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Abstract 

Guided Wave Resonant Optical Structures and LED Micro Resonators for Biosensing 

Applications 

Rohit Goswami 

Integrated opto-electronic and nanophotonic devices for sensing application in the fields of 

medicine, microbiology, environmental, safety and defense have attracted considerable 

attention due to their  potential for achieving greater compactness, shorter response times 

and higher sensitivities as compared to non-optical sensing systems. Optical cavity resonant 

devices such as Fabry–Perot interferometers have been extensively used in lasing 

applications and optical sensing has been accomplished through many similar technologies.  

Fiber optic and planar waveguide based resonant devices which use evanescent waves 

for detection of refractive index changes are one of the most widely used approaches for 

photonic sensors. In this work we investigate the simulations, fabrication and 

characterization of resonant optical cavity devices for sensing applications. Morphology 

Dependent Resonances (MDRs) of planar, micro-spherical and micro-cylindrical cavities 

were reviewed for resonance line widths, spacing between modes, and density of 

resonances and experimental observations of internal and external field distributions. We 

focus on planar thin film stacked resonant waveguide geometries, microsphere-waveguide 

coupled resonances, cylindrical Gallium Nitride (GaN) microdisks for passive detection of 

Whispering Gallery Modes (WGMs) and electrically pumped active Resonant Cavity (RC) 

LED disk geometries for Vertical Cavity Modes (VCMs) as structures of interest.  

Advances in stacked thin film coupled waveguide sensors enhance the selectivity and 

sensitivity by measuring the changes of the resonant optical modes and provide an 

integrated platform for label-free molecular detection. The effective surface loading 

detection sensitivity of the planar coupled alumina waveguide transducer was determined to 

be 20 pg/mm2 with a bulk index sensitivity of 5.6×10-4 Refractive Index Units (RIU) for 

aqueous sucrose solutions. For circular geometry based resonators, as the physical device 

size approaches the wavelength of light the MDRs are enhanced by retaining longer photon 



 

path length times and enhancing detection due to its high Q factors. Circular micro-cavities 

not only modify the optical resonances but also distribute the resonant frequencies as 

compared to a planar macro-cavity. The waveguide-coupled microspheres were 

experimentally detected to have a minimum surface coverage limit of 0.192%. Passive 

WGMs in GaN micro-disks showed a variation in mode spacing of 3nm to 7nm (λ2/2πRn) 

as disk radius was reduced from 4.5µm to 2µm. Micro-cylindrical Distributed Bragg 

Reflector (DBR) RCLEDs were designed for layer thicknesses and Multi Quantum Well 

(MQW) placement to enhance VCMs and LED emission output. Experimental and 

simulated LED spectral minima matched at 432 nm and 451 nm confirming VCMs related 

to (λ/2) cavity resonances.  
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Chapter 1 

Introduction 
 

Optical sensors that utilize resonant modes present in planar coupled waveguides 

and in a looped or circular waveguide structures are reviewed in this chapter. This 

provides a background for the present study that analyzes the sensitivity to surface 

refractive index changes obtainable from specific planar and circular geometries of optical 

resonant structures.   

 

1-1 Background of Optical Biosensors 
Optical biosensors are known for their high sensitivity and non destructive analyte 

analysis and detection. Optical sensing is generally based on planar waveguides, surface 

plasmon resonance, Raman scattering, photonic crystals, optical fibers and resonant cavity 

technologies. The working principle is mostly based on adsorption of analyte species and 

changes in optical properties of the surroundings are measured by the transducer. It is a 

powerful detection tool with tremendous applications in environmental, drug analysis, 

homeland security and medicine [1].  

The two main detection methodologies used are fluorescence based detection and 

label free detection. The fluorescence based detection uses a labeled fluorescent tag 

attached to the analyte molecules and fluorescence indicates the presence of target 

molecules. The drawback in this process is that labeling can alter the optical properties of 

target molecules and the quantitative analysis is challenging. On the other hand, a label free 

process is much better controlled and easy for qualitative and quantitative analysis. The 

molecules are detected in their original form without any specific labeling. The adsorption 

of target molecules on sensor surface produces a refractive index change which is 

proportional to the output optical signal.  

The main factors influencing the performance of a biosensor are the quality of 
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transduction signal, microfluidic design, sensitivity and selectivity of target analyte and 

immobilization chemistry. In optical biosensors, sensitivity and selectivity are important 

parameters which evaluate the sensor performance and efficiency. The sensitivity and 

selectivity of a sensor are dependent on the limit of detection of the transducer signal and a 

specific response to target analyte binding. Physically, the sensitivity is a measure of the 

smallest light-matter interaction which can produce a signal higher than the system noise [2-

4]. The best way to make a biosensor more sensitive is to increase the light matter 

interaction, which in most cases is to increase the fraction of evanescent waves interacting 

with the target.  

In the past decade, optical sensing has been a fast growing area and various optical 

structures have been used for label free detection. A number of detection methods 

employing label free optical detection have been reported in the literature which includes 

Raman spectroscopy, interferometers, surface plasmon resonance, optical waveguide and 

optical cavity resonance based biosensors. 

 

1-2 Optical Sensing Technologies 

 

1-2-1 Fluorescent Biosensors  

Fluorescence is the phenomena in which electromagnetic radiation is first absorbed 

and then emitted by a substance and generally the emitted radiation has a lower energy as 

compared to the absorbed light. The incident radiation excites the molecules to a higher 

energy state which depends on the incident wavelength and the relaxation process emits 

radiation which creates the fluorescence effect. The difference in incident and emitted 

radiation depends on the optical properties of the molecule or dyes which is used as a tool 

for biosensing applications. The photosensitive dyes are attached to selective target 

molecules and fluorescent spectra are studied for molecular detection. The fluorescence 

process is characterized by its lifetime, which is the excited time of the molecule and is of 
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the order of few Pico-seconds to Femto-seconds. Fluorescent optical biosensors are widely 

used for cell and tissue analysis as well as DNA sequencing [5]. 

 

Fig 1 Energy Band Diagram for Fluorescence and Phosphorescence [6] 

 

1-2-2 Raman Spectroscopy 

When an electromagnetic wave interacts with a molecule, the electrons in the 

constituent molecules are perturbed periodically at the excitation frequency (ν) of the 

incident wave. This perturbation in the molecular electron cloud leads to oscillations and 

vibrations which create an Induced Dipole Moment. These dipole moment vibrations exist 

for a constant time and result in emission of scattered light.  The collision process of 

electromagnetic waves with matter is considered to be elastic or inelastic. The majority of 

photons colliding with the molecule have no change in energy, which is known as Elastic 

Scattering (Rayleigh scattering), hence leading to an identical emitted wavelength as the 

incident beam. The Rayleigh scattering of sunlight in the atmosphere is the main reason for 

blue color of the sky. A small number of photons either lose or gain energy after colliding 

with the molecule and this is known as Inelastic Scattering. This is also known as Raman 

Scattering, and the wavelength of scattered light is dependent on the interaction of the 

incident EM wave and the molecular structure.  
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Fig 2 Anti-Stokes, Rayleigh and Stokes Scattering Energy Diagram [7, 8] 

In Raman scattering, the energies of incident and scattered photons are different, 

which is explained by the energy band diagram of the absorption and scattering process.  

The energy diagram shows the energy states for Anti-Stokes, Rayleigh and Stokes 

scattering. When the photon reflects with the same energy as the incident photon, then it 

corresponds to Rayleigh scattering. The anti-stokes scattering happens when photon gains 

energy after collision and hence the scattered photon has a higher energy and shorter 

wavelength. When photon energy is lost to the rotations and vibrations of the molecule, the 

scattered photon has lower energy and longer wavelength, which is stokes scattering.   

The anti-stokes scattering is dependent on the number of molecules in the excited 

Vibrational states, which gives rise to anti-stokes peaks in the spectrum. Generally, at room 

temperature more molecules exist in the ground Vibrational states than the excited states. 

Hence, more and higher intensity peaks are observed in the Stokes band rather than the anti-

stokes band [7, 8]. Raman spectra of a molecule can give significant information about the 

molecular structure, and the peak intensities can be characterized for quantitative analysis. 
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1-2-3 Surface Plasmon Resonance 

Surface plasmons are oscillations of “free electron gas” at optical frequencies which 

are confined at the interface between a metal film and dielectric. Due to total internal 

reflection of polarized monochromatic light in the high index dielectric (prism), the 

evanescent field extends across the metal film, which interacts with free oscillating 

electrons [9]. Energy from the incident light is lost to plasmons, resulting in spectral minima 

observed at the reflected output at an acutely defined resonant angle, dependent on the 

index of the analyte medium close to the metal surface. Adsorption of biomolecules on the 

metal film changes the index of the analyte medium (within evanescent field region) and 

produces a shift of the resonance angle known as the SPR shift [10].  

 

Fig 3 Surface Plasmon Sensor Architecture and Detection of Resonance Shift 

The basic instrumentation and working principle of the SPR sensor is as follows. 

When polarized light is incident through a prism on a sensor chip with a thin metal film on 

top, the light is totally internally reflected by the prism-metal interface. On changing the 

angle of incidence, and monitoring the intensity of the reflected light, the intensity of the 
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reflected light passes through a minimum. At this angle of incidence, the light will excite 

surface plasmons, inducing surface plasmon resonance, causing a dip in the intensity of the 

reflected light. Photons of p-polarized light can interact with the free electrons of the metal 

layer, inducing a wave-like oscillation of the free electrons and thereby reducing the 

reflected light intensity. The angle at which the maximum loss of the reflected light 

intensity occurs is called resonance angle or SPR angle. The SPR angle is dependent on the 

optical characteristics of the system, e.g. on the refractive indices of the media at both sides 

of the metal, which is usually gold. The refractive index on the prism side is constant and 

the index of analyte medium adsorbed on the metal surface (within evanescent wave 

penetration depth) is detected as a change in the SPR angle, and provides information on the 

kinetics of biomolecular adsorption on the sensor surface [11-13]. 

A method for enhancing the SPR response sensitivity is to use sensor surfaces that 

would amplify the change in refractive index properties of the sensor surface-solution 

interface. Mass labels such as latex nanoparticles/nanospheres have been linked to analytes. 

The beads amplify the change in refractive index when antibodies bind to the immobilized 

antigen layer on the sensor surface. This leads to a larger shift in resonance angle or 

wavelength. Although SPR technology demonstrates high sensitivity for a variety of 

applications, its lack of portability hinders use in field situations. The component alignment 

necessary to accurately determine resonance angle/wavelength shifts precludes development 

of a small, rugged system. 

 

1-2-4 Resonant Planar Waveguide Sensors 

The planar waveguide based biosensors are mostly used for optical sensing 

applications and are based on a shift of the propagating optical mode effective index 

induced by [14]: 

a) The change of thickness of an adlayer of adsorbed target molecules which are 

transported by gaseous or liquid medium.    
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b) The change of effective refractive index of the waveguide by a homogenous 

target medium serving as a waveguide cover. 

 

Fig 4 Planar Waveguide Based Optical Sensor  

The shift of the effective refractive index produced by a change of cover medium is 

detected by an optical change of intensity, phase and spectrum. Mostly planar waveguide 

based sensors adopt single or stacked layers of waveguides to confine or couple optical 

power and are sensitive to the changes in evanescent field. Integrated optical sensors are 

fabricated using this technology due to its compactness, field ability and high sensitivity. 

 

1-3 Resonant Micro Cavity Sensors 
Resonances are peaks in intensity at certain wavelengths with respect to the input 

coupled wave in a localized system which is called the resonator. The peak intensities are 

caused by the constructive interference of wavelengths that undergo total internal reflection 

which is dependent on cavity dimensions. These peaks are called the resonant wavelengths 

of a resonator. We can interpret these modes as a wave that constructively interferes with 

itself after internal scattering and propagation. These modes are known as Planar Cavity 

Modes, Whispering Gallery Modes and Vertical Cavity Modes and shift in the spectral 

peaks can be measured due to analyte binding on the resonator surface. Micro cavity 

resonators are emerging as an attractive technology for single molecule sensors. Other 

applications also include switching, telecommunication and optical amplification using 
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guided wave micro resonators [15].  

 

Fig 5 Resonance Peak Shift with Molecular Absorption on a Circular Micro-resonator 

The main advantage is the long photon path time inside the cavity and higher 

interaction with target molecules which enhances the sensitivity as compared to traditional 

planar waveguide sensors. The coupled light into the micro resonator undergoes total 

internal reflection at certain wavelengths which are an integer multiple of the cavity length 

and produce higher intensity modes. The changes in the evanescent tail of these modes can 

be detected by an optical power drop at the output or a spectral shift. Peak shifts of a few 

picometers can be detected with single molecule attachment which makes these types of 

sensors among the most sensitive.   

 

1-3-1 Planar Waveguide Coupled Resonators: The SPARROW Device 

The Stacked Planar Affinity Regulated Resonant Optical Waveguide (SPARROW) 

biosensor is a device that exploits evanescent wave interactions and power transfer between 

two waveguides for bio-detection and identification [16].  The target device is a potentially 

inexpensive, compact, fieldable device that offers high sensitivity, environmental stability, 

and reduced fabrication complexity. The field of biochemical sensing technology has 
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witnessed great advancements over recent years. In particular, devices that can sense and 

measure in a fast, efficient and cost effective way are much in demand. Our device relies on 

precisely tuned aluminum oxide waveguides which are fabricated on a borofloat glass 

substrate and separated by a thin silicon dioxide layer. Under controlled E-beam deposition 

techniques, thin alumina nano-layers were deposited which were in resonance with each 

other. The ion beam assisted deposition (IBAD) technology was used to obtain lower 

coupling losses and scattering losses through the densification of the films and by 

elimination of porous scattering centers [17]. Optical losses present in the waveguides can 

still interfere with the effective working of the biosensor. Hence, to overcome this issue the 

use of a low temperature annealing procedure was introduced which lowered the losses to a 

great extent.  

 
Fig 6 SPARROW Device Architecture  

 

Light from a lasing source is launched into a thin, high index, high contrast optical 

waveguide stack structure, thus creating an evanescent field. The high contrast waveguide 

structure results in the penetration of the evanescent field tuned into the alumina layers, thus 

the propagation of the light is extremely sensitive to changes of the index of refraction on 

the surface of the waveguide. The guiding layer thickness of the waveguides used in this 

biosensor is on the order of 200 nm, changing the index of refraction on the surface of the 

waveguide results in a relative phase difference between the TE (Transverse Electric) and 

TM (Transverse Magnetic) modes. This phase difference is directly dependent upon the 

material on the surface of the waveguide and also causes a variation in the output laser 

intensity. Particular, biological molecules can be detected at low concentration by attaching 

them to the surface of the waveguide by means of a correct antibody. 
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1-3-2 Whispering Gallery Mode Devices 

Optical resonances in a circular micro cavity generate propagation modes, known as 

whispering gallery modes (WGMs) which produce narrow spectral peaks. Micro resonators 

with WGMs can be used for biosensing applications as the shift in spectral peaks 

corresponds to the attachment of target molecules on the resonator surface. The spectral 

shifts are sensitive to the local refractive index changes and the experimental sensitivity is 

about five times greater than predicted by Mie theory. Hence, these resonators can be used 

as exceptional sensors for molecular detection. Micro resonator geometry varies from 

Microspheres to cylindrical disks or ring structures coupled to planar waveguides which can 

be used to pump light into the resonator. The technique is economical and greatly attracting 

attention for sensing and lasing applications. The WGM sensors are ideal for biosensing as 

they don’t require labeling of molecules and show enhanced sensitivity as compared to 

planar waveguide based sensors. The longer photon path time in an optical cavity enhances 

the evanescent wave and target molecule interaction that cannot be achieved in a planar 

device. 

 

1-3-3 LED Resonant Devices 

Semiconductor laser diodes are favored in various applications of optical data 

communication, optical switching and storage devices [18, 19]. However, high power 

consumption has been a major obstacle in the use of these devices. Recent interest has been 

seen in the Resonant Cavity Light Emitting Diodes (RC-LED) which can reduce the power 

consumption due to high intensity resonant optical modes that are used for lasing 

applications. Although material properties are certainly of interest for improvement of 

optical characteristics, device geometry cannot be neglected. The generation of VCMs 

(vertical cavity modes) in circular geometry RC-LEDs is a novel area which is still under 

study and may open doors for sensing without any need for external optical sources. By 

understanding the working of the vertical cavity modes of a RC-LED, a micro-cavity design 

can improve the extraction efficiency by enhancing the modes and analyzing mode shifts 
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for bio sensing purposes.  

In a planar LED when electrical carriers are injected, photons are generated by 

spontaneous emission in the multi-quantum well (MQW) active region. Two mirror facets 

create a resonant cavity for stimulated emission to occur. Stimulated emission is initiated by 

an already existing photon and an emitted photon which matches the original photon not 

only in its wavelength but also in the direction of propagation [20]. Photons generated by 

spontaneous emission travel along the longitudinal direction and resonate, gaining more 

power as electrical input power increases. The circular cavity enhances the total internal 

reflection and retains the photons in the device cavity creating high intensity resonant 

modes which reduces the extraction efficiency. Properly designed, high Q-factors can be 

achieved for these optical modes resulting in an enhanced LED emission. The high internal 

resonance efficiency of disk cavities has received increased attention in recent years [21-

26]. 

These resonators require low threshold power and produce extremely sharp 

emission peaks, which are correlated with a high Q-factor (ratio of stored energy to average 

power loss) [27]. The disk resonators have proven to have high mode efficiency as 

compared to hexagonal or other polygonal resonators as there is loss of photons at the sharp 

edges of the hexagonal structure.  

 

1-4 Motivation and Objectives 
Optical fiber based sensors and planar waveguide based evanescent wave sensors 

have gained attention in the last decade [28, 29, 30]. The sensing is based on total internal 

reflection effect (TIR) and has advantages of fast, real time, non-destructive and sensitive 

detection of analyte molecules. The planar geometry is applicable to the integrated 

photonics technology and allows the traditional fabrication techniques.  

This research focuses on the study of optical resonant structures as mesoscopic 

systems which provide an interaction platform between the microscopic and the 
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macroscopic for sensing applications. The optical processes in these systems are leaky as 

they rely on interaction of molecules with their extended modes of radiation (evanescent 

fields). In the past decade much interest has developed in the use of optical processes in 

Fabry-Perot microcavities, optical fibers and dielectric spheres for sensing. The planar 

coupled optical structures are readily fabricated and form the basis of integrated optics but 

have a limited interaction of resonant modes with the environment. Looped waveguide or 

cylindrical waveguide geometries form a circular mode which has longer photon path length 

and increased interaction but pose fabrication and optical coupling challenges. These two 

geometries are chosen for this study, given their complementary nature an application 

potential. The recent advancements in Nanophotonics devices and sensors have developed a 

need for integrated miniature optical devices which can be used to detect at a molecular 

scale. The fusion of nanotechnology and photonics brings new challenges in the nano-

fabrication and sensing areas. The most researched technical problem in integrated photonic 

sensors is the sensitivity enhancement at a molecular scale producing detectable signals. 

The sensitivity is based on the optical losses of the resonator optical sensor and the 

interaction of the optical modes with the analyte molecules. Hence planar, spherical and 

cylindrical optical resonators are considered to address the sensitivity problem and to 

analyze different geometries of evanescent wave interaction with the analyte.  

The first goal was to design and fabricate a aluminum oxide planar resonant stack 

waveguide (SPARROW) structure and to characterize the transducer performance with a 

limited photon-analyte sensitivity interaction platform. The work results in the first 

sensitivity results from such a structure for detection of aqueous sucrose solution refractive 

index changes and non-functional fluorescent polystyrene microsphere attachment events. 

