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ABSTRACT 
 

Stream Water Quality and Benthic Macroinvertebrate  
Ecology in a Coal-Mining, Acid-Sensitive Region 

 
George T. Merovich, Jr. 

 
 Acid mine drainage (AMD) and acid rain are important sources of impairment to streams 
in the Tygart Valley and Cheat River basins in north central West Virginia, USA.  Due to a 
network of abandoned mined lands and bond forfeiture sites in this coal-mining region, AMD 
represents severe, but rather localized impacts to water quality.  AMD is a consequence of the 
chemical oxidation of reduced geological minerals (sulfides) usually associated with coal during 
mining operations.  The reactions produce aqueous solutions high in sulfates and dissolved 
metals when the minerals are exposed to the oxic environment through land disturbance.  In 
addition, the weakly buffered and mostly acid producing to circum-neutral mineral geology of 
this region makes surface waters susceptible to the chemical consequences of acid rain.  Acid 
rain forms when gaseous compounds of nitrogen and sulfur from fossil fuel combustion react 
with atmospheric moisture.   

I tested a classification system based on water chemistry in streams of these two basins.  
Streams of the region ranged from very good water quality (reference type) to increasingly 
impaired by AMD (moderate to severe AMD types).  Streams with soft water had characteristics 
associated with the impacts from acid rain, and streams with hard water were either natural 
occurrences or were influenced by alkaline materials injected into water to treat acid sources.  A 
transitional water quality type was recognized, which was very difficult to characterize because 
of its gradation in chemistry across the spectrum from reference and hard water types to waters 
increasingly influenced by AMD.   

It is commonly observed that benthic macroinvertebrates in streams from unpolluted 
waters are distributed continuously without being organized into discrete communities.  The 
discreteness of water quality observed in this research, however, suggests that benthic 
macroinvertebrates ought not to be distributed continuously, but rather should correspond 
discretely to water quality types as distinct communities.  Therefore, I tested the expectation that 
macroinvertebrate communities should be distributed in concordance with water quality types in 
the Cheat River basin.  Multivariate models suggested that water quality types significantly 
structured macroinvertebrates.  Measures of classification strength by water quality on 
community composition were weak, but significant.  Indicator species analysis found several 
important macroinvertebrate genera that were linked especially to reference and soft water 
quality types.   

In the Cheat River mainstem, benthic macroinvertebrate communities and a measure of 
stream ecosystem health were highly correlated to spatial and temporal inputs of AMD and 
thermal effluent.  However, when these stressors occurred simultaneously, stream health and 
community structure did not recover with downstream improvements in water quality as they did 
when stressors occurred singly.  In the Cheat River mainstem overall, AMD was responsible for 
most degradation, but AMD in combination with thermal effluent was also responsible for 
extensive loss of ecological integrity in the Cheat Canyon region.  Consequently, local water 
chemistry accounts for the distributions of benthic macroinvertebrates in the Cheat basin.  
Therefore, macroinvertebrates may respond in predictable ways to restoration efforts that reduce 

 



 

harmful chemical constituents associated with acidic impacts.  Large, watershed-scale attributes 
may be needed to explain variation in benthic macroinvertebrate communities not captured by 
local water quality types.    
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Chapter 1:  Introduction and Executive Summary— 
Stream Water Quality and Benthic Macroinvertebrate  

Ecology in a Coal-Mining, Acid-Sensitive Region 
 
 
 Three themes emerge in this document.  The broad theme of my dissertation research is 

stream ecological integrity—the idea that healthy streams maintain ecosystem structural and 

functional attributes (physical, chemical, and biological) consistent with those found in 

undisturbed systems (Barbour et al. 1999, Simon 1999, Hawkins 2006).  Stream and riverine 

ecosystems that are ecologically healthy should not only maintain ecosystem functions, but also 

should provide sustainable aquatic resources.  Structured beneath this broad theme is the theme 

of classification and association, which recognizes the age-old ecological axiom that organisms 

are not haphazardly distributed among habitats, but rather there is some non-random, albeit 

heterogeneous, order.  This concept appears in my research where I tests links between benthic 

macroinvertebrate communities and stream water quality types in an acid polluted region.  

Finally, because so many streams are impaired by acid rain and acid mine drainage (AMD) in the 

study region, and because of the desire to clean them up, prioritizing stream restoration-

protection efforts and predicting biotic response to mitigation activities are consistent elements 

of discussion.    

 Streams and rivers, from a purely natural science perspective, are incredibly complex and 

fascinating.  They epitomize the hierarchical patch dynamic paradigm that is ensconced in 

current ecological research (Wu and Loucks 1995).  Their heterogeneous, patchy nature is not 

just a local phenomenon.  The heterogeneity is hierarchically arranged in a watershed network 

(Leibold et al. 2004), where all parts of the riverine system are connected, not only to upstream 

and downstream structural and functional attributes (Pringle 1997, Freeman et al. 2007), but also 

to terrestrial processes through organic matter and energy inputs (Hynes 1975).  Ward (1989) 
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recognized a four-dimensional nature of lotic systems that encompasses this hierarchical 

organization and spatial interaction.  The longitudinal organization of riverine systems, first 

recognized in the River Continuum Concept of Vannote et al. (1980), is the upstream-

downstream dimension.  The lateral dimension includes not only the active channel but also the 

influence of the floodplain to river ecology documented first in the flood-pulse concept and 

augmented later in the flow-pulse concept (Tockner et al. 2000).  The vertical dimension 

connects the aquifer and hyporheos to the atmosphere through the stream’s surface waters.  Time 

represents the fourth dimension as the stream cycles through seasonal changes.  It seems that a 

fifth dimension would be useful to recognize flow variation from headwaters to the sea because 

flow is not equivalent to the time or the longitudinal dimension.  Perhaps this fifth flow 

dimension explicitly recognizes the interaction of all dimensions, so that it is apparent, for 

example, that downstream processes influence upstream structure and function even though flow 

is unidirectional (Pringle 1997), and that stream hydrographs (flow dimension) vary with the 

interaction between basin area (longitudinal dimension) and season (time dimension).  Many 

studies have demonstrated that riverine biota and biotic interactions are mediated at multiple 

scales from the patch to the watershed level (e.g., Palmer et al. 2000), and that downstream 

processes influence ecological structure and function of upstream reaches (Pringle 1997).     

 Unfortunately, however, stream ecosystems are being altered and destroyed in all 

dimensions and across all levels of biological organization despite the fact that they carry and 

deliver an essential component of life – water (Allan 2004, Poff et al. 2006, Le Maitre et al. 

2007).  Streams are altered or destroyed physically by roads, bridges, culverts, valley-fill mining, 

and dredging/channelization (Freeman et al. 2007).  Biotic pollution (i.e., introduced species) 

alters or removes native stream communities (Ross 1991, Gray et al. 2005).  Pollution from 
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chemicals and thermal discharge directly threatens water quality and organisms, and may 

indirectly affect abundance and distribution of organisms by altering habitat conditions (e.g., 

Wellborn and Robinson 1996).  For example, chemical precipitates from acid mine drainage 

bury and cement stream bottom habitats, effectively eliminating places for insects and fish to live 

(DeNicola and Stapleton 2002).  It is generally recognized that downstream locations are 

degraded from the accumulation of upstream impacts (Freeman et al. 2007).  But, downstream 

alteration to stream ecosystems also influences upstream ecology as well (Pringle 1997).   

Legally, the Clean Water Act (CWA) mandates that our water resources support healthy 

aquatic life (Barbour et al. 1999).  The rationale for this legal document is self-evident.  

However, we should all desire a healthy aquatic resource independent of legal considerations, 

and abstain from degrading it, because we depend on it for our own health and survival.  This 

statement is part and parcel to the general fact that humans require earth’s resources and services 

to survive.  These ecosystem services are provided to us for free.  With the increasing size of our 

population, humans will impart even more demand on nature for these services.  This increased 

demand without cognizance of sustainability or impacts jeopardizes the health of ecosystems.  

We must recognize that we exist because of the services provided to us by nature, and if we 

squander them we jeopardize our own health.  Therefore, my interest with stream ecosystems is 

not only in their natural structure and function, but also in how stream health and biological 

communities respond to pollution.  Currently, my specific research involves how lotic 

communities in a coal-mining dominated landscape respond to stressors related to acid 

impairment.  If we understand this link then we can better assess stream ecosystem health and 

possibly predict how degraded streams may respond to remediation.  This knowledge is critical 
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because if stream ecosystems cannot support healthy aquatic communities, then we jeopardize 

our benefits from the resource.   

Consequently, my research in stream ecosystem health has an outcome with direct 

societal benefits.  From an anthropocentric point of view, a healthy stream ecosystem indicates a 

safe, useable resource.  From a biocentric perspective, and just as importantly, healthy stream 

reaches keep the river network intact from headwaters to the ocean, and they keep the river 

continuum fully linked to terrestrial processes. The overriding goal of my research is to 

understand the relationships between ecological components that define stream ecosystem health 

and stressors imposed on the ecosystem from pollution.  Results derived from this basic science 

are important because they provide insight needed to assess and protect our stream water 

resources. 

 

Executive Summary 

I studied stream ecosystems in the north-central region of West Virginia where impacts 

from AMD and acid rain often severely degrade ecological condition and water quality.  A 

network of abandoned mined lands and bond forfeiture sites in this coal-mining region are 

responsible for the severe but rather localized impacts of AMD.  Acid mine drainage forms when 

reduced geological minerals (sulfides) usually associated with coal are exposed to oxidizing 

conditions during mining operations.  The reduced minerals react with water and oxygen in a 

series of oxidation-reduction reactions to produce aqueous solutions high in sulfates, dissolved 

metals, and acidity.  In addition, the weakly buffered and mostly acid producing to circum-

neutral mineral geology of this region makes surface waters susceptible to the chemical 

consequences of acid rain.  Acid rain forms when gaseous compounds of nitrogen and sulfur 
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from fossil fuel combustion react with moisture in the atmosphere.  The chemical reactions 

produce precipitation with a pH less than 5.6, which is the pH of natural rain fall.   

 The overriding goal of my research was to understand patterns in benthic 

macroinvertebrate communities across the range of impairment from these pollution types and 

their associated stressors, and to link macroinvertebrate communities to specific water chemistry 

signatures.  I had 3 broad research objectives, and each of these make up a published or 

publishable element of my dissertation.  My first objective was to establish a classification 

system for water quality in streams located in this coal mining-influenced region where AMD 

and acid rain chemically alter and degrade stream water chemistry.  My second objective was to 

test a priori expectations about community organization of benthic macroinvertebrates in 

relation to these water quality types.  This research draws links between macroinvertebrate 

communities and water chemistry characteristics and facilitates the identification of specific 

abiotic (water chemistry) stressors to communities.  It also identifies macroinvertebrate taxa that 

are indicative of specific water quality types.  This research has implication for stressor 

diagnosis, which is currently an active area of research in pollution ecology.  My last objective 

was to distinguish and quantify impairment from individual stressors when multiple stressors 

interact.  In this research I used similarity analysis to examine the extent to which total 

ecological impairment can be partitioned into impairment from AMD and from thermal pollution 

when these stressors co-occur.  The information is then used to inform restoration priorities. 

 

Study Region 

The location for my dissertation research is the Cheat and Tygart Valley river basins in 

north-central West Virginia (Fig. 1).  Many streams in this region are in excellent ecological 
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condition, residing peacefully in the mountains.  However, many other streams are impaired by 

AMD and acid rain (Williams et al. 1999), both of which impart chemical characteristics to 

surface waters that are incompatible with a diverse and productive ecosystem and severely 

compromise biotic integrity.  Therefore, the region is ideal for studying novel stream 

classification schemes based on water chemistry, and for testing ecological expectations about 

how stream biota should relate to these discrete conditions.  In addition, the unique combination 

of AMD and thermal pollution in the Cheat River mainstem presents the opportunity to study 

how multiple interacting stressors affect riverine communities.  This is an area of field ecology 

that deserves more attention given that multiple stressors are common in aquatic ecosystems.   

The Cheat and Tygart Valley rivers are major tributaries to the Monongahela River.  Both 

rivers have their headwaters, in surprisingly close proximity, in high elevation mountains of 

Pocahontas County and flow northward (Fig. 1).  The Tygart Valley River joins the West Fork 

River near Fairmont, WV to form the Monongahela River, while Shavers and Black Fork rivers 

join at Parsons, WV to form the Cheat River, which enters the Monongahela in Point Marion, 

PA, just north of the West Virginia state line.  The Central Appalachian and Ridge and Valley 

physiographic provinces occupy a large portion of each basin, however, the lower portion of the 

Tygart Valley basin drains significantly more of the Western Allegheny Plateau than does the 

lower Cheat.  Both basins consist of highly variable terrain, soil, and hydrogeology (Yildiz 

2004).  The entire area is characterized by rounded, parallel upland ridges, which are dissected 

by numerous valleys, with relief being greatest in the southern portions (McAuley 1995, Yildiz 

2004). 

 Land cover in both basins is over 70% diverse mesophytic and mountain hardwood 

forest, of which oak forests dominate.  Pasturelands and grasslands, which comprise nearly all of 
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the agricultural land use, make up about 18% of the basins.  Urban use including roads, and 

construction, mining, and related activities each make up about ½% of land use.  Consequently, 

both the Tygart Valley and Cheat basin are largely rural.  The U.S. Census Bureau (2000) 

estimated that the largest population centers in the Cheat basin support less than 3000 people.  In 

fact, almost the entire southern portion of the Cheat basin is located in the Monongahela National 

Forest.  However, the region was heavily logged at the turn of the 20th century.   

 The geology of the basins consists of Pennsylvanian-, Mississippian-, and Devonian-aged 

sedimentary rocks, which have been extensively fractured and folded (McAuley 1995).  Above 

400-500 m in elevation, highly dissected bedrock consists of sandstone and other sedimentary 

rocks, with thin, nutrient-poor, slightly acidic soil layers above (Schwartz and Meredith 1962, 

Anderson et al. 2000).  Other dominant sedimentary rocks are shale, coal, and some limestone.  

Shaver Fork is underlain by Pennsylvanian shales and sandstone, and some Devonian shale.  

Devonian shales and sandstone also underlie most of the Cheat River.  Greenbrier limestone is 

locally dominant especially in the southern part of the Cheat and Tygart basins (Randolph and 

Pocahontas counties) (Schwartz and Meredith 1962).   

Coal deposits in the basins are found only in Pennsylvanian strata, which dominate the 

Tygart Valley river basin and occur mainly in the northern (lower) one-half to one-third of the 

Cheat basin.  Of these deposits, the Allegheny formation containing Kittanning and Freeport 

coals and the Conomaugh formation containing Bakerstown coal are widespread in the Tygart 

Valley, but are more characteristic of the lower portions of the Cheat basin (NRAC 2001).  They 

are important in the Blackwater and Red Creek areas of the Cheat also (Schwartz and Meredith 

1962, NRAC 2001).  The Monongahela formation containing Pittsburgh and Waynesburg coals, 

among others, makes up only a small portion of the deposits and is mostly found in the 
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northwestern part of the Cheat basin and the western portion of the Tygart Valley basin (NRAC 

2001).  Most coal in the region has been mined from the Allegheny formation, which contains 

little capacity to neutralize acidity produced from its moderate to high sulfur materials (West 

Virginia Geologic and Economic Survey 2002, Demchak et al. 2004).  Consequently, riverine 

systems impacted by acidic coal-mine drainages occur more in the lower portion of the Cheat 

and are more widely distributed, but less abundant, in the Tygart Valley (NRAC 2001). 

 

Summary of Research Objectives and Results 

 The overriding goal of my dissertation research is to develop a classification system for 

stream water quality in this coal-mining region that is sensitive to acidic pollution, and then test 

the association of benthic macroinvertebrates to these environmental conditions.  Because so 

many streams are chemically impaired by AMD and acid rain, a water quality classification 

scheme would aid water quality management and restoration efforts.  Rosgen (1994) and 

Montgomery and Buffington (1997) have produced stream classifications based on physical 

stream attributes.  Dodds et al. (1998) have produced a classification of stream water chemistry 

based on nutrient levels.  Each of these classification systems has proven useful, especially that 

of Rosgen (1994) in applicability to natural stream channel design and restoration.  Therefore, it 

seems logical that a stream classification system based on AMD and acid rain chemistry would 

benefit efforts to restore impaired streams in the region.  For example, the classification could 

provide statistics on numbers of streams impaired and the chemical constituents responsible for 

impairment.  These data could be used to facilitate identifying groups of streams requiring 

similar treatment strategies, rather than designing strategies on a case-by-case basis, and this 

approach would simplify cost estimates.  Furthermore, the data could be used to identify 
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priorities for management so that highly valuable streams vulnerable to future impacts are 

protected, and so that easily recoverable streams are returned to productive systems quickly in 

the efforts to restore the most stream miles and return watershed connectivity (e.g., Freeman et 

al. 2007).   

 Stream biota have been used as indicators of stream health for over a century (Williams 

and Feltmate 1992, Simon 1999).  Benthic macroinvertebrates are especially well suited to 

assessing local stream conditions (Resh et al. 1996).  They are ubiquitous and extremely 

evolutionarily and ecologically diverse (Hauer and Resh 1996).  Some taxa are sensitive to 

pollution sources while others are tolerant.  Because they are relatively sedentary compared to 

other steam biota (e.g., fish), they integrate local environmental conditions over time, and 

therefore are better indicators of long-term site conditions, whereas water quality monitoring 

represents conditions only at the time of water sampling (Resh et al. 1996).  Consequently, it 

seems logical that benthic macroinvertebrates at both the organismic and community levels of 

biological organization should be linked to, and structured by, different water quality types.  

Most evidence suggests that benthic macroinvertebrate communities are organized along 

continuous gradients (e.g., McIntosh 1995, Heino 2005) so that distinct community types do not 

exist or, at best, are inconspicuous.  But, because of the severe impacts to water chemistry from 

AMD and acid rain in the study region, the putative water quality classification scheme suggests 

that stream macroinvertebrates should be structured in relation to these discrete environmental 

conditions.  Therefore, I test this a priori expectation of discrete community organization and I 

test for indicator taxa for these conditions.   

The use of stream biota as environmental indicators and to diagnose stressors is currently 

an active areas of research in steam ecosystem health and assessment, in part because 
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instantaneous water quality monitoring alone has been realized to be a tenuous surrogate for 

biological integrity of surface waters (Yoder and Rankin 1998).  Hopefully, my research 

contributes to this broad knowledge base.  Furthermore, if benthic macroinvertebrates signify 

water quality types in this coal-mining region then perhaps they may respond to restoration 

activity designed to improve water quality and they can be used to assess restoration success.  

Thus, attainment of and compliance with water quality standards can be evaluated with 

biological endpoints, the aquatic life use goal that the clean Water Act specifies for surface 

waters.  This would supplement water quality monitoring, which has predominated methods by 

state and federal agencies to assess biological integrity (Yoder and Rankin 1998). 

 Because benthic macroinvertebrates are excellent indicators of local stream ecosystem 

integrity, attributes of their community composition are often used to generate an index of biotic 

integrity (IBI).  An IBI is a multimetric index that combines various community level metrics 

(e.g., taxon richness, % dominance) into one score designed to reflect the health or condition of 

the community and thus the integrity of the ecosystem (see Barbour et al. 1999).  In my final 

major research objective, I used this concept to develop ecological units, a currency representing 

ecological value that weights the ecological condition of a stream by some dimension, either 

length or area of stream.  I then applied this ecological currency concept with similarity analysis 

to examine the effects of multiple interacting stressors on stream health, and to calculate specific 

restoration priorities for treating AMD and managing thermal effluent in the Cheat River. 

In the following sections, I highlight the important findings and conclusions of each of 

the above research topics.  Each represents a subsequent chapter in this document, and is 

published (Chapter 2 and 4) or soon to be submitted for publication (Chapter 3).  Style has been 

formatted as per journal requirements.  The subheadings below represent the running head in the 
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respective publication.  Because these documents were ultimately collaborative, the perspective 

in each subsequent chapter is therefore in the first person plural.   

 

1.  Water Quality Classification of Streams in a Mined Watershed—Chapter 2 (Merovich et al. 
2007).   
 
Principal component analysis (PCA) identified two important gradients in water 

chemistry data from the Cheat and Tygart Valley River basins.  The strongest trend was an 

acidity / AMD gradient where water chemistry contained high levels of dissolved metals and 

sulfates and low pH at one end of the spectrum, and circum-neutral pH and low levels of 

dissolved metals and sulfates at the other end.  The other significant trend was a hardness-salinity 

gradient where water samples varied most importantly in pH, alkalinity, hardness, sodium, and 

chloride. 

Cluster analysis found six distinct water quality groups based on the chemical 

composition of water samples.  When these group assignments from cluster analysis were 

overlaid on a scatter plot of the first two derived axes from PCA, significant distinction between 

the identified types was apparent in this multivariate space.  The emergence of this pattern along 

with the significant gradients identified by PCA suggested following nomenclature for the six 

identified types:  Type 1 = Reference; Type 2 = Soft; Type 3 = Transitional; Type 4 = Hard; 

Type 5 = Moderate AMD; and Type 6 = Severe AMD.  Analysis of variance on principal 

component 1 and 2 scores determined that these water quality types were statistically different 

from one another in terms of their significant overall chemical trends.  Classification tree 

analysis confirmed this distinction, with only a 12% overall misclassification rate of water 

quality types based on the total water chemistry dataset.  Classification tree analysis found that 

manganese, sulfate, aluminum, calcium, and zinc concentrations and alkalinity were useful 
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chemical variables that distinguished the water quality types identified by cluster analysis and 

described by PCA.   

The water quality types had the following chemical characteristics.  The reference type 

had circum-neutral pH and low dissolved metal concentrations.  The soft water type had low pH, 

Ca, Mg, and alkalinity, but had low conductivity, sulfates, and Mn, too.  Hard waters contained 

circum-neutral pH and elevated conductivity, alkalinity, Ca, Cl, Mg, Mn, Na, and sulfate, but 

dissolved metal concentration remained low.  The transitional water type was highly variable and 

probably represented a transition between moderate AMD type and reference type water, 

because Mn and Al were elevated.  The moderate AMD and severe AMD water types had 

deceasing pH and increasing conductivity, dissolved metals, and sulfates.   

Water samples were collected during 3 different times (spring 2004-fall 2004-spring 

2005) for this study.  The general trend in water chemistry for the water quality types was for the 

initial water type at a site to remain constant from sample to subsequent sample.  However, 

samples that were initially transitional, moderate AMD, or reference type did have some 

tendency to shift to another water type in subsequent samples.  For example, sites with samples 

initially classifying as moderate AMD type had a tendency to shift to transitional type in 

subsequent samples.  Reference types tended to shift in the same direction also. 

The frequency of legal chemical impairment of water varied among the identified water 

quality types.  The severe AMD type had a very high percentage of samples being impaired for 

pH, Al, Fe, and Mn.  The moderate AMD type was legally impaired mostly by pH and Al.  The 

soft water type had a high percentage of samples being impaired, but the reason was for low pH 

only.  Very few reference type waters had pH values in the impairment range (< 6.0).   
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These results suggest that distinct water quality types exist in the Cheat and Tygart 

Valley river basins where AMD and acid rain are significant sources of chemical impairment.  

Precipitation and these acid sources interact with basin geology (such as mineral composition of 

bedrock and soil attributes) to produce either reference, soft, transitional, hard, moderately 

impacted AMD, or severely impacted AMD water types.  The existence of water quality groups 

we identified by cluster analysis, along with the latent chemical trends revealed by PCA and the 

specific components responsible for types determined by classification tree analysis, represents a 

beginning for making monitoring and remediation of impaired waters more efficient.  These 

findings provide an objective decision-making opportunity to prioritize restoration efforts and to 

implement the appropriate restoration strategies for a given impairment type.  For example, a 

relatively short list of chemical constituents can be used to identify (impaired) water quality 

types.  Also, the existence of water quality types can be used to identify sites requiring the same 

remediation technologies.  Finally, the rates of impairment of the identified water types can be 

used to prioritize efforts to recover the greatest amount of lost chemical and biological integrity 

in a watershed.  

