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Abstract

Distributed Monte Carlo Simulation

Aruna Sri Bommagani

Monte Carlo simulation is an effective way to analyze models of sophisticated problems,
but often suffers from high computational complexity. Distributed computing is an effective
technology that can be used for compute-intensive applications, such as Monte Carlo sim-
ulation. The goal of this thesis is to combine the concepts of Monte Carlo simulation and
distributed computing in an effort to develop an efficient system capable of rapidly executing
computationally-demanding simulations.

When distributed computing is used to support the simulations of multiple users, a
scheduling algorithm is required to allocate resources among the users’ jobs. In this thesis, a
scheduling algorithm is developed that is suitable for Monte Carlo simulation and utilizes the
available distributed-computing resources. The unified framework for scheduling is capable
of accommodating classic scheduling algorithms such as equal job share, first-in first-out
(FIFO), and proportional fair scheduling. The behavior of the scheduler can be controlled
by just three parameters. By choosing appropriate parameter values, individual users and
their jobs can be assigned different priorities. By introducing an appropriate analytical
model, the role of these parameters on system behavior is thoroughly investigated. Using
insights obtained by studying the analytical model, a complete distributed Monte Carlo
system is designed and presented as a case study.
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Notation

We use the following notation and symbols throughout this thesis.

X : A random variable
fX(x) : pdf of X

E [X] , M̂X : Mean of X
xi : ith Monte Carlo realization of X
N : Total number of trials used to estimate the mean of X
Ni : Number of trials used to estimate E[X]
k : Number of tasks required to complete a job

k̂, k̂j : Expected number of tasks required to complete job j
xn,j : nth Monte Carlo realization of jth task
p : Success probability of a trial
S : Total number of successes in N trials of X
U : A set of users in the system
Ui : ith user in the set U
J : A set of jobs in the queue
Ji,j,` : jth job in the queue, that belongs to ith user in time slot, `
C : Number of computing resources available in a time slot
t1 : Time period to check arrival of new jobs by the job manager
t2 : Time period to execute a task
Γp : Total processor time required to complete a job
Γc : Total completion time of a job

(includes time from submission to completion)
δ : Number of time slots required for job execution
Ei,` : Exponentially-weighted cumulative processing share

of user, i, in time slot, `
α : Forgetting factor, used in evaluating Ei,`
β : Weight factor that moderates Ei,`
Ci,j,` : Number of completed tasks of job, j, in time slot, `, of user, i
Ri,j,` : Remaining number of tasks of job, j, in time slot, `, of user, i
c1 : System defined value of remaining percent of job
ri,j,` : Remaining percent of job, j, in time slot, `, that belongs to user, i

ˆPi,j,` : Expected priority of job, j, in time slot, `, that belongs to user, i
Pi,j,` : Priority of job, j, in time slot, `, that belongs to user, i



ix

c2 : System defined value of percent of workers assigned to a new job
τi,` : Number of tasks serviced for user, i, in time slot, `
Wi,j,` : Weight of job, j, in time slot, `, that belongs to user, i
T : Actual duration (number of time slots) of the simulation
ρ : Job submission probability of a user
Fi,j,` : Job factor of job, j, in time slot, `, of user, i
γ : Weight factor that moderates Fi,j,`.
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Chapter 1

Introduction

1.1 Monte Carlo Simulation

A Monte Carlo simulation is an experimental method for estimating the expected value

of a random variable X. Random numbers are used to perform the simulation. Let X be a

random variable with probability density function (pdf) fX (x). The goal is to estimate the

mean E [X] . The mean of X is

E [X] =

∫
xfx (x) dx (1.1)

Finding the expected value using (1.1) is often not feasible because the pdf may not be

available or the integral may not be easy to calculate. An alternative technique to find the

expected value is to use the Monte Carlo integration technique [1]. Let xi be the ith Monte

Carlo realization of X and N be the number of trials. An estimate of the expected value of

X may be found using

M̂X =
1

N

N∑
i=1

xi (1.2)

A large number of trials are used to perform a simulation and the time required to compute

the mean can be largely reduced by performing trials in parallel using distributed computing.

Parallel simulation is discussed in section 3.1 of chapter 3.

