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ABSTRACT 

Transforming undergraduate STEM education: 

Reforming classrooms by training current and future faculty 

Karen E. Bailey 

In the absence of formal pedagogical training, educators tend to teach the way they were 

taught, using traditional lecturing. Numerous studies have shown that engaging students in 

active learning improves student learning and retention of knowledge. Reforming STEM 

education has become a national imperative. Since the turn of the millennium, many 

initiatives have sprung forth in response to a growing awareness of the need for reform in 

post-secondary biology education. The National Academies Summer Institutes (NASI) is one 

such initiative. The Summer Institutes provide training in evidence-based strategies for 

biology educators from primarily research universities where lecture-based teaching in large 

enrollment introductory classes results in unacceptable rates of attrition. In 2010, the first 

regional offshoot of the SIs was piloted at West Virginia University (NASI@WVU) which 

expanded the reach of the SIs by serving current and future STEM faculty from any post-

secondary institution. Analysis of exit surveys indicated that the original SI, participants of 

the NASI@WVU highly valued the experience and reported increases in teaching 

knowledge, skill and implementation of active learning strategies regardless of discipline or 

rank. While current and future faculty reported differences in their opportunities to teach and 

reported using active learning strategies at different frequencies, they both reported using 

active learning strategies at higher rates after the NASI@WVU compared to before. A small 

theme analysis of open-ended responses on support to implement scientific teaching or 

challenges they would face revealed that both current and future faculty identified peer 

support as key in improving their instruction. When teaching videos of participants were 

evaluated with validated observation protocols, the participants were found to use higher 



 

 

 

levels of both active and student-centered strategies (p>0.05) than a control cohort of STEM 

faculty who did not take part in the NASI@WVU. In addition to directly training current and 

future faculty, the SIs have provided a model for programs to train graduate students and 

teaching assistants (TAs) in evidence-based teaching. The program developed at WVU to 

train graduate TAs for the newly reformed introductory biology teaching laboratory (BIOL 

115/117) employed a combination of SI workshops and peer-review to foster reflective 

teaching practices and adoption of student-centered approaches. Teaching assistants who took 

part in this training program were evaluated with two observation protocols. Teaching 

assistants were found not to be significantly higher in their use of active learning or student-

centered strategies after two rounds of peer-review that focused feedback on increasing use of 

these strategies. Varying outcomes for the graduate teaching assistants indicate that while 

training in scientific teaching does create changes toward student-centeredness, further effort 

is required to produce improvements similar to those seen in faculty instructors. 
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Chapter 1: Introduction 

Transforming Science Education 

The US was known once  for its scientific and engineering innovations, but this has 

been on the decline since the latter part of the twentieth century (Atkinson and Mayo, 2010). 

In 1983, the National Research Council (NRC) published the landmark report, A Nation at 

Risk: The Imperative for Educational Reform, describing the state of education in the United 

States at all levels: primary, secondary and postsecondary. The report examined the quality of 

both teaching and learning occurring in the classroom. At that time, American students 

scored last in 7 out of 19 tests taken by the United States and other countries.  Thirty-five 

years later, we are struggling with the same conundrum of a prosperous nation, such as the 

US, ranking 41st in the world in math and 25th in the sciences behind a number of developing 

nations according to the Programme for International Student Assessment (PISA, 

https://nces.ed.gov/surveys/pisa/) carried out by the Organisation for Economic Co-operation 

and Development (OECD, 2015).   

Because  our global rankings in math and science have been in decline, the need for 

workers who have expertise in these areas is increasing. The need for science, technology, 

engineering and math (STEM) majors is outpacing their production with a projected need for 

one million trained STEM professionals by this year (2018) according to a report by the 

President's Council of Advisors on Science and Technology (PCAST, 2012). Several 

longitudinal studies have found that students are interested in STEM majors but tend to 

switch to other majors primarily in the first two years of college in large part due to continued 

use of passive lecture techniques (Chen, 2013; Graham, et al., 2013; Handelsman, 2011; 

Handelsman et al., 2004; Lowell, et al., 2009; Mervis, 2010; Seymour and Hewitt, 1997; 

Stains et al., 2018; Tobias, 1990; Wood, 2009). They are not challenged to analyze, apply or 

evaluate scenarios that can be applied to real life situations which leaves them without the 
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skills needed to apply their knowledge (AAAS, 2011; Burrowes, 2003, DiCarlo, 2006; Lujan 

and DiCarlo, 2005, NRC, 2003). For many non-scientists, their first formal encounter with 

the process or nature of science is in an introductory science class at the undergraduate level. 

A focus on the “what” and not the “why” or “how” can turn them off to the sciences, 

although some may have been genuinely interested in the field (Seymour and Hewitt, 1997; 

Tobias, 1990; Wood, 2009).  

Reforming science education in order to effectively train all students has become a 

national imperative (AAAS, 2011; NRC, 2003; Wood, 2009; Woodin et al., 2009). 

Innovations and reform in teaching the nature of science can help engage students in ways 

that will better prepare majors for STEM careers and will empower non-majors to make 

future science-related decisions (Handelsman, 2011). In 2000, the NRC published the report 

“How Students Learn” that compiled evidence from educational research to inform 

recommendations on teaching practices. Learning requires students to gain a body of “usable 

knowledge” that can be accessed to solve problems rather than to accumulate a list of 

disconnected facts (NRC, 2000). Evidence suggests that using active learning to engage 

students’ prior knowledge to answer questions and solve problems is the most effective 

approach to help students transition from novice to expert (Freeman et al., 2014; NRC, 

2000).  

Use of evidence-based teaching strategies, such as active, cooperative, and inquiry-

based learning, leads to improvements in student learning gains, critical thinking skills and 

confidence (Beichner, 2003; Freeman et al., 2014; Knight and Wood, 2005, Schroeder et al., 

2007, Timmerman et al., 2008). Improved student learning through the use of reformed 

methodologies is not limited to the classroom. Replacing traditional laboratories with 

inquiry-based and/or authentic research experiences allows students to develop an 

appreciation for the nature of science and to develop necessary science process skills 
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(Brownell et al., 2015; Gormally et al., 2011; Olimpo et al., 2016; Wallace et al., 2003). 

Given the effectiveness of these strategies, why aren’t more schools rushing to implement 

them? Amidst other factors such as institutional cultures and disciplinary identities that 

prioritize research over teaching (Brownell and Tanner, 2012), most post-secondary 

instructors lack the necessary training. Post-secondary education is the only level of the 

educational system where formal pedagogical training is rarely a required part of graduate 

training. K-12 teachers undergo considerable pedagogical training and are required to be 

evaluated and certified before they are allowed to teach. While the salaries and future funding 

of K-12 teachers can be affected by a failure to produce the appropriate percentage of passing 

students, post-secondary faculty are rarely held to such a standard (Tanner and Allen, 2006).  

STEM graduate programs tend to provide rigorous training in research, but typically 

have no requirement for pedagogical training, leaving faculty to revert to the methods used 

on them as students (Romm et al., 2010; Stains, 2018). Without formal training, faculty can 

easily fall prey to the misconception that if they succeeded in traditional classrooms their 

students should as well. They tend to blame failure on the students rather than the method of 

teaching. One educator related her epiphany when students wrote in evaluations that they 

slept through the lectures all semester and they would prefer not to do that (Burrowes, 2003). 

Statements like these are strewn throughout articles on science education reform.  Students 

are becoming both more aware that poor teaching poses a challenge to success in STEM and 

more vocal about classes that focus on memorization over all else (Sirum and Madigan, 

2010).  

Effective pedagogical training for current and future faculty (we refer to graduate 

students and post-docs collectively here as future faculty, whose intention is to become 

faculty even if it is not likely all will) is needed to create and sustain the reform necessary to 

improve post-secondary STEM education. The call for reform in biology education made in  
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Bio2010: Transforming Undergraduate Education for Future Research Scientists (NRC , 

2003) helped improve awareness of the need for pedagogical training and led to the 

development of the National Academies Summer Institutes (NASI) founded in 2004.  NASI 

was designed to address the lack of formal pedagogical training in STEM graduate programs 

by training science faculty in the best evidence-based teaching methods through an approach 

termed scientific teaching.  Scientific teaching distills best practices from the learning 

sciences and combines them with an approach that incorporates the nature and process of 

science into the classroom (Handelsman et al., 2006). 

Since about 80% of students pursuing graduate degrees hope to enter faculty positions 

(Tanner and Allen, 2006), formal training in evidence-based teaching approaches that mimic 

graduate training in research - investigation, analysis and evaluation - should be standard 

practice (Handelsman et al., 2007). While many reform advocates call for ‘standards of 

teaching practice’ at the post-secondary level, none have yet been made mandatory (Tanner 

and Allen, 2006) and few institutions have formal pedagogical training programs for 

graduates or their graduate teaching assistants (GTAs) (Romm et al., 2010).  

Focus of Study 

The focus of this dissertation is the impact of pedagogical interventions on teaching 

approaches employed by current and future STEM faculty. Specifically, I am interested in 

how expanding the scope of the NASI from biology to all STEM fields and from current 

faculty at research institutions to current and future faculty from any post-secondary 

institution will affect its impact. I hypothesize that the format and approach are significantly 

robust to improve teaching knowledge, attitudes and behaviors of participants from a variety 

of STEM disciplines and ranks.  In addition, I hypothesize that incorporating elements of the 

SI into a training program for graduate teaching assistants (TAs) for an introductory biology 

teaching laboratory will improve their use of active, student-centered teaching.   
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To this end, chapters 2-4 of this dissertation evaluate A) the impact of the first full-

length regional offshoot of the SI, the NASI@WVU, on teaching knowledge, skills, attitudes 

and behaviors of its participants (Ch. 2, 3) and B) the impact of an adapted SI workshop and 

peer-mentoring on teaching behaviors of graduate TAs teaching in the introductory biology 

program (BIOL 115/117) in the Biology Department of West Virginia University (Ch. 4).  
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Chapter 2: Participation in an adaption of the National Academies Summer Institute on 

Undergraduate Biology Education to serve current and future STEM faculty leads to 

changes in teaching skills and behaviors.   

ABSTRACT 

In the absence of pedagogical training, faculty tend to rely more heavily on 

traditional, passive teaching methods which underprepare students for careers in STEM 

fields. In response to a call from the National Research Council, the National Academies 

Summer Institute (SI) was created to provide formal training in evidence-based practices for 

Biology educators from research universities. Participants valued the interactive format of the 

Summer Institute and reported changes in their teaching knowledge, skills and behaviors. In 

order to expand the impact of the Summer Institutes, a regional spin-off was adapted to serve 

current and future STEM faculty and teaching staff from any post-secondary institution. The 

regional Summer Institute replicated the general interactive format of the original SI which 

requires participants to apply the new methods they are learning by developing and peer-

reviewing teaching units during the course of the weeklong institute. A new interdisciplinary 

workshop was developed for the regional SI and larger and/or interdisciplinary teams were 

recruited from 2- and 4-year post-secondary institutions. Over the four years that this regional 

SI was offered, participants reported significant increases in teaching knowledge, skills and 

implementation of active learning strategies. Some areas of increased knowledge, skills and 

implementation included active learning, measuring student learning and using learning 

outcomes to guide teaching. One of the most well-received sessions of the SI was scientific 

teaching. Ninety four percent of participants valued this session, while 75.9% believed that 

engagement in learning is a highly valued skill for successful active-learning/student-

centered STEM classrooms. The findings from this study confirm that intensive immersive 

STEM workshops like SI are instrumental in motivating faculty to use scientific teaching in 

their classrooms. 
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INTRODUCTION 

The need for science, technology, engineering and math (STEM) professionals is 

outpacing their production by the American higher education system (President's Council of 

Advisors on Science and Technology, 2012).  This is not caused by a lack of interest in 

STEM by students.  While nearly 30% of students seeking bachelor’s degrees initially choose 

STEM fields, almost half of these leave STEM before graduation (Chen, 2013). Many 

students who begin college as STEM majors find themselves leaving, often in the first two 

years, because the teaching methods are less than favorable (Chen, 2013; Graham, et al., 

2013; Handelsman, 2011; Handelsman et al., 2004; Lowell, et al., 2009; Mervis, 2010; 

Seymour and Hewitt, 1997; Tobias, 1990; Wood, 2009). Among other things, students 

encounter a focus on memorization and regurgitation of content that turns them off to the 

sciences. Those who stay are not well-equipped by this training to pursue STEM careers 

(DiCarlo, 2006; Lujan and DiCarlo, 2005).  

Post-secondary science education is in need of pedagogical reform that will engage 

students and improve learning across the board (American Associate for the Advancement of 

Science, 2011; National Research Council, 2003; President's Council of Advisors on Science 

and Technology, 2012; Wood, 2009; Woodin et al., 2009). When educators use evidence 

from research to inform course design and implement teaching strategies such as active, 

cooperative, inquiry-based learning, students show improvements in learning gains, critical 

thinking skills and confidence (Beichner, 2003; Freeman et al., 2014; Knight and Wood, 

2005, Schroeder et al., 2007, Timmerman et al., 2008). In the absence of formal pedagogical 

training, college STEM instructors often use the same techniques they observed as students 

(Romm et al., 2010; Stains et al., 2018). Many believe that if they were able to succeed in a 

traditional lecture classroom then their students should be able to do the same. Even students 

are aware of the need for improvements in teacher training (Schroeder et al., 2007).  In a 
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2010 survey, students cited poor teaching techniques as a primary reason for leaving STEM 

disciplines (Sirum and Madigan, 2010). They are becoming increasingly unwilling to tolerate 

classrooms where they have to memorize large bodies of information that they cannot recall 

in the following semester (Sirum and Madigan, 2010). 

