
Graduate Theses, Dissertations, and Problem Reports 

2002 

Integrated through -wafer optical monitoring of MEMS for closed Integrated through -wafer optical monitoring of MEMS for closed 

-loop control -loop control 

Jeremy Michael Dawson 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Dawson, Jeremy Michael, "Integrated through -wafer optical monitoring of MEMS for closed -loop control" 
(2002). Graduate Theses, Dissertations, and Problem Reports. 1578. 
https://researchrepository.wvu.edu/etd/1578 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1578?utm_source=researchrepository.wvu.edu%2Fetd%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 
 
 
 

Integrated Through-Wafer Optical Monitoring of 
MEMS for Closed-Loop Control 

 
 

Jeremy M. Dawson 
B.S.E.E, M.S.E.E., West Virginia University 

 
 

Dissertation submitted to the  
College of Engineering and Mineral Resources at 

 
WEST VIRGINIA UNIVERSITY 

 
in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Electrical Engineering 
 
 

Committee Members: 
 

Larry A. Hornak, Ph.D., Chair 
Parviz Famouri, Ph.D. 
Mark Jerabek, Ph.D. 

Kathleen Meehan, Ph.D. 
 

Department of Computer Science and Electrical Engineering 
 

Charter Stinespring, Ph.D. 
 

Department of Chemical Engineering 
 
 

Morgantown, West Virginia 
2002 

 
 
 

Keywords: Microelectromechanical systems, integrated optical monitoring, 
closed-loop control 



 

 
ABSTRACT 

 
Integrated Through-Wafer Optical Monitoring of MEMS for Closed-Loop Control 

 
Jeremy M. Dawson 

 
 

Current trends in many microelectronic systems show an increased use of 
microelectromechanical systems (MEMS) to perform a variety of tasks. The increased 
market for MEMS has led to microsystem technologies being employed in physically 
demanding environments and safety critical applications. This creates the need for higher 
degrees of certainty in MEMS operation, especially in systems that contain drive components 
operating under time varying load conditions. Situations such as these give rise to the need 
for detailed knowledge of the operational states of MEMS over the lifetime of the device, as 
well as device fault detection. Accurately obtaining this information by a means decoupled 
from the system shows the potential to further enable both complex and simple MEMS, and 
allows for the application of closed-loop control. Preliminary through-wafer optical 
monitoring research efforts have shown that through-wafer optical probing is suitable for 
characterizing and measuring the behavior of lateral harmonic oscillators. 

This presentation will discuss research undertaken to establish integrated optical 
monitoring (IOM) for closed-loop control. Design of the optical microprobe setup, as well as 
device geometry, were completed to achieve a through-wafer optical signal with increased 
positional resolution and mechanical stability. Successful linear closed-loop control results 
achieved using the redesigned probe setup and devices will be presented. Increased 
displacement information in the optical output waveform is needed for the successful 
application of more robust, nonlinear control routines. Theoretical optical output field 
intensity studies are presented and compared with experimental output waveforms, showing a 
positional resolution of 2 µm using grating structures. Initial binary Fresnel diffractive 
optical microelement design layout, fabrication parameters, and testing results will be given 
as well for implementation of a fully integrated optical monitoring system. 
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Chapter 1                                    
Introduction 
 
 
 
 
 
 
 

Current trends in many microelectronic systems show an increased use of 

microelectromechanical systems (MEMS) to perform a variety of tasks. The application of 

MEMS gives the advantages of mass production and high packing density offered by current 

CMOS technology, while at the same time producing mechanical structures that are small, 

lightweight, and offer low power operation [1].  Since the first discussion of using silicon as 

a mechanical material by Peterson in 1982 [2], MEMS have developed into a multibillion-

dollar industry. MEMS can be used as sensors and, also, as actuators that exhibit a variety of 

motion, such as translational, torsional, and rotational movement, as well as combinations of 

these. MEMS actuators also include microfluidic devices, developed to transfer small 

amounts of liquid in microchannels. Although currently dominated by sensors, one estimate 

shows that actuators will account for two-thirds of the MEMS market by 2005 [3]. 

The increased market for MEMS has led to microsystem technologies being employed in 

physically demanding environments and safety critical applications, creating the need for 

higher degrees of certainty in MEMS operation. Complex MEMS have been developed in 

which a number of micromechanical elements are linked to achieve a specific mechanical 

output function (Figure 1.1 [4]). This can result in drive components operating under time 

varying load conditions [5]. Situations such as these give rise to the need for detailed 

knowledge of the operational states of MEMS over the lifetime of the device, as well as the 

determination of device failure, both partial and catastrophic. Accurately obtaining this 
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information by a means decoupled from the system shows the potential to further enable both 

complex and simple MEMS and allows for the application of closed-loop control routines. 

Since basic MEMS operation involves common electro-mechanical principles, knowledge of 

the positional state of these systems can be used to apply control that is highly flexible, and 

can be optimized to provide enhanced performance under various load and application 

conditions. 
 

Figure 1.1: The Sandia Microengine. Two sets of linked comb drives (a) are used to turn a 
‘drive gear’ (b). A portion of a 24-bit mechanical lock that uses microengines to move other 
micromechanical elements (c) (Sandia National Laboratories) [4]. 

 
 
1.1 Current Trends in MEMS Technology 
 
1.1.1 Device Applications 
 

In order to understand the context in which this research is being done and its range of 

impact, a brief representative review of MEMS microactuator technology is given. The wide 

variety of MEMS actuation applications, in both arrayed and single device systems, 

motivates the need for a means of validation and verification of device operation. 

(a) 

(b) (c)
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Translational MEMS 
 

One of the most common types of MEMS devices is those of the translational variety. 

One such device, the lateral comb resonator, has been employed in many applications where 

lateral movement is needed. This device often has two sets of stationary comb fingers 

interleaved with comb fingers on both sides of a translation stage situated between the 

stationary, or stator, combs. When acting as an actuator, these interleaved fingers cause an 

electrostatic force when a voltage is applied.  To counteract this force, a mechanical force is 

provided by spring structures, or flexures, attached to the translation stage. The combination 

of these two forces allows the stage to move in one direction and then return to its original 

position when the voltage is removed. For translational MEMS sensors, such as 

accelerometers, motion causes the fingers to be more interleaved, creating more capacitance. 

This capacitance change can be calibrated to correspond to a certain degree of acceleration or 

deceleration. The flexures return the stage to its at-rest position after the motion ceases. 

Figure 1.2 shows an example of a translational MEMS device. 

Figure 1.2: Translational actuation MEMS devices: a MUMPs fabricated lateral 
comb resonator (a), and a dual-comb arrangement used to power the Sandia 
Microengine (b). 

 

Translational actuators have been utilized in many applications, ranging from fiber 

optical switching and signal attenuation to micro-scale spectrometry [6]. Also known as 

resonator devices due to their operational characteristics, this type of device has also been 

(a) 

(b)
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used in many applications involving the actuation of other micromechanical components in 

MEMS. One such system employs translation stages to position components on a surface-

micromachined free-space optical bench [7]. In this application, hinge structures, 

microfabricated mirrors, and micro-Fresnel lenses combine to form a 

microoptoelectromechanical (MOEM) system that provides scanning and focusing of a beam 

from a semiconductor laser. 

 

Torsional/Vertical Motion MEMS  
 

Micromirror arrays utilize MEMS technology in order to scan or modulate light. The first 

major application of linear arrays of such mirrors was for light modulation in printers. 

Recently, the optical communications industry has started utilizing large arrays of these 

mirrors to create high-bandwidth optical cross connects, such as the WaveStar 

LambdaRouter developed by Lucent Technologies, seen in Figure 1.3(a) [8]. This device 

uses reflective beam steering to create coupling between input and output fibers in a fiber 

optic connection. The mirrors are torsionally actuated (tilted) by electrostatic attraction 

caused by electrodes under the mirror surface. The space etched between the mirrored 

surface and the underlying electrode layer and the configuration of the mirror hinge 

determine the maximum angle of deflection. Each mirror, or pixel, is individually controlled 

by its location, or address, on a MOS chip making the array a highly tunable device. Texas 

Instruments has developed and marketed a MEMS display technology known as a DMD, or  

Figure 1.3: Torsional actuation MEMS devices: the WaveStar Lambda Router (a) (Lucent Technologies) [8], 
and two unit cells of the DMD projection display device (b) (Texas Instruments) [9]. 

(a) (b)
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digital micromirror device (Figure 1.3(b)) [9]. In an array, these devices form a display 

device that allows high fidelity data transmission, storage, and playback, as well as limitless 

reproduction without degradation. Display resolution is determined by the size and density of 

mirrors in the array. Single device display applications have also been developed [10]. 

Many free-space optical systems, such as astronomical telescopes and line-of-sight 

optical communications, experience irregularities that affect the received signal. These 

irregularities, or aberrations, are usually caused by free space turbulence, such as thermal 

distortion. Aberrations cause a fuzziness of the received signal, creating a level of uncertainty 

that could cause major problems in high precision applications. By coating the surface of the 

image or receiving plane with an array of integrated deformable mirrors, these aberrations 

can be reduced. Arrays of devices such as these have been tested and characterized by 

various research groups [11], [12].  

 
Gear/Motor Rotary Motion MEMS  
 

Another type of MEMS structure includes those that rotate in the plane of fabrication. 

Rotation can be achieved by varying the voltage of the “stator” electrodes situated around 

rotor electrodes with the opposite voltage applied, as in Figure 1.4(a). This variation causes a 

repulsion or attraction, much like that exhibited by linear comb resonators, except in a 

rotational direction. Like their trorsional counterparts, this type of MEMS has been explored 

for use in optical switching and planar scanning. An electrostatic polysilicon micromotor can 

be fabricated with a diffraction grating, consisting of two different spatial periods, on the 

surface of the rotor. This device can be used to redirect light at two different angles 

[1].Another method of achieving rotational motion is to combine gears with translational 

MEMS, such as the Sandia Microengine [13]. One lateral resonator device seen in Figure 

1.4(b) operates out of phase with the second to cause a circular action of a geared device 

connected by polysilicon beams to both resonators. This gear can then be used to drive larger 

gears, geared racks, and larger areas of micromachined silicon in complex micromechanical 

systems (Figure 1.4(c)). These devices have been developed as safing and locking 

mechanisms for the arming systems of nuclear weapons. These which exhibit continuous 

motion and experience time varying operational parameters, such as wear and applied load, 
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need a reliable system of microstructure monitoring to increase their reliability in safety 

critical systems. 

 
Figure 1.4: Rotational actuation MEMS devices: a MUMPs fabricated salient-pole side-drive 
micromotor (a) and the Sandia Microengine drive gear (b) and larger gears and 
microstructures driven by it (c). 

 

1.1.2 Modeling and Design 
 

Before a device is considered for fabrication, a thorough evaluation of the operation of 

the device must be performed to ensure proper device function for both sensors and 

actuators. The expanding market for MEMS has led to the rise of CAD tools that are not only 

used for designing device layouts, but also to simulate fabrication and operation of the device 

as well. IntelliSense’s  IntelliSuite and MEMSCAP’s MEMS Pro are two of the major CAD 

tools of this type. They use finite element, boundary element, and structured block mesh 

analyses to develop a behavioral model for the drawn device. These tools often model not 

only mechanical operation, but examine electrical, thermal, and microfluidic effects as well. 

Outside of the commercial CAD market, other approaches to MEMS modeling have been 

explored. Circuit-level methodologies have been proposed for design and simulation of 

(a) 
(b) 

(c) 
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MEMS by transforming the device into a schematic that can be behaviorally examined [14], 

[15]. Behavioral modeling using high-level functional descriptions coupled with statistical 

analysis has been performed as well [16], [17]. Detailed mechanical modeling of a variety of 

MEMS device elements and parameters, from resonator flexures to microengine linkage 

joints, has been performed to better understand device operation [18], [19]. After sufficient 

modeling of the MEMS has been performed, fabrication can be completed and 

characterization of the devices can be performed to determine how they will function under a 

variety of operating conditions. 

 

1.1.3 MEMS Characterization 
 

The small size of MEMS devices poses many challenges to characterizing devices under 

operation. The optimum conditions that cause the device to operate properly in the 

application it was designed for need to be determined. This often involves measuring 

parameters such as resonant frequency and range and direction of motion. Most devices are 

packaged in hermetically sealed chip packages due to the sensitivity of microactuators to 

certain atmospheric conditions, mainly humidity. Many unpackaged devices are examined in 

vacuum chambers to simulate actual operating conditions. To observe the device in motion, 

stroboscopic techniques and laser interferometry methods have been used to evaluate the 

movements of MEMS [20], [21]. Laser Doppler vibrometers have been developed that can 

measure both in-plane and out-of-plane motion of a variety of MEMS devices using similar 

optical techniques. Electrical means of sensing device movement, including capacitance 

measurement and MEMS circuit simulation, have been explored as well [15], [22], [23]. 

High-speed video imaging has also been utilized. One method uses bright-field optical 

microscopy and interferometric imaging to measure in and out-of-plane motion [24]. Another 

video characterization method uses Moiré patterns for ultrafine motion detection [25]. Video-

based methods have also been combined with electrical measurements for validation of the 

different types of characterization efforts [26]. 
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1.1.4 Reliability and Failure  
 

One major area directly related to device characterization is device reliability. Knowing 

the conditions that can lead to MEMS device malfunction or failure before it is implemented 

allows device manufacturers to tailor their devices toward specific applications and can relate 

the difference in lifetime of the device operating under optimal and sub-optimal conditions. 

MEMS reliability is often divided into four main areas. These are materials reliability, 

structural reliability, process reliability, and packaging reliability [27]. Device malfunction 

and failure can occur due to faults occurring separately or simultaneously in one or more of 

these areas. 

 
MEMS Materials 
 

Materials reliability involves the quality of the materials that the MEMS is comprised of. 

Most MEMS are composed of thin films of single crystal silicon, polysilicon, silicon nitride, 

and/or silicon dioxide on silicon or glass substrates. Other materials, such as polymer, 

ceramic, and diamond thin films, have been utilized as well. Silicon MEMS processing has 

been studied thoroughly and optimized to minimize defects and impurities in the material 

layers used in device fabrication. However, degradation of the mechanical properties of the 

material can occur as the device ages, causing device performance degradation. This 

degradation often occurs as a result of the environment in which the device is operated. 

Oxide growth has been shown to increase the stiffness of silicon-based devices [28]. This can 

lead to a change in the resonant frequency of resonator-type devices. Oxide growth is also 

believed to hamper the performance of MEMS side-drive motors as well [29]. Delamination 

of the layers making up a MEMS device can occur due to high residual stress between layers. 

The seams between these layers can be adversely affected by physical and chemical 

degradation as the device operates, causing a shift in device performance and even failure 

[27]. 

 
MEMS Structures 
 

Structural reliability is an aspect of device geometry. Under constant operation, areas of 

localized stress become the center of fatigue and can lead to fractures. Proper modeling and 

design to strengthen or eliminate these high-stress areas can reduce this problem. Improper 
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device design can lead to unwanted physical contact between areas of polysilicon with 

drastically different voltage polarities, causing electrical shorting and sometimes resulting in 

catastrophic failure. Stiction is perhaps the largest MEMS structural reliability issue. 

Moisture remaining in areas between moving structures after the removal of sacrificial oxide 

layers by wet etching processes causes the released parts to be held in place due to surface 

tension. Procedures such as Chronos Integrated Microsystems’ dry CO2 release process help 

to alleviate these effects. Another major structural reliability issue is friction and the resulting 

mechanical wear that is present in systems where the MEMS elements are in constant 

moving contact. Accumulating wear debris can lead to performance degradation over time 

and the eventual seizure of moving parts. Anti-wear coatings, including chemical vapor 

deposited tungsten, have been explored to reduce frictional effects [30]. Ambient operating 

temperature can lead to structural reliability issues as well. The DMD device discussed 

earlier experiences an effect referred to as hinge memory, a residual mirror tilt remaining 

with no voltage applied, as a result of operation in high temperature environments [31]. If the 

operational drift due to temperature is consistent and repeatable, compensating electronics 

can be included to overcome its effects. 

 
MEMS Processing and Packaging 
 

As with any other microelectronic technology, MEMS process reliability is an important 

factor. Bulk micromachining has been improved to provide high throughput and yield, as 

have other processing methods such as surface micromachining, high-aspect ratio etching 

and LIGA techniques, and dissolved wafer processes [27]. New CAD tools that simulate 

fabrication processes and the rise of MEMS foundry services allow for rapid prototyping of 

device designs to determine the success of the fabrication procedures. Packaging reliability is 

a major factor in MEMS performance as well. Die attachment and wire bonding processes 

must not thermally affect the devices fabricated on the chip. For MEMS sensors, isolation of 

elements from unwanted environmental factors through total or partial hermetic sealing is 

crucial. Proper design and testing of packaging processes can reduce or eliminate the 

likelihood of MEMS failure due to package failure. 
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1.2 Integrated Optical Monitoring and Control Exploration 
 

Due to the small range of movement exhibited by MEMS devices, continuous lifetime 

monitoring of motion for control and failure analysis purposes poses difficulties. As 

discussed earlier, many MEMS monitoring schemes use bulk optical methods that provide 

low noise and high accuracy metrology. However, these are employed only during die-level 

testing prior to device packaging [32]. Electrical means of sensing device motion during 

device operation have been explored. However, the dynamic range of the signal associated 

with device movement is small compared to the drive voltage signal. As a result, the signal 

may be lost in the noise created by the higher voltages used to power the device [33]. 

Capacitive sensing circuitry may also be affected by static charge accumulating oxide 

surfaces present on MEMS [34]. An ideal solution is intra-package integrated optical 

microstructure probing. This would enable decoupled position monitoring for control and 

failure assessment and management over the lifetime of the system [5]. This type of 

monitoring is best suited for systems where optical signals are not an intrinsic part of device 

function. 

This integrated optical monitoring (IOM) solution involves the use of integrated optical 

interconnects, an area that has been thoroughly studied and has long been known to offer 

significant benefits in the implementation of multicomputer interconnection networks. These 

benefits include added dimensionality, high bandwidth, and complex packaging [35]. MEMS 

optical monitoring schemes using bulk optical counter parts of integrated optical components 

such as waveguides and free-space optical interconnects have been shown, in preliminary 

testing, to provide an adequate means of optically monitoring MEMS device motion [36], 

[37]. While promising improved performance, the integrated optical monitoring elements 

must be compatible with current MEMS and other chip-level device and packaging 

technologies to minimize system complexity and costs. 

 
1.2.1 Preliminary Through-Wafer Monitoring Results 
 

Through-wafer optical monitoring has been experimentally shown to be effective in 

providing positional information of the MEMS lateral comb resonator pictured in Figure 

1.5(a) [38]. Results to date have been achieved using fiber optics and GRIN and bulk optical 

lenses to deliver and collect a through-wafer infrared probe beam interacting with the MEMS 
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device. Figure 1.5(b) shows a preliminary image of the MEMS device and through-wafer 

optical probe supplied by a 1310 nm, 50 µm fiber-coupled LED, which is focused to 

approximately 40 µm by a single GRIN lens. The 1310nm wavelength was chosen because 

of the transparency of silicon to light IR wavelengths. Using a double GRIN lens 

configuration as shown in Figure 1.5(c), a 9 µm core pigtailed laser diode source output 

operating at 1310 nm (± 1 nm) can be focused to a spot size of approximately 15 µm 

diameter. 

 
Figure 1.5: MUMPs fabricated lateral comb resonator (a). The initial through-wafer bulk 
optical monitoring scheme (b). IR image of focused through-wafer spot (c). 

 

The interaction of the probe beam by the moving device causes an intensity change in the 

optical intensity. This change in intensity is picked up by the detector fiber coupled to a 

photoreceiver. 

(a) (c) 

(b) 
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Stationary Device Through-Wafer Intensity Examination 

 
After the optical probe beam was established, the transmission intensity of the beam 

through the layers of polysilicon comprising the resonator translation stage was measured. 

This was achieved by moving the probe optics while keeping the MEMS die in a fixed 

position and the device stationary (unpowered). Figure 1.6 shows the area scanned and its 

cross-section, as well as the results of scanning with both single (8 µm core) and multimode 

(47 µm core) detector fibers connected to an InGaAs photoreceiver. 

Figure 1.6: Through-wafer scan of a stationary lateral comb resonator stage. (a) Scan area, cross 
section view for thickness illustration, and spot location at 0 V for probing a powered device 
(direction of motion indicated). (b) Scan data with 47 µm detector fiber and (c) 8 µm fiber. 

 

(a)

(b) (c) 
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The data obtained from the scan using the multimode fiber detection system shows a 

distinct change in through-wafer beam intensity as the beam passes through different 

thicknesses of polysilicon, with letters A-F corresponding to scan areas A-F in Figure 1.6(a). 

Layer names are defined by Chronos Integrated Microsystem’s Multi-User MEMS 

Processing Service (MUMPS). The 12 µm wide regions of Poly 2 on the edges of the stage 

appear as distinct minima in the scan, (labeled B). Area C represents transmission through 

the main bulk of the stage comprised of Poly 1. The gradual transition of intensity in the scan 

data is due to the large aperture of the detector fiber, an effect confirmed by simulated 

convolution of the probe beam and device features. Table 1.1 expresses the differences in 

through-wafer intensity from region to region in terms of percentage transmission (measured 

far from feature edges that induce diffraction) that have been normalized with respect to 

transmission through featureless regions. These regions gave a baseline signal loss of 50% 

after passing through the backside polished, 550 µm thick die substrate and device-side 

nitride layer. This baseline loss can be reduced to 27% by the addition of a 491 nm 

antireflection layer on the polished die back. Theoretical values determined from evaluating 

the Jones matrix for the multilayer stack transmission path (neglecting film roughness) are 

included for comparison. These results show that an 80% dynamic range of the through-

wafer probe signal is achievable. The addition of the aforementioned antireflection layer, as 

well as an adjustment of the thickness of the device-side nitride film, should result in 99% 

transmission at 1310 nm (neglecting reflection losses). 
 

Table 1.1: Percentage Transmission of MUMPs MEMS films at 1310nm. 
 

Feature 
(MUMPs layers) Calculated (%) Measured (%) 

Poly 0 74 60-75 
Poly 0 - air- Poly1 70 50-60 

Poly 0 - air - Poly 1- Poly 2 21 20 
 

The single mode fiber scan illustrated in Figure 1.6(c) shows more clearly the diffraction 

effects caused by device feature edges. These effects include an apparent enhancement of the 

dynamic range of the signal near these features. The equidistant maxim and minima in scan 

area C are believed to arise from etch hole and poly 1 dimple features in the device stage. 
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Through-Wafer Observation of Device Motion 

 
After the dynamic range of the through-wafer signal was determined to be suitable, 

probing of the device under powered conditions was performed. A schematic representation 

of the InGaAs photoreceiver input/output relationship is given in Figure 1.7, indicating a 

transimpedance gain of 1x107 V/A. 

 

 

 

 

 

 

 
Figure 1.7: InGaAs photoreceiver input/output relationship. 

 

The effects of static deflection of the device stage on the probe beam were analyzed by 

holding the drive stators at ± 17 V dc while varying the stage voltage between –15 V and +15 

V. This gave the through-wafer transmission optical signal variation in Figure 1.8, plotted 

with static stage deflection calculated as a function of applied stage voltage. The position of 

the probe spot with the stage at 0 V is illustrated in Figure 1.6(a), along with the direction of 

motion exhibited by the stage with applied voltage polarity. 

