flowing 20 L of chamber contents 

at 2.5 L min-1 through an impinger containing 3.6 mL of methanol and 200 μL of 0.02M PFBHA in 

acetonitrile to derivatize the carbonyl reaction products to oximes (Yu, et al., 1998) with minimal 

methanol evaporation during sample collection.  The sample was removed from the impinger and allowed 

to sit for a 24 to 48 hour time period in the dark.  The reacted solutions were gently blown to dryness with 

UHP N2, reconstituted with 100 μL of methanol, and then 1 μL of the reconstituted solution was injected 

onto the Varian 3800/Saturn 2000 GC/MS system.   

2.  Results 

Methamphetamine /OH∙ Reaction Rate Constant 

 The OH∙ rate constant for methamphetamine (Structure 2) was obtained using the relative rate 

method described above.  The plot of a modified version of equation (3) is shown in Figure 1.  The 

ln([Ref]0/[Ref]t) term is divided by the respective reference rate constant (limonene (164 ± 41) × 10-12 

cm3molecule-1s-1 and terpinolene (225 ± 56) x 10-12 cm3molecule-1s-1) (Atkinson, 1989; 1994; 2003; 

Bradley, et al., 2001) and multiplied by 10-12 cm3molecule-1s-1, resulting in a unitless number.  This yields 

a slope that is equal to the OH∙/methamphetamine rate constant, kOH∙+methamphetamine, divided by 10-12 

cm3molecule-1s-1.  This modification allows for a direct comparison of the two reference 

compound/methamphetamine data sets.  The slope of the line shown in Figure 1A yields an OH∙ 

bimolecular rate constant, kOH∙+methamphetamine, of (960 ± 100) × 10-12 cm3molecule-1s-1 measured by 

integrating the area under the chromatographic peak.  The plot in Figure 1B was obtained by integrating 

the FID data and a bimolecular rate constant, kOH∙+methamphetamine, of (830 ± 90) × 10-12 cm3molecule-1s-1 

was measured.  The data points at the origin are experimental points because pre-irradiation, t = 0, data 

showed no detectable loss of methamphetamine or reference. The error in the rate constant stated above is 
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the 95% confidence level from the uncertainty in the slope.  Incorporating the uncertainties associated 

with the reference rate constants (25% for limonene and terpinolene) used to derive the 

methamphetamine/OH∙ rate constant yields a final value for kOH∙+methamphetamine, of (960  100) × 10-12 

cm3molecule-1s-1 for the MS data and (830 ± 100) × 10-12 cm3molecule-1s-1 for the FID data (Atkinson, 

1989; 1994; 2003).    The methamphetamine/OH∙ rate constant, kOH∙+methamphetamine, has not been previously 

reported.  The observed rate constant is an order of magnitude higher than the estimated 

k(calc)OH∙+methamphetamine  = 92.6 × 10-12 cm3molecule-1s-1, calculated using the Environmental Protection 

Agency’s rate constant calculation software, AOPWIN v1.91. (USEPA, 2000)   
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Figure 1.  Methamphetamine relative rate plots with terpinolene (    ) and limonene (   ) as reference 
compounds.  The measured OH∙ + methamphetamine rate constant using the GC/MS (Figure 1A), 
kmethamphetamine+OH∙ , is (960  100) x 10-12 cm3molecule-1s-1 and (830  90) x 10-12 cm3molecule-1s-1 was 
measured using GC/FID (Figure 1B).   
 

Methamphetamine /O3 Reaction Rate Constant  

The O3 rate constant for methamphetamine (Structure 2) was measured using the pseudo-first-

order techniques.  The concentration of methamphetamine was assumed constant and the decay of O3 was 

monitored.  Figure 2 shows a plot of O3 rate loss (k’) as a function of methamphetamine concentration.  

The slope of the line is the bimolecular O3 rate constant,                    , (2.7 ± 0.5) × 10-17 

cm3molecule-1s-1.  The error in the rate constant above is the 95% confidence level from the variations in 

the slope.  The methamphetamine/OH∙ rate constant,                    , has not been previously 

reported.     
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Figure 2.  Methamphetamine pseudo-first-order rate plot.  The O3 + methamphetamine rate constant, 
                   , measured is (2.7  0.5) x 10-17 cm3molecule-1s-1.   
 

