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ABSTRACT 

The effect of ovine peripheral blood mononuclear cells on 

Haemonchus contortus larval death in vitro 

Elizabeth Anne Shepherd 

Gastrointestinal nematode parasitism is the greatest problem facing small ruminant livestock, 

largely due to development of anthelmintic resistance. Of particular concern is Haemonchus 

contortus, a hematophagous trichostrongylid that can lead to death in lambs or 

immunocompromised sheep.  Some breeds of sheep are resistant to Haemonchosis, e.g. St. Croix 

(STC) hair sheep.  St. Croix sheep have well-documented resistance and have been shown to 

develop a robust immune response, generating a rapid cellular response to larval stages that does 

not occur in susceptible sheep.  Studies evaluating effects of mononuclear cells, including 

monocytes and lymphocytes, indicate that these cells dramatically reduce motility of H. 

contortus larval motility in vitro.  Furthermore, breed affected larval motility.  However, lack of 

motility may also have been caused by immune cell trapping.  In this study, the impact of 

peripheral blood mononuclear cells (PBMC) on H. contortus larvae in the presence or absence of 

autologous serum was measured by larval ATP. Viability of larvae was tested by measuring fecal 

egg count (FEC) after infecting susceptible sheep with PBMC-exposed larvae. Larvae exposed to 

STC-derived or Suffolk (SUF)-derived PBMC had lower (P < 0.001) ATP than live larvae (0.12 

µM ATP and 0.16 µM ATP) (0.27 µM ATP).  Larvae exposed to PBMC from both breeds were 

greater than dead larval ATP (0.03 µM ATP) (P < 0.001).  Larval ATP was lower when exposed 

to STC-derived PBMC with serum (0.11 µM ATP) than SUF-derived PBMC with serum (0.23 

µM ATP) or live (0.22 µM ATP) (P < 0.001). There was no significant difference between live 

larvae and larvae treated with SUF-derived PBMC with serum.  Taken together, these data 

indicate a cellular response alone is capable of significantly lowering larval ATP. However, the 

addition of serum to SUF-PBMC failed to reduce larval ATP, suggesting differences in humoral 

response in mediation of H. contorus.  
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Chapter 1: Literature Review 

Introduction 

Gastrointestinal trichostrongylid (GIT) parasites present a global animal health challenge, 

further amplified by development of anthelmintic resistance.  Overuse of anthelminthics as a 

primary means of parasite control has resulted in resistant worm populations requiring 

development of alternative control methods for livestock producers.  Of these GIT, Haemonchus 

contortus is the most pathogenic species affecting commercial sheep in the United States, 

causing anemia and complications that can quickly lead to death in severely affected animals 

(Howell et al., 2008).  Incorporation of parasite-resistant sheep, such as St. Croix Hair sheep, is a 

reasonable approach to improving control of parasite. 

St. Croix hair sheep are not typically considered desirable commercial sheep due to low 

carcass weights and slow growth rate when compared to conventional wool breeds.  However, 

these sheep demonstrate a remarkable ability to clear a parasitic infection of H. contortus without 

anthelminthic drug treatment and, therefore, are considered parasite-resistant (Courtney et al 

1985; Gamble and Zajac, 1992; Vanimisetti et al, 2004; MacKinnon et al, 2010; Bowdridge et al, 

2015).   St. Croix sheep produce a rapid and greater cellular immune response to H. contortus as 

compared to parasite-susceptible breeds, which helps prevent establishment of adult worms in 

the abomasum (Bowdridge et al, 2015).  Infection with H. contortus induces a T-helper type 2 

(Th2) response in the host, with increased expression of IL-4 and IL-13 genes, along with 

recruitment of eosinophils, mast cells and globule leukocytes in the abomasal lymph node and 

mucosa (Lacroux et al, 2006).  Evidence also supports an essential role for adaptive immune 

cells in parasite resistance.  An increase in tissue CD4+ T cells was observed by day two of 

challenge infection and an increase in CD45R+ B cells was observed by day five after challenge 
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(Robinson et al., 2010).  Early influx of innate and adaptive immune cells indicates a role for 

immune cells in limiting larval establishment in sensitized sheep.  Therefore, differences 

between parasite resistant and susceptible sheep might hinge on their ability to recruit cells to the 

abomasum early during H. contortus infection. 

Larval motility, measured by path length, velocity and acceleration (Holt et al., 2015) can 

be signficiantly reduced, which suggests an immune cell role mediating larval establishment. 

Commonly, larval death is described as a combination of immobility and outstretched bodies 

with non-refractive internal structures (Chen et al., 2014).  However, this standard fails to 

empirically quantify death and may not be an appropriate measure in this system.  Therefore, 

experiments in this thesis are aimed to quantify larval death after exposure to immune cells to 

further characterize cell-mediated response to H. contortus in St. Croix hair sheep.  Elucidation 

of cellular responses in larval death in parasite-resistant sheep is important for development of 

strategies to manage Haemonchosis in ruminants. 

Haemonchus contortus 

 Gastrointestinal trichostrongylid (GIT) parasitic infections affect small ruminants 

worldwide and present a global economic challenge.  According to the USDA National Animal 

health Monitoring System, GIT are the most frequently reported problem for producers in the 

United States, with 74% reporting GIT present in their sheep for 15 years (USDA, 2001).   While 

varying GIT parasites infect sheep, the virulence and widespread presence of H. contortus have 

made it one of the most important parasites in small ruminants (Alba-Hurtado and Munoz-

Guzman, 2013).   

 The nematode parasite H. contortus belongs to the order Strongylida and is a member of 

the Trichostrongyloidea family.   Haemonchus contortus adult worms reside in the abomasum of 
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sheep and goats.  Adult worms have a small, specialized buccal lancet, which is used to pierce 

host’s abomasal mucosa and feed on blood.  Female H. contortus have white ovaries wrapped 

around blood-filled intestine, giving them their “Barber-pole” appearance and associated 

pseudonym.  Male worms are much smaller and possess an asymmetric dorsal copulatory bursa.  

Adult worms reproduce sexually in the abomasum, and eggs are shed in feces into the 

environment. 

 Haemonchus contortus follows a direct lifecycle with no intermediate host.  Eggs 

undergo development in the environment in first stage larvae and molt twice before becoming 

infective third stage larvae (L3) between five and eight days under optimal conditions.  Larvae 

thrive in warm, humid environments.   Sheep acquire an infection through ingestion of L3 while 

grazing on contaminated pasture.  Water movement up grass blades during morning and evening 

dew transport larvae to the tips of grass, and it is also when sheep most actively graze, ensuring 

ingestion by the host.   In more temperate regions, hypobiosis allows L3 to survive winter, when 

conditions increase their susceptibility to desiccation (Gibbs, 1973). During this period, 

consumed larvae are metabolically arrested in the host.  When climatic conditions become 

favorable, larvae resume development into the adult stage.  Under normal conditions, following 

ingestion, larvae molt and exsheathment occurs within the first 48 hours as the digesta passes 

through the forestomach, arriving at the abomasum (Roberts and Janovy, 2005).  Depletion of 

host blood supply begins within seven days after consumption of larvae. Larvae develop to stage 

4 (L4) and form a buccal lancet permitting blood feeding.  After three days, L4 molt for a final 

time and become fully mature adults. From 14 to 21 days after initial infection, mature adult 

worms mate and produce eggs.  
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 Larval presence initiates a multitude of physiologic changes within the host.  Symptoms 

of Haemonchosis include anemia, emaciation, edema and intestinal disturbances resulting in 

weakness, lack of growth and poor body and wool conditions.  Presence of larvae in the 

abomasum induces glandular hyperplasia and inflammatory cell infiltration, along with increased 

HCl secretion decreasing abomasal pH.  Decreased pH in turn reduces digestion of protein and 

increases mucosa permeability (Alba-Hurtado and Munoz-Guzman, 2013) resulting in reduced 

nutrient absorption.  Anemia is characterized by reduced packed cell volume (PCV) and lack of 

redness in mucosal membranes.  Blood loss due to the hematophagy is estimated to be 0.05mL 

per worm (Clark et al., 1962).   Adult worms deplete nearly one fifth of total circulating 

erythrocyte volume in a lamb daily, whereas adult sheep may lose up to one tenth of their 

erythrocyte volume (Georgi and Whitlock, 1967).   Edema results from the lack of plasma 

proteins and hyperprotenimia, allowing fluids to build up causing what is referred to as “bottle-

jaw.”  Typically, younger sheep are most affected by H. contortus infection, but other factors, 

such as nutrition and genetics, may influence the animal’s response to infection.  If the host 

cannot regenerate red blood cells to compensate for blood loss during infection, the severity of 

hemorrhage can quickly lead to iron deficiency and inability to deliver oxygen to tissues, leading 

to death.  However, animals that are able to fight off infection can develop immunological 

memory and effect a self-cure.   