 

2.  Macroinvertebrates from Distinct Water Quality Types—Chapter 3 (Merovich and Petty In 
Prep -- to be submitted to Ecological Applications).   
 
Cluster analysis showed weak clustering of sites based on macroinvertebrate abundance 

data from Cheat River tributaries.  But, when macroinvertebrate cluster groups were labeled by 

site water quality types, cluster groups generally contained the same water quality type.  For 

example, macroinvertebrate samples from AMD, soft, and reference streams grouped together, 

but samples from transitional and hard stream types were widely scattered.  In non-metric 

multidimensional scaling (NMDS) ordination space, benthic macroinvertebrate communities 
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broadly corresponded to, but were highly variable within and among, dominant water quality 

types.  However, the water quality classification was a statistically significant grouping of 

community types.  Fourteen water chemistry parameters studied were significantly correlated 

with the NMDS ordination.  All dissolved metals, conductivity, and sulfate increased quickest 

toward communities from AMD streams.  Non-parametric smooth surface models (thin-plate 

splines) for conductivity, Al, Cr, Cu, Fe, Mn, Ni, Zn, and sulfate improved over the respective 

linear correlative models.  These isosurfaces curved toward AMD sites, suggesting strong non-

linear relationships between communities and especially conductivity, Al, Cu, Fe, Mn, Ni, Zn, 

and sulfate.   

Nestedness was a dominant pattern in the macroinvertebrate data, but this was expected 

because nestedness is a common attribute of ecological communities.  The nestedness pattern in 

macroinvertebrate communities, however, was weakly related to the dominant water quality 

classification of streams.  Results of analysis of similarity showed that communities were more 

different in composition between the dominant water quality types than expected by chance, and 

mean similarity analysis indicated that dominant water quality was a significant classification for 

benthic macroinvertebrate communities.  However, both of these tests produced rather weak 

statistical indexes indicating much variation among groups.  Finally, indicator species analysis 

found 29 indicator genera out of a total of 95 taxa observed.  Indicator genera occurred most 

frequently for reference and soft stream types, and indicator values were very high in these cases.  

Mayfly genera were the best indicators for reference streams.  Black flies and a Leuctrid stonefly 

were the best indicators for soft streams. 

Thus, despite the variability, macroinvertebrate communities had significant discrete 

association with dominant water quality types found in the Cheat basin.  Macroinvertebrate 

 14



communities did not trend very strongly with individual water chemistry parameters.  Smooth 

non-parametric surface models explained more of the variation and demonstrated complex, but 

still tractable, relationships between macroinvertebrate communities and local water chemistry 

that were not evident with linear models. 

Surprisingly, there were relatively few indicator genera for the water quality 

classification.  The presence of few indicator taxa is consistent with a continuous community 

model.  However, several taxa were very strong indictors for reference and soft stream types, 

which suggests some discrete community organization.  The lack of indicator taxa for 

transitional streams is not surprising, given the tremendous variation in chemistry and 

community composition.  Therefore, it will continue to be difficult to diagnose the condition of 

streams in this transitional zone, which is unfortunate because treatment of AMD or acid rain 

streams with alkaline materials could shift stream chemistry in this direction.  In contrast, if 

stream chemistry shifted to the hard chemistry type, then diagnosis may be possible because a 

few taxa were significant indicators of this condition in the data set.   

Consequently, the multivariate models of benthic macroinvertebrates in this study 

suggest that variation in community structure can be explained by local water quality type.  

Additionally, the analyses demonstrate that benthic macroinvertebrates can diagnosis stressors 

successfully at least at the broad categorical level (e.g., water quality type).  It therefore may be 

possible to predict to some extent the response of benthic macroinvertebrate communities to 

reclamation efforts aimed to recover streams from AMD or acid rain influence.  Likewise, these 

findings provide evidence that benthic macroinvertebrate communities can serve as proxies to 

water chemistry monitoring to ensure watershed reclamation projects can assess goals of meeting 

aquatic life uses of water resources stipulated by the Clean Water Act.    
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3.  Interactive Effects of Multiple Stressors—Chapter 4 (Merovich and Petty 2007).   

In the Cheat River, water quality was severely degraded immediately downstream of 

tributary inputs of AMD, but recovered quickly further downstream.  The effect of thermal 

effluent from a coal-fired power plant on river water temperatures was observed in summer, but 

not in spring time.  River water temperatures spiked immediately below the input of thermal 

effluent, but also quickly moderated with distance downstream.  However, elevated water 

temperatures were observed as far as 19 km downstream. 

Variation in ecological condition was strongly correlated to variation in water quality 

when AMD and heat stress occurred in isolation.  Acute inputs of AMD or heat caused 

predictable reductions in the West Virginia Stream Condition (WV SCI), a benthic 

macroinvertebrate index of stream biotic integrity, followed by rapid recovery downstream.  

However, benthic communities failed to recover from combined inputs of heat and AMD even 

when these stressors occurred at relatively low levels.  

Results of similarity analysis were consistent with the response of WV SCI.  In both fall 

2002 and spring 2003, NMDS ordination of macroinvertebrate data showed that sites upstream 

of any inputs of AMD or heat tended to group together (were very similar in community 

composition).  These sites contained diverse assemblages of macroinvertebrates known to be 

associated with unpolluted, reference-quality sites.  Sites immediately below AMD or heat inputs 

were highly displaced from reference sites in NMDS space, especially in spring time.  With 

increasing distance from AMD or heat inputs, sites increasingly became more similar to un-

impacted sites in terms of community structure, except when AMD and elevated temperatures 

co-occurred (fall time) even at dilute levels.   
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In fall 2002, 19% of the total expected ecological units (EUs) were lost as a result of 

AMD and heat-related stress.  Loss in EUs accumulated more rapidly downstream of the thermal 

effluent and into the region containing both elevated temperatures and AMD.  The greatest 

region-specific loss occurred where AMD and elevated temperatures were combined (62%).  The 

interaction of heat and AMD (rather than each stressor considered separately) accounted for most 

of this loss (47%).  Of the total ecological loss in the river in fall, 17% occurred where thermal 

effluent existed alone.  In addition, approximately 18% of the total ecological loss in the river in 

fall could be attributed directly to AMD, 29% was attributed to heat, and the remaining 53% was 

attributed to the interactive effects of AMD and heat. 

In spring 2003, EU loss occurred at a lower rate (10%).  Much of the improvements could 

be attributed to a lack of a heat impact.  In addition, AMD was a significantly more important 

stressor in spring than fall.  Total EU loss attributable to AMD river-wide increased from 18% in 

fall to 94% in spring. 

Annualized over the entire river-year, the Cheat River lost 15% of its EUs that were 

expected in the absence of heat or AMD-related stress.  Heat accounted for 20% of the loss, 

AMD accounted for 43%, and the remaining 37% was attributed to their interaction.  Finally, 

over the annualized period, the region of the river where AMD and heat co-occurred had 

significantly greater loss of EUs than in regions where these stressors occurred alone, and 

therefore the region with multiple stressors would recover more lost EUs from stressor 

mitigation.  Where stressors co-occurred, reduction of heat would return more EUs than AMD 

treatment.  Conversely, AMD treatment river-wide would return slightly more EUs lost (49%) 

than heat reduction over the annual period. 
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Thus, in the region of the river where AMD and heat co-occurred, most of the ecological 

loss could be attributed to the interaction of these stressors rather than from each individual 

stressor acting as the dominant limiting factor, even when these stressors where in dilute levels.  

This is the first field study to find evidence of the interactive effects of multiple stressors on 

biological communities in a mined watershed.  Given that multiple stressors are common in 

aquatic ecosystems additional studies are needed to better understand the combined role of these 

anthropocentric impacts on riverine communities.  Dilute levels of multiple interacting stressors 

may be more ecologically damaging than acute inputs of individual stressors. 

The ecological currency concept developed for the Cheat River, in combination with 

similarity analysis allowed the diagnosis each stressor’s responsibility for specific levels of 

biological impairment when stressors co-occurred.  This analytical approach provided the 

following important conclusion for restoring the river.  First, AMD is the dominant factor 

limiting ecological health.  Second, heat in combination with AMD produced extensive 

ecological loss in the lower portion of the river.  Consequently, AMD should be the primary 

target for restoration, but full restoration of the river will require management of both AMD and 

heat.  Finally, this approach to partitioning impairment among stressors and for prioritizing 

restoration efforts may be valuable to other watersheds with similar management challenges. 
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Figure Caption 

Figure 1.  Map of the study area with major rivers labeled.  The shaded area of the state of West 

Virginia inset indicates the location of the Tygart Valley and Cheat river basins. 
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Chapter 2:  Water Chemistry Based Classification of Streams  
and Implications for Restoring Mined Appalachian Watersheds 

 
Abstract – We analyzed seasonal water samples from the Cheat and Tygart Valley river basins, 

West Virginia, USA, in an attempt to classify streams based on water chemistry in this coal-

mining region.  We also examined temporal variability among water samples.  Principal 

component analysis identified two important dimensions of variation in water chemistry.  This 

variation was largely determined by mining related factors (elevated metals, sulfates, and 

conductivity) and an alkalinity-hardness gradient.  Cluster analysis grouped water samples into 

six types that we described as Reference, Soft, Hard, Transitional, Moderate acid mine drainage, 

and Severe acid mine drainage.  These types were statistically distinguishable in 

multidimensional space.  Classification tree analysis confirmed that chemical constituents related 

to acid mine drainage and acid rain distinguished these six groups.  Hard-, soft-, and severe acid 

mine drainage type streams were temporally constant compared to streams identified as 

reference-, transitional-, and moderate acid mine drainage type, which had a greater tendency to 

shift to a different water type between seasons.  Our research is the first to establish a statistically 

supported stream classification system in mined watersheds.  The results suggest that human 

related stressors superimposed on geology are responsible for producing distinct water quality 

types in this region as opposed to more continuous variation in chemistry that would be expected 

in an un-impacted setting.  These findings provide a basis for simplifying stream monitoring 

efforts, developing generalized remediation strategies, and identifying specific remediation 

priorities in mined Appalachian watersheds.   

 

Keywords – Acid mine drainage; Acid precipitation; Aquatic geochemistry; Stream 

classification; Watershed restoration 
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Introduction 

Coal has been extensively mined in the central Appalachian Mountains for almost 200 

years and impacts to water quality from acid mine drainage have been a persistent environmental 

problem in this region.  Acid mine drainage (AMD) forms when pyritic minerals in coal and 

overburden materials are exposed to water and oxygen [1, 2].  The result is highly acidic, sulfate-

rich stream water with high concentrations of total dissolved solids [2].  Acid precipitation has 

been another significant environmental problem in this region since the mid 1900s [3-5].  

Burning fossil fuels releases sulfur dioxide and nitrogen oxides, which react with water, oxygen, 

and other chemicals in the atmosphere to form various acidic compounds.  As a result, 

precipitation is a solution of dilute sulfuric and nitric acid, which leaches cations (e.g., Ca2+ and 

Mg2+) and metals from the surrounding soils and causes reduced productivity and biodiversity in 

surface waters [3].  Acid rain and AMD are such extensive problems in the central Appalachians 

that more than 25% of streams are negatively affected in West Virginia (WV) alone [6-8]. 

Given the extent of the acidification problem, integrated watershed restoration programs are 

needed in this region [7].  However, restoration efforts in the central Appalachians are hindered 

by the fact that so many streams are impaired.  Remediation of AMD is technically difficult and 

extremely expensive [2].  The overwhelming expense of acid stream restoration stems from the 

need to access numerous remote locations and the need for continued remediation over time [7].  

Consequently, for restoration programs to be successful we need procedures that can be used to 

identify restoration priorities and effective remediation actions.  

Stream classification on the basis of water chemistry may provide an important step 

towards simplifying water quality management in mined watersheds.  Streams with similar water 

quality would be expected to have similar ecological conditions and require similar remediation 
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prescriptions.  Instead of designing a remediation plan for each individual stream, remediation 

plans could be designed for groups of streams of the same water quality type. Stream 

classification systems on the basis of size [9] and channel morphology [10, 11] have proven to be 

quite powerful.  In addition, Dodds et al. [12] produced an initial classification based on nutrients 

and chlorophyll to assess trophic status of streams.  However, to our knowledge, there have been 

no attempts to categorize streams in mined watersheds on the basis of water chemistry.   

The constituents that define water quality of surface waters are highly variable both 

spatially and temporally [13-15].  Because of this variation, one would expect that stream water 

quality would also vary continuously.  However, Stiles et al. [16] found several discrete water 

quality types draining from completely and partially flooded underground mines in the 

Pittsburgh coal basin.  This finding suggests that a water quality based classification of streams 

draining mined watersheds of this region may be possible. 

Given the value of a stream classification system and the lack of such efforts in the 

central Appalachians, we conducted a watershed-scale survey of water chemistry in streams of 

the Cheat and Tygart Valley river basins, two intensively mined basins in northeastern WV.  Our 

specific objectives were to use cluster analysis to group water samples from stream reaches into 

discrete categories based on water chemistry, determine if the water chemistry clusters were 

statistically distinguishable by describing the chemical characteristics of clusters, and finally 

quantify seasonal variability in cluster assignment of water samples from the same location.   

Methodology 

Study area 

The Cheat and Tygart Valley rivers (Appendix Figure 1) are major tributaries to the 

Monongahela River.  Both rivers flow northward from their headwaters located in the mountains 
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of Pocahontas County, WV.  The Central Appalachian and Ridge and Valley physiographic 

provinces dominate each basin.  Both basins consist of highly variable terrain, soil, and 

hydrogeology.  The entire area is characterized by rounded, parallel upland ridges, which are 

dissected by numerous valleys, with the relief being greatest in the southern portions [17].  Land 

cover in both basins is over 70% diverse mesophytic and mountain hardwood forest, of which 

oak forests dominate.  Pasturelands and grasslands, which comprise nearly all of the agricultural 

land use, make up about 18% of the basins.  Urban land use activities affect less than 1% of these 

watersheds [18].   

Geology of the basins consists of Pennsylvanian, Mississippian, and Devonian aged 

sedimentary rocks, mostly sandstones and shales with thin, nutrient-poor, slightly acidic soil 

layers above [19, 20].  Coal deposits are found only in Pennsylvanian strata.  Kittanning and 

Freeport coals within the Allegheny formation, and Bakerstown coal within the Conemaugh 

formation, are widespread throughout the Cheat and Tygart Valley river basins.  Pittsburgh and 

Waynesburg coals within the Monongahela formation makes up only a small portion of coal 

deposits [18].  Most coal in the region has been mined from the Allegheny formation, which 

contains little capacity to neutralize acidity produced from the moderate to high sulfur materials 

[8].   

Sample collection 

Water quality samples were collected at 123 sites distributed throughout the Cheat and 

Tygart Valley river basins (Appendix Figure 1).  Study sites were distributed across a range of 

stream sizes, elevations, bedrock geology (e.g., sandstone, shale, or limestone), coal geology 

(e.g., Freeport, Kittanning, or Pittsburgh seams), and relative mining intensity (from un-mined to 

intensively mined).  Sites were spread across the two basins as much as possible to minimize 
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interdependency among sites and to capture a wide range of water quality conditions.  We know 

from other studies in this region that water chemistry is influenced predominantly by acidic 

precipitation and acid mine drainage from abandoned mine lands [6, 7, 21].   

Following suggestions of Petty and Barker [6], three seasonal water samples were 

obtained at each location, two during early spring (April 2004 and 2005) and another in early 

autumn (October 2004).  Water samples in spring were timed to capture relatively high base flow 

conditions, whereas the autumn sample was conducted during low base flow conditions.  Water 

samples and direct field measurements were collected in accordance with standard operating 

procedures of the WV Department of Environmental Protection, with duplicate samples taken at 

2.5% of all sampling locations.  Temperature (°C), pH, specific conductivity (μS/cm), dissolved 

oxygen (mg/L), and total dissolved solids (g/L) were measured in the field with a multi-

parameter YSI 650 unit fitted with a 600XL sonde (Yellow Springs Instruments, Yellow Springs, 

OH, USA).  The YSI probe was calibrated before each use.  Average current velocity was 

measured with a digital Marsh-McBirney flow meter, and discharge (m3/s) was calculated using 

area-velocity techniques.   

Two water samples were collected at each site during each of the three site visits.  First, a 

filtered 250 mL sample was collected with a pre-rinsed Nalgene polysulfone filter holder and 

receiver fitted with mixed cellulose ester membrane discs (0.45 μm pore size).  Filtered samples 

were immediately treated with 5 mL 1:1 nitric acid to maintain dissolved metals in solution.  

Filtered samples were analyzed within six months for the following dissolved parameters.  

Aluminum, barium, cobalt, copper, iron, manganese, nickel, cadmium, chromium, calcium, 

magnesium, sodium, and zinc were analyzed using inductively coupled plasma-atomic emission 

spectrometry, and chloride was analyzed with ion chromatography.  Second, an unfiltered 500 
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mL sample was collected and kept at 4ºC.  These samples were analyzed for alkalinity and 

acidity within 14 d of collection using an automatic titrator.  Sulfate was determined within 28 d 

using flow injection analysis.  Method detection limits (MDL) and sources of analytical methods 

are listed in Appendix Table 1.  One-half of the value of a method’s detection limit for a 

particular chemical constituent was substituted into the dataset whenever concentrations were 

less than detection limits.  All samples were analyzed at the National Research Center for Coal 

and Energy at West Virginia University.  Quality control and assurance procedures were 

followed in accordance with standard methods [22]. 

Identification of water quality types 

We used a combination of principal components analysis (PCA) and cluster analysis 

(CA) to examine the possibility of discrete water quality types within the water chemistry data.  

Principal components analysis reduces the dimensionality of a large multivariate data set to a 

smaller number of newly derived orthogonal variables called principal components (PCs).  

Principal components are ordered by proportion of variance explained by each [23].  Prior to 

analysis, all variables except pH were normalized with the natural logarithm function because 

PCA assumes variables have a normal distribution.  Alkalinity was normalized after adding 1 

mg/L CaCO3 equivalents to its value because alkalinity can have valid zero values.  Total acidity 

was not included in the analysis because of its strong dependence on other included constituents.   

The SAS (SAS Institute, Cary, NC, USA) procedure FACTOR was used with the 

PRINCIPAL method option to perform PCA, and the procedure SCORE was employed to 

calculate factor scores for each sample [24].  The constituents included in PCA were pH, specific 

conductivity, total alkalinity, aluminum, barium, calcium, chloride, cadmium, cobalt, chromium, 

copper, iron, magnesium, manganese, sodium, nickel, zinc, and sulfate.  Principal components 
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with eigenvalues >1.5 were considered significant.  Water chemistry parameters were considered 

significant components of a PC if their factor loadings had an absolute value >0.5 [23]. 

Cluster analysis was performed with the SAS procedure CLUSTER to identify particular 

water types in the dataset based on water chemistry parameters that were significant components 

in PCA [24].  Ward's minimum-variance method was employed with the square of the Euclidean 

distance measure to define clusters.  Because the normalized dataset did not possess any outliers, 

no trimming algorithms were employed with the Ward method.  This analysis was performed on 

all water samples.  However, because Ba, Cd, and Cr did not contribute significantly to any of 

the PCs defined by PCA, these constituents were removed from CA. 

Verification and chemical description of water quality clusters 

Our second objective was to determine if the water quality types identified by CA were 

statistically distinguishable from one another or if sample-to-sample variation in water chemistry 

was best described continuously.  To meet this objective, we used a combination of analysis of 

variance (ANOVA) and classification and regression tree (CART) analysis.  The chemical 

characteristics of the water types were examined with basic statistics on the water quality 

constituents of the samples within each type.  Basic statistics calculated for each raw water 

quality constituent and PC score included maximum, minimum, median, mean, and standard 

deviation.  We used ANOVA with post hoc Tukey tests to test for statistical differences in mean 

PC 1 and 2 scores among the water types.  An a priori alpha level was set at 0.05 for this test.  

Our underlying null hypothesis was that there were no differences in water chemistry as 

described by the PCs among water types identified by CA.   

We used CART analysis to examine the relationship between water quality variables and 

water quality types derived from CA and to quantify the relative classification strength of the 
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types.  Classification and regression tree analysis partitions variation in a categorical or 

continuous response variable by recursively splitting the response variable into groups defined 

by combinations of explanatory variables that minimize within group variation [25].  

Classification and regression tree analysis is a non-parametric statistical technique, and therefore 

its strength is its ability to find relationships within complex datasets containing multiple 

variables that may each have different patterns of variance (i.e., lack multivariate normality) 

[26].  Results of CART are contained in decision trees showing splitting levels of explanatory 

variables that partition groups.  Tree nodes represent splitting levels of explanatory variables that 

define groups, and tree leaves represent terminal groups, which can be described with summary 

statistics [25].   

Interpretation of CART results is simple and achieved by following the splitting decisions 

down to terminal leaves.  When the response variable is categorical (i.e., classification) the 

strength of the CART (i.e., classification tree) model can be evaluated by how many 

observations were misclassified [25].  We implemented the CART algorithm with the R 

language and environment for statistical commuting version 2.2.0 [27], which follows Breiman 

et al.[28].  Group membership defined by CA on water chemistry data (i.e., water type) was the 

response variable, and the un-transformed water chemistry parameters were the explanatory 

variables.  This analysis allowed us to identify the most important water chemistry predictors of 

cluster membership and to examine the repeatability of water quality cluster assignment. 

Temporal variation in water quality clusters and impairment criteria 

Our final objective was to quantify the extent to which water quality types varied at a 

given site from season to season.  To measure this tendency, we simply tallied the number of 

times the water type of all sites shifted to another type or stayed the same from sample to 
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subsequent sample.  The initial cluster type for a site was that observed in spring 2004 when the 

first water samples were taken.  Subsequent water types for a site were those observed during 

subsequent sampling dates (i.e., fall 2004 then spring 2005). 

Finally, water samples were considered in need of treatment (i.e., were impaired) if at 

least one of pH, aluminum, iron, or manganese did not meet water quality standards.  These 

impairment criteria are in U. S. Environmental Protection Agency [29] and are established for 

aquatic life and human health use categories.  The impairment criterion for iron was considered 

at chronic doses for trout water use designation (>0.5 mg/L).  Impairment due to aluminum was 

considered at acute doses for trout waters (>0.75 mg/L).  Manganese and pH impairment were 

defined by standards of the human health use category (>1.0 mg/L and <6.0, respectively).  

Results 

Identification and verification of water quality types 

We observed high levels of variability in water chemistry among samples distributed 

across the Cheat and Tygart Valley river basins (Table 1).  Principal components analysis 

reduced this variation to four important components with eigenvalues >1.0, but only PC 1 and 

PC 2 were interpreted (i.e., eigenvalue >1.5) (Appendix Table 2).  Combined, PC 1 and PC 2 

explained 63% of the total variance in the water chemistry dataset.  Principal component 1 

represented a gradient of AMD chemistry where large positive values indicated streams with 

decreasing pH, high conductivity, and high concentrations of sulfate and dissolved metals 

(Appendix Table 2).  In contrast, PC 2 represented a hardness – salinity gradient.  High positive 

values on PC 2 were characterized by increasing pH, alkalinity, hardness, sodium, and chloride 

(Appendix Table 2).     
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Cluster analysis identified six water chemistry clusters within three hierarchical levels 

(Figure 1).  At the first level, cluster 6 was highly differentiated from the remaining five 

clusters.  At the second level, cluster 1 was differentiated from the remaining four clusters.  

Finally, clusters 2 and 3 were differentiated from clusters 4 and 5 (Figure 1).  A bivariate plot of 

sites from each cluster in PC 1 and PC 2 space illustrates the general differences in water 

chemistry among the types identified (Figure 2).  This plot suggested that water quality types 

identified by CA could be labeled as Reference (Type 1), Soft (Type 2), Transitional (Type 3), 

Hard (Type 4), Moderate AMD (Type 5), and Severe AMD (Type 6).  Figure 2 reflects this 

labeling convention, as do categories in subsequent tables and figures.  Differentiation among 

Type 1, Types 2-4 as a group, and Types 5 and 6 was predominantly influenced by AMD 

chemistry as described by PC 1.  In contrast, differentiation among Types 2 – 4 was 

predominantly influenced by alkalinity, water hardness, and salinity as described by PC 2 

(Figure 2).   