While there is overwhelming evidence that active, inquiry-based learning in 

undergraduate biology education improves learning (Freeman et al., 2014), college science 

faculty and teaching staff tend to lack formal pedagogical training to successfully implement 

reformed approaches. Faculty still tend to rely on traditional teaching methods in 

undergraduate biology classrooms and laboratories (Stains et al., 2018). Bio2010: 

Transforming Undergraduate Education for Future Research Scientists (National Research 

Council, 2003) spawned significant change in the awareness of and training for pedagogical 

reform in undergraduate biology education through the National Academies Summer 

Institutes (SI) founded in 2004.  The SIs are 5-day immersion-style workshops that train 

STEM faculty in evidence-based teaching methods through an approach termed scientific 

teaching.   

The centrally located SIs were held at the University of Wisconsin, Madison and 

trained 30-60 biology educators per year between 2004-2011. Participants found the 

immersive program to be valuable in helping them gain awareness, knowledge and skills in 

evidence-based teaching practices in addition to reporting changes in their teaching practices 

once they returned to their home institutions (Pfund et al., 2009). A 2.5 day mini-institute 

model of the SIs, Scientific Teaching, Assessment, and Resources (STAR), was piloted at 

Louisiana State University from 2007-2011. This pilot extended the SI reach to biology 

faculty from diverse post-secondary schools. Like the central SI, participants, regardless of 

institution type, reported that the immersive approach increased their use of evidence-based 

practices and improved student learning (Gregg et al., 2013).  
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In order to further extend the impact of the SIs, the first full-length regional SI was 

piloted at West Virginia University (WVU) between 2010 and 2014. This regional institute 

replicated the National Academies Summer Institute on Undergraduate Biology Education 

model of an intensive 5-day experience consisting of groups of participants working together 

to create instructional materials using the evidence-based teaching methods introduced during 

interactive workshops. The National Academies Summer Institute at West Virginia 

University (NASI @WVU) expanded the original model in three notable ways. While the 

original workshop focused on biology faculty from primarily research institutions, 

NASI@WVU trained both current and future faculty from STEM departments at any post-

secondary institution. Four consecutive regional SIs provided training to current and future 

STEM faculty in scientific teaching. Due to the success of this regional pilot, the SIs 

transitioned from a central to a fully regional model in 2012, with regional SIs being offered 

at 4-7 sites around the country each year since.   

The regional expansion dramatically increased the number of participants served by 

the SIs. Here, we report on the impact of the NASI@WVU on participants from a variety of 

ranks, disciplines and institution types. When developing this regional offshoot, we 

hypothesized that the immersive, interactive format of the original SI was sufficiently robust 

to have a positive impact on participant attitudes, knowledge and reported changes in 

classroom activity, regardless of discipline or rank, when implemented by the second 

generation trainers who were participants of the original SI. 

METHODS 

Description of the NASI@WVU 

NASI@WVU was a week-long, intensive professional development program where 

participants learned evidence-based teaching strategies to improve student learning. During 

morning sessions, participants engaged in interactive workshops to gain knowledge and 
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practice in reformed teaching strategies and backward design (Wiggins and McTighe, 1998, 

Table 1). During the afternoon sessions, they worked in groups to create teaching modules 

using their newly-acquired skills and strategies from the morning sessions. As a regional 

offshoot of the original SI, NASI@WVU provided nationally-recognized speakers for the 

workshops and experienced summer institute alumni to facilitate the group work. During the 

week, groups peer-reviewed one another’s teaching modules. These preliminary presentations 

provided formative feedback which allowed groups to gauge their progress and revise their 

teaching materials prior to the final presentation. On the last day of the institute, groups 

presented their teachable materials to the entire institute. The final presentations served as 

summative assessments both to foster buy-in by participants and to assess the level of 

proficiency participants had achieved in scientific teaching over the course of the week. 

Participants agreed to use one or more teaching modules and teaching approaches at their 

home institutions during the following year. They also agreed to send one representative to a 

follow-up meeting the following year to report on successes and challenges.   

Participants in the NASI@WVU were recruited through the dissemination of an email 

invitation with program information to the Deans and Chairs of STEM departments at post-

secondary institutions in West Virginia and surrounding states, and to alumni of the SIs. 

Applicants completed both individual and team applications modeled after those of the 

original SI. Institutional teams of current and future faculty were given preference over 

individuals, however, single participants were accepted in special circumstances.  

Institutional teams could be single or multidisciplinary and, unlike the original SI, there was 

no cap on team size.  
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Table 1. Sample agenda for NASI@WVU 
 

 

Time/Day 

 

 

Monday 

 

Tuesday 

 

Wednesday 

 

Thursday 

 

Friday 

 

8:30 

 

Scientific Teaching 

 

Formative 

Assessment 

 

Integrating Across 

Disciplines 

 

Assessing Student-

centered Classrooms 

 

Presentation 

Preparation 

Group 

Presentations 10:15 Backward Design & 

Summative 

Assessment 

Active 

Learning 

Diversity and 

Unconscious Bias 

Assessment to 

Research 

 

11:15 

Dissemination 

 

1:00 

 

Group Work 

 

Group Work 

 

Group Work 

 

Group Work 

Group pictures 

 

Reflection, 

Wrap-up and 

Evaluation 

4:30   Group Share Group Share 

 

 

Evaluation 

In order to compare the performance of the NASI@WVU with the original SI, we 

used surveys adapted from those used to evaluate the original SI with the help of S. Miller 

and C. Pribenow (U. Wisconsin). These metrics were used to explore the impact of the 

NASI@WVU on teaching knowledge, attitudes and behaviors. Both surveys were 

administered online using Survey Monkey (www.surveymonkey.com).  

The first metric, referred to as the Exit Survey, was modeled after the instrument used 

by the original SI, to capture participants’ immediate perceptions of the value of the SI and 

their changes in teaching knowledge and attitudes (Pfund et al., 2009). The Exit Survey was 

administered to participants within a month of completion of the SI. It consisted of five 

sections: participant demographics, perceived value of the elements of the SI, perceived 

impact of the SI on knowledge, attitudes and intended teaching behavior, and expected 

challenges in the coming year. The questions were primarily multiple choice and Likert-scale 

with a small number of free response questions.   

The second metric, the 1-Year Follow-Up survey, was used to collect information 

about the strategies that the participants implemented during the year following the SI and the 

http://www.surveymonkey.com/
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successes and challenges faced during implementation. Participants completed this survey 

one year after participation in NASI@WVU. This survey consisted of five sections: 

participant demographic, the impact of the pedagogy interventions on teaching since leaving 

the institute, how the institute has affected teaching (before and after) and if there had been 

any dissemination of pedagogy information the year after the institute 

Responses to open-ended prompts in the two surveys were subjected to thematic 

analysis using a grounded theory approach (Braun and Clarke, 2006; Regassa and Morrison-

Shetlar, 2009). Raters reviewed the responses to develop response codes. Codes and 

emergent themes were then discussed and refined. Responses were then binned into similar 

themes and a frequency for each theme or sub-theme was calculated.   

Data Analysis 

For the Exit Survey and the 1-Year Follow-up Survey, frequency and descriptive 

statistics were calculated for responses to Likert-scale questions either by averaging the 

numerical score for each question or by calculating the average percentage response rate for 

each answer. The Kruskal-Wallis H test was used to compare independent populations across 

years. Mann-Whitney U-test was used to make pairwise comparisons between independent 

samples while the Wilcoxon signed rank test was used to make pairwise comparisons 

between dependent samples, such as pre-/post-responses. Responses by populations differing 

by discipline or rank were compared using Pearson’s Chi-Squared. All statistical analysis was 

performed using the Statistical Package for Social Sciences (SPSS, version 25) software. 

The NASI@WVU protocol was approved by the WVU Institutional Review Board 

(WVU IRB# H-21531). 
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RESULTS 

Participant Demographics 

The first full-length offshoot of the original National Academies Summer Institutes 

(SI, University of Wisconsin, Madison) was held on the campus of West Virginia University 

(WVU) in 2008. The format followed closely that of the original SI with an intensive, 5-day 

workshop combining active learning workshops and group work to create teaching modules 

using reformed pedagogical practices. Thirty-two participants consisting of graduate students, 

post-doctoral fellows, faculty and teaching staff attended from the WVU Department of 

Biology along with a small cohort of discipline-based education researchers from the other 

STEM departments within the WVU Eberly College of Arts and Sciences. With the help of a 

subset of that first discipline-based education research (DBER) cohort, the National 

Academies Summer Institute at WVU (NASI@WVU) was adapted for a STEM audience. In 

2009, this newly adapted STEM Summer Institute was attended by thirty-one participants 

from STEM disciplines across the WVU campus. Funding was sought and acquired from the 

National Science Foundation to evaluate the impact of four consecutive regional Summer 

Institutes from 2010 to 2013 after the positive response by participants of the first two 

cohorts. 

During those four summer institutes, an average of 29 participants per year 

(total=116; 59% female, 41% male) attended the regional SI from a variety of STEM 

disciplines and post-secondary institutions. Participants came predominantly from regional 

colleges and universities, although occasionally institutions from states outside SI’s 

designated offshoot regions (e.g., California, Michigan, Florida) would send participant 

teams based on recommendations from alumni of the original SI. Participants hailed more 

often from doctoral institutions (62%) than from masters/baccalaureate institutions (33%) 

with a few participants from publishing companies (which serve undergraduate STEM 
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courses, 5%), but no representation from community colleges or associate-degree granting 

colleges. Biology and biology-related disciplines were the mostly highly represented STEM 

discipline, followed by Chemistry, Physics, Math and Engineering (Figure 1). The “Life 

Sciences Related” category includes participants from health science disciplines, health 

science education and communication in the health sciences. In addition to institutional and 

disciplinary diversity, participants varied by rank, years of teaching experience and training.  

Faculty (72%) made up the largest segment of the participant population followed by 

graduate students (24%) and post-doctoral fellows (4%) with a wide spread in years of 

teaching experience (<6 years = 36%, 6-10 years = 25%, 11-20 years = 30% and >20 years = 

9%). For training, participants were more likely to have observed others teaching (87.3%) or 

attended professional development workshops (46.6%) than to have taken undergraduate 

(19%) or graduate (33.2%) pedagogy courses.  

 

Figure 1. Representation of NASI@WVU attendees by discipline, n=116 for four consecutive years of the 

NASI@WVU, 2010-2013.  

 

Perceived value and impact of participating in the regional National Academies Summer 

Institute. 

Completion of an Exit Survey was an important aspect of gauging participants’ 

perceived benefits from the week-long summer institutes. Since the NASI@WVU was 

expanding its audience to include different ranks and different disciplines, in addition to 

being run by alumni of the original SI, we were interested to find out if NASI@WVU 

participants still valued the institute highly, as participants had for the original SI. Average 
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response rates for the Exit Survey were 82.8% with no individual year’s rate falling below 

65%. The majority of participants perceived the NASI workshops as valuable (Table 2) and 

would recommend the SI to a colleague (86%). There was no significant difference in 

perceived value of the SI sessions by rank (current versus future faculty; p >0.05, Pearson’s 

Chi-Squared test) or discipline (Biology versus other STEM, p >0.05, Pearson’s Chi-Squared 

test). The most highly-valued workshops addressed the introduction to scientific teaching and 

two of its three main themes (active learning and assessment). Similar to the original SI, the 

third theme of scientific teaching, diversity, was among the lower rated workshops, as was 

the Institutional Transformation workshop, during which participants made plans to 

disseminate what they learned at the SI on their home campuses.  

Table 2. Perceived value of the NASI@WVU sessions by participants  

SI Session “Valuable”/”Extremely Valuable” 

Scientific Teaching 92.8± 1.1 

Assessment 94.0 ± 4.1 

Active Learning 91.6 ± 3.5 

How People Learn 88.4 ± 6.1 

Diversity/Unconscious Bias 71.4 ± 9.1 

Institutional Transformation 62.9 ± 13 

 

Average percentage of respondents from Exit Surveys, 2010-2013, who 

found the sessions “valuable”/”extremely valuable”. Mean ± s.e. 

 

For nearly a third of the respondents this was their first pedagogical workshop. The 

majority of those who had attended other workshops rated the SI positively in comparison 

(76%). Below are representative comments in response to the prompt “How does the SI 

compare to other professional development workshops you have attended?”  

• “It's the only workshop I've attended, but it's extraordinarily helpful compared to just 

being thrown into a classroom” 

• “Far more extensive (and helpful) than any other workshop I've attended.” 

• “This was far better, and more applicable, as it directly addressed methods and 

practical questions.”   

• “This is the first science education workshop I've attended. I found it transformative; 

although I feel I still have a lot to learn I feel it has resulted in fundamental changes 
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to the way I think about teaching.” 

• “Similar but better than the other two I have attended because it focuses on science 

and had a practical focus.” 

 

Participants not only valued the SI workshops but reported that the experience 

improved their teaching knowledge and skills. The majority of respondents reported feeling 

confident that they could implement the teaching strategies they learned at the SI (70%). 

There was no significant difference in confidence levels across ranks or disciplines (p > 0.05, 

Pearson’s Chi-Squared test). When asked to compare their knowledge and skills before and 

after the SI, respondents reported significant increases in their ability to perform specific 

teaching practices taught at the SI (Figure 2, p< 0.001, Wilcoxon signed rank test). The 

practices that saw the biggest perceived improvements were creating teaching materials that: 

“elicit prior knowledge”, “include formative assessment”, “uncover student misconceptions” 

and “help students gauge their own learning”. 