 

 

 

 

 

 

 

 
 

Figure 1.8: Through-wafer optical signal in volts and calculated static deflection 
versus applied voltage 
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The increase in the detector signal as the drive voltage approaches –15 V is a result of the 

stage moving completely out of the path of the probe beam. The decrease in detector signal 

as the drive voltage approaches +10 V is a result of the beam being interrupted by Poly 2 

structures on the device stage. The increase in detector signal after +10 V is believed to be a 

result of the Ploy 2 structure passing completely through the probe path, leaving only Poly 1 

stage areas. These results indicated a positional sensitivity of 40 mV/µm, or 10% modulation 

per micron.  

Dynamic deflection analysis was performed by applying ± 10 V dc to the stator combs 

and a 10 V (20 V p-p) sinusoidal signal to the translation stage. Again, the beam waist was 

positioned in the location indicated in Figure 1.6(a). Figure 1.9 shows detector output, 

normalized displacement, and input drive voltage waveforms for drive voltage frequencies of 

0.5, 1.8, and 2.2 kHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.9: Drive voltage (I), normalized stage position (II), and through-
wafer detector voltage (III) versus time for (a) 0.5, (b) 1.8, and (c) 2.2 kHz. 
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Displacement was approximated by using the standard model of a damped forced harmonic 

oscillator for the lateral comb resonator device [39]. The air damping coefficient and spring 

constant were calculated using the mass and geometry of the specific device [18], [40], [41]. 

The resonant frequency of the 400 µm flexure device tested was calculated to be 2.79 kHz. A 

stage mass of 0.245 µg was determined from as-drawn mask geometries and MUMPs layer 

thicknesses. Due to the MUMPs process linewidth variation of ± 0.3 µm, the resonant 

frequency should fall between 2.19 and 3.44 kHz.  

Figure 1.9 shows that, as the frequency of the input voltage is increased, the peak-to-peak 

voltage of optical signal increases while moving out of phase with the MEMS drive voltage. 

This follows the behavior of the calculated displacement waveform and agrees with the 

behavior of a forced harmonic resonator with damping. At 2.2 kHz, the input voltage is 

nearly 90 degrees out of phase with the detector signal. The shape of the waveform at this 

frequency is a result of a large displacement of the stage causing it to remain out of the path 

of the probe beam at one extreme range of motion, resulting in flat areas in the maximum 

cycle of the signal. At the opposite extreme range of motion, the stage moves so that the 

beam passes completely under the poly 2 structures on the stage, resulting in the structure 

observed at the minimum cycle of the signal. 

 

 

 

 

 

 

 

 

 

 
Figure 1.10: Through-wafer optical signal modulation depth versus frequency. 

 

Figure 1.10 illustrates the frequency dependence of the amplitude of the through-wafer 

optical signal. This data is expressed as the modulation depth of the motion signal, defined as 
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the change in measured detector output voltage at a given frequency relative to the voltage 

output at 0 V drive voltage normalized by the output signal voltage at 0 V drive. The 

resonant frequency of the device can be clearly observed around 2.2 kHz, a value that is 

within the theoretical range presented earlier. At this frequency, the maximum displacement 

of the device takes place, causing the largest modulation depth, following the expected 

behavior of a forced harmonic oscillator. The dip in the plot near the resonance peak is most 

likely a result of the attenuation of the signal due to the Poly 2 ridge on the stage of the 

device, causing an effect similar to the waveform illustrated in Figure 1.9(c). 

These tests have shown that through-wafer optical probing methods are suitable for 

characterizing and measuring the behavior of lateral harmonic oscillators. However, for the 

application of control routines to be successful, certain problems inherent in the system need 

to be addressed. Vibrational instability is a major problem when trying to apply control 

routines. The optical probing system used in preliminary studies allows the optical signal to 

experience changes due to vibrations of the probe set-up, in addition to changes in device 

operation. This effect makes it difficult for the control routine to distinguish between changes 

in device behavior as a result of a controlled added disturbance versus unwanted table 

vibration. MEMS control also requires a detailed knowledge of the positional state of the 

device at all times. A precise knowledge of the local features on a device plus knowledge of 

the limits of range of motion are required in order to correlate the optical output signal to the 

actual displacement of a MEMS element. 

This research focuses on overcoming these problems. The use of integrated Fresnel zone 

plate lenses is studied as a means to overcome vibrational instability by moving toward true 

integrated through-wafer optical monitoring. The optical microprobe assembly itself has been 

mechanically reinforced for preliminary closed-loop control studies using the bulk optical 

through-wafer probe to improve stability and to achieve a high signal-to-noise ratio. New 

device features have been studied for more accurate determination of the MEMS positional 

state. Grating structures that have been proposed as a means of determining absolute device 

position have been implemented [42]. These improvements have allowed for successful 

application of closed-loop control routines. 
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1.2.2 Through-Wafer Optical Probe System Redesign 
 

Integrated optical elements are necessary to completely eliminate the vibrational 

sensitivity of the input and detector elements in the through-wafer probing setup. As the next 

step toward fully integrated optical monitoring, the multiple-GRIN lens setup used to focus 

the spot in the plane of the moving stage of the device has been replaced with a quartz 

substrate with Fresnel zone plate lenses fabricated on its top and bottom surfaces. These 

lenses has been used to direct and focus the spot in the same manner as the multiple bulk 

optical arrangement.  

 
Integrated Optical Monitoring Loss Analysis 
 

Before integrated optical monitoring is applied to MEMS for through-wafer optical 

monitoring and feedback control, it is wise to examine such a system to determine if factors 

such as optical signal power loss and degradation will be significant enough to warrant the 

development of another method to obtain the positional state of MEMS devices. Figure 1.11 

shows a schematic view of the integrated optical probe configuration similar to the one being 

implemented in the current phase of this research. Letters A-G notes different areas of 

possible reflection loss, absorption, or non-ideal diffraction efficiency. 

Figure 1.11: Illustration and loss analysis of proposed IOM scheme. 

LOSS ANALYSIS (% transmission): 
 Fresnel Lens (A):            40% or 81% 
 Input Waveguide (B):     negligible loss 
 Fresnel Lens (C):   40% or 81% 
 Stage Modulation (D):    45-85% 
 Substrate (E):                  50% 
 Fresnel Lens (F):             40% or 81% 
 Output Waveguide (G):   negligible loss 

Total Transmission Percentage For 
Through-Wafer Probe  

(100% input, AR layers added): 
 Maximum Stage Interruption: 

             3% - binary lens 
             21% - 4-level lens 
 Uninterrupted: 

     6% - binary lens 
             46 % - 4-level lens 



 

 

19

In the experimental setup, a bulk optical lens will be used to couple a collimated input 

beam to the quartz waveguide through a Fresnel zone plate lens (ZPL). For the analysis of 

the IOM architecture shown in Figure 1.11, both binary (40% efficiency) and 4-level ZPLs 

(81% efficient) were considered [43]. The table of losses the total transmission intensity 

experiences assumes unity or 100% power input to the bulk optical lens. The first coupling 

lens will cause will cause a power loss of 40 and 81%, for binary and 4-level phase optics, 

respectively. For a totally internally reflected propagation path, loss in the quartz waveguide 

will be negligible. The next coupling lens used to focus the probe beam in the device plane 

will further reduce the intensity by 40 and 81%. Interruption of the beam by the moving stage 

of the device has been shown to cause between 45-85% decrease in transmission intensity. 

The transmission loss through the substrate was measured to be 50% in featureless areas 

without nitride AR layers, but can be lowered to 10% with such layers on the MEMS die 

front and back [44]. The third lens, collimating and coupling the beam into the output 

waveguide, decreases intensity by another 40 and 81%. This path gives the values shown in 

Figure 1.11. With maximum stage interruption, the output intensity will be 1% of the input 

for a binary lens and 12% for a 4-level lens. The uninterrupted beam will be 3 and 21% of the 

original input power. With nitride AR coating of the MEMS die, these values become 3 and 

21% with maximum stage modulation and 6 and 46% uninterrupted. In all cases, a signal 

modulation of greater than 50% is obtained. An IOM scheme using reflection from the 

microstructure plane would eliminate the loss in the substrate, but would add to the 

complexity of system alignment 

 
1.2.2.1 Integrated Fresnel Zone Plate Lenses  
 
Fresnel Lens Design and Fabrication 
 

Even though four-level phase lenses (two mask levels) allow increased coupling 

efficiency, binary lens elements have been chosen for the initial design validation studies of 

this research due to their relative ease of fabrication. Binary zone plate lenses are one of the 

simplest type of diffractive elements in design and operation, but have some limitations in 

practical implementation. As shown in the previous section, diffraction efficiency is limited 

to less than 50%, and off-axis binary lenses will most likely result in comatic aberrations in 
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the output beam intensity pattern. Binary lenses provide a good starting point at which to test 

key design, processing, and testing issues involved in determining the feasibility of using 

diffractive optical microelements in this system. 

Off-axis lenses have been used at the input and output of each guide plane with small 

input/output angle difference. This design relaxes the otherwise severe lithography 

requirements arising from deep submicron repetitive features resulting from the large angle 

designs. The Karl Suss M6 mask aligner available can readily resolve linewidths down to 

0.75 µm. From a practical standpoint, this choice also enables viewing of the probe spot on 

the MEMS substrate during alignment and experimental evaluation. A binary lens design of 

this type is shown in Figure 1.12 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.12: Representation of a 10° off-axis binary ZPL. 

 

Designed for 1310 nm, this lens can bend and focus an off-axis, divergent input beam 10 

degrees beyond the input angle for collimated total internal propagation within the 

waveguide substrate With an input angle of 41.8° (the critical angle for a quartz waveguide in 

air), this gives the propagating beam an angle of ~62°. Feature sizes in this 1mm x 1mm area 

lens are no smaller than 1.75 microns, well within the limits of the mask alignment system 

available. Larger output angle lenses yield features too small to be fabricated repeatedly and 

reliably. Lenses that accept an off-axis input and focus on-axis could be achieved if losses 

due to non-total internal reflection propagation are reduced by the addition of reflective metal 
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cladding areas to the substrate surface. This would allow for on-axis inputs to be collimated 

and coupled into the waveguide, and similarly coupled out for probing MEMS structures. 

The binary lenses designed can be used for visible wavelengths with an increase in focal 

length. A visible helium-neon wavelength (637 nm) was used in the initial stages of the lens 

substrate’s implementation to become accustomed to the alignment issues inherent in such a 

system and aid in the alignment process. 

Initial zone plate lens fabrication was performed by reactive ion etching SiO2-coated 4-

inch silicon wafers using an Oxford Instruments Plasmalab 80+ system. These test wafers 

were used to determine the accuracy of the photolithography processing, the reactive ion etch 

parameters that give the most anisotropic features, and the etch rate of SiO2 under these 

conditions. After the photolithography and etching processes were refined and are readily 

repeatable, 3-inch fused silica substrates will be used. Lenses have been etched into both 

sides of the substrate.  

 

Implementation 
 

After the lenses were fabricated on a quartz substrate, testing was performed to determine 

the amount of transmission degradation, if any, which may occur as a result of the etching 

process, reducing the surface quality of unmasked areas of the substrate. This was done by 

passing light through areas of a test substrate that has both etched and unetched surfaces. 

This scheme is illustrated in Figure 1.13. 

 

 

 

 

 

 

 

 
Figure 1.13: Transmittance testing setup. 
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The transmitted intensity of collimated input light (at both 637 nm and 1310 nm) was 

examined, and an evaluation of the different probing areas was made. 

Before fabrication of the lenses and waveguide, the spot quality and focal length of the 

lenses was calculated to determine if suitable probe spots can be obtained. After this, the lens 

and waveguide substrate were used in the through-wafer optical probing apparatus, adding 

another level of complexity to the already intricate system. Optical sources and focusing 

optics for both visible and infrared probe beams had separate x, y, and z-axis adjustments that 

are coupled to the three-axis adjustment of the waveguide substrate. To simplify alignment 

and allow for spot observation, these elements were located above the device plane, as shown 

in Figure 1.11. As mentioned earlier, off-axis focus allowed for spot observation in the 

device plane. Characterization studies similar to those performed using the bulk optical lens 

arrangement were performed to determine the feasibility of employing the integrated optical 

substrate for through-wafer monitoring and control. 

 
1.2.2.2 Vibration Isolation 
 

Due to the added complexity that arises with the addition of the integrated optics plane, 

and in order for preliminary control efforts to be studied at the same time that the Fresnel 

lens fabrication is taking place, the optical probe setup was reconstructed using more stable 

elements.  Motorized translation stages with small (0.5 µm) incremental travel were used to 

prevent adjustment backlash, allowing stable probe spot positioning as well as fine 

adjustment of the probe location. While not completely vibration free, this new setup allowed 

the through-wafer optical probe to be used in the application of simple closed-loop control 

routines. 

 

1.2.3 Absolute Position Determination 
 

The control routines being considered for MEMS control in this research involved using 

microstructure position to estimate microstructure speed. Early research in through-wafer 

monitoring using a single-opening probing area (Figure 1.14) produced a large dynamic 

range of optical probe signal with small MEMS motion, but provided little information as to 

the actual displacement of the device stage. 
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Figure 1.14: Single opening through-wafer probing MEMS device. 

 

The range of the initial signal could indicate in-plane as well as out-of-plane motion, due to 

the levitation effects more likely to occur at maximum travel limits of the stage. This 

levitation changes the thickness of the air gap between the device planes, affecting the 

through-wafer intensity. The large range of the signal could correspond to anywhere from 2 

to 10 microns of motion, depending on the frequency and amplitude on the input DC and AC 

drive voltages, since only one major change in intensity is present during one cycle of 

motion.  

Using a diffraction grating fabricated on the moving stage of the device as the probing 

area could eliminate the guesswork involved in interpreting the signal from single-opening 

devices (Figure 1.15). 

 

 

 

 

 

 

 

 

 
Figure 1.15: Grating structure through-wafer probing area. 
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The acquisition of a laser Doppler vibrometer, to measure actual displacement of the 

stage, would provide a method of validating these theories. Another solution is theoretical 

modeling of the interaction of the probe beam with the device stage geometry.  To study the 

through-wafer optical signal resolution of both the single-opening and grating stage 

geometries, optical field analyses were performed using lateral comb resonator model 

parameters (mass, damping, and spring constant) to explore through-wafer diffraction effects 

and probe beam intensity patterns. These analyses were carried out using Matlab programs. 

Theoretical and experimental optical output waveforms were examined to determine the 

positional resolution available, as well as the accuracy of the modeling program in predicting 

optical output behavior. After displacement is known, the successful application of non-

trivial closed-loop control routines will be possible. 

 

1.2.4 Closed-Loop Control of MEMS 
 
The microstructure positional information signal obtained from the through-wafer optical 

probe has been used to experimentally validate microsystem mechanical models, determine 

model parameters, and apply closed-loop position control to the lateral comb resonator 

device using a real-time data acquisition and control system under various operating 

conditions [45], [46]. To date, standard linear techniques, including proportional-integral (PI) 

and proportional-integral-differential (PID) control, have been simulated and used 

experimentally with the mechanically reinforced through-wafer optical probing setup that 

reduces the effects of unwanted vibrations.  

One method of improving the response time of the control routine is the utilization of a 

real time data acquisition board. This type of board often has a dedicated processor that 

performs calculations independent of the PC operating system. Using sliding mode tracking 

control instead of PID methods can also reduce controller response time. Sliding mode 

tracking control requires more knowledge of the positional state of the stage, making it 

difficult to apply this type of control to single-opening resonator stages. The grating structure 

stages discussed earlier show the potential of overcoming this limitation. 

To determine the effectiveness of using the grating structure lateral comb resonators for 

MEMS control, the reinforced bulk optical through-wafer probing setup has been employed 

to explore control routines dependent on detailed position information. After fabrication, 
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probe setup implementation, and signal characterization of the integrated zone plate lens 

substrate has been completed, through-wafer optical probe signals obtained from the 

arrangement outlined in Section 3.2.1 will be used for control purposes. 

 

1.3 Summary 
 

Successful through-wafer optical probing of MEMS for lifetime monitoring and control 

ultimately requires integrated optical components for mechanical stability of the probe beam 

to obtain an optical signal that provides detailed information about the position of the device 

during operation. This research has explores the fabrication and implementation of Fresnel 

zone plate lenses for probe beam delivery as the next step toward true integrated optical 

monitoring. It has also focused on the examination of grating structures fabricated on MEMS 

lateral comb resonator device stages as a means of determining absolute device position for 

control applications. In parallel with Fresnel lens fabrication, redesign of the through-wafer 

optical microprobe setup has allowed for the application of closed-loop control routines using 

the position information obtained from the grating structures. Figure 1.21 shows a flow of 

research tasks required to meet the final research goal. 

 
Figure 1.16: Research task flow illustration. 

 

Chapter 2 presents the theory used for MEMS model development, Fresnel zone plate 

lens design, and optical analysis. Chapter 3 discusses changes in MEMS device and optical 

probe system design for improved through-wafer signal acquisition. Through-wafer 

diffraction studies using theoretical and experimental data are outlined in Chapter 4. Fresnel 
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lens design, fabrication, and testing are covered in Chapter 5. Chapter 6 presents research 

conclusions and suggestions for future work. 
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Chapter 2                                               
Theory 
 
 
 
 
 
 
 

The material presented in this chapter contains the theory that is the basis for 

understanding lateral comb resonator devices, diffraction effects of stage features, Fresnel 

lens design, and laser diode to fiber coupling. Section 2.1 deals with the development of a 

system model for the lateral comb resonator. To study the possibility of obtaining accurate 

position information from the optical signal, diffraction caused by the probing areas of the 

device stage was examined. Section 2.2 presents a study of diffraction progressing from 

simple plane wave interaction with an infinite slit to Gaussian beam diffraction through a 

transparent grating. Section 2.3 discusses the development of on and off-axis Fresnel 

diffraction patterns. Section 2.4 addresses the coupling efficiency in the fiber optic delivery 

and signal recovery system used in initial stages of this research. 

 

2.1 MEMS System Model Development 
 

In order for to control MEMS to the submicron level, an accurate system model must be 

developed. Previous examinations of comb resonator displacement were done using a system 

model that neglected the effect of the damping parameter, leading to unrealistic displacement 

values at the resonant frequency of the device. A more accurate device representation is that 

of a forced harmonic oscillator with damping. The first order differential equation 

representing this type of device is given as [39] 
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where x is the position of the stage, m is the stage mass, β is the damping coefficient, Ks is 

the spring constant for one flexure, and Fd is the load force (which is zero in this case). In 

this study, lateral translation of the stage is defined as being in the x-direction. 

The force generated by the electrical input, Fe, is calculated using 

 

 

where n is the number of comb fingers, ε is the permittivity of air, t is the vertical thickness 

of the fingers, g is the gap between stator and translation comb fingers, Vb is the dc voltage 

supplied to the stator combs, and Vs is the sinusoidal voltage signal applied to the translation 

stage. Accurate determination of these device parameters is essential for the development of 

a valid system model. 

 

Mass 
 

Mass can be approximated by multiplying the stage volume of the as-drawn geometry 

and the density of LPCVD deposited polysilicon (2.33x10-15 kg/µm). A more accurate value 

can be obtained by calculating the effective mass of the stage in the x-direction, given by [47] 

 

 

 

where ms is the mass of the stage, mt the mass of the flexure trusses, and mb is the mass of the 

flexure beams. Since the motion of the devices used for this research is predominantly lateral 

in nature, the x-component of the effective mass is most dominant. The dimensions used to 

calculate truss and beam mass are illustrated in Figure 2.1. 
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Figure 2.1: Flexure and truss dimensions. 

 

Spring Constant 
 

While the spring constant of the folded flexure design applied in the devices used for this 

research has a component in the x, y, and z-directions, the component in the x-direction is 

dominant, again because of the lateral direction of motion. The spring constant in the x-

direction can be determined by [47]. 

 

 

 

with 
 

 

 

It should be noted that Equation 2.1-3 is obtained by assuming all sections of trusses are of 

equal length, Lt. In the case of MEMS designed for this research, the length of the center 

truss varies from the length of the two outer trusses by 4µm. To overcome this inequality, an 

average truss length value was used for Lt in Equation 2.1-3. Spring constants calculated in 

this manner showed insignificant variation from the value obtained by using the non-equal 

truss equation presented in [48]. Since beam width and truss width are equal in this design, α 

,
36414

36142
222

222

3

3

bbtt

bbtt

b

b
x LLLL

LLLL
L

Etwk
αα
αα

++
++

⋅=

.
3









=

b

t

w
w

α

2.1-4

2.1-5



 

 

30

has a value of 1. Using the mass calculated by Equation 2.1-2 and the spring constant from 

Equation 2.1-3, the resonant frequency can be found using 

 

 

 

Damping Coefficient 
 
The damping coefficient in the x-direction can be calculated by [48]  
 

 

 

where µ is the viscosity of air, As is the surface area of the stage, At is the surface area of the 

trusses, Ab is the surface area of the flexure beams, d is the oxide thickness gap, δ is the 

penetration depth of the airflow above the stage, Ac is the surface area of the comb finger 

sidewalls, and g is the finger-to-finger gap. Because many of these values are difficult to 

determine with accuracy due to fabrication process tolerance, the damping coefficient can 

best be determined experimentally. 

The state variable representation of the forced harmonic oscillator is given by 
 

 

 

 

 

 

with  
 

 

The electrostatic force, Fe, is determined using the permittivity of free space, ε0 (8.854x10-12 

C2 /N⋅m2), the vertical thickness of the comb fingers, t, the finger-to-finger gap g, the applied 

DC voltage Vb, and the applied AC voltage Vs. To develop the input to output transfer 

function, the Laplace transform must be taken, 
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resulting in  
 

 

 
The frequency-space representation of this relation is 
 

 

 

which expands to  
 

 

 

 

The gain and phase shift of the output are given by 
 

 

 

and 
 

 

 

respectively. This information can be curve fitted to experimental gain and phase shift data 

using calculated mass and spring constant values and a damping value that results in the best 

fit. 

Variations of mass and spring constant in Equation 2.1-16 will change the frequency at 

which resonance will occur. Variations in the damping parameter will also change the 

resonant frequency, as well as affect the ‘steepness’ of the gain curve (similar in appearance 

to Figure 1.9). At low frequencies, sinusoidal input drive voltage and stage displacement are 

in phase (from Equation 2.1-17). As resonance is approached, the two become increasingly 

out of phase, reaching 90° at resonance. This continues until, far above resonance, sinusoidal 

drive voltage and displacement become 180° out of phase. 

( ) ( ) ( ) ( )[ ] ,12 sFsXkssX
m

sXs es ++−= β

( )
( ) ( ).

1
2 skmssF

sX

se β++
=

( )
( ) ( ) ( ),1

2 ω
βωωω

ω G
jkmF

X

se

=
++−

=

( )
( ) ( ) ( ) ( )

.
222222

2













++−
−

++−

+−
=

βωω

βω

βωω

ω
ω

ss

s

km
j

km

km
G

( ) ( )( ) ( )( )22 ImRe ωωω GGG +=

( ) ( )( )
( )( )






=∠ −

ω
ωω

G
GG

Re
Imtan 1

2.1-12

2.1-13

2.1-14

2.1-15

2.1-16

2.1-17



 

 

32

Vertical Stage Motion 
 

Although the majority of device stage motion is in a lateral direction, there is a small 

amount of vertical translation as the stage moves from side to side. If vertical motion 

becomes to large, due to either increased drive voltage or frequency, the fingers could 

become disengaged and cause device failure. Even with small amplitudes of vertical motion, 

a change in optical output intensity due to the changing thickness of the air gap can occur 

(etaloning). Because of the normal angle of incidence of the probe beam, the air gap can act 

as both a resonance cavity and anti-reflection layer, depending on the separation distance. 