Analysis of variance on mean PC 1 and PC 2 scores indicated a significant level of 

differentiation among the water quality types identified by CA (Table 1).  Analysis of variance 

detected statistical differences among water quality types on both PC 1 (F = 393; d.f. = 5,369; p 

< 0.0001) and PC 2 (F = 126; d.f. = 5,369; p < 0.0001) (Table 1).  Along PC 1, all water quality 

clusters, except the soft water type (i.e., Type 2), differed significantly from the reference type 

(Table 1; Figure 2).  Only the moderate AMD type (i.e., Type 5) was statistically equivalent to 

the reference type along PC 2 (Table 1; Figure 2).  

Classification tree analysis further supported a high level of differentiation among the six 

water quality types identified by CA (Figure 3).  Overall, CART analysis produced a 

classification tree with a 12% misclassification rate, meaning that CART correctly classified 
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88% of the water samples into the water quality type to which they were previously assigned by 

CA.  Manganese, sulfate, aluminum, calcium, and zinc concentrations and alkalinity were all 

useful variables in distinguishing among the six clusters (Figure 3).  Consistent with the results 

of CA and ANOVA, CART analysis indicated that the reference cluster and the severe AMD 

cluster were the most highly differentiated groups, with an overall misclassification rate of 3% 

for reference and 5% for severe AMD.  Although higher, the misclassification rates of the 

remaining clusters also were quite low.  Soft water type samples were misclassified as 

transitional types 11% of the time (Figure 3).  Hard water types were misclassified either as 

transitional or moderate AMD types 10% of the time.  Transitional samples were misclassified at 

a rate of 17% and were most often misclassified as reference samples (13 of 26 total 

misclassifications).  The highest rate of misclassification was observed in the moderate AMD 

type (18%), which was most often misclassified as a transitional type (Figure 3).  The overall 

low rates of misclassification suggest that the six water chemistry clusters identified by CA may 

be appropriately considered discrete water quality types. 

Chemical description of water quality types 

In combination, our analyses enabled us to describe specific chemical characteristics of 

the six water quality types identified by CA and verified by ANOVA and CART analysis (Table 

1, Figures 2 and 3).    

The reference cluster represented water samples characterized by circum-neutral pH, low 

conductivity, low calcium, chloride, cobalt, magnesium, sodium, nickel, zinc, and sulfate 

concentrations, and very low aluminum, iron, and manganese concentrations (Table 1, Figure 2 

and 3).  Streams of this type probably drain un-mined watersheds that contain geological 
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attributes that buffer receiving streams from acid precipitation (e.g., higher proportions of shale 

and limestone).     

The soft water cluster possessed highly reduced pH, alkalinity, calcium, and magnesium, 

low conductivity, and low concentrations of sulfate and manganese (Table 1, Figure 2 and 3).  

This chemical signature probably is typical of streams draining un-mined watersheds influenced 

by high acid precipitation rates and low buffering capacity in surrounding soils.   

The hard water cluster was characterized by circum-neutral pH and significantly elevated 

levels of conductivity, alkalinity, calcium, chloride, magnesium, manganese, sodium, and sulfate 

(Table 1, Figure 2 and 3).  However, concentrations of aluminum, iron, and other metals (e.g., 

nickel and zinc) remained low.   This chemical profile is representative of saline mine drainage 

characteristic of streams draining mined watersheds where AMD is being actively treated or the 

surrounding overburden possesses naturally high buffering capacity.   

The transitional water cluster possessed highly variable chemistry (Table 1, Figure 2), 

and consequently, is difficult to describe in a general sense.  This cluster is best described as a 

transitional type between the reference and moderate AMD type.  The presence of slightly 

elevated manganese and aluminum concentrations relative to reference samples suggests that this 

type is characteristic of highly dilute AMD chemistry (Table 1, Figure 2 and 3). 

The moderate AMD cluster was characterized by low to moderate pH and significantly 

elevated concentrations of aluminum, iron, manganese, nickel, zinc, and sulfate.  Streams of this 

type probably drain watersheds that have been mined at a moderate level of intensity.  In 

addition, AMD inputs probably are not being actively treated nor are there natural sources of 

alkalinity in the surrounding overburden.      
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The severe AMD cluster possessed extremely low pH, extremely high conductivity, and 

extremely high concentrations of dissolved metals and sulfate.  Streams classifying into this type 

probably drain intensively mined watersheds abundant in acid-producing minerals with little 

chemical treatment or geological potential for acid neutralization. 

Temporal variation in water quality types 

The general trend in water chemistry over our sampling period was for water types to 

remain constant from season to season (Table 2). Constancy ranged from 63-95% depending on 

water quality type.  Water samples classifying as hard were most stable (95% constancy) 

followed by the severe AMD type (82% constancy) and the soft water type (79% constancy).  In 

contrast, transitional, moderate AMD, and reference types were more likely to shift from one 

type to another over time (63%, 65%, and 69% constancy, respectively) (Table 2).  Several 

important patterns of shift from initial water type emerged from our analysis.  The reference type 

always varied in the direction of transitional type, and this occurred 31% of the time over our 

sampling period (Table 2).  Likewise, the transitional type usually varied in the direction of 

reference type, and this occurred 18% of the time (Table 2).  The transitional type also had some 

tendency to move to the hard water type (12% of the time) and the moderate AMD type (6% of 

the time) over the sampling period (Table 2).  Finally, soft water and moderate AMD types 

tended to vary toward the transitional type 17% and 35% of the time, respectively (Table 2).   

Water quality types and impairment 

The percentage of samples within a given cluster that possessed legally impaired water 

quality varied from a low of 8% in the reference cluster to a high of 100% in the severe AMD 

cluster (Table 3).  The soft water cluster experienced an impairment rate of 81%, all resulting 
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from low pH (Table 3).  The moderate AMD cluster had a similar impairment rate of 84%.  

However, impairment of this water quality type was a combination of depressed pH and elevated 

dissolved metals (Table 3).  Transitional and hard water types experienced low to moderate rates 

of impairment (19% and 14%, respectively) but for very different reasons.  The transitional type 

tended to experience depressed pH, whereas the hard water type was most often impaired by 

elevated iron and manganese (Table 3).     

Discussion 

Although stream chemistry was highly variable across sites, the results of our analyses 

support the existence of discrete water chemistry types within the Cheat and Tygart Valley river 

basins.  The six stream types that we identified by cluster analysis were significantly different 

from one another and chemically interpretable in multivariate space.  Furthermore, CART 

produced a classification tree model with a low error rate that was consistent with the patterns 

extracted from PCA.  Interpretation of our combined analyses identified water quality in streams 

of the Cheat and Tygart Valley river basins as Reference, Soft, Hard, Transitional, Moderate 

AMD, and Severe AMD types. 

Other studies that have attempted to identify and classify water chemistry types have had 

mixed success.  For example, Abollino et al. [13] attempted to classify waters from Antarctic 

lakes and found that samples did not group neatly in multidimensional space constructed from a 

suite of selected elements.  However, samples from the same lakes tended to group together.  

Papatheodorou et al. [15] examined ten years of water chemistry data from a shallow, eutrophic 

Greek lake to determine the dominant factors related to temporal sources of variation in water 

quality and to classify water samples.  They found six principle factors describing variation in 

the data, but did not find distinct water type clusters. 
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In contrast, there have been numerous successful attempts to classify water types in 

highly impacted water bodies [5, 14, 30-33].  For example, Kowalkowski et al. [30] identified 

four natural cluster types of water chemistry and were able to distinguish and characterize 

polluted samples of water from clean samples taken along the Brda River in Poland.  McNeil et 

al. [14] used a similar approach to classify a large, broad-scale water chemistry dataset from 

Queensland, Australia.  Their analysis found nine water types, which subsequently allowed for 

the designation of provinces characterized by similar water chemistry.  Likewise, Lent et al. [31]  

found good support that a large basin used for drinking water supply in central MA, USA could 

be classified into three sub-basins based on water chemistry data.   

Given findings from studies in other regions where chemical pollution is prevalent, we 

were not surprised to find discrete water quality types in the Cheat and Tygart Valley basins.  

However, the occurrence of discrete types does not mean that water chemistry was not highly 

variable or that it did not vary continuously across samples.  In fact, the water quality types we 

identified varied continuously across the two dominant gradients extracted by PCA (Figure 2).  

The water type we identified as transitional was notoriously variable.  We believe this variability 

warrants class designation because this type would not exist in the absence of acid inputs from 

human activity.  Other studies using similar analytical approaches as ours have also found highly 

and continuously variable water chemistry across sites [5, 13-15, 31, 32].  Continuous variation 

in surface water chemistry is common feature of aquatic ecosystems probably because the host of 

underlying processes also vary continuously [32].   

Many natural processes determine surface water chemistry, potential water types, and the 

accompanying spatial and temporal variability.  Especially important factors are basin and 

aquifer geology, climate, and topography [32].   In our study region, the preponderance of 
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sandstone and shale geology favors stream water that is naturally circum-neutral to slightly 

acidic with low total dissolved solid concentrations and conductivity.  Surface waters influenced 

by limestone occur but are uncommon.  Given the natural geochemistry of this region, we would 

expect un-impacted watersheds to possess a relatively low degree of variability in water 

chemistry among streams and little if any evidence for discrete water types.   

However, our results indicate that acid precipitation and AMD punctuate the range of 

expected variation in water chemistry and produce discrete water types.  This occurs via two 

mechanisms.  First, acidic precipitation produces streams with extremely low conductivity, low 

buffering capacity, and low pH, as acidic rain and snowfall strip buffering capacity from soils in 

the surrounding landscape [34].  The soft water type that results is distinct from reference 

streams where buffering capacity remains intact.  Second, mining produces streams with varying 

degrees of AMD, which along with surrounding geology, results in four additional water types.  

If the surrounding geology does not possess significant buffering capacity and AMD is dilute, 

then the transitional type is produced.  The moderate and severe AMD types are the result of 

increasing levels of AMD production from increasingly intensive mining.  Finally, the hard 

water type results when AMD from mining is either treated with calcium and sodium hydroxide, 

or interacts with high buffering capacity geology.   

Although we chose sites to minimize their interdependence, variation in our water 

chemistry data may have resulted at least in part from spatial autocorrelation even at scales larger 

than watershed boundaries [35].  Any similarity in chemical composition of sites resulting 

simply from their location, however, is still variation that warrants inclusion into a classification 

algorithm for categorization.  Overall, our analyses found that definable water types exist in this 

region where severe anthropocentric stressors (i.e., acid precipitation and AMD) are common.  
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These stressors interacting with geologic mechanisms and site location appear to produce distinct 

water quality types in contrast to more continuous variation in chemistry that would be expected 

in an un-impacted setting.   

Temporal variability in water quality types observed at a given sample location also was 

an important component in our water chemistry data.  Overall, reference, transitional, and 

moderate AMD types tended to be the most variable streams.  This result is consistent with the 

findings of Petty and Barker [6], who found a high degree of temporal variability in water 

chemistry of moderately impaired streams.  In contrast, the severe AMD, hard, and soft water 

types were extremely stable.  This suggests that increasing pollutant levels tend to produce 

extreme, but relatively stable chemical conditions.   

The modeling and classification success we had in defining water types in this region is 

valuable because it potentially simplifies decisions needed to restore and protect water quality in 

mined watersheds.  First, our results indicate that a relatively short list of chemical constituents is 

needed to classify a given water body (i.e., stream or river) into a particular water quality type.  

These constituents included alkalinity and manganese, aluminum, sulfate, calcium, and zinc 

concentrations (Figure 3). We also found that a given stream could be consistently classified 

with two or three samples collected each year across a range of base flow conditions.  

Consequently, this study makes clear how to efficiently characterize the chemical conditions of 

streams in mined watersheds.   

Second, the existence of meaningful water types translates into groups of streams that 

could be efficiently restored using similar remediation technologies.  For example, streams 

classifying into transitional or soft water types could be targeted for limestone sand addition, 

whereas full remediation of the severe AMD streams would require a combination of alkaline 
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injection to increase pH and precipitate metals and anaerobic wetland systems to reduce sulfate 

concentrations.    

Finally, identification of discrete water types along with their relative rates of impairment 

(Table 3) provides a basis for setting objective restoration priorities in these intensively mined 

watersheds.  For example, our analysis identified soft water types that are highly vulnerable to 

acidification from acid precipitation.  These types of streams should receive the highest priority 

in a stream restoration program because this type of impairment is so common and because this 

type is relatively easy to reclaim with processed limestone amendments [36].  This approach 

would also effectively restore many transitional and moderate AMD streams and quickly recover 

ecological productivity to many stream miles.  In contrast, severe AMD and hard water type 

streams would receive lower restoration priorities, because reduction of dissolved metal and 

sulfate concentrations is a very difficult and complex process [2, 8].  However, these streams 

should receive long term attention and effort in an ecologically based framework to identify 

which streams, if restored, would translate into the greatest chemical and ecological benefit to 

the watershed as a whole [7]. 

Several important questions extend from this study.  It is uncertain whether or not the 

water quality types that we identified in the Cheat and Tygart Valley basins can be consistently 

reproduced in other mining regions of Appalachia.  If the classification system is reproducible, 

then it would be possible to develop region-wide, rather than watershed specific, remediation 

strategies.  We also would be interested to know whether or not the water quality types that we 

identified can be predicted from mapped watershed characteristics (e.g., elevation, geology, 

drainage area, land cover).  If so, then it would be possible to generate continuous maps of 

expected water quality conditions without having to obtain water chemistry samples from all 
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streams in a watershed.  Finally, it is unclear whether or not biological communities respond in a 

predictable manner to the water quality types.  Our hypothesis is that such discrete water types 

should produce discrete community types by punctuating gradual change in community 

composition [37].  If such relationships exist, then it would be possible to predict community 

response to remediation actions designed to improve water quality and this would greatly 

improve our ability to set meaningful restoration priorities.  
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Tables and Figures 

Tables 

Table 1.  Means (and standard deviations) of water quality constituents, and principal component 

(PC) 1 and PC 2 scores for each water quality type (number in parenthesis is number of samples 

classifying into that type).   For PC 1 and PC 2, means with different letters are statistically 

different from one another (p < 0.05; analysis of variance (ANOVA)/Tukey post test).  Means 

are reported in mg/L except where indicated.  Conductivity (Cond) is reported in μS/cm and 

alkalinity (Alk) is reported in mg/L CaCO3 equivalents.  AMD = acid mine drainage. 

 Reference 

(98) 

Soft (32) Hard (42) Moderate 

AMD (32) 

Transitional 

(134) 

Severe 

AMD (37) 

pH 6.9 (0.5) 5.0 (0.8) 7.1 (0.5) 6.0 (1.0) 6.8 (0.7) 3.5 (0.7) 

Cond 94 (80) 74 (96) 591 (543) 171 (103) 125 (130) 703 (455) 

Alk  21.3 (18.8) 2.3 (2.9) 82.4 

(102.7) 

25.4 (55.9) 22.9 (21.3) 0.5 (1.6) 

Al 0.01 (0.01) 0.21 (0.14) 0.04 (0.05) 0.43 (0.97) 0.06 (0.08) 9.72 (9.37) 

Ba 0.03 (0.01) 0.03 (0.01) 0.04 (0.01) 0.04 (0.03) 0.04 (0.01) 0.03 (0.01) 

Ca 9.8 (9.4) 1.9 (1.3) 58.3 (33.9) 16.9 (12.1) 11.0 (7.6) 51.0 (45.3) 

Cda 3.0 (0.3) 3.0 (0.0) 3.2 (8.9) 4.0 (2.2) 3.9 (1.8) 3.5 (1.5) 

Cl 1.7 (1.5) 1.5 (2.2) 48.5 (252.3) 3.8 (4.4) 6.4 (7.6) 3.9 (3.1) 

Coa 1.5 (1.1) 1.9 (1.3) 2.6 (2.2) 19.7 (95.9) 1.6 (3.5) 57.4 (47.8) 

Cra 2.2 (1.4) 1.9 (1.1) 2.3 (1.3) 2.2 (1.1) 2.2 (1.2) 4.9 (3.0) 

Cua 1.6 (1.5) 2.0 (3.1) 2.2 (3.2) 2.0 (3.1) 1.7 (2.4) 15.9 (13.4) 

Fe 0.03 (0.03) 0.09 (0.1) 0.13 (0.33) 0.17 (0.13) 0.14 (0.11) 12.23 
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 Reference 

(98) 

Soft (32) Hard (42) Moderate 

AMD (32) 

Transitional 

(134) 

Severe 

AMD (37) 

(19.91) 

Mg 1.7 (1.6) 0.6 (0.4) 15.7 (11.0) 4.7 (3.6) 2.2 (1.2) 18.7 (21.6) 

Mn 0.01 (0.01) 0.07 (0.05) 0.35 (0.31) 0.38 (0.37) 0.10 (0.16) 1.85 (2.50) 

Na 1.6 (1.7) 0.7 (1.4) 43.6 

(124.4) 

2.9 (3.4) 4.8 (5.5) 3.9 (2.9) 

Nia 2.4 (1.9) 3.1 (1.6) 5.3 (4.8) 18.5 (13.2) 2.4 (1.4) 87.9 (62.9) 

Zna 2.9 (3.4) 17.5 (50.2) 5.2 (5.6) 23.3 (27.3) 2.3 (2.0) 173.6 

(121.8) 

SO4 9.6 (11.4) 7.7 (3.4) 198.9 

(201.2) 

44.5 (47.2) 14.6 (8.0) 266.2 

(210.1) 

PC 1 -0.87A 

(0.30) 

-0.66A 

(0.45) 

0.40B 

(0.29) 

-0.18C 

(0.43) 

0.94D 

(0.34) 

2.25E 

(0.60) 

PC 2 -0.00A 

(0.56) 

-1.68B 

(0.51) 

1.56C 

(0.78) 

0.25A 

(0.64) 

-0.37D 

(0.71) 

-0.90E 

(0.39) 

aunits = µg/L 
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Table 2.  Temporal patterns in water chemistry type.  Values along the diagonal represent the 

number (%) of sites that maintained a constant water quality type from season to season.  Off 

diagonals represent the tendency for the initial water quality type (First Season Type) to change 

type in subsequent samples (Sub-Season Type).  For example, 82% of the severe acid mine 

drainage (AMD) samples remained severe AMD type in subsequent samples, whereas 14% 

shifted from severe AMD to moderate AMD type in subsequent samples.   

 

Sub-Season 

Type 

First Season Type 

 Reference Soft Hard Transitional Moderate 

AMD 

Severe 

AMD 

Reference 47 (69) 1 (4)  16 (18)   

Soft  19 (79)  1 (1)   

Hard   21 (95) 10 (12)   

Transitional 21 (31) 4 (17) 1 (5) 55 (63) 7 (35) 1 (4) 

Moderate 

AMD 

   5 (6) 13 (65) 4 (14) 

Severe AMD      23 (82) 

Total 

Observations 

68 24 22 87 20 28 



 

Table 3.  Number of samples (and %) within cluster types exceeding specific water quality criteria applicable to West Virginia, USA 

(pH < 6.0; Fe > 0.5 mg/L; Al >0.75 mg/L; and Mn >1.0 mg/L)a.  The number of water samples classified into each water cluster type 

is also given.  

Number of Samples Requiring Treatment for: Cluster Type Number of Samples per 

Cluster Type 

Number of Samples (%) 

Requiring Treatment pH Al Fe Mn 

Reference 98 8 (8) 8 (8) 0 (0) 0 (0) 0 (0) 

Soft 32 26 (81) 26 (81) 0 (0) 0 (0) 0 (0) 

Hard 42 6 (14) 1 (2) 0 (0) 2 (5) 3 (7) 

Transitional 134 25 (19) 23 (17) 0 (0) 1 (1) 1 (1) 

Moderate AMD 32 27 (84) 26 (81) 17 (53) 2 (6) 4 (13) 

Severe AMD 37 37 (100) 37 (100) 37 (100) 33 (89) 22 (59) 

a Mn criterion is public water supply standard.  The Fe criterion is designated specifically for trout waters in WV and is evaluated at 

chronic standards; Al is also designated specifically for trout waters and aquatic life use in general, but is evaluated at acute standards 

[29]. 
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Figure legend 

Figure 1.  Upper part of the dendrogram from cluster analysis.  The portion of the dendrogram 

with a semi-partial R2 < 0.04 was not displayed.  Labels at the bottom identify discrete water 

quality clusters (Types 1-6) identified by cluster analysis. 

Figure 2.  Bivariate scatter plot of principal component (PC) 1 and 2 scores for each water 

chemistry sample.  Samples are identified by cluster type assigned by cluster analysis and are 

descriptively labeled as A = severe acid mine drainage (AMD), M = moderate AMD, S = soft, H 

= hard, T = transitional, and R = reference water quality types.  Chemical variables with high 

(>|0.5|) factor loadings on each PC are shown on the corresponding axis.  SO4 = sulfate; Cond =  

conductivity.   

Figure 3.  Classification tree on water types derived from cluster analysis.  The top of each leaf 

in the tree is labeled with its a priori assigned cluster type (Sev AMD = severe acid mine 

drainage and Mod AMD = moderate AMD).  Also listed is the number of samples per leaf (N) 

and the predicted distribution of the samples (#OBS) among the available cluster types where A 

= severe AMD, M = moderate AMD, S = soft, H = hard, T = transitional, and R = reference 

water quality types.  For example, leaf type Sev AMD had N=38 water samples assigned to it by 

classification and regression tree (CART) analysis.  Only two of the 38 samples actually 

belonged to another cluster (M, in this case).  MCR is the misclassification rate for a terminal 

leaf.  The misclassification rate for the full tree model was 12%, compared to 64% for the null 

model (majority rule).  SO4 = sulfate. 
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Appendices 

Appendix tables 

Appendix Table 1.  Method detection limits (MDLs) of analytical methods used to determined 

concentrations of water chemistry parameters in water samples.  ICP = inductively coupled 

plasma-atomic emission spectrometry; IC = ion chromatography.  The U.S. Environmental 

Protection Agency (EPA) method source is also given. 

Parameter Analytical Method MDLs (mg/L) EPA Method [38] 

Al ICP 0.021 200.7 

Ba ICP 0.0024 200.7 

Ca ICP 0.1 200.7  

Cd ICP 0.0028 200.7  

Cl IC 0.11 325.2  

Co ICP 0.003 200.7  

Cr ICP 0.0024 200.7  

Cu ICP 0.003 200.7  

Fe ICP 0.0026 200.7  

Mn ICP 0.0034 200.7  

Mg ICP 0.1 200.7 

Na ICP 0.1 200.7  

Ni ICP 0.0038 200.7  

Zn ICP 0.0032 200.7  

Sulfates Flow Injection Analysis 0.117 375.1  

Acidity Automatic Titrator -- 310.1  
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Alkalinity Automatic Titrator -- 305.1  
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Appendix Table 2.  The factor pattern (i.e., loadings) and eigenvalue magnitude for the first four 

principle components (PC) identified by principal components analysis. 

