
Graduate Theses, Dissertations, and Problem Reports

2008

Profiling, extracting, and analyzing dynamic software metrics Profiling, extracting, and analyzing dynamic software metrics

Jeffrey T. Zemerick
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Zemerick, Jeffrey T., "Profiling, extracting, and analyzing dynamic software metrics" (2008). Graduate
Theses, Dissertations, and Problem Reports. 4433.
https://researchrepository.wvu.edu/etd/4433

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230466699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4433?utm_source=researchrepository.wvu.edu%2Fetd%2F4433&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Profiling, Extracting, and Analyzing Dynamic

Software Metrics

Jeffrey T. Zemerick

Thesis submitted to the

College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Science

Katerina Goseva-Popstojanova, Ph.D., Chair

Bojan Cukic, Ph.D.

Powsiri Klinkhachorn, Ph.D.

Department of Computer Science

Morgantown, West Virginia

March 2008

Abstract

Profiling, Extracting, and Analysis of Dynamic Software Metrics

Jeffrey T. Zemerick

This thesis presents a methodology for the analysis of software executions aimed

at profiling software, extracting dynamic software metrics, and then analyzing those

metrics with the goal of assisting software quality researchers. The methodology

is implemented in a toolkit which consists of an event-based profiler which collects

more accurate data than existing profilers, and a program called MetricView that

derives and extracts dynamic metrics from the generated profiles. The toolkit was

designed to be modular and flexible, allowing analysts and developers to easily extend

its functionality to derive new or custom dynamic software metrics. We demonstrate

the effectiveness and usefulness of DynaMEAT by applying it to several open-source

projects of varying sizes.

Acknowledgements

I would like to thank Dr. Katerina Goseva-Popstajanova for her support, assis-

tance, and for presenting me the opportunity to complete my research under her

guidance. I would also like to thank my committee members, Dr. Bojan Cukic and

Dr. Powsiri Klinkachorn. I would also like to express gratitude to the other pro-

fessors in the Lane Department of Computer Science and Electrical Engineering for

assisting me with my course work that enabled me to pursue this advanced degree.

Special thanks goes out to my fellow researchers Maggie Hamill and Arin Zahalka for

their willingness to help me, and to provide comedic relief when necessary. I would

like to thank the NASA Office of Safety and Mission Assurance (OSMA) Software

Assurance Research Program (SARP) managed through the NASA IV&V Facility,

Fairmont, West Virginia, for funding my research. And of course, special thanks my

family for their encouragement.

iii

Contents

Abstract ii

Acknowledgements iii

List of Tables vii

List of Figures viii

1 Introduction and Motivation 1

2 Background 4

2.1 Profilers . 4

2.1.1 Sampling-Based Profilers . 5

2.1.2 Event-Based Profilers . 6

2.1.3 Profiler Implementation . 6

2.2 Types of Profiles . 7

2.2.1 Flat Profile . 8

2.2.2 Call-Graph Profile . 9

2.2.3 Function Trace . 10

iv

3 Dynamic Metrics 12

3.1 Overview of Dynamic Metrics . 12

4 DynaMEAT: Dynamic Metric Extraction and Analysis Toolkit 16

4.1 Overview and Objective of DynaMEAT 16

4.1.1 When DynaMEAT is Useful 18

4.2 jzprof . 18

4.2.1 Design Decisions and Implementation of jzprof 18

4.2.2 Overhead of jzprof . 21

4.2.3 Reading the Profiling Data . 23

4.3 Storing the Profiles in a Database . 26

4.4 Extracting Dynamic Metrics from the Database 27

4.4.1 MetricView . 27

5 Case Studies 30

5.1 Siemens Test Suite . 30

5.2 indent . 31

5.3 gcc . 33

5.4 Using MetricView to Analyze the Skewness of Software Executions . 34

5.5 Conclusions of the Case Studies . 37

6 Related Work and Contributions 38

6.1 Profilers . 38

6.1.1 gprof . 38

6.1.2 hrprof . 39

v

6.1.3 Commercial Profilers . 39

6.2 Visual Call-Graphs . 39

6.3 Dynamic Metrics . 40

6.4 Contributions . 40

7 Conclusions 42

7.1 Future Work . 43

Bibliography 44

vi

List of Tables

4.1 Comparison of Execution Times in Seconds 22

4.2 jzprof Reader Command Line Options 24

vii

List of Figures

2.1 Demonstration of Possible Inaccuracies in gprof’s Output 5

2.2 Flat profile of indent execution produced by gprof. 8

2.3 Call-graph of indent execution produced by gprof. 9

2.4 Function trace of indent execution produced by jzprof. 10

3.1 Part of an indent call-graph illustrating visit counts, fan-in, and fan-out. 13

3.2 Portion of matrix of indent visit counts. 14

3.3 Binary visit count matrix of indent visit counts. 14

3.4 Portion of matrix of indent fan-ins showing FIDistinct
j 15

4.1 High-level Block Diagram of DynaMEAT 17

4.2 DynaMEAT Sequence Diagram . 18

4.3 Possible Usages of DynaMEAT. 19

4.4 Example implementation of instrumentation functions using gcc. . . 20

4.5 jzprofgui showing a flat profile. This is the same flat profile presented

in Figure 2.2. 21

4.6 Part of a Visual Call-Graph Produced by jzprof 25

4.7 The schema of the database tables. 27

viii

4.8 Main screen of MetricView showing a testcase of GCC. 28

4.9 Function visit counts for three indent testcases. 29

5.1 Number of functions in indent source files executed during an indent

testcase. 32

5.2 Number of functions executed during one indent test case execution

created by MetricView. 33

5.3 Visit counts for a gcc testcase. 34

5.4 Visit counts for an execution of gcc. 36

5.5 Hill plot of the testcase shown in Figure 5.4. 36

5.6 Hill plot of the testcase shown in Figure 5.4. 37

ix

Chapter 1

Introduction and Motivation

When software executes a lot of different things happen. Functions get called, ex-

ecute, and terminate often an unknown number of times. In the case of software

analysis these unknowns must be known. We need to know exactly which functions

get executed, in which order, and how many times. We also must know which func-

tions call which functions, where the most time is spent executing, and where the

execution terminates. The type of tool that provides this information is called a pro-

filer, and the data it provides is called a profile. A profile provides details on how the

execution of the software is performed. There are many different profilers for every

programming language, and all provide very different information. However, when

unable to locate a profiler to give a specific set of data or perform certain crucial

tasks, it may be necessary to create a new profiler.