The extent of motion can be measured accurately during device operation using a laser 

vibrometer, but an estimate of vertical motion can be made using previous experience with 

the lateral comb resonator devices used in this research. 

As the stage moves, a number of vertical motion modes can occur, three of which are 

pictured in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2: Theorized types of vertical stage motion: (a) raising motion with torsional 
bending, (b) parallel raising motion, and (c) parallel raising and lowering. 

 

For this examination, simple vertical motion without torsional bending will be considered. In 

order for device failure from finger disengagement to occur, the stage must travel a minimum 

of 2 µm along the z-axis over as much as 20 µm of total displacement in the x-direction. The 

(a) 

(b) 

(c) 
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devices used in this research rarely fail under normal operating conditions, indicating that 

vertical motion must be less than 2 µm, as described in Section 4.4.4. 

The change in through-wafer optical intensity caused by vertical stage motion can be 

determined using the reflectivity of a simple plane interface at normal incidence, given by 

[49] 

 

 

 

where n1 and n2 are the indices of refraction of the incident and transmitted media 

respectively. The reflectance can then be found using 

 

where r12 is the reflectivity of the first interface and r23 is the reflectivity of the second 

interface, both given by 2.1-18, and 

 

with λ0 being the wavelength of the beam, h as the thickness of the layer, and nfilm its 

refractive index. Transmittance, T, can be solved for using 

 

 

By using off-axis Fresnel zone plate lenses and non-normal incident probe beam for through-

wafer probing, the effects of the air gap acting as a resonance cavity are reduced, but may 

cause signal interference in the form of multiple reflections present in the air gap, similar to 

the condition pictured in Figure 2.3. 
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Figure 2.3: Angular incidence interaction at a planar boundary resulting in multiple 
reflection and transmission paths. 

 

The reflectivity of a planar interface for a TE wave of angular incidence is given by [50]  

 

 

 

Propagation angle in the second medium, θ2, can be found using Snell’s Law, 

 

 

Reflectance and transmittance can then be obtained using 

 

 

and Equation 2.1-21. By tracing the propagation path of the primary ray and its reflections 

while adding the effects of reflection losses, the relative intensities of the secondary 

transmission paths and their proximity to the primary transmitted ray can be found. 

 

2.2 Examination of Diffraction Effects Caused by MEMS Device Stage Features 
 

In order to gain a better understanding of the effect that diffraction has on a position 

signal obtained via through-wafer probing, it is necessary to examine basic diffraction theory. 

There are three main factors that play a role in diffraction. The first is the complex amplitude 

of the input beam U(r). The next is the pupil function, p(x,y), or transmittance function t(x,y), 

both of which are developed based on the features of the of the device stage.  The final factor 
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is the transfer function of free space, h(x,y), which determines the amplitude and shape of the 

beam at some distance d away from the device stage. 

 

Plane Wave Diffraction by a Slit 
 

To begin, a simple plane wave incident on a slit is examined [50]. The complex 

amplitude of a plane wave is given by  

 

 

where A is the wave amplitude, k = 2π/λ is the wave number, and z is the distance away from 

the source.  

The geometry of the slit is defined as a pupil function. The pupil function of the slit can 

be expressed as  

 

 

 

where a is the half-width of the slit. 

The aperture function, f(x,y), is simply an expression of the input waveform shadowed by 

the pupil, 

 

 

By convolving this aperture function with the Fresnel approximation of the transfer function 

of free space, 

 

 

 

where h0=(j/λd)exp(-jkd), the output function, g(x,y), that defines an observation plane at a 

distance d can be obtained. It is also often useful to look at the Fresnel number, NF = a2/λd, 

which relates the half-width of the slit, a, to the observation plane distance. 
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Rectangular Aperture 

 
The same procedure can be followed to examine the diffraction of a plane wave passing 

through a rectangular aperture. The pupil function is defined as 

 

 

 

where a and b are the width and length of the slit, respectively. The rectangular aperture adds 

another degree of dimensionality to the pupil function, resulting in diffraction from all sides 

of the opening. 

 

Transparent Media 
 

Optical rays will also experience diffraction when passing through a transparent medium. 

In order to fully examine the through-wafer probe setup, the stage must be modeled as a 

transmission function. Using only a pupil function does not account for the actual physical 

thickness and index of refraction of the poly stage, which are certain to enhance diffraction 

effects by further retarding the phase of the beam. In order for index of refraction and layer 

thickness to be included, the pupil function must be replaced with a complex amplitude 

transmittance [50], 

 

 

where n is the index of refraction, k is the wave number, and t is the thickness of the stage. 

This can be a continuous function, or piecewise defined similar to the pupil function 

mentioned earlier. 

 
Gaussian Beam Diffraction 
 

In the current through-wafer probing setup, the output of a fiber is focused to a small spot 

and passed through the MEMS device stage. This beam is assumed to be Gaussian, having a 

complex amplitude that can be expressed as [1] 
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with beam parameters 

 

 

 

 

 

 

 

 

 

 

and 

 

 

where W(z) is the beam width a distance z on the optical axis, W0 is the beam width at the 

Raleigh range, z0, and R(z), ζ(z), and A0 are the radius of curvature, phase, and amplitude of 

the wavefront at distance z, respectively. The complex Gaussian beam amplitude (Equation 

2.2-7), the transmission function of the stage (obtained from Equation 2.2-6), and the transfer 

function of free space are used to determine the optical field intensity at a distance, d, away 

from the device stage by first finding the aperture function and convolving it with the transfer 

function of free space. 

 

2.3 Fresnel Lens Zone Pattern Determination 
 
On-Axis Lenses 
 

On-axis focusing Fresnel lenses consist of areas of varying substrate etch depth radially 

symmetrical around a central point, as illustrated in Figure 2.4. 
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Figure 2.4: On-axis Fresnel lens system. 

In this configuration, collimated rays entering the lens experience a phase 

shift due to the different substrate thickness at each radius and are focused at 

a distance f. Determination of the radii defining the edges of the zones 

involves examining the optical path difference (OPD) between the ray 

passing through the center of the lens to the focal point (along the optical 

axis) and the ray passing through each rm to the focal point. This is 

expressed as 

 

 

where  

 

 

leading to  

 

 

The optical path difference is chosen to be a fraction of the wavelength of light used in 

the system, depending on the number of phase levels desired for the lens. Figure 2.5 shows 

the relationship between OPD and the phase difference at each radii of the lens for a four 

level zone plate lens.  
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Figure 2.5: (a) Zone pattern cross-section illustrating phase levels. (b) Wavelength to phase 
shift comparison for OPD determination. 

 

In this case, there are four levels of the zone pattern in the substrate, so the wavelength has 

been divided into multiple orders of fourths for OPD determination. For binary, or two-level, 

zone patterns, the wavelength is divided into multiple orders of half wavelengths. Increasing 

the number of phase levels of the lens increases its focusing efficiency, so the number of 

levels should be chosen according to the requirements of the system [51]. Once the desired 

focal length, operating wavelength, and number of phase levels of the lens have been 

determined, the radii can be determined by substituting the multiple order of fractional 

wavelengths for OPD into Equation 2.3-3 and solving for rm [52]. Table 2.1 lists the 

equations developed for the determination of the radii for the lens cross-section shown in 

Figure 2.5. 
Table 2.1: Zone radius equations for various phase shifts. 
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Maximum etch depth corresponds to a phase retardation of 2π for a four level lens, leading to 

the relation [53] 
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This can be adjusted for lenses having less than four levels by using the proper fraction of 

Equation 2.3-4. 

 

Off-Axis Lenses 
 

For the case of off-axis Fresnel lenses, the model of a thin lens with light entering only 

half of the lens was used (adapted from [54]), illustrated in Figure 2.6. It should be noted that 

this type of lens is not symmetrical around a central point, as was the case with on-axis 

lenses.  

 

 

 

 

 

 

 
Figure 2.6: Off-axis lens arrangement. 

 

An off-axis lens is essentially an area of an on-axis lens centered on a central radius 

determined by the amount of off-axis focal point deflection. This central radius can be found 

by 

 

 

where θ is the desired angle of deflection (in this case ≥ 41.8°, the total internal reflection 

angle for the quartz substrate the lenses will be fabricated in). To define the off-axis radii, an 

on-axis lens is created first. Then, using the total internal reflection angle and a desired focal 

length, the radius that will be defined as the center of the lens can be found. Because of the 

difficulty in achieving this small linewidth consistently in the photolithography process, the 

input angle will have to be relaxed (i.e. not collimated) to achieve reasonable photoresist 

linewidths (Figure 2.7). 
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Figure 2.7: Relaxed input illustration for off-axis lenses. 

 

Since the input beam is no longer incoming at zero degrees with respect to the optical axis, 

Snell’s law must be used to account for the differences in indices of refraction between glass 

and air. The relation presented by Equation 2.1-23 can be used to determine the input 

angle,ψ, of light that, when coupled with the deflection angle of the lens, will result in a total 

internal reflection condition.  

Off-axis focusing will result in comatic and astigmatic aberration of the focused beam 

due to the non-paraxial nature of the incoming optical wavefronts, with coma being the major 

aberration due to the large number of zones used to create the lens. Comatic aberration is 

illustrated in Figure 2.8. 

 

 

 

 

 

 

 

 

 
Figure 2.8: Spot spreading due to comatic aberration. 

 

The amount of comatic aberration can be determined by examining the power series 

expansion of Equation 2.3-1. The third term in the expansion for off-axis zone plate lenses 

θ

θ
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describes the coma. Using this term, the off-axis focus angle α that will result in coma can be 

solved for, giving [55] 

 

 

 

where n is the number of zones in the lens, λ is the wavelength of the beam, and f is the focal 

length of the lens. This aberration will be acceptable in early IOM process development, but 

will have to be taken in to consideration in subsequent efforts by using a more complicated 

diffraction pattern. 

 

2.4 Fiber-to-Fiber and Laser Diode-to-Fiber Coupling Efficiency Examination 
 

Optical monitoring of MEMS involves the employment of common optical system 

elements, either bulk or integrated, to probe devices and receive the positional information. 

The current MEMS optical monitoring system employed by our research group uses fiber 

optics to input and collect the probe beam. This will be improved in the future by using 

integrated Fresnel zone plate lenses, creating an optical monitoring system that is decoupled 

from the MEMS and can be employed over the lifetime of the device. Because of diffraction 

effects caused by the surface features of the moving stage, the position of the receiving 

element in relation to the optical input element is important. If the collector element is far 

away, the optical beam may be deflected completely out of the acceptance range of the 

receiving element. Even if these diffraction effects are ignored, the amount of light coupled 

decreases as the distance between the optical output and receiving element is increased. This 

section presents an examination of how coupling efficiency is affected by increasing the 

distance between output and receiver for the simple cases of fiber to fiber and laser diode 

(LD) to fiber coupling. 
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2.4.1 Optical Output Element 
 

For this study, the output to receiver separation will be represented by displacement on 

the z-axis, with x and y-axis misalignments assumed to be negligible. The fiber optical output 

is assumed to be circular Gaussian, with complex amplitude that can be expressed using 

Equation 2.2-7 – 2.2-12. Since W0 can be approximated (~4.1 µm for the current optical 

monitoring setup), the sqrt(2)*W0 distance z0 can be solved for using equation 2.1.5, resulting 

in 

 

 

 

The intensity of this beam at a distance of 100 µm away from the output is illustrated in 

Figure 2.9. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.9: Circular Gaussian Beam Intensity at 100 µm. 

 

The output of the laser diode is assumed to be an elliptical Gaussian with complex amplitude 

represented by 
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with beam parameters 

 

 

 

 

 

 

 

 

 

and 

 

 

 

calculated similarly to their circular Gaussian counterparts. The output of a laser diode with a 

2x10 µm output area is illustrated in Figure 2.10 at a distance of 50 µm away. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.10: Elliptical Gaussian Beam Intensity at 50 µm. 
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2.4.2 Receiving Fiber 
 

In order to account for phase mismatch between the optical output element and the 

receiving fiber, the fiber optical mode field of the receiving fiber must be found. This is 

given by [56] 

 

 

where f(x,y) is the mode field, β is the propagation constant in the fiber core, and zrF is the 

distance traveled in the fiber. The propagation constant in a single mode fiber is 

approximated by [50] 

 

 

 

where n1 is the index of refraction of the core, k is the wave number (2π/λ), and a is the 

radius of the core. For a single mode fiber, f(x,y) is expressed as [2] 

 

 

 

where 

 

 

 

 

 

 

 

and  

 

 

The index of refraction of the fiber cladding is defined as n2. The ratio, R, allows continuity 

of the mode field across the core-cladding boundary. As seen in Equations 2.4-9 – 2.4-12, the 

expression for the mode field is highly dependent on β, which can be approximated by 
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equation 2.4-8. However, this approximation causes a discontinuity at r=a. The exact value 

of β can be determined by adjusting its value to eliminate the discontinuity (Note: an error in 

the fourth decimal place of β can cause discontinuity). 

To eliminate this problem, the mode field can be approximated as a Gaussian intensity 

distribution by [56] 

 

 

A comparison of the Bessel function determined mode field and the Gaussian distribution 

approximation is shown in Figure 2.11 (Appendix A, ‘modeprop.m’).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.11: Mode Field Comparison. 
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2.4.3 Coupling Efficiency 
 

Determination of the coupling efficiency between the optical output source and the 

receiving fiber involves computing the overlap integral of the output amplitude distribution 

and the fiber mode field distribution. This expression is given as [57,58] 

 

 

 

 

Mathcad was used to calculate the integrals from –100 to 100 µm, giving 
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For laser diode to fiber coupling, integration over the same area gives 
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with 

 

 

 

 

 

 

 

 

 

 

and 

 

 

where ρ is the radius of the receiving fiber. The second integral term in the denominator 

gives the same result as Equation 2.4-19. 
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2.4.4 Complex Error Function 
 

Integration in the numerator of Equation 2.4-16 results in an error function containing 

complex arguments. Because Matlab cannot handle complex numbers as input arguments to 

an error function, equations from [5] were used to determine the values for the error function 

terms in Equations 2.4-17 and 2.4-23. They were 

 

 

and 

 

 

 

To calculate w(Z), the summation in Equation 2.4-31 was carried out over 100 terms and a 

result that matched tabulated values was obtained. 

 

2.4.5 Results 
 

A Matlab program was written to determine the complex error functions plot fiber to 

fiber and laser diode to fiber coupling efficiency as a function of z-axis separation (Appendix 

A, ‘couple.m’). The single mode fiber specifications (used for both the optical input fiber and 

the receiver) at 1.3 µm wavelength were given as: n1=1.4677, NA=0.14, n2=1.4610, and a 

core diameter of 8.2 µm [59]. The laser diode was assumed to have an output area of 2x10 

µm with an angular divergence in the x-direction (width) being λ0/width (rad), and a 

divergence of λ0/length in the y-direction. Figure 2.12 shows the results of calculating 

Equation 2.4-16 for fiber-to-fiber separation of 0-500 µm. 
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Figure 2.12: Fiber-to-fiber coupling efficiency as a function of z-axis separation. 

 

It can be seen from Figure 2.12 that, because the optical output and receiving fibers are 

identical, the coupling efficiency is 100% when they are in butted contact. This falls off 

sharply as separation is increased. Figure 2.13 plots the coupling of a laser diode to a fiber 

over the same separation distance (0-500 µm). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.13: Laser diode-to-fiber coupling efficiency as a function of z-axis separation. 
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Because the output intensity of the laser diode is elliptical in nature, coupling efficiency has a 

relatively low value, even when in contact with the receiving fiber. The size and angular 

divergence of the output also have an effect on the starting value. Figure 2.14 shows a 

comparison between fiber-to-fiber and LD-to-fiber coupling. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.14: Comparison of fiber-to-fiber and LD-to-fiber coupling efficiency. 

 

Conclusion 
 

Coupling efficiency has been examined for two cases of basic optical element 

input/output configurations, fiber-to-fiber and LD-to-fiber coupling. In both cases, coupling 

efficiency drops greatly as a function of z-axis separation, mainly a result of the angular 

divergence of the output element. Decreasing the angular divergence with a collimating lens 

would reduce the rate at which coupling efficiency decreases. It has also been shown that 

coupling between two elements with similar input and output characteristics is more efficient 

than coupling between dissimilar elements. Coupling a laser diode to a fiber requires an 

intermediate element (such as a ball or GRIN lens) to shape the output optical waveform into 

one that more closely matches the receiving fiber in both amplitude distribution and phase. 
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Chapter 3                                              
MEMS Lateral Comb Resonator and 
Optical Probe System Design 
 
 
 
 

Chapter 3 presents the parameters of the most current MUMPS MEMS lateral comb 

resonator design, created specifically for through-wafer optical monitoring. Basic device 

geometries are presented along with calculated mass and spring constant parameters. This 

chapter also describes mechanical reinforcement improvements made to the through-wafer 

optical monitoring setup to reduce external vibrational interference and to aid in the 

acquisition of optimum probe output signals. 

 

3.1 MEMS Design 
 

Previous through-wafer monitoring research was performed using devices designed for 

in-plane probing of microstructure motion. New lateral comb resonator devices were 

designed specifically for optimizing the dynamic range of the optical monitoring signal. The 

split-comb geometry of the previous design, created to allow for post-processed polymer 

waveguides to be added, was replace by only one set of interleaved comb fingers on each 

side of the device. This design lowered the surface area and, consequently, the mass, of the 

translation stage, allowing for higher resonant frequencies and increased lateral displacement. 

Figure 3.1 shows the basic geometry of the devices used in this research. 
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Figure 3.1: Basic comb resonator geometry. 

 

This design has 32 sets of interleaved comb fingers on each side, and was designed with 

folded flexure lengths of 350, 400, 450, and 500 µm. Two different translation stage 

structures were devised for obtaining the through-wafer optical signal. A ‘POLY 1 openings 

with adjacent POLY 2 layers’ arrangement was created to give high dynamic range of the 

signal. Some devices included metal deposited on top of the POLY 2 strips to further 

attenuate the probe beam. Grating structures were also employed as a means of obtaining 

greater positional resolution from the optical output waveform. The grating fabricated on the 

device translation stage consisted of 4 sections of 2 µm holes and 2 µm POLY 1 separations. 

Large grating areas were avoided to preserve the structural integrity of the stage. Both of 

these stage arrangements are presented in Figure 3.2. 
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Figure 3.2: Single opening (a) and grating (b) through-wafer optical monitoring structures. 

(a)

(b)
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The other types of resonator structures included in the new die layout were designed as 

MEMS generator devices. These devices were intended to provide an electrical signal or 

allow for a disturbance to be added at a set of secondary combs. Grating and single opening 

optical probing structures were included for through-wafer monitoring proposed. The 

geometry of this type of structure is shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3: Resonator generator geometry. 

 

The final device layout, shown in Figure 3.4, was fabricated by Chronos Integrated 

Microsystems (formerly MSNC) using their Multi-User MEMS Processing Service 

(MUMPS). The seven MUMPS mask levels and their cross sections are illustrated in Figures 

3.5 – 3.7. Detailed information about the MUMPS process can be found in [60]. 
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Figure 3.4: MEMS die layout. 
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Figure 3.5: MUMPS mask levels and their corresponding cross sections: (a) POLY 0, (b) 
ANCHOR 1, and (c) DIMPLE. 

 

(a) 

(b) 

(c) 
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Figure 3.6: POLY 1 layer: (a) basic device geometry, (b) single opening and cross section, 
and (c) grating and cross section. 

 

(a) 

(b) 

(c) 



 

 

59

Figure 3.7: MUMPS mask levels and their corresponding cross sections: (a) POLY 1- POLY 
2 VIA, (b) POLY 2, and (c) METAL. 

 

As seen in Figure 3.4, most of the device voltage input pads for the 36 devices were 

routed to the edge of the die for packaging and bonding to provide more space for the 

detector fiber in optical probing experiments. A bonding pad (black squares in the layout 

illustration) was located next to each of the edge-routed devices to confirm the location of the 

focused probe beam spot and aid in probe beam positioning. As in previous research, each 

die was back-side polished before sacrificial oxide removal, or release, to improve through-

wafer probe signal intensity. After polishing, the die was cleaned thoroughly using acetone 

and immersed in hydrofluoric acid for 2.5 minutes to release the moving structures of the 

devices. 

To aid in system model development for control purposes, mass and resonant frequency 

for each type of device (basic resonators and generator structures) was calculated with as-

drawn dimension values using Equations 2.1-3 and 2.1-4. Since the MUMPs process has a 

±0.3 µm linewidth tolerance for 2 µm features, high and low values of spring constant and 

resonant frequency were calculated (because of the cubed dependence on flexure width) to 

(a) 

(b) 

(c) 
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determine the range that the experimentally measured resonant frequency could fall within. 

These results are presented in Tables 3.1, 3.2 and 3.3. 

 
Table 3.1: Theoretical effective mass. 

 
Device Mass (kg) 

Basic Structure Generator Structure 
Flexure 
Length 

Grating POLY 2 POLY 2 & Metal Grating Basic 
350 1.920E-10 2.099E-10 2.245E-10 4.374E-10 4.262E-10 
400 1.930E-10 2.109E-10 2.255E-10 4.384E-10 4.272E-10 
450 1.946E-10 2.125E-10 2.271E-10 4.400E-10 4.288E-10 
500 1.959E-10 2.138E-10 2.284E-10 4.413E-10 4.301E-10 

 
Table 3.2: Theoretical spring constant. 

 
Spring Constant 

Width = 2 µm Process Error +/- 0.3 µm Width = 2 µm Process Error +/- 0.3 µm Flexure 
Length 

Nominal K High K Low K Actual Nominal K Actual High K Actual Low 
K 

350 0.12315 0.18729 0.07563 0.11576 0.17606 0.07109 
400 0.08250 0.12547 0.05067 0.07692 0.11699 0.04724 
450 0.05794 0.08812 0.03558 0.05360 0.08151 0.03291 
500 0.04224 0.06424 0.02594 0.03877 0.05897 0.02381 
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Table 3.3: Resonant frequency. 