Parasite resistance 

In general, parasite resistance has been defined as the host’s ability to resist establishment 

of the parasite and modify its egg production (Gray, 1995).   Resistance is assessed by fecal egg 

count (FEC), which measures eggs per gram (epg) of feces, but FEC is limited as it does not 

always accurately measure host worm burden. Exposure to pasture and level of pasture 
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parasitism can alter selection for FEC in animals, as samples taken at weaning may not be 

reflective of lifetime parasite resistance. To improve accuracy, FEC must be measured multiple 

times over a grazing season and across generations to be used in genetic evaluation (Woolaston 

and Piper, 1996; Ortolani et al., 2013).  Heritability of selection for reduced FEC is low and 

variable, calculated at 0.2-0.6 (Vanimisetti et al., 2004; Laurenson et al., 2012), which does not 

reliably result in resistant offspring. Despite the limitations, it remains a useful tool to evaluate 

and identify parasite resistant sheep.  

While PCV is often associated with H. contortus infection in sheep, PCV has lower 

heritability than FEC due to greater impact by environmental (Vanimisetti et al., 2004).   In a 

study evaluating the performance of hair sheep, composite breeds to crossbred Dorset and 

Dorper wool lambs, Dorper sheep had the highest PCV when compared to Dorset or even 

Katahdin, St. Croix or Barbados Blackbelly breeds.  Although Dorper had greater PCV levels 

they did not have greater resistance to H. contortus or ability to clear infection (Vanimisetti et 

al., 2004).  Although PCV and FEC provide insight into the response and nature of infection, 

those measures fail to completely elucidate underlying mechanisms resulting from differences of 

values. 

Breeding for parasite resistance is an alternative method of helminth control that reduces 

the need for anthelmintic treatment.  While factors such as age, sex and nutrition influence level 

of parasite infection, natural resistance occurs in some breeds of sheep (Gamble and Zajac, 1992; 

MacKinnon et al, 2009).  Haemonchus contortus thrives in tropical, subtropical and temperate 

regions that experience optimal warm, wet conditions; breeds of sheep originating from these 

regions have been exposed to consistent parasitic challenge and have developed natural 

resistance (MacKinnon et al., 2010).   Breeds such as Florida Native, Barbados Blackbelly and 
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St. Croix repeatedly demonstrate greater resistant to gastrointestinal nematodes than 

conventional wool breeds (Gamble and Zajac, 1992) based on FEC data.  Notably, Barbados 

Blackbelly and St. Croix have consistently higher blood PCV and lower FEC after exposure to 

H. contortus when compared to Dorset or Rambouillet wool breeds (Courtney et al., 1985; Zajac 

et al., 1990; Vanimisetti et al., 2004).   Concomitantly with marked differences in PCV and FEC, 

immunologic responses in hair sheep are more robust and are able to prevent establishment of 

adult H. contortus (Bowdridge et al., 2015).   

Most notably, St. Croix hair sheep display remarkable resistance to H. contortus, with 

consistently lower FEC and higher PCV than other breeds (Courtney et al., 1984; Notter et al., 

2003; Vanimisetti et al., 2004; MacKinnon et al, 2010).  This has been demonstrated following 

both natural and artificial infection with H. contortus; St. Croix hair sheep have been reported to 

have 99% fewer worms recovered from the abomasum when compared to Dorset lambs 

(Vanimisetti et al., 2004), suggesting a higher level of acquired resistance.  Abomasal lymph 

nodes from infected hair sheep were heavier with significant increase in immune cells than those 

of infected wool sheep (MacKinnon et al, 2010).  After repeated larval infection, hypersensitized 

sheep have shown a significant inhibition of larval establishment of H. contortus in tissue 

cultures, suggesting a greater and more potent immune response (Kemp et al, 2009).  Therefore, 

St. Croix are an ideal model for the evaluation of immune mechanisms of GIT resistance. 

With consistently higher PCV, lower FEC and faster H. contortus clearance of especially 

following challenge infection, St. Croix are an example of GIT resistance.  Mechanisms of 

resistance have been linked with mediation through protective immune responses (Patel et al., 

2009). Gene expression analysis of gut mucosal tissues comparing resistant and susceptible 

breeds of sheep following infection with H. contortus further confirmed breed differences.  
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Following a priming infection, resistant sheep displayed increased expression of genes related to 

tissue repair and cell migration in the abomasal tissue and local lymph nodes (MacKinnon et al., 

2009). Macrophages, granulocytes and CD4+ T cells increase following infection with nematode 

parasites. Resistant sheep, like St. Croix expressed high levels of markers of early inflammatory 

response, whereas parasite-susceptible sheep showed delayed response and expression of 

markers consistent with chronic inflammation (Ingham et al., 2008).   

Immunological response to helminth parasite infection 

Immunity begins on an innate cellular level in the host, but also relies on adaptive 

immunity components to effectively clear the parasite. Generally, an immune response to 

helminth infection is characterized as a T helper 2 (Th2) response, which differs in the pattern of 

cytokines produced than does a T helper 1 (Th1) immune response.  After infection, a cascade of 

events in response to a helminth infection plays a dual role in pathogen elimination and 

contributes to wound healing.   What distinguishes resistant breeds from susceptible breeds, 

however, is early recognition of parasite infection inducing a Th2 response to drive worm 

expulsion (Gamble and Zajac, 1992).  

 In contrast to Th2 response, the Th1 response is associated with parasitic survival and 

increased host susceptibility (Else and Finkelman, 1998).  Lower doses of infective nematodes 

can activate Th1 responses, resulting in secretion of IL-2, IFN-gamma and TNF-beta (Bancroft 

et al., 1994).  In resistant BALB/c mice, which predominantly mount a Th2 response, infection 

with low levels of Trichuris muris resulted in an up-regulation of IgG2a and IFN-gamma 

production, which are characteristic of a Th1 response, and down-regulated cytokines associated 

with the Th2 response (Bancroft et al, 1994).  At this low level of infection, eggs matured and 

established into adult worms while in what otherwise would be considered resistant hosts 
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(Bancroft et al., 1994).  Th2 type responses contribute to resistance and an animal’s ability to 

clear a helminth infection, the Th1 type response is associated with inducing delayed-type 

hypersensitivity reactions (Romagnani, 1991) and an animal’s inability to eliminate helminth 

infection. 

Breeds of sheep showing a higher resistance to a H. contortus infection expressed 

cytokine genes typically associated with a Th2 response, such as IL-4, IL-5, IL-10, IL-13, and 

Arg1in the abomasal lymph node cells (Meeusen et al., 2005; Terefe et al., 2007a; Craig, 2007), 

which act to mediate the host’s protective response and control inflammation.  Adult worm 

expulsion and larval impairment is reliant on this host protective response (Anthony et al., 2007). 

Cytokine production that determine effector function influence immunopathology and confer 

protection against disease (Romagnani, 1991).  Localized wound repair also results from Th2 

type polarization (Anthony et al., 2007).  These events drive an influx of peripheral and tissue 

immune cells.  Additionally, B cells secrete more IgA and IgE as migrating cells traffic through 

the local lymph tissue (Romagnani, 1991).  More recently, group 2 innate lymphoid cells (ILC2) 

have been implicated in aiding the response to parasitic helminth infection, which contribute to 

the type-2 response, producing high levels of same cytokines and promoting tissue repair 

(Oliphant et al., 2014).  Taken together, studies on immune mediated resistance suggest that 

breeds of sheep that naturally expel H. contortus are reliant on a greater cellular immune 

responses (Bowdridge et al., 2015; Ortolani et al., 2013).   

Cellular immunity 

Resistance to gastrointestinal nematodes relies on changes in mucosal tissue and 

lymphoid tissue, allowing for the development of immunity.  These changes include mucosal 

mast cell hyperplasia, eosinophilia, increase in mucus production and production of specific 
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antibodies (Balic et al., 2000a).  Innate immune cells begin to attack larvae as they migrate 

through the digestive system into the abomasum.  As larvae migrate, mast cells, neutrophils, 

eosinophils and macrophages infiltrate the site of infection.  Recognition through toll-like 

receptors signal cells to mount an initial response to helminth infection (Balic et al, 2000a).   

However, changes in host internal environment cue larvae to molt and shed their cuticles.  

Although immune cells are activated in response to H. contortus antigens, different surface 

molecules are expressed at different stages during the lifecycle. These relatively quick changes in 

expression between parasite life stages can make it difficult for the host to respond appropriately 

and aids in immune evasion (Lacroux et al., 2006; Alba-Hurtado and Munox-Guzman, 2012).  