The construction of a profiler is not a simple task. Some questions that must be

addressed are:

• What type of profile do we need?

1

• Will a sampling or event-based profiler be best for our situation?

• Is there already an available profiler that meets our needs?

• If not, how should our profiler be implemented?

• How will our profiler gather and store data?

There are no easy, straight-forward answers to these questions. We can begin

making progress by determining what type of information we would like to know

about a program’s execution. But how can information from a profile be useful?

As part of a larger research initiative, we are tasked with analyzing software to de-

termine relationships between software faults and failures and their effect on software

reliability assessment. To accomplish this we needed to profile several applications of

varying size and complexity. Once we have the profiles, we extract the metrics of the

execution, and use the metrics to predict the failure prone parts of the software.

We began profiling using gprof, a common call-graph profiler for C. As our re-

search progressed, we became aware that more profiling data, such as a function trace

and function timing, would be helpful. Therefore, we decided to construct a profiler,

called jzprof, to meet our needs.

Once the profiler became operable, we took it one step farther. Our research

required extracting metrics from the execution of the studied applications. Previously,

these metrics were extracted from the gprof profiles and we were limited to function

visit counts and caller/callee data. Function timing could not be done due to the

sampling nature of gprof, as described later in this thesis. But now with jzprof,

we could extract function times as another metric. jzprof continued to be expanded

2

and improved by allowing for extraction of a function trace and creation of a visual

call-graph.

Now, jzprof is a component of a larger set of tools and scripts called DynaMEAT,

the Dynamic Metric Extraction and Analysis Toolkit. With DynaMEAT we can

profile applications, extract metrics, and prepare them for analysis much faster than

previously possible.

This thesis is organized as follows. Chapter 2 describes the types of profilers

and the profiles that can be produced. Chapter 3 discusses various dynamic metrics

and Chapter 4 presents a profiling toolset we created to instrument and analyze C

source code to collect these dynamic metrics. Chapter 5 presents the case studies in

which DynaMEAT was utilized, and Chapter 6 presents the related work and how

it affects our work. The final chapter presents our conclusions and possibilities for

future research and development.

3

Chapter 2

Background

2.1 Profilers

Analyzing software reliability and performance often requires a method of determin-

ing what events take place during the execution of software. The type of tool that

provides this information is called a profiler. Profiling can be described as the process

of analyzing a program’s execution to determine statistics of the execution. These

statistics often include the functions called, the number of times each function was

called, and which functions call which functions. Possessing this information allows

developers and analysts to measure performance, optimize the source code, and follow

the program’s execution.

There are two key types of profiles - sampling-based profilers and event-based

profilers. These profilers are also referred to as statistical profilers and exhaustive

profilers, respectively. Both types of profilers rely on instrumenting the program’s

source code to profile.

4

2.1.1 Sampling-Based Profilers

A sampling-based profiler periodically checks the status of the running program by

examining the program’s counter. gprof [16] is a popular sampling-based profiler.

Sampling-based profilers typically introduce less overhead than event-based profilers,

but sampling-based profilers are susceptible to inaccuracies. As illustrated in Figure

2.1, if a function executes completely within the profiler’s checking interval then the

profiler will not know that function was executed. There are steps that can be taken

to help eliminate this problem, such as lowering the sampling interval (for gprof this

requires rebuilding the Linux kernel), providing more input to the program to make

it run longer, or profiling the program multiple times to increase the chances that all

functions will be detected. However, none of these are complete and reliable solutions

to the problem.

Figure 2.1: Demonstration of Possible Inaccuracies in gprof’s Output

5

2.1.2 Event-Based Profilers

Event-based profilers are triggered by events in the execution of the source code.

Whenever a certain event occurs, the profiler will be activated causing it to perform

its action, such as logging the event. The trigger event can be practically any event,

from an execution of a line of code to a function entrance or exit. Event-based

profilers typically introduce more overhead into the program than sampling-based

profilers. The increase in overhead is due to the context-switching that occurs each

time the trigger is activated. An event-based profiler has the potential to be triggered

and execute much more frequently than a sampling-based profiler, which executes

in predetermined intervals. However, event-based profilers do not suffer from the

potential inaccuracies of sampling-based profilers.

2.1.3 Profiler Implementation

There are multiple ways to instrument code for profiling. Some profilers such as gprof

instrument the source code at compile time. Other profiling tools instrument binary

files [7, 40, 35, 29]. These tools are useful if the source code for the program being

analyzed is not available. This thesis focuses on profilers that instrument the source

code at compile time.

Profilers that instrument the source code at compile time insert the necessary

code at locations called instrumentation points [28]. The developers of the profiler

can choose where in the source code to place these instrumentation points but the

most common locations are immediately before and after each function executes.

Each profiler is designed to meet specific requirements. However, a requirement

6

shared by all profiler development is to reduce the profiler’s overhead as much as

possible [12, 42]. Any execution attributed to the profiler is considered overhead,

with most of the overhead being attributed to the context-switches resulting from

when the profiler is triggered. Too much overhead can skew the profile rendering

them useless.

The following is a list of requirements for creating an effective profiler. It is not

intended as a comprehensive list, but rather to present the most important require-

ments for any profiler.

• First and foremost, the profiler must be as light-weight as possible. A profiler

that slows down an executing program is worthless because its results will not

be representative of the actual program.

• The profiler should be easy to incorporate into the build process of the ap-

plication. Some applications have lengthy build procedures and introducing a

significant change into this process could result in problems.

• The profiler should also be able to profile optimized code as well as unoptimized

code [12]. This allows for the profiling of both test and production code.

2.2 Types of Profiles

Profiles can be obtained in different levels of granularity. For function-level profiles,

there are two key types of profiles - a flat profile and a call-graph profile. The different

types of profiles presented here are from executions of indent [38] on the same test

case.

7

2.2.1 Flat Profile

A flat profile shows how much time was spent in each function and how many times

that function was called. A flat profile will quickly show which functions in the code

are visited more often and which functions are using the most time, which is especially

useful for code optimization. Figure 2.2 is an example of a flat profile created by gprof

when executing the program indent.

Figure 2.2: Flat profile of indent execution produced by gprof.

From this flat profile we can see that 78 calls were made to the compute code target

function. If our task is to optimize the performance of indent, compute code target

should be the first function we optimize because it is called most often. It is easy to

see from the zeroes in Figure 2.2 that gprof often may not provide accurate timing

due to its sampling-based nature.