Resonance (Hz): Basic - Grating Resonance (Hz): Basic – POLY 2 Flexure 
Length Low Nominal High Low Nominal High 

350 3062 3908 4819 2929 3738 4609 
400 2490 3177 3918 2382 3039 3748 
450 2070 2641 3257 1981 2528 3117 
500 1755 2239 2761 1680 2143 2643 

 

Resonance (Hz): Basic – POLY 2 & Metal Resonance (Hz): Generator - Grating Flexure 
Length Low Nominal High Low Nominal High 

350 2832 3614 4457 2029 2589 3193 
400 2304 2939 3625 1652 2108 2600 
450 1916 2445 3015 1376 1757 2166 
500 1625 2074 2557 1169 1492 1840 

 

Resonance (Hz): Generator - Basic Flexure 
Length Low Nominal High 

350 2055 2623 3235 
400 1674 2136 2634 
450 1394 1779 2194 
500 1184 1511 1864 

 

 

3.2 Through-Wafer Probe System Improvement 
 

Although the previous through-wafer probing setup was constructed on an air damping 

table, preliminary optical monitoring and control experiments were often plagued by external 

vibrations due to the instability of the components in the setup itself. To reduce unwanted 

vibrations, the setup was reconstructed using sturdier, more compatible components. A 

custom die package, consisting of a modified bottomless chip package mounted on a glass 

slide, was created to eliminate the need for probes to deliver drive voltages. These probes 

often obstructed adjustment of the detector fiber in the previous setup. One probe platform 

was included in the redesign to allow for mechanical actuation of the stages after release to 

eliminate residual stiction. The addition of motorized translation stages for fine (0.5 µm) 

adjustment of the die allowed for better positioning of the infrared probe spot, resulting in 

cleaner optical output signals. Figures 3.8 - 3.10 illustrate the probe setup and key 

components.  
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Figure 3.8: Die and total system positioning elements. 
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Figure 3.9: Probe beam and detector fiber adjustment. 
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Figure 3.10: Close-up of die package and detector fiber. 

 

As in the previous through-wafer monitoring setup, each major component was given 

independent three-axis motion for maximum fine tuning and adjustment capability. The dual 

lens spot focusing arrangement was also improved with the addition of 3-axis adjustment for 

each lens and by replacing the second GRIN lens in Figure 1.5(c) with a bulk optical lens. 

These changes allowed for more control over spot size and shape. 
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Chapter 4                                           
Through-Wafer Diffraction Study 
 
 
 
 
 
 
 

This chapter presents the results of using theoretical optical field intensity determination 

theory presented in Chapter 2 to develop a software tool that can be used to examine the 

optical field intensity of the trough-wafer probe beam. Simple examples of a slit and 

rectangular opening are presented to determine the effectiveness of the Matlab simulation 

programs, allowing more complex stage geometries to be examined. Next, single-axis optical 

output waveform simulations are generated using the optical field determination program and 

the second-order forced harmonic oscillator system model with experimentally determined 

mass, spring constant, and damping parameters (for displacement determination). This 

simulated output is compared to actual through-wafer optical intensity signals to determine 

the effectiveness of the simulation and system model. The effects of vertical stage motion, as 

well as off-axis device probing on the output probe signal are also examined. 

 

4.1 Plane Wave Diffraction by a Slit 
 

To begin, a simple plane wave incident on a slit was examined. A Matlab program, 

found in Appendix A (‘planeslit.m’), was developed that performed the convolution of the 

aperture function of a plane wave incident on a slit 20 µm wide (-10 µm to +10 µm) in the x-

direction and infinitely long in the y-direction with the transfer function of free space. It used 

the Fresnel number input by the user to determine observation plane distance. The 

convolution was only performed in one direction to decrease the complexity of the program, 
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but had no adverse effects on the output since the pupil function only varied along the x-

dimension. Figures 4.1 - 4.7 show the slit transmission profile, the aperture shadowed beam 

pattern, and the resulting output beam intensities for Fresnel numbers of 90, 10, 1, 0.5, and 

0.1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: Slit transmission profile. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2: Aperture shadowed beam pattern. 
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Figure 4.3: Slit effected output beam intensity profile, NF = 90, d = 0.85 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4: Slit effected output beam intensity profile, NF = 10, d = 7.63 µm. 
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Figure 4.5: Slit effected output beam intensity profile, NF = 1, d = 76.33 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6: Slit effected output beam intensity profile, NF = 0.5, d = 152.67 µm. 
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Figure 4.7: Slit effected output beam intensity profile, NF = 0.5, d = 76.33 µm. 
 

It should be mentioned that certain parameters of the Matlab program have an effect on the 

output. If the arrays or matricies making up U(r), p(x,y), and h(x,y) do not contain enough 

zeros, or if the step size of the calculation loop is not small enough, there will be unnatural 

peaks in the output plane beam intensity at low Fresnel numbers or multiple intensity patterns 

at high Fresnel numbers, as shown in Figure 4.8 (a) & (b). 

Figure 4.8: Program output errors: (a) NF = 0.1, not enough zeros included in arrays for 
convolution (b) NF = 10, calculation loop step size too small. 

 

(a) (b) 
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These effects were thought to be a result of the transfer function of free space being a Fresnel 

approximation, but were later eliminated by increasing the zero padding and decreasing the 

computational iteration.  

Figure 4.2 shows the aperture shadowed beam pattern, which is the beam intensity at a 

distance of zero. At the Fresnel number is decreased (corresponding to an increase in 

distance from zero, and eventually a transition from the Fresnel diffraction region to the 

Fraunhofer diffraction region), diffraction effects can be seen clearly, causing multiple 

intensity peaks and the spreading of the beam intensity over a larger area. This result follows 

exactly the examination performed in [50]. 

 

4.2 Plane Wave Diffraction by a Rectangular Aperture 
 

The beam intensity pattern after passing through a rectangular aperture 10 µm by 30 µm 

was examined by adding another dimension to the functions in a new Matlab program 

(Appendix A, ‘planerect.m’) written for the study of slit diffraction. Due to the small step 

size and large matrices needed to overcome computational anomalies (shown in Figure 4.8), 

only NF = 1, 0.5, 0.25, 0.1, and 0.05 were simulated. The results are illustrated in Figures 4.9 

– 4.14. 
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Figure 4.9: Rectangular aperture pupil function (a) and its corresponding aperture shadowed 
beam pattern (b). 

(a)

(b)
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Figure 4.10: Beam intensity at NF = 1, d =19 µm (a), side view (b), and top view (c). 
 

(a)

(b) (c) 
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Figure 4.11: Beam intensity at NF = 0.5, d =38.2 µm (a), side view (b), and top view (c). 

 

(a)

(b) (c)
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Figure 4.12: Beam intensity at NF = 0.25, d =76.3 µm (a), side view (b), and top view (c). 

 

(a)

(b) (c)
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Figure 4.13: Beam intensity at NF = 0.1, d =190.8 µm (a), side view (b), and top view (c). 

 

(a)

(b) (c)
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Figure 4.14: Beam intensity at NF = 0.05, d =381.7 µm (a), side view (b), and top view (c). 

 

(a)

(b) (c)
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It can be seen that these results follow those of the slit examination when viewed from the 

side. Visible in the top views, the beam also exhibits diffraction effects in the x-direction as 

well due to the dimensionality of the aperture. 

 

4.3 Plane Wave Diffraction Through a Grating 
 

To determine the effectiveness of using Matlab to simulate diffraction in more 

complicated structures, a plane wave diffraction through a periodic grating was examined 

next (Appendix A, ‘planegrate.m’). The grating was defined as 2 µm openings separated by 2 

µm opaque regions. Fresnel numbers of 90, 10, 1, 0.5, and 0.1 were examined, with the 

results presented in Figures 4.15 – 4.19. The pupil function and aperture shadowed beam 

pattern are similar to that of a single slit, except they are periodic in nature.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.15: Grating effected output beam intensity profile, NF = 90, d = 0.85 µm. 
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Figure 4.16: Grating effected output beam intensity profile, NF = 10, d = 7.63 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.17: Grating effected output beam intensity profile, NF = 1, d = 76.33 µm. 
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Figure 4.18: Grating effected output beam intensity profile, NF = 0.5, d = 153.67 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.19: Grating effected output beam intensity profile, NF = 0.1, d = 763.36 µm. 
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4.4 Gaussian Beam Diffraction Through the Device Stage 
 

The next step in this examination is to determine the diffraction affects of the MEMS 

device stage on the through-wafer probe beam. In the current through-wafer probing setup, 

the output of a fiber is focused to a small spot and passed through the stage. This beam is 

Gaussian, having complex amplitude that can be expressed as described in Chapter 2 

(Equations 2.2-7 – 2.2-12). The beam waist, W0, or spot size in the plane of the device 

translation stage, was determined to be ~10 µm by inspection with an IR camera, and z0 was 

calculated to be ~20 µm by measuring the spot size at the output of the lens system and the z-

axis distance to W0. These values were used to compute the beam parameters included in 

U(r). 

 
4.4.1 Single Opening Diffraction Region 
 

The single-opening MEMS lateral comb resonator design (illustrated in Figure 4.20) was 

examined by treating the device stage as a transparent medium of varying thickness with a 

single rectangular opening (Appendix A, ‘gausstrans.m’). The goal was to find the number of 

signal maxim incident on the detector as a result of 8 microns of stage motion (4 µm in both 

directions) in order to determine if enough information could be gathered from the output to 

accurately determine the position of the stage. These results are presented in Figure 4.21. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.20: Single opening through-wafer probing area. 
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Figure 4.21: Through wafer diffraction pattern of a MEMS lateral comb resonator translation stage with a 
single single-opening for 8 µm of travel and corresponding stage cross sections (to scale) (a)-(e). Detector 
intensity for the same range of motion (f)-(j). 

 

(a) (b)

(c) (d)

(e)

(f) (g) (h)

(i) (j) 
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The optical field intensity at a distance of 100 µm away from the device plane for each stage 

displacement was determined by theoretically passing a 20 µm diameter spot through the 

aperture area. Cross sectional views illustrate the position of the stage opening and Poly 2 

features for each displacement. It can be observed from these results that only one intensity 

maximum passes through the detector area over the entire range of motion exhibited. 

 
4.4.2 Closed-Loop Control Results 
 

Even though only on intensity change was evident over the entire range of device motion 

for single-opening stage geometries, the improved design of the optical microprobe setup, 

along with a real-time data acquisition board, allowed for simple linear proportional-integral 

(PI) and proportional-integral-differential (PID) control studies to be performed. Figure 4.22 

shows the result of applying PI control to perform pulse impulse disturbance damping on a 

single-opening resonator device. 
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Figure 4.22: Active impulse disturbance damping (a) with close-up of single pulse 
response time (b). 

 

(a) 

(b) 
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In steady state, the stator combs were held at positive and negative 8 V (VSIDE) with the stage 

at rest at 0 V (VCENTER). A 10 V impulse 100 µs in duration was then applied to the stage (top 

left, Figure 4.22(a) & (b)) resulting in the received optical signal (in volts) shown in the 

bottom left plot of Figure 4.22(a) & (b) when no control was applied, or the open-loop 

condition. Rapid displacement followed by mechanical ringing of the stage is clearly evident.  

The plots on the right hand side correspond to those on the left, but with the device under 

closed loop PI control, the effect of the voltage impulse on the position of the is nearly 

completely damped as a result of the adaptive response of the voltage on the stator combs 

with a response time of ~1 µs. 

 Successful linear PID control has also been demonstrated under normal sinusoidal drive 

voltage operation of a lateral comb resonator using a peak detection algorithm. This result is 

shown in Figure 4.23. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.23: PID peak value control results. 

 

The single-opening geometry device was driven with a 1 kHz 12 V peak-to-peak on the stage 

of the device with stator voltages of positive and negative 7 V. In the open-loop condition 

(not shown), a change in the magnitude of the sinusoidal drive voltage changes the amount of 

displacement exhibited by the stage, and, consequently, the dynamic range of the optical 

output voltage waveform. In the closed-loop condition illustrated in Figure 4.23, the stage 
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was initially driven at the same voltage as the open-loop condition, and the sinusoidal voltage 

magnitude was increased (close to 9 ms in Figure 4.23). At this point, the peak detection 

algorithm changes the stator voltage to compensate for the increase in sinusoidal voltage and 

the consequent increase in displacement. This adjustment forces the peak optical output 

voltage level to return to the desired value (500 mV in this case) in a response time of 1 ms. 

Although the new optical microprobe setup provided a more stable platform with which 

to perform control experiments, the response times for dynamic MEMS closed-loop control 

remained slow compared to the resonance frequency of the devices tested (2.5-3.5 kHz). 

More robust control methods could increase response times, but require a detailed system 

model and detailed positional information. Increased positional resolution can be achieved by 

examining grating structure geometries and the diffraction effects they have on the optical 

probe beam. 

 

4.4.3 Grating Diffraction Region 
 

A grating structure (Figure 4.24) was explored next using the same method, with the 

stage modeled as 2 µm wide openings separated by 2 µm wide polysilicon areas (Appendix 

A, ‘gaussgrate.m’). Total grating area in the simulation is 30 µm by 20 µm. Stage 

displacement was defined as a movement of 4 microns in one direction from the at-rest 

position. Results are presented in Figure 4.25. 

 

 

 

 

 

 

 

 

 

 
Figure 4.24: Grating structure through-wafer probing area. 
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Figure 4.25: Through wafer diffraction pattern of a 
MEMS lateral comb resonator translation stage with a 
diffraction grating for 4 µm of travel and 
corresponding stage cross sections (not to scale) (a)-
(e). Detector intensity for the same range of motion 
(f)-(j). 

(a) (b)

(c) (d)

(f) (g) 

(h) (i) 
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(e)



 

 

87

In this case, a spot size of 10 µm was used and the optical field intensity was observed 25 µm 

away from the device plane. It can be seen in Figure 4.25 (f)-(j) that stage travel from the 

zero position to 4 µm displacement causes two intensity maxim to pass through the area of 

the detector, giving a resolution of 4 microns per intensity maximum. 

 

4.4.4 Theoretical and Experimental Grating Signal Examination 
 

After the positional resolution of the moving grating structure was determined, a study to 

determine the validity of the optical signal pattern of the moving device stage was 

undertaken. The program used to calculate the optical field intensity was modified to accept a 

vector of displacement values obtained from a Matlab SimuLink system model 

representation of the device, shown in Figure 4.26 (Appendix A, ‘outputsim1d.m’). 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4.26: Lateral comb resonator system model. 
 

This model was developed using Equation 2.1-1, with mass, spring constant, and 

damping values determined by the frequency sweep and curve fitting method described in 

Chapter 2 (m=3.2·10-10 kg, k=0.05346, and β=1.15·10-6). The output from the simulation 

program gives a time varying cross-section of the intensity incident on the area of the 8 µm 

diameter detector fiber as the grating of the device stage moves sinusiodally. Simulation 

results for various frequencies between 1000 and 5000 Hz were performed and compared to 
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experimental optical output data at the same frequencies. Results are presented in Figures 

4.27-4.45. 

To assure that peak intensity would occur at the zero position of the stage in experimental 

data, die adjustment was performed with no voltage applied to the device to give the 

maximum intensity incident on the detector fiber when the probe beam was located under the 

grating area. This zero position is identical to the stage position indicated in Figure 4.25(a). 
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Figure 4.27: Optical output comparison at 1000 Hz: (a) theoretical results and (b) experimental data. 

 

Theoretical Optical Output and Drive Force at 1000 Hz

-2.5E-07

-2.0E-07

-1.5E-07

-1.0E-07

-5.0E-08

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

2.5E-03 3.0E-03 3.5E-03 4.0E-03

Time (s)

Fo
rc

e

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

R
el

at
iv

e 
O

pt
ic

al
 In

te
ns

ity

Drive Force Optical Output

Experimental Optical Output and Drive Voltage at 1000Hz

-15

-10

-5

0

5

10

15

2.0E-03 2.5E-03 3.0E-03 3.5E-03

Time (s)

D
riv

e 
Vo

lta
ge

 (V
)

0

0.02

0.04

0.06

0.08

0.1

0.12

D
et

ec
to

r V
ol

ta
ge

 (V
)

Drive Voltage Optical Output

(a) 

(b) 



 

 

90

Figure 4.28: Optical output comparison at 1500 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.29: Optical output comparison at 2000 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.30: Optical output comparison at 2200 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.31: Optical output comparison at 2400 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.32: Optical output comparison at 2600 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.33: Optical output comparison at 2700 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.34: Optical output comparison at 2800 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.35: Optical output comparison at 2900 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.36: Optical output comparison at 3000 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.37: Optical output comparison at 3100 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.38: Optical output comparison at 3200 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.39: Optical output comparison at 3300 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.40: Optical output comparison at 3400 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.41: Optical output comparison at 3600 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.42: Optical output comparison at 3800 Hz: (a) theoretical results and (b) experimental data. 

Experimental Optical Output and Drive Voltage at 3800 Hz

-15

-10

-5

0

5

10

15

5.44E-04 5.94E-04 6.44E-04 6.94E-04 7.44E-04 7.94E-04 8.44E-04 8.94E-04 9.44E-04

Time (s)

D
riv

e 
Vo

lta
ge

 (V
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

D
et

ec
to

r O
ut

pu
t (

V)

Drive Voltage Optical Output

Theoretical Optical Output and Drive Force at 3800 Hz

-2.5E-07

-2.0E-07

-1.5E-07

-1.0E-07

-5.0E-08

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

3.60E-03 3.65E-03 3.70E-03 3.75E-03 3.80E-03 3.85E-03 3.90E-03 3.95E-03 4.00E-03

Time (s)

Fo
rc

e

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

R
el

at
iv

e 
O

pt
ic

al
 In

te
ns

ity

Drive Force Optical Output

(b) 

(a) 



 

 

105

Figure 4.43: Optical output comparison at 4000 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.44: Optical output comparison at 4500 Hz: (a) theoretical results and (b) experimental data. 
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Figure 4.45: Optical output comparison at 5000 Hz: (a) theoretical results and (b) experimental data. 
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It can be seen in the comparison of theoretical and actual data that optical outputs match in 

both number of major peaks and peak width. The phase differential between sinusoidal drive 

voltage and output optical signal, due to the behavior of a forced harmonic oscillator with 

damping, is in agreement as well. Peak width variation is in accordance with the velocity of 

the translation stage at different positions over its range of motion. Near the maximum range 

of motion, the stage moves slowest, causing broadened intensity peaks. Near the zero 

position, the stage moves fastest, resulting in narrowed peaks. Slight variations in theoretical 

and optical data at 3600 and 3800 Hz are mainly due to asymmetry caused by the motion 

resolution of the motorized translation stages used to position the device grating in the path 

of the probe beam. 

This data confirms the optical output waveform resolution of 4 µm peak to peak and 2 

µm peak to valley when examining theoretical stage translation determined by system model 

parameters extracted from previous experimental results and grating signal experimental 

output data. Values for displacement in one direction are listed in Table 4.1.  
 

Table 4.1: Comparison of theoretical and experimentally determined displacement values. 
 

Frequency (Hz) Theoretical 
Displacement (µm)

Experimentally 
Determined 

Displacement (µm) 
1000 2.37 >2 
1500 2.84 >2 
2000 3.83 <4 
2200 4.56 >4 
2400 5.92 6 
2600 7.84 8 
2700 9.23 10 
2800 10.4 10 
2900 10.7 >10 
3000 9.95 10 
3100 8.46 8 
3200 7.03 8 
3300 5.84 6 
3400 4.84 >4 
3600 3.63 <4 
3800 2.8 2 
4000 2.27 2 
4500 1.48 2 
5000 1.07 2 
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This table shows that theoretical and experimental displacement values have a high 

degree of correlation, and the resonant frequency of 2900 Hz clearly visible. This value falls 

within the calculated range frequencies for this device given in Table 3.3. Although the 

experimental output has a resolution of only 2 µm, secondary peaks significantly lower in 

amplitude than the normal optical output intensity are present in the experimental data, 

indicating motion between 0 and 2 µm, a value that falls below the resolution of the optical 

signal. Greater-than or less-than symbols in the experimental displacement column of Table 

4.1 give a qualitative assessment of the amplitude of motion below the resolution of 

waveform. 

 

Secondary Signal Frequency 
 

For frequencies within the range of 2.4-3.4 kHz, experimental data shows the optical 

output having a secondary frequency close to that of the drive frequency. Two possible 

explanations for this are vertical stage motion and the interaction of the beam with non-

grating areas of the stage.  

Using the reflectance calculation given in Equation 2.1-19, Figure 4.46 illustrates how 

transmitted intensity changes as the oxide gap is varied from 0 to 2 µm (Appendix A, 

‘reflect.m’). 
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Figure 4.46: Change in transmission due to variation in oxide gap thickness. 
 

At gap distances equal to odd multiples of quarter wavelengths of the probe beam, the gap 

acts as a Fabry-Perot etalon, or resonance cavity, as evident in the low transmission 

intensities at these gap values. At even multiples of quarter wavelengths, the gap acts as an 

anti-reflection layer, theoretically resulting in transmittance values of unity. 

A sinusoidal change in transmitted intensity due to vertical motion will only occur if the 

motion is varied in the regions between maxim and minima on the transmission plot. The 

most reasonable assumption of where this motion takes place is between 1.7 and 1.9 microns. 

This allows for some initial sag in the vertical stage position due to its effective mass, and is 

a small enough value to allow the comb fingers to remain fully coupled. Figure 4.47 shows 

how transmitted intensity changes due to 0.2 µm of vertical motion at a frequency of 2.9 kHz 

(Appendix A, ‘vertsim1d.m’). This frequency is where the experimental optical output shows 

the highest amplitude of secondary signal. 
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Figure 4.47: Oxide gap variation at 2.9 kHz (a) and the resulting transmission 
intensity change (b). 

 

The 0.2 µm change in vertical stage position causes the theoretical through-wafer 

transmission intensity to change from 30 to 80%. This change in transmitted intensity can be 

added to the theoretical output waveform to simulate the secondary frequency of the 

experimental output, as illustrated in Figure 4.48. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.48: The theoretical optical output waveform resulting from vertical stage 
motion (a) and lateral displacement (b). 

(a) 

(b) 

(a) 

(b) 
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This result does show a secondary signal frequency due to vertical stage motion, but it is 

significantly larger in amplitude than in experimental data. To achieve the smaller amount of 

secondary frequency amplitude present in experimental data, the vertical gap change must be 

reduced to only 0.01 µm in the simulation. The resonant frequency of the flexures in the z-

direction theoretically should be much higher than x-direction resonance due to the stiffness 

of the folded flexure design, causing the secondary signal frequency to be different than that 

of the drive voltage. These differences suggest that the secondary frequency must come from 

another source. 

Another cause of the secondary frequency in the experimental data could be interaction 

of the probe beam with non-grating (solid) areas on the device stage. Large displacements at 

high frequencies or angular misalignment of the grating with respect to direction of motion, 

along with a large spot sizes 20 µm or larger could cause a secondary sinusoidal frequency in 

the optical output waveform that has the same frequency as the drive voltage. Figure 4.49 

illustrates this assumption. 

Figure 4.49: Spot interaction with solid stage areas due to large spot size and increased lateral 
displacement (a) and angular stage alignment (b). 

 
This probe beam and stage interaction would have a secondary effect similar to the single 

opening probing area, causing one intensity change over the entire range of motion of the 

device, similar to the behavior present in the experimental grating optical output data. 

(a) (b)
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Chapter 5                                             
Diffractive Optical Plane Layout and 
Integrated Fresnel Lens Design, Fabrication, 
and Testing 
 
 
 
 
 

Chapter 5 describes the process of integrated binary Fresnel zone plate lens design and 

fabrication, as well as the results of their use in the through-wafer optical monitoring setup. 

The procedure used to generate the lens masks for the quartz waveguide substrate is 

described, followed by photolithography and fabrication process refinement. The final part of 

this chapter will present qualitative lens analysis results using visible light, and reflective 

path MEMS monitoring results using the waveguide substrate to deliver the probe beam. 