 PC 1 PC 2 PC 3 PC 4 

Eigenvalue 7.8857 3.4849 1.3221 1.0718 

pH -0.6741 0.5910 0.0542 -0.0945 

Conductivity 0.7933 0.4607 -0.1712 -0.0162 

Alkalinity -0.3611 0.8273 0.0293 -0.1193 

Al 0.7794 -0.3956 -0.1038 0.0471 

Ba 0.1041 0.3214 0.4917 -0.1877 

Ca 0.6596 0.6362 -0.1286 -0.1714 

Cl 0.3861 0.5709 0.1134 0.4861 

Co 0.8558 -0.2039 0.2014 -0.1519 

Cr 0.3978 -0.0726 0.3746 0.6163 

Cu 0.6710 -0.2622 -0.1324 0.2159 

Cd 0.2008 0.1130 0.8091 -0.0826 

Fe 0.7540 -0.2495 -0.1446 0.2178 

Mg 0.7761 0.5142 -0.1336 -0.1649 

Mn 0.8109 -0.0410 -0.0713 -0.1038 

Na 0.4131 0.7419 -0.0781 0.2775 

Ni 0.8639 -0.1585 0.2525 -0.2005 

Zn 0.7774 -0.3585 0.1118 -0.2565 

SO4 0.8592 0.2965 -0.1671 -0.1435 
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Appendix figure legend 

Appendix Figure 1.  Locations of water samples taken within the Tygart Valley and Cheat river 

basins, West Virginia.  Geographic Information System data layers from Natural Resource 

Analysis Center, West Virginia University [18]. 
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Chapter 3:  Correspondence between Stream Macroinvertebrates and a Discrete 
Disturbance Gradient:  Consequences for Diagnosing Stressors 

 
Abstract-We sampled benthic macroinvertebrates in an acid-impacted watershed in north-central 

West Virginia, USA, to test whether or not community organization was structured by different 

types of water quality impairment.  Cluster analysis and non-metric multidimensional scaling 

(NMDS) revealed Gleasonian gradients in the community data where composition was variable 

within and between water quality types.  However, tests of compositional similarity identified 

significant links between community structure and water quality types, therefore suggesting 

components of Clementsian gradients.  Communities from acid mine drainage (AMD) streams 

were highly variable, but were differentiated from communities of other stream types.  

Reference- type streams had the best group structure and were significantly different in 

composition compared to AMD-, transitional-, hard-, and soft-type streams.  Benthic 

macroinvertebrate communities exhibited significant nestedness, but only AMD communities 

were clear subsets of reference-type communities.  Non-parametric smooth surfaces significantly 

improved over linear models relating macroinvertebrate ordination to water chemistry data, 

which suggested strong, non-linear relationships between communities and water chemistry, 

especially conductivity, dissolved metals, and sulfate.  Indicator species analysis found relatively 

few genera that were indicators for specific water quality types, but they were highly significant 

for reference streams (e.g., Epeorus, Dolophilodes), soft streams (e.g., Simulium, Leuctra), and 

hard streams (e.g., Ectopria).  Consequently, complex distributional patterns exist for benthic 

macroinvertebrate communities in this acid-impacted region.  However, there is evidence that 

distinct water quality types defined by extreme acidic conditions punctuate the expected 

continuous variation in communities and structure them into discrete units.  The high degree of 

nestedness suggests that acidic conditions create subsets of richer communities where sensitive 

 63



 

taxa are removed.  It therefore may be possible to predict community response to mitigation 

efforts designed to improve water quality, and this could be used to establish biological 

endpoints for restoration.  However, diagnosing stressors and multiple discrete types of water 

quality impairment with community level data will continue to be challenging in situations 

where tenuous links exist between biota and local conditions.  Watershed-scale attributes may be 

needed to explain the variation in macroinvertebrate communities not captured by local water 

chemistry. 

Key Words:  acid mine drainage; acid rain; analysis of similarity; benthic macroinvertebrates; 

community structure; diagnosing stressors; indicator species; mean similarity analysis; non-

metric multidimensional scaling; streams; water chemistry; water quality 
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INTRODUCTION 

Species’ abundances are commonly found to vary continuously across the landscape and 

more support has grown for the Gleasonian pattern of community organization in stream 

ecosystems (Heino 2005, Heino and Soininen 2005).  This view maintains that communities are 

continuously variable entities being more homogenous across the landscape rather than 

heterogeneously organized into discrete subunits.  Communities gradually change in composition 

presumably because individual species, rather than the community as a whole, change in 

response to environmental gradients.  This pattern has made the identification of community 

types in aquatic ecosystems difficult (Heino et al. 2003a).  In fact, Gleason (1925, 1926) noted 

for vegetation communities that, because of variability in environmental conditions and gradual 

changes in species abundances, there was no easy way to objectively recognize distinct plant 

associations. 

Nestedness has also been a common pattern observed in community ecology (Fleishman 

and Murphy 1999, Leibold et al. 2004), and it may be associated with the Gleasonian pattern that 

species change gradually in their distribution.  But, nestedness does not preclude the existence of 

community types emerging as a dominant pattern in community organization.  Discrete 

communities (i.e., Clementsian gradients) could emerge as species assemblages become subsets 

of the whole community when abrupt environmental changes occur.  For example, a pollution 

gradient could act as an environmental sieve that filters out most species and leaves behind an 

assemblage subset of species tolerant of the novel conditions.  

These distribution patterns, however, could also result merely from the way communities 

were sampled in relation to environmental variability.  Clearly, pattern depends on the scale of 

observation (Levin 1992), and typical sampling regimes often lack the scale needed to detect 
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variability in abiotic conditions across sites and in communities that exist there (Heino et al. 

2003a, Leibold et al. 2004).  If greater environmental variability exists among metacommunities 

at the scale typical of ecological studies (e.g., catchment scale) then punctuated species’ 

distributions might be expected where clearer patterns between biota and environmental 

gradients emerge (Weilhoefer and Pan 2006).  Additionally, communities in disturbed habitats 

might be made up of subsets of the whole source community found in undisturbed habitats.  

 Although less support exists for the discrete view of community types, abrupt changes in 

environmental conditions may indeed punctuate the expected continuous variation in species’ 

abundances.  Abrupt environmental disturbances could conceivably produce nestedness and/or 

discrete community patterns where sites with different environmental conditions are significantly 

different in species composition.  Kratzer et al. (2006), for example, found that environmental 

degradation from point-source pollution discharge produced distinct macroinvertebrate 

community types.  A few recent studies have examined these non-random species distribution 

patterns in near pristine environments in hopes of elucidating community models and assembly 

rules (Heino et al. 2003a, Heino 2005, Heino and Soininen 2005).  To our knowledge no study 

has tested for the correspondence of benthic macroinvertebrate communities with 

anthropocentric disturbance gradients that produce discrete habitats within a catchment.  A 

strong link between stream communities and water quality types has important implications for 

current on going efforts to diagnose stressors and prioritize restoration efforts (Merovich and 

Petty 2007). 

Aquatic ecosystems are being altered and destroyed at an alarming rate from both point 

and non-point sources of pollution and from physical manipulation (Allan 2004, Poff et al. 

2006).  In stream ecosystems, these changes often mean that there are clear boundaries between 
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high quality habitats and degraded habitats downstream (Pringle 1997).  Communities may 

respond to these discontinuities discretely in contrast to their expected range of natural variation 

when the natural range and variability of the physico-chemical environment abruptly shifts to 

extremes.  A punctuated pattern in species distribution predicts existence of indicator species for 

discrete community types.  If efficient indicator species exist then the possibility exists for 

diagnosing stressors that impair ecological health of stream communities. 

In this study we sampled benthic macroinvertebrate communities in relation to water 

chemistry in the Cheat River basin, a mining influenced, acid-impacted region in north-central 

West Virginia, USA.  Water chemistry here is influenced predominantly by acid mine drainage 

(AMD) and acid rain, and we have found that distinct water quality types exist because of these 

severe disturbances (Merovich et al. 2007).  The discrete environmental gradient suggests that 

benthic macroinvertebrate communities should be organized by water quality types into discrete 

Clementsian, rather in continuous Gleasonian, gradients.  Consequently, our specific objectives 

were to 1) test and quantify the level of correspondence between benthic macroinvertebrate 

communities and discrete water quality types; 2) test whether or not water quality degradation 

produces communities that are nested subsets of more diverse communities; 3) relate 

macroinvertebrate community patterns to water chemistry data; and 4) identify specific taxa that 

may serve as indicators of specific water quality conditions. 

METHODS 

Study area 

The Cheat River watershed (Fig. 1) is located in north-central West Virginia, mostly 

within the central Appalachian and Ridge and Valley physiographic provinces.  Nearly 75% of 

the basin is forested and approximately 13% is in agricultural use.  Although mining activities 
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account for less than 1% of land use, AMD from abandoned mine lands and acid rain are the 

most significant sources of impairment to stream water chemistry and biological integrity (Petty 

and Thorne 2005, Merovich and Petty 2007, Merovich et al. 2007).  Surficial geology of the 

basin is predominantly sandstone (57%) and shale (35%) with little limestone (5%).  Coal 

deposits are only in Pennsylvanian strata, and come predominantly from the Conomaugh 

formation consisting of Elk Lick, Bakerstown, and Mahoning coals (67% of all coal), and the 

Allegheny formation containing Kittanning, Freeport, and Clarion coals (28% of coal).  These 

deposits occur mainly in the northern (lower) half of the basin and are typically associated with 

acid producing overburden materials with high sulfide content and little neutralizing capacity.  

Consequently, streams here often encounter acidic mine drainages containing high levels of 

metals (Fe, Al, Mn, Cr, Ni, Zn), mineral acidity, and sulfates (Petty and Barker 2004).   

Data collection 

We sampled benthic macroinvertebrate communities from 50 sites within the Cheat River 

watershed (Fig. 1) in May 2003 and 2004.  At each site we also took 3 water samples, 1 each in 

April 2004, October 2004, and April 2005.  These water samples were measured for pH, specific 

conductivity (μS/cm), alkalinity (mg/L CaCO3 equivalents), sulfates (mg/L), and dissolved 

aluminum, barium, cadmium, calcium, chloride, chromium, cobalt, copper, iron, magnesium, 

manganese, nickel, sodium, and zinc (mg/L).  We used this water chemistry data to develop a 

stream classification scheme based on water quality (Merovich et al. 2007).  Our analysis found 

6 types that we described as severe AMD (A), moderate AMD (M), transitional (T), reference 

(R), hard (H), and soft (S).  See Merovich et al. (2007) for detailed descriptions.  For our 

purposes here, we grouped the severe and moderate AMD types into 1 type referred to simply as 

AMD (A). 
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Benthic macroinvertebrates were sampled following rapid bioassessment protocols for 

wadeable rivers (Barbour et al. 1999).  We took kick samples (net dimensions 335 x 508 mm 

with 500 μm mesh) from 4 widely separated riffles areas and combined them into 1 sample for 

the site.  Samples were preserved in 95% ethanol.  In the lab, each composite sample was 

initially filtered through a 2-mm sieve mounted on a 0.25-mm sieve.  All organisms retained by 

the 2-mm sieve were identified.  All organisms retained by the 0.25-mm sieve were suspended in 

water and were sub-sampled with a Folsom plankton splitter (Model Number 1831-F10, Wildco 

Supply Company, Buffalo, NY), and individuals from 1/8th of the total water volume were 

identified.  We used Peckarsky et al. (1990) and Merritt and Cummins (1996) to identify 

individuals to the lowest possible taxon name, usually Genus level, except for chironomid 

midges (Chironomidae).  Rare taxa (i.e., those occurring in less than 2 sites) and freshwater 

annelids (Oligochaeta) were deleted from the dataset prior to subsequent analyses.   

Statistical analyses 

As an initial step toward testing for congruence with water quality types, we used 2 

approaches to quantify the distribution patterns of benthic macroinvertebrate communities in the 

Cheat watershed.  First, we used agglomerative hierarchical cluster analysis to summarize 

community similarities among sites and to group sites with respect to their macroinvertebrate 

composition.  We used the flexible beta linkage strategy (beta equal to -0.5) (McCune and Grace 

2002) on Bray-Curtis distance coefficients.  Hierarchical cluster analysis begins with each site as 

a single group and successively combines sites into nested groups based on their similarity, with 

sites that are more similar being combined first.  The algorithm ultimately provides the best 

hierarchical nesting of sites, because it seeks to minimize between group similarities.   
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Secondly, we used non-metric multidimensional scaling (NMDS) as a method to quantify 

gradient structure in the macroinvertebrate data.  This multivariate technique is a non-linear, 

unconstrained ordination method that maps sites in reduced dimensional space according only to 

rank distances determined from a community dissimilarity matrix (Clarke 1993).  It also seeks to 

minimize stress, or the rank order differences between distances in reduced ordination space and 

distances from the original data matrix.  NMDS is very well suited to ecological data because of 

non-normal data structure, preponderance of zeros, and high order interactions (Clarke and 

Green 1988, McCune and Grace 2002).  We determined NMDS solutions in 2-6 dimensions on 

Bray-Curtis distance coefficients, but only a 3-dimensional solution was used because stress did 

not improve appreciably in more dimensions.  Prior to NMDS, composition data were square 

root transformed and double standardized (Wisconsin method) by dividing taxa by their maxima 

and by setting sites to equal totals (Oksanen et al. 2007).  In addition, to avoid the possibility of a 

spurious final stress value, because single NMDS runs are prone to getting trapped in local 

minima, we used multiple random starts to insure a high likelihood that the final stress value was 

the global minimum for the configuration (Clarke 1993). 

We then used multiple subsequent techniques to test and quantify the correspondence 

between macroinvertebrates and water quality types.  First, as a visual method, we overlaid the 

dominant water quality type from each site on the terminal branches of the cluster tree solution 

and on the NMDS ordination.  Dominant water quality type was determined by choosing the type 

that occurred most often among the three sampling periods.  We chose this way because water 

types tended to stay constant (Merovich et al. 2007), because macroinvertebrates integrate local 

conditions over time (Resh et al. 1996), and because using other ways to determine overall site 
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water quality type for the sampling period (e.g., average water quality type) did not correspond 

with macroinvertebrate communities as well. 

Secondly, the ability of the dominant water quality type factor to fit NMDS ordination of 

sites was assessed with the R2 goodness of fit statistic (Oksanen et al. 2007).  Statistical 

significance was tested with 1000 permutations.  As a third test, we used analysis of similarity 

(ANOSIM) on Bray-Curtis distance coefficients.  ANOSIM tests whether classes of a grouping 

vector are statistically different in species composition by using only the rank order of similarity 

values calculated from abundance data (Clarke and Green 1988, Clarke 1993).  The ANOSIM 

statistic R is (B – W)/(N(N-1)/4, where B and W are average between- and within-group rank 

dissimilarity, respectively, and it ranges from -1 to 1.  A value of 0 means that average rank 

dissimilarity values are no different between- versus within-groups.  Values closer to 1.0 mean 

that average of ranked dissimilarity values are greater between groups and lower within groups, 

i.e., group structure is high and species composition is really different between groups.  The 

statistical significance of R was assessed with 1000 permutation tests of the grouping vector 

water quality type.  We followed this global test with all pair wise tests (10 total) to determine 

where statistical differences in community composition were located among water quality types.  

These tests are analogous to the multiple pair wise t-tests following a significant 1-way ANOVA.  

Because of the multiple comparisons, we evaluated statistical differences of the permutations at 

the Bonferroni-adjusted alpha level of 0.005 in order to control for Type I error rate.   

Finally, we used mean similarity analysis (MEANSIM6.0 from Van Sickle 1998) to test 

for differences in taxa composition between dominant water quality groups.  MEANSIM is allied 

with ANOSIM except that MEANSIM works directly on similarity values (Bray-Curtis 

coefficient) to find overall mean between-group (B) and overall mean within-group (W) 
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similarities.  The MEANSIM statistic M = B / W, where W is weighted by within-group sample 

size, and ranges from 0 to 1.  Values of M closer to 0 signify better class structure, i.e., items 

within groups are more similar to themselves on average than to items in other groups.  

MEANSIM analysis is valuable in addition to ANOSIM because the results can be visualized in 

mean similarity dendrograms, which display the relative strength of group structure (Van Sickle 

1997).  These diagrams plot overall mean between-group similarity against mean within-group 

similarity for each class, in this case water quality type.  A diagram with a vertical line at a low B 

and with long horizontal lines to Wi (mean within-group similarity for group i) indicates stronger 

group structure.  Statistical significance of M was assessed with 10,000 permutations of the 

grouping vector water quality type. 

To address our second objective, we used Atmar and Patterson’s (1995) nestedness 

calculator to test for nestedness in the community data.  This analysis uses the presence-absence 

data matrix, and begins with the richest site located in the top row of the matrix and with the 

most ubiquitous species located in the left-most column.  It then maximally packs the matrix in 

the upper-left direction to minimize unexpected presences and absences, which determine the 

degree of nestedness in the data.  The analysis then calculates the number of unexpected 

presences and absences as the statistic T, in essence the degree of order in the packed presence-

absence matrix.  A perfectly nested dataset has a T value of 0 (maximally cold) and is perfectly 

ordered with species from poor communities being exact subsets of richer communities.  A 

completely randomized dataset has a T value of 100.  The significance of T was computed with 

500 randomizations.   

For our third objective to relate macroinvertebrate data to water chemistry data, we fit 

environmental vectors (water chemistry data) to the NMDS solution to interpret the ordination.  
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Vectors are models that show linear trends where the length of the vector for a specific variable 

is related to its correlative strength to the ordination, and its direction indicates the direction of 

its most rapid change in ordination space.  The significance (R2) of each water chemistry vector 

to the ordination was determined with 1000 permutations.  Because linear interpretation may not 

always be appropriate, we also fit chemistry variables with thin plate splines in two dimensions 

using generalized additive models.  Model complexity was determined by generalized cross-

validation to select the degree of smoothing, and the coefficient of determination (R2) was used 

to assess significant of the surface from 1000 permutations.  If the fitted vector really represents 

a linear response to the ordination then the fitted surface is a plane, but if not the non-linear 

surface will have a higher R2 (Oksanen et al. 2007). 

For our final objective, we used indictor species analysis (Dufrene and Legendre 1997) to 

quantify links between specific macroinvertebrate taxa and our water quality classification 

scheme.  This analysis allowed us to identify taxa that may serve as indicators of specific water 

quality condition.  Indicator species analysis calculates an indicator value (range 0 to 1) for each 

taxon as the product of its relative frequency and average relative abundance in each 

classification group.  Higher indicator values mean that a taxon is more abundant in and 

exclusive to sites of a given class.  Significance of each indicator value was assessed with 1000 

permutations testing whether or not such a high value could be obtained by chance.  If benthic 

macroinvertebrates are significantly structured by water quality types, and if communities are 

more discretely organized, then we would expect more genera to be closely linked to certain 

types, and such a result might make it possible to predict water quality type from biological 

samples.  We used the R language and environment for statistical computing (R Development 

Core Team 2006) for all of the above analyses except where noted.  Package vegan (Oksanen et 
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al. 2007) with function metaMDS was used for NMDS.  Thin plate spline surfaces were fit in 

vegan with function gam from package mgcv (Wood 2003).   

RESULTS 

Excluding rare taxa, we identified 95 genera from 50 sites within the Cheat River basin.  

The site with the greatest richness contained 47 taxa.  Two sites that were severely impaired with 

AMD had no macroinvertebrates and were deleted from analyses.  Based on our dominant water 

quality classification scheme, the number of sites within each type were AMD = 11; transitional 

= 14; soft = 6; hard = 8; and reference = 11.  Cluster analysis showed weak clustering of sites 

based on macroinvertebrates, but water quality types of sites in some ways tended to group 

together on the dendrogram (Fig. 2).  For example, macroinvertebrate samples from AMD, soft, 

and reference streams largely grouped together.  However, samples from transitional and hard 

streams were widely scattered on the dendrogram.   

The results of NMDS were similar to cluster analysis.  Benthic macroinvertebrate 

communities broadly corresponded to, but were highly variable within and among, dominant 

water quality types (Fig. 3).  However, the water quality factor overlaid on the NMDS ordination 

of sites was a significant grouping that distinguished communities (Goodness of Fit R2 = 0.52; p 

< 0.001).  Macroinvertebrate communities from AMD streams were highly variable in species 

ordination space, but were separated from other communities.  Communities from transitional 

streams were both highly variable and were indistinguishable from hard streams, and overlapped 

reference streams somewhat.  Communities from soft type streams were comparably more 

similar but weakly grouped together.  Communities from reference type streams were the most 

strongly grouped.    
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Analysis of similarity and mean similarity analysis provided insight into how benthic 

macroinvertebrate communities were structured by water quality types.  Results of the global 

ANOSIM indicated that more compositional dissimilarity existed between the dominant water 

quality types than expected if group assignment was randomized (R = 0.37; p < 0.001).  Result 

of MEANSIM were consistent indicating that dominant water quality was a significant 

classification for benthic macroinvertebrate communities (M = 0.56; p < 0.0001), i.e., weighted 

mean within-group similarity (Wbar) > mean between group similarity (vertical line) in Fig. 4.  

However, the global ANOSIM and MEANSIM indexes were rather weak indicating much 

variation among groups.  Multiple pair wise ANOSIMs (Table 1) and the mean similarity 

dendrogram (Fig. 4) revealed why.  First, the pair wise ANOSIMs found that only reference sites 

were statistically different in composition compared to other community types.  In these cases, R 

was high at 0.78 for the AMD-reference comparison and ranged to 0.42 for the transitional-

reference comparison (p < 0.001; Table 1).  R values for the other non-reference comparisons 

were low, indicating little if any difference in community structure across those water types (R < 

0.35, p > 0.01; Table 1).  Secondly, the MEANSIM dendrogram showed that communities from 

reference type streams had high within-group mean similarity compared to the other groups.  

Communities from transitional, soft, and AMD streams had lower mean within-group similarity, 

but communities here were still more similar to themselves than to communities from other 

water types.  Communities from hard sites, in contrast, had the weakest class structure because 

mean within-group similarity was slightly less than mean overall between-group similarity (Fig. 

4).  

Benthic macroinvertebrate communities across the range of conditions in the Cheat River 

basin were significantly nested (T = 17.1 vs. T = 66.4 for 500 randomizations; p (T < 20) = 6.0e-
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65).  This pattern corresponded broadly to the classification of sites by dominant water quality 

type.  Figure 5 displays the maximally pack matrix, where the curved line represents the 

boundary between taxa unexpected absences to the left and taxa unexpected presences to the 

right.  Reference sites nearly always contained the richest communities, those located high on the 

y (site) axis, and AMD sites always contained communities that were subsets of more diverse 

sites (clumped low on the site axis).  However, some AMD sites also contained several more 

taxa than were expected if nestedness was perfect (Fig. 5).  Communities from transitional and 

hard sites were scattered across the site (y) axis of the packed matrix, whereas soft communities 

were located more in the middle.  Therefore, there was not a clear pattern of nestedness with 

water quality types other than for reference and AMD types.     

Of the 18 water chemistry parameters studied, 14 were significantly correlated with the 

NMDS ordination (Table 2).  The fitted vectors of the significant parameters (p < 0.04), 

including Cd (p = 0.07), are shown on top of the respective fitted surface in the NMDS 

ordination (Fig 6).  All dissolved metals, conductivity, and sulfate increased quickest toward 

communities from AMD streams.  Manganese (R2 = 0.73) and pH (R2 = 0.79) had the best linear 

trends to the ordination.  Manganese was greater than 0.35 mg/L at all AMD sites.  PH ranged 

from less than 3.5 to 6.3 in the direction of AMD communities, and increased in the direction of 

communities from reference and transitional type streams.  The non-linear surface fit for pH (R2 

= 0.82), however, did not produce a much better model.  Surface fits for conductivity, Al, Cr, Cu, 

Fe, Mn, Ni, Zn, and sulfate improved over the respective linear models (surface R2 > 0.61).  

Isosurfaces curved toward AMD sites, suggesting strong non-linear relationships between 

communities and especially conductivity, Al, Cu, Fe, Mn, Ni, Zn, and sulfate (surface R2 > 0.76) 

(Fig. 6).  Although significant, alkalinity, Ca, Cd, Co, and Mg were not as directly correlated to 
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the ordination (R2 < 0.33) and surface fitting did not produce much better models (surface R2 < 

0.40).   