The study will also result in the design, fabrication and characterization of an optically 

pumped GaN disk structure to study the circular WGM resonances.  The cylindrical 

resonant cavity sensors are more compact and sensitive as compared to their planar 

waveguide counterparts. By enhancing the evanescent wave interaction the sensitivity and 

accuracy of detection is improved.  
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GaN based LED’s are the most extensively used for illumination because they cover 

a wide range of wavelengths and are primarily used in the semiconductor industry making 

them a  favorite for integrated photonic structures. This research investigates the novel 

concept of generation and detection of vertical cavity modes in an electrically pumped 

MQW LED device with integrated Bragg reflector. LED micro resonators were simulated 

for characterization of cavity modes, as well as the design and placement of LED layers. 

Generation of VCMs in a wide band gap InGaN/GaN Multiple Quantum Well (MQW) 

RCLED structure that serves as both resonator and photon source are studied for enhance 

LED output emission and sensing applications.  
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Chapter 2 

Theory 
 

2-1 Planar Dielectric Waveguide 

The goal of this section is to establish the fundamental concepts and background of 

guided waves in a planar slab dielectric waveguide. It also explains the basic equations 

needed to analyze optical slab waveguide structure with a brief review of Maxwell 

equations, boundary conditions; TE/TM guided modes, evanescent waves and the 

dispersion relation. 

 

2-1-1 Maxwell's Equations and Electromagnetic Analysis 

Electromagnetic waves are generated by time–varying currents or charges and are 

transverse in nature. The time varying fields are electric and magnetic, which can be 

represented in a vector form and have both magnitude and direction. The electromagnetic 

waves propagation and the variation of electric and magnetic field vectors have been well 

established and governed mathematically using Maxwell Equations [31, 32]. The integral 

and differential form of these equations can be written as follows.  

 

2-1-1-1 Maxwell's Equations in Integral Form 

The integral form of Maxwell equations explains the interaction of electromagnetic 

phenomena with finite objects of specified shapes and boundaries in a physical 

environment. The integral form of Maxwell's equations is derived from its differential form 

by utilizing the Stock's divergence theorem [33]. 
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+= ∫∫      (Generalized ampere’s law)

  

1.2  

 ∫∫ =
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dvd vs ρ.�                     (Gauss's law)                                             1.3  

 0. =∫ ds
s

B  1.4  

Where: 

E is the electric field intensity 

B is the magnetic flux density 

H is the magnetic field intensity 

D is the electric flux density 

ρρρρv is the volume density of free charges 

J is the density of free current 

The constitutive relations that connect D, B and J with E and H for linear, isotropic 

and homogenous media are given by [31, 32]: 

 ED ε=  1.5  

 HB µ=  1.6  

 EJ σ=  1.7  

Where σµε and,  are scalar constants in this case, which is permittivity, 
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permeability & conductivity of any given medium respectively. 

 

2-1-1-2 Maxwell's Equations in Differential Form 

The Maxwell's equations in differential form are applied to describe the related field 

vectors, current densities and charge densities of electromagnetic waves at any point in 

space-time of a given medium. By applying Stokes divergence theorem to equation (1.1) 

through equation (1.4) [33]:  

 ( )∫∫∫ ×∇= sAlA dd
l

..       (Stokes theorem)                                         1.8  

 ( )∫∫∫∫ ×∇= dvd
s

.. AsA     (Divergence theorem)  1.9  

We get,  

 
t∂
∂−

=×∇
B

E                                               1.10  

 
t∂

∂
+=×∇

D
JH     1.11  

 vρ=∇D.                                    1.12  

 0. =∇B  1.13  

The Maxwell’s equations can be solved for the condition of a dielectric waveguide, 

having a charge free, lossless, linear and isotropic medium, where vρ and J will be 

eliminated [31, 32, 33].  

 
t∂
∂−

=×∇
B

E                                               1.14  
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t∂

∂
=×∇

D
H     1.15  

 0. =∇D                                    1.16  

 0. =∇B  1.17  

The above Maxwell's equations represent a charge free waveguide medium and can 

be solved as time varying fields. 

 

2-1-1-3 Maxwell's Equations for Harmonic Fields 

A time-varying harmonic field varies sinusoidaly with time and can be represented 

as [34]: 

 ( ) ( )tietzyx ωEE Re,,, =                                               1.18  

 ( ) ( )tietzyx ωHH Re,,, =     1.19  

 ( ) ( )tietzyx ωDD Re,,, =                                    1.20  

 ( ) ( )tietzyx ωBB Re,,, =  1.21  

Here ω is the angular frequency of the harmonic fields, and in order to derive the 

Maxwell's equations for a free charge, lossless medium, we can take explicit derivatives of 

B and D with respect to time [34]: 

 HE ωµi=×∇                                               1.22  

 EH ωεi=×∇     1.23  

 0. =∇E                                    1.24  
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 0. =∇H  1.25  

 

2-1-1-4 Helmholtz Equation 

The wave equation can derived in its sinusoidal steady state form as Helmholtz 

equation. Taking curl of the Maxwell equations for harmonic fields [34]: 

Taking the curl of Eq. (1.22) 

 ( )HE ×∇=×∇×∇ ωµi                                               1.26  

 ( )EE ωεωµ ii−=×∇×∇                                               1.27  

 Eµεω2=                                               1.28  

Using the vector identity ( ) AAA 2. ∇−∇∇=×∇×∇ ,  

And 0. =∇E ,  

Then Equation (1.28) becomes, 

 022 =+∇ EE µεω                                               1.29  

Similarly, taking the curl of Equation (1.23) 

 ( )EH ×∇=×∇×∇ ωεi                                               1.30  

 HH εµω 22 =∇−                                               1.31  

 022 =+∇ HH εµω                                               1.32  

This is the Helmholtz equation in its steady state form. In next section the various 

forms of Maxwell's equations can be applied to analyze the electric and magnetic field 
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vectors across any given boundary between two media. 

 

2-1-2 Boundary Conditions 

The boundary conditions are necessary in order to evaluate an electromagnetic 

problem which involves contiguous regions or various constitutive parameters, and the 

variation of field vectors E, D, B and H at any given interface. We will deal with the 

boundary conditions of a dielectric waveguide in determining the fields on either side of the 

boundary. The Maxwell's equations in integral form are applied [32, 34]: 

  0. =∫ lE d                                               1.33  

 Qencd =∫ sD.                                               1.34  

The boundary conditions for a rectangular and a disk structure across media 1 and 2 

is analyzed. The electric field existing in a region consisting of two different dielectrics is 

considered as E1 and E2, and with respective permittivities of: 

   11 roεεε =                                               1.35  

 22 roεεε =                                               1.36  

 

 

 

 

 

Fig 7 Dielectric-dielectric boundary across two media 
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The normal component of the displacement vector Dn is continuous across the 

boundary in the disk dielectric structure of top surface area ∆s and height ∆H. Whereas the 

tangential component of electric field Et is continuous across the boundary in the 

rectangular dielectric structure. The Maxwell integral equation (1.33) is applied across the 

closed path a b c d a as shown in figure 7. Assuming that the path is small enough to ignore 

any variations of the electric field, we get [31-34]:  

 lElE tt ∆−∆= 210                                               1.37  

 tt EE 21 =                                     1.38  

Then, the tangential component of electric field Et undergoes no change at the 

boundary and it is said to be continuous across the boundary.  

Since, 

 nt DDED +== ε                                               1.39  

Equations (1.35) and (1.36) can be written as: 

 

2

2
21

1

1

εε
t

tt
t D

EE
D

===                                               1.40  

 

2

2

1

1

εε
tt DD

=                                     1.41  

Since the tangential component of displacement vector Dt undergoes some change 

across the interface, Dt is said to be discontinuous across the interface. Similarly, by 

applying equation (1.34) to the disk dielectric structure of Fig 7.  

As 0→∆h  , we get: 

 sDsDsQ ns n ∆−∆=∆=∆ 21ρ                                              1.42  
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 snDD n ρ== 21                                     1.43  

Here, ρρρρs is the free charge density present at the boundary. If no charges exist at the 

interface, then ρs = 0 and therefore: 

  
2211 coscos θθ DD =                                               1.44  

 nDD n 21 =                                     1.45  

Hence, the normal component of displacement vector Dn undergoes no change at 

the boundary.   

Since, ε=D , therefore: 

 nn EE 2211 εε =                                               1.46  

Considering D1 or E1 and D2 or E2 making angles 1θ  and 2θ with the normal to the 

interface as shown in figure 8 [31-34]: 

 

 

 

 

 

Fig 8 The Refraction of displacement vector D at a dielectric-dielectric boundary 

Using equations (1.40) and (1.41): 
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θθεθε == or                                     1.48  

Since 11 rεεε =  and 22 rεεε = : 

  

2

1

2

1

tan
tan

r

r

ε
ε

θ
θ

=                                               1.49  

This is the law of refraction of the electric field at the boundary of two medium 

which are free of charges [34]. This law can be explained in another form as Snell’s law in 

the next section. 

 

2-1-3 Reflection and Refraction Analysis 

It is necessary to understand how dielectric structures exploit various optical 

properties of the material for the propagation of electric and magnetic fields. The laws of 

reflection and refraction examine the behavior of fields at a boundary between two medium. 

Assuming a light wave incident on a smooth boundary between two homogeneous 

media of refractive indices n1 and n2 (n1 > n2), then a part of wave is transmitted from 

region n1 to n2. The angle of incidence is always equal to angle of reflection. 

 ri θθ =                                               1.50  

The angle of transmitted wave, θt is related to incident angle θi by Snell’s law [35]: 

 ti nn θθ sinsin 21 =                                     1.51  
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Fig 9 Reflected and Refractive Wave at a Boundary Interface 

When a light beam moves from a region of higher refractive index to a region of 

lower refractive index then θt > θi and at some particular angle of incidence, assuming that 

none of the beam is transmitted in the medium of lower refractive index then Snell’s law is 

simplified to [35]: 

 

1

2sin
n
n

i =θ                                               1.52  

 








= −

1

21sin
n
n

cθ                                               1.53  

This relation is defined as the critical angle and for angles of incidence greater than 

this critical angle, the incident beam experiences ‘total internal reflection’ and no light is 

transmitted across the boundary. This is the phenomenon that is the basis of propagation of 

light in an optical waveguide. 
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2-1-4 Goos-Hanchen Effect and Evanescent Waves 

As explained in the previous section, at angles of incidence greater than the critical 

angle the light beam undergoes a total internal reflection and is not transmitted into the 

medium of lower refractive index. The Goos–Hanchen shift is the small displacement that a 

light beam undergoes when it is totally internally reflected at the interface of two medium It 

appears as if the incident light penetrates first into the lower refractive index medium and is 

also known as an ‘evanescent wave’ before being totally reflected back into the high index 

medium. 

The resulting Goos-Hanchen displacement at the interface is given by [36]: 

 

( ) 2
2

2
1

tan

nn
ZGH

−
=

θ
π
λ

                                              1.54  

 

 

 

 

 

Fig 10 Goos-Hanchen Displacement at the interface of two medium 

Where θ is the angle of incidence, and by differentiating equation (1.54) with 

respect to n2 we get the sensitivity [36]: 
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the change of Goos Hanchen shift at the waveguide cladding interface through the cover 

medium. 

The evanescent wave intensity I(x) decays exponentially with perpendicular 

distance from the interface [36]: 

 
d
x

oex
−

= II )(                                               1.56  

Where, Io is the intensity at x=0 (at the interface between two media of different 

refractive indices) and d is the ‘Penetration Depth’ that represents the effective depth of the 

evanescent wave: 

 ( ) 2/12
2

22
1 sin

4

−
−= nn θ

π
λ

d                                              1.57  

Here d à∞ and θàθc , the value of Io depends on θ and can be several times 

stronger than the original intensity of the incident beam.  

 

2-1-5 Planar Optical Waveguides 

Optical waveguides are structures that confine and guide light waves for 

propagation over a distance with minimal transmission losses. The phenomenon of total 

internal reflection causes the light rays to propagate through an optical mode in the 

waveguide. The optical fiber is a cylindrical waveguide which can guide multiple optical 

modes and is an excellent medium for propagation over longer distances. For the condition 

of total internal reflection the core of the fiber is made of higher refractive index as 

compared to the cladding. Waveguides are classified as step index and graded index, in 

which step index have uniform refractive index in each layer whereas graded index has a 

continuously varying index profile in the core. The planar waveguides confine light in one 

transverse dimension whereas channel waveguides confine light in both transverse 

directions. Discussing the behavior of electromagnetic waves in dielectric media will help 
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us to analyze dielectric wave guides.  

Our aim in this section is to develop the mathematical model that will enable us to 

analyze and design a waveguide structure. This general model can be applied to obtain the 

modes in a dielectric slab Waveguide.  

 

2-1-5-1 Basic Waveguide Equations   

We will design an analytical model to create a dielectric waveguide for propagation 

of optical energy in a given direction. We define the longitudinal axis of our waveguide as 

the Z- axis and design it such that energy is propagating in the waveguide in the Z-direction 

with a longitudinal propagation constant β .  

The electric and magnetic fields in a planar waveguide can be written as: 

 z-i
o e = )y  , x ( E  = ) z ,y  , x ( E β                                              1.58  

 z-i
o e = )y  , x ( H  = ) z ,y  , x ( H β                                              1.59  

Using Maxwell's equations the above equations can be expanded to [31-35]: 
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Using equations (1.58) and (1.59): 

,Exi
z
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∂
∂

,Eyi
z
Ey β−=
∂
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,Hxi
z
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,Hyi

z
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∂
∂

                             

1.64 

Hence we obtain the x, y and z components as: 
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To express transverse components in terms of the longitudinal components, we can 

express Ex, Ey, Hx, Hy in terms of Ez and Hz [31-35]: 

x
E

y
H

E
i

i

Ei
x
E

Ei
i
i

y
H

zz
x

x
z

x
z

∂
∂

+
∂
∂

=−∴

=





∂
∂

−−
−

+
∂
∂

ωµ
β

ωµ
βωε

ωεβ
ωµ
β

)(

.

2
                          

                

1.71 

Multiplying both sides of above equation by ωµi− :  
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Therefore the transverse components of the electric and magnetic fields Ex, Ey, Hx, 

Hy were expressed in terms of the longitudinal components Ez and Hz. These equations form 

the basis of a planar waveguide and can be modified to define the analytic model of a slab 

waveguide in the next section. 

 

2-1-6 Scattering/Radiation Losses in a Planar Waveguide 

The purpose of this section is to derive an analytical expression for 

scattering/radiation loss in a planar dielectric waveguide. Optical transmission loss in a 

dielectric waveguide is dependent on absorption and scattering losses. The absorption of 

electromagnetic energy in a dielectric structure is described by the absorption coefficient α 

[37]: 

ok λπα /4=
                                          

1.77 

Here, λo is the wavelength in free space and k is the imaginary part of the complex 

refractive index: 

iknn += `
                                          

1.78 

The complex dielectric permittivity is related to the complex refractive index by: 

2
21 )`( ikni +=+ εε

                                          
1.79 

The calculated absorption coefficient in our case is negligible, therefore losses are 

assumed to be totally dependent on the radiation/scattering modes. 

Scattering losses are present due to in-homogeneous refractive index and due to 

surface roughness. The inhomogeneous refractive index and surface roughness causes the 

coupling of the fundamental guided mode to the radiation modes and is the main cause of 

power loss at the output.  

The inhomogeneous refractive index causes Rayleigh scattering and can be 
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described by [38]: 

4)/85.0(7.1 λ×=LS
                                          

1.80 

The average Rayleigh scattering loss in a waveguide can be described by [39]: 

∫∫∂=∂
A

ss dxdyyxEyx ),(),( 2

                                         
1.81 

Here, ∂s (x,y) is the Rayleigh scattering loss at point (x,y) and can be described as 

[39]: 

CoreForyxnCyxs ,/]1),([),( 42
11 λ−=∂

                       
1.82 

CladdingForyxnCyxs ,/]1),([),( 42
22 λ−=∂

                   
1.83 

Where, n1 and n2 are refractive index of waveguide core and cladding respectively 

and C1 and C2 are Rayleigh scattering coefficients. The refractive index of the core is 

generally denoted as (n1 + δn), where δ is the surface roughness which changes the core 

refractive index by a factor δn. The scattering losses in a waveguide due to surface 

imperfections can be derived using perturbation theory as shown in literature by Payne and 

Lacey [40]. 

The perturbation theory is valid when δ << d, where d is the waveguide thickness 

and δ is the waveguide surface roughness. The average surface roughness between any two 

random points separated by distance ‘u’ is given as < δ> = 0. 

This describes a uniform boundary between two points with surface roughness 

fluctuations above and below this boundary. To understand the relative behavior of surface 

roughness between two random points correlation function is used. It describes the 

correlation between random variables at two different points in space. When measuring the 

same quantity of random variables between two points it’s called autocorrelation function 

[41]. 



31 

 

 

)()()( uCuzfzf >=+<
                                          

1.84 

When the surface exhibits exponential correlation, and sample interval is one tenth 

of the surface correlation length [42]:  

)/()()()( 2
cluExpuCuzfzf −=>=+< σ

                     
1.85 

For Gaussian correlation and higher sample intervals: 
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1.86 

Here lc is the correlation length over which the function C(u) falls to 1/e of its 

original value and σ2 is the standard deviation of surface roughness equal to < δ2>. The 

surface roughness and surface correlation can be related using the Fourier transform to get 

the power spectrum S(γ) which is related to the scattering loss [41, 42].  
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Hence the power spectrum can be derived in the form of a Lorentzian when the 

surface is exponential: 

)/)(/()( 222 γπδγ cc lllS +=
                                         

1.89 

As lc à 0, we have a constant power spectrum. When the surface is Gaussian then: 

)4/exp()2/()( 222 γπδγ cc llS −=
                                         

1.90 

For surface roughness without any correlation, all spatial frequencies are radiated 

independently: 
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Prad = ∫ S (γ) dγ                                       1.91 

The frequencies that lead to significant loss are β-kn2 < γ < β+kn2 [43]: 

Prad = β-kn2 ∫β+kn2 S (γ) dγ
                                    

1.92 

The magnitude of the scattering radiation is scattered at an angle θ from the 

waveguide axis: 

γ = β – kn2 cosθ
                                 

1.93 

Summing over all radiation angles: 

Prad = 0 ∫π S (β – kn2 cosθ) dθ
              

1.94 

Using Beer Lamberts law the attenuation factor for power loss in a waveguide can 

be expressed as: 

P = Po e-αL

            
 1.95 

Here Po is the initial power and L is the waveguide length. It can also be written as: 

α = 1/L (Po-P/ Po)
 
 1.96 

The attenuation factor can be written as scattered power in the substrate and 

cladding [44]: 

α = 1/L 0 ∫π (Psub-rad α1 ) dθ + 1/L 0 ∫π (Pclad-rad α2 )dθ 1.97 

α = (δc
2lc/λ3)(n1

2-n2
2)Ec

2 0∫π(C/[1+(β-n2×k×cosθ)2lc
2dθ+ 

(δs
2ls/λ3)(n1

2-n0
2)Es

2 0∫π(S/[1+(β-n0×k×cosθ)2ls
2dθ 

1.98 

Here lc and ls are correlation lengths, Ec and Es are electric fields at cladding and 

substrate. β is the propagation constant and C and S are coefficients related to waveguide 

indices, angle, wavelength and thickness. The integrated angle from 0 to π sums the radiated 
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power in all directions. For a single TE mode in a symmetric waveguide (n0 = n2) the 

attenuation factor can be written as [45]: 

α = (1/ρ5β) (V2U2W/1+W)   0 ∫π (δc
2 lc / π[1+ (β-n2 × k × 

cosθ) 2  lc
2 dθ 

1.99 

Here V = k ρ (n1
2-n2

2)1/2 = √U2+W2 is the degree of guidance, ρ is the half width of 

the waveguide, U = ρ (k2 n1
2-β2)1/2 and W = ρ (β2-k2 n2

2)1/2. This result can be applied to 

more general asymmetric waveguide and having two components of the attenuation factor 

for substrate (n0) and cladding (n2) when (n0 ≠ n2). 