8

2.2.2 Call-Graph Profile

A call-graph profile shows which functions (callers) called which functions (callees).

A call-graph profile allows for tracing the execution of a program. Figure 2.3 shows

the beginning of the call-graph produced by gprof while executing indent.

Figure 2.3: Call-graph of indent execution produced by gprof.

From the call-graph in Figure 2.3, we can see that the function compute code target

was called a total of 78 times. Of those 78 times it was called 13 times by dump line,

19 times by set buf break, and 46 times by output line length. Because of the absence

of any functions listed under it, we can tell that compute code target did not call any

functions. The function lexi called is reserved 22 times and lexi called fill buffer 18

times.

9

2.2.3 Function Trace

A function trace is a listing, often formatted hierarchically, that shows the order and

depth of function calls.

Figure 2.4: Function trace of indent execution produced by jzprof.

Some function traces also indicate function returns, either implicity through a

decrease of depth, or explicitly in the trace. Function traces are useful to follow the

execution of a program. They allow for easy identification of cycles and recursion.

Figure 2.4 shows a function trace of an execution of indent that implicity and

explicitly defines function returns. The number after a function entrance or exit is

10

a timestamp produced by accessing the Pentium Timestamp Counter. By explicitly

stating returns and associating them with a timestamp we can determine how much

time was spent executing a particular function.

Execution traces are also useful to compare executions. In [31], several uses of

trace comparison are identified, such as determining the effectiveness of system testing

compared to the use of the system in the field. Comparing traces is also useful to

minimize the size of test cases [20]. By comparing traces generated by test cases

we can eliminate duplicate tests and find areas of the software that are not being

addressed by the test cases.

Work has also been done to reverse-engineer UML sequence diagrams from execu-

tion traces. In [18] and [33], an execution trace is used to create a sequence diagram.

It is important to note that an execution trace represents only one possible execu-

tion of the software. A complete sequence diagram would additionally require static

analysis.

The function trace is the most detailed of the profiles. The flat profile and call-

graph can be derived from a function trace. The drawback of a function trace is its

potential size. An execution in which many function calls are made can produce a

function trace too large to easily analyze and study.

11

Chapter 3

Dynamic Metrics

3.1 Overview of Dynamic Metrics

Two types of metrics used for software analysis are static metrics and dynamic met-

rics. Static metrics are determined and calculated by analyzing the software’s source

code. Examples of static metrics include the number of lines of source code (SLOC)

and McCabe’s measure of the complexity of software, called cyclomatic complexity

[30]. Unlike static metrics, dynamic metrics are collected during the execution of the

software. Static metrics are often used to estimate development effort, testing, and

management of the software [1, 27].

On a high level, a dynamic metric can be a measure of the time the software

executes before completion or a measure of the resources used by the software while

executing. On lower levels, dynamic metrics could include which functions were called

and when. An even lower level of measurement could include which lines of code were

executed.

12

For a dynamic metric to be effective, it has been proposed that the metric should

be unambiguous, dynamic, robust and discriminating, and independent of the ma-

chine collecting the metrics [9].

The following dynamic metrics are the target of the tools described in this thesis.

These metrics are function-level metrics and were proposed in [15].

To help illustrate these metrics, a part of the visual call-graph for an execution

of indent is given in Figure 3.1. In the figure, the numbers on the arcs indicate the

number of times that function was called by its parent.

Figure 3.1: Part of an indent call-graph illustrating visit counts, fan-in, and fan-out.

• Visit count, V Cj , is a scalar value representing how many times function j

was visited during one execution. Visit counts are often displayed in a matrix

(Figure 3.2), where the rows of the matrix are the executions (testcases) and

13

the columns of the matrix are the functions in the program. The aggregate

visit count for a function is the sum of the values in that function’s column of

the matrix, V C∗

j =
k∑

n=1

V Cn,j where k is the number of executions (rows of the

matrix).

Figure 3.2: Portion of matrix of indent visit counts.

If we are only interested in which functions were visited, we can replace all

non-zero values in the matrix with 1, as in Figure 3.3.

Figure 3.3: Binary visit count matrix of indent visit counts.

• Fan-in, FIj , is a vector where the values are the names of the functions that

call function j. A fan-in due to recursion is counted. For example, from Figure

14

3.1, FInext state = {get token, next state}.

• Fan-out, FOj, is a vector where the values are the names of the functions that

function j calls. A fan-out due to recursion is counted. For example, from

Figure 3.1, FOgenerate backup filename = {max version, simple backup name}.

• FIDistinct
j is the number of distinct functions from which a function receives

control. This number is equal to the number of functions in the fan-in vector

FIj, illustrated in Figure 3.4.

Figure 3.4: Portion of matrix of indent fan-ins showing FIDistinct
j .

• FODistinct
j is the number of distinct functions to which control is passed. This

number is equal to the number of functions in the fan-out vector FOj.

15

Chapter 4

DynaMEAT: Dynamic Metric

Extraction and Analysis Toolkit

4.1 Overview and Objective of DynaMEAT

The objective of DynaMEAT is to provide a methodology for the extraction of dy-

namic metrics. To accomplish this, we must first profile the target code. The resulting

profiles are then parsed and inserted into a database to allow for the extraction and

derivation of dynamic metrics. The collected metrics can then be analyzed. A high-

level diagram of DynaMEAT is given in Figure 4.1, and the components of each block

are described below.

• Profiling of the Code

– A C profiler called jzprof which was created to resolve gprof’s lack of

accurate timing data, ensure that no functions are missed during an exe-

cution due to gprof’s sampling interval, and to provide a means for the

16

Figure 4.1: High-level Block Diagram of DynaMEAT

extraction of dynamic metrics.

– A graphical user interface for viewing profiles called jzprofgui.

• Extraction and Derivation of Dynamic Metrics

– AWK scripts to parse and insert the profiles into a database.

– A tool called MetricView for extracting and deriving metrics from the

profiles.

• Analysis

– MetricView allows for analyzing skewness of executions.

– Further analysis can be performed on the metrics extracted by MetricView.

As shown in the sequence diagram in Figure 4.2, jzprof is used first to profile

the application being tested. The resulting profile can optionally be analyzed using

jzprofgui, or the profile can be parsed and inserted into a database. Once the profile

is in the database, MetricView can extract the required metrics.

17

Figure 4.2: DynaMEAT Sequence Diagram

4.1.1 When DynaMEAT is Useful

The toolkit has the potential to be useful to a wide audience, as shown in Figure 4.3.