 

5.1 Lens Mask Generation 
 

The Fresnel diffraction theory presented in Chapter 2 was used in a C-language program 

that calculated the radii for the zones of the lens based on user inputs of lens size, focal 

length, and angle of focus. The program writes the coordinates of the calculated radii to a 

Caltech Intermediate Format (.cif) file that can later be converted to GDSII standard format 

using semiconductor design software such as L-Edit. Both on and off-axis lenses were 

included in the design for focus characterization purposes. Table 5.1 shows the different 

types of lenses included on the lens mask and the smallest zone width for each lens. The 

lenses are labeled on the mask according to focal distance in millimeters, length of one side 

of the lens square in millimeters, and angle of focus in degrees respectively. 
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Table 5.1: Lens types and the smallest feature size on each lens. 
 

Layout Label Smallest Feature 
(µm) 

5-1-0 4.85 
5-2-0 2.48 
5-2-10 1.7 
5-2-15 1.45 
5-2-20 1.28 
5-3-0 1.72 
5-3-10 1.35 
5-3-20 1.12 
10-1-0 9.75 
10-2-0 4.82 

10-2-10 2.34 
10-2-15 1.85 
10-2-20 1.54 
10-3-0 3.25 

10-3-10 1.97 
10-3-20 1.39 

 

This table shows that the smallest linewidth of any lens is 1.39 µm, a size well within the 

limits of the Suss MA6 alignment system. Two mask layout files, named ‘toplenses_metal’ 

and ‘bottomlenses_metal’, were submitted for fabrication to Photo-Sciences Inc. Both were 

fabricated as clear field masks, with e-beam written chrome lines on 4 in. square quartz. 

Quartz was chosen over soda lime to allow for short exposure times at 320 nm UV.  

Figure 5.1 shows both top and bottom lens mask layouts, with each square being a lens. 

Alignment marks for top-to-bottom substrate alignment are located around the perimeter of 

the substrate area, as well as in the areas where the corners of the opposite substrate’s lenses 

will be after final fabrication. Figure 5.1 (c) indicates the four different optical path lengths 

designed for coupling between input and output lenses. With a substrate thickness of 3.048 

mm (0.12 in.), each path distance allows for 5 internal reflections at angles above the TIR 

requirement: 46.2°, 51.2°, 56.1°, and 61°. Figure 5.2 shows how lens geometry changes with 

changing focal length and off-axis focal angle. This figure is a good illustration of how the 

center point of the lens shifts as the off-axis focus angle increases.  
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Figure 5.1: Lens mask layout: (a) top lens mask, (b) bottom lens mask, (c) both masks 
superimposed. Bottom lenses are denoted with an ‘x’. Propagation lengths indicated are for 5 
internal reflections at the given angle. 

(a) (b)

(c) 
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(a) (b) 

(c) (d) 

(e) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2: Sample lens geometries: (a) 10-
2-0, (b) 10-2-10, (c) 10-2-15, (d) 5-2-10, (e) 
5-2-15. Line roughness and secondary 
diffraction patterns are a result of the zoom 
level of the layout software. 
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Off-Axis Device Probing 
 

Due to the angle of the probe beam resulting from the off-axis focusing properties of the 

proposed integrated optical monitoring system, the detector may experience noise caused by 

adjacent multiple beam intensities due to internal reflections in the oxide air gap, as 

illustrated in Figure 5.3. 

 

 

 

 

 

 

 

 

 
 

Figure 5.3: Secondary intensities caused by internal reflections in the air gap. 

 

 

The relative intensity value of these secondary output intensities relative to the primary 

output beam intensity can be calculated using Equations 2.1-21 and 2.1-22 through 24 to find 

the resulting reflected and transmitted intensity values at each interface in the multilayer 

interaction pictured. All surfaces were assumed to be perfectly smooth in this case. Actual 

surface roughness will result in lower intensity values. Intensity comparison results for input 

angles of 0 through 90 degrees are shown in Figure 5.4. 
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Figure 5.4: Comparison of primary off-axis probe intensity and secondary 
intensities caused by oxide gap reflections. 

 

At input angles of less than 60 degrees the intensity value of the primary probe intensity is 

significantly larger than the secondary reflected intensities. At angles above 60 degrees, the 

relative intensity values are close in magnitude and could create noise in the off-axis output 

signal.  

Figure 5.5 gives the separation distance (in microns) of the intensities for input angles of 

15, 30, 45, 60, and 75 degrees. An oxide gap variation of 0.5 µm has been added to 

determine the effects of vertical stage motion on separation distance. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.5: Intensity separation distance for various input angles. 
Separation distance change for a gap variation of 0.5 microns is included 
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Intensity separation is greatest at 15 µm with an input angle of 75 degrees and decreases with 

decreasing input angle to ~ 1 µm at 15 degrees. Maximum separation distance change over 

0.5 µm of oxide gap variation is 4 µm for 75° input. For angles below 60 degrees, the 

proximity of the intensities will be insignificant due to relative intensity values of the 

secondary intensities. No matter the input angle, output signal noise will be a concern for 

large spot sizes that may result in overlapping output intensity patterns. 

 

5.2 Photolithography 
 

After the masks were fabricated, characterization of the photolithograpy process was 

started. This was performed on 3 and 4 inch oxide-coated silicon wafers, bare silicon, and 2.5 

inch quartz to determine the exposure type and time required for the small features of the lens 

mask. Initial studies were done using AZ5214 photoresist, a positive photoresist that has 

image reversal capabilities. When spun on at 5000 RPM, this photoresist is 1.4 µm thick and 

is ~1.7 µm thick at 3000 RPM. The solution used to develop AZ5200 series of photoresists is 

AZ312 MF developer. 

Image reversal was performed due to an oversight in the mask design. The clear field 

pattern for the lens areas is correct, but leaves the rest of the substrate bare after exposure and 

development, causing it to be susceptible to the etch process. A more desirable mask design 

would be square clear field lens patterns surrounded with metal to prevent etching of the 

waveguiding substrate. Due to the costly nature (because of the lengthy e-beam write time) 

of redesigning the masks, image reversal photoresist was chosen as a more cost effective 

solution, with no adverse effects on the final lens pattern. After the first exposure, the 

substrate is baked for 45 seconds and placed under flood exposure for 45-60 seconds to 

reverse the image. 

The Suss MA6 aligner allowed for soft contact, hard contact, and vacuum contact 

exposure. For both soft and hard contact, partial pattern development occurred for lenses in 

the center area of the mask for all exposure times tried (ranging from 18-22 s). Longer 

exposure times led to overexposure of the small radius rings with no improvement on the 

partially developed areas. An example of this is illustrated in Figure 5.6. 
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Figure 5.6: Illustration of partial pattern development due to exposure type. 

 

This problem was solved by using vacuum contact exposure and performing photoresist lip 

removal. Due to the viscosity of the photoresist, a bead of photoresist exists on the edge of 

the substrate after spinning. The thickness of the bead prevents the substrate from coming 

into even contact with the mask during vacuum contact exposure. Removal of the bead was 

performed using a cotton swab and acetone prior to the 1 minute pre-exposure bake. Results 

from vacuum contact with PR lip removal were considerably better, as illustrated in Figure 

5.7. Again, exposure times ranged from 18-22 seconds. Development time was 45s with a 

developer-to-de-ionized water concentration of 1:1.5. 

50 µm
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Figure 5.7: Photoresist pattern achieved with vacuum contact exposure and 
PR lip removal: (a) large features and (b) small lines. 

 

Another problem occurred after successful resolution of small linewidths was acheived, 

photoresist de-adhesion. Because of the relatively large spacing between un-bonded atoms of 

the polymer photoresist at the PR-to-substrate, small lines of photoresist are less likely to 

adhere to the substrate surface. This is illustrated in Figure 5.8. 

(a) 

(b) 
10 µm 

10 µm 
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Figure 5.8: Photoresist de-adhesion. 
 

This problem was corrected by treating the substrates with hexamethyldisilazane (HMDS), a 

photoresist adhesion promoter, prior to processing. This greatly improved results, but de-

adhesion would still occur if development times were too long. 

Once the mask pattern was successfully transferred to the test substrates, the same 

parameters were used to begin processing the 3 inch diameter, 0.12 inch thick quartz 

substrates that would be used for the final product. The substrates had a surface planarity of 

±0.005 µm and a surface quality of 40/20 scratch/dig. Due to the reflectivity of the quartz, 

exposure times were increased to 28 s in order to fully develop the larger radii (small 

linewidth) rings of the off-axis lenses. Shorter exposure times led to linewidths that were too 

small due to the image reversal technique used, as shown in Figure 5.9.  

10 µm 
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Figure 5.9: Thin photoresist lines due to underexposure. 
 

Development time remained at 35-40 seconds, leaving the pattern slightly underdeveloped to 

prevent periodic PR de-adhesion. Residual photoresist would be removed by performing a 

short oxygen plasma descum before etching the substrate.  

The type of photoresist used was changed as well. The vacuum chuck used to hold the 

substrates while spinning did not have enough surface area to securely hold the heavy quartz 

substrates in place when spun at speeds over 3500 RPM. This slow spindle speed resulted in 

photoresist thicknesses that were larger than the smallest linewidths in some of the lens 

patterns, leading to difficulty in achieving fine linewidth resolution. To alleviate this, 

AZ5206-E photoresist, a thinned version of AZ5214, was used. This photoresist gave 

thicknesses of ~750 nm when spun on at 3500 RPM, well below the linewidth of any feature 

on the mask. Using this photoresist, the developer-to-DI concentration was changed to 1:2. 

Figure 5.10 shows successful photoresist patterning on 3 inch quartz using the adjusted 

photolithography parameters.  
 

5 µm 
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Figure 5.10: Successful photoresist patterning on 3 in. quartz: (a) small radii rings, (b) 
medium radii rings, and (c) large radii rings. 

(b) 

(c)

(a) 

5 µm 5 µm

5 µm
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Table 5.2 presents a comparison of selected mask (desired) linewidths to actual PR 

linewidths obtained using the optimum photolithography process described. Actual 

linewidths were determined using a microscope objective reticule. 

 
Table 5.2: Comparison of desired and photoresist linewidths. 

 

Lens Label Small Feature PR 
Linewidth (µm) 

Mask Linewidth 
(µm) 

Large Feature PR 
Linewidth (µm) 

Mask Linewidth 
(µm)  

5-2-10 1.9 1.8 32 33.5 
5-2-15 1.4 1.5 9.8 9.4 

10-2-10 2.3 2.4 9.2 8.6 
10-2-15 1.6 1.9 8 5 
10-3-20 1.2 1.4 2.8 3.1 
5-3-20 0.9 1.1 10.3 9.9 

 

This data shows an average small linewidth variation of 0.2 µm and an average large 

linewidth variation of 0.66 µm, within the range of acceptable transferred linewidth error. 

 

5.3 Reactive Ion Etch 
 

After a repeatable photolithography process was developed, etch studies were begun. 

Before patterning substrates for etching, the photomasks were cleaned in a room temperature 

ultrasonic methanol bath for 20 minutes to remove photoresist residue present between the 

metal mask lines as a result of repetitive processing. Because of the limited number of quartz 

substrates available, initial etch processes were first performed on patterned oxide coated 4 

inch silicon wafers due to its similarities to quartz. Table 5.3 outlines the parameters for the 

SiO2 Fluoroform etch process and corresponding etch depths. The substrate etch was 

preceded by a 30 s Oxygen descum at 300 mT with a gas flow of 25 sccm and 150 W of RF 

power. The etch itself was performed at the parameters in Table 5.3 with a gas flow of 110 

sccm, followed by a 10-12 min Oxygen resist strip at 300 mT, 30 sccm, and 200 W of RF 

power. All quartz etching was performed at 110 sccm because the mass flow controller could 

not stabilize gas flows below this level, causing RF power failure and abortion of the process. 
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Table 5.3: Silicon oxide etch test results. 
 

Change Process Pressure 
Time (m) Process Pressure (mT) RF Power (W) Etch Depth (kA) Text "0" Linewidth (microns) 

10 30 150 1.48 20.4 
10 60 150 1.07 24 

     
Change Process Time 

Time (m) Process Pressure (mT) RF Power (W) Etch Depth (kA) Text "0" Linewidth (microns) 
5 30 150 0.81 22 

10 30 150 1.48 20.4 
15 30 150 2.72 20 

     
Change Process Power 

Time (m) Process Pressure (mT) RF Power (W) Etch Depth (kA) Text "0" Linewidth (microns) 
10 30 100 1.01 21.6 
10 30 150 1.48 20.4 
10 30 200 1.86 21.6 

 

It can be seen in this data that increasing etch time had the greatest effect in increasing etch 

depth.  Process pressures above 30 mT slowed etch rates. Power levels above 150 W caused 

excessive photoresist loss during the fluoroform etch, resulting in a degradation of the etched 

pattern. Photoresist loss at 150 W was measured to be ~10 nm per minute. Desired etch depth 

was determined to be 1.31 µm by using half of the value obtained using Equation 2.3-4, the 

value needed for a binary lens. This etch depth would result in etch times in excess of one 

hour, allowing the photoresist to be removed before the etch process was finished. To 

accommodate this fact, and etch depth of 436 nm (λ/2nmedium) was chosen to shorten the time 

to achieve the desired depth. 

After determining the optimal power, gas flow, and process pressure parameters, 

variation in etch time was performed on both 2.5 and 3 in. quartz substrates. The results are 

presented in Table 5.4. 
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Table 5.4: Etch depths for quartz. All times performed with 
fluoroform at 30 mT, 100 sccm, and 150 W. 

 
Time (m) Etch Depth (nm) 

15 180 
20 235 
25 285 
30 345 
35 395 
45 525 

 

This data indicated that an etch time of 40 minutes would result in a depth close to the 

desired depth of 436 nm.  

After the process time required to achieve the desired etch depth was determined, front 

and back side processing was performed. To protect the small etched features on the top side 

of the substrate during back side processing, the top surface of the substrate was coated with 

photoresist and processing proceeded as normal. Top-to-bottom side alignment was 

performed using the back side alignment feature of the MA6 mask aligner. Figure 5.11 shows 

the results of a reactive ion fluoroform etch at 30 mT, 100sccm, and 150 W for 40 minutes. 
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Figure 5.11: Successful etch patterning on 3 in. quartz: (a) small radii rings, (b) 
medium radii rings, and (c) large radii rings. 

(a) (b) 

(c) 

5 µm 5 µm

5 µm 
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Table 5.5 compares desired mask linewidths and actual linewidths resulting from the etch 

process. 

 
Table 5.5: Comparison of desired and etched linewidths. 

 

Lens Label 
Small Feature 

Etched Linewidth 
(µm) 

Mask Linewidth 
(µm) 

Large Feature 
Etched Linewidth 

(µm) 

Mask Linewidth 
(µm)  

5-2-10 1.9 1.8 32 33.5 
5-2-15 1.4 1.5 9.2 9.4 

10-2-10 1.9 2.4 8 8.6 
10-2-15 1.2 1.9 4.6 5 
10-3-20 1.4 1.4 3.4 3.1 
5-3-20 0.9 1.1 10.3 9.9 

 

This data shows an average small linewidth error of 0.26 µm. This error, resulting in 

linewidths smaller than the desire mask feature size, is most likely due to photoresist loss 

during the plasma etch process. Average large linewidth error is 0.56 µm. Figure 5.12 shows 

a completed substrate with top and bottom lenses, with an etch depth measured to be ~ 450 

nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.12: Completed lens substrate with top and bottom lenses. Spots are diffracted 
and focused light from the camera flash. 
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The central area of the back side etched substrate pictured experienced excessive 

photoresist loss during etch processing, resulting in less than optimal etch depth (~250 nm), 

but bottom side lenses near the edge of the substrate were close to the desired value. Spots 

near each lens in Figure 5.12 are diffracted and focused light form the camera flash.  

Figure 5.13 outlines the fabrication process flow used to create lens substrates from 

photolithography to RIE processing. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.13: Lens substrate process flow. 
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5.4 Beam Coupling and Analysis 
 

Successful fabrication of Fresnel lenses on the front and back sides of the quartz 

waveguide substrate was followed by an analysis of the coupling and focusing abilities of the 

microoptical elements. This examination was performed using visible light (630 HeNe) to aid 

in alignment and focal point determination. Figure 5.14 gives a schematic representation of 

the testing setup used. 

 

 

 

 

 

 

 
 

Figure 5.14: Fresnel lens analysis setup. 
 

The lens substrate was mounted on an x-y-z translation stage for directional adjustment and a 

360 degree rotational stage for input beam angle adjustment. The input beam was focused by 

a bulk optical lens, and the position of the substrate was adjusted to put the focal point of the 

bulk optical lens (40 mm) at the location of the focal point of the integrated lens. By using 

the π/2 radius equation from Table 2.1 to solve for focal length, coupling input light at 630 

nm results in a doubling of the designed focal distance.  

As a pre-etch evaluation of the diffraction effectiveness of the lens patterns, a beam was 

coupled into the quartz substrate using a 1.7 µm thick AZ5214 PR top-lens pattern. Results 

are shown in Figure 5.15, with internal reflection readily visible, indicating propagation in 

the substrate. 
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Figure 5.15: Beam coupling using an early AZ5214 photoresist pattern. 
 

An examination of the possible effects that the etch process could have on the transmitted 

beam intensity was performed using a substrate that was half etched and half un-etched. 

Results are shown in Figure 5.16. 

 
Figure 5.16: Etch effect on transmitted beam intensity: (a) un-etched substrate area and 
(b) etched substrate area. 

 

It can be seen from this figure that the etch process had no appreciable effect on the output 

intensity, mainly because the surface variations are significantly less than the beam 

wavelength. 

(a) (b)
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The lens substrate pictured in Figure 5.12 was examined next to analyze the coupling and 

focusing properties of the etched lens patterns. On-axis lenses designed for 5 and 10 mm 

focal lengths were examined next with the bulk optical lens removed from the setup and the 

substrate situated 90 degrees to the incoming beam. Both behaved as predicted, focusing 

light at 1 and 2 cm, respectively. Near and far-field intensity patterns for a 2 cm focus lens 

are shown in Figure 5.17. 

Figure 5.17: On-axis intensity patterns at (a) 2cm and (b) 20 cm. 

 

Intensity patterns appeared circularly symmetric at both distances, with lens diffraction 

effects readily visible in the far field photo. 

An off-axis lens with HeNe focal length of 1 cm and 10 degrees of off-axis focus was 

examined next. The lens substrate was adjusted to a 36 degree tilt to achieve the proper 

internal reflection angle for 5 reflections from input to output. The resulting near-field 

intensity pattern is shown in Figures 5.18 and 5.19. 

(a) (b)
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Figure 5.18: Coupled off-axis beam intensity at 1 cm. 
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Figure 5.19: Angled view of coupled off-axis beam intensity at 1 cm. Internal reflections are 
readily visible. 

 

These images show both coupled and uncoupled beam intensities due to the power of the 

laser used (~1mW), as well as diffraction effects caused by the lens pattern. In the angled 

view, faint internal reflection spots are visible, indicating internal propagation. The output 

spot experiences diffraction as well, resulting in multiple output intensities. Another effect of 

off-axis focus can be seen at distances larger than the focal length, asymmetric spot 

spreading, or comatic aberration. This effect, illustrated in Figure 5.20, is the result of 

differences in focal length for each zone radius of the off-axis lens geometry, as described in 

Chapter 2. 
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Figure 5.20: Comatic aberration of the output beam at (a) 20 cm and (b) 40 cm. Secondary diffraction 
intensities of the input beam are visible.  

 

Even though the spot experienced comatic spreading, output beam intensity was great 

enough for reflective optical monitoring studies to be performed. 

 

5.5 MEMS Monitoring Using the Lens Substrate 
 

In order to use the integrated optical elements to probe the lateral comb resonator devices 

for motion detection, the optical microprobe setup had to be modified. The through-wafer 

probing optics were removed to make room for the lens substrate and beam focusing lens. A 

schematic view of the reflective probing setup can be seen in Figure 5.21. The lens substrate 

and focusing lens were given independent 3-axis freedom to ease in angular adjustment for 

achieving the optimum coupling angle, as well as variable input beam positioning to use 

different input-output path lengths. The detector fiber was given x, y, and z-axis adjustment 

as well for maximum coupling of the reflected output signal. The die package adjustment 

was left unaltered, leaving both fine and coarse 3-axis freedom.  

(a) (b)
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Figure 5.21: Microoptical reflective device monitoring setup. 

 

Figures 5.22 and 5.23 show the actual setup with detector fiber and lens substrate in place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.22: Optical microprobe setup with lens substrate added. 
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Figure 5.23: Close-up of the package and lens substrate arrangement. 

 

Figure 5.24 pictures the system being used to illuminate a single-opening geometry lateral 

comb resonator with a HeNe beam being coupled into the microlens substrate and used as an 

optical probe beam. A view of the illuminated device can be seen in Figure 5.25. 
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Figure 5.24:  The lens substrate in use, illuminating a device on the MEMS die. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.25: A single-opening lateral comb resonator 
illuminated by the output beam of the lens substrate. 
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Chapter 6                                       
Conclusions 
 
 
 
 
 
 
 

It has been shown that new designs of the MEMS device geometry and optical 

microprobe setup allow for the application of simple linear closed-loop control routines with 

acceptable results. The need for detailed positional information, required for robust nonlinear 

control applications, has been met by using grating structures as a through-wafer optical 

probing area. Software tools have been developed that examine through-wafer diffraction 

intensity patterns and create mask layout files of integrated on and off-axis focusing binary 

Fresnel zone plate lenses. A successful binary diffractive microoptical element fabrication 

process has been established, and the focusing properties of the microlenses have been 

examined. The lenses have also been used to direct a visible wavelength probe beam in order 

to illuminate a lateral comb resonator device. This chapter will summarize results, as well as 

discuss further research in achieving greater positional resolution of the optical output signal 

and improving the output beam quality of the integrated optical elements. 

 

6.1 Through-Wafer Diffraction Study Results 
 

In order to study the diffraction effects of both the single-opening and the periodic 2 µm 

opening grating translation stage geometries designed for increased positional resolution, a 

Matlab program was developed to examine the interaction of the complex amplitude of the 

Gaussian input beam, the complex transmission profile of the stage, and the transfer function 

of free space. This program is highly flexible and can be modified to accept different stage 
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geometries, beam wavelengths and types, and observation plane distances. Theoretical 

optical output waveforms can also be generated using a Simulink system model of the lateral 

comb resonator with experimentally determined model parameters (mass, resonance, spring 

constant) to determine theoretical stage displacement.  

When compared with actual experimental optical output data obtained by probing a 

moving device with a 2 µm grating geometry translation stage, theoretical waveforms 

obtained from the Matlab optical probe field intensity program match in frequency, phase 

shift, and relative amplitude for sinusoidal drive voltage frequencies ranging from 1-5 kHz. 

A correlation between stage velocity and peak width can be made as well. At or near the 

zero, or at-rest position, stage velocity is greatest, resulting in narrow intensity peaks. As the 

stage reaches the limits of its motion, stage velocity is lower, causing the intensity peaks to 

become broadened. A positional resolution of 4 µm peak-to-peak and 2 µm peak-to-valley 

has been achieved. Near the resonant frequency of the device (~2.9 kHz, Figure 4.35) five 

distinct intensity peaks can be seen, giving a total stage displacement of ~20 µm, a value that 

agrees with simulated displacement results. The secondary sinusoidal frequency in the 

experimental data has been considered and may be an effect of vertical stage motion, but is 

more likely due to large spot size, causing an interaction of the probe beam with non-grating 

areas of the device stage. 