Methamphetamine/OH∙ and Methamphetamine/O3 Reaction Products 

 The reaction products observed from the methamphetamine/OH∙ reaction (hydrogen abstraction or 

OH∙ addition) are listed in Table 1.  The methamphetamine/OH∙ products observed and positively 

identified using the pure compound for verification by derivatization were: benzaldehyde,  ethanedial 

(glyoxal), and 2-oxopropanal (methylglyoxal).  Structures and ions used to identify these compounds are 

listed in Table 1.  Elucidation of the other major reaction product, phenyl-2-propane, was facilitated by 

mass spectrometry of the derivatized reaction product coupled with plausible methamphetamine/OH∙ 

reaction mechanisms based on previously published volatile organic compound/OH∙ gas-phase reaction as 

described below (Atkinson, 1989; Bradley, et al., 2001; Smith, et al., 1992; Smith, et al., 1995; Veillerot, 

et al., 1996; Wallington, et al., 1993; Wells, 2004; Wells, et al., 1996; Wyatt, et al., 1999).  An additional 

reaction product with a molecular mass of 146 amu was also observed.  
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Table 1. Molecular Structure of Methamphetamine and Methamphetamine/OH∙ and 
Methamphetamine/O3 Reaction Products 
 

Retention 
Time 

(minutes) 
Name 

Molecular 
Weight 
(amu) 

Structure CI Ions 
observed 

HazAssess 
QSAR 
valuea 

 Methamphetamine 149 

CH
3

NH

CH
3

 

 0.21 

17.5 benzaldehyde 106 
O

 

302 0.20 

19.1 
19.3 

Phenyl-2-propanone 
(P2P) 134 

O

CH
3

 

330 0.10 

24.9 
25.2 

Ethanedial* 
(glyoxal) 

 
58 

O

O

 

449 0.38 

25.4 
2-oxopropanal 

(methylglyoxal) 
 

72 

O

O

 

463 0.21 

  *Observed from methamphetamine/OH∙ reaction only 
a (Jarvis, et al., 2005) 

 
 

The reaction products observed from the methamphetamine/O3 addition are also listed in Table 1.   

The methamphetamine/O3 products observed and positively identified using the pure compound for 

verification by derivatization were:  benzaldehyde, ethanedial (glyoxal), and 2-oxopropanal 

(methylglyoxal).  Structures and ions used to identify these compounds are listed in Table 1.  Elucidation 

of the other major reaction product, phenyl-2-propane, was facilitated by mass spectrometry of the 

derivatized reaction product coupled with plausible methamphetamine/O3 reaction mechanisms based on 

previously published volatile organic compound /O3 gas-phase reaction as described below (Atkinson, 

1989; Bradley, et al., 2001; Smith, et al., 1992; Smith, et al., 1995; Veillerot, et al., 1996; Wallington, et 

al., 1993; Wells, 2004; Wells, et al., 1996; Wyatt, et al., 1999).   

Derivatization of nonsymmetric carbonyls using PFBHA typically resulted in multiple 

chromatographic peaks due to geometric isomers of the oximes.  Identification of multiple peaks of the 

same oxime compound is relatively simple since the mass spectra for each chromatographic peak of a 
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particular oxime are almost identical.  Typically, the PFBHA-derivatized oximes’ (generic structure: 

F5C6CH2ON=C(R1)(R2)) mass spectra included an ion at m/z 181 ([CH2C6F5]+ fragment) with a large 

relative intensity (>40%) and a [PFBHA oxime + 181]+ ion (due to reactions in the ion trap mass 

spectrometer) (Yu, et al., 1998).  In most cases, the m/z 181 ion relative intensity for the chromatographic 

peaks due to methamphetamine/OH∙ and methamphetamine/O3 reaction product oximes was either the 

largest or one of the largest in the mass spectrum and was used to generate selected ion chromatograms 

(Yu, et al., 1998).   

The following describe in chronological retention time order the mass spectra data for the 

individual reaction products observed utilizing PFBHA derivatization and the Varian 3800/Saturn 2000 

GC/MS system.  The reaction products’ chromatographic peak areas were a function of the initial 

methamphetamine concentration and were observed only after OH∙ initiation or addition of O3 to the 

methamphetamine chamber contents.  Derivatization experiments performed in the absence of 

methamphetamine, but in the presence of all other chemicals in the reaction chamber (methanol/methyl 

nitrite/NO/air) did not result in any of the data reported below except for small amounts of 2-oxopropanal 

and ethanedial which were < 2% of the derivatized peak area.  However, 2-oxopropanol and ethanedial 

oxime peak areas increased with methamphetamine/OH∙ or methamphetamine/O3 reaction initiation, 

indicating that they are likely products of the methamphetamine/OH∙ and methamphetamine/O3 reactions.   