 Both damage caused by blood feeding and secreted larval proteins promote an innate 

response and act as damage-associated molecular patterns (DAMPs) recognized by the immune 

system (Tizard, 2012).  Antigen presenting cells (APC) at the site of infection are able to sample 

larval antigen, migrate to local lymph nodes, where they present antigen to CD4+ T helper (Th) 

cells.  APCs, like DCs and macrophages, bridge the innate and adaptive immune system, which 

allows for the development of specificity and memory.  Cells involved in adaptive immune 

responses include antigen specific T lymphocytes and B cells that produce IgE, IgA and IgG 

antibodies (Schallig, 2000; Shakya et al., 2009; Miller, 1984).  H. contortus specific antibodies 

increase 2-4 weeks after infection and are negatively related to worm counts (Kooyman et al., 

1997; Lacroux et al., 2006). Most sheep, even susceptible breeds, develop some resistance to H. 

contortus after repeated larval infection; however, hypersensitization results in significant 

inhibition of larval establishment (Kemp et al., 2009; Miller et al., 1983).  

 Resistant sheep, infected with H. contortus, display a rapid and robust immune response, 

which suggests that this early and strong Th2 type response acts against larval stages of the 
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parasite, preventing establishment.   A primary infection produces an influx of innate immune 

cells, which drives the polarization of adaptive T cells towards a Th2-response. Eosinophils, 

CD4+ T cells and B-cells, along with increased lymph node size as early as 5 days after infection 

have been observed (Balic et al., 2000).  Following primary infection in resistant Barbados Black 

Belly lambs compared to INRA 401 susceptible lambs, an elevated Th2-response persisted for 

much longer in the resistant lambs. During primary infection these lambs showed a significantly 

lower FEC, abomasal worm count and smaller adult female worm size (Terefe et al., 2007).  

Susceptible breeds can build immunity following a primary infection, resulting in a dramatic 

reduction in FEC and increase in immune responsiveness following challenge infection.  On 

challenge infection, total worm burden and FEC were reduced in susceptible breeds, where 

resistant breeds showed no difference from primary infection (Terefe et al., 2007; Zajac et al., 

1990). However, INRA 401 sheep respond as early as 3 days after challenge infection and are 

able to clear H. contortus sooner when compared to susceptible lambs under the same conditions 

(Lacroux et al., 2006).  Taken together, resistance relies heavily on the ability to mount a 

parasite-specific cell-mediated immune response, driving development of immunological 

memory. 

Innate effector cells: eosinophils, mast cells, neutrophils, macrophages and innate 

lymphoid cells 

Eosinophils 

 Eosinophils are an effector cell population associated with gastrointestinal helminth 

infection.   When tissues are injured, eosinophils act to aid in tissue remodeling and clear debris 

(Anthony et al., 2007). Infective larvae activate eosinophils and cause migration to the site of 

infection through IgA cell surface receptors, complement and IL-5 resulting in decreased larval 
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establishment and direct damage of parasitic larvae in vitro (Prussin and Metcalfe, 2003).  

Eosinophils are activated by the Th2 cytokine IL-5 and act in an antibody-dependent manner to 

induce target toxicity (Shakya et al., 2009).  Additionally, eosinophils surround helminth larvae 

in tissues during primary infection (Meeusen et al, 2005).  Shortly after helminth infection, 

eosinophil counts increase in both blood and tissues. These cells can even display a targeted 

response towards parasites, accumulating around larvae in vivo and in vitro (Rainbird et al., 

1998). 

Eosinophils, along with mast cells, have been found in greater densities in abomasal 

tissues of resistant lambs when compared with susceptible lambs (Gill et al., 2000).  In the 

presence of anti-L3 surface antibody, eosinophils directly inhibit H. contortus larval mobility in 

vitro leading to increased larval killing (Rainbird et al., 1998).  When juvenile H. contortus L2 

larvae were incubated with H. contortus L3 (HcsL3) antibodies in the presence of eosinophils, 

larval death was again observed (Rainbird et al, 1998), indicating direct targeting of the infective 

stage.   

Other studies have found that eosinophil density is much higher in ovine tissues, as early 

as three days and as late as 42 days post exposure to H. contortus (Shakya et al., 2009).  A long-

lived phenotype has been supported in murine models; where eosinophils increase between day 

four and seven of infection with N. brasiliensis, but returned to baseline by three months post 

inoculation (Chen et al., 2014), suggesting that larval presence activates eosinophil migration to 

the infection site to aid in reduced larval establishment and thereby reducing tissue damage. 

Despite the ability of eosinophils to directly immobilize and kill infective H. contortus 

larvae in vitro (Rainbird et al., 1998), eosinophils may not have a direct effector function in 
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parasite resistance.  Further studies demonstrated that the number of circulating and tissue 

eosinophils was not different between naïve, primed or challenged lambs (Huntely et al., 1995; 

Schallig et al., 1997a; Terefe et al., 2007), suggesting they may contribute, but are not essential 

to clearance of H. contortus.  In mice, IL-5 depletion and the absence of eosinophils, there was 

no effect the host’s ability to expel adult worms during a primary infection (Meeusen and Balic, 

2000; Herndon and Kayes, 1992).   Additionally, eosinophil depletion did not significantly alter 

development of Th2 responses to helminth infection (Brunei et al., 1999)  

Mast cells 

 Mast cells are activated by Th2 cytokines such as IL-3, IL-4, IL-9 and IL-10.  During 

helminth infection, mast cell high-affinity receptors for the Fc region (FcεR1) binds antibody IgE 

produced by B cells. Binding IgE triggers degranulation and the release of nitric oxide (NO) and 

histamine by mast cells, which can also release cytokines IL-13 and IL-33 and with proteases.  

These mechanisms associated with Th2 differentiation, as well as the increased permeability in 

gut epithelium during infection, reduce worm survival and contribute to worm expulsion.   

 Numbers of mucosal mast cells (MMC) are altered in response to primary or challenge 

infections. Mucosal mast cells were elevated during priming infection with H. contortus and 

even more so during challenge infection (Schallig et al., 1997a).  Repeated infection with H. 

contortus larvae resulted in mast cell hyperplasia, inducing mucosal mastocytosis and the 

inability of larvae to establish in the abomasal mucosa due to the release of granule-specific 

sheep mast cell proteinase (Huntley et al., 1992).  However, when sheep were allowed to rest, 

un-stimulated with larvae, for 84 days, resistance to the helminth was lost and mast cell 

proteinase concentration was reduced markedly (Huntley et al., 1992).   
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Treatment with anti-IL-3 and anti-IL-4 monoclonal antibodies (mAb) in mice resulted in 

significantly decreased mastocytosis, but the reduction in mast cell hyperplasia did not prevent 

worm expulsion (Madden et al., 1991).  However, Ortolani et al. (2013) demonstrated MMC 

increased in correlation with  H. contortus infection in sheep.  Associated environmental changes 

in the host might contribute to a non-specific inflammatory response or mast cells might be 

directed towards protective response to primary infection.  

Neutrophils 

Neutrophils are rapid responders to infection, phagocytizing pathogens such as bacteria 

and viruses, clearing the body of cellular debris resulting from pathogenic invasion. During 

helminth parasitic infection, neutrophils infiltrated tissues within the first 12 hours (Bass and 

Szejda, 1979) and were most abundant cell type during early infection of H. contortus (Ortolani 

et al., 2013).  Signaling through IL-4 receptor α (IL-4Rα) influenced recruitment of neutrophils 

to the helminth site of infection (Chen et al., 2012). When IL-4Rα was inhibited, neutrophil 

accumulation decreased and pathology associated with N. brasiliensis infection increased (Chen 

et al., 2012). While neutrophils responded early, neutrophil numbers returned to base line in the 

abomasal mucosa by day 21 following H. contortus infection, indicating an association with 

larval stages (Shakya et al., 2011).   

Though it is unlikely that neutrophils directly mediate clearance of worms, their role in 

Th2 immunity should not be overlooked in immune response against nematode parasites.  

Neutrophils activated during parasitic infection interacted with macrophages, up-regulating anti-

helminth macrophages and adhesion molecules (Chen et al, 2014).  Long-lived effector 

macrophages were induced through the up-regulation of IL-4Rα (Allen, et al., 2015).  Depletion 

of neutrophils in mice greatly impaired effector macrophages ability to damage parasites, 
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suggesting that neutrophils played a vital role in priming alternatively activated macrophages 

associated with helminth infection (Chen et al., 2014).  The reduced ability suggests that 

neutrophils contribute to host protection against parasitic larvae through signaling pathways.  

Macrophages 

Classically activated macrophages are typically considered major players in a Th1 

response, where they are critical in responding to invasive bacteria and viruses.  This 

macrophage phenotype is responsible for engulfing and clearing debris and are differentiated by 

production of nitric oxide synthesis (iNOS), ultimately generating nitric oxide (NO) and TNFα.  

Production of Th2 cytokines, IL-4, IL-13 and IL-10 triggers differentiation of what commonly 

are referred to as alternatively activated macrophages (AAM). These AAM are distinguished by 

expression of arginase-1 (Arg-1) and IL-4Rα without iNOS production (Anthony et al., 2006).  