 

Figure 2. Perception of teaching skills differs before and after participation in the NASI@WVU.  

Response frequencies (Exit Survey) for each cohort/year (2010-13) who perceived themselves as high/very 

high for specified teaching skills, were averaged. Mean ± s.e. Wilcoxon ranked sign test, p<0.001. 
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In addition to teaching skills, respondents reported on their beliefs about teaching 

following participation in the Summer Institute. A higher percentage of respondents 

“agreed”/”strongly agreed” with statements that reflected the values of the SI, such as the 

importance of student engagement and using evidence to determine student learning, than 

statements that ran counter to SI values like valuing content coverage above all else (Table 

3). 

Table 3. Participants agree with SI-related teaching values after participating in the 

NASI@WVU. 
  

Teaching Value Statement 

 

Agree/ 

Strongly Agree 

 

Covering CONTENT is the most important part of my class 

 

25.8 ±3.6 

Students should be ENGAGED in learning 75.9 ±4.2 

Students should learn what I INTEND 65.5  ±4.1 

I should have EVIDENCE that my students are learning what I intend 63.8 ±4.4 

Students should know the GOALS in my course 

 

74.2 ±4.1 

Percentage of respondents from the Exit Survey who “Agree”/”Strongly Agree” with a given 

teaching value statement. Mean ± s.e. 

 

While respondents felt confident in the knowledge and skills gained at the SI, they 

were able to speculate on potential challenges and sources of support as they strove to 

implement the new teaching strategies. Current and future faculty identified an overlapping 

set of challenges and barriers (Table 4.) that share commonalities with those identified by 

participants of the original SI (Pfund, 2009). Following are representative statements in 

response to an open-ended prompt to identify potential challenges to and sources of support 

for the implementation and dissemination of SI practices.  

Challenges: 

• It will take some time to adopt the skill and ideas of SI 

• Team-taught courses are the biggest challenge. The worst-case scenario is only one 

out of five faculty in a course uses active learning--how will that work? 

• As a grad student, some of the courses are managed by faculty who don't want to 

radically change their courses to include more active learning and better assessment 

• Busy schedules, old habits, possible student resistance to some of the ideas. 
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• Not a 'large' group of educators in our department, faculty may be resistant to any 

professional development. 

 

Supports: 

• Having a teachable tidbit that I can directly use in my class is a big help.   

• I now feel confident in using "Clickers" in my classroom and have had time to learn 

about and reflect on other methods of engaging students. 

• Networking with other teachers who have attended the summer institute (outside of 

my college) and communicating with those from my college that also attended to get 

ideas/suggestions. 

• My department, which is supportive of these efforts, and our students, who have 

already been appreciative of the changes we've made. 

• It will help to monitor the course and students understanding 

 

The majority of items that were identified as a challenge by one respondent were 

identified as a support by another. For example, money, teaching technology and student 

buy-in were about as likely to be considered a support when participants had them as a 

challenge when they did not. Only five of the fourteen sub-categories of items were viewed 

as only a challenge or a support. The two groups placed different emphases on the 

importance of certain items as either supports or challenges. Time was the most common 

challenge identified by current faculty followed by institutional support, while opportunities 

to teach and personal expertise/skills were more commonly identified by future faculty. The 

two groups did agree on the importance of peer support as the most commonly identified 

support and lack thereof as a challenge. Additionally, future faculty were more likely to 

identify access to teaching materials, and course supports as supports than current faculty 

who focused on institutional support as second only to peer support.   
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Table 4. Anticipated challenges and supports to implementing Scientific Teaching 

practices. CF = current faculty, FF = future faculty. 
 

Item Category  

 

Item Subcategory 

 

 

Support 

 

 

Challenge 

CF FF CF FF 

 

Resources 

 

Time 

Money 

 

5  

--  

 

-- 

5 

 

29 

3 

 

10 

-- 

Teaching materials 7 20 3 -- 

Teaching technology 5 -- 9 -- 

 

Environment 

 

 

 

Opportunities to teach 

 

2 

 

5 

 

3 

 

40 

Having control over one’s course[s] 5 5 -- -- 

Course Content 

Institutional support 

-- 

17 

-- 

5 

6 

17 

-- 

-- 

Peer support  39 40 14 15 

Student Buy-in 5 -- 6 5 

Course support/Evaluation 2 10 -- -- 

 

Personal 

 

Expertise/skill development 

 

10 

 

10 

 

6 

 

20 

Comfort implementing -- -- 3 -- 

Comfort disseminating 

 

-- -- 3 10 

Percentage of responses from the Exit Surveys that identified a specific challenge or 

support in response to an open-ended prompt. Supports, n=41 for current faculty (CF), 

n=20 for future faculty (FF); Challenges, n= 35 for CF, n=20 for FF.   

 

Implementation in the year following the NASI@WVU 

One year after attending the SI, all participants were asked to report on their teaching 

activities during the intervening year. Representatives from each institutional team also 

returned to WVU for a follow-up meeting to formally present their team’s successes and 

challenges. The average response rate on the 1-Year Follow-up Survey was 55% with no 

individual year’s rate falling below 30%.  In the year following the SI, participants spent an 

average of 47% of their time teaching with faculty and instructional staff averaging 53%, and 

post-docs and graduate students averaging 27%. They spent the majority of that time teaching 

undergraduate courses for majors (67%) roughly equally distributed across introductory 

(66%) and upper level (68%) courses, while non-majors (34%) and graduate courses (28%) 

took up less of the time. Faculty spent an average of 25% of their time on research, while 
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post-docs and graduate students averaged 59%. 

Many more current (68%) than future (16%) faculty reported being able to implement 

some aspect of Scientific Teaching (backward design, active learning, assessment, 

diversity/inclusivity) following the Summer Institute. When asked to compare their use of 

these Scientific Teaching strategies before and after attending the SI, participants indicated a 

significant increase in implementation of backward design, active learning diversity practices 

and integrating concepts from other disciplines (Figure 3A. Wilcoxon signed rank test, 

p<0.05). In addition, participants were asked to give a more concrete accounting of their 

implementation of specific learning activities and formative assessments strategies such as 

whole class discussion, problem-solving, clicker questions, group work and learning 

objectives. Participants indicated their use of these strategies on the following scale: never, 

once a semester, a few times a semester, monthly, weekly, daily (Figure 3B). Current faculty 

implemented whole class discussion, group work and problem-solving more frequently than 

future faculty (Figure 3B. Kruskall-Wallis test, p<0.05).  
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Figure 3. Reported implementation of Scientific Teaching strategies. A) Average percentage of 

respondents from the 1-Year Follow-up Surveys, 2010-13, who reported implementing aspects of scientific 

teaching in their teaching before and after the SI. Mean ± s.e., Wilcoxon signed rank test, p<0.05. B) 

Average Likert response to a prompt on the 1-Year Follow-Up survey asking participants to indicate 

frequency of implementation of specific learning activities and formative assessments. Likert scale: 0 = 

never, 1 = once/semester, 2 = few times/semester, 3 = monthly, 4 = weekly, 5 = daily. Blue bars = current 

faculty; red bars = future faculty. Kruskal-Wallis test, p<0.05 for whole-class discussion, group work, and 

problem-solving. 

In addition to responding to Likert scale questions about implementation of specific 

scientific teaching strategies, respondents were asked to reflect on the impact the SI had on 

their teaching in the year after the SI. Following are representative statements from that open-

ended prompt. 

• I gained a sufficient foundational understanding of scientific teaching/active learning 

that I could begin to incorporate it into my teaching and introduce other faculty to it. 

• I now know how to approach designing courses with effective learning strategies, and 

I can more effectively assess where students are having trouble learning, and I can 

address those trouble areas with effective tools. 

• I am much more aware about assessment, and diversity. Also, I have a much better 

understanding about the concept and techniques related to scientific teaching and the 

student-centered learning approach. 

Problem 
-solving 

Group work 
Discussion 

Whole- 
-class 
discussion 

Learning 
objectives 

Clickers 

B. 

A. 
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• WVUSI is one of several workshops I have attended or facilitated where backwards 

design is a major theme. What was different about SI was the intensive time to focus 

on a teachable unit. I didn't end up teaching that unit b/c of about 6 missed snow day 

classes and a shift in content but I don't feel it was a waste for me b/c I used the same 

skill set in assessment design and alignment in some other activities that I did 

implement. 

 

Four common themes emerged from these responses: knowledge/skill acquisition, 

awareness of the importance of the SI, facilitating student improvement, and ability to 

integrate concepts from other disciplines. Responses from both current and future faculty 

were represented in each theme, however at different frequencies. Current faculty responses 

more often fell under the themes of awareness of the importance of the SI and integration of 

concepts from other disciplines (33% for both) followed by knowledge/skill acquisition 

(22%) and student improvement (11%), while future faculty showed almost the reverse trend 

with knowledge/skill acquisition and student awareness trending higher (30% each) than 

awareness of the importance of the SI and integration across disciplines (20% each).  

Evaluating Student Learning and Affect 

 Using evidence-based teaching practices is a hallmark of scientific teaching and by 

extension the training provided by the SIs. A scholarly approach to teaching, i.e. gathering 

evidence to demonstrate student learning and affective changes in response to a course, is 

valued and promoted by the SI curriculum. As such, participants were asked to share the 

methods that they employed to measure student learning and/or effective response to their 

class during the year following the SI. The vast majority of participants (89%) used a 

combination of the institution-mandated student evaluation of instruction with another metric. 

Over a third reported using their own metric, a quarter used pre-/post-testing with validated 

concept inventories and six percent used a validated perception survey (Seymour et al., 

2000). Only eleven percent of respondents reported using the institution-mandated student 

evaluation form as their sole form of course evaluation.   
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Respondents were also asked to estimate changes in nine areas of student attitudes 

and behaviors  in response to their implementation of Scientific Teaching in their classrooms.  

For eight of the nine areas, nearly 50% or more of respondents reported that their students 

were “more”/“much more”: appreciative of the value of active learning (69%), willing  to ask 

or answer questions (68%), enthusiastic about learning (62%), able to recognize when/what 

they did not understand (57%), appreciative of the relevance of course topics (54%), prepared 

for class (49%), likely to perform better on exams (48%). The majority felt that their students 

were about the same for  attendance (63%) and their ability to take responsibility for their 

learning (57%). 

 

Dissemination of Scientific Teaching 

To expand the use of scientific teaching, participants were encouraged to disseminate 

the information learned at the summer institute on their home campuses. Forty-three percent 

of respondents, primarily current faculty, made an effort to disseminate scientific teaching to 

their colleagues. Of those, 36% of current faculty and 7% of future faculty were able to offer 

a Scientific Teaching event, including giving a seminar or workshop, on their own or another 

campus or professional meeting. Other dissemination efforts took the form of mentoring a 

colleague (40%), meeting regularly with colleagues to discuss SI techniques (32%), 

submitting an education grant proposal (12%) or science education manuscript (3%). A little 

over a quarter chose to take part in another form of professional development for teaching.    

DISCUSSION 

The overall picture represented by the data shows a clear positive relationship 

between participation in the NASI@WVU and the perception of improvement in attitude, 

knowledge and skills that can help participants move from traditional lecture to active, 

student-centered classes/classrooms. Scientific Teaching, the curriculum of the SIs, is an 
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evidence-based approach that provides a condensation of best practices from the education 

literature packaged for scientists who are already well-versed in empirical approaches to 

research. Even though the approach was developed to train biologists, there is nothing that 

should make it seem any less valuable or beneficial for current and future faculty from any 

STEM discipline. This is reflected in the responses of our participants who perceived the 

experience as highly valuable and beneficial to their teaching regardless of discipline or rank.   

Another indication of the value of NASI@WVU was the increase in participation 

over the years. Between its inception in 2008 and its final year in 2013, participation 

increased by 200%. The majority of participants were current faculty (64%). Due to the push 

for improvements in science teaching at the undergraduate level, many universities are now 

placing more emphasis on quality teaching. New or potential faculty are finding that quality 

teaching is becoming more valued by their institutions (Dancy and Henderson, 2010) and 

reform in science classroom practices has become a requirement at some institutions. The 

need for training in evidence-based practices motivates both current and future faculty to take 

part in professional development in order to effectively implement reformed teaching in their 

classrooms. The efficacy of professional development paradigms has become the subject of 

many new research studies (e.g., Stowell et al., 2015).  

Unlike the original SI, NASI@WVU served current and future STEM faculty from a 

variety of institution types. The number of future faculty (graduate students and post-doctoral 

fellows) attending the NASI@WVU increased so that future faculty made up 30% of all 

participants by the end. However, even with the similar recruitment approaches to all 

disciplines, Biology and biology-related disciplines still predominated. The most effective 

recruitment tool for the SIs seems to be word-of-mouth testimonials which would likely mean 

that the Biology focused origin would take longer to overcome. There was an increase in 

representation from other disciplines over the years.  
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While self-report surveys can provide convenient tools to measure teaching attitudes 

and practices, there are questions about their reliability, specifically that respondents may 

over-report changes in response to an intervention (Dancy, et al., 2016; Ebert-May et al., 

2011; Kane, 2002). However, other studies have found that asking for more concrete 

estimations or having better alignment between questions and practices can lead to higher 

accuracy (Smith et al., 2014; Walter et al., 2016; Weigel et al., 1974). As such, we feel 

confident in our participants’ responses that indicate significant increases in the use of active 

learning techniques such as whole-class discussion, clicker questions or problem-solving on 

concrete scales of daily, weekly and monthly. While estimating how active or student-

centered their class may be, could be difficult, reporting that you used a technique for the first 

time, or increased from once a month to once a class should be reliable determinations to 

make. Participants also indicated that certain workshops, Diversity and Institutional 

Transformation, were not as valuable and we saw this reflected in lower reported gains in 

confidence and implementation for those approaches.  