Often the random variable X is Bernoulli. A Bernoulli random variable can take a value

of either 1 or 0. Let p be the probability of a 1 and 1 − p be the probability of a 0. To
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generate a Bernoulli variable X, we generate a uniform variable Y , uniform over 0 to 1, and

set X = 1, if Y < p. The event in which X = 1, is a success while the event that X = 0, is

a failure. Bernoulli trials are important in the analysis of communication systems because

they can be used to indicate a bit or packet error. It follows that if X represents a bit error,

then E[X] is the bit error rate (BER).

1.2 Random Number Generation

A random number sequence is a sequence of numbers with no specific pattern among

them. There is a significant body of literature on random numbers, random number genera-

tors, and the statistical tests that guarantee the standard of the random number generators

[2]. However, before proceeding, we need to ask the question Why do we need random num-

bers? We cover the need for random numbers and some of their properties in the next

section, followed by the two main approaches for generating random numbers using a com-

puter, the methods for generating pseudo random number generators (PRNGs) and a brief

section on the Mersenne twister random number generator.

1.2.1 Why Random Numbers?

Random numbers are needed in a variety of fields. Random numbers are required in

scientific problems for the simulation of the stochastic processes, simulation in physical,

biological, chemical, astrophysical problems, cryptography, VLSI testing, computer games

and computational statistics. Random numbers are required for any Monte Carlo simulation,

and are therefore important for the many diverse fields that use Monte Carlo simulation. To

mention a few applications of Monte Carlo simulation, in digital communications it is useful

to obtain bit error rates (BER), in finance it is useful for risk analysis, in physical chemistry

it is useful for the simulations involving atomic clusters, and in geophysics to invert seismic

data.
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1.2.2 Random Number Generators

A random number generator (RNG) [2, 3, 1] is a device that generates a random sequence

of numbers. The device used to generate a random number sequence can be either a compu-

tational (used for generating pseudo-random numbers) or a physical device (for generating

true-random numbers).

The two main approaches for generating random numbers 1 are pseudo random num-

ber generators (PRNGs) and true random number generators (TRNGs). Random number

generators should be able to produce genuine random numbers in a small amount of time,

must have a large least period length (the length at which a sequence repeats), should be

reproducible (possible for PRNGs) for testing a model, and preferably, amenable to parallel

generation.

Pseudo random number generators are not truly random but have genuine enough ran-

domness. They are generated by deterministic algorithms based on mathematical formulae

using a computer. The sequence of numbers generated using PRNGs are deterministic as

they can be reproduced by providing the initial state of the sequence, known as the seed.

PRNGs are periodic and efficient as they can produce many numbers in a little time. Ef-

ficiency is an important feature to test the stability of the model. PRNGs are particularly

useful where a large number of random numbers are required (e.g., in simulation and mod-

eling applications). They are not very useful where the sequence of random numbers should

be unpredictable (e.g., cryptography).

True random number generators use the randomness of the physical phenomenon (e.g.,

decay of a radioactive source, atmospheric noise) to generate random numbers. Unlike

PRNGs, TRNGs are less efficient as they generally take long time to produce numbers (be-

cause of the source used to generate random numbers). Numbers generated using TRNGs are

non-deterministic and aperiodic, though there might be a possibility that the same sequence

of random numbers are generated by chance. TRNGs are best suited for cryptography and

gambling machines.

1http://www.random.org/randomness/

http://www.random.org/randomness/
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1.2.3 Methods of Pseudo Random Number Generation

Pseudo random number generation involves generating a sequence of real numbers using

a function of independent and identically distributed (iid) variables on R. The two cate-

gories of random numbers are uniform random numbers and non-uniform random numbers.

Uniform random numbers are generated using a uniform distribution, and non-uniform ran-

dom numbers are generated using distributions (e.g.,Gaussian, gamma, poisson, binomial

and exponential distributions) other than uniform distribution. Transformation methods

are used to transform uniform random numbers to generate non-uniform random numbers

(section 4.9 of [4]). Let X be a uniform random variable in the interval [0, 1]. To generate a

random variable, Y , with the desired pdf, generate X and find the inverse of its cumulative

distribution function (CDF), Y = F−1X (x).