In a Th2 setting, AAM acts to regulate immune responses, promote wound healing and might 

also provide a protective role during helminth infection. 

Signaling is accomplished through IL-4Rα, which is required for the development of 

effector AAM, reducing inflammatory cytokine IL-17 and simultaneously enhancing IL-10 

production and thereby stimulates AAM development (Chen et al., 2012).   In this way, AAMs 

act to regulate the immune response during helminth infection by production of IL-10 and IL-13, 

down regulating Th1 type immune response.  In addition, these macrophages recruit additional 

cell populations to help mediate parasitic invasion, which also produce cytokines sustaining Th2 

responses.  

Not only do AAM suppress inflammatory cytokines, but also they contribute to tissue 

repair, fibrosis and clearance of debris (Martin and Leibovich, 2005; Wynn and Barron, 2010).  

Helminth parasites can cause extensive tissue damage resulting in release of proteolytic enzymes 
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that damage surrounding cells (Kreider et al., 2007).  During helminth infection, AAMs 

increased production of proteins, such as fibronection, collagens and matrix metalloproteinase 

(MMP), which are associated with tissue repair (Gratchev et al., 2005). Granulomas composed of 

masses of myeloid lineage cells (Mornex et al., 1994) surround invading larvae and upregulate 

Th2 immunity.  Granuloma formation contributes to wound repair by isolating invading parasitic 

larvae or eggs, thereby reducing surround tissue damage.  

Mice deficient in IL-4Rα showed a decreased capacity of macrophages to bind to and 

immobilize parasites, resulting in increased ATP levels in the worms (Chen et al., 2014).  

Similarly, when mice infected with Heligmosomoides polygrus (H. polygrus) were depleted of 

macrophages by the administration of an arginase inhibitor, larval motility increased, along with 

increased adult worm burden (Anthony et al., 2006). Observed reduction in larval death in the 

absence of AAM supports their role in mediating helminth infection and, thereby, contributing to 

Th2 host response necessary for parasitic clearance. 

Macrophages collaborate with neutrophils to enhance in vitro killing of helminth 

parasites. In mice, infection with Strongyloides stercoralis (S. stercoralis) induced AAM capable 

of killing larvae in vivo and in vitro in the presence of neutrophils (Bonne-Annee et al., 2013).  

Similarly, during N. brasiliensis infection of mice primed with neutrophils from parasite-infected 

mice were able to rapidly mediate nematode damage and clearance (Chen et al., 2014).  When 

using ATP as a measure of larval death, primed AAM demonstrated greater larval adherence and 

significantly reduced larval ATP in vitro (Chen et al., 2014), thereby enhancng larval killing.  In 

contrast, using classically activated macrophages did not result in larval death, either in vivo or in 

vitro models, after exposure to neutrophils (Bonne-Annee et al., 2013).  
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Macrophages activated during helminth infection migrated to intestinal epithelial 

submucosa after challenge infection, when CD4+ T cells developed a memory phenotype 

(Anthony et al., 2006).  Production of IL-4 by those CD4+ T cells was necessary for activation of 

AAM and parasite expulsion.  When AAM differentiation and Arg-1 function were inhibited by 

depletion of CD4+ T cells, protective immunity was lost, and hosts were unable to expel 

parasites (Anthony et al., 2006), suggesting a strong link between Th2 responses and AAM in 

developing full protection against helminth infection. 

Innate lymphoid cells, class 2 

Similar to T cells, innate lymphoid cells (ILCs) are of lymphoid lineage, but they lack T 

cell receptor (TCR) or B cell receptor (BCR), thus foregoing thymic selection. These cells are 

not antigen-specific and do not respond in an antigen-specific manner.  Despite this, type 2 ILCs 

(ILC2) demonstrate a strong effector response and produce Th2 cytokines, which ultimately may 

contribute to clearance of helminth infection (Guo et al., 2015).  Type 2 ILC express the 

transcription factor GATA-3 and produce IL-13 as well as IL-5, distinguishing them from type 1 

and type 3 ILC.  Several studies have demonstrated that ILC2 are present early during helminth 

infection and occurs before expansion of an adaptive Th2 response (Oliphant et al., 2014). Since 

Th2 cells are typically rare in naïve animals, as they have not developed a memory response, 

ILC2 could be an early and dominant source of polarizing cytokines contributing to adaptive 

immunity (Oliphant et al., 2014; Guo et al., 2015).   

When IL-13 deficient mice were given an infection with N. brasiliensis, the mice were 

unable to expel worms.  However, when ILC2 were transferred into IL-13 deficient mice, Th2 

cell responses were restored (Neill et al., 2010).   Another study showed that delayed cytokine 

production by Th2 cells was observed in IL-25 deficient mice infected with N. brasiliensis, 
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which lead to inefficient worm expulsion (Fallon et al., 2006). When recombinant IL-25 was 

administered, ILC2 cell populations appeared and lead to rapid worm expulsion, dependent on 

cytokine, but not on either T or B cells (Fallon et al., 2006).  Moreover, this population of 

induced non-T and non-B cells provided the essential cytokines to drive Th2-mediated worm 

expulsion (Fallon et al., 2006). 

Adaptive effector cells: T cells and B cells 

T cells 

Genetic resistance of sheep to GIN is reliant on a multitude of host responses, including 

immune cell proliferation and the production of specific antibodies.  T cells have two main 

subsets, CD4+ T cells and CD8+ T cells.  Of these, CD4+ T helper cells can be delineated into 

Th1 and Th2 subsets, depending on the cytokine environment the T cell experiences during 

antigen presentation (O’Garra and Murphy, 1994).  A Th2 cell develops in the presence of IL-4 

and IL-13, inducing the IL-4R-alpha signaling pathway. These cytokines are associated with 

helminth infection and enhanced parasite clearance.  Early expression of Th2 cytokines is 

essential in Th2 differentiation.  Effector cells, such as eosinophils, basophils and mast cells, as 

well as AAMs, are responsible for producing and driving Th2 polarization during early helminth 

infection (La Flamme et al., 2012).  

When CD4+ T cells were depleted in resistant lambs, globule leukocyte and eosinophil 

counts were not significantly lower than in control animals (Gill et al., 1993).  However, 

depletion of CD4+ T cells impaired resistant lamb’s ability to eliminate H. contortus, essentially 

abrogating host response to the parasite (Gill et al., 1993).  These lambs also had a significantly 

higher FEC and worm burden than control lambs (Gill et al., 1993).  In a similar study, effects 

associated with depletion of CD4+ T cells were greatest 14 days following infection (Karanu et 
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al., 1997).  Importantly, the lambs were exposed to H. contortus through two priming infections. 

A study using repeat-infected lambs, showed earlier expression of Th2 cytokines and were able 

to mobilize effector cells earlier than sheep receiving a priming infection (Shakya et al., 2009).    

 In a similar study, Peña et al. (2006) depleted CD4+ lymphocytes two days before 

experimental infection with H. contortus of naïve lambs.  While depletion was not observed until 

day 9 following treatment, worm burden was higher than in control animals treated with IgG 

control antibody, and PCV was not significantly different (Peña et al., 2006).  Nevertheless, this 

study demonstrated requirement of CD4+ T cells in genetic resistance, which was lost in lambs 

that were depleted of CD4+ T cells resulting in greater susceptibility to H. contortus (Peña et al., 

2006).  Alternatively, in this study, depletion of CD8+ T cells had no effect on FEC or worm 

burden in resistant lambs (Gill et al., 1993), specifically implicating CD4+ T cells in both 

acquired and genetic resistance of sheep to H. contortus. 

To further characterize the role of CD4+ T cells, they help regulate the host adaptive 

immune response to helminths by producing cytokines, regulating cell recruitment.  

Mastocytosis is regulated by IL-3 and IL-4, induced by eosinophilia, both of which are a result of 

CD4+ T cell activation.  In resistant lambs, depletion of CD4+ T cells caused a reduction in mast 

cell hyperplasia and tissue eosinophilia, which corresponds with an impaired ability to mount a 

response needed to clear H. contortus infection (Gill et al., 1993).   CD4+ T lymphocytes also 

aid in the class-switch recombination of B cells, which are then able to produce antibodies to 

antigen.   

B Cells 

In any immune response, B cells function as antibody producers.  After being activated 

by T cells, in secondary lymphoid tissues.  Here activated T cells present antigen to B cells, 
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which can then generate and release antibody (Liu et al., 2010).  The hallmark cytokine of 

helminth infection, IL-4, enables immunoglobulin (Ig) E and IgG1 class switching.  Similarly, 

IL-5, another Th2 associated cytokine, plays a role in IgA class switching. Release of IgE can 

amplify immune response by triggering mast cell degranulation and recruiting other Th2-type 

effector cells to the site of infection (Anthony et al., 2007).   