One possible reason for the lower value reported for the institutional change 

workshop is that we are simply asking too much of participants to both implement newly 

acquired teaching skills and strategies in their courses and disseminate those approaches to 

their colleagues. Closely following the theme that time to implement was essential, lack of 

peer and institutional support were the biggest challenges identified by current faculty. In the 

wake of studies that have demonstrated lower than desired changes in adoption of evidence-

based practices after professional development (Borrego and Henderson, 2014; Ebert-May, et 

al., 2011; Henderson et al., 2011) some have espoused the view that professional 

development does not work. However, studies show that professional development can lead 

to increases in teaching knowledge and skills along with motivation to change (Henderson et 

al., 2011). Perhaps expecting professional development to also make up for institutional 
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barriers to change is unreasonable. The more effective approach will likely be to keep the 

professional development programs but pair them with elements to overcome institutional 

barriers to adoption of evidence-based practices. This approach is being used by new 

initiatives such as the Mobile Summer Institutes that use Henderson’s four categories of 

change strategies model to add environmental elements to the pedagogical training already 

offered by the Sis (Henderson et al., 2011). Given the differences in challenges and supports 

identified by the current and future faculty, initiatives that begin to address these issues 

should consider customizing interventions to the specific challenges faced by their audiences. 

Limitations 

 During evaluation of NASI@WVU data it was recognized that an entrance survey on 

some of the items in the exit survey may have shed more light on the responses given by 

participants at the SI. Items that included reflecting on their current practices such as 

implementing aspects of scientific teaching in their classrooms and percentage of time they 

use teaching strategies may have garnered responses that were more true to their actual 

classroom behaviors and practices than post workshop. 
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Chapter 3: Professional development workshops do make a difference: increased 

adoption of active, student-centered teaching approaches following immersive training 

in scientific teaching. 

ABSTRACT 

Self-report metrics are often used to measure changes in teaching following 

participation in professional development. While these instruments provide information and 

insight into changes in knowledge, attitude and behaviors, they are susceptible to the 

reliability pitfalls of self-reporting, for example over-estimating personal change or providing 

aspirational responses. Therefore, combining these metrics with evaluation of teaching 

behaviors using validated observation protocols can give a more accurate picture of the extent 

of change. To that end, teaching videos of participants of a regional offshoot of the National 

Academies Summer Institute at West Virginia University (NASI@WVU) were evaluated 

using three metrics: the Reformed Teaching Observation Protocol (RTOP), the Classroom 

Observation Protocol for Undergraduate STEM (COPUS) and a simple timing analysis 

procedure. RTOP indicates the level of student-centeredness, COPUS provides a picture of 

classroom engagement through relative frequencies of various activities by both the student 

and instructor, and timing analysis measures the amount of time spent in passive and active 

modes. When compared to STEM faculty who did not attend the NASI@WVU, NASI 

participants are both more interactive and more student-centered. NASI participants RTOP 

scores averaged a category three signaling that while not quite fully-student centered 

participants were definitely implementing strategies. This was further reflected by 

interactivity scores positively correlated with RTOP scores and COPUS codes for both 

instructor and students that indicated the use and reception of active learning aspects in the 

classroom. 
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INTRODUCTION 

Reforming STEM education so that it provides more inclusive and effective training 

for all students has become an issue of national urgency (AAAS, 2011; Anderson et al., 

2011; NRC, 2003; PCAST, 2012; Wood, 2009; Woodin et al., 2009). Even in the face of 

overwhelming evidence that active learning improves student performance and retention 

(Freeman et al., 2014), post-secondary STEM classes still are taught predominantly using 

passive lecture (Stains et al., 2018) which contributes to student migration away from STEM 

fields (Seymour and Hewitt, 1997; Tobias, 1990). Lack of knowledge of the education 

literature (Fox and Hackman, 2003), on pedagogical training and other institutional barriers 

(Brownell and Tanner, 2012; Henderson and Dancy, 2007) contributes to there being very 

little to no change.  

Many prominent initiatives like the National Academies Summer Institutes (SI, 

Handelsman et al., 2004; Pfund et al., 2009) and the Faculty for Reformed Science Teaching 

IV (FIRST IV, Ebert-May et al., 2015) have sprung forth over the last 15 years to provide 

training in evidence-based practices and help facilitate their broad dissemination.  

The National Academies Summer Institutes (Pfund et al., 2009) , a week-long, 

immersive training program in scientific teaching, began in 2004 on the campus of the 

University of Wisconsin, Madison. SI was a concrete response to Bio2010: Transforming 

undergraduate education for future research biologists (National Research Council, 2003). 

Scientific teaching is a constructivist approach that relies on evidence-based practices, active 

learning and assessment, in the context of backward design (Wiggins and McTighe, 1998) to 

create inclusive, student-centered classes. Teams of biology faculty from research 

universities around the country participated in the program where they took part in interactive 

workshops on reformed teaching strategies and created learning activities for their classes. 

The program was highly valued by participants who perceived changes in their motivation, 
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knowledge, skill and teaching behavior as a result (Pfund et al., 2009).  

Two regional spin-offs, the Scientific Teaching, Assessment and Resources (STAR) 

mini-institute at Louisiana State University (LSU) and the full-length National Academies 

Summer Institute at West Virginia University (NASI@WVU), extended the reach of the 

original SI by diversifying the target audience to include a variety of post-secondary 

institutional types (STAR and NASI@WVU) and current and future faculty from any Science 

Technology Engineering and Mathematics (STEM) discipline (NASI@WVU. In both cases, 

participants continued to value the experience highly and report changes to teaching 

knowledge, skills and behaviors regardless of rank, discipline or institutional type (Gregg et 

al., 2015; Chapter 2).  

All three versions of the Summer Institute employed self-report metrics to measure 

changes in participants’ teaching. Self-report instruments are convenient to use for both the 

subjects and the researcher. However, some studies have found that once participants return 

to their home campuses after taking part in professional development, they do not implement 

their newly acquired approaches at desired levels and they overestimate their level of 

adoption (Dancy et al., 2016; Ebert-May, 2011). Other studies have found that the accuracy 

of self-reporting can be influenced by the specificity of the request parameters or alignment 

between codes and behaviors (Smith et al., 2014; Walter et al., 2016; Weigel et al., 1974). 

Directly observing a classroom provides important, objective measures of teaching 

behaviors. To help capture those behaviors in a reliable fashion, several observation protocols 

have been developed since the turn of the century. Aligning the measures of the instrument 

with the goals of the professional development program is critical for accurately evaluating 

the impact of the program. The goal of the SIs is to train its participants in active, student-

centered teaching approaches.  

The Reformed Teaching Observation Protocol (RTOP, Piburn et al. 2000; Sawada et 
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al., 2002) was designed to measure the level of reform occurring in the classrooms of 

preservice science and mathematics elementary and secondary teachers (Piburn et al., 2000). 

The instrument is a rubric which captures student and teacher behaviors and elements of the 

classroom community to give an indication of the level of student-centeredness of the class.  

It consists of five levels or subscales (lesson design and implementation, content, procedural 

knowledge, classroom culture, student/teacher relationships) that focus on the level and 

nature of interactions between the instructor and students and between the students 

themselves (Sawada et al., 2002; Lund et al., 2015).  

 Each observation protocol has its strengths and weaknesses. For example, having the 

ability to measure student-centeredness is very useful in evaluating teaching effectiveness, 

but the complexity and nuance of the approach is not easy to objectively measure. For that 

reason, RTOP requires significant training for reliable, consistent deployment. On the other 

hand, simple timing analysis provides a straightforward measure of the amount of class time 

spent in an active mode (student-teacher or student-student interactions) rather than a passive 

one (teacher disseminating information). This metric is easy to use and requires minimal 

instruction, but paints a fairly simple picture of the classroom that does not reveal the level of 

student-centeredness. Using active learning typically makes a class more student-centered 

because getting students engaged at any level reveals something about their learning. 

However, active learning can certainly be done in more or less student-centered fashions. For 

example, two classes could spend the same amount of time in an active mode, one using 

multiple clicker questions where the instructor gave the answer and rationale after each 

question and the second using fewer questions but requiring students to discuss and defend 

their answers. The second is clearly more student-centered. Student thinking is more clearly 

revealed and students are practicing desired skills like providing rationale for answers. 

Timing analysis alone would not capture this distinction. 
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The Classroom Observation Protocol for Undergraduate STEM (COPUS, Smith et al., 

2014), bridges this gap somewhat. Like timing analysis it measures the frequency of more 

concretely observable classroom behaviors which makes it relatively easy to use. Observers 

check boxes in a table every time they observe a given behavior during two-minute intervals. 

Unlike timing analysis, the frequencies it produces are relative. An instructor could lecture 

for thirty seconds in every two-minute interval and be deemed to lecture 100% of the time. 

However, it does give a richer picture than timing analysis and is easier to use consistently 

than RTOP (Lund et al., 2015; Smith et al., 2014). As such, we decided to use a combination 

of the three metrics to both get a more complete picture of our subjects and to determine how 

the outputs of the three metrics compare to one another. 

In order to determine the impact of the NASI@WVU on the teaching behaviors of its 

participants, we evaluated the teaching videos of participants who successfully completed 

NASI@WVU and compared them to STEM faculty who had not taken part in the 

professional development program.  

 

METHODS 

Study Participants and NASI@WVU program 

The participants for this study were current and future faculty from a variety of STEM 

disciplines and institutions who successfully completed the NASI@WVU during its six year 

tenure (n = 176, pilot SI = 2008-09, NSF-funded NASI@WVU = 2010-13). The 

NASI@WVU was adapted from the original SI held at the University of Wisconson-Madison 

2004-2011 (Handelsman et al., 2004; Pfund et al., 2009). NASI@WVU reproduced the 

immersive, interactive 5-day professional development program consisting of morning 

workshops on elements of Scientific Teaching – Diversity, Assessment and Active learning – 

in the context of Backward Design (Wiggins and McTighe, 1998) combined with afternoon 
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working groups where participants practiced creating teaching materials using their newly 

gained knowledge and skills. Participants gave formative and summative presentations of 

their teaching materials during the week for which they received feedback from their peers, 

allowing them to leave the workshop with new knowledge and skills in addition to peer-

reviewed teaching materials. Participants typically took part in the NASI@WVU as part of an 

institutional team, although a few participants were the only representatives from their 

institution at least for that year. Institutional teams sent a representative to a follow-up 

meeting one year after the NASI to report on successes and challenges. NASI@WVU 

differed from the original SI not in format but in audience. It expanded the reach of the SIs to 

STEM disciplines other than biology, to post-secondary institutions other than research 

universities and to future faculty in addition to current faculty. (“Future faculty” in this paper 

refers to graduate students and postdoctoral fellows. While we recognize that many of these 

individuals will not, in fact, become faculty, a large majority of them had that intention at the 

time they participated in the NASI@WVU and therefore provide a valuable perspective.) 

Evaluation 

In order to evaluate the impact of the NASI@WVU, participants responded to two 

surveys (Chapter 2) and a subset (n=38) agreed to submit a video of their teaching for 

analysis using three evaluation metrics: Reformed Teaching Observation Protocol (RTOP, 

Piburn et al.,2000, Sawada et al., 2002), the Classroom Observation Protocol for 

Undergraduate STEM (COPUS, Smith et al., 2013) and timing analysis (personal 

communication R. Phillis, University of Massachusetts, Amherst), a simple type of discourse 

analysis (Hjelm, 2013) that measures the amount of class spent in active modes. This study 

focuses on the evaluation of teaching behaviors using these validated metrics.   

In the year following completion of the NASI@WVU, each new cohort received 

email requests to complete surveys or submit teaching videos as part of the evaluation 
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program. Submitting a video for analysis was voluntary and not required as part of 

participation in the NASI@WVU. The first two pilot years of the NASI@WVU served 

current and future faculty from WVU only, while roughly one-third to one-half of each of the 

four cohorts of participants who attended the NSF-funded NASI@WVU between 2010 and 

2013 were from WVU. In addition to the sizeable proportion of participants from WVU, the 

local participants could have their classes recorded by the research team making the process 

much more convenient. As a result, the majority of teaching videos were submitted by 

participants from WVU. Each yearly request was met with limited success. However, around 

the end of the program, between 2012 and 2014, requests for teaching videos were sent to all 

cohorts and the positive response rate increased. As such, teaching videos represent a variety 

of times between successfully completing the NASI@WVU and the recording, allowing us to 

investigate the effect of time since participation on implementation. For comparison, a 

random selection of faculty from STEM departments at WVU, who had not participated in 

the SI, were asked to submit teaching videos. A subset of those agreed to participate and 

allow their class to be recorded (n = 9). 

To ease anxiety about being recorded, the instructor could choose the class being 

recorded. For WVU participants, a videorecorder was placed in the rear of the room by a 

member of the research team, at an angle that allowed for the observer to see the front of the 

classroom and a segment of the student population from the rear. Instructors were provided 

with a script that they could use to explain the situation to the class and allow any students to 

move out of the field of view of the camera if they so desired. This was provided to those 

instructors who set up their own video recording equipment and were not directly videotaped 

by the research team. The member of the research team would leave after successfully setting 

up the equipment and return after class to retrieve the equipment. The principle investigator 

safe-guarded the teaching videos and made them available to trained raters as needed. Videos 
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were assigned a random number and submitted to trained raters without any additional 

identifying information other than what could be seen in the video itself. Raters, therefore, 

may be privy to the identity of the instructor (although not all participants were from WVU), 

but were not alerted as to whether, and if so how recently, the instructor had participated in 

the NASI@WVU.  