αwg = (1/2ρ1
5β) (V1

2U1
2W1/1+W1) 0∫π(δc

2lc/π[1+ (β-

n0×k×cosθ)2lc
2 dθ+(1/2ρ2

5β)(V2
2U2

2W2/1+W2) 

0∫π(δc
2lc/π[1+ (β-n2×k×cosθ)2lc

2dθ 

1.100 

 Hence α denotes the total scattering loss due to surface roughness causing radiation 

modes in the substrate and cladding. The theoretical plot for the scattering loss can be 

simulated and plotted as a function of surface roughness. 

 

2-2 Dielectric Slab Optical Waveguides 

The dielectric slab waveguides are the simplest and mostly used waveguide 

configuration. Two types of optical modes present are the guided mode and radiation mode. 

This waveguide structure is important to understand the light guiding properties and lays a 

basis for more complicated structures [46, 47, 48, 49]. 

 

2-2-1 Three Layer Step Index Dielectric Slab Waveguide 

A three layer step index planar dielectric waveguide is shown in the figure below. 

The three regions shown are core, cladding or superstrate and the substrate. The core has 
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higher refractive index and light wave propagates here in an optical mode. 

 

 

 

Fig 11 A Three-Layer Dielectric Slab Waveguide 

We can analyze the dielectric slab waveguide and obtain expressions for the optical 

guided modes. The mode propagation is in the z-direction as shown in Figure 11. The slab 

is assumed to be infinitely extended in the y axis and by symmetry there is no variation in 

the field distribution in y direction. Hence the planar waveguide equations can be simplified 

to [46-49]: 
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These equations form the electric and magnetic fields of an optical waveguide. 
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2-2-2 Guided Modes of the Symmetric Waveguide 

A symmetric slab waveguide has a substrate and superstrate of the same refractive 

index and higher index core. There are a finite number of guided modes supported by the 

waveguide and infinite number of radiation modes. The higher index of the core satisfies 

the condition of Total Internal Reflection (TIR). The modes can be odd or even in their 

transverse field of distribution as shown in the figure. The numbers of guided modes 

supported are dependent on the thickness 2d, the wavelength λ and indices of refraction of 

the three layers. 

 

Fig 12 Electric Field Distribution of different modes in a Symmetric Slab Waveguide 

 

2-2-2-1 Transverse Electric (TE) Guided Modes 

In order to obtain the modal solution of the wave propagation in the z direction of 

the waveguide, the wave equation can be solved to obtain the Helmholtz equation: 
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2.5 

Using the above equation and imposing the boundary conditions at the substrate-

core and superstrate-core interfaces, the modal solutions and propagation constants can be 
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obtained. Hence the single non-zero electric field component Ey of the TE polarized wave 

can be obtained. Using Maxwell's equations, the corresponding two non-zero components 

of the magnetic field Hx and Hy can also be obtained. The field components of the TE 

polarized waves are given by [41]: 
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Applying the boundary conditions for the continuity of Hz, the following TE 

eigenvalue equation can be obtained [46-49]: 

)/()()2tan( 22 pqqpqqaq −+=
                                         

2.11 

Where q2 = ko
2 n1

2 - β2 and, p2 = β2 - ko
2n2

2 

This equation relates wavelength, refractive indices, and core thickness and 

propagation constants. An example of the TE mode patterns for a three-layer symmetric 

slab waveguide is shown in the figure below. 
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Fig 13 TE Mode Patterns of a Symmetric Waveguide 

2-2-2-2 Transverse Magnetic (TM) Guided Modes 

Similarly for the case of Transverse Magnetic modes the non vanishing field 

components are Hy, Ex and Ez. The Helmholtz equation given becomes [41]: 
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Ex and Ez in terms of Hy are given by: 
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2.14 

These represent the electric and magnetic fields for transverse magnetic modes of a 

planar slab waveguide. The waveguides coupling for a more complicated case of a multiple 
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slab waveguide can be seen in the next section. 

 

2-2-3 Coupled Mode Theory 

Optical power can be transferred between the resonant waveguides. If fields of the 

two waveguides overlap then light can be coupled from one into the other. Coupled mode 

theory has been applied to analyze the electromagnetic wave propagation in integrated 

optics and the propagation parameters of an electromagnetic wave in the waveguide change 

at perturbations. The analysis of coupled waveguide system is based on the modes, 

propagation constants and amplitudes of the wave in individual waveguides. If the mode 

profiles are independent of each other (orthogonal) then orthogonal coupled theory applies, 

otherwise it is non-orthogonal and the solution is obtained for both the cases from the linear 

superposition of the waveguide modes. If the device consists of weakly coupled 

waveguides, then similar propagation constants are used and orthogonal coupled mode 

theory can be applied. Consider two guided modes which have the amplitude a1 and a2 

respectively with implicit time dependence exp (jwt). 

 

Fig 14 Coupled Waveguides and propagation of modes [50] 

If they are infinitely apart from each other then they would obey the equations [41]: 
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Where β1 and β2 are the propagation constants, and if the waveguides are brought 

close, the evanescent fields would interact with each other and hence mode coupling occurs. 

If the coupling is weak then equation would become [41]: 
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Where, (K12, K21) and (K11, K22) are the mutual and self coupling coefficients 

respectively. If the waveguides are lossless then the total power has to be determined 

constant. Hence, 
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For the uniform couplers both the propagation constants and the coupling 

coefficients are independent of z and hence equations above can be solved analytically. For 

simplification we assume [41]: 
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Thus the beta values can be written as [41]: 
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Assuming only one waveguide is excited then a1 = 1 and a2 = 2, the power in 

waveguides can be written as [41]: 
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1 SzSzzP η+=

                          
                

2.30 
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2.31 

Where, η = tan-1 (k/δ) 

At z = Lc maximum power transfers from waveguide 1 to waveguide 2 and this Lc 

is known as coupling length and is given by Lc = π/2S. 

Coupling length is the distance at which maximum power transfer occurs from one 

waveguide to the other waveguide. If the coupling length is higher the power transfer rate is 

slow and with lower coupling length the device would be prone to noise. Depending on the 
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coupling length a suitable interaction length for sensing would be selected. A higher 

interaction length and lower coupling lengths would result in lot of power transfer from one 

waveguide to other and may result in higher losses. 

 

2-2-4 Sensitivity Evaluation for TE modes 

A slab waveguide structure can be constructed as an evanescent field sensor for 

which the waveguide modes act as the sensing feature. The guided electromagnetic field of 

the waveguide mode extends as an evanescent field into the cladding and substrate media 

and senses any changes of effective refractive index of the waveguide surface.  

The effective refractive index of the propagating mode depends on the structure 

parameters, e.g. the guiding layer thickness and dielectric permittivity and magnetic 

permeability of the media constituting the waveguide. As a result, any change in the 

refractive index of the covering medium results in a change in the effective refractive index 

of the guiding mode. The basic sensing principle of the planar waveguide sensor is to 

measure the changes in the effective refractive index due to changes in the refractive index 

of the covering medium [51]. 

 

Fig 15 Schematic representation of slab waveguide sensor 

Assuming a homogeneous change of index in the cover medium, the sensitivity is 
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defined as the change in the effective refractive index through the cover medium [52]: 
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In our waveguide structure, with a constant ko (wave number) and ns (substrate 

index), and varying nc (cover index), N (Effective index of waveguide stack), and sfc γγγ ,,  

(Propagation constants), we find 
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For a homogeneous analyte surface loading in the cover medium, the cover index 

and effective index of the stack are proportional to the change of propagation constants and 

to the TE modes of the waveguide. Hence, sensitivity of the TE mode of a slab waveguide 

sensor can be evaluated using the above relation. 

 

2-2-5 Resonant Waveguide Structure as Biosensors 

The optical modes of the waveguide resonators extend outside the cavity as 

evanescent waves and changes in the refractive index on the surface can produce a shift of 

the resonance wavelengths which can be used for biosensing purposes. The light 

propagation in optical modes undergoes total internal reflection (TIR) based on Snell’s law 

and reflection angle above the critical angle [35]: 

2211 sinsin θθ nn =
                                          

2.34  
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2.35  

For total internal reflection to take place it is required that n1>n2, where n1 is the 
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material’s (core) refractive index and n2 is the surrounding material refractive index 

(cladding). The total internal reflection creates an evanescent field in the surrounding 

medium and decays exponentially. The interaction of this evanescent wave with refractive 

index changes can be detected and used for sensing purposes. The evanescent field is 

described as [35]: 

)/exp()( po dxExE −=
                                          

2.36  
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Here dp is the penetration depth where the evanescent field intensity drops to 1/e of 

its maximum value from the interface (x=0). Eo is the field intensity at the interface, λ is the 

wavelength of light and θ is the angle of incidence at the interface. The optical output of the 

waveguide modes are proportional to index changes in the evanescent field and can be 

detected. Also spectral changes in the optical output can be detected to get a signature 

analysis of the bound molecules.    

 

Fig 16 Evanescent wave (50 nm) interaction with analyte in microchannel (1200 µm) 

The figure above shows the interaction volume of the evanescent field with the 

analyte in microchannel. At various concentrations of analyte aqueous solutions the amount 

of surface loading can be calculated. For a laser beam width of 0.5 mm, channel length of 

1200 µm and evanescent field of 50 nm the total amount of sucrose (for a 0.1% solution) 
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present in the interaction area is 50 pg /mm2. The optical transducer changes will be 

calculated to the steps of 50 pg /mm2 later shown in the results section and a minimal 

change of optical power to analyte changes will be measured as the limit of detection 

(LOD) of the transducer.   

From a measurement of the optical output the properties and amount of this analyte 

can be determined. Two types of sensing mechanisms can be used. In homogenous analyte 

sensing a uniform layer of solution is covered on the resonator device surface and the output 

intensity and wavelength shift corresponds to all materials present in the solution. Whereas 

a molecular binding on the resonator surface can only detect the presence of that molecule 

and corresponding optical output intensity can be detected, which makes this technology as 

one of the most sensitive label free molecular analysis.    

 

2-3 Optical Modes of Dielectric Spheres 

2-3-1 Microsphere Resonators 

The propagation of light in a microsphere is similar to that in a planar dielectric 

waveguide. The microsphere resonator is like a circular waveguide with the propagation of 

modes along the circumference. Similar to planar waveguides light is confined at the high 

index region and decays exponentially in the surroundings which form the evanescent field 

region. When the phase shift after one circular trip is an integer multiple of 2π, the light will 

undergo constructive interference and gain intensity and will become a resonant mode of 

the spherical resonator. These resonant modes are knows as Whispering gallery modes 

[53]. The resonance condition is described by: 

 λresonance = (2π R neff) / m                                             2.38 
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Fig 17 Whispering gallery mode in a microsphere 

Where R is the radius of the sphere, neff is the effective refractive index of the 

material and m is the integer number of wavelengths which can fit inside the circular cavity. 

Generally microcavities are coupled to an excitation waveguide which couples light into the 

cavity through the evanescent tail of the waveguide. The transmission spectrum of the 

waveguide will show dips at the resonant frequencies of the microcavity. The spectral 

distance between two modes with a subsequent mode number m is called the free spectral 

range (FSR) and is given by the equation [53]: 

 FSR = λ2/ (2π R neff)                                             2.39  

The width of the resonance peaks is described by their quality factor Q, defined as 

the ratio of the energy stored in the resonator to the energy loss per cycle. The Q factor can 

be calculated with the formula [53]: 

 Q = λresonance / δ FWHM                                            2.40  

Where δ FWHM is the width of the resonance peak/dip at half of its maximum 

value, hence a high Q factor shows a narrow spectral peak. High Q factors are necessary for 

a resonator to be used as a sensor and can increase the sensitivity to detect the minimal 

wavelength shifts. The most important factor to improve the Q factor is to reduce the 
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resonant mode losses which occur at the rough surfaces and cause power to scatter out of 

the cavity. The surface roughness can be minimized by better fabrication techniques. 

Bending losses will increase with smaller radii and hence higher radius rings can be used. 

The microspheres exhibit a shift in wavelength when the refractive index of the surrounding 

material or the material inside the cavity changes and may be utilized as biosensors [54]. 

Generally the Q factors of 1500 and higher are required to make a useful biosensor as the 

detection limit of most spectrometers is around 0.3 nm. Anything lower than 1500 Q will be 

out of the reach of the detection limit and will be reported as noise. 

 

Fig 18 Evanescent coupling from a planar waveguide to microsphere modes 

Besides the internally driven whispering gallery modes, the microspheres also 

encounter scattering/radiation modes similar to planar waveguides. This scattered light 

intensity couples out of the spheres by evanescent wave tail and the surface roughness. The 

scattered intensity from the microsphere is also sensitive to the size and refractive index of 

the microspheres as well as the effective refractive index of the medium surrounding the 

microspheres. The polystyrene microspheres used in this work are chosen due to their 

relatively high index of refraction compared to other common microsphere materials (i.e. 

silica). As shown in figure 18 the microsphere is located at distance (d-R) from the surface 

of a planar waveguide, d is the distance between the center of the microsphere and interface, 
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R is the microsphere radius. This change in height is measured as a change in the scattered 

intensity from the microsphere. The losses in microspheres due to various optical modes are 

seen in the next section in detail. 

 

2-3-2 Loss Mechanisms (Intrinsic and Extrinsic) 

For an evanescently coupled planar waveguide-microsphere system the total 

scattering losses in a microsphere will be the sum of losses due to:  

1) Microsphere intrinsic scattering and absorption losses 

2) Microsphere surface radiation losses 

In this section we will focus on the microsphere internal and surface scattering 

losses. As the evanescent wave of the planar waveguide couples in to the Whispering 

Gallery Modes of the microsphere resonator, the scattering losses are not just limited to the 

evanescent field region but throughout the microsphere. The losses are present due to 

internal scattering or absorption and external surface radiation [55, 56, 57, 58]. We will 

derive the analytic expressions assuming that there are minimum or no coupling losses in 

the microsphere-waveguide system. 

 

2-3-2-1 Microsphere Intrinsic Scattering and Absorption Losses 

The intrinsic losses in the microsphere resonators have been reported previously to 

be dependent on the whispering gallery modes and on the Q factors of the microcavity. 

 Q = 2πn/αλ                                            2.41  

Here, n is the refractive index, α is the attenuation coefficient and λ is the 

wavelength. This approach is purely based on the microsphere bulk losses and didn’t 

include the scattering losses due to WGM or surface radiation modes, which we will discuss 
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in the next section. To approach this problem the sphere volume is divided into a small 

element dv. The fluctuations in the dielectric constant are caused due to inhomogeneities of 

the index [55-58]: 

  ε(r) = δε (r) + ε0                                            2.42  

And cause the field mode to behave as a dipole and hence re-radiate light in all 

directions. This can be derived using the Rayleigh equation: 

 Is/I = (π2 sin2θ)/λ4r2 ∫∫ δε (r1) δε (r2) dv1 dv2                                          2.43  

Where θ is the angle between the polarization of the field and the scattered direction 

and r is the distance from the scattered point, Is is the scattered intensity and I is the incident 

intensity. Integrating this equation over all angles of a sphere, the total power scattered can 

be calculated as [55-58]: 

 Ps = I (8π2/3λ4) ∫∫ δε (r1) δε (r2) dv1 dv2                                        2.44  

However this equation doesn’t include the effects due to TIR (Total Internal 

Reflection) which causes the whispering gallery modes. Hence the internal beams which 

reflect from the microsphere surface making an angle greater than the critical angle γo = 

arcsin (1/n), will be consumed by the WGMs, and will be re-circulated in the microsphere. 

Whereas the beams making an angle smaller than the critical angle will be added to 

scattering losses and the scattering angles for the TE modes can be denoted as: 

 Sin2γTE = (a-d/a) 2 (1-sin2θ cos2θ) < 1/n2                                       2.45  

Here d is the distance of the dipole from the surface and a is the radius of the 

microsphere. For d<<a the reflected beams will be consumed into the whispering gallery 

modes. For d ~ a, the beams will be used in the scattering and absorption losses. By using 

thermodynamical calculations the attenuation coefficient due to internal losses can be 

derived as [55-58]: 
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 αint = (8π3/3λ4) n8 p2 k T βT                                       2.46  

Here k is boltzman constant, T is the glass transition temperature (368.15 K) for 

polystyrene, βT is the isothermic compressibility (~2 × 10-10 m2/N)  , and p is the coefficient 

of photo-elasticity (~2 × 10-12 m2/N) . Hence the Q factor due to internal scattering can be 

calculated as: 

 Qint = KTE (2πn/αint λ)                                      2.47  

The suppression coefficient KTE describes the relation of complete scattered power 

to power scattered on satisfying angle conditions. Using numerical calculations the value of 

KTE for polystyrene (n=1.5) is around 3. 

 

2-3-2-2 Microsphere Surface Radiation Losses 

We will analytically derive the attenuation coefficient of surface scattering losses of 

the traveling wave per unit length. Only surface inhomogeneities will be taken into account 

in this case. We will start with the same expression as in the previous section and integrate 

it over angles with account of TIR. For the surface dipoles the part of the light scattered 

outside the sphere will be consumed into radiation modes and hence the suppression 

coefficient will be [55-58]: 

 2 KTE / (KTE +1)                                      2.48  

Assuming a traveling wave with intensity distribution I (y, z) along the guided 

surface of the microsphere, the surface roughness will cause inhomogeneities of the 

dielectric permittivity: 

 δε (x, y, z) = (εo -1) f (x, y) δz                                2.49  

δz is the delta function related to surface roughness. Similar to the section 1 the 

autocorrelation theory can be used to account for the surface roughness variations. 
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Assuming that the surface roughness is weakly correlated in case for the microspheres and 

their correlation function drops to zero at a scale smaller than the wavelength, then the 

roughness can be described as the standard deviation, σ = √ (< f(x, y) 2 >) and the 

correlation length as B. Hence the scattered power can be derived as: 

 Ps = ∫ I (y, 0) (16π2/3λ4) (n2 – 1) π B2 σ2 dx                        2.50  

 Ps = P αext dx                    2.51  

Ps is the scattered power and P = (∫ I (y, z) dy dz) is the incident power. Assuming 

that the wave is traveling closer to the surface, the external attenuation coefficient can be 

derived as: 

 αext = (I (y, 0)/ ∫ I (y, z) dz)   (16π2/3λ4) (n2 – 1) π B2 σ2            2.52  

Assuming that only the propagation of TE modes effects the Q factors, the ratio of 

the intensities in the equation above can be solved in terms of square of electric fields, and 

by solving the Bessel function we get, a (n2 – 1)/ 2n2 , where a is the radius of the sphere 

and n is refractive index [55-58]. 

 αext = a (n2 – 1)/ 2n2 (16π2/3λ4) (n2 – 1) π B2 σ2                            2.53  

Finally the external quality factor is: 

 Qext = (KTE / KTE +1) (3λ3 a/ 8n π2 B2 σ2)                         2.54  

From the literature, the estimated values of the correlation length of polystyrene 

microsphere is B = 5 nm and surface roughness σ = 1.5 nm. λ is the vacuum wavelength and 

assuming the microspheres are present in water (n=1.333) medium above the waveguide 

surface, the total sum of losses in a waveguide-microsphere coupled system is: 

 αtotal = αwg + αint + αext  2.55  

The above result is based on a single microsphere waveguide system, and the sum 
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of equations (1.100, 3.9, and 3.16). To calculate the results of scattering loss due to a certain 

microsphere surface coverage on a fixed waveguide surface area, the internal and external 

microsphere losses will be multiplied by a surface coverage factor S. 

 S = (No. of Microspheres Adsorbed/ Saturated 

Adsorption No. in a fixed area) × 100 
2.56  

 αtotal = αwg + S (αint + αext)  2.57  

The total losses in a waveguide microsphere coupled system can be estimated and is 

helpful for characterization of output optical intensity noise and sensitivity. 