Antibody production has been shown to be associated with the defense against H. 

contortus infection in parasite resistant sheep.  Specifically in response to H. contortus, serum 

levels of IgA, IgE and IgG were elevated in parasite resistant sheep (Meeusen et al., 2005; 

Lacroux et al., 2006).  A study by Schallig (2000) showed increased IgG, E and A in response to 

H. contortus in parasite resistant sheep during infection. Antibodies can be produced during 

either priming or challenge infection, where IgA is produced in response to larvae and specific 

IgG1 and IgG2 is produced in response to adults (Schallig et al., 1994).   Serum IgA, along with 

serum IgG1 and IgG2 levels, increased during priming infection, but quickly during early 

challenge infection, with overall serum antibody levels doubling from priming to challenge 

infection (Schallig et al., 1994).  Furthermore, while circulating IgE levels were not different 

between parasite susceptible and resistant breeds, concentrations of IgE in lymph node extract 

was higher by 27 days after infection (MacKinnon et al., 2010).   Resistant sheep also have 

higher levels of IgA as early as 3 days after infection with H. contortus, and it remained high for 

up to 21 days after infection, when compared to parasite susceptible sheep (MacKinnon et al., 

2010). 

Other models have been studied to elucidate the role of B cells in Th2 immunity, 

supporting a clear role of humoral immunity in parasite resistant breeds of sheep. Using H. 

polygrus to model gastrointestinal helminth infection, mice deficient in B cells were unable to 
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expel parasites after a challenge infection (Liu et al., 2010).  Additionally, production of 

antibody during the tissue-dwelling phase of H. polygrus infection was essential in protection 

from the parasite in secondary infection (Liu et al., 2010). On the other hand, when mice were 

depleted of B cells and given a challenge infection of N. brasiliensis, Th2 cell differentiation and 

response were not impaired (Liu et al., 2010).  The difference between parasitic infections, 

however, may largely be due to the life cycle of each of the helminths addressed, where H. 

polygrus is strictly enteric and N. brasiliensis follows hepato-tracheal migration before 

establishing in the gut. 

Together these studies indicate a role for antibody produced by B cells as an effector 

molecule contributing to parasite expulsion (Liu et al., 2010) and that antibody supports 

development of full protective immunity in parasite resistant sheep (MacKinnon et al., 2010); 

however, it is unlikely that antibody directly mediates parasitic infection. 

Collectively, these studies demonstrated that differences between parasite resistant breeds 

and susceptible breeds of sheep relies on the ability of the sheep to develop a lasting immune 

response through both cellular immunity and the involvement of antibody.  Despite the strong 

immune response, however, parasites have co-evolved with hosts to permit their survival and 

evade immune detection. 

Larval motility 

 Parasitic species also have developed strategies to evade the immune system.  Ingested 

infective stage larvae undergo molting, where they secrete different antigens at each stage, aiding 

their survival and the host’s delayed response.  Specific to H. contortus, when compared to other 

helminths, larval motility is a key survival strategy that allows for establishment.  L4 stages of H. 

contortus inhabit the surface of the gastric mucosa rather than the gastric pits, which would 
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otherwise provide protective isolation from host immune mechanisms (Balic et al., 2000).  As 

larvae are left exposed and vulnerable, motility is essential for larvae to evade immune detection 

at damaged sites of the mucosa. 

 Maintaining larval motility is essential to success of parasite survival, which has led to 

the use of motility as a standard measure determining efficacy of chemotherapeutic drugs and 

other anthelminthic treatments.  Anthelmintic drugs, like levamisole, act as paralytic agents 

causing muscle contraction immobilizing larvae (Martin and Le Jambre, 1979).  To assess 

anthelmintic resistance, bioassays have been developed to detect motility.  For in vitro 

assessment, agar gels were used to detect both anti-parasitic components in resistant sheep 

gastrointestinal mucus and also to demonstrate the inhibitory effects of anthelmintic (Kimambo 

and MacRae, 1988; Douch and Morum, 1994).   

Inhibition rates of levamisole were compared to inhibition of larval motility using mucus 

from the gastrointestinal tract of resistant sheep.  Mucus from challenge infected resistant sheep 

inhibited larvae by 93%, whereas when treated with levamisole in vitro, larvae were completely 

immobilized (Douch et al., 1983).  Similarly, mucus from lambs challenge-infected with 

Trichostrongylus colubriformis (T. colubriformis) significantly inhibited larval migration from 

agar gels when compared to corresponding mucus from parasite-free control animals (Kimambo 

and MacRae, 1988).  Interestingly, mucus from resistant sheep lost their ability to immobilize 

larvae at the end of a 4 week post-challenge rest period (Kimambo and MacRae, 1988).  In 

addition to agar gel bioassays, larval motility in response to anthelmintic treatment has been 

measured as the number of larvae crossing a 20-µm mesh screen (Rabel et al., 1994).  While 

these methods may indicate perceived immobility, they do not indicate larval death.   
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Bioassays of larval inhibition can define larvae either as either motile or non-motile, but 

the question remains as to the infectivity of non-motile larvae.  In early experiments, larvae 

recovered from feces of resistant sheep between 24 and 28 hours after a challenge infection 

remained infective when given to susceptible, naive sheep (Douch et al., 1983; Elliott, 1981).  

Preliminary studies evaluating the effects of peripheral mononuclear cells (PBMC) (lymphocyte 

and monocyte populations) on H. contortus using this evaluative method of motility were unable 

to distinguish differences in larval motility when larvae were exposed to cells derived from sheep 

of different immune status and breed (Holt et al., 2015).  Using advanced microscopic imaging 

and tracking, larval motility was quantified by measuring path length, velocity and acceleration 

of individual larvae in the presence of PBMC.  After co-culture of larvae with PBMC from naïve 

Suffolk (SUF) sheep had reduced ability to immobilize larvae as compared PBMC from of either 

primed or naïve St. Croix hosts.  Larvae exposed to naïve wool PBMC had significantly higher 

velocity and greater path length compared to all other groups (Holt et al., 2015). Additionally, 

lack of motility was associated with immune cell trapping, indicating an innate ability of St. 

Croix-derived immune cells to inhibit larval motility in vitro (Holt et al., 2015). 

Concluding remarks 

Together, these studies demonstrate a strong immune response to parasitic infection with 

gastrointestinal nematodes.  Differences in natural resistance are evident when comparing 

breeds. Resistant breeds have an ability to generate a rapid cellular response and also a lasting 

memory response to parasitic infection with H. contortus.  However, immune mechanisms that 

distinguish these breeds have yet to be fully elucidated.  A critical need exists to determine the 

viability or infectivity of larvae after exposure to mononuclear cells obtained from parasite-

resistant and susceptible breeds to better understand the role of mononuclear cell-induced larval 
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death.  Specifically, examining the response of cellular interaction with larvae and using immune 

cells from St. Croix hair sheep will aid in the understanding of immunological mechanisms 

involved in early larval rejection in sheep.  Data collected from this research will provide 

information needed to develop advanced chemotherapeutics required to manage Haemonchosis 

in ruminants. 
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Chapter 2: Materials and Methods 

Animals and housing 

 Sheep used in this project were born and raised at the West Virginia University Animal 

and Veterinary Science Farm (Morgantown, WV) and were housed in the Sheep Research Barn 

which has a raised, expanded metal floor.  This housing strategy eliminated potential exposure to 

H. contortus through fecal contamination, because feces from sheep fall through the expanded 

floor, separating infected feces from the animals’ food source.  All animals were limit fed 16% 

CP corn-soybean concentrate with ad libitum grass hay and water. This study was approved by 

the Animal Care and Use Committee (ACUC 13-0308.1). 

Experimental design 

 Ten St. Croix (STC) hair sheep and ten Suffolk (SUF) wool sheep were raised and kept 

on an elevated floor barn for the duration of the experiment.  Four weeks after weaning, lambs of 

each breed were randomly assigned to one of two treatment groups: naïve or primed.  Animals 

assigned to primed groups received a single oral dose of 10,000 Haemonchus contortus infective 

stage 3 larvae (L3).  Infection persisted for six weeks before infected animals were treated with 

Levamisole (Agrilabs, St. Joseph, MO) (8mg/kg) and then allowed to rest for three weeks before 

blood collection.  Animals assigned to naïve treatment groups received no infection and 

remained unexposed to Haemonchus contortus due housing on the raised floor. Fecal egg counts 

(FEC) were performed on all lambs during the priming infection and after deworming until all 

animals had an FEC of 0 before blood collection. 