Finally, indicator species analysis found 29 indicator genera out of a total of 95 

possibilities.  Indicator genera occurred most frequently for reference and soft stream types, and 

indicator values were very high in these cases (Table 3).  Mayfly genera, especially Epeorus, 

Accentrella, Cinygmula, Ephemerella were the best indicators for reference streams, but a few 

caddis flies (e.g., Dolophilodes, Cheumatopsyche, Hydropsyche), stoneflies (e.g., Isoperla, 

Acroneuria), riffle beetles (e.g., Optioservus), and a dipteran (Antocha) were important.  Leuctra 

(stonefly) and Simulium (black fly) were the best indicators for soft streams where indicator 

values were high, followed by Eurylophella (mayfly), where the indicator value was moderately 

high.  Although their indicator values were lower, Ectopria (water penny) and Microcylloepus 

(riffle beetle) were significantly linked to hard streams (Table 3).   

DISCUSSION 

Benthic macroinvertebrate communities within the Cheat River basin were highly 

variable in taxonomic composition across stream types, especially within the AMD-type and 

among transitional- and hard-types.  Cluster analysis did not find highly clustered groups of 

streams based on macroinvertebrate composition, and the NMDS ordination showed a high 

degree of scatter.  These results are characteristic of communities organized in a Gleasonian 

fashion, which is not surprising because many studies have concluded that communities are 

distributed more continuously than in discrete units (McIntosh 1995, Leibold and Mikkelson 

2002, Heino 2005).   

Despite the variability, communities had significant discrete association with the 

dominant water quality types in the basin, i.e., Clementsian gradients were evident in the data.  
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This conclusion is supported on several fronts.  First, communities from reference streams 

tended to group together on the cluster dendrogram.  Grouping occurred, but was weaker, for 

AMD and soft stream types.  Secondly, communities tended to group in ordination space and the 

Goodness of Fit statistic was significant for the classification.  For example, communities from 

AMD streams were highly variable, but they were differentiated from other communities in other 

water types.  Communities from transitional streams were the exception and highly overlapped 

communities from hard streams.  This variation for transitional type streams in particular was to 

be expected because water chemistry is highly variable and very hard to characterize (Merovich 

et al. 2007).  Finally, these results were consistent with both ANOSIM and MEANSIM, and 

ANOSIM provided a more formal way of statistical testing compositional differences among 

water types.  Both ANOSIM and MEANSIM found significant differences in overall taxonomic 

composition and class structure in macroinvertebrate communities grouped by dominant water 

quality type.  However, pair wise ANOSIMs detected statistical differences in composition only 

with comparisons to reference water type, therefore class structure with respect to the other water 

type comparisons was weak.  MEANSIM also showed that communities from transitional, 

AMD, and soft streams had weak class structure and therefore were highly variable.  Hard 

streams had the weakest class structure and in fact communities within this type were more 

dissimilar among themselves than to communities from other types.  These observations are 

consistent with Pollard and Yuan (2006) who found that macroinvertebrate communities in West 

Virginia streams became less similar as metal pollution increased.   

Nestedness was a dominant pattern in the macroinvertebrate data.  This was expected 

because nestedness is common (Leibold et al. 2004), but it was weakly related to our dominant 

water quality classification of streams.  Reference streams with the best water quality nearly 
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always had communities located at the top left of the packed presence-absence matrix (Fig. 5).  

Communities from other water types moved to lower positions on this matrix, but this pattern 

was clearest only for communities from AMD stream types, which were located at the bottom of 

the matrix.  This finding provides the first evidence that degradation of water quality from 

anthropocentric stressors filters benthic macroinvertebrate taxa from a regional species pool. 

However, communities from other stream types that were located in the middle of the matrix 

were not neatly arranged in any particular order.  Therefore, there is no evidence that different 

water types represent a sequential set of pollution sieves that the regional species pool passes 

through as has been found for fish (Tonn et al. 1990) and macroinvertebrate (Lamouroux et al. 

2004) communities under other environmental controls at multiple spatial scales. 

Although nestedness was strongly supported statistically, there were many unexpected 

presences in packed matrix.  In fact, nestedness is never expected to be perfect in a community 

dataset (Atmar and Patterson 1993).  Many of these unexpected presences could be explained by 

regional processes that we did not account for in this study, and not just local water quality 

conditions.  For example, sites with AMD are expected to be depauparate in species richness.  

However, if a severe AMD site is located within a neighborhood of streams with very good 

water quality in close proximity, then some more tolerant species from good areas could by 

chance occur at the poor site by drifting from upstream.  This scenario might also explain the 

overlap of sites from different water quality types in NMDS ordination space and the lack of 

statistical difference among water quality types other than comparisons to reference types.   

The complexity in macroinvertebrate community structure demonstrated above was also 

apparent in the way communities related to water chemistry variables.  Macroinvertebrate 

communities never trended very strongly with individual water chemistry parameters, except for 
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pH (R2 = 0.79), Mn (R2 = 0.73), and perhaps Ni (R2 = 0.63), Zn (R2 = 0.62), and Al (R2 = 0.58).  

These linear models, however, were much improved over with smooth non-parametric surfaces.  

The spline models demonstrated complex, but still tractable, relationships between 

macroinvertebrate communities and local water chemistry that was not conceivable with linear 

models.  For example, Zn increased quickest directly left in NMDS ordination space, bisecting 

communities from AMD streams (Fig. 6).  However, this linear model does not demonstrate how 

AMD communities can be highly variable given similar Zn levels.   The smooth surface model 

for Zn (R2 = 0.90), on the other hand, reflects that variation and is easily interpretable.  

Therefore, surface models greatly improve our understanding of how local water chemistry 

relates to macroinvertebrate community structure in this region.   

Our analysis found only a relatively few indicator genera (31%) for the water quality 

classification.  The presence of few indicator taxa is consistent with a Gleasonian community 

model.  However, we did find several taxa that were very strong indictors for reference and soft 

stream types, which suggest discrete community organization.  Consequently, the analyses 

demonstrate that benthic macroinvertebrates can diagnosis stressors successfully at least at the 

broad categorical level (e.g., water quality type).  The genus Epeorus (mayfly) was a strong 

indictor for reference streams, although it is often found to be dominant in soft, acid 

precipitation-influenced streams in the region (Kobuszewski and Perry 1993, McClurg et al. 

2007).  Our finding is consistent with many studies (e.g., Clements 2004, Pollard and Yuan 

2006) that have found Epeorus to be sensitive to metal pollution.  We also found Leuctra 

(stonefly) and Simulium (black fly) as strong indicators of soft, acid precipitation-sensitive 

streams.  These 2 taxa including Eurylophella (mayfly) are often dominant, by far, in soft 

streams (Clayton and Menendez 1996, McClurg et al. 2007).  However, our study is the first that 

 80



 

explicitly tested for such patterns.  Therefore, in a watershed-scale sampling regime, dominance 

of Leuctra and Simulium in this region is diagnostic for streams that are sensitive to acid rain.  In 

addition, stream communities dominated with an assemblage of the other mayfly, stonefly, and 

caddis fly genera listed in Table 3 are most probably reference-type streams.   

It is in some ways surprising that there were no indicator taxa for AMD streams.  The 

strong nestedness pattern in the data and the complex way in which taxa may colonize these 

impaired streams in a fragmented landscape (McClurg et al. 2007), however, could preclude a 

faithful association and this is unfortunate because the lack of indicator species obscures the 

diagnosis of stressors.  On the other hand, the lack of indicator taxa for transitional streams is not 

surprising, given the tremendous variation in chemistry and community composition.  It will 

therefore continue to be difficult diagnosing the conditions of streams in this transitional zone, 

which is unfortunate also because treatment of AMD or acid rain streams with alkaline materials 

could shift stream chemistry in this direction.  In contrast, if stream chemistry is shifted to hard 

chemistry types, then diagnosis may be possible, but tenuous because only 2 taxa were 

significant indicators of this stream type in our data set.  It therefore may be possible to predict to 

some extent the response of benthic macroinvertebrate communities to reclamation efforts aimed 

to recover streams from AMD or acid rain influence.   

In conclusion, we found that benthic macroinvertebrate communities were highly 

variable within the Cheat River basin, but communities were organized into significant groups by 

discrete water quality types we identified.  Therefore, it appears that community structure has 

both characteristics of continuous variability and discrete organization associated with discrete 

water quality types.  The extreme and discrete conditions imparted to water chemistry from 

AMD and acid rain conflict with the tendency of communities to gradually change and they act 
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to punctuate the continuous variation expected in macroinvertebrate communities.  Benthic 

communities from least impacted streams do not show this level of discreteness to local 

environmental conditions (e.g., Heino et al. 2003a, Heino and Soininen 2005, Weilhoefer and 

Pan 2006).  This study was the first to test the expectation that continuous variation in 

community composition should be punctuated into discrete units explicitly where 

anthropocentric influence to water chemistry is severe.  These results and the relationships we 

found between macroinvertebrates and water chemistry provide information that identifies where 

our understanding is lacking to effectively diagnose stressors and address restoration efforts.   

Although the evidence for community structure by water quality types was mixed and 

these results may seem conflicting, they are better viewed as a consequence of the complex 

nature of community assembly and control in combination with the complex way acid sources 

interact with basin geology to create distinct water quality types that ecologically isolate stream 

reaches (McClurg et al. 2007, Merovich et al. 2007).  Many factors, for instance, control 

macroinvertebrate communities in multiple ways and this also occurs at many spatial and 

temporal scales in a hierarchical fashion (Mykra et al. 2004).  Recent work has attempted to 

separate the influence of local versus landscape-scale factors in macroinvertebrate community 

structure because of availability of advanced GIS-derived variables (e.g., Death and Joy 2004, 

King et al. 2005).  In fact, recent research has focused on metacommunity organization and it is 

clear that not only local factors control organization, but large scale (i.e., landscape) factors also 

determine local site conditions to which invertebrates could respond (Poff 1997, Heino et al. 

2003b, Kiflawi et al. 2003, Lamouroux et al. 2004, Mykra et al. 2004, Prusha and Clements 

2004, Sandin and Johnson 2004).   
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We found evidence that local water chemistry structures community composition, but we 

are also interested in how much of the remaining variation can be explained by processes 

occurring above the level of immediate site conditions in a metacommunity framework (e.g., 

Leibold et al. 2004) in this mining influenced, acid precipitation-sensitive region.  For example, 

we believe in this system that upstream-downstream processes and the neighborhood effect (i.e., 

proximity of sites of different physico-chemical quality) may be important in explaining why 

stream macroinvertebrate composition can be so different when local water chemistry conditions 

are similar.  Very poor streams within a network of un-impaired streams could have much higher 

species richness than expected, for instance, compared to another poor stream in a degraded 

watershed.  Sites in close proximity but with extreme differences in water chemistry could be 

more similar than expected compared to distance sites with the same local water quality type.  

Likewise, restoration efforts may not recover ecological structure if streams remain insularized 

within a degraded network.  For example, McClurg et al. (2007) found that limestone sand 

treatment used to mitigate the effects of acid rain rarely fully recovered acid-sensitive taxa, and 

they attributed this to extreme isolation from potential colonists because the watershed network 

remained impaired.  Consequently, diagnosing water quality types or stressors using stream 

benthic macroinvertebrates from bioassessments will continue to be challenging until we put 

impaired stream reaches into a watershed and spatial framework, and this would also clarify 

decision-making processes in restoration programs where prioritizing restoration efforts among 

several degraded streams is often necessary. 
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Table 1.  Results from analysis of similarity (ANOSIM), including all pair wise comparisons 

between dominant water quality type where A = acid mine drainage (AMD), H = hard, R = 

reference, S = soft, T = transitional.  The asterisk indicates statistical difference evaluated at the 

0.005 level of significance (Bonferroni adjusted).   

 

Test R-Statistic p-value 

Global 0.37 <0.001* 

A-H 0.21 0.02 

A-R 0.78 <0.001* 

A-S 0.35 0.01 

A-T 0.26 0.01 

H-R 0.51 <0.001* 

H-S 0.11 0.14 

H-T 0.12 0.10 

R-S 0.57 <0.001* 

R-T 0.42 <0.001* 

S-T 0.22 0.05 

 



 

Table 2.  Water chemistry parameters studied and related to NMDS ordination of 

macroinvertebrate genera in two dimensions by vector fitting (linear model) and surface fitting 

(non-linear general additive model) using thin plate splines.  Corresponding R2 and p-values are 

given. 

Water chemistry variable Vector R2 (p-value) Surface R2 (p-value) 

pH 0.79 (<0.001) 0.82 (3.7e-13) 

Conductivity 0.52 (<0.001) 0.80 (2.4e-12) 

Alkalinity 0.19 (0.03) 0.15 (0.01) 

Al 0.58 (<0.001) 0.86 (4.2e-15) 

Ba 0.06 (0.41) 0.02 (0.26) 

Ca 0.19 (0.04) 0.22 (0.02) 

Cd 0.15 (0.07) 0.15 (0.06) 

Cl 0.07 (0.38) 0.21 (0.03) 

Co 0.33 (0.001) 0.34 (0.002) 

Cr 0.36 (<0.001) 0.61 (3.8e-07) 

Cu 0.53 (<0.001) 0.85 (2.7e-14) 

Fe 0.44 (<0.001) 0.76 (7.0e-11) 

Mg 0.33 (0.001) 0.40 (0.0004) 

Mn 0.73 (<0.001) 0.82 (1.9e-13) 

Na 0.05 (0.58) 0.10 (0.16) 

Ni 0.63 (<0.001) 0.88 (<5.6e-16) 

Zn 0.62 (<0.001) 0.89 (<2.0e-16) 

Sulfate 0.53 (<0.001) 0.82 (3.4e-13) 
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Table 3.  Significant indicator genera (29 of 95 total) sorted by descending indicator value for 

water quality types (abbreviations as in Table 1) determined from dominant water chemistry 

profile.  P-values are estimated from 1000 randomizations of the data (sum of all probabilities = 

27.7).  Relative frequency and abundance is for genera for their indictor group.   

 

Taxa  Indicator 

group 

Indictor 

value 

p-value Relative 

frequency 

Relative 

abundance 

Epeorus R 0.71 0.001 1.00 0.71 

Leuctra S 0.67 0.001 1.00 0.67 

Dolophilodes R 0.65 0.001 0.73 0.89 

Simulium S 0.60 0.009 0.83 0.72 

Antocha R 0.59 0.003 0.73 0.81 

Accentrella R 0.58 0.001 0.82 0.71 

Cinygmula R 0.58 0.002 0.91 0.64 

Optioservus R 0.58 0.003 0.82 0.71 

Ephemerella R 0.57 0.004 1.00 0.57 

Isoperla R 0.54 0.01 0.82 0.66 

Cheumatopsyche R 0.49 0.007 0.73 0.68 

Drunella R 0.49 0.002 0.82 0.60 

Hydropsyche R 0.48 0.02 0.82 0.59 

Blepharicera R 0.47 0.002 0.55 0.87 

Acroneuria R 0.46 0.01 0.73 0.63 

Malirekus R 0.44 0.004 0.64 0.69 
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Rhyacophilla R 0.44 0.03 1.00 0.44 

Eurylophella S 0.43 0.01 0.50 0.85 

Oulimnius R 0.38 0.04 0.73 0.52 

Serratella R 0.37 0.01 0.45 0.82 

Neophylax R 0.36 0.03 0.55 0.66 

Ectopria H 0.35 0.04 0.38 0.94 

Stenonema R 0.35 0.05 0.55 0.64 

Hydroisotoma S 0.33 0.01 0.33 1.00 

Podura S 0.33 0.02 0.33 1.00 

Peltoperla S 0.32 0.04 0.50 0.65 

Suwallia R 0.32 0.03 0.36 0.88 

Zealeuctra S 0.31 0.04 0.33 0.93 

Microcylloepus H 0.25 0.04 0.25 1.00 



 

FIGURE LEGENDS 

Figure 1.  Sample locations within the Cheat River basin, WV (inset), USA.   

Figure 2.  Cluster dendrogram from agglomerative nesting cluster analysis on Bray-Curtis 

distance coefficient using flexible beta (beta = -0.5) linkage method.  Macroinvertebrate 

communities are labeled by dominant water quality type of the sites from which they were 

sampled (A = acid mine drainage; T = transitional; S = soft; H = hard; R = reference). 

Figure 3.  Non-metric multidimensional scaling ordination of benthic macroinvertebrate samples 

(Bray-Curtis distance coefficient) in two dimensions.  Stress = 16.0 in three dimensional 

solution.  Two convergent solutions were found after 15 runs.  The plot is rotated so axis one 

contains the largest variance in site scores, and is scaled in half-change units so change in one 

unit halves community similarity.  Sites are labeled as in Figure 2. 

Figure 4.  Mean similarity dendrogram for benthic macroinvertebrate communities grouped by 

dominant water quality type.  The vertical line is plotted at the overall between-group mean 

similarity and the horizontal branches extend out to the within-group mean similarity for that 

group.  The name of each dominant water quality type is given at the end of each horizontal 

branch.  The number in parenthesis is number of sites classifying into the group.  AMD has 9 

sites, because 2 sites with no individuals were deleted from the analysis.  The overall within-

group mean similarity (Wbar) is also plotted, and it can be interpreted as the center of mass of 

the plot.  

Figure 5.  Maximally packed matrix from Nestedness Calculator.  The x-axis is taxa and the y-

axis is sites labeled by dominant water quality type.  Dark blocks represent taxa presences, 

whereas clear blocks represent taxa absences.  Dark blocks to the right of the line are unexpected 
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presences, and clear blocks left of the curved line are unexpected absences assuming a nested 

pattern. 

Figure 6.  The NMDS solution from Figure 3 fitted to vectors (Linear) and smooth surfaces 

(Surf) for water chemistry parameter studied (excluding Ba, Cl, and Na).  The R-sq (R2) value 

for each model is at the top.   
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Chapter 4:  Interactive Effects of Multiple Stressors and  
Restoration Priorities in a Mined Appalachian Watershed 

 
Abstract.  We surveyed benthic macroinvertebrate communities, water chemistry, and thermal 

regime in the Cheat River, WV, USA in an attempt to quantify the interactive effects of multiple 

stressors on ecological condition and identify priorities for restoration in this mined Appalachian 

watershed.  We used a novel approach, which combined use of the West Virginia Stream 

Condition Index (WVSCI) to quantify ecological losses and community similarity analysis to 

assign specific levels of ecological loss to AMD, thermal effluent, and their interaction.  Finally, 

we developed an ecological currency to quantify the relative benefits of a restoration program 

that focused either on AMD remediation or heat reduction and to identify spatially explicit 

restoration priorities.  Variation in ecological condition was strongly correlated to variation in 

water quality when AMD and heat stress occurred in isolation.  Acute inputs of AMD or heat 

caused predictable reductions in condition followed by rapid recovery downstream.  However, 

benthic communities failed to recover from combined inputs of heat and AMD even when these 

stressors occurred at relatively low levels.  Over the course of an entire year, AMD alone was 

over 2 times more responsible than heat alone for ecological loss.  Consequently, AMD is the 

dominant factor limiting ecological condition and should be the primary target for restoration.  

Nevertheless, an AMD x heat interaction also was responsible for extensive ecological loss in 

lower reaches of the river.  Consequently, full restoration of the lower Cheat River mainstem will 

require an approach that integrates AMD remediation with effective management of thermal 

effluent.  Our results provide some of the first field evidence of the interactive effects of multiple 

stressors on biological communities in a mined watershed.  This approach may be valuable for 

quantifying impacts from multiple interacting stressors and for prioritizing restoration efforts in 

other mined watersheds. 
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Introduction 

 Benthic macroinvertebrate communities have been used as indicators of anthropogenic 

stress in stream ecosystems for over a century (Williams and Feltmate 1992), and aquatic 

biologists still regard the benthos as one of the best indicators of local stream health (Resh et al. 

1996, Rosenberg and Resh 1996).  In the United States (US), focus has been on the use of 

multimetric indices, whereas in Europe and Australia it has been on multivariate approaches 

where observed to expected taxa ratios are considered informative measures of biological 

condition (Barbour et al. 1999, Hawkins et al. 2000, Sloane and Norris 2003).  

Field studies examining benthic community response to multiple interacting stressors, 

however, are rare.  This is surprising considering that multiple stressors are probably more 

common in the environment than individual pollutants (Folt et al. 1999, Culp et al. 2000a).  The 

US Clean Water Act, in part, mandates that water resources support healthy aquatic 

communities, and bioassessment indices are essential to the process of identifying streams not 

meeting this mandate.  But, multimetric indices of biotic integrity (IBI) and presumably other 

multivariate-derived indices, which simply assess the ecological integrity of aquatic ecosystems, 

cannot necessarily diagnose sources of ecological impairment or partition the quantity of 

impairment between multiple interacting stressors.   

Community similarity analysis, on the other hand, is a technique that potentially can be 

used to diagnose sources of impairment from multiple stressors.  For example, disturbed sites 

should become more dissimilar to undisturbed sites as stress increases (Rosenberg and Resh 

1996).  Therefore, the average deviation of community similarity from reference could also 

provide a measure of impairment.  In addition, impaired sites with similar IBI scores may have 

very different community compositions resulting from different stressors.  Consequently, 
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comparing community similarity among sites with known stressors can provide stressor specific 

measures of impact on community composition and be used to diagnose sources of stress in 

cases where stressors are unknown.  Finally, community similarity analysis could aid in 

partitioning total biological impairment among multiple, interacting stressors.  

On the Cheat River mainstem in north-central West Virginia, acid mine drainage (AMD) 

and thermal pollution from a coal-fired power plant act separately and in concert at various river 

segments to degrade biological integrity.  Therefore, the Cheat River represents an ideal 

opportunity to study the combined effects of these interacting stressors on benthic 

macroinvertebrate community composition.  Furthermore, it provides an opportunity to apply 

community similarity analysis with a focus on distinguishing and assigning specific levels of 

ecological impairment to AMD versus heat where they interact.  Consequently, our goal for this 

field study was to quantify the interactive effects of multiple stressors on ecological condition, 

and to use this information to prioritize restoration efforts.  Specifically, our objectives were to: 

1) quantify spatial and seasonal variation in ecological condition in response to AMD and 

thermal effluent inputs along the Cheat River mainstem; 2) use similarity analysis to identify the 

relative effect of specific stressors on community composition and to assign levels of ecological 

impairment to each stressor separately and to their interaction where they co-occur; and 3) 

develop an ecological currency to quantify the potential ecological benefits of a Cheat River 

restoration program focused on AMD remediation and heat reduction. 

 

Methods 

Study Area 
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The Cheat River flows north through north-central WV for 252 km and drains an area of 

approximately 3,683 km2 (Williams et al. 1999).  The mainstem can be divided into four distinct 

regions on the basis of known impairments to the river (Fig. 1).  In the upper basin (upstream of 

Pringle Run), the Cheat River is relatively unimpaired and receives no known pollutant sources 

(Fig. 1).  In Region 2 (Pringle Run downstream to the Albright Power Station), a series of small 

to moderate sized AMD-impacted streams enter on river left (perspective facing downstream).  

Lick Run is the most significant AMD source to the mainstem in Region 2 and represents nearly 

25% of the total AMD load to the lower Cheat River (Williams et al. 1999).  Region 3 is a short 

(3-km) region immediately downstream of the Albright Power Station (APS), but upstream of 

two additional AMD inputs (Greens Run on river left and Muddy Creek on river right) (Fig. 1).  

Thermal effluent is the dominant stressor in this region, as the effects of AMD inputs from Lick 

Run upstream are no longer detectable by the time the river reaches the power station.  Finally, 

Region 4 is a 19-km segment extending from the Muddy Creek confluence downstream to Big 

Sandy Creek (Fig. 1).  Impacts from both thermal effluent and AMD are detectable in this 

segment.    

We selected 14 sites along the river in relation to the type and level of pollutant entering 

the river (Fig. 1, Table 1).  First, we chose two reference sites in Region 1 (Fig. 1, Table 1).  

Sites 3-5 were located in Region 2 on the right side of the river, opposite AMD inputs.  Water 

quality and ecological condition at these sites were uncertain at the beginning of this study, and 

consequently, they were not considered reference sites.  Sites 6-7 were located on the left side of 

the river within Region 2.  These sites were positioned at different distances from Lick Run, 

beginning with site 6 immediately below the Lick Run confluence.  Site 8, positioned near the 

Elsey Run confluence, was 8 km below Lick Run (Fig. 1, Table 1).  Sites 9 and 10 were located 
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within Region 3 at varying distances from the power plant (Fig. 1, Table 1).  Sites 11-14 were 

located in Region 4 at varying distances from Greens Run and Muddy Creek, two streams 

severely impacted by AMD (Fig. 1, Table 1).   