1.2.4 Mersenne Twister

The Mersenne twister (MT) is the default random number generator in Matlab. It

was developed by Makoto Matsumoto and Takuji Nishimura during 1996-1997. MT [5] is a

uniform PRNG with a long period, a Mersenne prime period of 219937−1 and 623-dimensional

equi-distribution with 32-bit accuracy. MT is a variant of twisted generalized feedback shift

register (TGFSR) [6] with improvements to realize the Mersenne prime period. The TGFSR

and the generalized feedback shift register (GFSR) can be obtained by using a particular set

of parameter values of the MT recurrence function. The MT algorithm seem to be most

suitable for the Monte Carlo simulations. Using MT, higher bit (64-bit) integers can be

generated by concatenating the words. However, the algorithm is not suitable for use in

cryptography and has the limitation of zero-excess initial state [7].

Variants of Mersenne Twister

SIMD-oriented fast Mersenne twister (SFMT)2 is a linear feedbacked shift register (LFSR)

[6] generator of a 128-bit pseudo-random integer using parallelism features like multi-stage

pipelining and SIMD instructions. Compared to MT, SFMT is much faster and has a faster

2http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/SFMT/index.html

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html


Aruna Sri Bommagani Chapter 1. Introduction 5

recovery from zero-excess initial state. CryptMT 3 is suitable for use in cryptography. It’s a

stream cipher with a combination of LFSR like MT and non-linear filter based on multipli-

cation. CryptMT has a period of a non-zero multiple of 219937−1, and the 1241-dimensional

equi-distribution of 8-bit output sequence.

1.3 Confidence Intervals

A confidence interval provides an interval estimate of a statistical parameter (e.g., mean

and variance). The values in the interval have a high reliability to contain the true value

of the parameter. Observed data is used to find the interval estimate, and the estimate

may differ based on the data in consideration. A narrow interval implies the estimate of

the parameter is more accurate. Confidence level or confidence coefficient is the degree of

consistency with which the parameter value lies within the interval.

Mathematically, for a random variable X the probability of observing a true value of a

parameter for instance, the mean, µ, within a confidence interval (u(X), the upper bound,

and l(X), the lower bound) of [l(X), u(X)] and confidence level (1 - α) is given by

P [l(X) ≤ µ ≤ u(X)] = (1− α) (1.3)

The Monte Carlo simulation in the system, designed considering the analytical model

in chapter 3, an assumption is made such that a certain number of trials, N , (divided

into multiple tasks) result in the required successes, S. The simulation is stopped when N

trials are completed. In this case, S is random and N is the binomial random variable. A

more interesting and challenging case is when the simulation is performed until the number

of observed successes is S. This can be obtained by not fixing N , in the simulation i.e.,

N is random and S is fixed. In the following sub-sections we go through the Gaussian

approximation of the binomial distribution to find the confidence interval of the mean of a

random variable and the confidence interval for the variables that can be approximated to

Gaussian random variables.

3http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/CRYPTMT/index.html

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/CRYPTMT/index.html
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1.3.1 Confidence Interval: Gaussian Approximation

Let X be a random variable to estimate mean, µ, and variance, σ2.

Confidence interval for a normal random variable (Gaussian approximation of binomial

distribution) can be defined using the Wilson score function [8]. The Wilson score function

is based on the set: {
p :

∣∣∣∣∣ p̂− p√
p(1− p)/N

∣∣∣∣∣ ≤ dα

}
(1.4)

where p̂ is the maximum likelihood estimate of probability of a success and dα is the solution

to

1− α =

∫ +dα

−dα

1√
2π
e−t

2/2dt (1.5)

The confidence interval can be obtained by squaring both sides of (1.4) and solving the

quadratic equation for p p̂+ d2α
2N
− dα

√
p̂(1−p̂)
N

+
(
dα
2N

)2
1 + d2α

N

,
p̂+ d2α

2N
+ dα

√
p̂(1−p̂)
N

+
(
dα
2N

)2
1 + d2α

N

 (1.6)

The other way to find the confidence interval is by using the expected mean and the

sample variance estimate [4]. The expected sample mean of X, a Gaussian random variable

is given by

E [X] = XN =
1

N

N∑
j=1

Xj (1.7)

and the sample variance estimate

σ̂2 = E
[
(X − µ)2

]
= E

[
X2
]
− (E [X])2 (1.8)