Sample collection 

Separation of immune cells from blood 

 Whole blood samples were obtained via jugular venipuncture into 10ml vacutainer tubes 

treated with ethylenediaminetetraacetic acid (EDTA) (Tyco, Mansfield, MA), preventing 
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coagulation.  Samples were pooled by treatment and then centrifuged at 1,000 x g for 20 minutes 

at room temperature, buffy coats were collected and transferred into sterile 15ml centrifuge tubes 

and re-suspended in 1ml sterile phosphate buffered saline (PBS).  Red blood cells (RBC) were 

removed by incubation with ACK lysis buffer (Lonza, Walkersville, MD). Then, white blood 

cells were carefully layered over sterile lymphocyte separation media (LSM) (SPG 1.077 g/ml; 

Corning, Manassas, VA) and centrifuged at 400 x g for 20 minutes at RT.  Peripheral blood 

mononuclear cells (PBMC) were collected and counted using a Bio-Rad TC-20 automated cell 

counter, and then suspended in complete media containing RPMI-1640 with 2mM L-glutamine 

(GE Healthcare Life Sciences, Logan, UT), 10% fetal bovine serum (FBS) (Corning, Corning, 

NY ) and penicillin-streptomycin antibiotic (Sigma Aldrich, St. Louis MO, USA).  Suspensions 

were diluted to a concentration of 1 x 10
6
 cells per ml for use in culture.  Confirmation of 

lymphocyte and monocyte cell purity was confirmed by performing a manual cell differential 

count.  Briefly, 100µl of cell suspension was loaded into a Cytospin chamber, concentrated onto 

a microscope slide using Cytospin 4 (Thermo Scientific) and then stained using CamCo Quik 

Stain (Cambridge Diagnostic Products, Fort Lauderdale, FL).  Preparation of PBMC resulted in a 

cell population of greater than 99% mononuclear cells.  

Serum preparation 

 Whole blood was collected via jugular venipuncture into 10ml untreated vacutainer tubes 

(Tyco, Mansfield, MA) and allowed to clot. Blood was then centrifuged at 750 x g for 20 

minutes at 4°C.  Serum was removed and pooled by treatment group, and was sterilized through 

0.22µm filters (Merck Millipore, Cork, Ireland).  One ml of serum was removed and aliquoted in 

microcentrifuge tubes and stored at -80°C.  
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Parasitological analysis 

H. contortus larval culture  

Feces were collected from H. contortus infected Suffolk wethers and then mixed with 

sterilized peat moss and activated charcoal and incubated for 7 days at 30°C.  Larvae were then 

collected using Baermann technique and stored in PBS (pH 7.4) at 4°C for no longer than 3 

months before use.  Larvae were diluted to a concentration of 1,000 L3/ml in sterile PBS before 

use in in vitro assays. 

Fecal egg count 

 Fecal egg counts were performed on each animal using Modified MacMaster’s technique 

(Whitlock, 1948). Briefly, 2g feces were measured from each sample and homogenized with 

28ml McMaster’s Salt Solution (SPG 1.2 g / ml).  The mixture was then passed through a double 

layer of cheese cloth, and loaded into McMaster’s slider chambers (Chalex Corp., Portland, OR). 

Eggs within grid were enumerated, with the total egg count from two grids being multiplied by 

50 to yield eggs per gram of feces. 

Packed cell volume 

 Whole blood samples were collected from each animal via jugular venipuncture into 5mL 

vacutainer tubes containing EDTA for pack cell volume (PCV) analysis.  PCV was analyzed by 

filling heparin treated micro-hematocrit tubes (StatSpin, Westwood, MA) with blood samples 

and placed in a micro-centrifuge (StatSpin, Westwood, MA) for two minutes before digitally 

reading percentage of RBC. 

In vitro larval analysis 

 Cells from experimental animals were pooled by treatment group and diluted as outlined 

previously. Cell suspension (500 µl) was added in triplicate to a 24-well plate (Greiner CellStar, 

Frickenhausen, Germany) with an additional 400 µl of complete media and 100 L3 H. contortus 
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larvae added to each well for a total volume of 1 ml per well.  For experiments using autologous 

serum, 100µl serum replaced 100 µl of complete media and was added to each well for a total 

volume of 1 ml per well.  Plates were gently stirred before being placed into an incubator for 18 

hours at 37°C with 5% CO2, after which, supernatant was removed and replaced with 300µl 

Accumax
TM

 enzyme (Innovative Cell Technologies, San Diego, CA) to release cells from larvae 

and degrade 3-dimensional cellular projections.  Larvae were then rinsed over 40 µm cell 

strainers (Greiner BioOne, Frickenhausen, Germany) to achieve larvae without cells before being 

transferred to sterile micro-centrifuge tubes.  An equal volume of CellTiter-Glo (Promega, 

Madison, WI) was added to each larval sample, and larvae were homogenized using a tissue 

homogenizer.  Samples were then centrifuged at 1,000 x g for 2 minutes, and 100µl of 

supernatant was plated into opaque walled flat-bottom 96-well microplate (Greiner CellStar, 

Frickenhausen, Germany).  The luminescent signal was allowed to stabilize for 10 minutes 

before measuring using a luminometer (BioTek Instruments). Luminescence was measured using 

an integration time of 1 second per well. 

 An ATP standard curve was created using serial dilutions from 10 µM - 0.001 µM of 

rATP (Promega, Madison, WI), and a blank standard of 0 µM was measured using PBS.  

Standard values were plotted against luminescent values then fitted using a linear regression line.  

Experimental ATP concentrations were corrected by subtracting background luminescence, 

using a blank standard, and calculated using the standard curve performed for each replication.  

Mean ATP was calculated per treatment group.  ATP concentration assay was performed ten 

times independently with or without serum.  
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Survival curve 

 One hundred larvae were exposed to 100°C heat block for 30 second intervals from 0 to 

120 seconds.  Survivability was determined as a percent of live, motile larvae to the total number 

of larvae in the sample.  Outstretched, non-motile larvae were considered dead.  Corresponding 

ATP concentrations were measured for each sample.  Lethal dose 50 (LD50) was calculated as 

the concentration of ATP when 50% of the larvae present were killed by heat treatment.  The 

LD50 was used as a threshold to evaluate the condition of experimental treatment groups. 

Preliminary infection of lambs using PBMC-exposed larvae 

 Three naive SUF lambs were randomly assigned to receive one of three larval treatments.  

Infective L3 were obtained through the collection of fresh feces from infected animals and 

cultured as described previously. Larvae were exposed to STC-derived PBMC, SUF-derived 

PBMC or left untreated and incubated at 37°C for 18 hours.  Cells were lysed with water and 

rinsed before re-suspending larvae in PBS. Each lambs was administered 5,000 PBMC-exposed 

H. contortus L3. Fecal samples were obtained weekly for 8 weeks to determine FEC, and blood 

was collected to measure PCV. 

Statistical analysis 

 Data were analyzed using SigmaPlot software (Systat Software). Main effect of breed 

was compared by one-way ANOVA using Holm-Sidak method to determine differences.  

Pairwise comparisons were analyzed using Fisher LSD method.  Survival of larvae was 

determined using Kaplan-Meier Survival Analysis log-rank test. Significance was accepted at P 

< 0.05. 



29 

 

Chapter 3: Results 

Determination of ATP value associated to LD50 

 To establish a LD50, samples of 100 L3 were heated to 100°C for 0, 30, 60 or 120 

seconds.  Following treatment, larvae were enumerated and evaluated as motile (live) or non-

motile and outstretched (dead).  At 2 minutes, 100% of larvae exposed to heat treatment were 

killed, and ATP was reduced to 0.02 μM (Figure 1) as compared to untreated, live control larvae 

with 0.2 μM ATP.  From this data, an LD50 of 0.13 μM ATP was established, allowing for the 

numerical characterization of larvae in subsequent experiments. Furthermore, heat-treated larvae 

had reduced survival as compared to control larvae (P < 0.001) [Figure 1]. 

Effect of breed and immune status on larval ATP after exposure to PBMC 

 To determine effect of PBMC on larval damage, L3 were isolated following co-culture 

with cells, and metabolic activity was measured as concentration of larval ATP. It was 

hypothesized that PBMC derived from primed parasite-resistant STC sheep would significantly 

reduce larval ATP when compared to naive STC and either primed SUF or naïve SUF groups. 

However, no differences were observed between immune statuses. Larvae exposed to SUF-

derived PBMC had 0.16 µM ATP, and larvae exposed to STC-derived PBMC had 0.12 µM 

ATP, which was lower than the establish LD50 threshold (0.13 µM ATP) [Figure 2a].  Overall, 

concentration of ATP was significantly lower than live (0.267 µM ATP) in both groups treated 

with PBMC regardless of breed (P < 0.001) and were also greater than heat-treated larvae (0.03 

µM ATP) (P < 0.001).  Table 1 contains individual larval ATP values for each of 10 independent 

replications. 

Additionally, ATP concentrations were analyzed as percent reduction of ATP from live 

control larvae.  Reduction was calculated as experimental ATP subtracted from live ATP, 
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divided by live larval ATP concentration value.  From this analysis, STC-derived PBMC reduced 

larval ATP concentration by 54% (Figure 2b).  Reduction in ATP in larvae exposed to SUF-

derived PBMC was 39% from live control larvae (Figure 2b).  Heat-treated larval ATP was 

reduced by 88% from live untreated controls (Figure 2b). 