Participants from institutions other than WVU were required to set up their own 

videotaping equipment to videotape a class of their choice. The videos were sent to the 

research team either on CD via postal service or uploaded by the participant to a secure 

internet hard drive where they were retrieved by the research team for labeling and storage. 

Rater Training and Video Evaluation 

The teaching videos were evaluated using RTOP (Sawada et al., 2002), COPUS 

(Smith et al., 2013) and timing analysis. Five faculty from STEM disciplines (Biology, 

Chemistry, Mathematics) and Women’s and Gender Studies at WVU and two graduate 

students in the research program of the primary investigator were trained with the two 

observation protocols.   

RTOP is a scoring rubric that measures reformed teaching practices with elements 

that focus on the teacher, the students, their interactions and the environment of the class 

(Sawada et al., 2002).  While RTOP values active learning, the practices it emphasizes fall 

more into the category of student-centered or learner-centered teaching. The scoring rubric 

consists of five areas: Lesson Design and Implementation, Propositional knowledge, 

Procedural Knowledge, Communicative Interactions and Student/Teacher Relationships. 

Each area consists of 5 items with a rating scale from zero to four giving the total rubric a 

range from 0-100 across the following five categories:  

I. 0-30, Lecture only; 

II. 31-45, Lecture with minor student engagement; 
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III. 46-60, A broad range of significant student engagement; 

IV. 61-75 Student engagement in this category is distinguished by critique and 

 experimentation; 

V. 76-100 This last category represents “unhindered open inquiry”.  

All but the first category span fifteen points allowing for sub-categorization of high, medium 

and low in each category. The first two categories are indicative of teacher-centered classes 

while the last three represent increasing levels of student-centeredness.  

For RTOP, raters went through three rounds of training, first with Drs. Diane Ebert-

May and Terry Derting, the primary investigators of the NSF-funded Faculty Institutes for 

Reforming Science Teaching IV (FIRST IV) program (Ebert-May et al., 2011; 2015). FIRST 

IV was an NSF-funded professional development program for post-doctoral fellows in STEM 

whose training program was adapted from the SIs. As part of the FIRST IV evaluation, Drs. 

Ebert-May and Derting used RTOP and trained multiple RTOP raters, two of which (one 

faculty and one graduate student) were part of the NASI@WVU team of raters. Due to delays 

in procuring the participant teaching videos, the NASI team of raters were retrained twice a 

year later by the graduate researcher who had served as a rater for FIRST IV using the same 

process as Derting and Ebert-May. All rounds of training consisted of using RTOP to rate 

segments of videos comparing scores until the team reached an acceptable level of intraclass 

correlation coefficient (ICC) (ICC0.70; Gwet, 2010). All seven raters attended at least two 

of  three training sessions. Once the acceptable level of consistency was established, trainers 

were randomly assigned teaching videos to rate. As the raters were rating their videos 

asynchronously, the first three and last three videos (based on random number assignment) 

were assigned to all raters to check whether ratings were consistent from beginning to end of 

the rating period. The reliability measure for the final three videos showed that although 

ratings were done asynchronously across different time scales, the rater reliability was still 

good (ICC[2,7] = 0.989). Each teaching video was randomly assigned two raters and if scores 
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by those raters were more than one sub-category apart, a third rater was randomly assigned to 

resolve the discrepancy. Reliability was determined using an intraclass correlation as an 

estimator of interrater reliability (ICC[2,7] = 0.986). ICC is comparable to Sawada et al. (2002) 

ICC of 0.97 done on the entire RTOP instrument during the validation process for the RTOP 

rubric.  

COPUS is an observation protocol where the rater checks a list of student and teacher 

behaviors at two-minute intervals to get a relative frequency of the specific behaviors. 

Behaviors in the protocol range from more passive/teacher centered activities such as teacher 

talking or student listening to more engaging activities such as instructor posing a clicker 

question or students engaging in group work. While the relative frequencies produced by this 

are not as accurate as timing analysis, i.e. an instructor could lecture for thirty seconds of 

every two-minute period and get a 100% lecture output, it does provide a much richer picture 

of the diversity of activities employed in a classroom. 

The seven raters were also trained with COPUS according to the instructions supplied 

through the supplemental materials (Smith et al., 2014). COPUS training occurred 

concurrently with the second round of RTOP training. Briefly, all raters coded a training 

video together at specified intervals of increasing length in order to discuss their choices and 

both become more comfortable with the rubric and achieve an acceptable rate of inter-rater 

reliability. Raters were then asked to independently rate two videos referred to as training 

videos and raters were not aware these were part of the video population for this study. ICC 

were calculated on Cronbach’s alpha score, ICC[2,5]= 0.708 (student codes), ICC [2,5] = 0.705 

(instructor codes) (0.5 to 0.75 considered moderate reliability) (Koo and Li, 2016). At the 

half-way mark of coding, raters were again asked to code three additional videos. In the same 

manner, raters were unaware that these two were a part of the actual video population of the 

study. On this round of IRR is ICC [2,6]= 0.816 (student codes; 0.75 to 0.90 considered good 
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reliability) and ICC [2,6] = 0.915 (instructor codes; considered excellent reliability). 

Raters used all three rubrics to score each video, allowing for comparisons across 

rubrics. Since timing analysis gave a more accurate picture of the amount of time spent in an 

active or passive mode, Cohen’s kappa was calculated only for active COPUS codes for both 

teacher and student. Rater pairings for this study were random. In other words, a random 

selection process was used to determine rater 1 and rater 2 for each video, so identical pairs 

of raters may have rated some of their subset of all videos but did not rate each video within 

the subset of videos assigned to them. As such a two-way random effects model, with 

multiple k raters/measurements and consistent measures ICC(2,k) (Koo and Li, 2016) was 

utilized for a Cronbach’s alpha (95% confidence intervals).  

The timing analysis procedure employed for this study is a simple form of discourse 

analysis (Hjelm, 2013). Briefly, student-to-student or student-instructor interactions were 

considered active, while dissemination of information by the instructor was considered 

passive. The most subjective determination made with this method is deciding when an 

answer given by the instructor, in response to a student question, transitions into lecture 

mode. Raters were instructed to label dissemination of information that continued past the 

point needed to answer the specific question as lecture and thus a transition into passive 

teaching. For timing analysis, observers used a simple table to record the time point at which 

the teaching mode changed from a passive, e.g. lecture or demonstration, to an active mode, 

e.g., group work, clicker questions or whole class discussion. The percentage of time the 

class spent in an active mode was determined by dividing the active time by the total time of 

the class session and multiplying by one hundred. 

Data/Statistical Analysis 

Data were collected from teaching videos using three instruments; RTOP, COPUS 

and timing analysis, as described above. For each measure, descriptive statistics were carried 
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out to calculate the mean and standard error when appropriate. Given the bounded nature of 

RTOP (0-100 scale), COPUS and timing analysis (percentages) scores, non-parametric 

statistical tests were used to do pairwise comparisons between independent samples (Mann-

Whitney U test), analysis of variance across multiple samples (Kruskal-Wallis H test) and 

correlations between measures (Spearman rank correlation). All data analyses were carried 

out using the Statistical Package for Social Sciences (SPSS, version 25).  

The NASI@WVU protocol was approved by the WVU Institutional Review Board 

(WVU IRB# H-21531). 

 

RESULTS 

Measuring teaching behavior 

Between 2008 and 2013, 179 participants took part in the two pilot and four NSF-

funded years of the first full-length regional offshoot of the National Academies Summer 

Institute on the campus of West Virginia University. In order to determine the impact that the 

NASI@WVU had on teaching behaviors, we collected teaching videos from participants who 

successfully completed the program and evaluated them using three observation metrics: the 

Reformed Teaching Observation protocol (Sawada and Piburn, 2002), the Classroom 

Observation Protocol for Undergraduate STEM (COPUS, Smith et al., 2014) and timing 

analysis, a simple version of discourse analysis (Hjelm, 2013).  

Thirty-eight participants (21% of the total NASI@WVU population) submitted 

videotapes for evaluation. The vast majority were from WVU (79%) with slightly more 

females (58%) than males (42%) and many more faculty members (76%) than graduate 

students (18%) or post-doctoral fellows (5%). Requests for teaching videos were sent to an 

equivalent number of randomly selected faculty members from the STEM departments at 

WVU who had not taken part in the NASI@WVU. Nine (Male=8, Female=1) of those 
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requests resulted in acquisition of teaching videos for evaluation. Given the different formats 

of teaching laboratories compared to lecture classes, we separated the two formats. Four of 

the thirty-eight teaching videos from NASI participants and two of the nine from the control 

group were teaching laboratories. 

Since each teaching video was rated with multiple observation protocols, we were 

interested to know how the RTOP and timing analysis related to one another. There was a 

strong positive correlation between how interactive a class was (% active using timing 

analysis) and how student-centered it was (RTOP score) for both NASI participants and 

control teachers (Figure 1) (rs  represents r score for non-parametric Spearman correlation 

test) rs=0.918, p<0.05).   

 

Figure 1. The relationship between RTOP and Interactivity Scores, where percentage of time in an active 

mode is calculated from timing analysis. Points are from all teaching videos (NASI and non-NASI) 

excluding those from teaching laboratories. Spearman rank test, rs=0.918, p<0.05) 

In addition to looking at the strength of relationship between the outputs of the 

metrics, we were curious about whether there was a difference in the level of adoption of 

active, student-centered strategies by participants as a function of time since participating in 

NASI. There was a moderate negative relationship between time since participation in NASI 

and RTOP score (Figure 2A, rs= 0.444, p<0.05) and level of interactivity (Figure 2B, rs= 

Timing Analysis 
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0.468, p<0.05).  The highest RTOP scores occurred for participants that were within 1-2 

years of participating in NASI while the lowest occurred for participants who participated in 

the SI five years prior to videotaping. The same trend is seen when relating level of 

interactivity to years since attending NASI.  

  

 

Figure 2. The relationship between active/student-centered approaches and years since participation in the 

SI. A) RTOP vs years since participation in the NASI@WVU, Spearman rank test, rs= 0.444, p<0.05; B) 

Level of interactivity vs. years since participation in NASI, Spearman rank test, rs= 0.468, p<0.05. 

This trend reverses when comparing the year of participation with the two measures, 

RTOP (Figure 3A, rs= 0.450, p<0.05) and interactivity (Figure 3B, rs= 0.448, p<0.05). There 

is a moderate positive relationship between the year that participants attended NASI and their 

RTOP and Interactivity measures. More participants from NASI@WVU in 2013 have higher 

RTOP scores than any other year, while participants from 2008 and 2009, the two pilot years, 

had some of the lowest scores on these two metrics.  
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Figure 3. The relationship between active/student-centered approached and year of participation in the SI. 

A) RTOP vs the Year of participation in the NASI@WVU. Spearman rank test (rs= 0.450, p<0.05). B) 

Level of interactivity vs. Year of  participation in the NASI@WVU. Spearman rank test (rs= 0.448, 

p<0.05). 

When participants are separated based on their years since participating in the 

NASI or the year of their participation in the SI, there is a significant difference in the 

mean RTOP scores. There are no significant differences in the mean level of 

interactivity (Kruskal-Wallis, RTOP p<0.05, Interactivity p>0.05) over time. 

Participants from years 2008 and 2009, the pilot years, were also the participants who 

had the longest time since participating in the NASI. The lowest  RTOP scores came 

from these two cohorts.   
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Figure 4. Comparison of RTOP and Interactivity scores across the years A) since participation in the 

SI (0 =2, 1 n= 7, 2 n=7, 3n=2, 4 n=2, 5 n=10, 6 n=4) and B) of participation in the SI (2008 n=13, 

2009 n=4, 2010 n=3, 2011 n=5, 2012 n=4, 2013 n=5). Mean ±s.e. Kruskal-Wallis H test, RTOP, 

p<0.051; Interactivity, p >0.05. 

 

When comparing participants from the NASI@WVU with randomly selected STEM 

faculty from WVU who did not take part in the SI (Figure 5), there was a significant 

difference between the groups for both RTOP scores (p=0.023, p<0.05) and level of 

interactivity in the classroom ( p=0.024, p<0.05). On average NASI participants scored 49 on 

the RTOP scale (category 3) and used 50% of class time for active learning. There was much 

more variation in the control group with two subjects exhibiting scores on RTOP and timing 

analysis similar to NASI participants.  
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Figure 5. Comparison of NASI and non-NASI participants by RTOP score (dark gray bars) and timing 

analysis scores (gray bars). Bars represent the mean ± s.e. Mann-Whitney U, p<0.05. 

 

RTOP not only provides a numerical score, but also separates teaching into distinct 

categories, Category 1(15-30) Category 2 (31-45), Category 3 (46-60), Category 4 (61-75), 

Category 5 (>75). The lower categories are considered to be more teacher-centered while the 

upper categories are progressively more student-centered. The majority of RTOP scores for 

NASI participants (22/34) occurred in Category 3, with nearly equal numbers distributed 

across Categories 2 (7), 4 (5) and 5 (5) and none in Category 1 (Figure 6A).  Categories 1 and 

2 are not considered to represent teacher-centered classes. The control group had 

representatives in all Categories except 5, with the most in Category 2 (Figure 6B). 