Using the equivalence that will be described below, the upper and lower bounds can

be determined by considering a normally distributed sample mean, XN , from a normally
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distributed sample with mean, µ, and standard error, σ√
N

. By standardizing we get, XN−µ
σ/
√
N

and we can find the upper bound −a and lower bound a between which, XN−µ
σ/
√
N

lies with

probability, (1− α){
−a ≤ XN − µ

σ/
√
N
≤ a

}
=

{
−aσ√
N
≤ XN − µ ≤

aσ√
N

}
=

{
−XN −

aσ√
N
≤ −µ ≤ −XN +

aσ√
N

}
=

{
XN −

aσ√
N
≤ µ ≤ XN +

aσ√
N

}
Confidence Interval for mean: For Gaussian random variables with unknown

mean and known variance

For a set of Gaussian random variables with an unknown mean, µ, and a known variance,

σ2, the confidence interval of mean, µ, is found as follows:

1− 2Q(z) = P

[
−z ≤ XN − µ

σ/
√
N
≤ z

]
= P

[
XN −

zσ√
N
≤ µ ≤ XN +

zσ√
N

]
(1.9)

For α = 2Q(zα/2) where zα/2 is the critical value, the (1− α)× 100% confidence interval for

the parameter µ using (1.9) is given by[
XN −

zα/2σ√
N
,XN +

zα/2σ√
N

]
(1.10)

Confidence Interval for mean: For Gaussian random variables with unknown

mean and variance

For a set of Gaussian random variables with an unknown mean, µ, and variance, σ2, the

confidence interval of mean, µ, can be found by replacing the variance, σ2, in the equation

(1.10) with its estimate sample variance, σ̂2.[
XN −

tσ̂√
N
,XN +

tσ̂√
N

]
(1.11)

The random variable here,

T =
XN − µ
σ̂N/
√
N

(1.12)
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has Student’s t-distribution with N − 1 degrees of freedom.

For a critical value, tα/2,N−1, the (1−α)× 100% confidence interval for mean, µ, is given

by [
XN −

tα/2,N−1σ̂√
N

,XN +
tα/2,N−1σ̂√

N

]
(1.13)

For larger samples, the Student’s t pdf is observed to approach the pdf of standard

Guassian random variable N(0, 1).

For non-Gaussian random variables, X with unknown mean and known variance the

equation (1.13) can be modified using the method of batch means (section 8.4 of [4]).

Confidence Interval for variance: For Gaussian random variables with unknown

mean and variance

The estimate of sample variance is given by the equation (1.8) The below equation is

used to develop confidence intervals for the variance of a Guassian random variable. It has

a chi-square distribution with N − 1 degrees of freedom.

χ2 =
(N − 1)σ̂2

σ2
=

1

σ2

∑ N∑
j=1

(Xj −XN)2 (1.14)

For a critical value χ2
α/2,N−1, the (1 − α) × 100% confidence interval for variance, σ2, is

given by [
(N − 1)σ̂2

χ2
α/2,N−1

,
(N − 1)σ̂2

χ2
1−α/2,N−1

]
(1.15)

1.4 Thesis Outline

The objective of the thesis is to combine the concepts of Monte Carlo simulation and

distributed computing to efficiently execute compute-intensive problems. Comparing various

choices of distributed computing, we can conclude that cluster computing is an appropri-

ate form of computing for academic research. To realize the thesis objective, a scheduling

algorithm is proposed and an analytical model is created to investigate the effect of the pa-

rameters in the algorithm on the system. Using insights obtained by studying the analytical

model, a complete distributed Monte Carlo system is designed and presented as a case study.
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The purpose of chapter 2 is to understand distributed computing and its various types.