 

Field Sampling 

Water Chemistry and Temperature – We sampled water quality at 12 of the 14 sites in 

September 2002 and April 2003.  Sites 12 and 13 were sampled for water quality and benthic 

macroinvertebrates in spring 2003 only.  At each site, we collected a 500-mL filtered water 

sample using Nalgene polysulfone filter apparatus with mixed cellulose ester membrane disc 

filters (0.45 μm pore size) for determination of  dissolved aluminum, cadmium, chromium, iron, 

manganese, nickel, and total hardness (mg/L) (Petty and Barker 2004).  Filtered samples were 

immediately acidified with 5 mL 1:1 nitric acid to prevent precipitation of metals.  We also 

collected a 1-L unfiltered water sample for determination of sulfates (mg/L), and alkalinity and 

acidity (mg/L CaCO3).  These samples were stored at 4°C until laboratory analysis.  All water 

samples were analyzed at Black Rocks Test Lab in Morgantown, WV, using procedures from the 

18th edition of Standard Methods for the Examination of Water and Wastewater (Clesceri et al. 

1992, Petty and Barker 2004).   At each site we also took instantaneous measures of pH, specific 

conductivity (μS/cm), dissolved oxygen (mg/L), and total dissolved solids (g/L) with a YSI 650 

unit with a 600XL sonde (Yellow Springs Instruments, Yellow Springs, OH).  In addition, we 

monitored river water temperature (°C) from May – October 2002 and 2003 with continuous 

temperature loggers (HOBO® Water Temp Pro and Optic® StowAway, Onset Computer 

Corporation, Bourne, MA) deployed at a site 2-km upstream of site 2 and at sites 3, 5, 9, 13, and 
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14.  Finally, average daily discharge data (cms) for the river was retrieved from a USGS gauging 

station (USGS 03069870) near site 2.     

Benthic Macroinvertebrates – We collected benthic macroinvertebrates from each site in 

fall 2002 and spring 2003.  We followed standardized procedures outlined by West Virginia 

Department of Environmental Protection’s Watershed Assessment Program and the US 

Environmental Protection Agency’s Rapid Bioassessment Protocols for wadeable streams 

(WVDEP 1996, Barbour et al. 1999, WVDEP 2003).  Sites 12 and 13 were sampled in spring 

2003 only.  A total of four targeted riffle samples (kick net dimensions 335 x 508 mm with 500 

μm mesh) was taken at each site.  Kick samples were combined for each site and were preserved 

with 95% ethanol and Rose Bengal solution. 

In the lab, macroinvertebrate samples were washed over a 2-mm sieve mounted on a 

0.25-mm sieve.  All individuals retained by the 2-mm sieve were removed from debris, 

identified, and stored in 95% ethanol.  Individuals retained by the 0.25-mm sieve were elutriated 

from the sediment and sub-sampled (1/8th of total) with a Folsom plankton splitter (Model 

Number 1831-F10, Wildco Supply Company, Buffalo, NY) for identification.  Sediment was 

visually inspected for remaining macroinvertebrates prior to sub-sampling.  Macroinvertebrates 

were identified to family level using Merritt & Cummins (1996), and were enumerated. 

 

Statistical Analyses 

Water Chemistry and Temperature – We analyzed water quality data for each site to 

identify stressor types and levels during our sampling period.  The seven-day moving average of 

the daily average temperature (7DMADA), mean daily temperature range, and maximum daily 

temperature were calculated from hourly temperature data.  Mean and standard error were 
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calculated for all other water chemistry parameters and river discharge.  Mean pH was calculated 

from the mean of the hydrogen ion concentration. 

Ecological Condition and Invertebrate Community Similarity – We used the West 

Virginia Stream Condition Index (WVSCI) to quantify ecological condition at each sampling site 

each season (Gerritsen et al. 2000).  WVSCI is a family-level benthic macroinvertebrate IBI, and 

ranges from 0-100 where scores <55, 55-69.9, 70-85, and >85 represent poor, marginal, good, 

and excellent stream health, respectively (Gerritsen et al. 2000).   

 Following guidelines of Hawkins & Norris (2000), we also used the Bray-Curtis index on 

benthic macroinvertebrate family abundance data to calculate a measure of community 

dissimilarity among sites for each season.  This index is robust to scale differences and is not 

influenced by conjoint absences (Clarke 1993, Su et al. 2004).  We used family level abundance 

data to be consistent with WVSCI based analyses.  Several studies have indicated that genus-

level data are no more useful than family-level data for quantifying anthropogenic impacts in 

streams (Bowman and Bailey 1997, Hewlett 2000, Waite et al. 2004).   

To interpret the dissimilarity matrices, we used each site in each season as a focal site in 

all possible site pair-wise similarity comparisons.  In addition, we used non-metric 

multidimensional scaling (NMDS) to further visualize differences among all sites within and 

between seasons.  NMDS is a non-parametric ordination technique that maps samples (sites) in 

k-dimensional space while minimizing stress in the plot (Clarke 1993, Lee 2004, Zamon and 

Welch 2005).  Sites that map close to each other in NMDS space are more similar to each other 

than sites that map further apart.  The dimensionality (k) of the NMDS model that best 

represented the data without continually increasing dimensions was determined by examining 

scree plots (stress vs. k).  Dimensionality was chosen where stress in the model was <10%.  
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Then, a scatter plot of the first two NMDS dimensions was constructed.  The meaning of these 

axes was determined with Spearman Rank correlations between NMDS scores and 

macroinvertebrate abundances and community metrics (e.g., family-level richness).  Correlations 

were considered statistically significant when p< 0.05.  Similarity analyses and NMDS were 

conducted with the R language and environment for statistical computing Version 1.8.1 (R 

Development Core Team 2003). 

Assigning Levels of Ecological Impairment to Each Stressor and Identifying Restoration 

Priorities – As an initial step, we divided the Cheat River mainstem into a series of 0.5-km 

longitudinal increments.  River surface area in hectares (ha) for each increment was determined 

using the Watershed Characterization and Modeling System version 2.8, an ArcView GIS 

interface developed by the Natural Resource Analysis Center at West Virginia University 

(NRAC 2001).  We then assigned each of our observed WVSCI scores to the most appropriate 

river segment and linearly interpolated between them to estimate WVSCI scores for segments 

bounded by observed scores.  We believe this approach was reasonable because ecological 

condition in the Cheat River basin is tightly associated with water chemistry attributes and 

increases as water chemistry improves with distance from sources of impairment (see Results).  

The average of WVSCI scores from reference sites in the upper basin was used to represent 

ecological condition in Region 1.  WVSCI scores for each increment were then standardized to 

1.0 by dividing by the average WVSCI in Region 1.  Each standardized score was then 

multiplied by river surface area of their respective river segment to obtain a measure of current 

ecological units (EUs) present in ha.  EUs represent ecological value in units of river surface area 

and can be viewed as the weighted functional surface area of the river (Petty and Thorne 2005).   
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We then calculated absolute and percent EUs lost from AMD and heat by determining the 

expected EUs for each river segment.  Expected EUs were calculated as the surface area of each 

river segment multiplied by 1.0, which represents the weight given to reference conditions in 

Region 1.  For river segments subjected to one stressor, we simply assigned all lost EUs to that 

stressor.  For example all EUs lost in Region 2 were assigned to AMD.  Where both AMD and 

heat impairment co-occurred (i.e., all segments in Region 4), we used similarity analysis to 

partition total EUs lost into those lost from AMD alone, from heat alone, and from their 

interaction.  We did this by comparing the minimum and maximum percent by which the 

confounded site was as similar to a site with a single known stressor.  The percent similarities of 

the total EUs lost were then assigned to minimum and maximum possible EU losses from the 

stressor in question.  Any remaining lost EUs that were not accounted for by either AMD or heat 

were considered confounded loss and were assigned to the interaction of AMD and heat.  

Therefore, we estimated the minimum and maximum EUs lost that could be attributed to AMD, 

heat, and AMD x heat interaction for each 0.5 km river increment.  We then summed present 

EUs and stressor specific EU losses across all increments within each region (i.e., regions 1-4).  

The calculations were derived separately for fall 2002 and spring 2003 and then averaged across 

seasons to obtain annualized estimates of ecological loss in Regions 1-4 of the Cheat River.   

Finally, we estimated the minimum and maximum levels of EUs that could be recovered 

from each river segment through AMD remediation and heat reduction.  Estimates of segment 

specific, recoverable EUs were made for each season separately and over an entire year.  In 

segments with only one stressor present, EUs recoverable from a specific remediation action 

(e.g., AMD reduction) were simply those lost due to the particular stressor being removed.  In 

segments where stressors co-occurred, recoverable EUs were calculated by adding losses 
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incurred directly by the stressor to be mitigated to a fraction of the loss from AMD x heat 

interaction.  The fractional loss from stressor interaction was calculated using information from 

spring 2003, when heat impacts were not present, and consequently all observed ecological 

losses were from AMD only (see Results).  For example, loss from heat in fall was determined 

from the decrease in EUs lost in spring.  This heat effect was subtracted from the loss from AMD 

x heat interaction to determine how much AMD was responsible for interaction effects.  That 

value was then added to loss from AMD alone to estimate total recoverable EUs from AMD 

treatment.  The results of these calculations were subsequently used to identify which regions of 

the river should be targeted for remediation and which stressor should be targeted first to 

maximize recovery in the lower Cheat River mainstem. 

 

Results 

Water Quality 

 We observed significant spatial and seasonal variability in water chemistry in response to 

AMD inputs from tributaries to the Cheat River.  Water chemistry was very good at reference 

sites in Region 1 and at sites 3-5 in Region 2 (sites opposite AMD inputs) (Table 2).  Mean pH 

was circum-neutral at these sites and alkalinity tended to be highest.  Conductivity and sulfates 

were usually lowest.  Acidity, Al, Fe, and Mn also tended to be lowest.  These findings indicate 

that upper reaches of the Cheat River possess very good water quality and that this continues 

downstream into Region 2 on the side of the river away from major AMD inputs. 

 Water quality was dramatically reduced immediately downstream of Lick Run (site 6 of 

Region 2) and Muddy Creek (site 11 of Region 4), the two largest AMD inputs to the Cheat 

River (Table 2).  For example, mean pH dropped from circum-neutral upstream of Lick Run to a 
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pH of 3 immediately downstream, and a similar pattern was observed above and below Muddy 

Creek.  Likewise, we observed dramatic increases in conductivity, sulfates, acidity, and 

dissolved metals associated with major AMD inputs to the mainstem (Table 2).  Interestingly, 

dissolved chemistry at sites downstream of Lick Run and Muddy Creek improved rapidly with 

increasing distance from the inputs.  For example, pH increased steadily with distance below 

Lick Run (Table 2).   

We also observed clear evidence of power plant effects on water temperatures in summer, 

but not spring.  An extreme spike in average and maximum late spring to early fall water 

temperature was observed at site 9 immediately below the power plant (Fig. 2).  Like AMD 

chemistry, water temperature effects tended to moderate with distance.  Nevertheless, slightly 

elevated summer water temperatures were observed throughout Regions 3 and 4 all the way 

downstream to Big Sandy Creek (Fig. 2a).  Although summer 2002 was an extremely dry period 

with flows nearly approaching Q7, 10 (1.3 cms) in September, river water temperatures were not 

warmer compared to summer 2003 when flows were more moderate (Fig. 2b).  Despite severe 

effects of the power plant on summer water temperatures, these effects were not observed during 

late fall and early spring when maximum river temperatures approximated those upstream (Fig. 

2b).  Reduced effects during this time period probably were the result of reduced power 

generation, increased river flows (Fig. 2b), and lower overall river temperatures.   

 

Ecological Condition Based on WVSCI 

Ecological condition in the Cheat River varied predictably in response to both AMD and 

heat inputs (Fig. 3).  In fall and spring, WVSCI was exceptionally high in Region 1 and at sites 

3-5 on river right opposite AMD inputs in Region 2.  Good to excellent ecological conditions 
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were expected in these areas given the excellent water quality observed.  In contrast, WVSCI at 

sites 6-8 on river left showed an immediate reduction in response to AMD inputs.  Immediately 

below Lick Run (site 6), WVSCI dropped from excellent condition to a score of 65 in fall and a 

score of 25 in spring.  Like dissolved water chemistry, there was a tendency for ecological 

condition in sites 7-8 to recover to near reference conditions.  For example, WVSCI indicated 

good to excellent conditions at site 8 in both fall and spring, suggesting that the river had fully 

recovered from AMD inputs before reaching the power plant.   

The effect of thermal effluent on ecological condition in Region 3 and the strength of 

AMD x heat interaction in Region 4 were readily apparent in fall 2002 (Fig. 3).  At site 9, below 

the power plant, WVSCI declined to 28 in fall 2002.  Three km downstream, at site 10, 

ecological condition improved to 55, suggesting moderate recovery from heat effluent over a 

relatively short distance.  Presumably, this improvement in ecological condition with distance 

from the APS would continue downstream, except for AMD inputs from Muddy Creek at site 11.  

In fall 2002, WVSCI at site 11 dropped to extremely poor conditions and remained poor all the 

way downstream to site 14, a distance of 16 km.  The failure of ecological condition to recover in 

Region 4 in fall is interesting given that water chemistry and temperatures improve dramatically 

with distance from Muddy Creek and the power plant.  

Consistent with observations on water temperature, we failed to detect an effect of the 

power plant on WVSCI in spring 2003.  Despite poor conditions in fall, spring conditions were 

good to excellent in Region 3 (sites 9 and 10) below the power plant.  Nevertheless, AMD inputs 

from Muddy Creek produced poor conditions at site 11 in spring.  However, WVSCI rapidly 

improved to good at sites 12-14, suggesting a relatively quick recovery from AMD inputs alone.  

In contrast, little or no recovery was observed downstream of site 11 in fall when both heat and 
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AMD related stressors were present.  These findings suggest that much of the impacts to benthic 

communities in Region 4 in fall are the result of interactive effects between AMD and heat, 

rather than a direct effect from a single dominant stressor.    

 

Macroinvertebrate Community Similarity 

Results from similarity analysis where reference site 1 was used as a focus for 

comparison were generally consistent with WVSCI scores (Fig. 4).  The dominant result was a 

reduction in community similarity to reference conditions immediately downstream of major 

stressor inputs:  at site 6 below Lick Run, at site 9 below the APS in fall, and at site 11 below 

Muddy Creek (Fig. 4a, b).  No effect of APS on community similarity at site 9 was observed in 

spring, further supporting WVSCI based analyses (Fig. 4a, b).  Finally, we also observed a 

general recovery of community composition in the Cheat River toward reference conditions with 

increasing distance from AMD inputs at Lick Run (i.e. from sites 6 to 8 in Region 2).  A 

moderate recovery in community similarity at site 14 was also observed in spring but not in fall.   

Additional comparisons of community similarity using sites 8 and 14 as foci provide 

clear evidence of the strength of the AMD x heat interaction in fall but not spring (Fig. 4c – f).  

First, site 8 in fall was moderately similar only to sites 1 – 5.  Site 8 was extremely dissimilar to 

site 14 at the base of the study area in fall (Fig. 4c).  Second, in fall, site 14 was highly dissimilar 

from all sites upstream (Fig. 4e).  Third, this pattern abruptly changed in spring; site 8 was 

moderately similar to sites 1 – 5, 9, 10 and highly similar to site 14 (Fig. 4d).  Fourth, site 14 in 

spring was moderately similar to sites 4, 5, 9, and 10 and highly similar to site 8 (Fig. 4f).   

NMDS ordination also provided evidence of community change in response to AMD and 

heat (Fig. 5).  Axis 1 distinguished between diverse, ecologically complex sites and, degraded 
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sites dominated by tolerant taxa.  Axis 2 separated sites by relative abundance of Ephemeroptera 

vs. Trichoptera taxa.  In fall and spring, sites 1 – 5 tended to group together.  AMD inputs at sites 

6 and 11 displaced community similarity from this group.  With increasing distance from AMD 

inputs, community similarity moved back towards reference, except in fall when the trajectory 

from site 11 to 14 failed to move this direction.  The response of community change to heat 

inputs in fall was similar to that of AMD, but with more pronounced displacement at site 9.  

Consistent with WVSCI and similarity analyses, NMDS ordination detected no thermal effect on 

invertebrate similarities in spring.  Combined, these findings suggest that much degradation of 

ecological condition in Region 4 in fall is the result of an AMD x heat interaction, whereas in 

spring impairment is from AMD alone. 

 

Assigning Levels of Ecological Impairment to Each Stressor and Identifying Restoration 

Priorities 

We delineated 73 0.5-km segments along the Cheat River mainstem from site 1 to 14.  

This represented a total surface area of 544 ha along a 62.7-km river course (Table 3).  The total 

area was divided into 4 regions based on stressor types (see Methods): 1) Reference, 2) AMD 

only, 3) Heat only, and 4) AMD x Heat (Fig. 1). 

In fall 2002, a total of 438 ha of EUs were present in the river, and 106 ha or 19% of the 

total expected EUs were lost as a result of AMD and heat related stress (Table 3).  Loss 

accumulated at a greater rate from Region 3 through 4 than in Region 2 (Fig. 6).  The greatest 

region-specific loss occurred in Region 4 (62%).  AMD x heat interaction accounted for most of 

this loss (47%).  Of the total ecological loss in the river in fall, 17% occurred in Region 3 

downstream of APS.  In addition, of the 106 ha of EUs lost in fall, approximately 18% could be 
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attributed directly to AMD, 29% was attributed to heat, and the remaining 53% was attributed to 

the interactive effects of AMD and heat (Table 3).   

In spring 2003, we observed a lower rate of EU loss (Table 3; Fig. 6).  A total of 493 ha 

of EUs were present in spring, which represented a total ecological loss of only 10% river-wide.  

Much of the improvements could be attributed to a lack of direct heat effect downstream of APS.  

In spring, we observed only minimal loss in Region 3 (Table 3).  In contrast, AMD was a 

significantly more important stressor in spring than fall.  In the AMD only segment, loss 

accumulated at a greater rate in spring than in fall (Fig. 6), and total EU losses increased from 14 

to 21 (Table 3).  In addition, total EU loss attributable to AMD river-wide increased from 19 

EUs (18%) in fall to 49 EUs (94%) in spring (Table 3).   

Annualized over the entire year, a total of 79 EUs were lost from the Cheat River, 

representing a 15% loss of EUs expected in the absence of heat or AMD related stress.  Of this 

total loss, 23% occurred in Region 2 as a direct result of AMD inputs (Table 4).  In the area 

below the APS (i.e., Regions 3 and 4), 25% of the total EU loss could be attributed directly to 

heat, 27% could be attributed directly to AMD, and the remaining 47% was attributed to an 

AMD x heat interaction.  Over the entire river-year, heat accounted for 20 % of the loss, AMD 

accounted for 43%, and the remaining 37% was attributed to their interaction (Table 3). 

 Finally, over the annualized period, Region 4 had significantly greater loss of EUs than 

Regions 2 – 3, and we estimated that Region 4 of the Cheat River would recover more lost EUs 

from stressor mitigation than any other region of the river (Table 4).  In Region 4, reduction of 

heat would return more EUs than AMD treatment.  Eliminating heat in Regions 3 – 4 would 

recover approximately 41% of the total EUs lost river-wide.  Conversely, AMD treatment river-

wide would return slightly more EUs lost (49%) than heat reduction over the annual period. 
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Discussion 

We conclude that much of the ecological loss in Region 4 in fall was from interactive 

effect of both AMD and heat rather than from either stressor acting as the dominant limiting 

factor.  In fall, site 8 (a recovering AMD site) was very dissimilar to site 14 (a site recovering 

from both AMD and heat inputs).  In fact, site 14 was very dissimilar to all other sites.  In 

addition, NMDS analysis indicated that community change from site 11 (the AMD site 

immediately below Muddy Creek) to site 14 in fall was on a trajectory away from biological 

characteristics associated with recovery from AMD only or heat only.  This pattern was quite 

different in spring when thermal inputs were absent.  In spring, ecological condition at site 14 

behaved similarly to site 8 by recovering to near reference conditions.  Consequently, these 

patterns indicate that the combination of diffuse levels of AMD and slightly elevated 

temperatures in Region 4 of fall may create poor local conditions for invertebrate survival for a 

distance of nearly 16 km despite general improvements in water chemistry and temperature with 

distance from heat and AMD inputs. 

In contrast, when each stressor occurred in isolation, impacts to benthic communities 

were locally severe immediately below AMD and heat inputs, but conditions rapidly improved 

over relatively short distances (3 – 6 km).  For example, water quality and ecological condition 

were extremely poor immediately downstream of Lick Run.  Similarly, conditions immediately 

below the APS were extremely poor in fall 2002.  However, chemical and biological conditions 

downstream recovered rapidly in areas impacted by AMD only or heat only.   

   Overall, our results are consistent with numerous studies documenting negative impacts 

of mining-related discharges (e.g., Cain et al. 2000, Soucek et al. 2001a, DeNicola and Stapleton 

2002) and thermal pollution (e.g., Poff and Matthews 1986, Lauritsen and Starkel 1989, 

 119



 

Wellborn and Robinson 1996) on water quality and aquatic organisms.  The dominant effect of 

these stressors is to reduce invertebrate numbers, diversity, and richness to a few tolerant taxa 

(Cherry et al. 2001, DeNicola and Stapleton 2002, Schmidt et al. 2002).  For example, 

Malmqvist & Hoffsten (1999), Clements et al. (2000), Cherry et al. (2001), and Schmidt et al. 

(2002) all found reduced macroinvertebrate abundance and EPT richness at sites with AMD.  

Cole et al. (2001) and Clements (2004) also found greater drift in macroinvertebrates exposed to 

AMD and heavy metals, respectively.  Similarly, Poff & Matthews (1986), Lauritsen & Starkel 

(1989), and Wellborn & Robinson (1996) found that thermal effluent from power plants reduced 

invertebrate numbers and diversity.   

Our results also are consistent with studies reporting rapid improvements in water quality 

and ecological condition over time or distance from stressor inputs (e.g., Poff and Matthews 

1986, Hoiland et al. 1994, Wellborn and Robinson 1996, Adams and Greeley 2000).  For 

example, Sloane & Norris (2003) found that observed to expected ratios of macroinvertebrate 

occurrence increased with distance downstream of  pollution from metal mines.  Sola et al. 

(2004) found numbers of macroinvertebrate families increased 6 km downstream of a large spill 

of mine waste, but richness was still lower than upstream of the spill.  Similarly in a heat-

stressed system, Lauritsen & Starkel (1989) found that macroinvertebrate taxa richness, density, 

and biomass recovered within about a month after shutdown of a nuclear power plant eliminated 

thermal effluent. 

To our knowledge, however, our study is one of the first to document the interactive 

effects of AMD and heat on benthic macroinvertebrate communities.  In fact, field studies 

examining interactive effects of multiple stressors are rare in general.  Most studies examining 

multiple stressors employ experimental designs containing manipulated levels of stressors with 
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individual organisms or transplanted stream assemblages.  For example, Clements (2004) 

demonstrated in a very powerful experimental study that synergistic effects of Zn, Cd, and Cu 

decreased invertebrate abundance and increased invertebrate drift compared to Zn alone.  Culp et 

al. (2000b) showed that the phosphorus content of chemically complex pulp mill effluent 

increased invertebrate biomass and abundance by stimulating food web productivity.  Lenihan et 

al. (2003) found that marine benthic invertebrates responded differently to organic enrichment 

and toxins in sediments compared to when each stressor was alone.   