 

2-3-3 TE Modal Solutions 

Considering a light wave of frequency ω being coupled into the whispering gallery 

modes of a dielectric microsphere of radius a, via an evanescent field of a planar 

waveguide. The first order and second order spherical modes can be shown as the field [59]: 

 titi ertert ω
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Where, 
2

iα  is the radiated power and the spherical solution of Maxwell's equations 

can be represented as: 
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Where, P is the linear polarization and PNL is a surface non-linearity.  
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This gives, 
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The above equations have solutions of form Ylm (θ,m) Zl(r)e-iωlpt, where Ylm is a 

spherical harmonic and Zl is spherical Bessel function [60]. The indices l, m and p are 

orbital, azimuthal and radial numbers respectively. For TE mode solution [60]: 
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Where, Zo=(√µo/εo) is the vacuum impedance and 
2

lmpα is the total radiated power. 

Using orthogonality of spherical harmonics [59]: 
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Where KLP=ωLP/c, n=n(ωLP) is the index of refraction and: 
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For r≠a, the solution of the above equation represents the spherical Bessel function: 
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We find: 
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Which is the characteristic equation for a TE mode when JTE=0. Therefore the TE 

mode equation can be solved to [59, 60]: 
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Where LPΓ is the decay rate of the TE mode. And: 
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Is the derivative of the function FE(x). 

 

2-4  Analytical Model for Microdisk Modes 

2-4-1 Microdisk Resonators 

The resonant Whispering gallery modes in a Microdisk are similar to those of a 

Microsphere and hence constructive interference takes place after every roundtrip and a 

phase shift of the order of 2π. The TE modes in a Microsphere are determined by the 

transverse dimensions of the looped waveguide but on the other hand, modes can have more 

than one intensity maxima in the radial or vertical direction in a Microdisk and are known 

as Radial or Vertical Cavity modes. The figure below shows three different modes for a disk 

resonator.  
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Fig 19 Whispering Gallery Modes in a Microdisk with different radial mode numbers 

[61] 

 

The modes can have three radial intensity maxima and are known as whispering 

gallery modes. Hence three or more different modes can be found in a disk having same 

mode number m but have a different resonant wavelength. The dips in the transmission 

spectra correspond to these resonant modes. 

  

2-4-2 Scalar Potentials 

The vector problem involving scalar potentials can be used to find the modes in a 

Microdisk. Assuming a homogeneous medium containing no free charge or current, the 

Maxwell's equations can be written as [62]: 
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The two vector potentials F and G can be created as [62]: 
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2.77  

Both fields are without divergence, and F forms the magnetic vector potential: 
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Assuming that F has harmonic time dependence e-iωt: 
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These vector potentials can be used to represent the two independent polarizations: 

 gzandfz == GF
 

2.82  

Where f and g are scalar potentials, and it becomes easier to solve the Helmholtz 

equation in cylindrical coordinates [62]: 
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Hz depends only on g and Ez depends only on f, therefore modes with f=0 are TE 

and modes with g=0 are TM. 

 

2-4-3 Microdisk Whispering Gallery Modes  

The cylindrical coordinates Helmholtz equation can be shown to be in the form: 
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Where 2
T∇ is called the transverse Laplacian in cylindrical coordinates. By 

separating f into fT, and depending upon ρ, φ, fz, and z, we can reduce the three 

dimensional Microdisk problem into a two dimensional one [62]: 
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Where 222 β+= Tk and by allowing β to be real or imaginary, fz can have a form of 

oscillating and decaying solutions, inside and outside of the Microdisk: 
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In the above equation Jm is a Bessel function and Nm is a Neumann function of the 

order of m and the general solution of F takes the form [62]: 
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2.89  
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Fig 20 Geometry and Coordinates of Microdisk 
 

Assuming the boundaries of the Microdisk to be perfect magnetic and having zero 

conductivity, with the tangential components of H and normal components of E to be zero 

across the boundaries [63]. This will yield a closed form solution of mode frequencies and 

field profiles. As Bm=0: 
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As the field is zero outside the disk: 
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Where mny is the nth root of the first derivative of the mth Bessel function and p is 

an integer. We know that 2222 βεεµω +== Tk oro , therefore the mode wavelengths are 

given by [63]: 
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The equation above represents the whispering gallery modes in a Microdisk 

resonator. The integers m, n, and p are azimuthal, radial and vertical (z) mode numbers 

respectively. 

 

2-4-4 Effective Index of Refraction 

As we solved the Microdisk mode problem from three dimensions to two 

dimensions, the effective index of refraction can be utilized to understand the propagation 

of modes in transverse directions [62, 63]. The true and effective index of refraction can be 

defined as: 
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Assuming the disk lies in the air (εr=1) and the electromagnetic wave attenuates 

outside the disk evanescently. So that for aandlz <> ρ2/  

 )2/( lz
z Def −−= α

 
2.95  

Assuming that only first order fundamental modes are formed, so p=1, applying 

boundary conditions [62, 63]: 
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2.96  

The above equation represents the effective index of refraction for a Microdisk and 

is dependent on k and therefore the wavelength of light λ. 

 

2-4-5 Micro-Disk Vertical Cavity Modes 

The vertical cavity modes are formed in a Microdisk in the vertical (z) direction 

along the height of the disk. The vertical cavity modes are based on the Fabry-Perot optical 

resonator into which a source medium (active or passive) is inserted. Generally the cavity is 

formed between two highly reflective surfaces separated by the cavity length L. The 

resonance wavelength of the cavity is determined by the phase condition requiring that the 

phase of the traveling wave after one round trip is a multiple of 2π.  

 λππ /2,22 nkwheremkL ==
 

2.97  

Here, m is an integer; k is the wave propagation constant or wave number. And n is 

the effective refractive index of the disk. At a certain cavity length L an optical thickness of 

Ln is a multiple of λ/2.  

 

Fig 21 Standing wave pattern formed in an optical cavity 
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The optical source (or a quantum well in case of an LED) is placed at an anti-node 

of the electromagnetic field (standing wave pattern) in order to provide maximum optical 

enhancement. This puts an extreme demand on the accuracy of the layer thicknesses used in 

the cavity, as a small displacement can cause a shift of the standing wave peak resulting in a 

reduction of optical enhancement. The enhancement factor can be denoted as [63]: 
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2.98  

Here do is the displacement of the standing wave peak from the active region 

(optical source placement) in the cavity. For the maximum enhancement, we get the 

relation: 

 ( ) nmL /2 λ=
 

2.99  

 

Fig 22 Resonant modes of an optical cavity [64] 

The above relation forms the longitudinal modes of an optical cavity. A long cavity 

sustains more resonant modes spaced more closely. Ideally the cavity length is formed to be 

the order of few wavelengths which results in a large longitudinal mode spacing, 

implicating that only one or two longitudinal cavity mode overlaps with the source medium, 

which improves the optical enhancement.  
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2-5 Opti-Wave Simulations 

2-5-1 Microcavity Resonators as Passive Components 

The main applications of passive microcavity resonators are wavelength filtering, 

optical switching, routing, modulation and multiplexing. The factors which decide the 

efficient working of a passive microcavity resonator are: 

1. Free spectral range (Mode spacing between adjacent resonances). 

2. Quality factor (The ratio of the energy stored to the energy dissipated per 

round trip). 

3. Finesse (The ratio of the ‘free spectral range’ to the width of the resonance). 

4. Extinction ratio (The ratio of optical transmission at on-resonance to off-

resonance transmission) 

The conditions for an ideal resonator are wide free spectral range, higher Q, large 

finesse to accommodate many resonance channels, lower optical losses and a high 

extinction ratio. To achieve a FSR (free spectral range) on the order of tens of nanometers, 

the size of the resonator should be kept to few micrometers. High quality etching creates a 

smoother sidewall profile and scattering losses can be kept to a minimum in order to 

achieve a high finesse. These microcavity resonators can be integrated with other photonics 

devices to form complex integrated circuits. Optiwave BPM and FDTD simulations can be 

used to design microcavity resonators for optimal performance, which is discussed next. 

  

2-5-2 Beam Propagation Method (Opti-BPM)  

Analytical solutions of wave equations can be formed easily for simple structures 

where a complete understanding of the optical modes of a waveguide is present. But for a 

more complex optical structure where a complicated solution of mode coupling is involved 
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a numerical analysis is performed. Various kinds of beam propagation methods (BPMs) 

have been developed such as fast Fourier transform (FFT-BPM), finite difference (FD-

BPM) and finite element (FE-BPM). The FFT-BPM has many disadvantages such as long 

computational times, inability to use simple transparent boundary conditions, and 

inadequacy in handling large index differences. Incorporating transparent boundary 

conditions and use of Padé approximant operators for FD-BPM has made it possible for it to 

be used for design of optical waveguides made of high-contrast index materials [65].  

The beam propagation method involves the analysis of optical modes, where it 

decomposes a spatial mode into a superposition of a number of plane waves traveling in 

different directions. The tool then integrates the propagation of these waves into one spatial 

mode to analyze diffraction effects caused due to an inhomogeneous medium. It takes into 

account the phase shift encountered at every reflection/refraction at a boundary of different 

indices. Thus, the medium in which the wave is traveling is modeled as a sequence of lenses 

separated by short sections of homogenous space. 

 
Fig 23 Optical path divided into a series of lenses in Opti-BPM software [66] 

 

The finite difference-BPM involves starting with the wave equation and dividing 

the field into a slowly varying envelope function and a very fast phase term. The wave 
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equation for the y-directed field is [65, 66]: 
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The electric field is divided using the slowly varying envelope approximation: 
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Substitution into the wave equation [65, 66]: 
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When it is assumed that 0

2

2

=
∂
∂
z
φ

, equation 3.65 is reduced to the Fresnel wave 

equation or paraxial wave equation. Generally this approximation works well and is the 

simplest and fastest solver. However wide angle analysis using Padé approximant operators 

is used when there is large refractive index contrast. A paraxial case is where the field 

polarization is almost parallel to the direction of propagation and off axial effective index is 

similar to the axial value. However when the beam is diverging as it propagates, the 

propagation constant becomes a strong function of off-axial effective index placing an 

upper limit on how wide a beam may diverge in BPM [65]. Paraxial approximation leads to 

errors for angles less than 20 degrees whereas the (1, 1) Padé approximant operator is 

accurate up to 30 degrees. Higher order approximants lead to higher accuracy at large 

angles but also increase the numerical complexity and hence the computation times [66]. 

Overall, the BPM is one of the most widely used methods for planar waveguide and 

direction coupler waveguide simulations and analysis of electromagnetic modes. For a more 

complicated structure case of a curved, spherical or cylindrical waveguide Opti-FDTD is 

used as discussed in the next section. 
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2-5-3 Finite Difference Time Domain Method (Opti-FDTD)   

The finite difference time domain method (FDTD) was first introduced by Kane 

Yee [67] and became one of the most popular methods to simulate electromagnetic wave 

interactions with dielectric structures. The basic idea is to discretize space-time into blocks, 

where Maxwell's equations can be changed from partial differential equations to difference 

equations, which are evaluated at every point in the space-time grid to advance the fields 

temporally. FDTD is different from finite element method (FEM) as it is a time-domain 

method and not based on steady state solutions.  

 

2-5-3-1 Difference Equations 

Considering the curl equations of Faraday’s law and Ampere’s law and taking their 

divergence results in [67]: 
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The above equation is the Poisson’s equation. In a homogeneous region of 

Cartesian coordinates the Faraday’s law and Ampere’s law become:
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The above equations can be broken into difference equations, by discretizing space-

time steps: 
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Here x∆ is the step size in the x direction. The numerical error is reduced by 

computing derivatives at points between those on which the functions are defined [68]. 

Therefore the Ex and Hy components are also defined on a half integer grid as shown in 

figure below. 

 

Fig 24 Ex and Hy defined in a half-integer staggered grid [68] 

The two dimensional grid can be modified into a three dimensional using a Yee cell 

shown in figure 25. The H components are located on the center of cube faces and E 

components are located on the center of cube edges. The time step used to separate E and H 

is ∆t/2 or half time step.  
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Fig 25 Yee Cell showing staggered grid in three dimensions [69] 

Now the set of difference equations can be derived for the 3D case: 
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Similar equations for other components can be derived and this equation can be 

solved for Ex at time t = (n+1) ∆t in terms of the fields at times t = n∆t and t = (n+1/2) ∆t. 

This leads to the advancement of fields in time and space. The wave propagation in the z 

direction with the x-z plane used for 2D simulations and a perpendicular Ey component is 

introduced in the 3D case. The TE components considered for our simulations are Hx, Ey 

and Hz. 
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2-5-3-2 Sources of Error 

The discretization of space-time can also introduce errors in the simulated data. The 

most common error is the “stair-stepping” when curved surfaces are modeled using a 

rectilinear Yee cell grid. These errors can be compared to the surface roughness on the 

sidewalls of the disk, which might help the simulation to match the fabrication error. A grid 

based on Cartesian coordinates would create error modeling a cylindrical or hexagonal 

structure, which can be avoided by using an adaptive mesh of higher density and smaller 

grid size [68, 69].  

Another form of error is the numerical dispersion resulting from relative sizes of 

time and space steps. In one dimension the time step is denoted as ∆t = ∆x/c [68], but in 

multiple dimensions the wave need not travel precisely along the grid axes. This leads to a 

numerical anisotropy in the phase velocity, with waves traveling faster along the grid 

diagonals as compared to grid axis, which can cause a phase lag [70]. These effects can be 

reduced by increasing the number of mesh cells relative to the wavelength, but a very high 

density grid will increase practical challenges or RAM processing and longer simulation 

times. Ideally the grid density can be designed relative to wavelength [71]: 
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And the time step should follow the condition [71]: 
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 Both of these errors play a significant role in whispering gallery modes as the path 

of light is continually turning, which leads to unphysical artifacts in the simulated data. 

Properly designed and taking into account the error factors, FDTD can be efficiently used to 

model electromagnetic behavior in dielectric structures.  
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2-5-3-3 Description of Simulations 

The Optiwave Opti-FDTD software is used in this study for simulation of 

whispering gallery and vertical cavity modes in microsphere and microdisk structures. 

Firstly the value of permittivity and refractive index is defined at every point on the grid. A 

specialized boundary condition is used known as anisotropic perfectly matched layers 

(PML). These layers have pre-defined conductivity tensors which cause the wave to 

attenuate with minimal reflection as it leaves the simulation volume [71]. Electromagnetic 

radiation in form of a Gaussian-modulated continuous wave (GMCW) in space and time is 

introduced as either a plane or spherical wave which has the form [71]: 
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 Where n = (x, y, z), leading to a Gaussian distribution of frequencies centered at ω. 

The fields can be sampled using observation points, lines and areas. The observation points 

collect the time-domain data which is converted to frequency domain by DFT (Discreet 

Fourier Transform) and plotted on a wavelength scale for analysis.  
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Chapter 3 

Experiment and Results 
 

3-1 SPARROW Biosensor 

3-1-1 Planar Waveguide Simulations 

The Optiwave (BPM) Beam Propagation Method provides an efficient way for 

modal analysis and light propagation in planar waveguides. The mode solver tool is used to 

model propagation constants, waveguide thickness, optical mode profile and effective 

refractive indices of a single and coupled planar waveguides. These parameters help in 

understanding the electromagnetic behavior and optimizing the waveguides before the 

fabrication process.   

Before designing of the SPARROW coupled waveguide structure, a planar 

waveguide was simulated to analyze the TE modes, and mode profile variation with 

changes in cladding index and waveguide thickness. To simply the approach, TE modes 

were studied in our case, and TM modes were not used for our device operation and 

sensitivity analysis of evanescent waves. Incident radiation from a Helium-Neon laser beam 

(λ=632.8 nm) was used for passive excitation of waveguides in modeling as well as 

experimental analysis. Asymmetric and symmetric waveguide profiles were simulated for 

an alumina waveguide of thickness 1 µm and refractive index of 1.636. The TE mode 

profile for a cover index of n=1 and n=1.6 was studied as shown in the figure below. 
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Fig 26 Single TE Mode (Ey field) for Symmetric and Asymmetric Waveguides 

The evanescent field extends into the cover medium as the refractive index is 

increased from n=1 to n=1.6. Also, in the figure below the thickness of waveguide is 

reduced to 0.5 µm and the TE mode profile is distorted. 

 

Fig 27 TE Mode (Ey field) for Asymmetric Waveguides with Different Thicknesses 

Appropriately designed, the planar waveguide thickness and index of cladding can 

be modeled to achieve the desired TE mode profile. In next section, a coupled waveguide 

structure (SPARROW) can be discussed in detailed.  
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3-1-2 Coupled Waveguide (SPARROW) Simulations 

The Stack Planar Affinity Regulated Resonant Optical Waveguide (SPARROW) 

device is a directional coupler, with two planar waveguides when placed together exchange 

power periodically between the two guides. Opti-BPM tool was used to simulate TE modes, 

coupling length and power transfer of waveguides. Two aluminum oxide waveguides 

(Al2O3) with index of 1.636 and separated by a silicon dioxide layer (SiO2) of index 1.46 

were designed to have matched propagation constants. Borofloat glass of index 1.4701 was 

used as the substrate and the coupled waveguide structure was simulated for air and water 

as the superstrate medium. The designed waveguides with matched propagation constants, 

βm1 = βm2 (where, β = n.k.cosθ) were calculated to have a top guide thickness of 200 nm and 

bottom guide thickness of 142 nm, with water (1.333) as cover medium index. 

 

 

Fig 28 Designed Coupled Waveguide for Water Superstrate 

 

Helium-Neon laser light is coupled into the top waveguide using a prism coupler, 

and after some distance the evanescent field from the top waveguide overlaps the mode of 

the bottom waveguide and couples completely into bottom waveguide. The waveguide 

indices and thicknesses are designed such that the optical mode propagates into the bottom 

waveguide for Air/PDMS superstrate, and coupled power transfers for water as superstrate 

(as shown in figure 29). 
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Fig 29 Optical Intensity for Coupled Waveguides  

 

The effective refractive indices of the top and bottom waveguides (for air as 

superstrate) were simulated as Neff (top) = 1.483 and Neff (bottom) = 1.5. The propagation 

constants of the individual waveguides (for air as superstrate) were calculated as: 

 

 β1 (top) = Neff (top) (2π/λ) = 14.724
 

3.1  

  β2(bottom)  = Neff (bottom) (2π/λ) = 14.893
 

3.2  
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Fig 30 Optical Mode Profile in Un-Coupled Waveguides (Air Superstrate) 

 

The waveguide mode propagates in the bottom waveguide for the designed 

waveguide structure for Air/PDMS as the superstrate, as there is no coupling between the 

two waveguides. When water (1.333) is present as superstrate above the top waveguide, the 

two waveguides are designed to optically resonate, with matched propagation constants, and 

there is a complete exchange of power between the two waveguides. This complete 

exchange of power takes place over a distance called Coupling Length (Lc).  

 

 
 

Fig 31 Coupling Length and the even mode ‘TE0’ and second odd mode ‘TE1’ [72] 
 

The two waveguides exchange power periodically, back n forth, over the coupling 

length, and throughout the interaction length ‘L’ of the waveguides, as long as water is the 

Lc 
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superstrate. The fundamental ‘even mode (TE0)’ and ‘odd mode (TE1)’ in the simulation 

plot below shows the tuned/coupled waveguides for water as superstrate.   

 

 

Fig 32 Even Mode (TE0) and Odd Mode (TE1) in Coupled Waveguides (Water 

Superstrate) 

 

As the power is transferred periodically back n forth, throughout the interaction 

length ‘L’, the net power in each waveguide mode is ~50% of the total power. The Opti-

BPM simulated effective indices for coupled waveguides with water as superstrate were Neff 

(top) =Neff (bottom) = 1.5 and the calculated matched propagation constants were: 

 

 β1 (top) = Neff (top) (2π/λ) = 14.893
 

3.3  

  β2(bottom)  = Neff (bottom) (2π/λ) = 14.893
 

3.4  

For the TE0 and TE1 coupled modes, the propagation constants and Neff were 

simulated as: 
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 βe = 14.906         ne= 1.501             (Even Mode)
 

3.5  

  βo = 14.875         no= 1.498             (Odd Mode)
 

3.6  

Using the above simulated and calculated parameters the coupling length of the 

waveguides can be calculated as moeLc µββπ 34.101)/( =−=  [72].  