 
Figure 6. Distribution of RTOP scores for NASI participants and control educators across the five RTOP 

categories. Bars represent numbers of subjects A) NASI (dark gray bars) and B) control (light gray bars) 

educators who scored in the different RTOP categories.  
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Finally, teaching videos by NASI participants and non-NASI STEM teachers were 

also evaluated using COPUS. This metric can provide a richer indication of the specific 

forms that active learning takes in a classroom. Formatively, it can provide a rich profile for 

an individual to get a snapshot of their own classes. However, for means of comparing across 

groups of people, we only compared the frequencies of codes (specific activities from the 

observation protocol that represent engagement of students or active teaching by the 

instructor). Since we have more accurate measures of the amount of class time spent in 

active/passive modes from timing analysis, we ignored codes for these passive activities. 

Figure 7 shows the frequency profiles of NASI and control teachers for guiding active 

learning. The codes from COPUS that represent these teaching behaviors are: PQ – posing a 

non-clicker question, CQ – posing a clicker questions, AnQ – answering a student question, 

MG – moving around the classroom during group work, 1o1 – one-on-one interactions with 

groups during group work. NASI participants averaged more time in all codes except for 

answering questions when compared to non-NASI instructors (Figure 7), spending two to 

three times more class time posing questions and moving around the room interacting with 

groups during group work.  
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Figure 7. Time spent performing teaching behaviors that promote active learning. Bars represent mean 

percentage of time spent in specified teaching modes from COPUS by NASI (SI) and educators who did 

not participate in NASI (Control).  PQ = posing a non=clicker question, CQ = posing a clicker question, 

AnQ = answering a question, MG = moving around the room during group work, 1o1 = working one-on-

one with groups during learning activities.  

 

We separated the active student codes into two categories, student working and 

student talking (Smith et al., 2015). Student working includes individual thinking/problem-

solving (IND), clicker question discussion in groups (CG), group work with a worksheet 

(WG), group activity not associated with clicker question or worksheet (OG), and making a 

prediction (Prd). NASI participants spent more time engaging students in individual 

thinking/problem solving, group-work with worksheets and even more group work time not 

related to worksheets or clickers, while non-NASI participants engaged students more often 

with clicker group work (Figure 8A). For codes related to students talking: AnQ – answering 

a question, SQ – asking a questions, WC – whole class discussion, and SP students 

presenting, the students of NASI participants answered questions over twice as often as the 

students of non-NASI educators while time spent in the other activities was relatively similar 

(Figure 8B). 
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A.  

 
B. 

 
Figure 8. Student time spent A) engaged in learning activities, (Ind = individual thinking or problem solving, 

CG = group discussion or work on a clicker question, (WG = group work on a worksheet activity, OG = group 

not worksheet or clicker related, Prd = making a predication) and B) communicating with the class (AnQ = 

answering a question, SQ = asking a question, WC = whole-class discussion, SP = presenting to the class).  Bars 

represent mean percentage of time spent in specified learning or communication activities from COPUS by 

students of  NASI (SI) and  of educators who did not participate in NASI (Control).  

 

DISCUSSION 

 Professional development has gotten a less than desirable reputation lately. Because 

of the ease of use of self-report metrics, professional development endeavors often rely on 

these instruments to get an indication of changes in participants’ attitudes, motivation, and 

teaching knowledge, skills and behaviors. In 2011, Ebert-May and others employed RTOP, a 

validated observation protocol, to evaluate teaching videos by participants from two national 
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professional development programs (Ebert-May et al., 2011). The main finding was that 

instructors scored lower than expected on RTOP which was interpreted as over-reporting of 

their level of adoption of active learning by participants. However, one issue is that educators 

were estimating their levels of implementation of active learning and being evaluated with an 

observation protocol that focuses more on student-centered approaches. Certainly, use of 

active learning is part of the RTOP scores.  Our data show that there is a strong relationship 

between levels of active learning in the class and RTOP scores.  However, participants using 

equivalent levels of active learning, can have different levels of student-centeredness. Using 

RTOP as the only metric to determine the efficacy of professional development endeavors 

could cause researchers to dismiss programs that foster important early steps in the transition 

from passive, teacher-centered to active, student-centered instruction.  In early stages of 

adoption, participants could be making important first steps in acquiring skills and comfort 

with active learning before they fully embrace the sophistication of a student-centered 

approach.  

Self-report is more accurate when respondents are asked to report on more specific or 

concrete actions or behaviors (Weigel, 1972). Also, when there is closer alignment between 

the behavior being reported and the metric being used, over-reporting is less of an issue 

(Smith et al., 2014).  Our participants perceived that they increased their skill and use of 

concrete types of learning activities or teaching approaches (Chapter 2). Our findings with 

three different observation protocols, confirm this perception. The majority of our 

participants fell into RTOP category three, considered a student-centered category, and had 

an average RTOP of 49; both of which are higher than that found for subjects of the Ebert-

May et al. 2011 study. Our participants spent, on average, nearly 60% of their class time in 

an active mode.  This reinforces that the perceived changes in their teaching behavior and 

will lead to improving their students’ performance and retention (Freeman et al., 2014). 
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Additionally, our COPUS data show that participants are implementing a variety of learning 

activities that engage students. To truly evaluate the effectiveness of professional 

development programs requires metrics that capture implementation of evidence-based 

practices at a variety of levels and modes. Single metrics, especially ones like RTOP, that 

measure more nuanced, less concrete behaviors, might unintentionally miss important 

developmental steps in the transition to more student-centered classes.   

 The negative relationship between the time since participation in the SI and adoption 

of active, student-learning strategies is interesting. Earlier cohort participants (years 1 and 2) 

had lower RTOP scores than participants who had just been out of the SI for over a year or 

two. One might expect that more time to practice and/or develop activities would lead to 

higher adoption rates. However several factors could be playing a role.  First, the early years 

(years 1 & 2) were pilot years of the program where the curriculum was being adapted to 

local workshop leaders and to a new STEM audience. Also, at that time, the newly hired 

WVU DBER faculty member in the Biology Department was just beginning to make changes 

to the departmental and institutional culture, so the campus environment was different than it 

was for later participants taking the NASI strategies to their classrooms.  

The positive relationship between year at the NASI and increasing adoption may hint 

at a general increase in the awareness and knowledge by faculty of the need for teaching 

reform. 

The last cohort of the SI may have been exposed to the reports from various science 

bodies, like the National Academies or the American Association for the Advancement of 

science that called for reform in college STEM education. It could also indicate that there is a 

need for continuous inoculation and/or support to continue to increase adoption over time 

(Owens et al., 2018). This latter view is shared by many new programs and researchers who 

are bringing an understanding of organizational change to bear on the barriers to adoption of 
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evidence-based practices in higher education. Charles Henderson’s four categories of change 

model emphasizes the need for a focus on both the individual and their surroundings 

(Borrego and Henderson, 2014). This approach is being adopted by the new Mobile Summer 

Institutes, an adaptation of the NASI based on Henderson’s model.  

Limitations 

 In chapter 4 we assess the merits scientific teaching for the purposes of a graduate 

teaching assistant training program. In this model we collected both pre and post video 

recordings of the graduate teaching assistants. It is possible that the design of this study could 

be improved if participants attending the SI workshops included a video of their teaching 

prior to exposure to NASI. We received video recordings from 21% of the total NASI 

participants with many participants alluding to the fact that they were not comfortable taping 

themselves teaching as yet. While having a pre video to compare to post scientific teaching 

workshop would change the scope of the results it may also cause a further decrease in 

participation of SI workshops. The goal is to have more people motivated to train and a 

stipulation of providing video recording prior to attendance may seem a burden to some 

participants.  

How do we encourage continued use of evidence-based  practices? 

 We can look at the improvement in adoption of active, student-centered pedagogies 

by STEM instructors as the beginning of a journey toward student-centered classes. Owens et 

al. (2018) conducted a 3 year study of a department-wide professional development program 

that began with all faculty members of the department taking part in a week long institute 

similar to the SI. They carried out observations of classrooms, documented the use of active 

learning techniques by participants and provided support to faculty as needed. This approach 

addresses the needs of the individual for training and iterative evaluation and reflection on 

teaching and provides support from the environment to help overcome institutional barriers 
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that may hinder adoption (Brownell and Tanner, 2012).   
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Chapter 4: Exposure to reformed science teaching and peer evaluation may improve 

Future Faculty teaching in STEM classes 

ABSTRACT 

Training programs for Science Technology Engineering and Mathematics (STEM) graduate 

teaching assistants (GTAs) are not as prevalent as STEM faculty professional development. 

Discipline-based education research should focus on GTA Professional Development 

Programs (PDP) that take into consideration the whole graduate experience. GTA PDP 

mostly develop methods that are geared toward addressing an essential lack of teaching 

abilities and possible solutions. This study used elements of scientific teaching (SI) and a 

model of peer evaluation techniques from Faculty Institutes for Reforming Science Teaching 

(FIRST IV) to provide GTAs with tools and feedback to help them become more active and 

student-centered. Teaching behaviors  of program participants were measured using the 

Reformed Teaching Observation Protocol (RTOP) before and after peer evaluation. There 

were no significant changes in RTOP scores before and after peer review.  GTAs scored high 

RTOP category three before peer review and just as high safter. We suspect there was no 

change because laboratory classes were already reformed to provide higher levels of active 

learning than a lecture class. However, feedback from peer evaluation suggests that GTA 

view peer support as a necessary component of PDP to see any meaningful change in their 

roles as future faculty. Peer evaluation and support seem to be the key to helping GTAs enter 

academia not struggling to find their teaching style.  
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INTRODUCTION 

Across colleges and universities, Graduate Teaching Assistants (GTAs) teach a 

majority of major and non-major courses (Kendall and Schussler, 2012). Many of these are 

the laboratory sections of various STEM courses (Kendall and Schussler, 2012). Most GTAs 

are entering these classes as first-time instructors with little to no teaching experience. Some 

universities and colleges offer a range of graduate teaching programs to address the needs of 

their students. These may include programs offered by teaching and learning centers or 

pedagogical training as part of orientation prior to the start of the semester. A lack of 

consistency in professional development programs to address the graduate student teaching 

skills development has been identified in educational research reform (Kendall and Schussler, 

2012). One problem is that these programs (Blouin and Moss, 2015) do not succeed in fully 

preparing GTAs for an academic teaching career after graduate school.  

Vision and Change (AAAS, 2011) brought more attention to the conversations that 

were occurring around biology education reform at the undergraduate level to help provide 

“best practices” (Ledbetter, 2012) for teaching biology to undergraduate students (Chen et 

al., 2013) to make undergraduate students in the US globally competitive. The report cited a 

need for effective teaching at the undergraduate level and the necessity for faculty to be 

trained to implement scientific teaching strategies. Recommendations centered on providing 

authentic science experiences for undergraduate students (American Association for the 

Advancement of Science, 2011). The report did examine the need to train graduate and 

postdoctoral students to use scientific teaching (Ledbetter, 2012; Schussler et al., 2015). 

However, there is still a lack of substantial training programs being put in place by higher 

education institutions.  

While efforts at reform are most often focused on Biology faculty members and 

instructors, STEM education researchers do recognize the need to effect change at the GTA 
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level, including pre-service teachers (Ledbetter, 2012). There is evidence that training STEM 

graduate students with the same professional development programs as faculty makes them 

more likely to use effective teaching practices in their own academic careers (Wyse et al., 

2014)). Another benefit to training GTAs is improving the quality of instruction received by 

undergraduates (UG). UG students who take classes where the instructor used elements of 

scientific teaching were more likely to stay in STEM fields (Freeman et al., 2014). UG 

students who do not experience active learning are more likely to leave STEM fields (Dirks 

and Cunningham, 2006).  

In the absence of pedagogical training, instructors tend to use  familiar techniques that 

they were exposed to as UGs (Brownell and Tanner, 2012; Stains et al., 2018). Most UGs 

admit that very few of their instructors used any form of active learning. In fact, most have 

been exposed only to straight lecture and this then becomes their fallback when it is their turn 

in a teaching role. Gormally et al. (2016) found that there was a gap between what GTAs do 

and what they know about using evidence-based teaching techniques. They found that GTAs 

were curious about ways to use inquiry methods while teaching, but were unsure how to 

recognize reformed teaching, when to use those methods or even if they were using the right 

methods (Gormally et al., 2016). This issue is definitely not being addressed in the overall 

graduate education experience in STEM disciplines even though GTAs are widely utilized to 

teach laboratory sections and  some lectures. (Wyse et al., 2014).  

Research and reports recommend that higher education institutions provide GTAs 

with training that will make them teaching-ready when they become faculty members 

(Schussler et al., 2015). Some studies indicate that GTAs may prefer one teaching style over 

another which leads to different teaching experiences than their faculty counterparts (Kendall 

and Schussler, 2012; Reeves et al., 2016) However, none address a way to use specific 

measures that allow the GTA to be treated in the same manner as a faculty member and in 
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this way know what to expect if they decide to become faculty themselves (Schussler et al., 

2015)   

In 2008, a discipline-based education researcher (DBER) was hired in the Department 

of Biology at WVU. One of the duties for this position was to reform the teaching of the 

freshman year biology curriculum. This effort took four forms: 1) pedagogical training for 

local faculty using a format adapted from the National Academies Summer Institute (SI) held 

at University of Wisconsin-Madison; 2) curricular reform of the introductory lectures using 

backward design, active learning and evaluation using validated concept inventories; 3) 

curricular reform in the introductory teaching laboratories, using backward design, guided 

and open-inquiry experiences and evaluation using validated concept-inventories; and 4) 

pedagogical training for GTAs who taught the laboratories. This chapter examines the 

effectiveness of the GTA training program, which consisted of a combination of peer-

evaluation, focus on student-centered practices, and  a scientific teaching workshop. 
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METHODS 

Study Participants 

A two-course introductory biology series is the first installment in a set of four core 

courses required for undergraduate Biology majors at West Virginia University (WVU). Each 

of the two introductory courses is made up of a lecture course and a laboratory. The 

laboratories are taught by GTAs, primarily from the Department of Biology, but occasionally 

from other STEM departments at WVU. The participants in this study include GTAs who 

taught during fall semesters in the laboratory associated with BIOL 115, Principles of 

Biology, who were willing to allow their teaching videos (a part of program evaluation for 

the GTA training program) to be used as part of this research project.  