Vinebrook’s et al. (2004) stress-induced community sensitivity model could explain the 

interactive impacts of multiple stressors on aquatic organisms in the Cheat River.  According to 

this model, when species’ tolerances to two different stressors are negatively correlated, the two 

stressors eliminate more species compared to when species’ tolerances are independent or 

positively correlated.  This occurs because species persisting in the presence of the first stressor 

have higher sensitivity to the second (Vinebrooke et al. 2004).  We are unaware of any field 

study that has examined the potential for wide-spread impact to aquatic ecosystems from diffuse 

levels of multiple stressors that support Vinbrooke et al. (2004).  The extensive impairment we 

observed from AMD and heat suggests that diffuse levels of these stressors may be more 

important than severe local impacts from AMD or heat alone, indicating a negative correlation 

between heat and AMD tolerance by aquatic organisms.  Another possibility is that abnormally 

high water temperatures may increase the likelihood that harmful chemical conditions like 

dissolved metals will block important cellular receptor sites of poikilothermic organisms.  This 

possibility could be especially detrimental to organisms already experiencing increased 

metabolic rates due to elevated temperatures.  Regardless of these scenarios, the fact that 

anthropogenic stressors such as heat and toxins (Folt et al. 1999), heat and salinity (Porter et al. 
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1999), acid and nutrients (Soucek et al. 2001b), and organic and inorganic toxins (Lenihan et al. 

2003) often co-occur, we suggest that additional field studies in rivers with multiple stressors are 

needed. 

Because of the short time scale of our study, it is uncertain whether our results accurately 

represent long-term trends in water temperature, chemistry, and ecological conditions in the 

Cheat River.   Year-to-year variability in physical, chemical, and biological characteristics is a 

common feature of riverine ecosystems (Poff and Ward 1989, Grossman et al. 1998).  

Consequently, it is possible that patterns we observed from late summer 2002 through spring 

2003 are not indicative of conditions of the Cheat River in most years.  Nevertheless, we know 

from other multi-year studies that water temperature, chemistry, and ecological conditions we 

observed in this study were well within the normal range of conditions for this watershed 

(WVDEP 1996, Martin 2004, Petty and Barker 2004).  Previous studies indicate that benthic 

macroinvertebrate communities are relatively stable, despite year-to-year variability in physico-

chemical conditions (Bopp 2002, McClurg 2004).  One reason for this may be that benthic 

communities are established by minimum conditions (e.g., maximum temperatures, maximum 

metal concentrations), which tend to be relatively constant from year-to-year, rather than the 

overall thermal or chemical regime, which tends to be highly variable (Petty and Barker 2004).  

Regardless, long-term monitoring of temperature, water chemistry, and ecological conditions 

will be necessary to understand the long-term dynamics and interactions of heat, AMD, and 

biological communities in this system. 

A second shortcoming of our study was that we cannot guarantee the absence of an AMD 

effect in Region 3, located immediately downstream of APS.  Ideally, we would have had an 

opportunity to sample a reach impacted by heat only that was upstream of any AMD inputs.  
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However, APS is the only power plant on the river, and it happens to occur below the first inputs 

of AMD.  This problem with study design is common in field impact assessments, where it is 

difficult to control for all possible stressors and their interactions over time (Stewart-Oaten et al. 

1986, Stewart-Oaten et al. 1992, Osenberg et al. 1994).  Often, experimental studies are the only 

way to control for unknown or potentially confounding impacts (Clements 2004).  Nevertheless, 

an important objective of our study was to demonstrate independent and interactive effects of 

two stressors under field, rather than experimental, conditions.  In addition, several findings 

suggest that AMD-related stress was not present in Region 3 of the Cheat River in fall 2002.  

First, all water chemistry variables in Region 3 were indistinguishable from those in Region 1 

above AMD inputs.  In fact, alkalinity in Region 3 was slightly higher than in the upstream 

reference region.  Second, invertebrate community composition at Site 8 immediately upstream 

of the APS recovered to near-reference conditions in both spring and fall, further suggesting that 

the river had fully recovered from AMD inputs by the time it reached APS.  Finally, Region 3 

possessed very good ecological conditions in Spring 2003, a period of time when heat was not 

present, but presumably AMD would have been.  If AMD were affecting Region 3, we would 

have expected a significant reduction in ecological condition in Region 3 in both fall and spring.  

Nevertheless, controlled experimental studies (sensu Clements 2004) would greatly improve our 

understanding of the direct and interactive effects of heat and AMD on ecological conditions in 

the Cheat River. 

Also, we cannot guarantee that habitat conditions along the Cheat River continuum did 

not significantly influence community structure.  In general, rivers are dynamic systems and, by 

nature, habitat patchiness creates a heterogeneity to which organisms should be expected to 

respond (Heino 2005a).  Tributary sources of sediment, for example, punctuate gradual changes 
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in sediment character along river continua, which in turn could cause abrupt shifts in invertebrate 

community structure (Rice et al. 2001).  However, studies examining the influence of habitat on 

macroinvertebrates are equivocal (see Vinson and Hawkins 1998).  For example, Heino et al. 

(2003a) and Heino (2005a) found that water chemistry variables most often explained the most 

variation in community structure and function, respectively, in unimpaired headwater streams in 

Finland.  In contrast, local physical variables explained slightly more variation in 

macroinvertebrates than local chemistry in Swedish streams (Sandin and Johnson 2004).  In our 

study area, benthic macroinvertebrates are highly related to variation in water quality, which 

most likely overwhelms minor changes in physical conditions, along the river.  Consequently, 

water chemistry (AMD inputs), temperature (thermal effluent), and their interaction probably are 

the dominant features controlling benthic macroinvertebrates at the segment scale of this mining-

impacted river. 

Macroinvertebrate community indices including multimetric IBIs are informative 

measures of local stream condition (Barbour et al. 1999), and many of the above cited studies 

have shown their predictable response to stressors.   Similarity analysis also is a convenient 

descriptor of community similarity among samples and it is commonly used in ecological 

studies.  Within the last several years, the implementation of NMDS ordination also has been 

used to examine community response to disturbance from diverse sources such as grazing (Reed 

2003), wildfires (Lee 2004), AMD (Hamsher et al. 2004), and timber harvesting (Kreutzweiser et 

al. 2005).  For example, Thomson et al. (2005) found that macroinvertebrate composition 

upstream versus downstream of a small dam was similar after dam removal.  McRae et al. (1998) 

showed that macroinvertebrate communities were different between low versus high salinity 

streams in Florida.   
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To our knowledge, however, no study has combined the use of IBIs and similarity 

analysis.  With this combined approach we found that WVSCI score and percent similarity of 

sites in Region 2 – 4 to reference sites displayed the same general pattern of response to AMD 

and heat stressors.  NMDS provided a visual representation of the similarity between sites in 

both seasons that was consistent with WVSCI response to these stressors.  Consequently, 

similarity analysis may be useful as a measure of local stress in mining impacted watersheds.  

However, similarity analysis may fail to correctly assess the degree of biological health of sites 

subjected to isolation by cumulative upstream impacts, because the quality of recovery (i.e., the 

similarity of taxa at recovering sites relative to that at reference sites) may not increase in the 

same manor as the quantity of recovery indicated by multimetric IBIs.  On the other hand, 

similarity analysis may detect poor regional conditions better than an IBI for the same reason. 

We also developed an ecological currency and used our combined approach to diagnose 

stressors and assign biological impairment to specific stressors in areas where they interacted.  In 

addition, we were able to compare benefits of eliminating AMD versus heat.  Our combined 

analytical approach resulted in several important conclusions with implications for restoring the 

Cheat River watershed.  First, AMD continues to be the dominant factor limiting ecological 

conditions in the river.  AMD alone was approximately two times more responsible for EU loss 

than heat alone.  Furthermore, AMD is a significant stressor throughout the entire year, whereas 

heat-related stress is seasonal.  Consequently, any watershed scale restoration program must 

target acid load reductions.  Second, the greatest rate of EU loss occurred in Region 4 in fall.  

This region is where heat and AMD interact to produce extensive ecological impairment.  

Consequently, AMD remediation actions should be designed to reduce or completely eliminate 

acid loads to this area.  Third, because of strong interactive effects of AMD and heat, a 
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restoration program that focuses only on AMD will be far less successful than one that integrates 

AMD remediation with effective management of thermal effluent.  Although AMD reclamation 

in lieu of heat reduction would likely produce broad benefits to the river, it is unlikely that full 

ecological potential of Region 4 can be reached without addressing heat impacts as well. 
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Tables and Figures 

Tables 

Table 1.  Sample sites and locations within major regions defined by stressor type in the Cheat 
River, WV.  Region 2 was the AMD region.  Sites in Region 2 containing no dominant stressor 
were on the side of the river opposite the tributary source of AMD.  Upstream distance to the 
source of the dominant stressor is also listed.  DS = Downstream; RR = River Right; RL = River 
Left; A = AMD; H = heat; APS = Albright Power Station. 
 

Site  
No. Site Description River 

Kilometer Region Dominant 
Stressor 

Distance to 
AMD Source 

(km) 

Distance to 
Heat Source 

(km) 
1 Seven Islands 93.7 1 None - - 

2 Manheim 69.6 1 None - - 

3 DS Pringle Run 59.9 2 None - - 

4 DS Lick Run 59.8 (RR) 2 None - - 

5 Rt. 7 Bridge 53.9 (RR) 2 None - - 

6 DS Lick Run 59.8 (RL) 2 A 0 - 

7 Rt. 7 Bridge 53.9 (RL) 2 A 6 - 

8 DS Elsey Run 51.4 2 A 8 - 

9 DS APS 49.8 3 H - 0.5 

10 Decision Rapids 46.8 (RL) 3 H - 3 

11 Decision Rapids 46.8 (RR) 4 A + H 0 3 

12 Big Nasty Rapids 43.0 4 A + H 3 6 

13 Coliseum Rapids 39.8 4 A + H 7 10 

14 Jenkinsburg 31.0 4 A + H 16 19 
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Table 2.  Mean and standard error of water chemistry parameters measured over the study period at sampling sites.  Site No. as in 
Table 1.  NA = Not Available. 
 

 Mean Water Chemistry Parameters (Standard Error) 

Site 
No. pH Conductivity 

(μS/cm) 
Alkalinity 

(mg/L CaCO3) 
Acidity 

(mg/L CaCO3) 
Sulfate 
(mg/L) 

Al  
(mg/L) 

Fe  
(mg/L) 

Mn 
(mg/L) 

1 7.0 (7.8) 96 (15) 20.4 (4.0) 10.0 (2.5) 15.7 (2.1) 0.19 (0.07) 0.26 (0.20) 0.04 (0.02)

2 7.1 (7.6) 92 (13) 21.8 (4.7) 5.0 (2.3) 18.6 (2.7) 0.20 (0.06) 0.07 (0.02) 0.04 (0.02)

3 7.0 (7.2) 97 (14) 20.3 (5.0) 7.0 (3.9) 15.5 (1.7) 0.17 (0.05) 0.16 (0.08) 0.03 (0.01)

4 NA NA NA NA NA NA NA NA 

5 6.9 (7.3) 129 (21) 17.6 (2.6) 26.3 (8.7) 40.0 (10.0) 0.22 (0.07) 0.26 (0.18) 0.09 (0.04)

6 3.0 (3.3) 1002 (597) 0.0 (0.0) 116.5 (20.8) 197.0 (26.1) 5.51 (1.01) 10.71 (1.80) 0.37 (0.10)

7 6.6 (6.8) 118 (19) 11.6 (1.9) 22.9 (8.7) 35.8 (10.3) 0.20 (0.04) 0.10 (0.03) 0.08 (0.03)

8 7.2 (7.9) 111 (17) 13.6 (1.2) 19.0 (7.1) 22.4 (11.7) 0.15 (0.05) 0.27 (0.14) 0.03 (0.02)

9 7.4 (7.9) 125 (15) 17.1 (2.6) 16.5 (6.6) 36.1 (7.9) 0.27 (0.03) 0.18 (0.07) 0.03 (0.01)

10 6.9 (7.4) 131 (29) 15.4 (0.31) 14.5 (7.4) 37.6 (15.0) 0.20 (0.07) 0.18 (0.05) 0.02 (0.01)

11 3.4 (3.8) 912 (178) 0.0 (0.0) 139.7 (55.1) 383.3 (114.3) 8.82 (3.52) 5.35 (2.87) 2.20 (0.80)

12 NA NA NA NA NA NA NA NA 

13 NA NA NA NA NA NA NA NA 

14 7.0 (7.5) 141 (21) 10.3 (1.2) 17.8 (6.9) 41.9 (10.8) 0.13 (0.03) 0.18 (0.04) 0.10 (0.03)
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Table 3.  Estimates of EUs and EU loss from each of AMD alone, heat alone, and AMD x heat interaction for Fall 2002 and Spring 
2003 across regions of the Cheat River.  Estimates for the river overall in both seasons and for the annualized period are also 
presented.  In the fall AMD x heat region where we estimated minimum and maximum loss from each stressor (see Methods), we 
report the average of those estimates here. 
 

Date/Region 
Surface 

Area  
ha 

Current 
EUs  
ha 

Expected 
EUs  
ha 

Total Loss  
ha (% of Total 
Loss in River) 

AMD Loss  
ha (% of Total 

Loss in Region) 

Heat Loss 
ha (% of Total 

Loss in Region) 

AMD x Heat Loss  
ha (% of Total Loss 

in Region) 
Fall 2002        

    1-Reference 295 295 295 0 (0) 0 (0) 0 (0) 0 (0) 

    2-AMD 98 84 98 14 (13) 14 (100) 0 (0) 0 (0) 

    3-Thermal 32 14 32 18 (17) 0 (0) 18 (100) 0 (0) 

    4-AMD x Heat 120 46 120 74 (70) 5 (7) 13 (18) 56 (75) 

    Fall Total 544 438 544 106 (100) 19 (18) 31 (29) 56 (53) 

Spring 2003        

    1-Reference 295 295 295 0 (0) 0 (0) 0 (0) 0 (0) 

    2-AMD 98 77 98 21 (40) 21 (100) 0 (0) 0 (0) 

    3-Thermal 32 29 32 3 (6) 0 (0) 0 (0) 0 (0) 

    4-AMD x Heat 120 92 120 28 (54) 28 (100) 0 (0) 0 (0) 

    Spring Total 544 493 544 52 (100) 49 (94) 0 (0) 0 (0) 

Annual Total 544 465 544 79 (100) 34 (43) 16 (20) 29 (37) 
 

 



 

Table 4.  Annualized estimates of EUs recoverable (Gain) in Regions 1 – 4 and river-wide 
(Annual Total) from AMD treatment vs. heat removal.  Annualized estimates of total EU loss are 
also listed.  In Region 4 of fall 2002 where we estimated minimum and maximum gain from 
stressor mitigation (see Methods), we report the average of those estimates. 
   

Region Total Loss 
ha (% of Total Loss) 

Gain from AMD 
Treatment 

ha (% of Total Loss) 

Gain from Heat 
Removal 

ha (% of Total Loss) 

    1-Reference 0 (0) 0 (0) 0 (0) 

    2-AMD 18 (23) 18 (23) 0 (0) 

    3-Thermal 10 (13) 0 (0) 9 (11) 

    4-AMD x Heat 51 (64) 21 (26) 24 (30) 

Annual Total 79 (100) 39 (49) 33 (41) 
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Figure Legend 

Figure 1.  Study area of the Cheat River, WV.  Asterisks and numbers indicate sampling sites 
(Table 1).  The bar on the left of the figure delineates assigned regions along the river.  APS 
= Albright Power Station.  GIS database source: NRAC (2001). 

 
Figure 2.  Temperature and discharge data for the Cheat River.  a)  Seven-day moving average of 

the daily average temperature (°C) at selected sites from May-Oct 2002 and 2003.  Error bars 
represent mean daily temperature range.  The data points in Region 1 were from a 
temperature logger deployed at a site 2 km upstream of site 2.  Of eight loggers deployed 
during each season, only two were recovered in 2002 and six were recovered in 2003.  b)  
Average daily and overall mean discharge (Q cms) of the Cheat River (5/1/2002—
10/13/2003) 2 km upstream of site 2 (USGS 03069870) in relation to the maximum daily 
temperature (°C) profile at site 9 just downstream of the Albright Power Station (DS APS) in 
2002 and 2003 and at two sites upstream of the Albright Power Station (US APS) with 
continuous temperature data.  In 2002, the US APS temperature site was approximately 2 km 
upstream of site 2.  In 2003, the US APS site was at sites 5 and 7.  The record period for 
temperature extended from mid May to mid September (2002)—mid October (2003), but 
ended approximately one month earlier at sites upstream of APS.   

 
Figure 3.  West Virginia Stream Condition Index (WVSCI) scores at study sites in fall 2002 and 

spring 2003.  Stream rating categories are indicated by horizontal lines.  WVSCI scores at 
sites 12 and 13 were unavailable in fall 2002. 

 
Figure 4.  Pair-wise similarity (Bray-Curtis index) comparisons in fall 2002 and spring 2003.  In 

each panel, the focal site for comparisons is the site where similarity is 1.0.  Invertebrate data 
at sites 12 and 13 were unavailable in fall 2002.   

 
Figure 5.  Non-metric multidimensional scaling (NMDS) ordination of sites on invertebrate data 

from fall 2002 and spring 2003.  The minimum number of dimensions (axes) that best 
represented the data was 6 (stress = 3.9%).  NMDS scores from Axis 1 (x-axis) and Axis 2 
(y-axis) are plotted.  Taxa abundances and invertebrate community metrics with high 
Spearman Rank correlations (p<0.05) with the axes are listed; arrows indicate their direction 
of increase.  Percent tolerant metric is the percentage of individuals in the sample with 
tolerance values ≥ 7 (Gerritsen et al., 2000).   Invertebrate data at sites 12 and 13 were 
unavailable in fall 2002.   

 
Figure 6.  Cumulative EU loss (ha) (0.5 km segment scale) along the Cheat River in the 

downstream direction from Site 1 to the bottom of the study area.   
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Cover Letter Accompanying Submission 

Dear Editor Environmental Toxicology and Chemistry: 

We would like to have the enclosed manuscript entitled “Water Chemistry Based 

Classification of Streams and Implications for Restoring Mined Appalachian Watersheds” 

considered for publication in Environmental Toxicology and Chemistry.  These data are not 

contained in any other manuscript.   

In this manuscript, we present an innovative approach that combines multivariate 

statistical techniques to produce and validate a stream classification system based on water 

chemistry in a two coal-mined watersheds in north-central West Virginia.  To our knowledge, 

these results are the first of their kind.  The ability to classify water quality as we have found 

in this region has practical implications in generalizing remediation of strategies and 

prioritizing remediation efforts, and potentially can be transferable to other coal-mined, acid-

impacted watersheds.   

Jason Freund, Michael Strager and Richard Herd are acknowledged for their ideas and 

contributions to the development of this study.  This paper was prepared with the support of a 

grant from the U.S. Environmental Protection Agency to J. Todd Petty, Paul F. Ziemkiewicz, 

and James M. Stiles under Contract Agreement No. RD-83136401-0.  However, any 

opinions, findings, conclusions, or recommendations expressed in our manuscript are those of 

the authors and do not reflect the views of the U.S. Environmental Protection Agency. 

Thank you for your consideration.  I can be reached easily via email 

(gmerovic@mix.wvu.edu) or phone (304-293-2941 ext. 2318). 

George T. Merovich, Jr. 

Corresponding Author 

 144



 

Cover Letter Accompanying Revised Submission 

Dear Mr. Howard, 

Enclosed is our revised manuscript entitled “Water Chemistry Based Classification of 

Streams and Implications for Restoring Mined Appalachian Watersheds.”  We appreciate 

your helpful comments on the original manuscript.  We have addressed all reviewer 

comments in the revised manuscript and/or in the response letter to reviewer comments.  We 

hope this revision meets your approval.  To reiterate, these data are not contained in any other 

manuscript.  In this manuscript, we present an innovative approach that combines 

multivariate statistical techniques to produce and statistically confirm a stream classification 

system based on water chemistry in a two coal-mined watersheds in north-central West 

Virginia.  To our knowledge, these results are the first of their kind.  The ability to classify 

water quality as we have found in this region has practical implications for generalizing 

remediation of strategies and prioritizing remediation efforts, and potentially can be 

transferable to other coal-mined, acid-impacted watersheds.  Jason Freund, Michael Strager, 

Richard Herd, and Ken Stewart are acknowledged for their ideas and contributions to the 

development of this study.  This paper was prepared with the support of a grant from the U.S. 

Environmental Protection Agency to J. Todd Petty, Paul F. Ziemkiewicz, and James M. Stiles 

under Contract Agreement No. RD-83136401-0.  However, any opinions, findings, 

conclusions, or recommendations expressed in our manuscript are those of the authors and do 

not reflect the views of the U.S. Environmental Protection Agency.  Thank you for your 

consideration.  I can be reached easily via email (gmerovic@mix.wvu.edu) or phone (304-

293-2941 ext. 2318). 

Sincerely, 

George T. Merovich, Jr. 

Corresponding Author 
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Reviewer Comments and Responses to Comments (in blue) 

Dear Mr. Howard, 

 We appreciate the helpful comments on our manuscript “WATER CHEMISTRY 

BASED CLASSIFICATION OF STREAMS AND IMPLICATIONS FOR RESTORING 

MINED APPALACHIAN WATERSHEDS”.  We have addressed all comments in the 

revised manuscript and/or in this letter.  We used BLUE font color to distinguish our 

response from the reviewer comments or questions here and to highlight the changes in the 

revised manuscript as per your instructions to authors.  We hope this revision meets your 

approval. 

Sincerely, 

George T. Merovich, Jr., Corresponding Author 

Reviewer #1 (Comments for the Author(s)): 

Review of ET&C ms# 06-424, by G.T. Merovich et al., "Water chemistry based 

classification of streams and implications for restoring mined Appalachian watersheds." 

This manuscript describes a novel approach towards developing a water chemistry-

based classification scheme for streams in mined watersheds.  The classification scheme is 

based on a chemical analysis of a relatively large number water samples taken during two 

seasons (spring and fall), representing high and low stream flow conditions.  A robust 

multivariate descriptive approach was used to classify streams with considerable success. 

The authors should be commended for preparing a very well-written and highly 

comprehensible manuscript from such a complex dataset.  I have no major concerns for this 

work.  Although quite minor (and more semantic than scientific), I am a little uncomfortable 

with the phrase 'statistical significance' (e.g., lines 150, 153, 157 and elsewhere) in the 

context of a descriptive multivariate approach, such as PCA and CA.  Discussion around 

'statistical significance' is typically reserved for inferential analyses involving tests on null 
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hypotheses, which, of course, is not the case for PCA and CA.  In this manuscript, the authors 

set out a priori criteria for including principal components in the final analysis, variables in 

the cluster analysis, among others.  Those meeting the a priori criteria are referred to as 

'statistically significant,' where it's probably more appropriate to say, 'met the a priori criteria,' 

(or something equivalent).  There is nothing wrong with the approach-just the phraseology 

around 'significance.' 

Although PCA is generally considered a descriptive technique, the terminology 

“statistical significance” is used in its presentation (e.g., Hair et al. 1995, McCune and Grace 

2002).  Given that the objective of PCA is summarization and data reduction, we used it to 

search for patterns within the variation of our water chemistry data that were significant in 

the sense of being meaningful for a stream classification system.  Furthermore, because of the 

data reduction purpose and because PCA is finding new variables that are combinations of 

the original variables, one must ultimately determine a cutoff point (fuzzy as it might be at 

times) as to where to draw this line at extracting meaningful dimensions from the whole 

population of dimensions in the data set.  Eigenvalues are values that represent variation 

explained by the reduced dimensions and are therefore statistics, just as a “mean” is a statistic 

that attempts to quantify central tendency.  So even though no hypothesis testing takes place 

and no inferences are drawn in the probabilistic sense, we are still dealing with estimates of 

parameters (i.e., statistics).  Therefore, “statistical significance” we think in the end is still 

valid terminology.   