The types of distributed computing covered in the chapter are cluster computing, grid com-

puting, volunteer computing, cloud computing, and utility computing. The different types

of computing are presented in a hierarchical order of resources usage, where a cluster is

formed by combining together a set of computers; a collection of distributed computers,

clusters can be a grid; computing power of a collection of computers donated by anonymous

users is volunteer computing; and cloud and utility computing require grid. For each type

of computing, we cover its characteristics, issues and challenges involved, architecture, and

the difference between the types of computing. Single system image (SSI) concept, where a

cluster can be represented as a single resource is presented in cluster computing. Middle-

ware management systems provide services to manage any specific type of computing. We

provide a brief description of available middleware management systems for each type of

computing. The chapter also includes a section on Google App Engine, a cloud computing

technology developed by Google which provides platform as a service to develop and deploy

web applications on Google’s infrastructure.

Chapter 3 introduces parallel Monte Carlo simulation, a mechanism to quickly execute

jobs by dividing a job into multiple tasks, using distributed computing. An analytical model

is presented, which is characterized by a few critical parameters. Next, a scheduling algorithm

is presented, and the behavior of the scheduler can be controlled by just three parameters

of the algorithm. The scheduling algorithm includes the forgetting factor, α, and the weight

factor, β, which moderates the cumulative processing share of a user. Following this, the

influence of the parameters on the system behavior is presented. The next part of the chapter

introduces a refined algorithm that adds a third parameter, γ, which moderates the priority

assigned to job through the job factor parameter. The refined algorithm is followed by a

discussion on the effect of α, β, and γ parameters on the system. Towards the end of the

chapter, we present two classic algorithms, equal job share and FIFO, which can be realized

by varying the parameter values in the scheduling algorithm. Finally, we conclude the

chapter by presenting the recommended parameter values, obtained from the data resulted

in investigating the system behavior.

Chapter 4 presents the design of the system which is developed using the insights from
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the analytical model. It includes the implementation details, and handling of the files and

data. A brief discussion is presented on how the actual system implementation differs from

the analytical model. Matlab programming is used to coordinate workers, schedule, and

execute jobs on the cluster. A user-friendly graphical user interface (GUI) web application

is presented which is developed for the easy access to the cluster. Using the web application

users can sign in to their account from virtually anywhere to manage their jobs. Adminis-

trators have extra accessibility features to manage all the users and jobs. The chapter also

includes few screen shots of the web application. Chapter 5 presents conclusions and makes

suggestions for future work.
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Chapter 2

Distributed Computing

Distributed computing is a concept involving a systems of multiple networked computers

each with a separate local memory, which communicate and coordinate to solve compute-

intensive and data-intensive problems. Distributed computing offers several advantages when

compared to a single high-performance computer (e.g., a super computer). Distributed

computing is cost-effective as it is easy to have several low-end computers networked together

to solve a large problem. It is more reliable as a failure in a single computer in the distributed

system negligibly impacts the performance of the overall system. It is easy to expand the

system by adding more computers and also easy to eliminate unused or outdated computers

from the system. Distributed computing is effective in solving large scientific problems. It

is globally popularized by allowing individuals to participate by donating their computing

power through volunteer computing.

In this chapter, we will cover different types of distributed computing. In section 2.1 we

cover cluster computing, different categories of cluster computing, such as high-availability

clusters, load-balancing clusters, and high-performance clusters, and distinct characteristics

of cluster computing that provide advantages over other alternative options for solving large

problems. We also cover the concept and the advantage of representing a cluster as a single

system image (SSI), implementation of SSI at various levels of cluster architecture, and

some of the existing resource management software. In section 2.2 we cover grid computing,

its characteristics, architecture and grid middleware, which provides software libraries for

management and accessibility of the resources. We list some of the issues and challenges
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in grid computing and close the section with a note on the comparison between cluster

computing and grid computing. In section 2.3 we cover volunteer computing and review the

two major middleware management softwares BOINC, an open source software for computing

using volunteered resources and Frontier, a software solution for grid-computing. Later in

the section we review some of the major issues and challenges such as security, reliability

and close the section with a comparison between grid computing and volunteer computing.

In section 2.4 we cover cloud computing, characteristics of cloud computing, the hierarchical

architecture that include IaaS, PaaS, and SaaS defined in the section, issues and challenges

and a comparison between grid computing and cloud computing. A brief section on the

working and the components of Google App Engine, a technology developed by Google is

covered at the end of the cloud computing section. In section 2.5 we cover utility computing,

its characteristics, which might be both an advantage or a disadvantage depending on the

context (such as provider level or client level), and major concerns and improvements that

may popularize the usage of utility computing are discussed. We close the section with a

comparison between cloud computing and utility computing.