 

3-1-3 Biolayer Design and Simulations 

The SPARROW device structure for air/water superstrate was simulated previously, 

and the coupling parameters and propagation constants were calculated. Based on the 

coupled waveguides structure, the interaction length of the superstrate medium can be 

measured, which would carry the biolayer in a PDMS microchannel on the top waveguide 

surface. As the propagation constants of the two waveguides match for the coupled 

waveguide structure: 

 021 =−=∆ βββ
 

3.7  

Initially, the power being coupled to the bottom waveguide for air/PDMS 

superstrate, the interaction length will be designed to be an even number of coupling lengths 

(~1200 µm) so that the power is transferred back to the bottom waveguide after the channel 

transit. Due to fabrication uncertainty in the waveguides indices and thicknesses, there will 

be some power remaining in the top waveguide. The total power in the top waveguide at the 

end of interaction length can be calculated. Assuming the initial power in the bottom 

waveguide is P1, and the power remaining in the top waveguide after the interaction length 

(L) is P2 [73]: 
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3.8  

 P2= 0.0036 × P1 3.9  

Where k = 0.76 (simulated coupling coefficient) and L =1200 µm (Total interaction 
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length). Therefore the total power remained in the top waveguide is 0.36%, and 99.64% of 

the power is transferred back to the bottom waveguide, after an even number of coupling 

lengths. The power is exchanged 12 times for a coupling length of 1200 µm between the 

bottom and top waveguide and eventually couples back to the bottom waveguide at the end 

of the microchannel. The remaining 0.36% of power in top waveguide is scattered out of the 

PDMS/Air interface and an additional SU-8 layer. 

For the designed interaction length, the biolayer index variations can be simulated 

to analyze the power variations in the coupled waveguides. As the refractive index of the 

biolayer superstrate is increased, the coupled power in the top waveguide is increased. 

 

 

Fig 33 Index Variations of Biolayer Superstrate and Coupled Power 

 

Also, the Opti-BPM tool was used to simulate the variation in bottom waveguide 

power due to changes in thickness and indices of each waveguide and the oxide layer. 
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   Fig 34 Power in Bottom WG with Changes in Thickness and Index of Layers 
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As the changes in the analyte refractive index of the biolayer superstrate are 

increased, a reduction in the bottom waveguide power is measured. An increase in top 

waveguide thickness or index resulted in a reduction of bottom waveguide power. Whereas, 

increasing the thickness or index of bottom waveguide increased the bottom waveguide 

output power. The overall effect is a sensing mechanism of the changes of refractive indices 

in the SPARROW structure and the biolayer analyte in the microchannel, which will be 

shown experimentally in section 3-1-5. Before transducer sensitivity measurements, the 

coupled waveguide stacked structure was characterized optically and will be discussed in 

the next section.  

 

3-1-4 Optical Characterization of Alumina Waveguides 

The alumina waveguides were characterized to assure single TE mode operation 

and low optical propagation loss prior to proceeding with fabrication of a microfluidic 

channel and evanescent wave sensitivity measurements. A Metricon 2010 Prism Coupler 

setup was used to couple a polarized 632.8 nm He-Ne laser to each waveguide’s single TE 

mode using a gadolinium gallium garnet right isosceles prism (n = 1.965). The optical loss 

was measured by acquiring an image of the waveguide streak using a QImaging Retiga 

2000R CCD camera as shown in figure 35 and extraction of the pixel values in the region of 

interest using MATLAB.  

 

 

Fig 35 (a) Metricon 2010 Prism Coupler Setup, with Aligned Waveguide Sample and 

CCD Camera (b) Ray Diagram Showing Coupled Optical Path  
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Before characterizing the alumina waveguides for optical loss measurements, the 

noise in the laser beam and the CCD camera was analyzed. The He-Ne laser beam was 

warmed up for 3 hours and then the optical power stability was measured using a beam 

profiler. A 0.15% error was recorded over 180 minutes. The (QImaging Retiga 2000R) 

CCD camera images of the waveguide streak were also captured and the net error was 

measured to be 1.85%. These error values were taken into account for all transducer 

experiments conducted for analyte sensitivity analysis.  ����� ���� ��	�� 
�� ���
��� ������� �� �� �� �� �� �� �� ��� ��� ��� ��� ��� ��� ����� !"#$!%&�'$()!*+*, �-���-���-���-�� 0.15 % Error
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Fig 36 Laser Beam and CCD Camera Noise Characterization  

The coupled laser beam propagates into the waveguide and is shown in figure 37. 

The CCD camera captures a high quality image in the (ROI) region of interest and the 

MATLAB program is used to read the image and convert into pixel values based on a color 

scale bar (figure 38).  
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Fig 37 Propagated Laser Power in Alumina Waveguide  

The optical intensity decay can be plotted, and the scattering centers were shown 

due to crystal defects in the waveguide. A linear fit to the logarithmic data plot is then used 

to calculate the optical loss values. Loss values were determined to be approximately 1 

dB/cm. 

 

 

Fig 38 Optical Intensity Decay and MATLAB Image of Waveguide Streak 
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3-1-5 Sucrose Experimental Results 

Fiber-optics and planar waveguides based sensors have been reported in literature 

with advances in the stacked thin film coupled waveguide sensing for a sensitive and 

accurate detection [74, 75]. The first part of the experimental approach is to construct and 

characterize the sensitivity analysis of a SPARROW (Stacked Planar Affinity Regulated 

Resonant Optical Waveguide) sensor [20]. The evanescent wave detection of various 

concentrations of aqueous sucrose solution was characterized. The sensing process is based 

on the measurements of changes in optical power caused by changes in the refractive index 

due to analyte attachment over the sensor surface. The sensing device was targeted for 

detection without the requirement of labeling. The analyte mass binding is non-specific and 

measurements were purely based on the optical absorbance and scattering properties of the 

molecules. Hence it simplifies the detection by only exposing the analyte to the transducer 

and measuring the changes in the optical power.  

 

Fig 39 Transducer Structure with a Prism, PDMS microchannel and CCD Camera 

The resonant coupled waveguide structure was modeled using Opti-BPM (as shown 

in section 3-1-2 and 3-1-3) to define the resonant mode profile and to characterize the 

changes of superstrate refractive index to the resonance condition of the coupled waveguide 

modes. Two vertically stacked nano-scale aluminum oxide optical waveguides separated by 
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a lower refractive index silicon dioxide layer are deposited on a borofloat glass substrate 

using ion beam assisted deposition (IBAD) technology [76, 77, 78]. Following growth, the 

structure was annealed at 600o C for 10 minutes in an air ambient to reduce optical 

propagation losses within the thin films. The fabricated structure is shown in figure 39. 

A glass top PDMS (Poly-Di-Methyl-Siloxane) channel was constructed on the 

waveguide stack’s surface using the photolithography process as shown in Figure 40. The 

alumina waveguide structure was first cleaned using a sequence of toluene-acetone-hexane-

toluene-acetone sonicator baths for 5-10 minutes each. The waveguides were then dried in 

the oven at 100oC for 20 minutes. Hexa-Methyl-Di-Silazane (HMDS) was spin coated on 

the substrate at 4000 rpm for 30 sec. followed by a soft bake at 150oC to improve the 

adhesion of the photoresist to the substrate. Depending on the desired height of the channel, 

three to five coats of AZ 4400 positive photoresist was then spin coated each at 300 rpm for 

5 sec. and 800 rpm for 35 sec. Between every coat the wafer was soft baked at 90oC for 45 

sec with a final bake for 4 minutes at 110oC. The channel pattern was subsequently exposed 

and developed to form a PDMS micro-mold. A PDMS mixture (Dow Corning Sylgard 184) 

was made using a 10:1 ratio of pre-polymer to curing agent and was poured over the 

channel pattern. The extra PDMS over the photoresist was removed using a sharp blade and 

the substrate was then baked for 2 minutes at 115oC to partially cure the PDMS. The 

remaining photoresist on the substrate was then removed carefully using acetone. The 

resulting PDMS walled channel was cured for 2 hours at 150oC. A glass top with inlet and 

outlet holes drilled in it was sealed over the PDMS channel using oxygen plasma bonding 

and capillary tubes were attached to the holes.  
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Fig 40 PDMS microfluidic channel fabrication steps and channel sidewall profile 

The optical response of the SPARROW transducer was measured as a function of 

sucrose solution concentration in the microfluidic channel in order to assess sensitivity to 

uniform aqueous analyte loading of the volume occupied by the evanescent field near the 

sensor surface. The device under test was mounted in the Metricon 2010 prism coupler and 

the capillary tubes from the PDMS channel were connected to a Harvard Apparatus 11 plus 

syringe pump which supplied the desired flow of analyte to the transducer surface. 

Polarized 632.8 nm wavelength laser light from a Melles Griot 25-STP-912 stabilized He-

Ne laser was coupled into the single TE mode supported by the bottom waveguide.  The 

waveguides were designed based on individual film growth thickness and index results such 

that the mode propagates in the lower waveguide uncoupled to the upper guide in regions of 

air or PDMS superstrate. Under ideal conditions with waveguide parameters as shown in 

Figure 39, the waveguide pair is calculated to couple with matched propagation constants  

when a superstrate of refractive index equal to that of DI water (n = 1.333) is present, with 

waveguide coupling length of 101.34 µm. The PDMS channel width of 1200 µm is chosen 

to achieve an even multiple of periodic power exchanges. Ideally, under this condition, 

optical power is fully transferred to the bottom guide after transit of the channel width, 

when the waveguides again become uncoupled.  Increasing the refractive index of the 

aqueous superstrate above that of water (1.333) changes the propagation constant of the top 

waveguide, detuning the resonant coupling, resulting in a power reduction measured in the 
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bottom waveguide. Also, analyte adsorption can cause scattering loss which reduces the 

output power. The remaining power in the upper waveguide is scattered out of the guide at 

the PDMS air interfaces of the channel, as indicated in Figure 41 (a), as well as the 

additional SU-8 interface applied by hand just after the microchannel. A single waveguide 

sample was used to experimentally verify that these interfaces reduce power in the top 

waveguide below the measurement limit of the camera (Figure 41 (b)). Power in the lower 

guide continues propagating to a region where the waveguide is imaged using the QImaging 

Retiga 2000R CCD Camera. The pixel values in a fixed region are processed and summed 

using MATLAB to arrive at a value for the scattered power that is proportional to the power 

in the waveguide.  

 

Fig 41 (a) Sample flow setup with power scattered from the top waveguide at PDMS-

air interface and propagated power in the bottom waveguide and (b) Power drop in a 

single waveguide with application of SU-8 layer  

The transducer optical response was measured by introducing flow of sucrose/DI 

water solutions of varying concentrations over the device surface using a syringe pump at a 

flow rate of 2µl/min. Aqueous solutions of concentrations from 0.1% to 0.5% sucrose (w/v) 

were prepared and introduced through the PDMS channel and over the device surface 

beginning with lowest concentration and progressing to the highest. Prior to the introduction 

of each concentration, a flow of 1 Molar NaCl solution followed by DI water was used to 

clean the microchannel and device surface (as the polar Na+ Cl- desorbs sucrose molecules 

from the top alumina waveguide surface). Figure 42 shows a plot of the experimentally 
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determined change in lower waveguide optical power as a function of sucrose solution 

loading. For Flow 1, results compare favorably with the simulated result from OptiBPM.  
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Fig 42 Sucrose Solution Loading vs. Optical Power Change for Three Consecutive 

Flows and OptiBPM Simulated Transducer Response. 

Precise tuning was not achieved due to final film index and interface location 

uncertainty arising from film stack growth. From this experimental data the minimum 

detectable surface loading was estimated based on the amount of sucrose in the interaction 

volume of the top waveguide evanescent field in the channel. The calculated surface loading 

is shown in Figure 42 given a 0.5 mm laser beam FWHM, 1200 µm channel width and 

evanescent wave penetration depth of 50 nm. A 50 pg/ mm2 loading is seen to result in a 

4.084% optical power drop. Assuming a linear fit to the flow 1 data over this range of 

concentrations, the minimum detectable percent change in optical power is given by the 

uncertainty in the slope, or 2.04%. Assuming uniform distribution of sucrose in the 

interaction volume, the effective limit of detection (LOD) for the waveguide stack is 20 pg 

/mm2. This corresponds to an estimated sensitivity with respect to changes in bulk refractive 

index Sbulk and effective refractive index Seff of 5.6×10-4 [RIU] (Refractive Index Units) and 
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2.4×10-5 [RIU] respectively [79]. Successive flow cycles resulted in a continual reduction in 

the sensitivity of the device despite the cleaning protocol employed. This sensitivity 

reduction with successive flows is believed to be due to sucrose molecular adsorption on the 

alumina surface. Water molecules in the aqueous sucrose solution are known to form a 

stable hydroxide layer and adsorbs in an ordered fashion [80]. The sucrose molecule 

adsorption on alumina can be described as a metal-saccharide interaction similar to organo-

metallic compounds, and occurs due to the electrostatic forces between the negatively 

charged ends on disaccharide molecules and positively charged alumina metal groups [81]. 

The dispersion of sucrose molecules on alumina surfaces and formation of crystalline phase 

at higher loading is also reported in the literature [82]. Another factor that may have 

affected the device sensitivity was thinning of the top alumina waveguide surface by the 

NaCl solution and the formation of sodium aluminate (Al2O3+2NaCl+H2Oà 

2NaAlO2+2HCl), potentially causing a reduction in waveguide coupling and sensitivity and 

reduction in the slope with repeated channel cleanings and sucrose solution flows.  

Polyethylene glycol (PEG) of suitable molecular weight is one candidate surface 

layer that can be applied to the surface to reduce such nonspecific binding in a sensor device 

implementation while providing a surface for probe and target attachment within the 

evanescent field penetration depth. The sensitivity of the device to film layer thickness, film 

refractive index and PDMS channel width variation was calculated. As expected, the device 

is most sensitive to top waveguide variation with the measurement uncertainty of the 

present setup corresponding to a change in film thickness of ±0.1 nm, or a film refractive 

index change of ±7×10-5 [RIU]. The corresponding sensitivity to variation of the oxide layer 

between guides is ±47 nm in thickness and ±1×10-3 [RIU] in refractive index. The 

corresponding sensitivity to channel width is ±1 µm [83]. 

 

3-2 Microsphere Surface Coverage Detection 

As seen in the previous section, a uniform surface loading of SPARROW sensor 

was characterized using various concentrations of aqueous sucrose solution. The next step 



87 

 

 

in the study was to analyze the effect of non-uniform (discrete) loading of polystyrene 

microspheres on the optical output of a planar waveguide.  Surface coverage of non-

functional attachment of polystyrene microspheres on a planar alumina waveguide was 

simulated and experimentally characterized.  

 

3-2-1 Microsphere-Waveguide Coupled System Simulations 

The microsphere-waveguide coupled system was simulated using the Opti-FDTD 

tool and the optical modes of a microsphere resonator were studied. The polystyrene 

microspheres (n=1.5), coupled optically from a planar alumina waveguide (n=1.636) exhibit 

the presence of Whispering Gallery Modes (WGMs). A 5 µm radius microsphere was kept 

at a distance of 20 nm from a 0.5 µm thick alumina waveguide and a Gaussian Modulated 

Continuous plane wave (GMCW) in space-time and having a center wavelength of 632.8 

nm and full-width-half-maximum (FWHM) of ~50 nm was used as the input source. The 

propagation constants were calculated and matched for coupling to take place and 

appropriate radius and wavelengths were used for WGM generation. The resonance 

equation was satisfied and the whispering gallery modes were observed. Also an optical 

power drop of 1.804 × 10-19 Watts was observed at the end of the waveguide which was 

consumed and scattered by the microresonator.  

 

 

 

 

 

Fig 43 WGMs in an Optically Coupled Microsphere-Waveguide System 
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The figure 43 above shows the input plane wave coupled to the waveguide and 

whispering gallery mode generation in a polystyrene microsphere when the resonance 

condition is satisfied. Now, changes made to the resonance wavelength will deform the 

WGM generation as only certain wavelengths can undergo constructive interference for a 

particular cavity radius. For the same system when the wavelength of 624.39 nm was used it 

created a distorted WGM as shown in figure 44 below. 

Fig 44 Distorted WGMs at an Off Resonance Wavelength 

As the radius of microsphere is increased (at a constant waveguide-microsphere 

distance) it consumes more power from the waveguide to couple into the WGM. And as the 

distance between the waveguide and microsphere is increased (at a constant radius) there is 

a reduction in coupled power as shown in the plots. 

  

 

 

 

 

 

Fig 45 Optical Power Loss in WG vs. Microsphere Radius (Left) and Coupled Power 

in the Microsphere vs. distance from WG (Right)  
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Fig 46 Microsphere Coupled Power (Top) and WG Output Power (Bottom) vs. 

Coupling Distance and Differential plots (Right) 

The microsphere-waveguide coupling distance was varied by moving the 

microsphere away or into the waveguide and changes in the optical power coupled in the 

microsphere and output power at the end of the waveguide was characterized as shown in 

figure 46. The distances of around 10 nm inside and outside the waveguide were most 

sensitive to any power changes in the coupled resonator system. Beyond the distance of 150 

nm almost no power was coupled into the microsphere. For a Gaussian wavelength range as 
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the optical input coupled into the waveguide, certain resonance wavelengths show a spectral 

minimum (dips) at the output transmission spectrum. These are the resonant frequencies 

which undergo constructive interference in the microsphere resonator and hence shown as a 

reduction in intensity at the output. 

 

 

Fig 47 WGMs as Spectral Minima in WG Transmission (Blue) and WGM Peaks inside 

Microsphere Cavity (Green) 

Any changes in the microsphere radius can alter the coupled intensity of whispering 

gallery modes into the microsphere as shown in figure 48. A change in 35 nm of the radius 

can deform the resonance condition. 

 

Fig 48 On-Resonance and Off-Resonance when the microsphere radius is increased by 

35 nm 
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Also, a shift of 1.194 nm of resonant spectral peaks is observed when the radius of 

the microsphere was increased by 35 nm.  

 

Fig 49 Shift of resonance peaks with the radius change of the microsphere 

Hence, simulation study shows that any changes made in the cavity radius or 

refractive index of the surroundings can alter the on-resonance condition of the whispering 

gallery modes, and can be used as a sensing mechanism for molecular binding. Besides the 

presence of WGM, the microspheres exhibit internal coupling losses and external scattering 

losses which are seen in the next section. 