Benzaldehyde (C6H5CH=O) 

The chromatographic peaks for the oxime observed at 17.2 and 17.4 minutes were observed as a 

reaction product of methamphetamine/OH∙ had ions at m/z (relative intensity) 301 (100%), 181 (74%), 

271 (58%), 65 (29%) and 89 (27%). Using acetonitrile for chemical ionization, an M+1 ion of m/z of 302 

was observed for the PFBHA-derivatized sample.  The PFBHA-benzaldehyde oxime was synthesized to 

confirm this chromatographic assignment.  A chromatograph showing this reaction product can be seen in 

Figure 3.  This carbonyl compound was also observed as a methamphetamine/O3 reaction product.  
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Figure 3.  Chromatograph of main derivatized products benzaldehyde (two peaks: 17.25 and 17.45 
minutes) and phenyl-2-propanone (2 peaks: 19.1 and 19.3 minutes) from OH· + methamphetamine 
reaction.   
 

Phenyl-2-propanone (C6H5CH2C(=O)CH3) 

The chromatographic peaks for the oxime observed at 19.1 and 19.3 minutes were observed as a 

reaction product of methamphetamine/OH∙ had ions at m/z (relative intensity) 91 (100%), 181 (67%), 131 

(52%), 130 (36%) and 65 (30%) as seen in Figure 4A.  Using acetonitrile for chemical ionization, an M+1 

ion of m/z of 330 was observed for the PFBHA-derivatized sample (Figure 4B).  A chromatograph 

showing this reaction product can be seen in Figure 3.  This carbonyl compound was also observed as a 

methamphetamine/O3 reaction product. 
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Figure 4.  PFBHA derivatized product of methamphetamine oxidation by OH∙ (19.1 minutes)  A) 
electron ionization spectrum MW = 329 amu B)  acetonitrile chemical ionization spectrum MW = 330 
amu. 
 

 

Ethanedial (Glyoxal, HC(=O)C(=O)H)  

The chromatographic peaks for the oxime observed at 24.4 and 25.2 minutes were observed as a 

reaction product of methamphetamine/OH∙ and had ions at m/z (relative intensity) 181 (100%) and 448 

(17%).  The m/z 448 ion is the result of a double PFBHA derivatization indicating a reaction product with 
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a molecular weight of 58.  Using acetonitrile for chemical ionization, an M+1 ion of m/z of 449 was 

observed for the PFBHA-derivatized sample.  The PFBHA-glyoxal oxime was synthesized to confirm this 

chromatographic assignment.  This carbonyl compound was also observed as a methamphetamine/O3 

reaction product. 

2-Oxopropanal  (Methylglyoxal, CH3C(=O)C(=O)H) 

The chromatographic peaks for the oxime observed at 25.2 and 25.4 minutes were observed as a 

reaction product of methamphetamine/OH∙ and had ions at m/z (relative intensity) 181 (100%) and 265 

(28%).  The m/z 462 ion is the result of a double PFBHA derivatization indicating a reaction product with 

a molecular weight of 72.  Using acetonitrile for chemical ionization, an M+1 ion of m/z of 463 was 

observed for the PFBHA-derivatized sample.  The PFBHA-methylglyoxal oxime was synthesized to 

confirm this chromatographic assignment and the second chromatographic peak for PFBHA-

methylglyoxal overlaps slightly with the 25.2 minute peak of PFBHA-glyoxal.  This carbonyl compound 

was also observed as a methamphetamine/O3 reaction product. 

Discussion  

 OH∙ reacts with methamphetamine by H-atom abstraction or OH∙ addition to the carbon-carbon 

double bonds (Atkinson, 1989; Atkinson and Aschmann, 1993; Murphy, et al., 2007). The reactive 

structure of methamphetamine can be drawn as shown in Structure 2.  The sites labeled I and II identified 

in Structure 2 contribute approximately 95%, to the calculated methamphetamine/OH∙ rate constant of 

92.6 x 10-12 cm3 molecule-1s-1 (USEPA, 2000) which is an order of magnitude slower than the averaged 

measured value reported here (960 ± 100) x 10-12 cm3molecule-1s-1.   