Effect of autologous serum on larval ATP following exposure to PBMC 

 Autologous serum was added to PBMC-larval culture to determine the effect of serum on 

enhanced reduction of larval ATP.  It was hypothesized that adding serum to culture should 

enhance PBMC responsiveness to larvae, and STC-derived PBMC with serum should reduce 

larval ATP to a greater extent than SUF-derived PBMC with serum on larval ATP.  Adherence 

of PBMC to larvae was apparent immediately following the addition of autologous serum (serum 

from the same breed and immune status) [Figure 3a].  After 18 hours, a greater abundance of 

PBMC-derived from STC sheep adhered to larvae compared with PBMC-derived from SUF 

sheep (Figure 3b).  In both treatment groups, large groupings of larvae were present and the 

majority of larvae were bound together (Figure 3a-b). 

 Larvae cultured with STC-derived PBMC (0.11 µM ATP) and serum had significantly 

reduced ATP concentration from live control (0.22 µM ATP) (P < 0.001) [Figure 3c], and 

concentration of ATP was reduced by 53% (Figure 3d).  However, STC-derived PBMC did not 

reduce ATP to the extent of heat-treated larvae (83%), and ATP was greater than dead controls 

(0.03 µM ATP) (P < 0.001). Adding serum did not enhance SUF-derived PBMC mediated 

reduction of larvae ATP (0.23 µM ATP), and ATP concentration was not significantly different 

from live control larvae (0.22 µM ATP) (Figure 3c-d).  Furthermore, SUF-derived PBMC with 

serum were unable to reduce larval ATP as analyzed using percent-reduction from live (-0.8 %), 
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indicating increased ATP (Figure 3d).  Table 2 contains individual larval ATP values for each of 

10 independent replications. 

Larval infectivity following exposure to PBMC from different breeds 

  To investigate infectivity, L3 were cultured with PBMC from STC, SUF, or untreated.  

Following culture, 5,000 L3 were isolated from each group and administered to susceptible, naïve 

SUF lambs.  Due to the preliminary nature of this experiment, only one lamb per treatment group 

was available. By week 5 following infection, differences were observed in FEC from lambs.  

Administration of STC-exposed larvae resulted in an FEC of 1700 epg, whereas the lamb 

administered SUF-exposed larvae had an FEC of 3,750 epg, and control FEC at 14,100 epg 

(Figure 4a). At week 8 the experiment was terminated. The lamb receiving STC-exposed larvae 

had an FEC of 1,150 epg, SUF-exposed larvae with an FEC of 3,950 epg, and FEC at 11,750 epg 

in the control lamb (Figure 4a). Averaging FEC over all time points, STC-exposed larvae were 

not significantly different from SUF-exposed larvae however, both groups were significantly 

lower than control (Figure 4b).  
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Chapter 4: Discussion 

Motility based classification is an inefficient method of measuring larval viability. A 

study have examining eosinophil accumulation around H. contortus L3 in vitro demonstrated 

immobilized L3,  and larvae remained immobile for up to three days (Rainbird et al., 1998) and, 

therefore, considered larvae to be dead. This was further supported using transmission electron 

microscopy (TEM), which showed direct adherence and degranulation of eosinophils on L3 

(Rainbird et al., 1998).  Similarly, larval motility was reduced following incubation with PBMC 

derived from either primed or naïve STC or primed SUF sheep, but not naïve SUF PBMC (Holt 

et al., 2015).  Microscopic analysis demonstrated greater cellular adherence to larvae, which 

inhibited both functions of larval motility larval velocity and acceleration, after co-culture (Holt 

et al., 2015).  However, these studies relied on observational reduction in motility, classifying 

larvae as non-motile or motile only.  What these studies fail to address is measurable mortality, 

nor do they address infectivity of larvae as their ability to establish and reproduce in susceptible 

sheep. 

Measuring larval metabolic activity using ATP provides a method to asses larval 

morbidity, because energy is essential for larval development into blood feeding adult worms 

inhabiting the mucosa.  Larvae must sustain motility to resist blood flow at site of infection, as 

well as counteract peristaltic contractions, which can negatively impact establishment (Ishiwata 

and Watanbe, 2007).  Altered metabolism can also reflect direct damage to larvae, as larvae must 

expend ATP to repair damaged cuticular structures.  In a study using Nippostrongylus adult 

worms, damage was measured as the appearance of large vacuoles in gut cells and corresponding 

reduction in worm activity in vitro (Ogilvie and Hockley, 1968). Ishiwata and Watanbe (2007) 

determined that reduced ATP correlated with a reduction in motility.  As a result of immune-



33 

 

mediated suppression of N. brasiliensis, adult worms in the mucosa had suppressed energy 

metabolism, which was due to inhibition of feeding activity (Ishiwata and Watanbe, 2007).   In 

the current study, ATP was used to determine larval death and to establish a death threshold, 

which could be used to characterize larval death following exposure to PBMC.   

In contrast to observed differences in larval motility, when L3 were cultured with PBMC 

immune status did not have an effect on larval ATP.  In other studies, despite clear differences in 

FEC and PCV, only minor differences in immune responsiveness have been observed between 

lymphoproliferation using PBMCs from Dorset lambs compared to STC lambs (Gamble and 

Zajac, 1992). Both breeds had increased levels of parasite-specific antibody and mucus involved 

in mediating larval paralysis (Gamble and Zajac, 1992), suggesting difference in immune 

response must rely on different mechanisms.  

A Th2 response involves many aspects of host immunity, including innate and adaptive 

cells, as well as antibody production in order to clear H. contortus. While St. Croix develop a 

strong Th2 response and susceptible breeds do not (Alba-Hurtado and Muñoz-Guzmán, 2013), 

an in vitro system comprised only of lymphocytes and monocytes may be enough to kill H. 

contortus larvae in the absence of other immune components. Peripheral blood mononuclear 

cells contain potent adaptor T cells, conferring specificity and memory, as well as mononuclear 

cells, which act to bridge adaptive and innate responses through antigen presentation.  While 

larvae are too large for phagocytosis by macrophages, these cells may be considered a key player 

in clearance of helminth infection. Alternatively activated macrophages secrete IL-4 and IL-10, 

along with chemotactic factors, and express complement receptors, which contribute to cellular 

recruitment to the site of infection, Th2 differentiation and ultimately parasite clearance.   

Macrophages were observed in culture to permanently adhere to T. spiralis larvae while retaining 
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cellular integrity (Mackenzie et al., 1980) when compared to neutrophils, mast cells and 

eosinophils, supporting a direct role of macrophages in parasite clearance. Cellular adherence 

contributed to greater reduction in mobility and increased damage to larvae.  Hence, in the 

absence of humoral immunity and complement factors, a cellular response alone is capable of 

killing H. contortus larvae in vitro, despite observed differences in motility between breeds and 

immune status. Cell-mediated immunity alone may provide one explanation for observed lack of 

differences between larvae exposed to STC or SUF-derived PBMC. 

Another possible explanation contributing to the lack of differences in larval ATP when 

exposed to PBMC alone may be attributed to the age or relativity maturity of sheep.  Immunity 

varies between and within breeds and depends on multiple factors such as antigenic stimulus, 

nutrition, size and age of the animals (Greer and Hamie, 2016).  Relative maturity compares 

mean live weight when an animal has developed immunity and mature weight to determine a 

sheep’s metabolic age rather than chronological age.  Resistance observed in STC lambs 

following a priming infection were influenced by both age and prior exposure to parasites 

(Gamble and Zajac, 1992).  Lambs in this study were all infected at the same chronologic age 

and given the same antigenic exposure; however, SUF lambs are generally larger than STC 

lambs, which may have contributed to development of relative maturity in SUF and earlier 

development of responsiveness to H. contortus. Furthermore, regardless of breed, susceptible 

breeds will establish some resistance with maturity and antigenic exposure to H. contortus 

(Gamble and Zajac, 1992). However, this cannot fully account for the lack of differences or for 

measured differences in larval ATP when autologous serum was added to culture.  

Larval ATP reduction was enhanced upon addition of serum to STC-derived PBMC.  

Parasite-resistant sheep develop a stronger acquired immune response and have increased 
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circulating antibody (MacKinnon et al., 2010; Bowdridge et al., 2013).  St. Croix hair ewes 

generated greater antigen-specific IgA in response to H. contortus infection (Bowdridge et al., 

2013).  In vitro studies involving multiple species of helminth larvae and innate immune cells 

demonstrated that larvae coated with antibody enhanced leucocyte adherence to the larval cuticle 

(Soulsby, 1963), and antibody was able to effectively immobilize H. polygyrus larvae 

independent of CD11b, the key complement receptor mediating macrophage attachment to larvae 

(Esser-von Bieren et al., 2015).  Mackenzie et al. (1980) demonstrated that antibodies directed 

against surface antigens were highly specific towards different N. brasiliensis life stages and 

altered worm survival in vitro.  Increased circulating antibody corresponded to increased cellular 

attachment, and the presence of antibody influences the length of time cells remained attached to 

larvae (Mackenzie et al., 1981), thereby influencing cellular effects against larvae.  Macrophages 

work in collaboration with eosinophils, killing T. spiralis larvae more rapidly when serum was 

added in culture (Mackenzie et al., 1980).   Together these studies suggest a role of antibody 

contributing to a greater and more potent cellular response that may account for observed 

differences in larval ATP in the current study.   