 

3-2-2 Scattering Loss Analysis Simulations 

Using equations (2.46, 2.53) of the theory chapter, the microsphere internal and 

external optical losses were simulated using MATLAB. The losses were characterized by 

changes in the refractive index, radius and surface roughness of the microsphere.   
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Fig 50 Microsphere Internal Optical Losses vs. Refractive Index 

The above shown MATLAB plot was generated for the microsphere internal losses 

(αint) with respect to change of microsphere refractive index at a wavelength of 632.8 nm for 

a 1 µm diameter microsphere. (The MATLAB program is given in the Appendix). 
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Fig 51 Microsphere External Optical Losses vs. Surface Roughness 

Radius = 500 nm 
λ = 632.8 nm 
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The MATLAB plot above is generated to analyze the external radiation losses 

(αext) with respect to surface roughness of the microsphere. By comparing the two plots 

from the internal and external scattering, we can conclude that the microsphere internal 

absorption losses were negligible for the polystyrene index (n=1.5) but the external losses 

were significant at the polystyrene index of 1.5 and vary greatly with the surface roughness 

changes.  
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Fig 52 Microsphere External Scattering Losses vs. Refractive Index at Various Radii 

The external scattering losses of microspheres at various radii with respect to 

refractive index are shown above in figure 52. As the radius is increased the photon path 

length and surface roughness parameters increase causing a higher scattering loss. 
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Fig 53 Microsphere Internal and External Losses vs. Refractive Index at Various 

Surface Coverages 

The Microsphere internal and external scattering losses corresponding to various 

surface coverage’s are shown in the plots above (figure 53). The surface coverage factor ‘S’ 

was multiplied and plotted as S * (αint) and S * (αext) with the coverage’s varying as 1%, 

2%, 4% and 6%. 
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Fig 54 Microsphere External Losses vs. Microsphere Surface Coverages 
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Assuming that the losses in the planar waveguide due to surface roughness are 

constant (As discussed in theory chapter), and neglecting the internal absorption losses into 

the microspheres at n=1.5. The microsphere coupled waveguide’s output power change is 

greatly dependent on the external scattering losses of the microsphere S * (αext) and the 

surface coverage (%). The MATLAB theoretical plot above (figure 54) shows the increase 

of external scattering losses by ~ 3% due to an increase of surface coverage from 4.1% to 

4.2%. The simulated results can be compared to the experimental characterization for a 

planar waveguide-microsphere coupled system for study of microsphere surface coverage 

detection in the next section.   

 

3-2-3 Experimental Results 

The surface coverage of non-functionally attached polystyrene microspheres on a 

planar alumina waveguide was analyzed using two approaches. First, the microspheres were 

flown in a PDMS microchannel fabricated on alumina waveguide surface, and optically 

fluorescently excited using a 488 nm Yellow-Green Argon-Ion laser. The second approach 

was to optically excite the waveguide-coupled-microspheres using a 632.8 nm Helium-

Neon laser. The results from two different approaches were compared to investigate the 

self-assembly of microspheres on alumina waveguide.  

 

3-2-3-1 Fluorescent Experiments 

The surface coverage of non-specific binding of Invitrogen Fluospheres (2% solids) 

on a planar alumina waveguide was analyzed using 488 nm optical excitation of an Argon-

Ion laser. Carboxylate ions have been reported previously to be chemisorbed on alumina 

surfaces [82]. Carboxylate-modified fluorescent polystyrene microspheres with 500 nm 

radius and negative surface charge were used. The 2% (w/v) microsphere solution was 

made by dilution in a medium solution (50 mM Sodium Phosphate, 50 mM Sodium 
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Chloride, 5 mM Sodium Azide, 0.02% Tween Detergent and DI water). The microchannel 

was first rinsed with ethanol at 5 µl /min. for 10 minutes for cleaning purposes, followed by 

2% microsphere solution flow at 0.5 µl /min. for 60 minutes to achieve maximum surface 

coverage saturation. After the microsphere attachment on the waveguide (in the PDMS 

microchannel) reaches saturation then a variable flow of medium solution from 15µl /min. 

to 25µl /min was flown to analyze the microsphere detachment rates in real time. The 

microsphere analyte target was characterized for mass transport and attachment/detachment 

events on the waveguide surface and the surface coverage was calculated. A high quality 

CCD camera (QImaging Retiga 2000R) with exposure time of 100 ms focused near the 

waveguide surface was used to capture an image inside a fixed region of the microchannel 

to analyze the light scattered by the attached microspheres. A MATLAB code measures the 

total pixel intensity of the scattered light in the captured image, which measures the surface 

coverage percentage as shown in Figure 55, 56 and 57. 

 

  

Fig 55 Microsphere Binding on Waveguide Surface (left) and MATLAB Processed 

Image (right) with Surface Coverage 4.4263 %  
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Fig 56 Microsphere Binding on Waveguide Surface (left) and MATLAB Processed 

Image (right) with Surface Coverage 4.268 %  

 

  

Fig 57 Microsphere Binding on Waveguide Surface (left) and MATLAB Processed 

Image (right) with Surface Coverage 4.0983 % 
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Fig 58 Real Time Measurements for the Microsphere Surface Coverage Binding on 

Alumina for Repetitive Flows 

 

Consecutive flows of medium solution at different flow rates in time were measured 

and the salts and detergent in the medium solution were used to weaken the carboxylate-

metal oxide bonds for detachment of microspheres. A reduction in surface coverage from 

4.426% to 4.098% was observed for three flow measurements over 66 minutes with an 

incremental flow rate of 15µl /min. to 25µl /min. The minimum surface coverage detection 

limit for microspheres was calculated from the plot to be 8.6 × 10-4 %, and the microsphere 

surface coverage changes in the microchannel with repetitive flows are shown in figure 58. 
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3-2-3-2 Prism Coupling Experiments 

The optical sensitivity of a planar alumina waveguide was measured to non-

uniformly distributed, discrete adsorption events of carboxylate coated polystyrene 

microsphere on the waveguide surface and compared to fluorescently excited microsphere 

surface coverage. 
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Fig 59 Optical Power Drop in the Alumina Waveguide due to Microsphere Binding 

(Left) and Microsphere Scattering inside PDMS Microchannel (Right) 

The plots in figure 59 shows the percentage drop in optical power in a planar 

alumina waveguide, showing the maximum power drop of 61.25% at the maximum 

microsphere surface coverage of 4.426% and lowest drop of 7.5% with surface coverage of 

4.098%. The minimum surface coverage detection limit for optical power drop was 

calculated to be 0.192 %. With consecutive flows the microsphere detachment from alumina 

surface caused a lower power drop at the output. Hence the planar waveguide propagates 

higher optical intensity at the output when a lower surface coverage of microspheres is 
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attached on the surface, which causes a reduction in microsphere scattering losses. Whereas 

a higher surface coverage results in a higher power drop at the waveguide’s output. The 

discreet binding events in the microchannel were responsible for the changes in effective 

refractive index and the coupling coefficients of the waveguide-microsphere system. 

Therefore, comparable optical power changes were measured at the output.  
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Fig 60 Simulated Microsphere Scattering Losses and Experimental Surface Coverage 

and Waveguide Power Loss 

The MATLAB theoretical plot above (figure 60) shows an increase of microsphere 

external scattering losses by ~ 3% for an increase of surface coverage from 4.1% to 4.2%. 

Whereas, the experimental plot on the right side however shows a drop of waveguide power 

of ~ 6% when surface coverage was increased from 4.1% to 4.2%. The other 3% power 

drop in the waveguide is assumed to be due to coupling losses between waveguide and 

microspheres and internal absorption losses which is a subject of future work.  

 

3-3 Whispering Gallery Modes Detection in GaN Disks 

The experimental plan to obtain Whispering Gallery Modes (WGM) will be 

reviewed in this section. Gallium Nitride microdisks were chosen as the desired material for 



101 

 

 

presence of WGMs for its potential applications in photonics devices and specially LEDs. A 

passive detection of optical modes was characterized before analyzing the VCMs (Vertical 

Cavity Modes) in the active LED structures (as explained in section 3-4).  

 

3-3-1 Passive GaN Disk Simulations 

Opti-FDTD modeling software was used to design and analyze the WGMs in GaN 

Micro-Disks. The electromagnetic fields were characterized both inside and outside the disk 

cavity. A gaussian modulated plane wave was used to excite the disks externally, and to 

simulate the passive excitation of disks. Whereas Gaussian modulated spherical point 

sources were used to excite the disks internally and to investigate the WGMs generated in 

an active cavity.  The Gallium Nitride micro-disks were used as photonic resonant 

structures for inducing whispering gallery modes for sensing applications. The Gaussian 

modulated wave-packet function is shown below: 
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3.10  

Where, to is the time offset and W is the half width.  
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Fig 61 MATLAB Simulated Gaussian Modulated Wave-Packet Pulse 

The whispering gallery mode simulations of a gallium nitride disk were similar to 

the microsphere-waveguide system seen in the previous section. The internally coupled 

spherical wave optical point sources inside the cavity were modeled, and the cavity modes 

were analyzed. A single point source positioned at the center of the GaN disk creates a 

spherical wave, and as all of the wave fronts are normal to the disk boundary, total internal 

reflection does not take place and no WGMs were observed. 
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Fig 62 Internally Excited GaN Disk with a Single Point Source at the Center 

 

The GaN disk of radius 1.65 µm and thickness 200 nm was used with 8 centered 

point sources at a peak wavelength 423.32 nm. The modeled disk is shown in the figure 

below. 

 

Fig 63 GaN Microdisk with Point Sources in Red and Observation Points and Planes 

in Green 

The simulation shows multiple radial whispering gallery modes generated in the 

GaN disk and various positions of the point sources can excite different mode profiles in the 

disk.  
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Fig 64 Opti-FDTD Simulations of GaN Disk with Multiple WGMs 

 

 

Fig 65 Resonant Wavelength Peaks inside the Microdisk Cavity 

Gallium Nitride rings of the same outer radius was also simulated and compared to 

the disk structure. Due to the hollow structure the reflections from the internal walls of the 

ring were reduced which reduced the whispering gallery modes and showed mostly the 

guided wave modes. The ring structure acts as a looped planar waveguide and showed more 

optical losses as compared to a disk structure.   
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Fig 66 Guided-wave Optical Modes in a Microring Structure 

The Microdisk structure has multiple radial whispering gallery modes but the first 

order fundamental mode is the most sensitive to the refractive index changes on the surface 

of the disk and can be used for sensing purposes. Therefore calculated positions for point 

sources were able to excite the first order mode only. The first order WGM is shown in the 

figure below.  

 

Fig 67 Excitation of First order WGMs (Left) and Side View of Vertical Mode (Right) 

The separation between resonant peaks of the whispering gallery, radial and vertical 

cavity modes can be calculated and resonant peaks can be characterized for mode 

separation. 
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Fig 68 Separation of Whispering Gallery, Radial and Vertical Cavity Modes 

The Microdisk dimensions can be designed to enhance WGM and reduce the effect 

of radial and vertical cavity modes or vice versa. A GaN disk on a GaN substrate was 

simulated to understand the effects of power loss to the substrate and to shift the mode 

profile towards the disk surface by designing appropriate disk and substrate dimensions. A 

600 nm thick GaN disk on a 1µm thick GaN substrate was used to analyze an uneven WGM 

mode profile. 

 

Fig 69 GaN Micro-disk Structure on a GaN Substrate 
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The effective refractive index on one side of the disk was made higher (to 

understand the effect of R.I. variations on WGM) as compared to the other side which 

creates an asymmetric waveguide profile and changes the effects of WGM on two different 

sides of the disk as shown in figure below.  

  

 

Fig 70 Asymmetric WGM Profile due to Nonlinear Effective Index (Substrate 

thickness = 1µm) 

Figure 70 shows the WGM mode profile at its peak under the higher index region 

and dying out eventually on the other side of the disk. Variations of the refractive index of 

the disk medium and surroundings can be studied to analyze the WGM profile.  

Next, the fabrication measures are implemented to improve the sidewall quality of 

GaN disks as the roughness greatly scatters the optical power out of the cavity and reduces 

the effect of any guided wave of whispering gallery modes. The experimentally measured 

spectral results of the whispering gallery modes will be compared with the simulation 

results in section 3-3-3. 
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3-3-2 Fabrication of GaN Disk Pattern 

Gallium Nitride micro-cylindrical structures were fabricated using standard micro-

fabrication techniques. An un-doped GaN film of 2 µm thickness was grown on a sapphire 

substrate using the MOVPE (metal organic vapor phase epitaxy) method [84]. The 

fabrication steps are shown in figure 71. E beam lithography technique was used to create 

PMMA soft masking layer, followed by Nickel evaporation and liftoff. Metal disks are used 

as a hard mask then to etch GaN disks. The fabrication details are explained next. 

 

Fig 71 Gallium Nitride Disk Fabrication Steps 

 

3-3-2-1 E-Beam Lithography 

The electron beam lithography transfers a designed pattern from a CAD file to the 

lithography resist layer (Microchem PMMA A9 950K) (Polymethyl Methacrylate, anisole 

solvent, 9% solids, 950,000 molecular weight) coated on the GaN surface. These patterns 

can eventually be transferred to form structures through various steps of metallization, lift 
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off and etching. Photolithography techniques set limits to the resolution of feature sizes and 

diffraction effects takes place which would create striations in the resist pattern and the GaN 

disk sidewalls. Lithography resists are photon or electron sensitive, so their chemical 

properties changes when they are exposed to certain dose of photons or electrons. Therefore 

exposed parts are either developed away (Positive Resist) or stay intact (Negative Resist). 

The GaN samples were cleaned in acetone, methanol and DI water for 5 min. each and then 

blown dry with nitrogen gas. The samples were dried in the oven for 10 min at 120 o C. The 

PMMA resist was spun on the samples at 500 RPM for 5 sec., 0 RPM for 10 sec., and 5000 

RPM for 50 seconds. The final resist thickness was measured to be between 0.9 µm to 1 

µm. The samples were then pre-baked on a hot plate for 90 seconds at 180 o C. The e-beam 

lithography was performed using a scanning electron microscope (SEM) at an electron 

beam energy of 30keV and probe current of 40 pA, which scans the beam at a controlled 

rate over the PMMA resist. The electron beam column consists of an electron source, 

electron lenses (mechanism for beam deflection), beam blanker to turn the beam on or off, 

astigmator to correct astigmatism, aperture, alignment systems and electron detector to help 

focus and locating marks on the sample. Figure 72 shows the E-beam SEM used for this 

dissertation work. 
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Fig 72 Scanning Electron Microscope Components [85] 

The electron beam is generated from a conducting material by heating (thermionic 

emission) or applying electric field (field emission) enough to increase the electron energy 

above the work function of the conductor. The current fluctuation is minimized by operating 

the electron source in a ultra high vacumm (UHV) chamber with pressure upto 1.9e-4 torr 

or better. The electron lenses focus the beam using electric or magnetic forces. As the 

primary electrons penetrate the PMMA resist layer, forward angular scattering occurs which 

broadens the beam diameter in the resist. By the time electrons reach the substrate 

(secondary electrons) they undergo large angular scattering back into the resist known as 

back scattering. Due to this back scattering, ‘Proximity Effect’ takes place, where the dose 

of electrons received by the resist features is affected. The main drawback of the proximity 

effect is that it broadens the beam diameter by 10 nm, which changes the actual dose of 
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exposure. The minimum practical resolution of 20 nm is achieved with a beam center to 

center spacing of 6.49 nm. The beam broadening also causes ‘Bias Effect’ where the 

exposed features develop bigger than they were normally written. Hence the dose is over or 

under-exposed. Therefore a proper adjustement is required to the dose, by writing the 

pattern multiple times, until the pattern comes out the proper size. Higher beam voltages 

reduce these scattering effects and improve the beam range. The best area dose of e-beam 

developed for a Micro-chem (positive resist) PMMA (A9-950K) of 1 µm thickness coated 

on GaN samples was found to be within 350-400µC/cm2.  

 Dose × Area = Exposure Time × Current
 

3.11  

 

Fig 73 Developed PMMA Holes Pattern on GaN sample (Dose: 400µC/cm2) 
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Fig 74 Developed PMMA Holes Pattern on GaN sample (Tilted View) 

Various patterns of disk radius 500 nm, 2 µm, 2.5 µm, 3.5 µm and 4.5 µm were 

developed. The minimum disk edge to edge spacing was kept at 1 µm with total area of 

each pattern to be 250×250 µm2. The pattern were developed in a 1:3 MIBK:IPA developer 

for 70 seconds without agitation. The sample was dipped in IPA solution for 15 secnds to 

stop development, then cleaned with DI water and blown dry with nitrogen.  



113 

 

 

 

Fig 75 Nickel Disks as Hard Mask on GaN sample (After PMMA Lift off) 

E-beam evaporation (Temescal BJD 2000) was used to deposit Nickel (100-150 

nm) at a rate of 1 Å/sec. with a density of 8.91 g/cc and a Z-ratio of 0.331. Zero dome 

rotation enhanced the deposition unifromity and a better sidewall profile. The PMMA was 

then lifted off using PG remover for 30 minutes at 65o C. The nickel disk pattern on GaN 

samples after PMMA lift off is shown in the figure above. The samples were ready for ICP-

RIE etching as discussed in the next section. 

 

3-3-2-2 ICP-RIE Etching 

The e beam lithography defines a pattern on the GaN samples, which can be used as 

a hard mask for etching and to transfer the pattern as GaN disks. The inductively coupled 

plasma (ICP) reactive ion etching (RIE) is a dry etching technique which involves gas-

phase etchants in plasma. A combination of chemical and physical processes takes place to 

define parameters like etch selectivity and directionality. Etch selectivity is the ratio of the 
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etch rates of different materials in an etch process. The GaN: Ni etch selectivity using a 

(Trion Mini-lock III) etching system was found to be 8:1. Etch directionality measures the 

relative etch rate in different directions, usually vertical versus lateral. Isotropic etching 

occurs when etch rates are the same in all directions, whereas Anisotropic etching etches in 

one direction. Etch directionality is related to physical effects such as ion bombardment and 

sputtering. Vertical etching with a smooth sidewall is the focus in this dissertation. The etch 

chemistry was selected based on the directionality as well as smoothness of etched 

sidewalls.   

 

Fig 76 A Basic Plasma Etch System Schematic [86] 

The chamber pressure of 10 mTorr was used, and by applying a high electric field 

(ICP Power) across two electrodes, some of the gas atoms are ionized, producing ions, 

electrons and neutrals which form the plasma. The energy is supplied by a RF generator 

typically at 13.5 MHz, and due to difference in the mobility of electrons, positive ions and 

neutrals, a voltage bias is developed between the plasma and the electrodes. The plasma 

density (concentration of ions) and ion energy are coupled. As the RF power increases, 
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plasma density is increased, and voltage bias increases, increasing the ion energy and the 

etch rates. For the RIE system the upper electrode is made bigger, which results in a larger 

voltage drop from plasma to the wafer, resulting in more energetic ion bombardment, which 

improves the directionality. Increasing the RF power or voltage drop too much can also 

cause wafer damage, therefore a recipe is created to achieve the target etching rate, 

smoothness and directionality. To achieve smoothness the DC Bias was kept lower (~85 V), 

which reduces the ion energy and wafer damage, and also improves the selectivity. The two 

species in the plasma used for etching are neutral chemical species (Cl2), which etches the 

material chemically, and the positive ions (BCl3) used for physical etching. The purpose of 

reactive neutral chemical species is to react with GaN and etch, with a volatile by product. 

The positive ions are accelerated towards the wafer due to a voltage drop between the 

plasma and the wafer, resulting in a more physical component of etching. The physical 

etching breaks bonds and makes material more prone to chemical reactions. However, the 

physical etching is more directional as compared to the reactive neutral chemical etching 

but also can cause wafer damage. The physical and chemical by products were removed 

using the gas outlet pump. The etching recipe used for GaN was (BCl3: Cl2) (6:  34) sccm, 

at a chamber pressure of 10 mTorr, ICP power (Plasma Density) of 400 W, RIE power (Ion 

Energy) of 150 W and a DC Bias voltage of -85 V. The samples were etched for 10 minutes 

to completely remove the Nickel mask (100 nm) creating a GaN disk MESA of ~800 nm as 

shown in the figure below. Nickel etch rates were observed to be 10 nm/min. and GaN etch 

rates were 80 nm/min. A higher DC Bias of -150 V bombards the sidewalls and generates 

damaged sidewalls. 
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Fig 77 GaN Disk Pattern at a Higher DC Bias Voltage of -150 V Showing Ion Damage 

to Sidewall 

 

Fig 78 756 nm Thick GaN Disk with Damaged Sidewall 

As the DC Bias is reduced to -85 V, the ion energy is reduced, and sidewall quality 
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is improved as seen in the figure below.  

 

Fig 79 GaN Disks Sidewall Quality Improvement with Lower DC Bias 

 

Fig 80 GaN Disks Pattern 
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The sidewall angles were measured to be 75 degrees. For whispering gallery modes 

generation in GaN disks, the sidewall quality was emphasized as compared to the sidewall 

angles. The disk structures were circular trapezoidal in shape, with smoother sidewalls to 

prevent scattering of light at the edges.  