On the lowest level, an analyst may use the function trace to follow the program’s

execution to verify and validate the source code. If the task at hand is to optimize

the execution of the program then the software’s developer could use the flat profile

to identify which functions have the highest demand (product of visit counts and

time spent in the functions), allowing the developer to focus their attention on those

high-demand functions. Research groups such as ours can use the toolkit to further

study software quality and reliability.

4.2 jzprof

4.2.1 Design Decisions and Implementation of jzprof

Our primary goal was to develop a functional and useful event-based profiler. We

wanted to construct it in such a way that would make it easy to add additional

18

Figure 4.3: Possible Usages of DynaMEAT.

functionality should the need arise. To accomplish this, jzprof was built in a modular

fashion. (For example, we refer to the visual call graph functionality and function

trace functionality as modules.) The modules are independent of each other and

developing a new module only requires writing the code for the new module. The rest

of jzprof does not need to be altered in anyway. This ensures backward compatibility

should we need to reanalyze past profiles and provides a means for new functionality

and the extraction of other metrics.

jzprof is an event-based, or exhaustive [16], profiler because it gathers profiling

data by instrumenting the code at every function entrance and exit. In jzprof, the

profiling data is collected using gcc’s cyg profile func enter and cyg profile func exit

functions. When compiled with the -finstrument-functions option, these two func-

tions will be called each time a function is entered and exited, respectively. The

address of the calling function and the address of the function called are passed as

19

arguments to each function.

jzprof utilizes the rdtsc instruction to access the Pentium Timestamp Counter

to calculate the time spent executing in functions.

Figure 4.4: Example implementation of instrumentation functions using gcc.

When a program compiled with jzprof executes, jzprof stores the function ad-

dresses and timestamps as a linked list of structures. When the executing program

terminates, jzprof traverses the linked list writing the structures to a binary file

(jzprof.out). The jzprof.out file then can be processed with the jzprof reader to

obtain the human-readable profile. jzprof compiles to an object file which must be

linked with the program to be profiled.

To facilitate easier use of jzprof, we created jzprofgui, a graphical applica-

tion written in C# and compiled using Mono. This language was chosen to provide

compatibility for both Windows and Linux operating systems. The GTK# runtime

is required on both operating systems. To use the jzprofgui, the jzprof reader

must be used to convert the jzprof.out file to an XML file which can then be opened

and processed by jzprofgui. jzprofgui shows the call-graph, flat profile (Figure

4.5), extracted dynamic metrics, and the visual call-graph. The two major goals of

20

jzprofgui were to provide a graphical means of viewing the profiling data and to

provide a solution which would be operating system independent.

Figure 4.5: jzprofgui showing a flat profile. This is the same flat profile presented

in Figure 2.2.

jzprofgui also shows the execution trace, some metrics of the execution, and the

visual call graph. The XML tab displays the profile formatted as XML.

4.2.2 Overhead of jzprof

Since all profilers need to cause as little overhead as possible to be effective, jzprof

was designed to minimize overhead by separating the profiling and analysis events.

The profiling work that takes place when the program executes is kept to an absolute

minimum. Once profiled, analysis is non-critical and can not affect the results. The

21

overhead from the profiler is highest when the program being profiled contains many

calls to short-running methods as this requires more context-switching and it results

in the profiler saving more data.

To measure the overhead introduced by jzprof we compared it to hrprof [43],

another event-based profiler. Fifty random test cases from each of the applications

listed in Table 4.1 were executed. The results were calculated by averaging the times

from each test case. The test machine was a Dell Optiplex GX260 with an Intel

Pentium 4 3.06GHZ processor and 1GB of RAM running Ubuntu 6.06 LTS.

To time the execution, a very small C program was created that gets a timestamp,

executes the testcase, and gets another timestamp. The time spent executing is the

difference in two timestamps. The Unix time utility was not used because it only

reports times to the thousandths place which may not allow us to adequately compare

the execution times.

The increase in time for jzprof from indent to gcc is most likely due to the

length of the linked list created by jzprof at runtime. For a larger program like

gcc, the length of the linked-list becomes much larger than in a smaller program like

indent.

Application With hrprof With jzprof With No Profiler

indent 0.378948 0.062863 0.012004

gcc 0.334561 0.293975 0.115398

Table 4.1: Comparison of Execution Times in Seconds

In our tests, jzprof produced significantly less overhead than hrprof when tested

22

with indent and only slightly less overhead when tested with gcc. The difference

in time can be attributed to the fact that hrprof produces a profile in the gprof-

compatible format at the end of the execution, while jzprof reserves this functionality

for a separate application, the jzprof reader. By only writing function data to the

profile during execution and omitting other operations we can minimize the overhead

introduced by a profiler.

4.2.3 Reading the Profiling Data

The jzprof reader is used to analyze the jzprof.out file. The reader opens the

jzprof.out file and loads the data into a linked list of structures. Each structure

represents either a function entrance or exit and contains the function addresses, a

timestamp provided by rdtscll() of when the event occurred, and a flag indicating

whether the function was entered or exited.

The jzprof reader translates the function addresses to function names using the

Unix nm tool, which extracts symbols from object files.

The reader is controlled by command line arguments. Table 4.2.3 lists the avail-

able options. The -t option prints a function trace as a tree showing the functions

called, the timestamp, and the depth of the calls. The -f option prints a flat pro-

file showing the functions called, the number of times each function was called, and

timing information for each function.

The -o produces a gmon.out file which contains the flat profile and call-graph in

the gprof format. This allows us to be able to view the profile in a familiar layout.

A visual call-graph, or complete calling context tree [46], provides a different

23

Option Operation

-t Print the function trace.

-g Make a graph.dot file for a visual call graph.

-f Print the flat profile.

-o Make gprof compatible output (gmon.out file).

-d Extract and print various dynamic metrics.

-s Create a SQL file to insert the profile into a database.

-xml Format the profile as XML (jzprof.xml) for viewing with jzprofgui.

Table 4.2: jzprof Reader Command Line Options

perspective on the profile. Passing the option -g to the reader will create a graph.dot

file in the dot language. Passing this file to the dot [13] utility will create a graph

of the execution. The nodes of the graph represent the functions called and the arcs

represent a transfer of control. Figure 4.6 shows a part of the visual call-graph for

an execution of the program indent. The numbers alongside each arc indicate the

number of times a function was called by another function. In the figure 4.6 the

function indent calls the function lexi 62 times. Arcs that are possible but not taken

during the execution will not be included on the visual call-graph.