Ozone reacts with alkenes by addition to the carbon-carbon double bond (Criegee, 1975) and with 

amines through electron transfer reactions (Bailey, et al., 1972).  Ozone reactions with methamphetamine 

should primarily be electron transfer reactions, reactions of ozone with the phenyl ring are not anticipated.  

This assumption is based on published O3 rate constants of compounds containing aromatic rings such as 

benzene and alkyl benzene compounds have reaction rates of < 1 × 10-20  cm3molecule-1s-1, (Atkinson, 
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2003).  The measured value reported here (2.7 ± 0.5) x 10-17 cm3molecule-1s-1 has not been previously 

reported.  

For the methamphetamine/OH· reaction the experimental parameters were set to minimize other 

side reactions and highlight the primary OH· hydrogen abstraction and OH· addition step.  The 

methamphetamine concentration was kept low and the photolysis times were as short as possible.  

Additionally, nitric oxide (NO) was added to facilitate the generation of OH· and to minimize O3 and 

NO3· radical formation preventing other possible radical reactions.  The possible mechanistic steps 

leading to product formation are described below.   

Benzaldehyde 

The methamphetamine/OH· reaction mechanism leading to the formation of benzaldehyde 

(C6H5CH=O) likely occurs through hydrogen abstraction of the hydrogen on the carbon adjacent to the 

secondary amine (Site I, Structure 2), producing the radical, C6H5CH2CH(CH3)N•CH3.  Subsequent 

addition of oxygen to the radical and a hydrogen-shift leads to decomposition and formation of the 

peroxyradical, C6H5CH2OO• and the radical CH3NHC•H(CH3).  The (CH3)2COO• peroxyradical can then 

react with NO to form NO2 and benzaldehyde.  Benzaldehyde product formation from the 

methamphetamine/O3 reaction begins with an electron transfer reaction at the amine and then follows a 

similar mechanistic pathway to that of the methamphetamine/OH· reaction.  A proposed reaction scheme 

detailing both the OH· and O3 reactions can be seen in Figure 5. 
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Figure 5.  Proposed Mechanism for the formation of Benzaldehyde from Methamphetamine 
reactions with OH· and O3. 
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Phenyl-2-propanone 

OH· can react with methamphetamine by abstraction of the hydrogen at site I of Structure 2, 

producing the radical C6H5CH2CH(CH3)N•CH3.  Subsequent addition of oxygen to the radical and a 

hydrogen-shift leads to decomposition and formation of the peroxyradical, C6H5CH2CH(CH3)OO• and the 

radical CH3N•(H).  The CH2(OH)CHOO• radical can then react with NO to form NO2 and phenyl-2-

propanone.  Phenyl-2-propanone product formation from the methamphetamine/O3 reaction begins with 

an electron transfer reaction at the amine, and then follows a similar mechanistic pathway to that of the 

methamphetamine/OH· reaction.   

 
 The reaction product methylglyoxal appears in both the methamphetamine/OH· and the 

methamphetamine/O3 reactions.  Ozone/alkene reactions can produce steady state OH· concentrations 

which would explain the observation of these products in both reactions (Paulson, et al., 1999).  However, 

addition of a large concentration of cyclohexane (628 ppm) to scavenge OH· in the methamphetamine/O3 

reaction mixture effectively eliminates the methamphetamine/OH· side-reaction.  

The reaction product glyoxal is only observed as a reaction product from methamphetamine/OH· 

reactions and is most likely formed as a product of secondary reactions in the gas-phase. 

Product experiments were conducted to determine if relative humidity had an effect on the 

methamphetamine reactions.  The Teflon chamber was filled as in previously described experiments using 

a filler system equipped with a humidification chamber.  The relative humidity was set to 50%.  Identical 

derivatization procedures were followed and the data from the <5% and 50% samples were compared.  

There were no differences in products formed in either OH· or O3 reactions with methamphetamine.   