Pedagogical Training 

Prior to the start of the semester, GTAs attended two days of pre-semester orientation 

which included a 3-hour workshop on scientific teaching: backward design, active-learning 

and student-centered learning. These reformed teaching strategies were also modeled for the 

GTAs during the weekly preparatory sessions. During each two-hour session, GTAs were 

engaged with the course materials created using backward design (Wiggins and McTighe, 

1998) and scientific teaching practices with two explicit goals: 1) to train the GTAs in the 

material and 2) to model how to implement the materials in an active, student-centered way. 

This included discussion and reflection on the rationale for the teaching approaches 

embedded in the content and instruction for the laboratory activity.  

Evaluation 

As part of program evaluation for the new GTA training program that supported the 

newly reformed teaching laboratories, GTAs were videotaped twice during the semester: 

within two weeks of the start of the semester (pre) and again within the last two weeks of the 

laboratory (post). Between the two video-recording sessions, GTAs took part in two peer-
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review sessions inspired by the mentoring provided to post-doctoral fellows in the Faculty 

Institutes for Reformed Science Teaching IV (FIRST IV, Ebert-May et al., 2015). The 

teaching feedback guide developed for that program by Dr. Jennifer Momsen (North Dakota 

State University) was used to provide feedback during the peer-review sessions. This rubric 

focuses specifically on student-centered practices. The first peer-review was performed by a 

scientific teaching veteran (graduate student or faculty member formally trained in scientific 

teaching at either the original or WVU regional National Academies Summer Institute 

(NASI)) and the second review was by another GTA in the course. Typically, the GTA and 

the reviewer would meet soon after the teaching session to discuss the feedback and provide 

the reviewee with the completed evaluation rubric. In an attempt to monitor the quality of the 

feedback given during these sessions, the reviewee filled out a questionnaire after the 

feedback session to describe the amount and quality of the feedback. For consistency, all of 

the pre-videos were completed in the same week, capturing the same teaching laboratory, as 

were the post-videos.  

Teaching videos were recorded during Fall (BIOL 115) and Spring (BIOL 117) 

semesters. The videorecorder was placed in the back of the room in the most advantageous 

spot to capture the GTAs teaching and interacting with their students during laboratory 

sessions. The recording was transferred to a high capacity hard drive and secured prior to 

analysis. Prior to evaluation, videotapes were randomly assigned numbers as identifiers to 

allow for anonymity.  

See Chapter 3 Methods for a description of the training and evaluation procedures for 

the GTA teaching videos. The only difference in the approach to evaluating teaching videos 

between the two projects is that the Classroom Observation Protocol for Undergraduate 

STEM (COPUS, Smith, 2014) was not used to evaluate GTA teaching videos. The COPUS 

developers expressly stated that COPUS  was not appropriate for evaluation of teaching 
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laboratories as it was developed and validated for lecture classes.     

As part of this research project, GTAs were asked to complete a survey consisting of 

researcher-designed questions to gather demographics and perceptions of the training 

program. Because the survey was for research purposes and not part of the program 

evaluation for the new GTA training program, participation in the survey was voluntary. This 

survey was administered using the web-based survey platform, Survey Monkey 

(SurveyMonkey.com). 

Thematic Analysis 

Direct observation of a GTA teaching a laboratory was completed using the Teaching 

Feedback Guide adapted from J. Momsen in FIRST IV. The form has three questions to use 

to provide feedback: 1) Is there something the instructor is doing that the students could be 

doing? 2) What is the level of questions the instructor asks the students? and 3) Does the 

instructor facilitate the student process of learning activities? The guide also asked the 

observer to rate the level of student-centeredness they observe. Responses to these open-

ended prompts were subjected to thematic analysis using a grounded theory approach (Braun 

and Clarke, 2006; Regassa and Morrison-Shetlar, 2009). Raters reviewed the responses to 

develop response codes. Codes and emergent themes were then discussed and refined.  

Responses were then binned into similar themes and a frequency for each theme or sub-

theme was calculated as a percentage of total codes in the bin.  

Survey 

A simple survey was designed by the researcher to gather self-report data from GTA 

participants. The survey collected demographic and perceptions of the training using active 

learning techniques. GTAs were asked to complete this survey at the end of the semester 

following the post videotaping. Twelve GTAs completed the survey. The survey was 

administered online using Survey Monkey (www.surveymonkey.com). 
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Data Analysis 

Data from the survey included frequency and descriptive statistics. The self-report 

data were summarized either by averaging the numerical score for each question or by 

calculating the average percentage response rate for each answer. The Kruskal-Wallis test 

was used to compare independent populations. The Wilcoxon signed rank test was used to 

make pairwise comparisons between dependent samples, such as pre-/post-responses. Data 

were collected from GTA teaching videos using two instruments; RTOP and timing analysis, 

described above. For each measure, descriptive statistics were carried out to calculate the 

mean and standard error when appropriate. Given the bounded nature of RTOP (0-100 scale) 

and timing analysis (percentages) scores, non-parametric statistical tests were used on 

analysis of variance across multiple samples (Kruskal-Wallis H test) and correlations 

between measures (Spearman rank correlation). All data analyses were carried out using the 

Statistical Package for Social Sciences (SPSS, version 25). 

The protocol for this study was approved by the WVU Institutional Review Board 

(WVU IRB# H-24369). 

 

RESULTS 

The GTA training Program 

 A training program was developed for graduate teaching assistants (GTAs) in the 

Introductory Biology program in the Department of Biology at West Virginia University. The 

program was intended to better prepare GTAs for the newly reformed teaching laboratories. 

As part of a comprehensive Introductory Biology reform effort, the teaching laboratories had 

been transformed from recipe laboratories to guided- and open-inquiry experiences. The 

GTA training program used elements from the NASI@WVU and FIRST IV programs. 

Specifically, a scientific teaching workshop from the NASI@WVU and a program of peer 
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evaluation from the FIRST IV program were combined in order to increase GTAs’ use of and 

comfort with active, student-centered teaching. As part of the program, GTAs took part in: a) 

a 3-hour pre-semester workshop on Scientific Teaching (Handelsman et al., 2007); b) weekly 

preparatory sessions where they were engaged with evidence-based teaching materials; and c) 

two rounds of peer-review using the teaching evaluation rubric developed for FIRST IV 

(Ebert-May, 2015). Teaching videos from a subset of the GTA cohort from the first three 

years of the program were included in this project. Fifty percent of the GTAs had paired 

video-recordings (Female = 46%, Male = 54%). 

GTA attitudes and perceptions of teaching 

Half of GTAs voluntarily completed a survey composed of researcher-generated 

questions. This cohort was split between females (46%) and males (54%). Of the GTAs that 

responded to the survey, 75% received their UG education at a university and 25% at a liberal 

arts college. GTAs reported a variety of ways that they had experienced pedagogical training 

(Figure 1). The most common way to learn about teaching was observing another person 

teaching. GTAs were able to choose all options of teaching they observed prior to their own 

teaching experience. When asked what percentage of their teaching time was interactive, 

GTAs reported an average split of 32.5% passive and 57.5% active (Pearson’s chi-squared, p 

= 0.007, p<0.05). When separated by gender, there was no significant difference in time 

spent in passive versus active modes of teaching (Kruskal Wallis p>0.05). In addition, more 

GTAs reported that they “always”/”often” used group/cooperative learning, inquiry-based 

learning and open discussion when teaching in the introductory teaching laboratories (Figure 

2).  
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Figure 1. Types of training to which GTAs have been exposed . GTAs reported  the type of teacher-

education training that they have been exposed to. A majority of GTAs respond that the only training they 

have had is from observing (100%) instructors when they were UG. Respondents can choose more than 

one response type. Bars represent mean percentage of teaching type experienced. UGedtheory = 

Undergraduate education theory, GRADedtheory = Graduate education theory, PDedtheory = Professional 

development theory. 

 

  
Figure 2. Perceived teaching strategies used during instruction. Response frequencies (Biology Education 

Pedagogy Survey) for the cohort year 2012 who described the various types of teaching strategies they 

perceived they use during a regular laboratory class instruction.  

   

It is important that GTAs recognize student-centered techniques so they can employ 

them in their classes (Wyse et al., 2014). GTAs identified the teaching strategies as student-

centered with “students designing an experiment” identified by all GTAs, followed by 

“students guiding discourse”(83.3%), “completing an activity” (75%) and “clicker questions” 
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(58.3%) (Figure 3). GTAs responded to “how student-centered” they believe they were on a 

scale of 1- 10. Sixty-seven percent of GTAs believed they were 6 or higher on a scale of 

student-centeredness (mean = 6.2 +/- s.e. 0.5), while 58.3% of the respondents believed they 

were as student-centered as they would like to be. 

  

Figure 3. Elements associated with student-centeredness. All respondents perceive that Designing an 

experiment is an important element to have a student-centered classroom (100%). This was followed by 

students guiding the discourse in class (83.3%) 

GTA Teaching Behaviors 

 GTAs teaching laboratories were video-recorded after having taken part in the pre-

semester Scientific Teaching workshop but before taking part in two rounds of peer-review, 

first with a scientific teaching veteran (trained at the NASI at either University of Wisconsin 

or WVU) and then by another GTA. Analysis with RTOP (Sawada and Piburn, 2002) timing 

analysis metrics revealed the GTAs level of interactivity (percentage of time spent in an 

active mode calculated from the timing analysis rubric) and student-centeredness (RTOP 

score). There is a moderate positive relation between the percentage of time spent in an active 

mode and RTOP score before peer review (Figure 4, Spearman’s rho rs = 0.602, p<0.05) and 

a strong positive relationship between the two after peer-review (Figure 5, Spearman’s rho rs 

= 0.893, p<0.000). However, there was no significant difference between the amount of time 
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GTAs spent in an active mode before and after taking part in peer review and the same is true 

for their RTOP scores (Table 1. Wilcoxon signed rank test p>0.05).  

However, when compared to RTOP scores of faculty from other initiatives like the 

NASI@WVU or FIRST IV, the GTAs RTOP and Timing analysis scores were quite high 

both before and after peer-review. RTOP scores are separated into five categories (1 (15-30); 

2 (31-45), 3 (46-60), 4 (61-75), 5 (>75)) that represent a transition from teacher-centered, 

categories 1 and 2, to increasing levels of student-centeredness, categories 3-5). The average 

RTOP scores for the GTAS put them in high Category 3 and low Category 4.  

 

Figure 4. The relationship between RTOP and Interactivity Scores before peer review, where percentage 

of time in an active mode is calculated from timing analysis. Points are from all GTA teaching videos 

excluding those who did not have a paired vide, either pre or post. Spearman’s rho rs = 0.602, p<0.05. 

 

Figure 5. The relationship between RTOP and Interactivity Scores after peer review, where percentage of 

time in an active mode is calculated from timing analysis. Points are from all GTA teaching videos 

excluding those who did not have a paired vide, either pre or post. Spearman’s rho rs = 0.893, p<0.000. 
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Table 1. GTA RTOP scores before (pre) and after (Post) peer review.  

 

Gender   

Pre GTA 

RTOP Score 

Post GTA 

RTOP Score 

Pre GTA 

TA Score 

Post GTA 

TA Score 

Female Mean 62.8 59.6 80.7 78.9 

  N 6 6 6 6 

  Std. Deviation 8.1 8.5 7.3 9.2 

  Std. Error of Mean 3.3 3.4 2.9 3.7 

      

Male Mean 61.7 58.4 77.3 76.4 

  N 7 7 7 7 

  Std. Deviation 9.5 8.9 12.2 10.6 

  Std. Error of Mean 3.6 3.4 4.6 4.0 

 

Quality of feedback during peer review 

 At the end of each observation period, peer-observers prepared written comments that 

were provided to GTA instructors.  The first round of observation (observer 1) was 

completed by a veteran observer. This person would have been trained at NASI@WVU or 

other comparable PD program. The second round of observation (observer 2) was completed 

by GTAs. The teacher feedback guide provides three questions to answer about general level 

of activity in the classroom that can be interpreted to determine student-centeredness. Figure 

5 shows the bins that question 2 (What is the level of questions the instructor asks? Does it 

warrant class time?) was placed into to easily determine the level of questioning. Seventy-

four percent of observer 1 thought the level of questions were appropriate or good and 

warranted the class time. At the second observation there was an increase in the 

appropriateness of questions asked (80%). 
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Figure 6. GTA responses to Question 2 from the feedback guide (“What is the level of questions the 

instructor asks? Does it warrant class time?”). Bars represent percentage average of frequency theme 

occurred across 27 peer reviews.  Obs1 = First peer review by a Veteran observer with NASI@WVU 

training; Obs2 = Second peer review by a GTA or novice observer (has not attended NASI@WVU or 

similar program).  