A visual representation of the call-graph is able to be constructed using the pro-

gram’s trace. Because jzprof is an event-based profiler and has instrumented the

program’s function entrances and exits, we already have the program’s complete trace.

A trace as a text file can be unmanageable due to the large number of function calls

and exits. Formatting the trace as a visual representation allows the call-graph to be

24

Figure 4.6: Part of a Visual Call-Graph Produced by jzprof

studied and analyzed for debugging and source code verification purposes. However,

unlike a trace our visual call-graph as it stands now does not give any indication as

to the order of functions called.

Constructing a complete calling context tree using a sampling-based profiler would

be much more difficult. A calling context tree built using a sampling technique is

referred to as an Approximate Calling Context Tree [3]. One can never be completely

certain that an approximate calling context tree is correct, but we do know that

our complete calling context tree is correct because of its event-based construction.

Creating an approximate calling context tree using sampling is preferred in instances

where time and space constraints do not permit using an event-based technique [3].

A lot of information can be gathered simply by studying the visual call-graph. It is

25

easy to determine which functions were executed (visit counts), and which functions

call which functions (fan-in and fan-out).

4.3 Storing the Profiles in a Database

Some metrics cannot be extracted by jzprof due to their inherent nature. These

metrics can be derived once the profiles have been inserted into a database. Using a

database permits operating on large amounts of data and for deriving metrics over

multiple testcases. We chose MySQL as our database. To construct a database of the

profiles, we:

1. Get the profiles in the gprof format. This allows for parsing profiles from

jzprof, gprof, hrprof, and any other profiler that utilizes the gprof format.

2. Parse the profiles with AWK scripts1 that formats the function calls and visit

counts into SQL insert statements.

3. Execute the SQL insert statements on a MySQL database.

When completed, the result will be a table that contains the call graph for each

execution. The schema of this table is presented in Figure 4.7. The application

table will be created for each application being tested. id is an auto-incrementing

integer that uniquely identifies the caller -callee pair for the testcase in the database.

testname is the name of the testcase in which caller invoked callee a total of num visits

times. pass fail is a boolean value indicating whether the testcase passes (0) or fails

(1). profiler is the name of the profiler that generated the profiles. The percenttime,

1The AWK scripts were written by Maggie Hamill.

26

selftime, and childrentime fields are not currently used but they allow for future

examination of the time spent executing functions.

Figure 4.7: The schema of the database tables.

4.4 Extracting Dynamic Metrics from the Database

Once the profiles have been inserted into the database we need to extract the desired

metrics. The simplest metrics, such as function visit counts, can be extracted using

basic SQL queries. However, more complex metrics, such as fan-ins and fan-outs, can

be extracted using MetricView.

4.4.1 MetricView

MetricView was created to help facilitate easy access to the database of profiles. The

purpose of this program is to allow users to analyze and visualize the contents of the

profiling database. MetricView is written in C#.

27

Figure 4.8: Main screen of MetricView showing a testcase of GCC.

The main screen of MetricView is show in Figure 4.8. Once connected to the

profiling database, the user is presented with a list of profiles. When a profile has

been selected, the user can then examine testcases or individual functions. With

MetricView, the user can:

• Get the number and percentage of passed and failed testcases.

• Get a list of the functions called and the number of times each function is called

for each testcase.

• See the coverage of the testcase - how many functions and files of the source

28

code are utilized when executing the testcase.

• Graph the visit counts (V Cfunction) for each function in selected testcases (Fig-

ure 4.9).

• Produce a list of functions that were never called in any testcase (FIfunction = 0).

• Produce a list of functions that do not call any other functions in any testcase

(FOfunction = 0).

• Create a comma-separate values file of fan-outs, fan-ins, and visit counts to be

passed to analysis module.

• Analyze the skewness of executions by creating a Hill plot for each testcase.

• Execute custom queries and save the results as a comma-separated values file.

Figure 4.9: Function visit counts for three indent testcases.

29

Chapter 5

Case Studies

The case studies presented here are part of a larger research effort to study the

relationships between faults and failures and their effect on software reliability as-

sessments [19, 14, 32].

In these case studies, we applied DynaMEAT to open-source projects of small,

medium, and large sizes. The software applications chosen as case studies are indent

[38], gcc [37], and several small test programs developed by Siemens [17]. The appli-

cations were chosen based on their size, and availability of past versions and regression

testsuites.

5.1 Siemens Test Suite

The Siemens test suite was created by researchers at the Siemens Corporate Research.

The suite consist of seven small C programs, along with mutants and testcases for

each program. Because of the abundance of mutants and test cases, these programs

lend themselves very well to software quality research, especially on the selection

30

and minimization of test suites [5, 25, 36, 41] and fault-localization [11, 26]. Of the

seven programs, to this point we have utilized DynaMEAT to study two of them,

printtokens and replace.

printtokens has 7 versions - an oracle and 6 mutants. Each version was profiled

using jzprof and the resulting profiles were parsed and inserted into the database.

replace has 32 versions - an oracle and 31 mutants. The profiles of these versions

were also parsed and inserted into the database. Again, MetricView was used to

extract the required metrics from the database for analysis.

5.2 indent

indent is a GNU open-source, code beautification tool for C source code. It is a

medium-sized program, containing approximately 10,000 lines of C code. A regression

test suite is available, consisting of 155 test cases. In our research we utilized the

regression test suite of version 2.2.9 with the binary from version 2.2.0 instrumented

with jzprof.

The profiles of the test suite executions created by jzprof were parsed by the

database scripts and then inserted into our profile database. MetricView was then

used to create the visit count, fan-in, and fan-out matrices. The matrices would then

be used by our research group to study the executions.

Using MetricView we can also analyze how many functions were executed from

each source file for each testcase. Figure 5.1 is a pie chart created by MetricView

that shows the the number of functions in each source code file of indent that was

executed in one testcase. For example, from Figure 5.1 we can tell that 11 functions

31

in backup.c were executed in the testcase. Applying static analysis to determine the

total number of functions in each source file would allows us to determine the coverage

of each testcase.

Figure 5.1: Number of functions in indent source files executed during an indent

testcase.

MetricView can also show the number of functions executed in one test case

relative to entire test suite. Figure 5.2 shows the number and percentage of functions

executed during the execution of one test case. Of all the functions called during the

entire test suite, this particular test case executed 31, or 55.36%, of those functions.

32

Figure 5.2: Number of functions executed during one indent test case execution

created by MetricView.