The Chemical Asthma Hazard Assessment Program developed by Jarvis et al. (Jarvis, et al., 2005) 

was used to calculate a Hazard Index of the observed oxygenated organic reaction products.  The Hazard 

Index is a value between 0 and 1 determined by comparing the substructures of the chemical of interest 

against a database of substructures present in known occupational respiratory sensitizers. While the 

program results should not be used definitively, the closer the Hazard Index is to 1 the stronger the 

prediction is that the submitted compound has the potential to be a respiratory sensitizer.  Both the 

methamphetamine and its oxygenated organic products were evaluated using this tool and the results are 
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presented in Table 1. Only one product, phenyl-2-propanone has a lower HazAssess value than that of 

methamphetamine.  This suggests that the gas-phase products could play an equal or more adverse role in 

terms of health effects than the parent compound. 

Conclusions 

 To investigate the detailed gas-phase chemistry of methamphetamine (Structure 2), the hydroxyl 

radical reaction rate constant, ozone reaction rate constant and respective reaction mechanisms were 

investigated.  The OH· can react by either abstract hydrogen or addition to the carbon-carbon double bond 

of methamphetamine.  A bimolecular rate constant, kOH·+ methamphetamine, of (960  100) x 10-12 

cm3molecule-1s-1 was measured using the relative rate technique.  This measured value is significantly 

faster than that predicted using AOPWIN software.  Ozone reactions with methamphetamine occur 

through electron transfer reactions and a methamphetamine/O3 rate constant, kO3+ methamphetamine, of (2.7 ± 

0.5) x 10-17 cm3molecule-1s-1 was measured using pseudo-first order techniques.  

 The identification of the methamphetamine/OH· and methamphetamine/O3 reaction products was 

facilitated by the use of derivatizing agent PFBHA.  The reaction products benzaldehyde, glyoxal and 

methylglyoxal were positively identified using observed experimental data.  The major reaction product, 

phenyl-2-propanone was proposed based on mass spectral data from PFBHA derivatization and 

previously published VOC/OH· and VOC/O3 reaction mechanisms.  The structures of the identified 

reaction products indicate that the hydrogen of the amine group plays an important role in the formation 

of reaction products in both the methamphetamine/O3 and methamphetamine/OH· reactions.   

Approximate indoor environment concentrations of the hydroxyl radical (1.23 x 105 

molecules/cm3) and ozone (4.92 x 1011 molecules/cm3) have been previously estimated by Sarwar 

(Sarwar, et al., 2002).  Using the methamphetamine/OH· and methamphetamine/O3 rate constants 

reported here pseudo-first order rate constants of 0.43 h-1 and 0.60 h-1 were determined, respectively.  

Comparing these values to a typical indoor air exchange rate of 0.6 h-1, suggests that the 

methamphetamine/O3 reaction is expected to compete with air exchange as an indoor environment loss 

mechanism for methamphetamine (Wilson, et al., 1996).  
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The data and information from this study may be used by researchers developing clean-up 

procedures and final testing for remediation of methamphetamine.  From the data here it is apparent that 

gas-phase reactions can produce reaction products and these reaction products may also pose potential 

health effects.  It may also be possible to determine if methamphetamine was previously synthesized in a 

structure by testing for chemicals such as benzaldehyde and phenyl-2-propanone. 

In addition, few studies exist that measure ozone-amine reaction rate constants.  The data in the 

EPA AOPWIN database is insufficient to predict a reaction rate constant.  Further investigations such as 

this should be completed to develop a QSAR database for this type of prediction. 

Relative humidity may affect the formation of reaction products due to additional hydrolysis 

reactions.  Also, the RH can have an effect on the rate of reaction, but, unless there is a significant 

sustained temperature increase accompanied by the increased humidity, the rate constant measured here 

would not be affected.  The time involved in these experiments allows the air temperature in the chamber 

to be maintained at ambient conditions.  The experimental results reported here were conducted under 

ambient conditions with <5% relative humidity.  The purpose of this was to simulate real-world 

conditions with the exception of humidity.  Product studies at 50% RH were conducted; however, the 

reaction products observed were the same as those in the <5% RH experiments.  A more in-depth reaction 

product study using additional derivatization techniques might discover additional products. 

No nitrogen containing products were found in the derivatization studies here.  Unsuccessful 

attempts were made to derivatize the nitrogen using N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA).  