 

Fig 81 Side View and Top View of GaN Disks Pattern 

The GaN disks pattern were fabricated using e-beam lithography and ICP-RIE 

etching techniques. The samples with disks of various radii were characterized optically for 

detection of whispering gallery modes as discussed in the next section. 

 

3-3-3 Optical Characterization of Whispering Gallery Modes  

The higher index GaN disks on lower index sapphire substrates were designed with 

sidewalls thicknesses, so that the optical mode propagates in the disks, and optical losses 

into the substrate can be prevented. The Opti-BPM simulation tool was used to solve for 

optical modes. The disks on the sapphire substrate can be simulated as a ridge waveguide 

with optical mode propagating in the GaN disks as shown in the simulated plot below. 
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Fig 82 Optical Mode Propagation in GaN Disk (800 nm) Simulated as a Ridge 

Waveguide Structure 

The optical coupling into the disks was achieved using a RadioShack blue LED 

with a peak wavelength of 463 nm (FWHM 30 nm), optical lenses, microscope objective 

(10x), BWTEK optical fiber (200 µm core diameter) and a BWTEK UV-NIR spectrometer 

(0.8 nm spectral resolution). The optical bench coupling setup is shown in the figure below.      

 

Fig 83 Optical Setup for WGM Coupling in GaN Disk Pattern 

The high intensity output blue LED was coupled with a microscope objective to 

focus the light beam on the disk array. To couple light into the whispering gallery modes of 

the disk, and prevent any noise from the diffraction grating spectra (generally seen at 45o), 

the input light beam was coupled at a 10o angle from the substrate surface. The output 

spectrum was collected at 20o from substrate surface using a focusing lens, and aligned with 
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the optical fiber. The whispering gallery modes of GaN disks (n=2.45) correspond to the 

spectral minima at the output, and having a mode spacing which is defined by this relation: 

 

Rnπ
λλ

2

2

=∆
 

3.12  

GaN disks of radii 2 µm, 3.5 µm and 4.5 µm were optically characterized with a 

mode spacing of 7 nm, 4 nm and 3 nm respectively, which satisfied the relation in equation 

3.12. The WGM experimental spectra can be seen in the plots below.  
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Fig 84 Whispering Gallery Modes as Spectral Minima for 4.5 µm Radius Disk 
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Fig 85 Whispering Gallery Modes as Spectral Minima for 3.5 µm Radius Disk 
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Fig 86 Whispering Gallery Modes as Spectral Minima for 2 µm Radius Disk 
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Fig 87 Matched Experimental and Simulated WGM Spectra for 3.5 µm Radius Disk 
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Fig 88 Matched Experimental and Simulated WGM Spectra for 2 µm Radius Disk 

According to relation 3.12, the decrease in radius of the disk will increase the mode 
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spacing, (as a shorter path length will fit fewer resonance wavelengths) and was confirmed 

using simulations and experimentally. The GaN disk gratings with a ‘center to center’ 

distance of 3 µm produced a grating resonance (dsinθ=mλ) of 170 nm separation and were 

present outside the LED spectrum. The vertical cavity mode spacing was also calculated to 

be 29 nm, which is similar to the FWHM of the LED source and most of the VCMs were 

present outside the LED spectrum. Therefore the spectral minima in the experimental and 

simulated plots were confirmed to be the presence of whispering gallery modes.  

 

3-4 GaN LED Simulations 

The finite difference time domain tool has been established as an important tool for 

nano photonics simulations. We used the software to model a variety of optical propagation 

phenomena in planar resonant waveguides, micro-spherical and micro-cylindrical structures 

for scattering, diffraction, reflection, refraction, absorption, gain, polarization and near field 

effects. The material anisotropy and non-linearity can also be modeled without any pre-

assumptions for the optical field and its behavior. As seen in the previous sections the 

modeling was performed using an external plane wave light source for passive 

characterization of optical modes. In this section we will simulate GaN LED structures as 

an active (Internally excited) micro-resonator for analysis of vertical cavity modes (VCMs) 

and comparison of experimental and simulated LED EL (electroluminescence) spectra. A 

typical GaN LED structure is shown below.  
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Fig 89 Gallium Nitride LED Structure [84] 

The optimum conditions for mode generation and matching optical parameters with 

those of the experimental values was characterized by changing the refractive indices and 

thickness of LED layers within an error range of 0.02 refractive index units (RIU) and 10 

nm respectively. This study was used to analyze the effects of various parameters on the 

behavior of vertical cavity modes (VCMs) and by changing LED parameters to enhance the 

VCMs for a higher optical emission. Instead of using an external source for coupling light 

into the LED cavity, rather multiple non-coherent point sources were used as light 

generation points inside the quantum well region of the LED disk. The VCMs generation 

due to the internal point sources was characterized and compared with experimental EL. 2-

D and 3-D simulation results to help in modeling the thicknesses of layers and to analyze 

the vertical mode profile, which greatly reduces the power loss into the substrate so the 

confinement of optical power into the disk can be enhanced. Another structure which can 

greatly improve light confinement in the LED cavity and reduce substrate losses is the use 

of a bottom DBR (Distributed Bragg Reflector). It was essential to simulate DBR structures 
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before proceeding to LED simulations, and this is discussed in the next section. 

 

3-4-1 DBR Simulations 

AlxGa1-xN/GaN digital alloy DBR structures grown using MOVPE (metal-organic-

vapor-phase-epitaxy) were used as the bottom LED reflectors [84]. The digital alloy 

periodicity with alternating GaN and AlN (Aluminum Nitride) layers was simulated for 6, 

12, 18 and 25 periods. 

 

Fig 90 12 Period Digital Alloy DBR Structure on Sapphire Substrate [84] 
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Fig 91 Electromagnetic Intensities for 6, 12, 18 and 25 Period DBR Reflectivity 

The DBR reflectivity and bandwidth was characterized and compared with 

experimental reflectivities. The optical source used was a Gaussian modulated plane wave 

in space-time with a wavelength range of white light. The input power in the near field (~ 

500 nm) was defined to be more centralized, to couple light along the axis of the DBR 

layers and to prevent scattering from edges, giving accurate results. A finite computational 

cell was defined as the simulation volume with the boundary conditions of a perfectly 

matched layer (PML), to absorb outgoing waves and reduce back-reflections [87].  
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Fig 92 Experimental [88] and Simulated DBR Reflectivities for 6, 12 and 18 Periods 
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The simulated DBR reflectivity and bandwidth agreed with the experimental results 

as shown in the plots. 

 

3-4-2 Passive LED Reflectivity Simulations 

The external excitation (passive) was used to analyze the presence of LED cavity 

modes before simulating active structures. The reflectivity simulations were performed for 

RCLEDs on DBR substrates. A plane wave centered at 450 nm with a FWHM of 100 nm 

was introduced at 0.5 µm distance from the LED (p-GaN) top surface and a reflectivity 

spectrum was captured. The simulated and experimental reflectivity plots were matched 

showing the presence of vertical-cavity modes (spectral minima).  
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Fig 93 Experimental [88] and Simulated LED Reflectivities on 6, 12 and 18 Period 

DBR structures 
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Analysis indicates that the resonant vertical-cavity modes are formed due to 

constructive interference of the optical fields in the cavity defined between the LED P-GaN 

surface (without top mirror) and the buried DBR, and the cavity between the quantum well 

and DBR. These locations of spectral minima observed in both experimental and simulated 

spectra are well matched, whereas the spectral intensities differ due to the non-absorptive 

medium used in the simulation. The simulated spectra were normalized with the maximum 

input intensity for comparison with the experimental reflectivities. The spectral minimum 

observed at 432 ± 2 nm in LEDs with 6 period DBRs is related to the 8(λ/2) resonance of 

the cavity with a thickness of 1730 ± 10 nm between the LED surface and the buried DBR. 

In the LED with a 12 period DBR, the spectral minimum was observed at 440 ± 2 nm, 

which is related to the 7(λ/2) resonance of the cavity with a thickness of 1540 ± 10 nm 

defined between the quantum well and the buried DBR. 

 

3-4-3 Vertical Cavity Modes and RCLEDs Simulations 

The vertical cavity modes (VCMs) in RCLED structures were characterized using 

Opti-FDTD. Mode splitting was analyzed in the disk sidewall electromagnetic profile due to 

changes in refractive index of LED layers and the substrate. Various LED disk radii and 

thicknesses were used to characterize vertical cavity mode intensities. From the side view 

(figure 94) we can observe two distinct vertical cavity modes profiles and one single 

vertical cavity mode profile depending on the LED thicknesses and refractive indices of the 

surrounding layers. As the thickness of the disk is increased more vertical cavity modes 

were observed.    
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Fig 94 Side View of the Vertical Cavity Modes for a Longer and Shorter LED Cavity  

2D simulations can be done to design the mode profile in the disk by choosing 

appropriate disk and substrate dimensions. Also the power loss into the substrate can be 

greatly reduced by increasing the disk thickness and shifting the mode profile upwards and 

away from the substrate.  

Therefore the non-uniformity in refractive index on the surface of the disk can 

greatly change the behavior of vertical cavity modes. Also, increasing the refractive index 

on top of the disk can shift the mode profile upwards and would reduce the power loss to 

the substrate. The GaN LED structure was designed with a Distributed Bragg Reflector 

(DBR) to reduce the substrate power losses and improve the extraction efficiency of the 

LED. The figure below shows the VCM profile without a DBR.  

 

Fig 95 Top (WGM) and Side (VCM) View in LED Cavity (Disk Thickness = 2.15 µm) 
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By simulating the same structure with a DBR the mode profile was shifted upwards 

and the power loss to the substrate was reduced as shown in the figure below. 

 

Fig 96 Mode Profile Shift and Reduction in Substrate Power Loss with a DBR LED 

 

Fig 97 Mode Profile shift and Higher Modes for Longer LED Cavities 

Also, the VCMs mode profile can be shifted upwards, reducing substrate loss, by 

increasing the length of the cavity (few wavelengths) and to enhance the VCM emission 

from LED top surface. Therefore thickness, indices and position of DBR in RCLEDs play 

an important role in excitation of optical modes, and properly designed can reduce the 

substrate losses and enhance emission.  

The LED micro-cavity length and positioning of layers with respect to (λ/2) 

resonance of the cavity lays the basis for design of an RCLED. The cavity acts as a planar 
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Fabry-Perot interferometer and the constructive or destructive interference of the fields are a 

function of the wavelength and cavity length.  

 

Fig 98 RCLED Cavity Length and Placement of Quantum Well on Anti-node 

The cavity length is designed to be a function of λ/2 with two reflective surfaces on 

top and bottom of the cavity. The reflectivity of top surface (R1) is kept lower than 

reflectivity of bottom surface (R2), for light to emit out from the top. The Multi Quantum 

Well (MQW) is placed at an anti-node of the standing wave to constructively interfere the 

wave inside the designed cavity. The boundaries of the LED layers are kept at the nodes to 

reduce internal reflections and improve wave propagation. The optical intensity of the 

RCLED at a wavelength of 450 nm was simulated as a function of cavity length using 

MATLAB. 
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Fig 99 RCLED Optical Intensity as a Function of Cavity Length 

As seen in the MATLAB plot, the optical intensity outside the LED drops to zero at 

resonant wavelengths as those wavelengths constructively interfere inside the cavity. Due to 

higher absorption losses or lower Q factors of the cavity, the intensity of resonant modes is 

weaker outside the cavity. As the Q-factors increase the strongly coupled resonant cavity 

modes can be extracted outside the cavity with an increased LED emission and a narrower 

FWHM. Opti-FDTD simulations were used to analyze this effect. A planar LED structure 

on a DBR substrate with non-resonant cavity thicknesses (as experimentally used) was 

simulated and compared to a designed RCLED structure.  
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Fig 100 LED and Designed RCLED Structures (Showing Refractive Indices) and 

Optical Cavities D1, D2 

The simulation shows an enhanced output emission intensity of the RCLED 

structure, and an improvement of 110% was observed for a peak wavelength of 441 nm and 

FWHM of 25 nm.  
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Fig 101 Simulated Intensity (Left) and Spectra (Right) for LED and Designed RCLED 
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The optical emission was captured using observation points and planes from a 

distance of 500 nm above the LED P-GaN surface, and showed an improvement in the 

emission intensity. The spectral minima observed in the simulated LED EL spectrum were 

due to vertical cavity modes in the LED cavity. Next, LED EL spectra were simulated, 

analyzed for VCMs and matched with experimental emission.  

 

3-4-4 LED Electroluminescence Simulations 

The finite difference time domain (FDTD) method was used for active (Internally 

excited) LED EL simulations. The FDTD method is different from other modeling 

techniques such as the FEM (Finite Element Method), where a steady state solution is used 

as compared to the time-domain method of FDTD. The time-varying fields introduced into 

the simulation space propagate and interact with LED layers and the interference effects can 

be modeled, making it a useful tool for analysis of resonant cavity modes in LED devices. 

For Resonant Cavity (RC) LEDs, the quantum well emitting layer is surrounded by several 

optically thin layers, producing interference effects and also trapping light into the device 

due to high refractive indices of the layers. Understanding of the electromagnetic field 

distributions in the LED layers can not only improve the extraction efficiency but also 

reduce the optical losses present in the LEDs due to vertical cavity modes. The optical 

power in different layers of a DBR LED disk structure can be seen in the figure below. Ring 

n-metal and p-metal contacts were used to generate a uniform refractive index profile of the 

disk. 
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Fig 102 Simulated LED Structure and Optical Intensities in Different Regions of LED 

To model these LED structures, non-coherent Gaussian modulated continuous 

spherical wave (GMCW) point sources were embedded into the quantum well region to 

simulate the optical emission from the active region of the LED. Multiple spherical wave 

point sources represent more localized quantum well emission as compared to a plane wave.  

 

 

 

 

n-GaN  p-GaN  Top Surface  
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Fig 103 Simulated and Experimental [88] LED EL Plots at 4V (Left) and 4.5 V (Right) 

for No DBR, 6, 12 and 18 Period DBR LEDs 

A simulation region size of 5 × 10 µm2 was uniformly discretized with a mesh size 

of 0.03 µm and perfectly matched layer (PML) boundary conditions were used at the 

simulation region boundaries to absorb outgoing waves and reduce back-reflections [87]. 
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The thicknesses and indices of the LED layers were designed and matched to experimental 

values within an error of ±10 nm and ±0.02 RIU (Refractive Index Units). Observation 

points on the top and bottom of the LED structure were used to collect the spectral emission 

data. The resonant vertical cavity modes (spectral minima) observed in the simulated 

spectra matched well to the experimental EL spectra. The resonant dominant modes are 

approximately observed in both the experimental and simulated spectra at 432 ±2 nm and 

451 ± 2 nm, corresponding to the cavity defined between the LED surface and the buried 

DBR (1730 ± 10 nm), and between the quantum well and DBR (1575 ± 10 nm), 

respectively. The vertical-cavity modes are an adequate representation of the field patterns 

formed due to constructive interference in the cavity and resonance at certain wavelengths, 

as seen in the output spectrum. In order to reduce the optical losses experienced by the 

vertical cavity modes, and to extract the trapped modes by improving the quality factors of 

the cavity, and designing the thicknesses/Indices of layers, we optimized the simulation of 

the RCLED structure using the FDTD method and then confirm the presence of resonant 

vertical cavity modes by also performing reflectivity measurements on DBR embedded 

LED structures.  
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Chapter 4 
 

Summary and Conclusions  
 

Optoelectronic micro-resonators form a basis for the next generation compact, high 

speed and low power photonic circuits. Designing the shape, size and materials of the 

resonator can be tuned to enhance the MDRs (Morphology Dependent Resonances) with 

required polarization, bandwidth, frequency and emission spectrum. This opens doors to 

potentially develop new types of photonic devices like LEDs, lasers, optical switches, filters 

etc. Novel designs create a scope of challenging fundamental physics applications beyond 

current technologies. Fabry perot based planar optical resonators are utilized in every field 

of linear and nonlinear optics. When high performance and sensitivity of devices is 

required, micro-cavity morphology-dependent circular resonators based on total internal 

reflection become an alternative to their planar traditional counterparts. Photonic circuits 

utilizing strong optical confinement in planar waveguides, micro-disks, and micro-rings are 

promising candidates for large scale integration, and very sensitive to fabrication errors 

which can drastically effect the coupling efficiency. Accurate fabrication of optical coupling 

gaps (<0.1 µm) by photo/e-beam lithography and etching is still a challenging task. In this 

dissertation we have reviewed the state of the art optoelectronic resonator tools, fabrication 

and characterization techniques and the challenges for potential of bio-sensing and 

enhanced emission intensities. 

 

The first sensitivity and selectivity characterization of a resonant planar alumina 

waveguide stack was achieved, and the device performance with refractive index changes of 

surface loading, and also with the fabricated waveguide parameters was analyzed. The 

effective surface loading detection sensitivity was experimentally determined to be 20 

pg/mm2 with a bulk index sensitivity of 5.6×10-4 Refractive Index Units (RIU) for aqueous 

sucrose solutions. Circular cavity MDRs based devices such as microspheres and micro-

disks were studied, which enhances and distributes the optical resonant frequencies as 
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compared to a planar macro-cavity. The unique modal properties of passive WGMs 

(Whispering Gallery Modes) were researched and detected in micro-spheres/disks, 

including linewidth, tunability, bandwidth, Q-factors and peak shifts due to refractive index 

changes. Photonic sensors and filters are amongst the most developed devices exploiting 

WGMs. Simulations of planar waveguide sensor coupled with polystyrene microspheres 

showed the presence of WGMs, which was the main cause of scattering in microspheres and 

power losses in the waveguide. Surface coverage of microspheres on an alumina waveguide 

were experimentally detected to have a minimum surface coverage limit of 0.192% based 

on the sensitivity to waveguide output power.  

 

Passive WGMs in GaN micro-disks were shown both in simulations and 

experimentally. A variation in mode spacing of 3nm to 7nm (λ2/2πRn) was tuned in as the 

disk radius was reduced from 4.5µm to 2µm. The disk index, thickness and material 

parameters can be used for sensing applications and whispering gallery resonator 

spectroscopy can be utilized to enhance interaction between photons and atoms/molecules. 

WGMs based biosensors have been reported in literature and typically detect presence of 

refractive index changes due to molecular binding producing spectral shift of the order of 

picometers [89]. The main advantages for this technique are improved selectivity, 

sensitivity, non-destructive and applicability to various samples. However, most WGM 

biosensors rely on measurements related to transmission spectra or scattering characteristics 

of an optical mode in the presence of a biomolecule. The sensors can also measure the 

change in phase or intensity of light at the waveguide output. Achieving high Q-factors of 

micro-resonators is a challenge and most crucial for sensitivity of the device. Fabrication 

challenges for improved Q factors have scope for future work, as lithography resolution and 

etching smooth sidewalls with lower surface scattering can be improved.      

 

Another major application of micro-resonators is in novel generation of light 

sources such as Resonant Cavity (RC) LEDs. The active generation of vertical cavity modes 

in electrically pumped LEDs was characterized using simulations and experimentally. 
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Wavelength-sized micro-disk LED structures were designed in which the electromagnetic 

fields can either be destructively suppressed or enhanced, with a narrowing of spectral 

linewidth and improvement in the spectral intensity. It was observed that the spontaneous 

emission from a MQW (Multi Quantum Well) can be significantly altered when it was 

placed at different locations in a high-loss cavity. This gives scope to explore various new 

micro-disk/ring designs for efficient control of spontaneous emission at the LED output. 