By decreasing the grating size to 1 µm, positional resolution should increase accordingly, 

however, due to fabrication process limitations, linewidths less than 2 µm are not resolvable 

with the MUMPS fabrication process. Multiple detector fibers could be employed to receive 

multiple intensity peaks of the MEMS motion induced grating diffraction pattern, increasing 

the optical signal position resolution in the area between intensity maxim and minima. A 

similar method involving multiple probe beams, each with its own detector, could be used in 

the same manner. Both of these methods would be a challenge to implement in the current 

optical microprobe setup due to the limited space in the probing area of the device, but could 

be realized in an integrated optical monitoring environment. 
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6.2 Integrated Binary Fresnel Lens Conclusions 
 

Fresnel Zone plate theory has been used to create a program that can be used to produce 

binary integrated zone plate diffraction pattern layouts. These layouts have been arranged to 

create a microoptical element/slab waveguide system that can be used to deliver an optical 

probe beam to a single device in a microelectromechanical system. Off-axis binary lenses 

have been designed to accept a non-normal, divergent input beam. The lens collimates the 

input for propagation in the substrate, and further increases the angle of propagation by 10 or 

15 degrees to meet the total internal reflection requirements of the waveguide. Output lenses 

of the same type have been designed and positioned on the opposite surface of the quartz 

substrate to couple the beam out of the waveguide and focus the beam 0.5-1 cm for an optical 

probe beam wavelength of 1310 nm (1 to 2 cm for HeNe wavelengths). This focused spot 

can then be used to optically monitor moving structures on a MEMS device. 

A successful diffractive optical microelement photolithography process has been 

established, providing the ability to resolve photoresist linewidths down to ~1.5 µm on quartz 

substrates using AZ5206-E photoresist and the MA6 mask aligner operating at 320 nm. A 

reactive ion etch process has been developed using Fluoroform at a flow of 110 sccm, a 

process pressure of 30 mT, and 150 W of RF power for 40 minutes. These parameters result 

in successful transfer of the photoresist pattern to the quartz substrate with an etch depth of 

~450 nm.  

Minimal photoresist loss is evident, mainly on smaller features (larger zone radii) that 

contribute little to the overall diffraction of the beam. This photoresist loss is due to the 

length of time require to reach the desired etch depth. To eliminate PR during the etch 

process (and thus its loss), different mask materials, such as metals, could be used, but lateral 

undercutting of the masking material will still be a problem. If the mass flow controller 

malfunction the RIE is corrected, different gas flow rates could be studied as well to 

determine the effect of gas flow on etch rate, possibly shortening the process time. Due to the 

increased vertical directionality of the ICP etch process, using ICP power could also reduce 

PR loss as well as increase the anisotropy of the etch. 

The fabricated binary microoptical elements were qualitatively examined and shown to 

have the expected focusing qualities. For visible light (632nm), focal lengths of 1-2 cm were 



 

 

143

observed for lenses designed for focusing at 0.5-1 cm using infrared wavelengths. Off-axis 

lenses caused comatic aberration of the coupled output beam intensity pattern. Even though 

significant coma was present, the lens substrate was placed in the optical microprobe setup 

and used to illuminate a lateral comb resonator device, showing that integrated optical 

elements can be used to deliver an optical probe beam to MEMS devices for monitoring 

purposes.  

This research resulted in an integrated optical substrate that can be used as a flexible 

research tool with which to examine the usefulness of employing integrated optics for 

MEMS device monitoring. Future research must focus on eliminating comatic and other 

aberrations by using multi-level patterns and complex diffraction pattern geometries 

developed by starting with the desired spot pattern and working backwards to the diffractive 

element using statistical optics and holography. These sophisticated patterns could also be 

designed to probe multiple devices at once, allowing multiple probes to monitor one device, 

or multiple devices simultaneously, increasing the effectiveness of the integrated optical 

monitoring system. Future efforts must also include a study of packaging methods that will 

be used to fabricate the complete IOM-MEMS system. If the types of assembly and 

packaging methods used are more likely to fail than the device itself, package failure will 

outweigh the benefits of using such a system for lifetime monitoring and control of MEMS 

will be lost. 
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Appendix A                                                     
Lens Design and Optical Analysis 
Programs 
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/* fresnel.c: This program calculates the radii coordinates of a binary ZPL for a user-defined focal length, */ 
/* wavelength, lens size, and off-axis angel of focus. The coordinates are written to a .cif file for */ 
/* importation into a layout design software tool, and a text file ‘param.txt’ for accuracy assessment. */ 
  
#include <math.h> 
#include <stdio.h> 
#include <conio.h> 
#include <graphics.h> 
 
/* define constants */ 
/* #define f 0.02 focal length */ 
/* #define l 1.310E-6 wavelength */ 
#define pi 3.141592653589791 
#define CTE 1E8  /* constant for viewing rings & writing .cif file */ 
 
/* initialize graphics */ 
void inigr( void) 
{ 
 int GD = VGA; 
 int GM = VGAHI; 
 
 initgraph( &GD, &GM, "..\\bgi"); 
} 
 
/* define radius function */ 
float Radius( int m, float l, float f) 
{ 
 return sqrt((m*l*f)+pow((m*(l/2)),2)); /* CALCULATES RADIUS OF EACH RING */ 
} 
 
/* convert degrees to radians */ 
float rsin( float t) 
{ 
 return sin( t * pi / 180); 
} 
 
float rcos( float t) 
{ 
 return cos( t * pi / 180); 
} 
 
float rtan( float t) 
{ 
 return tan( t * pi / 180); 
} 
 
float abo( float i) 
{ 
 if ( i < 0) return -i; 
 return i; 
} 
 
void main( void) 
{ 
/* convert radius to x,y coordinates, write .cif and .txt info files */ 
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 /* file pointers */ 
 FILE *fp;    /* .cif pointer */ 
 FILE *fp2;   /* .txt pointer */ 
 
 int m, mm, chk; 
 float f, l, d, ang, center_radius, adjwidth, avg, width, th, x, y; 
 float micron_radius, micron_diam, micron_focus, nano_wavelength; 
 
 /* get input parameters from user */ 
 /* 
 
 printf( "Enter desired focal length in meters: "); 
 scanf( "%f", &f); 
 printf( "Enter desired wavelength in meters: "); 
 scanf( "%f", &l); 
 printf( "Enter desired lens \"box size\" in meters (only on side needed): "); 
 scanf( "%f", &d); 
 printf( "Enter desired deflection angle (< 50 degrees): "); 
 scanf( "%f", &ang); 
 */ 
 f = 0.005; 
 l = 1.31e-6; 
 d = 0.001; 
 ang = 10; 
 
 /* calculate center radius based on desired angle */ 
 center_radius=f * rtan(ang); 
 
 /* easy to read parameter file info. */ 
 nano_wavelength = 1E9 * l; 
 micron_focus = 1E6 * f; 
 micron_diam = 1E6 * d; 
 
 inigr(); 
 
 /* start writing .cif & .txt files */ 
 if ( (fp = fopen( "lens.cif", "w+t")) == NULL) { 
  printf( "\a Unable to create file lens.cif\n"); 
  getch(); 
  exit( 1); 
 } 
 if ( (fp2 = fopen( "param.txt", "w+t")) == NULL) { 
  printf( "\a Unable to create file param.txt\n"); 
  getch(); 
  exit( 1); 
 } 
 
 fprintf( fp2, "LENS PARAMETERS (ALL UNITS IN MICRONS UNLESS NOTED):\n\n"); 
 fprintf( fp2, "Wavelength: %f nm\n", nano_wavelength); 
 fprintf( fp2, "Focal Length: %f\n", micron_focus); 
 fprintf( fp2, "Lens Diameter: %f\n\n", micron_diam); 
 fprintf( fp2, "Deflection Angle: %f\n\n", ang); 
 
 fprintf( fp, "DS 1 100 100;\n"); /* scaling, 100 1 gives 1 micron scale */ 
 fprintf( fp, "9 Lens;\n");       /* cell definition */ 
 fprintf( fp, "L CPZ;\n\n");      /* layer definition */ 
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 /* all widths and radii <= defined diameter calculated and placed in file */ 
 for( m = 1; Radius(m, l, f) <= center_radius+d*sqrt(2) ; m++) 
  { 
  width = 1E6 * (Radius( m+1, l, f) - Radius( m, l, f));    /* actual ring width in microns */ 
  micron_radius = 1E6 * Radius( m, l, f);                   /* radius in microns */ 
  fprintf( fp2, "Radius %d: %f\nWidth of ring %d: %f ", m, micron_radius, m, width); 
  } 
 
 for( mm = 1; mm <= m - 1; mm+=2)     /* number of radii, plots odd radii rings */ 
  { 
  adjwidth = CTE * (Radius( mm+1, l, f) - Radius ( mm, l, f));  /* adjusted width of ring */ 
  avg = (Radius( mm+1, l, f) + Radius ( mm, l, f))/2;         /* center of ring path */ 
 
  fprintf( fp, "W %ld ", (long int)adjwidth);       /* define as wire and give width */ 
 
  chk = 0; 
  for( th = 0; th <= 360; th+=1.8)  /* 200 segments in circles */ 
   { 
   x = CTE * avg * rcos( th);       /* adjusted x-y coordinates */ 
   y = CTE * avg * rsin( th); 
 
   if (abo(x) <= CTE*d && y <= CTE*(d+center_radius) && y >= CTE*(center_radius-d)) { 
    if ( chk) fprintf( fp, "W %ld ", (long int)adjwidth); 
    fprintf( fp, "%ld,%ld ", (long int)x, (long int)y); /* print radius path coordinates to file */ 
    chk = 0; 
   } 
   else { 
    if ( chk < 5) chk ++; 
    if ( chk == 1) fprintf( fp, ";\n"); 
   } 
 
   /* center image on screen and adjust for viewing */ 
   x /= 400; 
   y /= 400; 
 
   if (abo(x*400) <= d*CTE && y*400 <= (d+center_radius)*CTE && y*400 >= CTE*(center_radius-d)) 
 { 
 x += 320; 
 y = 240 - y + center_radius*200000; 
 putpixel( x, y, 4); 
 } 
   } 
  fprintf( fp, ";\n\n"); 
  } 
 fprintf( fp, "DF;\nE\n"); /* close .cif file */ 
 
 fcloseall(); 
 getch(); 
}
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    ‘planeslit.m’: This program creates a plane wave function  U(r), the transmission             
% profile of a 20 um slit p(x), and the resulting optical field intensity distribution g(x), 
% a distance away d computed from the user input Fresnel number.                                    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
 
cwd = pwd; 
cd(tempdir); 
pack 
cd(cwd) 
 
posx=[]; 
posy=[]; 
lambda=1.31; % wavelength 
k=(2*pi)/lambda; 
z=1;  
Nf=input('Enter Fresnel Number: '); 
slit=10; 
d=(slit^2)/(lambda*Nf); 
%d=input('Enter distance of observation plane in microns: ');  
 
Ur=[]; 
aperture=[]; 
 
% 2-D Plane Wave Amplitude U(x) 
 
for x=-30:0.025:30 
    posx=[posx x]; 
    u=exp(-j*k*z); % plane wave 
    Ur=[Ur u]; 
    % begin slit definition  
    if (x>=-slit)&(x<=slit)  
        amp=1; 
    else 
        amp=0; 
    end % 
    aperture=[aperture amp]; 
end 
     
IU=abs(Ur).^2; 
 
% Complex Wave after Aperture f(x) 
fx=Ur.*aperture; 
If=abs(fx).^2; 
 
% g(x) and Intensity Determination |g(x)|^2 
m=length(posx); 
hx=[]; 
aa=[]; 
ho=(j/(lambda*d))*exp(-j*k*d); 
 
for a=-70:0.025:70 
    aa=[aa a]; 
    const=(-j*pi)/(lambda*d); 
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    h1=a^2;% Fresnel Appx. of transfer function of free space       
    h2=exp(const*h1); 
    hx=[hx h2]; 
end 
hhx=ho*hx; 
gx=conv2(fx,hhx,'same'); % direct convolution 
Ig=abs(gx).^2; 
 
% intensity normalization 
normx=(m-1)/2; 
maxg1=max(Ig); 
 
% Pupil Function p(x,y) 
figure(1); 
plot(posx, aperture); 
title('Pupil Function'); 
xlabel('X-Distance (microns)'); 
ylabel('Transmission Value'); 
 
% Aperture Function f(x,y) 
figure(2); 
plot(posx,If/If(normx)); 
title('Aperture Shadowed Beam Pattern (d=0)'); 
xlabel('X-Distance (microns)'); 
ylabel('Normalized Intensity'); 
 
% Observation Plane g(x) 
figure(3); 
plot(posx,Ig/maxg1); 
t1=sprintf('Aperture Affected Beam Pattern (Nf = %g, d = %f microns)',Nf,d); 
title(t1); 
xlabel('X-Distance (microns)'); 
ylabel('Normalized Intensity'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      'planerect.m': This program creates a plane wave function  U(r), the transmission             
% profile of a 10x30 um rectangular opening p(x,y), and the resulting optical field  
% intensity distribution, g(x,y), a distance away d computed from the user input  
% Fresnel number.                                    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
 
cwd = pwd; 
cd(tempdir); 
pack 
cd(cwd) 
 
posx=[]; 
posy=[]; 
lambda=1.31; % wavelength 
k=(2*pi)/lambda; 
z=1;  
Nf=input('Enter Fresnel Number: '); 
slit=5; 
d=(slit^2)/(lambda*Nf); 
%d=input('Enter distance of observation plane in microns: ');  
 
ur=[]; 
Ur=[]; 
apval=[]; 
aperture=[]; 
area=[]; 
 
% 3-D Complex Plane Wave Amplitude U(x,y) 
 
for x=-20:0.2:20 
    posx=[posx x]; 
    for y=-20:0.2:20 
        u=exp(-j*k*z);  
        ur=[ur u]; 
        % begin aperture function definition (piecewise) 
        if (x>=-slit)&(x<=slit)&(y>=-15)&(y<=15) % rectangular opening 
            amp=1; 
        else 
            amp=0; 
        end %end aperture function definition 
        apval=[apval amp]; 
    end 
    Ur=[Ur; ur]; 
    ur=[]; 
    aperture=[aperture; apval]; 
    apval=[]; 
end 
 
IU=(abs(Ur)).^2; 
posy=-20:0.2:20; 
 
% Complex Wave after Aperture f(x,y) 
fxy=Ur.*aperture; 
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If=(abs(fxy)).^2; 
 
% g(x,y) and Intensity Determination |g(x,y)|^2 
m=length(posx); 
n=length(posy); 
hxy=[]; 
h3=[]; 
ho=(j/(lambda*d))*exp(-j*k*d); 
 
for hx=-50:0.2:50 
   for hy=-50:0.2:50 
      const=(-j*pi)/(lambda*d); 
      h1=(hx^2)+(hy^2);% Fresnel Appx. of transfer function of free space       
      h2=exp(const*h1); 
      h3=[h3 h2]; 
   end 
   hxy=[hxy;h3]; 
   h3=[]; 
end 
hhxy=ho*hxy; 
gxy=conv2(fxy,hhxy,'same'); % direct convolution 
Ig=(abs(gxy)).^2; 
 
 
% intensity normalization 
normx=(m-1)/2; 
normy=(n-1)/2; 
maxg1=max(Ig,[],1); 
maxg1a=max(Ig,[],2); 
maxg2=max(maxg1,[],2); 
 
% Beam Intensity=|U(x,y)|^2 
figure(1); 
mesh(posx, posy, IU/(IU(normx,normy))); 
view(-40,70); 
title('Beam Intensity'); 
xlabel('X-Distance (microns)'); 
ylabel('Y-Distance (microns)'); 
zlabel('Normalized Intensity'); 
 
% Pupil Function p(x,y) 
figure(2); 
mesh(posx, posy, aperture); 
view(-40,70); 
title('Pupil Function'); 
xlabel('X-Distance (microns)'); 
ylabel('Y-Distance (microns)'); 
zlabel('Transmission Value'); 
 
% Aperture Function f(x,y) 
figure(3); 
mesh(posx,posy,If/(If(normx,normy))); 
view(-40,70); 
title('Aperture Shadowed Beam Pattern (d=0)'); 
xlabel('X-Distance (microns)'); 
ylabel('Y-Distance (microns)'); 
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zlabel('Normalized Intensity'); 
 
% Observation Plane g(x,y), side view 
figure(4); 
mesh(posx,posy,Ig/maxg2); 
view(-75,60); 
t1=sprintf('Aperture Affected Beam Pattern (Nf = %f, d = %f microns)',Nf,d); 
title(t1); 
xlabel('X-Distance (microns)'); 
ylabel('Y-Distance (microns)'); 
zlabel('Normalized Intensity'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      'planegrate.m': This program creates a plane wave function  U(r), the transmission             
% profile of a 2 um openings with 2 um spaces grating 60 um in length p(x,y), and the  
% resulting optical field intensity distribution, g(x,y), a distance away d computed from  
% the user input Fresnel number.                                    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
 
cwd = pwd; 
cd(tempdir); 
pack 
cd(cwd) 
 
posx=[]; 
posy=[]; 
lambda=1.31; % wavelength 
k=(2*pi)/lambda; 
z=1;  
Nf=input('Enter Fresnel Number: '); 
slit=10; 
d=(slit^2)/(lambda*Nf); 
%d=input('Enter distance of observation plane in microns: ');  
 
Ur=[]; 
aperture=[]; 
 
% 2-D Plane Wave Amplitude U(x) 
 
for x=-30:0.01:30 
    posx=[posx x]; 
    u=exp(-j*k*z); % plane wave 
    Ur=[Ur u]; 
    % begin grating function definition (piecewise) 
    if (abs(x)<23)&(abs(x)>=21) 
        amp=0; 
    elseif (abs(x)<21)&(abs(x)>=19) 
        amp=1; 
    elseif (abs(x)<19)&(abs(x)>=17) 
        amp=0; 
    elseif (abs(x)<17)&(abs(x)>=15) 
        amp=1; 
    elseif (abs(x)<15)&(abs(x)>=13) 
        amp=0; 
    elseif (abs(x)<13)&(abs(x)>=11) 
        amp=1; 
    elseif (abs(x)<11)&(abs(x)>=9) 
        amp=0; 
    elseif (abs(x)<9)&(abs(x)>=7) 
        amp=1; 
    elseif (abs(x)<7)&(abs(x)>=5) 
        amp=0; 
    elseif (abs(x)<5)&(abs(x)>=3) 
        amp=1; 
    elseif (abs(x)<3)&(abs(x)>=1) 
        amp=0; 
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    elseif (abs(x)<1)&(abs(x)>=-1) 
        amp=1; 
    elseif (abs(x)<-1)&(abs(x)>=-3) 
        amp=0; 
    elseif (abs(x)<-3)&(abs(x)>=-5) 
        amp=1; 
    elseif (abs(x)<-5)&(abs(x)>=-7) 
        amp=0; 
    elseif (abs(x)<-7)&(abs(x)>=-9) 
        amp=1; 
    elseif (abs(x)<-9)&(abs(x)>=-11) 
        amp=0; 
    elseif (abs(x)<-11)&(abs(x)>=-13) 
        amp=1; 
    elseif (abs(x)<-13)&(abs(x)>=-15) 
        amp=0; 
    elseif (abs(x)<-15)&(abs(x)>=-17) 
        amp=1; 
    elseif (abs(x)<-17)&(abs(x)>=-19) 
        amp=0; 
    elseif (abs(x)<-19)&(abs(x)>=-21) 
        amp=1; 
    elseif (abs(x)<-21)&(abs(x)>=-23) 
        amp=1; 
    else 
        amp=0; 
    end %end aperture function definition 
    aperture=[aperture amp]; 
end 
     
IU=abs(Ur).^2; 
 
% Complex Wave after Aperture f(x) 
fx=Ur.*aperture; 
If=abs(fx).^2; 
 
% g(x) and Intensity Determination |g(x)|^2 
 
hx=[]; 
aa=[]; 
ho=(j/(lambda*d))*exp(-j*k*d); 
 
for a=-70:0.01:70 
    aa=[aa a]; 
    const=(-j*pi)/(lambda*d); 
    h1=a^2;% Fresnel Appx. of transfer function of free space       
    h2=exp(const*h1); 
    hx=[hx h2]; 
end 
hhx=ho*hx; 
gx=conv2(fx,hhx,'same'); % direct convolution 
Ig=abs(gx).^2; 
 
% intensity normalization 
maxg1=max(Ig); 
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% Observation Plane g(x) 
figure(4); 
plot(posx,Ig/maxg1); 
t1=sprintf('Aperture Affected Beam Pattern (d = %f microns)',d); 
title(t1); 
xlabel('X-Distance (microns)'); 
ylabel('Normalized Intensity'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       ‘gausstrans.m’: This program creates a Gaussian beam function U(r), the transmission            
% profile of the single opening MEMS stage structure modeled as a transparent medium,  
% t(x,y), and the resulting optical field intensity distribution, g(x,y), 100 microns away. A  
% user input stage displacement can be entered, with 0 being the "at rest" value.                                    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
 
cwd = pwd; 
cd(tempdir); 
pack 
cd(cwd) 
 
posx=[]; 
posy=[]; 
lambda=1.31;  
k=(2*pi)/lambda; 
Wo=10; 
zo=20; 
z=1e-12; 
n=3.5; 
d=100; 
shift=input('Enter displacement of translation stage microns (- => left, + => right): ');  
 
Wz=Wo*sqrt(1+(z/zo)^2); % spot size at distance z 
Rz=z*(1+(zo/z)^2); % wavefront radius of curvature at distance z 
Sz=atan(z/zo); % phase at distance z 
 
ur=[]; 
Ur=[]; 
tval=[]; 
pro=[]; 
trans=[]; 
prof=[]; 
 
 
% 3-D Complex Gaussian Beam Amplitude U(x,y) 
 
for xx=-30:0.2:30 
    posx=[posx xx]; 
    x=shift+xx; 
    for y=-30:0.2:30 
        psq=xx^2+y^2; 
        u=(1/(j*zo))*(Wo/Wz)*exp(-psq/(Wz^2))*exp((-j*k*z)-(j*k*(psq/(2*Rz)))+(j*Sz)); 
        ur=[ur u]; 
        % begin transmission function definition (piecewise) 
        if (x>=-30)&(x<-20)&(y>=-20)&(y<=20)  
            t=exp(-j*n*k*4); 
            pf=4; 
        elseif (x>=-20)&(x<0)&(y>=-20)&(y<=20)  
            t=exp(-j*n*k*2); 
            pf=2; 
        elseif (x>=0)&(x<5)&(y>=-20)&(y<=20)  
            t=exp(-j*n*k*4); 
            pf=4; 
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        elseif (x>=5)&(x<20)&(y>=-20)&(y<=20)  
            t=exp(-j*n*k*6); 
            pf=6; 
        else 
            t=exp(-j*n*k*4); 
            pf=4; 
        end %end aperture function definition 
        tval=[tval t]; 
        pro=[pro pf]; 
    end 
    Ur=[Ur; ur]; 
    ur=[]; 
    trans=[trans; tval]; 
    tval=[]; 
    prof=[prof; pro]; 
    pro=[]; 
end 
 
IU=(abs(Ur)).^2; 
posy=-30:0.2:30; 
 
% Complex Wave after Aperture f(x,y) 
fxy=Ur.*trans; 
If=(abs(fxy)).^2; 
 