5.3 gcc

gcc, the GNU Compiler Collection, is a software package to compile many different

programming languages, however, we only focused on gcc’s C compiler, cc1. cc1 is

composed of approximately 300, 000 lines of source code. In our tests, we used the

regression test suite (2, 424 testcases) from gcc version 3.3.3 on the compiled binary

from gcc version 3.2.3 instrumented with jzprof. Once the profiling was complete,

the profiles were parsed and inserted into the database.

Not only does the gcc test suite contain more test cases than the indent test suite,

but the executions of each gcc test case are much larger than any of indent’s. The

table in the database containing the gcc profiles had over 5 million rows, compared

33

Figure 5.3: Visit counts for a gcc testcase.

to less than 7 thousand for indent. MetricView did not have any problem with the

increase of size. Like with indent, we used MetricView to create visit counts, fan-in,

and fan-out matrices for analysis.

5.4 Using MetricView to Analyze the Skewness of

Software Executions

It is commonly said that during a program’s execution 20% of the program’s functions

will be visited 80% of the time. Using MetricView we can see if that rule holds true

for the case studies.

The skewness of an execution can be determined using the Hill estimator [21],

which is a method to estimate the tail index α of a Pareto type model given by

34

1 − F (x) = P [X > x] = x−αL(x) (5.1)

where L(x) is slowly varying as x → ∞. Let X1, X2, ...Xn denote the function

visit counts ordered in descending order, such that X(1) ≥ X(2) ≥ ... ≥ X(n). The

basis of the Hill Estimator is to sample from the part of the distribution that most

resembles a Pareto distribution. Therefore, we choose k < n and compute the Hill

estimator

Hk,n =
1

k

k∑

i=1

log X(i) − log X(k+1). (5.2)

For each value of k we get an estimate of the tail index, αk,n = 1
Hk,n

. Typically,

the estimates of the tail index αk,n are plotted as a function of k. When k is small,

the Hill plot usually varies greatly, but as k increases the plot stabilizes as more data

points in the tail of the distribution are included. Once the plot stabilizes, we can

infer the value of the tail index α. The lack of stabilization is a strong indication that

the data is not consistent with the heavy-tailed distribution (5.1).

It follows that if 1 < α ≤ 2, the distribution has a finite mean and an infinite

variance. If α ≤ 1, the distribution has an infinite mean and infinite variance (a few

functions are called substantially more than the other functions).

MetricView includes the ability to automatically create Hill plots of executions.

To apply the Hill estimator, MetricView first orders the function visit counts of a

testcase in descending order (Figure 5.4). MetricView then applies the Hill estimator

to the function visit counts and graphs the result (Figure 5.5).

Figure 5.5 shows the Hill plot created from the visit counts in Figure 5.4. The

35

Figure 5.4: Visit counts for an execution of gcc.

Figure 5.5: Hill plot of the testcase shown in Figure 5.4.

area of the graph in the square is where the plot stabilizes. Zooming in on this area

allows us to better infer the value of α (Figure 5.6).

From Figure 5.6, we can estimate that α is approximately 0.65, which indicates

that the mean and variance of the distribution are both infinite. We can conclude that

this particular execution of gcc is skewed and that it follows the Pareto distribution.

The Hill estimator is not a good measure of skewness for indent and the programs

in the Siemens Test Suite because those applications do not contain enough functions

36

Figure 5.6: Hill plot of the testcase shown in Figure 5.4.

to provide an accurate value for α.

5.5 Conclusions of the Case Studies

Using the components of DynaMEAT allowed us to profile and collect dynamic metrics

at a much faster pace than previously possible. Additionally, we can now easily

analyze other aspects of the execution such as skewness and testcase coverage.

37

Chapter 6

Related Work and Contributions

6.1 Profilers

6.1.1 gprof

UNIX gprof [16] is a sampling-based, call-graph profiler for C. gprof counts the

number of calls to each function by instrumenting the code at compile time using

gcc’s -g and -pg options. However, to calculate the time spent in each function,

gprof samples the program counter to determine the state of the executing program.

This can lead to inaccuracies when a function executes entirely within the sampling

interval. For example, if a function executes entirely within the sampling interval it

will not be detected by the profiler, as demonstrated in Figure 2.1.

gprof contains a few nuances that the user should be aware of prior to using

gprof. For instance, gprof does not count time spent in calls to sleep(), which

can skew the profiles. Additionally, when calculating the time spent in each function,

gprof incorrectly assumes that each call to a function takes the same amount of time

38

and does not differentiate between each call to a function. Because of this, it has

been concluded that the use of gprof should be limited to situations where function

descendants take a constant time to execute [42].

6.1.2 hrprof

hrprof [43], or the High Resolution Profiler, is an event-based profiler for C. Like

jzprof, hrprof uses the gcc functions cyg profile func enter() and cyg profile func exit()

to instrument the source code at compile time. By making use of the Pentium Times-

tamp Counter, hrprof provides more accurate timing information than gprof. The

Pentium Timestamp Counter is often used in this manner [34, 45]. Additionally,

hrprof produces the profiles in the standard gprof-compatible format.

6.1.3 Commercial Profilers

In addition to open source profilers, there are also many commercial profilers available.

Intel’s ThreadProfiler [22] assists developers with creating multi-threaded applications

and applications built for multi-processor systems. ANTS Profiler [24] by RedGate

software profiles .NET applications on Windows. JProbe [23] from Quest Software

analyzes Java code.

6.2 Visual Call-Graphs

A lot of work has been done on visual call-graphs, however, our work adds this

functionality to a profiler. The type of visual call-graph presented in this thesis is

referred to as a Calling Context tree in [2]. Taking it one step farther, [46] labels our

39

visual call-graph as a Complete Calling Context Tree because the call-graph includes

all caller/callee pairs during an execution, as opposed to an Approximate Calling

Context Tree which is constructed via sampling [3]. Constructing a calling context

tree by instrumenting function entrances and exits was proposed in [2] and [39].

6.3 Dynamic Metrics

Work involving the definition of dynamic metrics is plentiful [4, 6, 8, 9, 44]. Dynamic

metrics are not limited to being useful only in software quality and reliability. An

intrusion detection method described in [10] monitors the runtime behavior of known

safe software. When an unknown software executes and its behavior differs from the

behavior of known safe software the proverbial red flag will be raised.

6.4 Contributions

This thesis provides a toolkit for profiling software executions, to automate the ex-

traction of dynamic metrics for subsequent analysis. The following are contributions

provided by this thesis and DynaMEAT.