While microscopy revealed that whole serum from either breed rapidly enhanced cellular 

adherence, addition of autologous serum to SUF-derived PBMC culture eliminated cell-mediated 

killing.  Because cellular adherence was not inhibited, antibody derived from either breed can 

recognize and bind to larvae, yet differences may be present in serum components.  Studies 

suggest a role for complement in larvicidal activity in helminth mediation. When whole serum 

was heat treated to eliminate complement, eosinophil adhesion and killing was abrogated, 

whereas depletion of IgG or IgM had no effect (Shin et al., 2001).  One explanation of the 

mechanism of action is that complement activation has been shown to increase adhesiveness of 
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cells in vitro (O’Flaherty et al., 1978).  It is well understood that helminths have developed 

strategies to avoid complement recognition, which is critical in early stages of infection.  Loss of 

complement activation and leukocyte adherence was demonstrated to be dependent on N. 

brasiliensis larval stage (Giacomin et al., 2005), where some parasitic larvae shed their cuticle 

and acquire host proteins, including complement regulatory protein decay accelerating factor 

(Santoro et al., 1979).  Observation of St. Croix sheep immune response further corroborates 

these observations in H. contortus infection. Hair type sheep respond early to H. contortus 

infection, which promotes early development of an acquired immune response, thereby limiting 

establishment of adult worms (Bowdridge et al, 2015).    

 From a parasitological view, parasites able to evade components of complement and 

subvert complement attack have an advantage, permitting establishment (Goto and Sanchez, 

2013).  Secretion of calreticulin binding protein by H. contortus inhibits the classical 

complement pathway, which can prevent leukocyte influx, thereby enhancing parasite survival 

(Suchitra et al., 2008; Sahoo et al., 2013).  In addition to evasion of the classical complement 

pathway, H. contortus secretes a complement-C3-binding protein (C3BP) in their excretory-

secretory products, which inhibit complement activity (Sahoo et al., 2013).  As STC have been 

documented to develop an early response and therefore early recognition, differences between 

parasite susceptible and parasite resistant breeds could also be linked to differences in 

complement proteins.  When plasma concentration of complement proteins C3 and C4 were 

measured in a population of Suffolk sheep compared to merino sheep, it was found that C3 

concentrations were elevated in merino sheep, where C4 was significantly reduced (Groth et al., 

1987).  Additionally, when analyzed using immunoprecipitation, differences were observed in 

protein size, suggesting multiple loci and polymorphisms between sheep (Groth et al., 1987) 
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which can be attributed to observed differences in circulating complement.  Taken together, 

deficiencies in SUF complement activation or polymorphisms in complement proteins may 

account for observed differences in larval ATP when L3 are cultured with SUF-derived PBMC 

and serum.  However complement differences between breeds have yet to be fully established. 

Preliminary experimental data demonstrated reduced FEC in susceptible SUF lambs 

given an oral inoculation of PBMC-exposed H. contortus L3.  In a similar study, Blackbelly 

sheep had reduced FEC and fewer established adult worms when sheep received an intra-

abomasal transfer of L3 cultured with eosinophils (Terefe et al., 2007a), further substantiating the 

role of innate cells on H. contortus L3 viability, both in vitro and in vivo.  While this study’s aim 

was to measure infectivity of larvae following immune cell exposure, it fails to provide biologic 

relevance. In contrast to an intra-abomasal inoculation, an oral dose of H. contortus mimics a 

typical infection and immune response, as larvae must migrate to the abomasum.  Furthermore, 

Blackbelly sheep are considered parasite resistant, which may have contributed to a reduction in 

FEC.  Nevertheless, reduced larval motility and immune-mediated damage, reflected in reduced 

ATP, manifest as reduced adult worm size and fecundity (Chandler, 1936), which may account 

for reduced FEC.  Immune-mediated reduction in energy may then lead to expulsion of L3 from 

sheep.  Alternatively, cell-mediated damage to larvae could also promote inhibition of larval 

feeding activity, thereby suppressing energy metabolism of adult worms (Ishiwate and Watanbe, 

2007).  

 Our current study was able to demonstrate that differences in larval viability could be 

measured using ATP concentration following exposure to PBMC in vitro, establishing a role of 

mononuclear cell-induced larval death.  These data were supported in vivo, suggesting that 

PBMC are able to directly damage and kill H. contortus larvae as demonstrated through reduced 
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FEC following infection of susceptible lambs.  While a cell-mediated response alone may be 

enough to kill L3, differences between parasite resistant and parasite susceptible breed innate and 

humoral responses may be a potential target in developing future therapeutics against H. 

contorus in ruminants. 
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Figure 1: Larval survivability following heat treatment 

Larval survivability determined as a percent of live, motile larvae to the number of outstretched, 

non-motile larvae after exposure to 100C. LD50 was determined as the ATP concentration when 

half of larvae present were alive (LD50=0.13µM ATP). Data represents the mean of three 

independent experiments; 100 larvae were used per treatment. P < 0.001 
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Figure 2: Larval ATP concentration after exposure to PBMC from SUF or STC sheep. 

 (a) ATP concentration of L3 exposed to SUF, STC PBMC or heat treated L3 positive control 

(dead) and untreated negative control (live). (b) Reduction of experimental ATP concentration 

from live ATP concentration. Data is representative of 10 individual experiments.  Error bars 

represent SEM. Different letters indicate significant difference; P < 0.001 
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Figure 3: Larval ATP following culture with PBMC and autologous serum. 

Microscopy at 10x magnification  (a) at time 0 and (b) 18hr after addition of serum.  

Magnification at 10x (left panel) and 4x (right panel). (c) Larval ATP concentration following 

incubation with STC or SUF-derived PBMC and autologous serum. Heat-treated positive control 

(HT) and untreated (live) negative control ATP concentration (d) Reduction of experimental 

ATP from live ATP concentration. Data are representative of the mean of 10 replicates.  Error 

bars represent SEM. Different letters indicate significant difference; P < 0.001 
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Figure 4: Infectivity of PBMC-exposed larvae 

 (a) SUF lamb FEC measured over 8 weeks for sheep (n=1) administered 5,000 L3 per treatment 

group. (b) Mean FEC over 8 week period per treatment group. (c) PCV between weeks 5 and 8 

of experiment.  Error bars represent SEM. ***P < 0.001. 
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Table 1: Larval ATP concentration after exposure to PBMC 

 

Replication     

PBMC 

Source 
1 2 3 4 5 6 7 8 9 10 Mean SE 

Naïve SUF 0.158 0.090 0.158 0.232 0.274 0.151 0.105 0.120 0.092 0.221 0.160 0.021 

Naïve STC 0.098 0.077 0.098 0.186 0.202 0.065 0.181 0.121 0.102 0.150 0.128 0.017 

Primed SUF 0.121 0.059 0.120 0.064 0.293 0.264 0.179 0.171 0.130 0.277 0.168 0.027 

Primed STC 0.132 0.057 0.130 0.065 0.223 0.113 0.117 0.082 0.110 0.160 0.119 0.016 

Live 0.419 0.107 0.419 0.287 0.367 0.240 0.224 0.217 0.167 0.225 0.267 0.037 

Dead 0.031 0.017 0.030 0.011 0.046 0.011 0.051 0.036 0.022 0.063 0.032 0.005 
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Table 2: Larval ATP concentration following incubation with PBMC and autologous serum 

 
Replication 

  
PBMC 

Source 
1 2 3 4 5 6 7 8 9 10 Mean SE 

Naïve SUF 0.16 0.26 0.12 0.20 0.13 0.20 0.05 0.47 0.08 0.34 0.20 0.02 

Naïve STC 0.01 0.23 0.11 0.18 0.11 0.11 0.09 0.09 0.05 0.05 0.10 0.03 

Primed SUF 0.08 0.33 0.32 0.07 0.03 0.08 0.22 0.57 0.48 0.46 0.27 0.06 

Primed STC 0.03 0.11 0.16 0.12 0.03 0.08 0.33 0.11 0.11 0.11 0.12 0.02 

Live 0.11 0.37 0.24 0.22 0.22 0.17 0.23 0.33 0.11 0.21 0.22 0.04 

Dead 0.02 0.05 0.01 0.05 0.04 0.02 0.06 0.04 0.09 0.03 0.04 0.01 
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