So, the rationale for the use of the eigenvalue of ≥1.5 for “significance” in choosing 

and interpreting principal components is the following.  If a principal component explains as 

much variation equivalent to at least 1.5 original variables then it must be a “significant” 

(e.g., meaningful) new variable in summarizing the variation latent in the host of original 

variables and therefore worthy of retaining and interpreting.  It has been suggested (McCune 
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and Grace 2002) that a value of 1.0, which many researchers use as a cutoff, is not 

conservative enough (i.e., the cutoff should be higher).  Although where this cutoff is drawn 

is debated, ultimately and practically for our results it is meaningless because the variation 

explained by the first two axes as represented in eigenvalues was much greater than unity. 

Along the same lines, if an original variable “loads” onto any principal component 

with a value of greater than |0.5| then that value is ‘practically’ significant (Hair et al. 1995) 

because it means that the principal component explains or captures 25% (i.e., 0.5 * 0.5 * 100) 

of the variance of that single original variable (i.e., factor loading = correlation coefficient of 

the original variable with the new extracted factor).  In fact, it has been shown that with a 

sample size of ≥350 cases (ours was 375, i.e., R-type components analysis) that a factor 

loading of greater than only |0.3| is statistically significant (Hair et al. 1995) in the sense that 

the original variable is being associated positively or negatively with the new factor greater 

than that expected simply from chance alone.  Therefore, all of the original variables that we 

used to interpret the first two principal components (e.g. Figure 2 and factor loadings ≥ |0.5|) 

are indeed statistically significant values (alpha level 0.05) in the classic sense.   

Although we think “statistical significance” is fully appropriate based on the above, 

we are revising the text to remove the “statistical” part of “statistical significance”, but we are 

retaining the “significance” part.  Changes took place on line number 162 of the revised 

manuscript.   

Otherwise, this manuscript was a pleasure to read.  The authors point out both the 

strengths and limitations of the approach, and raise a number of interesting questions 

stemming from the work.  This is a solid piece of work. 

Reviewer #2 (Comments for the Author(s)): 

General: This paper reports the results of the analyses of water quality samples 

representing sites affected to differing degrees by acid mine drainage (AMD) in two adjacent 
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watersheds.  The purpose of the study was to determine whether waters could be typed on the 

basis of their chemical composition as a guide to potential remediation.  Samples were 

collected three times from each site, analyzed chemically for routine water quality parameters 

and major and trace elements.  Several multivariate statistical procedures were employed to 

determine whether the sites were related in terms of their water quality.  The conclusion, 

based on the results of the chemical and statistical analyses, was that the waters were of six 

types: reference, soft, hard, transitional, moderate AMD, and severe AMD.  The authors 

further concluded that their results"…also suggest that human related stressors superimposed 

on geology are responsible for producing distinct water quality types in this region as 

opposed to more continuous variation..."  Unfortunately, the details of the study design are so 

vaguely identified that it is impossible to judge the validity of the results and conclusions.  

The streams in these watersheds are obviously related, both hydrologically (by virtue of 

upstream/downstream and, possibly, groundwater connections) and geochemically (due to 

shared geology, etc.).  However, no information on the spatial/hydrologic relationships 

among/between the sites is offered; even the map fails to identify the streams that were 

sampled.  As such, the paper has not accounted for the potential contributions of spatial 

autocorrelation to the groupings (see Peterson et al. 2006, Environ Monit Assess 121:571), 

and the observed patterns may have resulted at least in part from the way the sites were 

selected.   

We have added the streams layer to the map in Figure 1 so that sampling locations are 

related spatially within and among each watershed.  In the methods on lines 115-116 we have 

added a statement that clarifies the sampling design.  We address the issue of autocorrelation 

below in comment No. 4 and on lines 382-388 in the discussion of revised manuscript.   

In addition no evidence is presented to indicate that factors other than AMD 

(municipal/industrial discharges, impoundments, etc.) were accounted for in the design.  
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Intuitively, one would expect streams in this region not influenced by AMD to be hard, soft, 

somewhere in between (reference), and perhaps differing in organic content depending on 

geology, soils, wetlands, impoundments (many of these in the watershed), and other 

watershed-scale factors.  These waters would then be affected by inter-mixing and 

interactions with rocks, soils, etc. with transit downstream, and be affected to differing 

degrees by AMD at various points in their respective networks.  The expectation would 

therefore be a continuum of acidification and elemental enrichment that represents the net 

sum of the basic water quality + watershed factors + AMD.  One might also expect soft 

waters to be more likely to progress to severe AMD than hard or transitional.  Such gradients 

are somewhat evident in Fig. 2.  However since none of the previously identified spatial 

variables has been accounted for, one cannot rule out the possibility that the observed 

patterns are artifacts of site selection.  The descriptions of the field procedures and chemical 

methods also lack sufficient detail to judge their adequacy.   

This concern is similar to the above concern.  We have added statements about field 

procedures and chemical methods between lines 131 and 146 of the revised manuscript.  We 

also added a statement about other factors influencing water chemistry below in comment 

No. 4 and on lines 116-118 in the methods section of the revised manuscript. 

Additional detailed comments follow. 

Key: 

No. Page (original manuscript) Line(s) (original manuscript) Question or comment 

1. 4 37-38 Statistically validated? How defined? Even if true, the statement is not 

necessary in the abstract.  

We agree and so have revised this to read “…a statistically supported stream 

classification system…” rather than “validated” (see lines 36-37 of revised manuscript).  
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Classification tree analysis, however, does employ a 10-fold cross-validation procedure.  

2. 4 39-41 Alternative explanations are also possible. 

The reviewer comments that alternative explanations for the emergence of groups 

from the expected pattern of continuous variation is possible, but does not offer any of those 

possibilities.  Therefore, we can not return a response on those alternative explanations or 

interpretations.  

3. 7 93-94 Grammatically incorrect; the rivers are tributaries, but not the basins. 

We have corrected this grammatical error on line 91 of the revised manuscript. 

4. 7 113-117  Were the 123 sites hydrologically related (i.e., some downstream of 

others), or were they selected to be independent of each other? Were they selected such that 

factors other than coal mining (municipal and industrial discharges, impoundments, etc.) 

were eliminated?  Inspection of Appendix Fig. 1 suggests that the sites were hydrologically 

connected, but it's hard to tell; the map doesn't show streams, only watershed boundaries and 

sites. 

We have included streams on the figure in Appendix Figure 1.  The sites were 

selected to minimize interdependence and to capture the broad range of water quality present 

in the watersheds.  We know from other studies that water chemistry in this region is 

influenced predominantly by acid rain and acid mine drainage (Petty and Barker 2004, Petty 

and Thorne 2005, Freund and Petty 2007, Merovich and Petty 2007).  Therefore, we focused 

our sampling and analytical efforts to explain the variation in water chemistry due to these 

factors rather than from nutrients, industrial discharge, etc.  We have added some statements 

in the methods to clarify how sites were selected.  These statements are in the revised 

manuscript on lines 115-118. 

It is true that some of the sites are “hydrologically related” in the upstream-

downstream sense, possibly by underground connections, and by coarse-scale factors beyond 
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watershed boundaries (e.g., Peterson et al. 2006).  Our intension for the analyses was to 

explain the variation in water chemistry and to categorize it, if possible.  The intention was 

neither to examine how spatial location within drainages relates to water chemistry of 

(adjacent) sites, nor was it to find what explanatory variable(s) might determine a water 

sample’s chemical constellation or categorical type, in which case autocorrelation would have 

to be controlled.  It is not hard to imagine why and how the variation in water chemistry 

between two sites might be correlated depending on 1) how close they are, 2) if they drain the 

same geology, 3) if they are in the same drainage, and even if they are hydrologically 

connected between drainage divides, 4) if a sampling site is downstream of another, etc.   

Some of our sites were hydrologically related specifically because one was downstream of 

the other, but this represents real world conditions, and should not necessarily be excluded 

from an analysis that is meant to find and describe groups.  We have added statements to the 

discussion of the revised manuscript that address this issue and we specifically cite the paper 

(Peterson et al. 2006) that was referred to by the reviewer in the context of the question (lines 

382-388 of the revised manuscript).    

5. 8 120-123 A brief description of these methods is more important than 

who's they are. If the agency has a written procedure that is generally available, it should also 

be cited. 

Between lines 131 and 146, we added a revised description of our methods. 

6. 8 128 More details needed: Filter pore size? Cleaning methods? Sample 

storage conditions? Holding times? Etc., etc., etc...? 

As above.  We added these details on lines 131 – 141 of the revised manuscript. 

7. 8 129 Were the ionic forms measured? If not, most of these 

(all except chloride) are major and trace elements, not ions (or exclusively metals).  See also 

next. 
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These questions are answered in the brief description of our methods on lines 135 – 

142 of the revised manuscript.   

8. 8 132-133 Who did the analyses is irrelevant.  More importantly, how 

were they analyzed? By what method (s)? Detection limits? QA? 

As above as well.  However, we summarized information about detection limits (with 

analytical methods) in a new appendix table (Appendix Table 1) of the manuscript as 

referred to by lines 141-142 of the revised manuscript.  We did not want to risk the methods 

becoming too cumbersome with these details.  QA was addressed on lines 145-146 of the 

revised manuscript. 

9. 8 141-142 It is likely that the zero alkalinity values co-occur, which 

creates a situation where all the values for a site could be = 1.0 and the variance = 0.  

Problem for parametric analyses? (see also Table 1). 

All the values for alkalinity for a site could be 0, with variance = 0, but there were 

more than just one site in the severe AMD group.  In other words, the variance for alkalinity 

in the severe AMD group was not 0, because some sites that classified as severe AMD type 

had at least some alkalinity.  See more explanation below in Table 1 for parametric analyses.   

10. 9 149-151 What is the significance (figuratively and statistically) of the 

1.5 value? I.e., where did it come from? Why selected?  Likewise for the 0.5 value attributed 

to ref. [22]? 

This question is nearly the same as the concern from reviewer #1.  Please see our 

response under reviewer #1.  Changes took place on line number 162 of the revised 

manuscript with regards to the issue of statistical significance.   

11. 9 157 The concentrations of Ba, Cd, and Cr should be presented (in Table 1).   

Even thought they added no value to the multivariate analyses, it is potentially useful 

information for others.  

 153



 

We have made this change by adding the data to Table 1 in the revised manuscript.   

12. 10 163-170 Why were only PC1 and PC2 tested, and not the individual 

water quality parameters? Don't we need to know which parameters differ significantly (or 

not) among the types of sites? Also, were any of the concentrations censored (i.e., <LOD)? If 

so, how were these values used (or not) in the statistical analyses? 

PCA reduces variation contained in a set of variables into new variables that are linear 

combinations of the original variables, thereby summarizing important gradients in a few 

tractable dimensions.  In essence, we describe two important dimensions in the data set, and 

these are examined for differences between water types determined by cluster analysis.  We 

did this rather than using all the variables and getting overwhelmed with a bunch of 

univariate tests that would need adjustment of type 1 error rates.  Yes it is valuable to know 

which variables are different among water types, but this approach of multiple ANOVAs was 

not the approach we decided to take.  This information is captured in PC space and in the 

ANOVAs on PC scores of the first two dimensions instead.  For example, from Table 1 we 

can tell that water types A, T, M, H, and R and S as a group are all statistically different with 

regard to the original variables that load highly on PC1 (in either the positive direction 

(metals, sulfate, conductivity) or the negative direction (pH)).  Thus, the value of PCA in 

reducing a complex, multidimensional data set into its strongest components.   

One half of the limit of detection for a particular chemical constituent was used 

whenever that constituent was reported as less than the method’s limit of detection.  Because 

these values and the variation within them are so low compared to the variation observed 

within other chemical constituents, using one-half of the LOD for constituents under these 

cases would not affect any statistical procedures or conclusions based on our objectives.  If 

anything, this approach would only mask patterns occurring within unimpaired waters (our 

reference type), which would not affect our objectives of finding and describing differences 
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in water quality types.  Lines 142-144 of the revised manuscript include a statement about 

how values less than the LOD were handled.   

13. 12 207-208 Spatial variability at what scale? I.e., relative to proximity of 

the sites to each other? 

This should not read “…spatial variability…” but simply just “…variability…”  The 

correction was made on line number 220 of the revised manuscript.   

14. 14 268 Chloride? 

Yes, fixed on line 272 of the revised manuscript.   

15. 18 345-347 As indicated previously, continuous variation is expected 

among hydrologically related sites, yes? (if they were in fact related, which can't be 

determined because the study design is not presented). 

Same concern as above.  See response to question No. 4 above. 

16. Table 1   Sig. of individual variables? Numbers of each type?  Any censored (<LOD) 

values? For alkalinity, number of zero values in each type? Note that for the sever AMD 

group the mean =0.5; if 1.0 was substituted for 0 values, half the observations must have been 

zeros. Assumptions of statistical methods? 

Sig. of individual variables?  This question is the same as the comment above.  See 

our response above in comment No. 12 to the question about the significance of individual 

variables across the water quality types. 

Numbers of each type?  We added the numbers of samples classifying into each water 

quality type in Table 1.  This description occurs on the table caption and the data occur in the 

table’s first row in the revised manuscript.   

Any censored values?  This is the same as above in comments 8 and 12, and it is 

addressed on lines 142-144 of the revised manuscript, including the new Appendix Table 1.  
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Zero value in each type?  Soft type had 6 alkalinity values at 0, and moderate type had 

7.  Severe AMD had 30 values of 0 for alkalinity…   

Assumptions of statistical methods?  …despite many zero values for alkalinity under 

severe AMD, PCA is robust to violations of the assumption of linearity.  However, it does do 

better at redistributing variation and representing gradients when variables have linear 

relationships.  We assume this to hold true for the PC scores when we used ANOVA (robust 

to minor violations as well) to test for differences among water types.   

17. A.F. 1  Map contains no streams? 

Map now contains streams.   

Literature Cited 

Freund, J. G., and J. T. Petty. 2007. Response of fish and macroinvertebrate bioindices to 

specific stressor levels in a mined Appalachian watershed. Environmental 

Management In Press. 

Hair, J. F., Jr., R. E. Anderson, R. L. Tatham, and W. C. Black. 1995. Multivariate data 

analysis with readings. 4th edition. Prentice Hall, Upper Saddle River, NJ. 

McCune, B., and J. B. Grace. 2002. Analysis of ecological communities. MjM Software 

Design, Gleneden Beach, OR. 

Merovich, G. T., Jr., and J. T. Petty. 2007. Interactive effects of multiple stressors and 

restoration priorities in a mined Appalachian watershed. Hydrobiologia 575:13-31. 

Peterson, E. E., A. A. Merton, D. M. Theobald, and N. S. Urquhart. 2006. Patterns of spatial 

autocorrelation in stream water chemistry. Environ Monit Assess 121:571-596. 

Petty, J. T., and J. Barker. 2004. Water quality variability in tributaries of the Cheat River, a 

mined Appalachian watershed. Pages 1484-1504 in 2004 National Meeting of the 

American Society of Mining and Reclamation and the 25th West Virginia Surface 

 156



 

 157

Mine Drainage Task Force. American Society of Mining and Reclamation, 

Morgantown, WV. 

Petty, J. T., and D. Thorne. 2005. An ecologically based approach to identifying restoration 

priorities in an acid-impacted watershed. Restor Ecol 13:348-357. 

 



 

Appendix 2:  Submission of Chapter 4 to Hydrobiologia— Submission Cover Letter, 
Reviewers’ Comments, and Response to Comments 

 
Cover Letter Accompanying Submission 

Dear Editor Hydrobiologia: 

J. Todd Petty and I would like to have the enclosed manuscript “INTERACTIVE 

EFFECTS OF MULTIPLE STRESSORS AND RESTORATION PRIORITIES IN A 

MINED APPALACHIAN WATERSHED” considered for publication in Hydrobiologia.  

These data are not contained in any other manuscript.  In this manuscript, we detail the results 

of a field study of the Cheat River, WV, USA.  To our knowledge, it is the first to document 

the severe, interactive effects of diffuse levels of acid mine drainage and thermal effluent on 

benthic macroinvertebrate communities. 

Thank you for your consideration.  I can be reached easily via email 

(gmerovic@mix.wvu.edu) or phone (304-293-2941 ext. 2318). 

George T. Merovich, Jr., Corresponding Author 

Reviewer Comments on HYDR 1646 (Merovich and Petty 2007) 

Ref Reviewer 1 : Reject 

This is a solidly written paper with adequate analysis.  I had a few minor editorial 

changes that will be caught by an editor.  A clear impact on community health is 

demonstrated downstream of an acid mine drainage input as well as below a heated effluent. 

 Furthermore, an interaction between these two stressors is observed.  The main problem I 

have with this manuscript is that I'm not convinced of the utility of examining the benthic 

macroinvertebrate community data in three different ways.  This is a rather long paper, and so 

much time is spent between the methods, results and discussion in explaining the data using 

these three approaches, but really, all three methods essentially tell the same story.  There 

maybe be some different bumps and details in the various figures, but essentially, all three 

methods suggest that the AMD impacted communities were different from the reference sites, 
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as were the heat impacted sites, and there appeared to be an interaction between the two.  The 

authors have not entirely sold me, either, on the uniqueness of this study.  I think that the EU 

approach was interesting and could be expanded on somewhat, and I was especially 

interested in the discussion of the  "stress-induced community sensitivity model".  Perhaps 

these data could be further examined as a test of this model.  In summary, I think this is a 

well done study and a well written paper, but I feel the authors need to frame their story in a 

way that makes it sound more unique. 

Ref. Reviewer 2: Revisions 

This is a well written paper describing the macroinvertebrate communities and water 

quality of the Cheat River in WV, USA.  I believe the readers of Hydrobiologia will find the 

paper of interest.  I have a few comments and concerns, which I list below. 

No information on in-stream habitat is provided, leaving the reader to assume that all 

changes in macroinvertebrate community structure are driven by water chemistry and 

temperature.  Over the length of the study reach, about 60 km, are there changes in sediment 

characteristics, algal productivity, depth, velocity, or other factors that could contribute to 

changes in macroinvertebrate community structure independently of AMD or temperature? 

 If quantitative data are not available, even a qualitative description of the in-stream 

conditions would be helpful. 

Why are EU's presented as area (ha) rather than length?  This seems to make the 

calculation (and description) more complicated than needed.  The calculation appears to use 

the same river width in both fall and spring (equal surface area of 544 ha), despite lower flow 

during the fall and presumable smaller wetted width.   

I would expect smaller surface area, and thus lower expected EUs, during periods of 

low flow.  By using a constant width, any value in expressing EU's as area appears to be lost, 

unless I am missing something. 
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I suggest moving the justification for using family level taxonomic resolution from 

the top of page 9 to the end of the section on Benthic Macroinvertebrates (top of page 8), 

where taxonomic resolution is first mentioned. 

On page 10, it states: "Expected EUs were calculated as the surface area of each river 

segment multiplied by 1.0"  What is the point in multiplying by 1?  It does nothing.  In 

general, the description of the EU calculation is complicated, and any re-wording that could 

make that section clearer would be good. 

On page 11 it is stated that heat impacts were not present in spring 2003.  Was the 

power plant not operating or operating at reduced capacity?  A more detailed description of 

the inputs from the power plant in the site description section would be useful. 

I suggest using m3/s rather than cms (p. 13, Fig. 3) 

I think the data in Fig. 3a could easily be put into Table 2. 

For clarity, consider making Fig. 3b into two graphs with a common x-axis.  This 

would allow the y-axis for temperature to be expanded and the differences between sites 

more readily seen. 

Associate Editor’s Comments: Major Revisions 

Even though one reviewer has recommended rejection I believe with the appropriate 

revisions that this manuscript could be acceptable. The manuscript is well written and 

conclusions are supported by a wealth of data, however one reviewer feels that the study 

lacks uniqueness. The authors should focus on addressing this point and and I am 

encouraging them to revise accordingly 

Response to “Comments for the Author” on HYDR 1646 (Merovich and Petty 2007) 

We appreciate your consideration of our manuscript “Interactive effects of multiple 

stressors and restoration priorities in a mined Appalachian watershed” for publication in 

Hydrobiologia. 
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We believe this paper detailing our research is unique, and that it contains important 

findings on the effects of multiple, interacting stressors in pollution ecology and restoration 

ecology.  For example, in the Discussion section (p. 20 original submission), we highlight 

that, as far as we know, there are no other field studies that have examined the potential for 

interactive effects of acid mine drainage and thermal pollution specifically, and that studies 

on potential interactive effects of multiple stressors in general are rare.  In addition, we are 

unaware of any data other than ours that suggest that diffuse levels of multiple stressors may 

result in greater ecological damage than severe local impacts from single stressors (p. 21 

original submission).  We also employed a technique that combined the use of an IBI and 

similarity analysis that we believe is useful and important, but that has not been attempted by 

others (p. 23 original submission). 

Therefore, we believe that our study and approaches are unique, but we also agree 

with the “Comments for the Author” that the unique aspects are probably not as clearly and 

demonstrably portrayed as they need to be, especially in the Introduction.  Consequently, we 

made major revisions corresponding to the suggestions in the “Comments for the Author” in 

the following ways: 

Issues of Uniqueness and Paper Length 

First, we revised the Abstract so that it stresses the uniqueness of our research and so 

that it highlights our biggest findings.  These findings include those associated with the 

interactive effects of thermal effluent and acid mine drainage compared to the effects of 

stressors in isolation. 

Secondly, we shortened, reorganized, and revised the introduction so as to focus on 

multiple, interacting stressors rather than having so much focus on general bioassessment 

concepts, which is rather commonplace.  Specifically, paragraphs 1, 2, and 4 (p. 3-4 revised 
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submission) of the Introduction were most heavily revised to highlight the focus of multiple, 

interacting stressors.  A few additional citations were added in relation to this.   

Another major revision dealing with uniqueness was addressed in the Discussion.  

The first two paragraphs of the Discussion were shortened, reorganized, and revised to bring 

to the forefront the evidence of the effects of multiple, interacting stressors, specifically 

AMD and thermal effluent, on benthic communities.  This emphasizes one big conclusion we 

wanted to make that the interacting stressors brought extensive impairment to the river, while 

ecological condition improved rather rapidly downstream of single stressor inputs.   

We kept intact our statements about our study being one of the first to document 

interactive effects of AMD and heat, and that such field studies in general are rare (p. 18 

revised submission).  Also, we believe our field data is the first to provide some evidence of 

Vinebrook’s et al. (2004) stress induced community sensitivity model, and that the diffuse 

levels of multiple stressors AMD and heat are responsible for more extensive impairment  

than intensive levels of single stressors from which communities recover from rapidly, 

because organism’s tolerances are negatively correlated to differing stressors, and because it 

is impossible to have a stress induced sensitivity from the presence of only one major 

anthropogenic stressor (p. 19 revised submission).  We also gave another possible 

explanation (on p. 19 of the revised submission) for the widespread impairment associated 

with the co-occurrence of AMD and thermal effluent.   

These findings are so important because diffuse levels of multiples stressors are 

probably more common and widespread in the environmental than acute inputs of single 

stressors (top p. 20 end of half-paragraph revised submission).   

The Influence of Habitat 

We appreciate the comment concerning the possible influence of habitat on these 

benthic communities.  Therefore, we addressed the possibility of habitat structuring 
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macroinvertebrates in the Cheat River with a paragraph and a few additional citations (end p. 

21 revised submission).   

Other Specific Changes to Address Paper Length 

We also made other edits to specifically address the issue of manuscript length.  We 

deleted Figure 2 of the original submission, because the data are already in Table 2.   We 

shortened the Methods and Results sections each by about ½ of a page, by deleting material 

that was non-essential.  For example, in the first sentence of the Methods section of the 

original submission we deleted the information about the tributaries that combine to form the 

Cheat River at Parsons, WV.  As another example, we deleted from the original submission 

the comment that reference Region 1 in the upper Cheat River basin is a productive 

smallmouth bass (Micropterus dolomieu Lacepède) fishery. These edits reduced the paper 

length from 42 manuscript pages in the original submission to 40 manuscript pages in the 

revised submission.   

Conclusion 

Finally, in conclusion, we believe we have significant findings reported in our paper, 

and we would like to have the opportunity to show these data to the readership of 

Hydrobiologia.  We hope our revisions are received favorably.   

Our Best Regards. 

George T. Merovich, Jr., Corresponding Author 

J. Todd Petty 
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