% g(x,y) and Intensity Determination |g(x,y)|^2 
m=length(posx); 
n=length(posy); 
hxy=[]; 
h3=[]; 
ho=(j/(lambda*d))*exp(-j*k*d); 
 
for hx=-50:0.2:50 
   for hy=-50:0.2:50 
      const=(-j*pi)/(lambda*d); 
      h1=(hx^2)+(hy^2);% Fresnel Appx. of transfer function of free space       
      h2=exp(const*h1); 
      h3=[h3 h2]; 
   end 
   hxy=[hxy;h3]; 
   h3=[]; 
end 
hhxy=ho*hxy; 
gxy=conv2(fxy,hhxy,'same'); % direct convolution 
Ig=(abs(gxy)).^2; 
 
% intensity normalization 
normx=(m-1)/2; 
normy=(n-1)/2; 
maxg1=max(Ig,[],1); 
maxg1a=max(Ig,[],2); 
maxg2=max(maxg1,[],2); 
 
% Beam Intensity=|U(x,y)|^2 
figure(1); 
mesh(posx, posy, IU/(IU(normx,normy))); 
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view(-40,70); 
title('Beam Intensity'); 
xlabel('X-Distance (microns)'); 
ylabel('Y-Distance (microns)'); 
zlabel('Normalized Intensity'); 
 
% Stage thickness profile 
figure(2); 
mesh(posx, posy, prof); 
view(-40,70); 
title('Stage Thickness Profile'); 
xlabel('X-Distance (microns)'); 
ylabel('Y-Distance (microns)'); 
zlabel('Thickness of Polysilicon'); 
 
% Aperture Function f(x,y) 
%figure(3); 
%mesh(posx,posy,If/(If(normx,normy))); 
%view(-40,70); 
%title('Aperture Shadowed Beam Pattern (d=0)'); 
%xlabel('X-Distance (microns)'); 
%ylabel('Y-Distance (microns)'); 
%zlabel('Normalized Intensity'); 
 
% Observation Plane g(x,y), side view 
figure(3); 
mesh(posx,posy,Ig/maxg2); 
view(-75,60); 
t1=sprintf('Aperture Affected Beam Pattern (d = %f microns)',d); 
title(t1); 
xlabel('X-Distance (microns)'); 
ylabel('Y-Distance (microns)'); 
zlabel('Normalized Intensity'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      'gaussgrate.m': This program creates a gaussian beam function  U(r),  
% the transmission profile of a 2 um space/2 um opening grating, t(x,y),  
% and the resulting optical field intensity distribution, g(x,y), a  
% distance of 20 microns away. A user input stge displacement can be  
% entered, with 0 being the "at rest" value.                                        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
 
cwd = pwd; 
cd(tempdir); 
pack 
cd(cwd) 
 
posx=[]; 
posy=[]; 
lambda=1.31;  
k=(2*pi)/lambda; 
Wo=5; 
zo=20; 
z=1e-12; 
n=3.5; 
d=200; 
shift=input('Enter displacement of translation stage in microns (- => left, + => right): ');  
shiftcol=shift/0.2; 
 
Wz=Wo*sqrt(1+(z/zo)^2); % spot size at distance z 
Rz=z*(1+(zo/z)^2); % wavefront radius of curvature at distance z 
Sz=atan(z/zo); % phase at distance z 
 
ur=[]; 
Ur=[]; 
tval=[]; 
trans=[]; 
pro=[]; 
prof=[]; 
posmat=[]; 
shposmat=[]; 
transmat=[]; 
shtransmat=[]; 
 
% 3-D Complex Gaussian Beam Amplitude U(x,y) 
 
for x=-30:0.2:30 
    posx=[posx x]; 
    for y=-30:0.2:30 
        psq=x^2+y^2; 
        u=(1/(j*zo))*(Wo/Wz)*exp(-psq/(Wz^2))*exp((-j*k*z)-(j*k*(psq/(2*Rz)))+(j*Sz)); 
        ur=[ur u]; 
    end 
    Ur=[Ur; ur]; 
    ur=[]; 
end 
 
IU=(abs(Ur)).^2; 
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posy=-30:0.2:30; 
 
% STAGE TRANSMISSION AND PROFILE DEFINITION 
% define repeatable section of grating 
for x=-2:0.2:1.8 
    for y=-30:0.2:30 
        if (x>=-2)&(x<-1)&(y>=-20)&(y<=20) 
            t=exp(-j*n*k*2); 
            pf=2; 
        elseif (x>=-1)&(x<1)&(y>=-20)&(y<=20) 
            t=exp(-j*n*k*4); 
            pf=4; 
        elseif (x>=1)&(x<2)&(y>=-20)&(y<=20) 
            t=exp(-j*n*k*2); 
            pf=2; 
        else 
            t=exp(-j*n*k*4); 
            pf=4; 
        end  
        tval=[tval; t]; 
        pro=[pro; pf]; 
    end 
    trans=[trans tval]; 
    tval=[]; 
    prof=[prof pro]; 
    pro=[]; 
end 
 
% create unshifted grating structure 
for n=1:20:300 
    posmat=[posmat prof]; 
    transmat=[transmat trans];  
end 
 
posmat(:,301)=posmat(:,300); 
transmat(:,301)=transmat(:,300); 
 
% create shifted grating structure 
if shiftcol>0 
    m1=301-shiftcol; 
    for sn=1:shiftcol 
        shposmat(:,sn)=posmat(:,m1); 
        shtransmat(:,sn)=transmat(:,m1); 
        m1=m1+1; 
    end 
    m2=1; 
    for sn=shiftcol+1:301 
        shposmat(:,sn)=posmat(:,m2); 
        shtransmat(:,sn)=transmat(:,m2); 
        m2=m2+1; 
    end 
elseif shiftcol<0 
    m3=-shiftcol; 
    for sn=1:301+shiftcol 
        shposmat(:,sn)=posmat(:,m3); 
        shtransmat(:,sn)=transmat(:,m3); 
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        m3=m3+1; 
    end 
    m4=1; 
    for sn=301+shiftcol+1:301 
        shposmat(:,sn)=posmat(:,m4); 
        shtransmat(:,sn)=transmat(:,m4); 
        m4=m4+1; 
    end 
else 
    shposmat=posmat; 
    shtransmat=transmat; 
end 
 
% Complex Wave after Aperture f(x,y) 
fxy=Ur.*shtransmat; 
If=(abs(fxy)).^2; 
 
% g(x,y) and Intensity Determination |g(x,y)|^2 
m=length(posx); 
n=length(posy); 
hxy=[]; 
h3=[]; 
ho=(j/(lambda*d))*exp(-j*k*d); 
 
for hx=-50:0.2:50 
   for hy=-50:0.2:50 
      const=(-j*pi)/(lambda*d); 
      h1=(hx^2)+(hy^2);% Fresnel Appx. of transfer function of free space       
      h2=exp(const*h1); 
      h3=[h3 h2]; 
   end 
   hxy=[hxy;h3]; 
   h3=[]; 
end 
hhxy=ho*hxy; 
gxy=conv2(fxy,hhxy,'same'); % direct convolution 
Ig=(abs(gxy)).^2; 
 
 
% intensity normalization 
normx=(m-1)/2; 
normy=(n-1)/2; 
maxg1=max(Ig,[],1); 
maxg1a=max(Ig,[],2); 
maxg2=max(maxg1,[],2); 
 
% Beam Intensity=|U(x,y)|^2 
figure(1); 
mesh(posx, posy, IU/(IU(normx,normy))); 
view(30,50); 
title('Beam Intensity'); 
xlabel('X-Distance (microns)'); 
ylabel('Y-Distance (microns)'); 
zlabel('Normalized Intensity'); 
 
% Stage thickness profile 
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figure(2); 
mesh(posx, posy, shposmat); 
view(30,50); 
title('Stage Thickness Profile'); 
xlabel('X-Distance (microns)'); 
ylabel('Y-Distance (microns)'); 
zlabel('Thickness of Polysilicon'); 
 
% Aperture Function f(x,y) 
%figure(3); 
%mesh(posx,posy,If/(If(normx,normy))); 
%view(-40,70); 
%title('Aperture Shadowed Beam Pattern (d=0)'); 
%xlabel('X-Distance (microns)'); 
%ylabel('Y-Distance (microns)'); 
%zlabel('Normalized Intensity'); 
 
% Observation Plane g(x,y), side view 
figure(3); 
mesh(posx,posy,Ig/maxg2); 
view(30,50); 
t1=sprintf('Aperture Affected Beam Pattern (d = %f microns)',d); 
title(t1); 
xlabel('X-Distance (microns)'); 
ylabel('Y-Distance (microns)'); 
zlabel('Normalized Intensity'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      'outputsim1d.m': This program creates a gaussian beam function  U(r), the transmission             
% profile of a 2 um space/2 um opening grating, t(x,y), and the resulting optical field  
% intensity distribution, g(x,y), at an observation distance of 20 microns away. A time vs.  
% position plot is generated by a Simulink model of the moving device (damping included) to  
% determine the changing position of the stage at the desired operating frequency. At each  
% position, intensity incedent on the area of the detector is determined and plotted as  
% simulated optical output data. Only one dimension was considered to reduce computation  
% time. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
cwd = pwd; 
cd(tempdir); 
pack 
cd(cwd) 
 
posx=[]; 
lambda=1.31;  
k=(2*pi)/lambda; 
Wo=5; 
zo=20; 
z=1e-12; 
n=3.5; 
d=20; 
shiftvect=[]; 
intensplot=[]; 
 
Wz=Wo*sqrt(1+(z/zo)^2); % spot size at distance z 
Rz=z*(1+(zo/z)^2); % wavefront radius of curvature at distance z 
Sz=atan(z/zo); % phase at distance z 
 
ur=[]; 
tvect=[]; 
profvect=[]; 
posvect1=[]; 
posvect2=[]; 
posvect=[]; 
shposvect=[]; 
transvect1=[]; 
transvect2=[]; 
transvect=[]; 
shtransvect=[]; 
res=0.01;  
 
% 3-D Complex Gaussian Beam Amplitude U(x,y) 
 
for x=-20:res:20 
    posx=[posx x]; 
    psq=x^2; 
    u=(1/(j*zo))*(Wo/Wz)*exp(-psq/(Wz^2))*exp((-j*k*z)-(j*k*(psq/(2*Rz)))+(j*Sz)); 
    ur=[ur u]; 
end 
 
IU=(abs(ur)).^2; 
 
% STAGE TRANSMISSION AND PROFILE DEFINITION 
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% define repeatable section of grating 
sectvect=[]; 
for x=0:res:(4-res) 
    sectvect=[sectvect x]; 
    if (x==0)&(x<1) 
        t=exp(-j*n*k*2); 
        pf=2; 
    elseif (x>=1)&(x<3) 
        t=exp(-j*n*k*4); 
        pf=4; 
    else 
        t=exp(-j*n*k*2); 
        pf=2; 
    end  
    tvect=[tvect t]; 
    profvect=[profvect pf]; 
end 
 
% create unshifted grating structure 
m=length(posx); 
len=length(sectvect); 
zero=find(posx==0); 
for n1=zero:len:(m-len) 
    posvect1=[posvect1 profvect]; 
    transvect1=[transvect1 tvect]; 
end 
len1=length(posvect1); 
len2=length(transvect1); 
posvect1(len1+1)=posvect1(len1); 
transvect1(len2+1)=transvect1(len2); 
posvect2=fliplr(posvect1); 
transvect2=fliplr(transvect1); 
posvect=[posvect2(1:((m-1)/2)) posvect1]; 
transvect=[transvect2(1:((m-1)/2)) transvect1]; 
 
% create plot of moving grating structure 
displace=displacement'*1e6; 
len3=length(displace); 
for val=1:len3 
    shift=round(displace(val)*(1/res))/(1/res); % round displacement to nearest resolution value 
    shiftvect=[shiftvect shift]; 
    shiftvals=shift/res; 
    if shiftvals>0 
        m1=m-shiftvals; 
        for sn=1:shiftvals 
            shposvect(sn)=posvect(m1); 
            shtransvect(sn)=transvect(m1); 
            m1=m1+1; 
        end 
        m2=1; 
        for sn=shiftvals+1:m 
            shposvect(sn)=posvect(m2); 
            shtransvect(sn)=transvect(m2); 
            m2=m2+1; 
        end 
    elseif shiftvals<0 
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        m3=-shiftvals; 
        for sn=1:m+shiftvals 
            shposvect(sn)=posvect(m3); 
            shtransvect(sn)=transvect(m3); 
            m3=m3+1; 
        end 
        m4=1; 
        for sn=m+shiftvals+1:m 
            shposvect(sn)=posvect(m4); 
            shtransvect(sn)=transvect(m4); 
            m4=m4+1; 
        end 
    else 
        shposvect=posvect; 
        shtransvect=transvect; 
    end 
 
    % Complex Wave after Aperture f(x,y) 
    fx=ur.*shtransvect; 
    If=(abs(fx)).^2; 
 
    % g(x,y) and Intensity Determination |g(x,y)|^2 
    h3=[]; 
    ho=(j/(lambda*d))*exp(-j*k*d); 
 
    for hx=-40:res:40 
        const=(-j*pi)/(lambda*d); 
        h1=(hx^2);% Fresnel Appx. of transfer function of free space       
        h2=exp(const*h1); 
        h3=[h3 h2]; 
    end 
 
    hhx=ho*h3; 
    gx=conv2(fx,hhx,'same'); % direct convolution 
    Ig=(abs(gx)).^2; 
 
 
    % intensity normalization 
    normx=(m-1)/2; 
 
    maxg1=max(Ig,[],1); 
    maxg1a=max(Ig,[],2); 
    maxg2=max(maxg1,[],2); 
    normIg=Ig/maxg2; 
 
    % find power in detector area 
    area=[]; 
    detectorarea=[]; 
    rst=find(posx==-2); % finds vector index for value of -2 microns 
    rfn=find(posx==2); 
 
    for mm=rst:rfn 
        matval=normIg(mm); 
        area=[area matval]; 
    end 
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    intensityval=sum(area,2); 
    intensplot=[intensplot intensityval]; 
end 
 
% Output Plot 
figure(1); 
subplot(2,1,1); 
plot(timevect', intensplot); 
title('Optical Output Waveform'); 
xlabel('Time (s)'); 
ylabel('Relative Intensity Value'); 
subplot(2,1,2); 
plot(timevect', shiftvect); 
title('Displacement Waveform'); 
xlabel('Time (s)'); 
ylabel('Displacement (um)'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      'reflect.m': This program uses refelctivity to determine the change in  
% through-wafer transmission as oxide gap distance varies from 0-2 microns. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
wl=1.31e-6; % wavelength 
n1=3.5; % POLY1 index 
n2=1; % air index 
n3=3.5; % POLY2 index 
r12=(n1-n2)/(n1+n2); 
r23=(n2-n3)/(n2+n3); 
a=r12^2; 
b=r23^2; 
gap=[]; 
trans=[]; 
 
for d=0:0.001e-6:2e-6 
    gap=[gap d]; 
    betaval=(2*pi*1*d)/wl; 
    c=2*r12*r23*cos(2*betaval); 
    R=(a+b+c)/(1+(a*b)+c); 
    tval=1-R; 
    trans=[trans tval]; 
end 
 
plot(gap*1e6, trans); 
axis([0 2 0 1]); 
title('Transmittance as a Function of Oxide Gap Thickness'); 
xlabel('Oxide Gap (microns)'); 
ylabel('Transmittance'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      'reflect2.m': This program uses reflectivity to determine the change  
% in through-wafer transmission as the stage moves vertically and changes  
% the oxide gap distance at a frequency of 1kHz. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all; 
 
f=1000; % frequency in Hz 
wl=1.31e-6; % wavelength 
n1=3.5; % POLY1 index 
n2=1; % air index 
n3=3.5; % POLY2 index 
r12=(n1-n2)/(n1+n2); 
r23=(n2-n3)/(n2+n3); 
a=r12^2; 
b=r23^2; 
time=[]; 
gap=[]; 
trans=[]; 
 
for t=0:1e-6:0.0025 
    time=[time t]; 
    d=0.05e-6*sin(2*pi*f*t); 
    h=d+1.75e-6; 
    gap=[gap h]; 
    betaval=(2*pi*1*h)/wl; 
    c=2*r12*r23*cos(2*betaval); 
    R=(a+b+c)/(1+(a*b)+c); 
    tval=1-R; 
    trans=[trans tval]; 
end 
 
% Output Plot 
figure(1); 
subplot(2,1,1); 
plot(time, gap*1e6); 
title('Vertical Variation of Oxide Gap Thickness'); 
xlabel('Time (s)'); 
ylabel('Gap Distance (microns)'); 
subplot(2,1,2); 
plot(time, trans); 
title('Transmittance Variation with Vertical Stage Motion'); 
xlabel('Time (s)'); 
ylabel('Transmittance'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      'vertsim1d': This program creates a gaussian beam function  U(r), the transmission             
% profile of a 2 um space/2 um opening grating, t(x,y), and the resulting optical field  
% intensity distribution, g(x,y), at an observation distance of 20 microns away. A time  
% vs. position plot is generated by a Simulink model of the moving device (damping  
% included) to determine the changing position of the stage at the desired operating  
% frequency. Vertical motion at this frequency is approximated and the effects of the  
% change in oxide spacing are added to the optical field profile at each position value  
% by multiplying by the decraese in transmittance. At each position, intensity incedent on  
% the area of the detector is determined and plotted as simulated optical output data.  
% Only one dimension was considered to reduce computation time. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
cwd = pwd; 
cd(tempdir); 
pack 
cd(cwd) 
 
posx=[]; 
lambda=1.31; % wavelength 
k=(2*pi)/lambda; % wave number 
Wo=5; % spot radius 
zo=20;  
z=1e-12; 
n=3.5; % index of polysilicon 
d=20; % observation distance 
shiftvect=[]; 
intensplot=[]; 
 
Wz=Wo*sqrt(1+(z/zo)^2); % spot size at distance z 
Rz=z*(1+(zo/z)^2); % wavefront radius of curvature at distance z 
Sz=atan(z/zo); % phase at distance z 
f=input('Enter model simulation frequency in Hz: ');  
 
% variables for vertical stage motion 
none=3.5; % POLY1 index 
ntwo=1; % air index 
nthree=3.5; % POLY2 index 
r12=(none-ntwo)/(none+ntwo); 
r23=(ntwo-nthree)/(ntwo+nthree); 
a=r12^2; 
b=r23^2; 
gap=[]; 
trans=[]; 
 
ur=[]; 
tvect=[]; 
profvect=[]; 
posvect1=[]; 
posvect2=[]; 
posvect=[]; 
shposvect=[]; 
transvect1=[]; 
transvect2=[]; 
transvect=[]; 
shtransvect=[]; 
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res=0.01;  
 
% 3-D Complex Gaussian Beam Amplitude U(x,y) 
 
for x=-20:res:20 
    posx=[posx x]; 
    psq=x^2; 
    u=(1/(j*zo))*(Wo/Wz)*exp(-psq/(Wz^2))*exp((-j*k*z)-(j*k*(psq/(2*Rz)))+(j*Sz)); 
    ur=[ur u]; 
end 
 
IU=(abs(ur)).^2; 
 
% STAGE TRANSMISSION AND PROFILE DEFINITION 
% define repeatable section of grating 
sectvect=[]; 
for x=0:res:(4-res) 
    sectvect=[sectvect x]; 
    if (x==0)&(x<1) 
        t=exp(-j*n*k*2); 
        pf=2; 
    elseif (x>=1)&(x<3) 
        t=exp(-j*n*k*4); 
        pf=4; 
    else 
        t=exp(-j*n*k*2); 
        pf=2; 
    end  
    tvect=[tvect t]; 
    profvect=[profvect pf]; 
end 
 
% create unshifted grating structure 
m=length(posx); 
len=length(sectvect); 
zero=find(posx==0); 
for n1=zero:len:(m-len) 
    posvect1=[posvect1 profvect]; 
    transvect1=[transvect1 tvect]; 
end 
len1=length(posvect1); 
len2=length(transvect1); 
posvect1(len1+1)=posvect1(len1); 
transvect1(len2+1)=transvect1(len2); 
posvect2=fliplr(posvect1); 
transvect2=fliplr(transvect1); 
posvect=[posvect2(1:((m-1)/2)) posvect1]; 
transvect=[transvect2(1:((m-1)/2)) transvect1]; 
 
% create plot of moving grating structure 
displace=displacement'*1e6; 
len3=length(displace); % also length of timevect (from Simulink model) 
time=timevect'; 
for val=1:len3 
    shift=round(displace(val)*(1/res))/(1/res); % round displacement to nearest resolution value 
    shiftvect=[shiftvect shift]; 
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    shiftvals=shift/res; 
    if shiftvals>0 
        m1=m-shiftvals; 
        for sn=1:shiftvals 
            shposvect(sn)=posvect(m1); 
            shtransvect(sn)=transvect(m1); 
            m1=m1+1; 
        end 
        m2=1; 
        for sn=shiftvals+1:m 
            shposvect(sn)=posvect(m2); 
            shtransvect(sn)=transvect(m2); 
            m2=m2+1; 
        end 
    elseif shiftvals<0 
        m3=-shiftvals; 
        for sn=1:m+shiftvals 
            shposvect(sn)=posvect(m3); 
            shtransvect(sn)=transvect(m3); 
            m3=m3+1; 
        end 
        m4=1; 
        for sn=m+shiftvals+1:m 
            shposvect(sn)=posvect(m4); 
            shtransvect(sn)=transvect(m4); 
            m4=m4+1; 
        end 
    else 
        shposvect=posvect; 
        shtransvect=transvect; 
    end 
     
    % transmittance change due to vertical motion 
    gapchange=0.05e-6*sin(2*pi*f*time(val)); 
    gapwidth=gapchange+1.75e-6; 
    gap=[gap gapwidth]; 
    betaval=(2*pi*1*gapwidth)/1.31e-6; 
    c=2*r12*r23*cos(2*betaval); 
    R=(a+b+c)/(1+(a*b)+c); 
    tval=1-R; 
    trans=[trans tval]; 
     
    % Complex Wave after Aperture f(x,y) 
    fx=ur.*shtransvect; 
    If=(abs(fx)).^2; 
 
    % g(x,y) and Intensity Determination |g(x,y)|^2 
    h3=[]; 
    ho=(j/(lambda*d))*exp(-j*k*d); 
 
    for hx=-40:res:40 
        const=(-j*pi)/(lambda*d); 
        h1=(hx^2); % Fresnel Appx. of transfer function of free space       
        h2=exp(const*h1); 
        h3=[h3 h2]; 
    end 
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    hhx=ho*h3; 
    gx=conv2(fx,hhx,'same'); % direct convolution 
    Ig=(abs(gx)).^2;  
 
    % intensity normalization 
    normx=(m-1)/2; 
 
    maxg1=max(Ig,[],1); 
    maxg1a=max(Ig,[],2); 
    maxg2=max(maxg1,[],2); 
    normIg=(Ig/maxg2)*tval; % MULTIPLY BY CHANGE IN TRANSMITTANCE DUE TO VERTICAL 
MOTION HERE 
 