 

 The trend was reversed for the third question (“Are GTAs meeting expectations to 

facilitate students during the learning process of active-learning lab activities?”) on the 

Teaching Feedback Guide (Figure 6).  GTA were seen by the reviewers as facilitating student 

learning more often in the first peer review (81.5% of observations) than in the second 

(66.7% ). 

0

10

20

30

40

50

60

Appropriate Good Needs Improvement Inappropriate

Pe
rc

en
t F

re
qu

en
cy

Level of Questions Observed

Obs1 Obs2



 

 

 74 

 

Figure 7. GTA responses to Question 3 from the feedback guide (“Are GTAs meeting expectations to 

facilitate students during the learning process of active-learning lab activities?”) Bars represent percentage 

average of frequency theme occurred across 27 peer reviews. Yes = GTAs are observed facilitating 

students during activities, No = GTAs are not acting as facilitators, Needs Improvement = there was some 

effort to let students answer questions on their own but GTAs would give more answers rather than let 

students find solution. Obs1 = Veteran observer with NASI@WVU training; Obs2 = GTA or novice 

observer (has not attended NASI@WVU or similar program) 

 

DISCUSSION 

The overall findings of the GTA assessment using scientific teaching elements in 

reformed laboratories indicate that GTAs are willing to make the effort to change towards 

more active teaching instruction. GTAs reported that some of their teaching techniques were 

based on directly observing instructors when they were UGs (Figure 1). What is encouraging 

is that  50% also reported having been taught graduate education theory techniques. This may 

be  a result of attending courses offered through WVUs graduate education office for the 

Certificate in University Teaching. Thirty-three percent reported using professional 

development education theory and  also 33% of the participants attended NASI@WVU. 

On the research design survey, GTAs reported on average that on a scale of 1-10 

(with ten being most student-centered) they averaged 6.2. One of the most important 
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components of this study was assessing GTA teaching in scientific teaching reformed 

laboratory sections on the RTOP metric similar to participants of NASI@WVU. The most 

concrete way to test the effectiveness of scientific teaching on an instructor is through 

assessment of their teaching. The premise is that GTAs will one day become faculty and 

using metrics like RTOP (Wyse et al., 2014), will help them determine if they have made 

strides towards student-centeredness in a STEM classroom. Gormally et al. (2016) found a 

similar situation when they had TAs complete a pre/post survey. They found that TAs made 

some gains in conceptual understanding scientific teaching and inquiry (Gormally et al., 

2016). At the time of the pre-video recording, GTAs had only experienced the pre-semester 

scientific teaching workshop and a handful of preparatory classes. The RTOP scores and 

timing analysis had a moderate positive relationship based on the Spearman coefficient, 

showing that there is active-learning occurring during their teaching. Freeman et al. (2014), 

found that active-learning showed the most benefit in smaller class sizes, for which small 

laboratory sections would meet the criteria. In the post video recording the points are close 

together. In comparing the results from timing analysis and RTOP scores before (Figure 5), 

and after (Figure 6) peer review, the data from post-review videos congregate more closely 

and show a more distinct upward trend of higher RTOP scores and percent of activity during 

lab instruction. It should be noted that GTAs do not have control over the material that is 

used to teach lab sections. Consistency is maintained in the material since there are over 50 

sections and all students need to gain the same skills. As such, GTAs have some built-in 

active aspects of the lab lesson plan; the non-lab portions are designed for them by a 

scientific teaching veteran to actively engage students. This may account for having rather 

high RTOP scores, category 4, distinguished by critiques and experimentation. 

Concurrently, peer-review occurred before and after video recording of lab sessions. 

GTAs were observed by their fellow GTAs. From the theme analysis of observer notes, the 
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questions GTAs posed to their students became more appropriate from the first to second 

observations. However, there was a decrease in helping students meet the learning goals of 

making critical decisions for themselves. This may be the point in the semester where GTAs 

start to become overwhelmed with grading, their own course work and trying to meet their 

obligations. As such even if they are aware that they should be allowing students to formulate 

their own answers, hypotheses and designs, they may be giving answers to just get through a 

busy schedule. It may be that there was a positive effect of discussing ways to improve from 

a veteran GTA but not so much a novice GTA. Peer feedback is nonetheless important in 

building the confidence of GTA to use scientific teaching tools (Wood, 2009). 

What the future holds for graduate student professional training programs 

 In  their study Wyse et al.(2014) noted that the present level of training received by 

GTAs is insufficient. However, Wyse et al. (2014) did not have GTAs undergo peer-support 

and peer evaluations. They found that because GTAs had limited PDP, the RTOP scores from 

videotapes scored lower on the RTOP categories signifying less effective conceptual 

understanding of the content by students even when GTAs were experts in the content.  

 In our model, we proposed that the missing element for GTAs to move towards more 

student-centered instruction is peer evaluation. GTAs may become effective faculty members 

demonstrating best teaching practices in scientific teaching when peer evaluation is included. 

Ultimately, peer evaluation provided information that observation tools like RTOP did not 

fully describe. However, stress of the GTAs own coursework, needing to meet grading 

deadlines lessens the impact of peer evaluation and worrying about undergraduate perception 

of GTA teaching may (Reeves et al., 2018) cause some GTA to not fully benefit from peer 

evaluation (Figure 7)  Owens et al. (2018) determined that peer evaluation is a key factor for 

faculty members. Even faculty members who have had years to develop their teaching 
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portfolio feel it is one of the most important elements to be successful in active learning and 

scientific teaching (Owens et al. 2018). 

Limitations  

One issue, in hindsight, is that GTA participants should have taken the survey at the 

start of the semester to determine if there was actual movement in understanding that STEM 

courses should be taught with authentic science processes in mind. The answers given by 

GTA after the semester indicate that they are aware of these elements but the researcher is 

not sure if this is a cause of the scientific teaching workshop or prior exposure to other 

professional development. 
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Chapter 5: General Discussion 

 

History of STEM Education Reform 

The idea that active learning improves student learning is not new.  Studies  

addressing the use of active learning in STEM classroom are plentiful and spread across time. 

John Dewey (1916) set the stage for modern constructivism with his view that students were 

not “empty vessels” for teachers to fill with knowledge. He questioned the view that learning 

was passive. Much of today’s research about how students learn has its foundations in 

Dewey’s work on thought, experience and education (Dewey, 1910). In Democracy and 

Education (1916), Dewey makes the argument that to teach science in isolation does not fully 

serve the education of the student. It essentially disregards the students’ natural experiences 

outside the classroom (Dewey, 1916). Students are making connections, processing and 

solving problems in their natural world. When we fail to recognize students’ natural motives 

and curiosity about things around them, we underestimate what they are capable of 

understanding based on their own personal experiences (Dewey, 1916). 

David Ausubel used Dewey’s theory as a foundation to build modern constructivism. 

His work clarified that students need to be actively engaged in building their own knowledge; 

knowledge cannot just be given to them (Ausubel, 1963, 2000). Ausubel’s theories deal with 

how students learn, their selectivity of what they learn and things they forget. He proposed 

that new learning tasks can be deciphered by using what the learner already knows, referred 

to as the learners “cognitive structure” (Ausubel, 2000). Students approach understanding 

new concepts by integrating them into their prior structure of knowledge (Ausubel, 2000). 

This theory gets at the root of student misconceptions. When students are passively exposed 

to new information, they may commit it to short-term memory without being required to 

merge it with their prior knowledge, leading to material that is easily forgotten (Fitzgerald & 
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Ausubel, 1963).  When we do not use students’ prior knowledge to enhance their learning 

early in their education, we end up with students who find post-secondary STEM education 

too difficult and leave for other disciplines (Freeman et al., 2014).  

It was not until the 1980-90s that multiple papers and reports started focusing on and 

calling for changes in post-secondary STEM (Angelo, 1998; Cross, 1990; Cross and Angelo, 

1993; Cross and Steadman, 1996; Glassick, 1997; Huber 1999; NRC, 1983, 1999a, 1999b; 

Marzano, 1998; Rutherford, 1990). The National Academies and the National Research 

Council put efforts to reform teaching and learning in STEM on the center stage with several 

important reports. A Nation at Risk (1983) highlighted three major themes: 1) the intellectual 

rigor students experience was insufficient; 2) new curricular standards that promoted active 

student learning were needed; and 3) teaching needed to be evaluated more effectively. The 

last theme was particularly important as it would stimulate collection of data to show that 

current methods of teaching were primarily passive and lead to studies that would offer 

solutions for moving away from traditional lecturing.  

In 1999, the How People Learn reports (NRC, 1999a, 1999b) provided a summary of 

what was known about human learning and cognition, followed by recommendations for how 

to bridge the gap between w3hat was known and what was being practiced in the classroom, 

particular in college STEM. Still, most post-secondary STEM educators were not aware of 

this literature. Most had been well-trained in research, but received little to no training in 

teaching. This issue – having solutions from education literature that are not being 

implemented by the majority of practitioners – has posed a problem for post-secondary 

STEM education for decades. Physics was one of the earlier STEM disciplines that seemed to 

catch on that more needed to be done to bridge the gap between education literature and 

implementation in the classroom (Beichner and Saul, 2003; Mazur, 1996). Over several 
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decades physics education research has helped to shape the framework for research , 

development and dissemination of ways to improve physics teaching at the college level 

(Dancy and Henderson, 2009).  

In 2003, the National Research Council helped get the national ball rolling for post-

secondary biology education with BIO2010: Transforming Undergraduate Education for 

Future Research Biologists (NRC, 2003). This helped to examine all that had been done or 

proposed to bring STEM classes forward. STEM classes need to be more inquiry-based and 

active rather than just bombarding students with mass amounts of information that do not 

make any real-world connections. This report not only highlighted the message of reform to 

biology educators who were already paying attention to the education literature, but it also 

called for the creation of an immersive professional development workshop to train faculty 

who may not have been as aware of changes in STEM teaching and learning. This call was 

realized a year later in the National Academies Summer Institutes (NASI, Handelsman 2004, 

Pfund 2009).  Prior to the formation of NASI there was much resistance to methods for 

transforming teacher-centered biology classes into more student-centered ones (Handelsman, 

2004). The major tenet of scientific teaching, the curricular foundation of NASI, is that 

science education should be faithful to the true nature of science by capturing the process of 

discovery in the classroom (Handelsman et al., 2004). 

NASI trained many biology educators in evidence-based practices, gave us the 

scientific teaching approach and provided a model of successful professional development 

(Pfund, 1990) that others built-on: 

• The American Association of Universities (AAU) STEM Initiative: AAU facilitates 

and collaborates with its member universities to promote initiatives that engage 

STEM undergraduates with evidence-based practices (AAU, 2017).  
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• Center for the Integration of Research, Teaching and Learning (CIRTL): a training 

program to help graduate students and post-doctoral fellows enter their first faculty 

positions already using evidence-based practices in their classes (CIRTL, 2006).  

• Faculty Institutes for Reformed Science Teaching  (FIRST IV) focuses its training 

programs on Post-doctoral fellows. Active learning encourages them to build inquiry 

lessons using reformed teaching strategies in active student learning (Gregg et al., 

2015; Ebert-May, 2015).  

Like these endeavors, the NASI@WVU owes its origins to the original NASI. 

NASI@WVU was the first full-length regional offshoot of the original NASI. It expanded the 

audience to include any STEM faculty interested in reformed teaching pedagogies (Bailey, 

chapters 2, 3). The results from the evaluation of the impact of NASI@WVU will contribute 

to the field in two important ways. The findings will contribute to our understanding of how 

professional development contributes to implementation of evidence-based practices. They 

will also provide evidence that professional development does contribute positively to 

education reform.  

The argument has been made that professional development is ineffective at causing 

change in teaching practices, and the system of post-secondary STEM education needs a 

bigger “jolt” for more effective change to be seen (Wieman, 2012; Wilson, 2011). Charles 

Henderson’s research program has focused on the impact of professional development in 

physics and engineering for nearly a decade. He found that several professional development 

endeavors caused changes in motivation of participants to use the practices taught by the 

workshop and in their knowledge and skills of the new strategies (Henderson et al., 2011). 

However, he found that participants were not implementing to the level that they reported 

after returning to their home campuses. Diane Ebert-May’s evaluation of participants from 

the original NASI and from her early efforts with the Faculty Institutes for Reformed Science 

Teaching, FIRST I and FIRST II, produced similar findings, that participants were not 

implementing active, student-centered strategies to the level that they were reporting (Ebert-
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May et al., 2011). For some the interpretation of these studies was that professional 

development did not work.  For others, it was that professional development solved part, but 

not all, of the problem of facilitating broad adoption of evidence-based practices (Borrego 

and Henderson, 2014).  

The data in chapters 2 and 3 of this dissertation support the latter interpretation by 

showing that effective professional development has the power to help participants increase 

their adoption of evidence-based practices. Not all of the NASI@WVU participants made it 

to the student-centeredness by definition of RTOP categories (Bailey, Ch. 3). The ones that 

did still had room for improvement. To expect a week of professional development to 

overcome the lack of awareness, knowledge and skills to use evidence-based practices and 

the challenges and barriers to implement that faculty face on their home campuses seems 

unrealistic. The more reasonable approach seems be to continue to develop and evaluate 

effective professional development, but to combine it with interventions that address the 

environment in which educators are attempting to reform their teaching (Borrego and 

Henderson, 2014).   

Findings reported in chapter 4 demonstrate successes and areas of need in adapting 

professional development strategies for training graduate students. These data support the 

need for continued research to understand how to use what we know about successful 

professional development to develop effective pedagogical training for future faculty.  

Training future faculty to implement evidence-based practices before they enter their first 

position will help disrupt the pattern of producing an academic workforce that is prepared for 

only half of the expected duties of the job.  
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