Additional experiments using derivatization agents suitable for amines should be conducted to track the 

nitrogen products.  Further studies should also be conducted to determine if aerosol particles are formed 

from these reactions which could explain the absence of gas-phase nitrogen containing products.  These 

experiments could be conducted simultaneously using a denuder coated with a derivatization agent such 

as N-Methyl-N-(trimethyl-silyl)trifluoroacetamide (MSTFA) or N,N-Diethyltrimethyl-silylamine 

(TMSDEA) to capture gas-phase products and a filter pack for particulate capture. 
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Hydroxyl Radical Kinetic data: 

Chemical being studied methamphetamine 

  Reference  Compound limonene   

  Reference Rate constant (10
-12

) =    1.64E+02 

  

      Date 5/15/2011 
    1/6/2011 REF MSD METH MSD REF FID METH FID 

 bkgd 11051502 462753 177211 3669110 2410624 
 bkgd 11051503 482327 217913 3775296 2706142 
 bkgd 11051504 473701 175633 3681565 2261954 
 bkgd 11051505 460773 238535 3610117 2902952 
 Std Dev 10054 31077 68365 288493 
 RSD 0.02 0.15 0.02 0.11 
 

   
MSD FID 

 

  
Avg [Ref 1]0 4.6989E+05 3.6840E+06 

 

  
Avg [Chem]0 2.0232E+05 2.5704E+06 

 Photolysis time (sec)   10 
  phot 1 11051506 432576 102333 3389940 1496493 

 phot 1 11051507 414461 80052 3276372 1259367 
 phot 1 11051508 434285 73443 3387418 1201984 
 

      Photolysis time (sec)   10 
  phot 2 11051601 324931 17066 2606194 353722 

 phot 2 11051602 324053 16114 2640809 373807 
  

 
 

     

   
MSD!! 

 

    
Ln (Ref1)/kRef Ln (Meth) 

    
0 0 

    
0.000504496 0.681633229 

    
0.000765345 0.927189007 

    
0.000480454 1.013355835 

    
0.002249284 2.47277725 

    
0.002265783 2.530176971 

      

      

      

      

    
FID!! 

 

    
Ln (Ref1)/kRef Ln (Meth) 

    
0 0 

    
0.000507274 0.540944161 

    
0.000715051 0.713459318 

    
0.000511812 0.760095007 

    
0.002110452 1.983312517 

    
0.002029999 1.928084189 

      

      

y = 1.139E+03x 
R² = 9.532E-01 
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      Date 5/16/2011 
    

 
REF MSD METH MSD REF FID METH FID 

 Bkgd 11051701 955394 640339 6842391 6107322 
 Bkgd 11051702 799891 651287 5877508 6419191 
 Bkgd 11051703 553680 412418 4204585 4432475 
 Bkgd 11051804 958274 904464 6886302 8344727 

 Bkgd 11051805 819948 476811 5948431 4914978 
 Bkgd 11051806 817222 683317 5929330 6763885 
 Std dev 147478 172928 972128 1395851 
 RSD 0.18 0.28 0.16 0.23 
 

   
MSD FID 

 

  
Avg [Ref 1]0 8.1740E+05 5.9481E+06 

 

  
Avg [Chem]0 6.2811E+05 6.1638E+06 

 Photolysis time (sec) 
 

10 
          
  Phot 1 11051807 722652 282135 5332442 3335321 

 Phot 1 11051808 811991 417339 5924711 4523713 
 Photolysis time (sec) 

 
10 

          
  Phot 2 11051809 636310 165195 4734263 2224307 

 Phot 2 11051810 697207 167556 5121994 2235120 
  

 
 

     

      

   
MSD!! 

 

    
Ln (Ref1)/kRef Ln (Meth) 

    
0 0 

    
0.000751236 0.800323262 

    
0.000040 0.408810101 

    
0.001527101 1.335582348 

   
0.000969805 1.321391318 

      

      

      

      

      

      

 
 

     

      

    
FID!! 

 

    
Ln (Ref1)/kRef Ln (Meth) 

    
0 0 

    
0.000666226 0.614118541 

    
0.000024 0.309354351 

    
0.001391733 1.019242061 

    
0.000911747 1.01439255 

      

      

y = 1026.1x 
R² = 0.7806 
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      OH Kinetics regression data for Limonene and Terpinolene (MSD): 