• Identified requirements for creating an effective and useful profiler.

• Developed jzprof, a very capable, small, and efficient C profiler with the ability

to capture extensive profiling data:

– The function trace of the execution shows when functions are entered and

exited.

40

– The visual representation of the call-graph provides a graphical means of

viewing transfer of control during the execution.

– The flat profile includes function timing information that often can not be

determined by gprof.

• jzprofgui is a cross-platform tool to view profiles from jzprof. It allows the

analyst to view the flat-profile, call-graph, execution trace, and visual call-graph

from an easy to use graphical interface.

• Scripts for preparing the data to be inserted into a database. These scripts can

operate on any profile in gprof format providing flexibility to use any profiler

and the ability to compare gprof and jzprof profiles.

• A database schema to store the profiles. Having a uniform method of storing

profiles allows for easy collaboration and sharing.

• DynaMEAT gives the analyst the power to extract metrics from a database and to

derive any new metrics. Using DynaMEAT the analyst can extract the following

metrics:

– Fan-in and fan-out for each testcase or aggregated over all testcases.

– Function visit counts for each testcase or aggregated over for all testcases.

– Any other metric that can be derived on the function level.

• DynaMEAT can create Hill plots for individual testcases to analyze the skewness

of executions.

41

Chapter 7

Conclusions

The Dynamic Metric Extraction and Analysis Toolkit provides a complete methodol-

ogy for collecting, extracting, and analyzing dynamic metrics. jzprof is an accurate,

light-weight profiler that provides more profiling data than gprof. Any function-level

metric can be derived from the profiles stored in the database. MetricView provides

convenient access to the database which allows for faster analysis of the profiles.

The toolkit has the potential to be used for a long period of time. It does not

require any notable maintenance and the only possible required changes would be to

extend the functionality of jzprof or MetricView.

The Dynamic Metric Extraction and Analysis Toolkit allows researchers to focus

their attention more on the study of software executions rather than on the collection

of metrics required for the analysis.

42

7.1 Future Work

There are several ways in which DynaMEAT can be improved to offer additional

functionality.

• Using Time as a Dynamic Metric

Incorporating time as a dynamic metric may provide a new way of analyzing

and comparing profiles. jzprof includes the ability to time the execution of

functions, but this timing data is not currently inserted into the database.

Modifying the AWK scripts to gather this data could provide lots of new metrics

and provide a new perspective on the profiles.

• Function Trace Analysis

jzprof captures function traces but we have not developed any method to insert

these traces into the database. Having the traces in the database would allow

for fast detection of cycles, allow for analyzing function returns, and provide an

ordered execution of the program.

• Visual Call-Graph

The visual call-graph produced by jzprof can be improved in the following

ways. First, when viewing the visual call-graph it is impossible to determine

the order of execution. Secondly, for large executions the visual call-graph

can potentially be very large resulting in many nodes and arcs. To simplify and

compact the visual call-graph, functions contained in a cycle could be combined

into one node which would then be substituted for the cycle.

43

Bibliography

[1] A. J. Albrecht and J. E. Gaffney. Software Function, Source Lines of Code, and

Development Effort Prediction: A Software Science Validation. IEEE Transac-

tions on Software Engineering, 9(6):639–648, 1983.

[2] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting Hardware Per-

formance Counters with Flow and Context Sensitive Profiling. In PLDI ’97:

Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language

Design and Implementation, pages 85–96, New York, NY, USA, 1997. ACM

Press.

[3] M. Arnold and P.F. Sweeney. Approximating the Calling Context Tree via Sam-

pling, 2007.

[4] Alessandro Bianchi, Danilo Caivano, Filippo Lanubile, and Giuseppe Visaggio.

Evaluating Software Degradation through Entropy. In METRICS ’01: Proceed-

ings of the 7th International Symposium on Software Metrics, page 210, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[5] Lionel Briand and Yvan Labiche. Empirical Studies of Software Testing Tech-

niques: Challenges, Practical Strategies, and Future Research. SIGSOFT Soft-

44

ware Engineering Notes, 29(5):1–3, 2004.

[6] F. Brito, e Abreu, and W. Melo. Evaluating the Impact of Object-Oriented

Design on Software Quality. In 3rd International Software Metrics Symposium,

pages 90–99, 1996.

[7] Bruno De Bus, Dominique Chanet, Bjorn De Sutter, Ludo Van Put, and Koen De

Bosschere. The Design and Implementation of FIT: A Flexible Instrumentation

Toolkit. In PASTE ’04: Proceedings of the 5th ACM SIGPLAN-SIGSOFT Work-

shop on Program Analysis for Software Tools and Engineering, pages 29–34, New

York, NY, USA, 2004. ACM Press.

[8] Jana Dospisil. Software Metrics, Information and Entropy. In Practicing Software

Engineering in the 21st Century, pages 116–142, Hershey, PA, USA, 2003. IGI

Publishing.

[9] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge. Dynamic

Metrics for Java. ACM SIGPLAN Notices, 38(11):149–168, 2003.

[10] Sebastian Elbaum and John C. Munson. Intrusion Detection Through Dynamic

Software Measurement. In ID ’99: Proceedings of the 1st Conference on Work-

shop on Intrusion Detection and Network Monitoring, pages 5–5, Berkeley, CA,

USA, 1999. USENIX Association.

[11] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin.

Quickly Detecting Relevant Program Invariants. In ICSE ’00: Proceedings of

the 22nd International Conference on Software Engineering, pages 449–458, New

York, NY, USA, 2000. ACM.

45

[12] Nathan Froyd, John Mellor-Crummey, and Rob Fowler. Low-Overhead Call Path

Profiling of Unmodified, Optimized Code. In ICS ’05: Proceedings of the 19th

Annual International Conference on Supercomputing, pages 81–90, New York,

NY, USA, 2005. ACM Press.

[13] Emden R. Gansner and Stephen C. North. An Open Graph Visualization System

and its Applications to Software Engineering. Software - Practice and Experience,

30(11):1203–1233, 2000.

[14] Katerina Goseva-Popstojanova, Margaret Hamill, and Xuan Wang. Adequacy,

Accuracy, Scalability, and Uncertainty of Architecture-based Software Reliabil-

ity: Lessons Learned from Large Empirical Case Studies. ISSRE ’06. 17th Inter-

national Symposium on Software Reliability Engineering, pages 197–203, 2006.