    % find power in detector area 
    area=[]; 
    detectorarea=[]; 
    rst=find(posx==-2); % finds vector index for value of -2 microns 
    rfn=find(posx==2); 
 
    for mm=rst:rfn 
        matval=normIg(mm); 
        area=[area matval]; 
    end 
 
    intensityval=sum(area,2); 
    intensplot=[intensplot intensityval]; 
end 
 
% Output Plot 
figure(1); 
subplot(2,1,1); 
plot(timevect', intensplot); 
title('Optical Output Waveform'); 
xlabel('Time (s)'); 
ylabel('Relative Intensity Value'); 
subplot(2,1,2); 
plot(timevect', shiftvect); 
title('Displacement Waveform'); 
xlabel('Time (s)'); 
ylabel('Displacement (um)'); 
 
figure(2) 
subplot(2,1,1); 
plot(timevect', gap*1e6); 
title('Oxide Gap Variation'); 
xlabel('Time (s)'); 
ylabel('Gap Distance (um)'); 
subplot(2,1,2); 
plot(timevect', trans); 
title('Transmission Variation'); 
xlabel('Time (s)'); 
ylabel('Transmission'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      ‘modeprop.m’: This program calculates the amplitude of a single mode fiber mode field 
% using Bessel functions and a Gaussian approximation for comparison purposes. The  
% propagation constant is calculated using an approximation and later adjusted to eliminate  
% the discontinuity at r=a. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all; 
 
n1=1.4677;  % core index 
NA=0.14;    % numerical aperture 
n2=sqrt((n1^2)-(NA^2)); 
a=4.1e-6;   % fiber core radius 
 
k=(2*pi)/1.3e-6; 
%Bm=sqrt(((n1^2)*(k^2))-((pi^2)/((a)^2))); %APPX. EQN.!!!! 
Bm=7.08e6; %value picked for J0 to work correctly 
wG=4.1e-6; 
 
kt=sqrt(((n1^2)*(k^2))-(Bm^2)); 
g=sqrt((Bm^2)-((n2^2)*(k^2))); 
 
J0a=besselj(0,kt*a); % see below for explaination 
K0a=besselk(0,g*a);  % as above    
R=J0a/K0a; 
posx=[]; 
bound=[]; 
posy=[]; 
field1=[]; 
field2=[]; 
matf=[]; 
 
for r=0:0.1e-6:15e-6 
    posx=[posx r]; 
    radius=4.1e-6; 
    bound=[bound radius]; 
    const1=kt*r; 
    const2=g*r; 
    if r <= a 
        fr1=besselj(0,const1); % Zero order Bessel function 
    elseif r >= a 
        fr1=R*besselk(0,const2);  % Zero order modified Bessel function of the second kind (same result as H0)              
    end 
    fr2=exp(-(r/wG)^2); % Gaussian appx. 
    field1=[field1 fr1]; 
    field2=[field2 fr2]; 
end 
 
posy=-20e-6:0.25e-6:20e-6; 
l1=[4.1 4.1]; 
l2=[0 1]; 
plot(posx*1e6, field1, posx*1e6, field2,'--'); 
line(l1,l2); 
xlabel('Radial Distance'); 
ylabel('Relative Intensity'); 
legend('Bessel functions', 'Gaussian appx.');
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      'couple.m': This program calculates fiber to fiber and laser diode to  
% fiber coupling efficiencies as a function of source to input separation in  
% the z-direction. Phase matching of the source to the couple fiber field mode  
% is considered. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all; 
 
Wo=4.1e-6;      % fiber source radius 
zo=40.6e-6;     % sqrt(2)Wo distance 
Bm=7.08e6;      % propagation constant of input fiber 
k=(2*pi)/1.3e-6;% wave number 
z1=1e-12;       % distance in coupled fiber 
radius=4.1e-6;  % radius of couled fiber 
zoa=2.4e-6;     % sqrt(2)Wox distance 
zob=60e-6;      % sqrt(2)Woy distance 
len=2e-6;       % length of LD output region 
wid=10e-6;      % width of LD output region 
worat=len/wid;  % length/width ratio (for scaling factor, similar to (wo/Wz)) 
zrat=zoa/zob;   % sqrt(2) length and width ratio   
 
dist=[]; 
nff=[]; 
nLDf=[]; 
 
for z=1e-12:1e-6:500e-6 
    dist=[dist z]; 
     
    % CIRCULAR GAUSSIAN BEAM PARAMETERS 
    Wz=Wo*sqrt(1+(z/zo)^2);     % spot size at distance z 
    Rz=z*(1+(zo/z)^2);          % wavefront radius of curvature at distance z 
    Sz=atan(z/zo);              % phase at distance z 
     
    % ELLIPTICAL GAUSSIAN BEAM PARAMETERS 
    Wzx=(len/2)*sqrt(1+(z/zoa)^2);  % x dir. spot size at distance z 
    Wzy=(wid/2)*sqrt(1+(z/zob)^2);  % y dir. spot size at distance z 
    Rzx=z*(1+(zoa/z)^2);        % x dir. wavefront radius of curvature at distannce z 
    Rzy=z*(1+(zob/z)^2);        % y dir. wavefront radius of curvature at distannce z 
    Szx=atan(z/zoa);            % x dir. phase retardation at distance z 
    Szy=atan(z/zob);            % y dir. phase retardation at distance z 
    wzrat=worat*sqrt(1+(z/zrat)^2); % x-y dir. spot size ratio at distance z 
     
    % REAL AND IMAGINARY COEFFICIENTS FOR COMPLEX ERROR FUNCTION CALCULATION 
    a=(-((Wo^2)*2*Rz)-((Wz^2)*2*Rz))/((Wz^2)*(Wo^2)*2*Rz); 
    b=(k*(Wz^2)*(Wo^2))/((Wz^2)*(Wo^2)*2*Rz); 
    a1=(-(radius^2)-(Wzx^2))/((Wzx^2)*(radius^2)); 
    b1=k/(2*Rzx); 
    c=(-(radius^2)-(Wzy^2))/((Wzy^2)*(radius^2)); 
    d=k/(2*Rzy); 
     
    % CIRCULAR GAUSSIAN COMPLEX ERF PARAMETERS 
    Wfunct=0; 
    int=(1/10000)*sqrt(-a+(i*b)); 
    Im=imag(int); 
    Re=real(int); 
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    cplx=(-Re+i*Im); 
     
    % ELLIPTICAL GAUSSIAN COMPLEX ERF PARAMETERS 
    Wfunct1=0; 
    Wfunct2=0; 
    int1=(1/10000)*sqrt(-a1+(i*b1)); 
    int2=(1/10000)*sqrt(-c+(i*d)); 
    Im1=imag(int1); 
    Re1=real(int1); 
    Im2=imag(int2); 
    Re2=real(int2); 
    cplx1=(-Re1+i*Im1); 
    cplx2=(-Re2+i*Im2); 
     
    % SEMI-INFINITE SERIES DETERMINATION OF W(Z) (for erf) 
    for v=0:1:100 
        w=((i*cplx)^v)/gamma((v/2)+1); 
        w1=((i*cplx1)^v)/gamma((v/2)+1); 
        w2=((i*cplx2)^v)/gamma((v/2)+1); 
        Wfunct=Wfunct+w; 
        Wfunct1=Wfunct1+w1; 
        Wfunct2=Wfunct2+w2; 
    end 
     
    % COMPLEX ERROR FUNCTION CALCULATION 
    er=1-(exp((Im^2)-(Re^2))*(cos(2*Re*Im)-i*sin(2*Re*Im))*Wfunct); 
    er1=1-(exp((Im1^2)-(Re1^2))*(cos(2*Re1*Im1)-i*sin(2*Re1*Im1))*Wfunct1); 
    er2=1-(exp((Im2^2)-(Re2^2))*(cos(2*Re2*Im2)-i*sin(2*Re2*Im2))*Wfunct2); 
     
    % X & Y INDEPENDENT TERMS 
    B1=(Wo/Wz)*exp(-(i*k*z)+(i*Bm*z1)+(i*Sz)); 
    B2=(worat/wzrat)*exp(-(i*k*z)+(i*Bm*z1)+(i*Szx)+(i*Szy)); 
     
    % FIBER TO FIBER EQN. TERMS 
    tff=-(er^2)*(pi/(a-(i*b)))*B1; 
    b1ff=(1/2)*(erf((1/10000)*(sqrt(2)/Wo))^2)*pi*(Wo^2); 
    b2ff=(1/2)*(erf((1/10000)*(sqrt(2)/Wz))^2)*pi*(Wo^2); 
     
    % LD TO FIBER EQN. TERMS 
    tLDf=er1*er2*(pi/(sqrt(-a1+(i*b1))*sqrt(-c+(i*d))))*B2; 
    b1LDf=(1/2)*(erf((1/10000)*(sqrt(2)/radius))^2)*pi*(radius^2); 
    b2LDf=(1/2)*(erf((1/10000)*(sqrt(2)/Wzx))^2)*(erf((1/10000)*(sqrt(2)/Wzy))^2)*pi*Wzx*Wzy; 
     
    % EFFICIENCY CALCULATION 
    eff1=((abs(tff))^2)/(b1ff*b2ff); 
    nff=[nff eff1*100]; 
    eff2=((abs(tLDf))^2)/(b1LDf*b2LDf); 
    nLDf=[nLDf eff2*100]; 
end 
 
dist =dist*1e6; 
dmin=min(dist); 
dmax=max(dist); 
 
% FIBER TO FIBER EFFICIENCY 
figure(1); 
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plot(dist,nff); 
axis([dmin dmax 0 100]); 
title('Fiber to Fiber Coupling Efficiency vs. Separation Distance');  
xlabel('Z-axis Separation (microns)'); 
ylabel('Efficiency (%)'); 
 
% LD TO FIBER EFFICIENCY 
figure(2);  
plot(dist,nLDf); 
title('LD to Fiber Coupling Efficiency vs. Separation Distance'); 
xlabel('Z-axis Separation (microns)'); 
ylabel('Efficiency (%)'); 
     
% EFFICIENCY COMPARISON 
figure(3); 
plot(dist,nff,dist,nLDf,'--'); 
axis([dmin dmax 0 100]); 
title('Coupling Efficiency Comparison'); 
xlabel('Z-axis Separation (microns)'); 
ylabel('Efficiency (%)');     
legend('Fiber to Fiber','LD to Fiber');     
     



 

 

177

 
 
 
 
 
 
 

Bibliography 
 
 
 
 
 
 
 
                                                           
[1] F. Merat and M. Mehregany, “Integrated micro-opto-electro-mechanical systems,” Proc. SPIE Micro-
Optics/Micromechanics and Laser Scanning and Shaping, Vol. 2383, pp. 88-98, May 1995. 

[2] Peterson, Kurt, “Silicon as a Mechanical Material,” Proc. IEEE, Vol. 70, No. 5, pp. 420-457, May 1982. 

[3] Bourne, Marlene, Cahners In-Stat Group, as quoted in: Roberts, Bill, “MEMS the Word,” Electronic 
Business, (July 2001), http://www.e-insite.net/eb-mag/index.asp?layout=article&articleId=CA89894. 

[4] “Microengine comb drive,” “24-bit mechanical lock,” and  “Microengine drive gear,” Web Page, 
http://mems.sandia.gov/scripts/images.asp, (2001). 

[5] F. M. Dickey, S. C. Holswade, L. A. Hornak, and K. S. Brown, “Optical Methods for Micromachine 
Monitoring and Feedback,” Sensors and Actuators A - Physical, Vol. 78, p. 220 (1999). 

[6] L. Dellmann, T. Akiyama, D. Briand, S. Gautsch, O. Guenat, B, Guldimann, P. Luginbuhl, C. Marxer, U. 
Staufer, B. van der Schoot, and N.F. de Rooij, “Microsystems for diverse applications using recently developed 
microfabrication techniques,” Proc. SPIE MOEMS and Miniaturized Systems, Vol. 4178, pp. 16-27, Sept. 2000.  

[7] M.E. Motamedi, M.C. Wu, and K.S. Pister, “Micro-opto-electro-mechanical devices and on-chip optical 
processing,” Optical Engineering, Vol. 36, No. 5, pp. 1282-1297, May 1997. 

[8] J. A. Walker, “Telecommunications Applications of MEMS,” MST News, No. 3/00, pp. 6-9, June 2000. 

[9] L.J. Hornbeck, “The DMDTM Projection Display Chip: A MEMS Based Technology,” MRS Bulletin, Vol. 
26, No. 4, pp. 325-327, April 2001. 

[10] D.W. Wine, M.P. Helsel, L. Jenkins, H. Urey, T.D. Osborn, “Performance of a biaxial MEMS-based 
scanner for microdisplay applications,” Proc. SPIE MOEMS and Miniaturized Systems, Vol. 4178, pp. 186-195, 
Sept. 2000. 

[11] A. Gehner, M. Wildenhain, and H. Lakner, “Micromirror arrays for wavefront correction,” Proc. SPIE 
MOEMS and Miniaturized Systems, Vol. 4178, pp. 348-357, Sept. 2000. 

[12] T.G. Bifano, R.K. Mail, J.K. Dorton, J. Perreault, N. Vandelli, M.N. Horenstein, D.A. Castañon, 
“Continuous-membrane surface-micromachined silicon deformable mirror,” Optical Engineering, Vol. 36, No. 
5, pp. 1354-1360, May 1997.  

[13] See e.g., M.S. Rodgers, J.J. Sniegowski, S.L. Miller, and G.F. LaVigne, “Designign and Operating 
Electrostatically Driven Microengines,” Proc. 44th International Instrumentation Symposium, Reno, NV, pp. 
56-65, May 1998. 



 

 

178

                                                                                                                                                                                    
[14] G.K. Fedder and Q. Jing, “Hierarchical circuit-level design methodology for microelectromechanical 
systems,” IEEE Trans. On Circuits and Systems II: Analog and Digital Signal Processing, V46, No. 10, pp. 
1309-1315, 1999. 

[15] H.H. Pham and A. Nathan, “Compact MEMS-SPICE Modeling,” Sensors and Materials, Vol. 10, No. 2, 
pp. 63-75, 1998. 

[16] D. Gibson, C. Purdy, and A. Hare, “Design automation of MEMS systems using behavioral modeling,” 
Proc. IEEE Great Lakes Symp. On VLSI, Ann Arbor, MI, pp. 266-269, March 1999. 

[17] A. Deway, H. Ren, and T. Zhang, “Behavioral modeling of microelectromechanical systems (MEMS) with 
statistical performance-variability reduction and sensitivity analysis,” IEEE Trans. On Circuits and Systems II: 
Analog and Digital Signal Processing, Vol. 47, No. 2, pp. 105-113, 2000. 

[18] G. K. Fedder, “Simulation of Microelectromechanical Systems,” PhD. Thesis, University of California at 
Berkeley (1994). 

[19] J.J. Allen, S.L. Miller, G.F. LaVigne, and M.S. Rodgers, “Dynamic Effects of Linkage Joints in 
Electrostatic Microengines,” Proc. Modeling and Simulation of Microsystems, Santa Clara, CA, April 1998. 

[20] P. R. Nelson, P. B. Chu, and K. S. J. Pister, “Optical methods for characterization of MEMS device 
motion,” Proc. SPIE Microlithography and Metrology in Micromachining, Vol. 2640, pp. 53-57, Sept. 1995. 

[21] J. S. Burdess, A.J. Harris, D. Wood, R. J. Pitcher, and D. Glennie, “A System for the Dynamic 
Characterization of Microstructures,” Journal of Microelectromechanical Systems, Vol. 6, Vo. 4, pp. 322-328, 
Dec. 1997. 

[22] W. D. Cowan, V. M. Bright, and G. C. Dalton, “Measuring frequency response of surface-micromachined 
resonators,” Proc. SPIE Microlithography and Metrology in Micromachining III, Vol. 3225, pp. 32-43, Sept 
1997. 

[23] G. K. Fedder and R. T. Howe, “Multimode Digital Control of a Suspended Polysilicon Microstructure,” 
Journal of Microelectromechanical Systems, Vol. 5, No. 4, pp. 283-297, Dec. 1996. 

[24] D.M. Freman, “Measuring Motions of MEMS,” MRS Bulletin, Vol. 26, No. 4, pp. 305-306, April 2001. 

[25] A.T.T.D. Tran, J.J. Lee, and K. Zhang, “Ultrafine motion detection of Micromechanical structures using 
optical Moiré pattern,” IEEE Photonics Tech. Letters, Vol. 8, No. 8, Aug. 1996. 

[26] D.J. Burns and H.F. Helbig, “A system for automatic electrical and optical characterization of 
microelectromechanical devices,” Journal of Microelectromechanical Systems, Vol. 8, No. 4, pp 473-482, Dec. 
1999. 

[27] S. Tadigadapa and N. Najafi, “Reliability of Microelectromechanical Systems (MEMS),” Proc. SPIE 
Reliability, Testing and Characterization of MEMS/MOEMS, Vol. 4558, pp. 197-205, Oct. 2001. 

[28] C. Marxer, M.A. Gretillat, N.F, de Rooij, R. Battiq, O. Anthamatten, B, Valk, and P. Vogel, “Reliability 
considerations for electrostatic polysilicon actuators using as an example the REMO Component,” Sensors and 
Actuators A: Physical, Vol. 61, No. 1-3, pp. 449-454, June 1997. 

[29] M. Mehregany, P. Nagarkar, S.D. Senturia, and J.H. Lang, “Operation of microfabricated harmonic and 
ordinary side-drive motors,” Proc. IEEE Workshop on Micro Electro Mechanical Systems, Napa Valley, CA, pp 
1-8, Feb. 1990.  

[30] J.A. Walraven, S.S. Mani, J.G. Fleming, T.J. Headley, P.G. Kotula, A.A. Pimentel, M.J. Rye, D.M. Tanner, 
and N.F. Smith, “Failure analysis of tungsten coated polysilicon micromachined microengines,” Proc. SPIE 
MEMS Reliability for Critical Applications, Vol. 4180, pp. 49-57, Sept. 2000. 

[31] M.R. Douglass, “Lifetime Estimates and Unique Failure Mechanisms of the Digital Micromirror Device 
(DMD),” Proc. 36th Annual Intl. Reliability Physics Symposium, Reno, NV, pp. 9-16, 1998.  



 

 

179

                                                                                                                                                                                    
[32] See e.g. Dickey, Holswade, Christenson, Garcia, and Polosky, “Optical measurement of LIGA milliengine 
performance,” Proc. SPIE Miniaturized Sys. With Micro-Optics and Micromechanics III, Vol. 3276, pp. 28-36 
(1998). 

[33] E.J. Garcia and J.J. Sniegowski, “Surface micromachined microengine,” Sensors and Actuators A: 
Physical, Vol. 48(3), pp. 203-14 (1995). 

[34] M.P. de Boer and T.M. Mayer, “Tribology of MEMS,” MRS Bulletin, Vol. 26, No. 4, pp. 302-304, April 
2001. 

[35] P. May, S. T. Wilkinson, N. M. Jokerst, D. S. Wills, M. Lee, O. Vendier, S. W. Bond, Z. Hou, G. Dagnall, 
M. A. Brooke, A. Brown, and E. Schenfeld, "Design issues for through-wafer optoelectronic multicomputer 
interconnects," Proc. Second International Conference on Massively Parallel Processing Using Optical 
Interconnections, San Antonio, TX, pp.8-15, Oct. 1995.  
[36] J.M. Dawson, “Through-Wafer Interrogation of MEMS Device Motion,” Electrical Engineering M.S. 
thesis. West Virginia University, July 1999. 

[37] K.S. Brown, “On the Feasibility of Integrated Optical Waveguide-Based In-Situ Monitoring of 
Microelectromechanical Systems (MEMS),” Electrical Engineering Ph.D. dissertation, West Virginia 
University, Aug. 2000. 

[38] J. M. Dawson, J. Chen, K. S. Brown, P.  Famouri, and L. A. Hornak, “Through-Wafer Optical Probe 
Characterization for MEMS Positional State Monitoring and Feedback Control,” Optical Engineering, Vol. 39, 
No. 12, pp., Dec. 2000. 

[39] V. Barger and M. Olsson, Classical Mechanics A Modern Perspective, McGraw-Hill Book Co, New York 
(1994). 

[40] A. Kolpekwar and R. D. Blanton, “Development of a MEMS Testing Methodology,” IEEE International 
Test Conference, pp. 923-31 (1997). 

[41] Y. Cho, et. al., “Viscous Damping Model for Laterally Oscillating Microstructures,” IEEE Journal of 
Microelectromechanical Systems, Vol. 3, No. 2, pp. 81-86 (1994). 

[42] T. D. Milster, "Optical Servo Signal Generation Techniques for MEMS Applications", SPIE Symposium on 
Miniaturized Systems with Micro-Optics and MEMS, Santa Clara, CA (Sept. 1999). 

[43] M. Ferstl and A-M. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” Journal 
of Modern Optics, Vol. 43, no. 7, pp. 1451-1462 (1996). 

[44] L.A. Hornak, “Fresnel phase plate lenses for through-wafer OI,” Applied Optics, Vol. 26, No. 17, pp. 3649-
54 (1987). 

[45] L. Wang, J.M. Dawson, J. Chen, P. Famouri, and L.A. Hornak, “Stroke-length control of a MEMS device,” 
Proc. 2000 IEE International Symp. on Industrial Electronics, 2, pp. 535-539, Dec. 2000. 

[46] P. Famouri, L Wang, J.M. Dawson, and L.A. Hornak, “Optical monitoring-based real-time feedback 
control of MEMS comb resonator,” submitted to IEEE Electronics Letters. 

[47]A. Kolpekwar and R. D. Blanton, “Development of a MEMS Testing Methodology,” IEEE International 
Test Conference, pp. 923-31 (1997). 

[48]G. K. Fedder, “Simulation of Microelectromechanical Systems,” PhD. Thesis, University of California at 
Berkeley (1994). 

[49] E. Hecht, Optics, Addison-Wesley Publishing Co., Redding, Mass. (1987).  

[50] B.E.A Saleh and M.C. Teich, Fundamentals of Photonics, Wiley-Interscience, New York (1991). 

[51] G.J. Swanson and W.B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Optical 
Engineering, Vol. 28, No. 6, pp. 605-608, June 1989. 

[52] C.J. Smith, Optics, Edward Arnold, Ltd., Baltimore (1960). 



 

 

180

                                                                                                                                                                                    
[53] L. d’Auria, J.P. Huignard, A.M. Roy, and E. Spitz, “Photolithographic fabrication of thin film lenses,” 

Optics Communications, Vol. 5, No. 4, pp.232-235, July 1972.  

[54] G. Hatakoshi and K, Goto, “Grating lenses for the semiconductor wavelength,” Applied Optics, Vol. 24, 
No. 24, pp. 4307-4311, Dec. 1985. 

[55] M. Young, “Zone Plates and Their Aberrations,” Journal of the Optical Society of America, Vol. 62, No. 8, 
pp-972-976, Aug. 1972. 

[56] A.B. Buckman, Guided Wave Photonics, Saunders College Publishing, New York (1992). 

[57] Web site, http://www.breault.com/ftp/docs/procnotes/bropn1152_telecom.pdf. 

[58] R.E. Wagner and W.J. Tomlinson, “Coupling efficiency of optics in single-mode fiber components,” 
Applied Optics, Vol. 21, No. 15, pp. 2671-2688, Aug. 1982. 

[59] Corning fiber data sheets, Web site, http://www.corningfiber.com/products/smf28_frame.htm. 

[60] “MUMPS design handbook,” Web Page, http://www.memsrus.com/cronos/mumps.pdf, (2002) 
 


	Integrated through -wafer optical monitoring of MEMS for closed -loop control
	Recommended Citation

	Microsoft Word - pdfversion.doc