0.0000 0.0000 
 

SUMMARY OUTPUT 
       0.0005 0.6816 

          0.0008 0.9272 
 

Regression Statistics 
       0.0005 1.0134 

 
Multiple R 0.9442 

       0.0022 2.4728 
 

R Square 0.8916 
       

0.0023 2.5302 
 

Adjusted R 
Square 0.8876 

       0.0000 0.0000 
 

Standard Error 0.3351 
       0.0008 0.8003 

 
Observations 29.0000 

       0.0000 0.4088 
          0.0015 1.3356 
 

ANOVA 
        

0.0010 1.3214 
 

  df SS MS F 
Significanc

e F 
   

0.0000 0.0000 
 

Regression 1.0000 24.9334 
24.933

4 222.0876 0.0000 
   0.0003 0.7960 

 
Residual 27.0000 3.0313 0.1123 

     0.0003 0.6250 
 

Total 28.0000 27.9647       
   0.0013 1.6538 

          

0.0016 1.8283 
 

  
Coefficient

s 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

0.0020 1.9505 
 

Intercept 0.2522 0.0998 2.5273 0.0177 0.0474 0.4569 0.0474 0.4569 

0.0020 1.8212 
 

X Variable 1 850.4734 57.0688 
14.902

6 0.0000 733.3779 
967.568

8 
733.377

9 
967.568

8 

0.0018 2.4111 
   

 

 0.0022 2.7941 
 

std error (2sd) 114.1376 
 0.0000 0.0000 

    0.0012 0.5652 
    0.0010 0.4481 
    0.0007 0.9995 
    0.0027 2.5753 
    0.0030 2.5061 
    0.0028 2.6558 
    0.0038 3.0949 
    0.0034 2.8086 
    

      
 

  
   

y = 963.23x 
R² = 0.866 
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OH regression data for Limonene and terpinolene (FID): 

   
SUMMARY OUTPUT 

       0.0000 0.0000 
          0.0005 0.5409 
 

Regression Statistics 
       0.0007 0.7135 

 
Multiple R 0.9501 

       0.0005 0.7601 
 

R Square 0.9027 
       

0.0021 1.9833 
 

Adjusted R 
Square 0.8992 

       0.0020 1.9281 
 

Standard Error 0.2483 
       0.0000 0.0000 

 
Observations 30.0000 

       0.0007 0.6141 
          0.0000 0.3094 
 

ANOVA 
        

0.0014 1.0192 
 

  df SS MS F 
Significan

ce F 
   

0.0009 1.0144 
 

Regression 1.0000 16.0120 
16.012

0 259.7714 0.0000 
   0.0003 0.2997 

 
Residual 28.0000 1.7259 0.0616 

     0.0000 0.0000 
 

Total 29.0000 17.7378       
   0.0004 0.6558 

          

0.0004 0.5122 
 

  
Coefficie

nts 
Standard 

Error t Stat P-value 
Lower 
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

0.0014 1.3676 
 

Intercept 0.1528 0.0733 2.0827 0.0465 0.0025 0.3030 0.0025 0.3030 

0.0016 1.4948 
 

X Variable 1 750.0405 46.5360 
16.117

4 0.0000 654.7159 
845.36

52 
654.715

9 
845.365

2 

0.0020 1.5527 
   

 

 0.0012 1.4825 
 

error (2sd) 93.0720 
 0.0018 1.9231 

    0.0023 2.2286 
    0.0000 0.0000 
    0.0011 0.4427 
    0.0009 0.3287 
    0.0007 0.7736 
    0.0025 2.0305 
    0.0027 1.9227 
    0.0025 2.0479 
    0.0034 2.3597 
    0.0030 2.1556 
          

 

     

y = 826.24x 
R² = 0.8876 
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Pseudo-first order ozone kinetic plots uncorrected and background corrected: 

   

 
 

 

       

           

           [methamphetamine] 
         [ppm] [molec/cm-3] k1s-1 

        0 0.00E+00 0.00E+00 
        1.4 2.86E+13 3.72E-04 
        1.16 2.07E+13 4.60E-04 
        0.84 4.11E+13 5.30E-04 
        1.67 1.38E+13 3.47E-04 
        0.56 3.45E+13 3.24E-04 
        

           

           

           

           

           

   

 

 
 

      

          

          

          [methamphetamine] 
        [ppm] [molec/cm-3] k1s-1 

       0 0.00E+00 0 
       1.4 3.45E+13 9.30E-04 
       1.16 2.86E+13 6.92E-04 
       0.84 2.07E+13 5.85E-04 
       1.67 4.11E+13 1.08E-03 
       0.56 1.38E+13 4.52E-04 
       

          

           

y = 1.342E-17x 
R² = 5.263E-01 
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