[15] Katerina Goseva-Popstojanova and Arin Zahalka. The Impact of Dynamic Met-

rics on Indentification of Failure Prone Parts of Software. In NASA Software

Assurance Symposium, 2007.

[16] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A Call

Graph Execution Profiler. In SIGPLAN ’82: Proceedings of the 1982 SIGPLAN

Symposium on Compiler Construction, 1982.

[17] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg

Rothermel. An Empirical Study of Regression Test Selection Techniques. ACM

Transactions on Software Engineering and Methodolody, 10(2):184–208, 2001.

46

[18] Yann-Gael Gueheneuc and Tewfik Ziadi. Automated Reverse-engineering of

UML v2.0 Dynamic Models. In Proceedings of the 6th ECOOP Workshop on

Object-Oriented Reengineering, 2005.

[19] Margaret L. Hamill. Empirical analysis of software reliability. Master’s thesis,

West Virginia University, 2006.

[20] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A Methodology for Con-

trolling the Size of a Test Suite. ACM Transactions on Software Engineering

and Methodology, 2(3):270–285, 1993.

[21] B.M. Hill. A Simple General Approach to Inference about the Tail of a Distri-

bution. The Annals of Statistics, 3:1163–1174, 1975.

[22] http://www.intel.com/cd/software/products/asmo na/eng/286749.htm. Intel

thread profiler 3.1 for windows.

[23] http://www.quest.com/jprobe/. Jprobe.

[24] http://www.red gate.com/products/ants profiler/index.htm. Ants profiler.

[25] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Exper-

iments of the Effectiveness of Dataflow- and Controlflow-based Test Adequacy

Criteria. In ICSE ’94: Proceedings of the 16th International Conference on Soft-

ware Engineering, pages 191–200, Los Alamitos, CA, USA, 1994. IEEE Computer

Society Press.

[26] James A. Jones and Mary Jean Harrold. Empirical Evaluation of the Taran-

tula Automatic Fault-localization Technique. In ASE ’05: Proceedings of the

47

20th IEEE/ACM International Conference on Automated Software Engineering,

pages 273–282, New York, NY, USA, 2005. ACM.

[27] D. Kafura and G. R. Reddy. The Use of Software Complexity Metrics in Software

Maintenance. IEEE Transactions on Software Engineering, 13(3):335–343, 1987.

[28] Naveen Kumar, Bruce R. Childers, and Mary Lou Soffa. Low Overhead Program

Monitoring and Profiling. In PASTE ’05: Proceedings of the 6th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,

pages 28–34, New York, NY, USA, 2005. ACM Press.

[29] James R. Larus and Thomas Ball. Rewriting Executable Files to Measure Pro-

gram Behavior. Software - Practice and Experience, 24(2):197–218, 1994.

[30] Thomas J. McCabe and Charles W. Butler. Design Complexity Measurement

and Testing. Communications of the ACM, 32(12):1415–1425, 1989.

[31] Andriy V. Miranskyy, Nazim H. Madhavji, Mechelle S. Gittens, Matthew Davi-

son, Mark Wilding, and David Godwin. An Iterative, Multi-level, and Scalable

Approach to Comparing Execution Traces. In ESEC-FSE ’07: Proceedings of

the 6th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages

537–540, New York, NY, USA, 2007. ACM Press.

[32] Ranganath Perugupalli. Empirical Assessment of Architecture-Based Reliability

of Open-Source Software. Master’s thesis, West Virginia University, 2004.

48

[33] Y. L. Traon R. Delamare, B. Baudry. Reverse-engineering of UML 2.0 Sequence

Diagrams from Execution Traces. In Workshop on Object-Oriented Reengineer-

ing in Conjunction with ECOOP ’06, Nantes, France, 2006.

[34] J. Regehr and J. Stankovic. Augmented CPU Reservations: Towards Predictable

Execution on General-Purpose Operating Systems. In RTAS ’01: 7th Real-Time

Technology and Applications Symposium, 2001.

[35] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank

Levy, Brian Bershad, and Brad Chen. Instrumentation and Optimization of

Win32/Intel Executables using Etch. In NT ’97: Proceedings of the USENIX

Windows NT Workshop on the USENIX Windows NT Workshop 1997, pages

1–1, Berkeley, CA, USA, 1997. USENIX Association.

[36] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. An

Empirical Study of the Effects of Minimization on the Fault Detection Capabil-

ities of Test Suites. In ICSM, pages 34–43, 1998.

[37] Free Software Foundation. GCC, the GNU Compiler Collection.

[38] Free Software Foundation. GNU Indent.

[39] J. M. Spivey. Fast, Accurate Call Graph Profiling. Software - Practice and

Experience, 34(3):249–264, 2004.

[40] Amitabh Srivastava and Alan Eustace. Atom: A System for Building Customized

Program Analysis Tools. ACM SIGPLAN Notice, 39(4):528–539, 2004.

49

[41] Sriraman Tallam and Neelam Gupta. A Concept Analysis Inspired Greedy Al-

gorithm for Test Suite Minimization. In PASTE ’05: Proceedings of the 6th

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools

and Engineering, pages 35–42, New York, NY, USA, 2005. ACM.

[42] Dominic A. Varley. Practical Experience of the Limitations of Gprof. Software

- Practice and Experience, 23(4):461–463, 1993.

[43] Pace Willisson. High Resolution Profiler.

[44] Sherif M. Yacoub, Hany H. Ammar, and Tom Robinson. Dynamic Metrics for

Object Oriented Designs. In METRICS ’99: Proceedings of the 6th International

Symposium on Software Metrics, page 50, Washington, DC, USA, 1999. IEEE

Computer Society.

[45] Shelley Zhuang, Kevin Lai, Ion Stoica, Randy Katz, and Scott Shenker. Host Mo-

bility using an Internet Indirection Infrastructure. Technical Report UCB/CSD-

02-1186, EECS Department, University of California, Berkeley, Jul 2002.

[46] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain, and Jong-Deok Choi.

Accurate, Efficient, and Adaptive Calling Context Profiling. In PLDI ’06: Pro-

ceedings of the 2006 ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, pages 263–271, New York, NY, USA, 2006. ACM Press.

50

	Profiling, extracting, and analyzing dynamic software metrics
	Recommended Citation

	Profiling, Extracting, and Analyzing Dynamic Software Metrics

	Text1: 2008
		2009-03-17T14:35:34-0400
	John H. Hagen
	Document unencrypted; Originally approved 4-14-08.