Proper design and placement of LED layers supports high-Q vertical cavity modes, and 

emission at one modal wavelength can be strongly enhanced. The main challenge is to 

develop cavity-enhanced LEDs with high-Q modes, which is not easily achieved in a bulk 

or hetero-structure MQW LEDs. Semiconductor Quantum Dots (QDs) are a recently 

proposed concept which can be explored in future work, to enhance cavity gain. The QDs 

can be fabricated using self assembly techniques and integrated as atomic emitters into the 

LED disk. The next challenge is to efficiently design micro-resonator geometrical properties 

to manipulate and increase the strength of coupling between QD and optical fields of the 

resonator. Alternatively, micro-resonators can be designed with non-symmetric (elliptical) 

geometries to obtain directional emission patterns with applications in lasing. In this work, 

the micro-disk geometries were considered for active generation of Vertical Cavity Modes 

(VCMs). Micro-cylindrical DBR RCLEDs greatly enhanced the VCMs and output emission 

with properly designed layer thicknesses and MQW (multi quantum well) placement in the 

cavity. Both experimental and simulated LED spectra confirm the presence of VCMs with 

matched spectral minima at 432 nm and 451 nm confirming VCMs related to (λ/2) cavity 

resonances.  

Advancements in the micro/nano-fabrication technologies offer great potential to 

fabricate novel optical resonator structures with improved control in material systems. 

Future applications include nano-scale resonators for optical signal processing in low cost, 

high speed, large scale integration photonic circuits. Another area of interest is the 

enhancement of detection sensitivity for biosensors, with more compact and efficient optical 

structures with enhanced functionality. Continued development of a new range of materials 

such as quantum wires or nanotubes with special designed properties is expected to bring 
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more high performance optical resonators. The emerging all-optical resonator designs 

demands strict requirements in accuracy, performance to develop advanced devices and 

structures. 
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APPENDIX 

%Program for internal scattering/absorption loss of 1 um diameter microsphere 

Lambda= 632.8e-9; 

p=2e-12; 

k=1.38e-23; 

T=368.15; 

beta=2e-10; 

n=1:0.1:4; 

alpha_int=((8*pi^3)/(3*Lambda^4))*(n.^8*p^2*k*T*beta); 

plot(n,alpha_int) 

xlabel('Refractive Index of Microsphere') 

ylabel('Internal Absorption / Scattering Loss (a.u.)') 

title('Microsphere Internal Loss','FontSize',12) 

 

%Program for external scattering/radiation loss of 1 um diameter microsphere 

a=500e-9; %radius 

B=5e-9; %correlation length 

n=1.5; 

sigma=0:0.2:2; %surface roughness parameter 

alpha_ext= (a*(n^2-1)/2*n^2)*(16*pi^2/3*Lambda^4)*(n^2-1)*pi*B^2*sigma.^2; 

plot(sigma,alpha_ext) 

xlabel('Surface Roughness of Microsphere (nm)') 

ylabel('External Scattering / Radiation Loss (a.u)') 

title('Microsphere External Scattering Loss','FontSize',12) 

 

%Program for external scattering loss at various microsphere radii 

Lambda= 632.8e-9; 

a=500e-9; %radius 

B=5e-9; %correlation length 
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sigma=1.5e-9;%surface roughness parameter 

n=1:0.1:4; 

alpha_ext=((n.^2)-2)*(a*16*pi^3*B^2*sigma^2/6*Lambda^4);%radius=500nm 

alpha_ext1=((n.^2)-2)*(2*a*16*pi^3*B^2*sigma^2/6*Lambda^4);%radius=1um 

alpha_ext2=((n.^2)-2)*(10*a*16*pi^3*B^2*sigma^2/6*Lambda^4);%radius=5um 

alpha_ext3=((n.^2)-2)*(20*a*16*pi^3*B^2*sigma^2/6*Lambda^4);%radius=10um 

plot(n,alpha_ext,n,alpha_ext1,n,alpha_ext2,n,alpha_ext3) 

xlabel('Refractive Index of Microsphere') 

ylabel('External Scattering / Radiation Loss (a.u)') 

title('Microsphere Scattering at Different Radii','FontSize',12) 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 

 

 

REFERENCES 

1. R. Narayanaswamy, O.S. Wolfbeis, Optical Sensors, Springer, New York, 2004. 

2. I.M. White, X. Fan, Opt. Express 16 (2008) 1020. 

3. N.A. Mortensen, S. Xiao, J. Pedersen, Microfluid. Nanofluid.4 (2008) 117. 

4. L. Rindorf, O. Bang, Opt. Lett. 33 (2008) 563. 

5. Smith, L. M.; Saunders, J. Z.; Kaiser, R. J.; Hughes, P.; Dodd, C. R.; Cornell, C. R.; 

Heiner, C.; Kent, S. B. H.; Hood, L. E. “Fluorescence Detection in Automated DNA 

Sequence Analysis”, Nature, 1986, 321, 674-679. 

6. http://web.uvic.ca/ail/techniques/epi-fluorescence.html 

7. G. Herzberg, “Infrared and Raman Spectra of Polyatomic Molecules”, Van Nostrand 

Reinhold, New York, NY, 1945.  

8. J. C. de Paula, http://www.haverford.edu/chem/302/Raman.pdf.  

9. Paddle, B.M. 1996. Biosensors for chemical and biological agents of defense 

interest. Biosens. Bioelectron. 11 (11), 1079 

10. http://en.wikipedia.org/wiki/Surface_plasmon_resonance. 

11. Exploitation of Localized Surface Plasmon Resonance, Eliza Hutter, Janos Fendler, 

Advanced Materials, 16, No. 19, 2004.  

12. Localized Surface Plasmon Resonance Biosensors, J. Zhao, X. Zhang, C. R. 

Yonzon, A. J. Haes, R. P. Van Duyne, Future Medicine, 2006.  

13. Localized Surface Plasmon Resonance Spectroscopy and Sensing, Katherine 

A.Willets and Richard P. Van Duyne, Annu. Rev. Phys. Chem. 2007. 58:267–97. 

14. “Guided-Wave Optical Biosensors”, Vittorio M. N. Passaro, Francesco Dell’Olio, 

Biagio Casamassima and Francesco De Leonardis, Sensors, 25 April 2007,7, 508-

536. 

15. “Resonant Detection of Nano to Microscopic Objects Using Whispering Gallery 

Modes”, PhD Dissertation, Frank Vollmer, The Rockefeller University, 2004. 

16. “Application of Ion Beam Assisted Thin Film Deposition Techniques to the 

Fabrication of a Biosensor Chip with Fieldability Potential for Important Biohazard 

Detection Applications”, D. Lloyd, L Hornak, S Pathak, D Morton, I. Stevenson, 



146 

 

 

47th Annual Technical Conference Proc., Soc. Of Vac. Coaters,  ISSN 0737-5921 

(2004). 

17. P. Poloju, P. Samudrala, J. R. Nightingale, D. Korakakis, L. A. Hornak, 

“Characterization of Alumina Optical Waveguides Grown by Ion Beam Assisted 

Deposition for SPARROW Biosensors,” MRS Fall 2006 Conference Proceedings. 

18. S. Nakamura, "InGaN-based blue laser diodes," Selected Topics in Quantum 

Electronics, IEEE Journal of, vol. 3, pp. 712-718, 1997. 

19. V. M. Bove and W. Sierra, "Personal Projection," SMPTE Imaging, pp. 17-21, 

2004. 

20. J. Piprek, Semiconductor Optoelectronic Devices: Academic Press, 2003. 

21. Braun, G. Ihlein, J. U. Nokel, G. Shulz-Ekloff, F. Shuth, U. Vietze, O. Weib, and D. 

Wohrle, "Hexagonal microlasers based on organic dyes in nanoporous crystals," 

Applied Physics B., vol. 70, pp. 335-400, 2000. 

22. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorez, and M. Grundmann, "Whispering 

gallery modes in nanosized dielectric resonators with hexagonal cross section," 

Physical Review Letters, vol. 93, pp. 1039031-1039037, 2004. 

23. J. Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Physical 

Review A (Atomic, Molecular, and Optical Physics), vol. 67, p. 023807, 2003. 

24. J. Wiersig, "Boundary element method for resonances in dielectric microcavities," 

Journal of Optics A: Pure and Applied Optics, vol. 5, pp. 53-60, 2003. 

25. J. Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Physical 

Review A, vol. 67, p. 023807, 2003. 

26. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. 

Logan, "Threshold characteristics of semiconductor microdisk lasers," Applied 

Physics Letters, vol. 63, pp. 1310-1312, 1993/09/06/ 1993. 

27. S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and waves in communication 

electronics, 3rd ed.: John Wiley & Sons, 1993. 

28. S. Simhony, E. M. Kosower, and A. Katzir, ‘‘Novel attenuated total internal 

reflectance spectroscopic cell using infrared fibers for aqueous solutions,’’ Appl. 



147 

 

 

Phys. Lett. 49, 253–254 (1986). 

29. P. H. Paul and G. Kychakoff, ‘‘Fiber-optic evanescent field absorption 

sensor,’’Appl. Phys. Lett. 51, 12–14 (1987). 

30. S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, ‘‘Evanescent wave infrared 

spectroscopy of liquids using silver halide optical fibers,’’ J. Appl. Phys. 64, 3732–

3734(1988). 

31. Chen H.C, 1985 – Theory of Electromagnetic waves. Mc Grow – Hill Book 

Company Inc., International Student Edition, Singapore, Page: 58. 

32. Cheng D.K., 1989 – Field and wave. Addison Wesley publishing Company, 2nd 

Edition, United States of America, Page: 323. 

33. Qeshta M.N., and Al-Juaidi A.A., 2009 – Optical wave guide Sensor P: 1. 

34. Sadiku M.N.O., 2001 – elements of electromagnetics, Oxford University Press, Inc, 

3rd Edition, New York, P: 389. 

35. Lee, Donald L., Electromagnetic Principles of Integrated Optics, John Wiley & 

Sons; (1986) 

36. Prillor F., Gilles H., Girard S., larche M., Kaiser r., and Gazibegovic A., 2005 – 

Goos – Hänchen and Imbert – Fedorov Shifts for leaky guided modes. J. Opt. Soc. 

Am., Am., Vol. 22, No. 6, Page: 1290. 

37. D. Marcuse, Bell Syst. Tech. J. 48 (1969) 3187. 

38. Palais, J.C., Fiber Optic Communications. Prentice Hall, April, 2002 

39. Liang, A.H., The Rayleigh Scattering Loss of Isotropic Weakly 

Guiding Single-Mode Waveguides. IEEE Journal of Quantum Electronics. 

V28, n9, p1844-1847, 1992. 

40. F. P. Payne, J. P. R. Lacey, “A theoretical analysis of scattering loss from 

planar optical waveguides”, Optical and Quantum Electronics, 26 (1994) 

977-986. 

41. Ke Feng, Biolayer modeling and optimization for the SPARROW biosensor, PhD 

Dissertation, West Virginia University, 2007. 

42. Ogilvy, J. A., Rough surfaces: Gaussian or exponential statistics? J. Phys. D: Appl. 



148 

 

 

Phys 22, p1243-1251, 1989. 

43. Ladouceur, F., Roughness, Inhomogeneity, and Integrated Optics. Journal of 

Lightwave Technology. V15, n6, p1020-1025, 1997 

44. M. Kuznetsov, H. A. Haus, Radiation loss in dielectric waveguide structures by the 

volume current method, Oct 1983, Vol. QE-19, No. 10, IEEE Journal of Quantum 

Electronics. 

45. Jin, G.H., Harari, J., Joannes, L., Vilcot, J.P., Decoster, D., Numerical analysis of the 

radiation losses due to surface roughness in integrated optics devices. IEEE 

photonic tech. letters, V8, n9, p1202-1204, 1996 

46. J J Gerdes. Bidirectional eigenmode propagation analysis of optical waveguides 

based on method of lines. Electronics Letters, 30(7) 550, March 1994. 

47. S. T. Peng and T. Tamir. TM mode perturbation analysis of dielectric gratings. 

Applied Physics, 7(35) 35-38, 1975. 

48. Jose Rodriguez, R. D. Crespo, and S. Fernandez. Radiation losses on discontinuities 

in integrated optical waveguides. Optical Engineering, 38(11) 1896-1906, 

November 1999. 

49. Al-Bader S. J. and Jamid H. A. Mode scattering by a non-linear step-discontinuity in 

dielectric optical waveguides. IEEE Transactions on Microwave theory and 

Techniques, 44(2) 218-224, February 1996. 

50. P. Poloju, “Fabrication and Functional Analysis of SPARROW Biosensor,” Master’s 

thesis, Lane Dept. Elec. Eng., West Virginia University, Morgantown, WV, 2007. 

51. Mehjez E.M., 2008 – Metamaterial optical wave guide sensor. Dar El-Arqum, P:10 

52. Parriaux O. and Velduis G.J., 1998 – Normalized analysis for the sensitivity 

optimization of integrated optics evanescent – wave sensors. J. of light Tech., 16,4,p 

: 573 – 582. 

53. F. Vollmer, S. Arnold, “Whispering gallery mode biosensing: label-free detection 

down to single molecules”, Nature Methods, Vol. 5, No. 7, July 2008. 

54. Zvyagin, A. V.; Goto, K., Optical Society of America 1998, 15, 3003. 



149 

 

 

55. D. W. Vernooy, V. S. Ilchenko,* H. Mabuchi, E. W. Streed, and H. J. Kimble, High-

Q measurements of fused-silica microspheres in the near infrared, February 15, 1998 

/ Vol. 23, No. 4 / OPTICS LETTERS. 

56. Wei Liang, Yong Xu, Yanyi Huang, and Amnon Yariv, J. G. Fleming, and Shawn-

Yu Lin, Mie scattering analysis of spherical Bragg “onion” resonators, 2004 Optical 

Society of America. 

57. MARK KUZNETSOV AND HERMANN A. HAUS, Radiation Loss in Dielectric 

Waveguide Structures by the Volume Current Method, IEEE JOURNAL OF 

QUANTUM ELECTRONICS, VOL. QE-19, NO. 10, OCTOBER 1983. 

58. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Ultimate Q of optical 

microsphere resonators, April 1, 1996 / Vol. 21, No. 7 / OPTICS LETTERS. 

59. G. Kozyreff, J. L. D. Juarez, J. Martorell, “Whispering gallery mode phase matching 

for surface second order nonlinear optical processes in spherical microresonatots”, 

Apr 2008, Physical Review A, 77, 043817. 

60. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, NewYork, 1999). 

61. M. Vanhoutte, “Biosensors based on circular resonators with vertical out coupling 

structures”, Master’s thesis, Ghent University, 2007. 

62. R. P. Wang and M. M. Dumitrescu, “Theory of Optical Modes in Semiconductor 

Microdisk Lasers,” J Appl. Phys., vol. 81, pp. 3391-3397, 1997. 

63. K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics. 

Berlin: Springer, 1998. 

64. http://agamemnon.cord.org/cm/leot/course01_mod07/mod01-07frame.htm 

65. Kawano, K., Kitoh, T., Introduction to Optical Waveguide Analysis: Solving 

Maxwell's Equation and the Schrodinger Equation, Wiley-Interscience; 1 edition 

(July 20, 2001)  

66. Marcuse, D., Integrated optics, IEEE Press; (1973) 

67. K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving 

Maxwell’s Equations in Isotropic Media,” Antennas and Propagation, IEEE 

Transactions on, vol. 14, pp. 302-307, 1966. 



150 

 

 

68. A. Bondeson, T. Rylander, and P. Ingelstr¨om, Computational Electromagnetics. 

New York: Springer, 2005, pp. 57-86. 

69. “Meep,” Nanostructures and Computation Wiki, 

http://abinitio.mit.edu/wiki/index.php/Meep. Dec 18, 2008. 

70. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-

Difference Time-Domain Method. Boston: Artech House, 2000. 

71. OptiBPM 8.0, Optiwave Systems Inc., Ottawa, ON, Canada, (www.optiwave.com). 

72. “Coupling coefficient in strongly coupled dielectric waveguides”, Yasuharu 

Suematsu and Katsumi Kishino, Radio Science, Volume 12, Number 4, pages 587-

592, July-August 1977. 

73. “Integrated-optical directional coupler biosensor”, B. J. Luff, R. D. Harris, J. S. 

Wilkinson, R. Wilson and D. J. Schiffrin, Opt. Lett. 21, 618-620 (1996). 

74. P. H. Paul and G. Kychakoff, ‘‘Fiber-optic evanescent field absorption 

sensor,’’Appl. Phys. Lett., vol.  51, pp. 12–14 1, 1987. 

75. S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, ‘‘Evanescent wave infrared 

spectroscopy of liquids using silver halide optical fibers,’’ J. Appl. Phys., vol.  64, 

pp. 3732–3734, 1988. 

76. J. R. Nightingale, R. Goswami, J. Duperre, J. M. Dawson, L. A. Hornak, and D. 

Korakakis, “Use of IBAD and low temperature annealing for the fabrication of low 

loss, vertically stacked alumina waveguide structures,” J. Vac. Sci. Technol. B, vol. 

26, no. 5, Sep/Oct 2008. 

77. P. Poloju, P. Samudrala, J. R. Nightingale, D. Korakakis, L. A. Hornak, 

“Characterization of Alumina Optical Waveguides Grown by Ion Beam Assisted 

Deposition for SPARROW Biosensors,” MRS  Conference Proceedings, Fall 2006. 

78. P. Martin, R. P. Netterfield, and W. G. Sainty, “Modification of the Optical and 

Structural Properties of Dielectric ZrO2 Films by Ion-Assisted Deposition,” J. Appl. 

Phys., vol. 55, issue 1, pp. 235-241, Jan. 1984). 

79. X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel 

integrated optical ring resonator bio/chemical sensors,” Proc. SPIE, vol. 6452, 2007. 

http://www.optiwave.com/


151 

 

 

80. H. A. Al-Abadleh, V. H. Grassian “FT-IR Study of Water Adsorption on Aluminum 

Oxide Surfaces,” Langmuir, vol. 19, pp.  341-347, 2003. 

81. K. Singh, S. Mohan, “Kinetic studies of the sucrose adsorption onto an alumina 

interface,” Applied Surface Science, vol. 221, pp. 308–318, 2004. 

82. Y. Wang, L. Lin, B.S. Zhu, Y.X. Zhu, Y.C. Xie, “Different dispersion behavior of 

glucose and sucrose on alumina and silica surfaces,” Applied Surface Science, vol. 

254, pp. 6560–6567, 2008. 

83. R. Goswami, J. R. Nightingale, J. A. Duperre III, M. S. Lim, J. M. Dawson, A. 

Timperman, D. Korakakis and L. A. Hornak, “Surface Loading Sensitivity 

Characterization of a Resonant Planar Optical Waveguide Stack”, IEEE Photonics 

Technology Letters, March 2012. 

84. Lee Rodak, “Surfactants and Digital Alloys for Strain Relief in III-Nitride 

Distributed Bragg Reflectors and Related Heterostructures via Metal Organic Vapor 

Phase Epitaxy”, PhD Dissertation, West Virginia University, 2011. 

85. Operation manual, SEM-JSM-7600F Brochure, JEOL USA. 

86. http://www.ece.tufts.edu/~hopwood/lab/plasmaetching.htm 

87. J. P. Berenger, J. Comput. Phys. 114, 185 (1994). 

88. K. Lee , A. Kadiyala, L. E. Rodak, R. Goswami, V. Kumbham, B. A. Bearce, J. 

Justice, J. Peacock, J. M. Dawson, L. A. Hornak, and D. Korakakis, “Enhanced 

Emission from InxGa1-xN-based LED Structures Using III-Nitride based Distributed 

Bragg Reflector”, Materials Research Society Conference, 2011 

89. V. S. Ilchenko and L. Maleki, “Novel Whispering-Gallery Resonators for Lasers, 

Modulators, and Sensors,” Proc. SPIE, vol. 4270, pp. 120–130, 2001. 


	Guided Wave Resonant Optical Structures and LED Micro Resonators for Biosensing Applications
	Recommended Citation

	Guided Wave Resonant Optical Structures and LED Micro Resonators for Biosensing Applications