2.1 Cluster Computing

Cluster computing is a form of distributed computing of networked computers located

in a close proximity and operating as an integrated computing resource. A cluster of com-

puters are usually at a single physical location. Typically a cluster is homogeneous, i.e., all

the cluster computers have the same hardware and operating system. All the computers in

a cluster work co-operatively managed by a centralized resource manager. The key com-

ponents of a cluster include: multiple standalone computers (such as PCs, workstations, or

symmetric multiple processors (SMPs)), operating systems, high performance interconnects,

middleware, parallel programming environments, and applications.

2.1.1 Characteristics of Cluster Computing

The characteristics that make cluster computing suitable for certain tasks are high avail-

ability, high scalability, low network latency, reduced cost of maintenance, and easy man-
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ageability. A cluster provides high availability by eliminating any points of failure and is

highly scalable as nodes in a cluster can be added or removed without affecting the service

provided by the cluster. As all the nodes in a cluster are located at one physical location,

they are connected with high bandwidth connections leading to low network latency. The

nodes in a cluster are represented as a single system image providing easy manageability. A

cluster is cost-effective compared to super computers used in solving high-end problems. A

cluster is a combination of multiple computers, and it is easy to get multiple computers with

less configuration and combine them together to perform large problems. It is also easy to

maintain a cluster compared to a single high end configuration computer.

2.1.2 Cluster Categories

Cluster computing can be categorized based on the availability of clusters, the type of

load balancing, and the performance. The three major cluster categories are high-availability

clusters, load-balancing clusters and high-performance clusters. High availability clusters

provide high access to the services by maintaining redundant nodes in a cluster. This is

useful in providing a reliable service in case any nodes fail. Load balancing clusters improve

performance by sharing the workload among all the nodes in a cluster. High performance

clusters exploit parallel processing power of the nodes in a cluster in order to provide high

performance of the tasks running on the cluster. A cluster with a dedicated network and

homogeneous nodes is known as a ‘Beowulf cluster’1.

2.1.3 Single System Image

A single system image [9] represents a heterogeneous and distributed system as a single

unified computing resource and is useful to effectively manage a group of computers. SSI

ensures high system availability and load balancing. The key SSI features are single entry

point, user-interface, process and I/O space, process migration and check pointing, file sys-

tem, job management system, virtual networking, and control point and management. SSI

can be implemented as an additional layer at the hierarchical levels of hardware, operating

1http://www.beowulf.org/

http://www.beowulf.org/
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system, middleware and application levels of cluster architecture [10].

SSI in the hardware level allows the user to view a cluster as a shared-memory system

(e.g., systems such as digital/compaq memory channel and hardware distributed shared mem-

ory (DSM)). Hardware level SSI has the highest level of transparency but because of its rigid

architecture it does not offer the flexibility required for the extension and enhancement of

the system.

SSI at the operating system level supports process migration to provide dynamic load

balancing, device handling, process/thread co-ordination and fast inter-process communica-

tion for both the system and user-level applications. This level offers full SSI to all users

(includes application developers and end users) but is expensive to develop, maintain and it

is difficult to keep pace with technological innovations emerging into mass-market operating

systems [11].

Major cluster management systems are implemented as an extension to the Linux operat-

ing system. MOSIX [12] is a proprietary software implemented as an OS virtualization layer

on top of the Linux kernel providing a single system image to the users and applications.

OpenMosix is an open source cluster management software, and its development is currently

inactive. Linux Process Migration Infrastructure (LinuxPMI)2 is an open source Linux kernel

extension for multi-system-image clustering and it is a continuation of the halted openMosix

project. Kerrighed [13] is an open source single-system image project implemented as an

extension to the Linux operating system.

SSI implementation in the middleware level includes cluster file system, for a single

storage system with each node of the cluster having the same view of the data. It includes

job management and scheduling systems such as CODINE [14], and cluster-enabled Java

virtual machine.

The application level SSI is the highest level and is accessible to the end users. End users

can view multiple components of an application as a single application at this level (e.g.,

a GUI-based tool PARMON [15] and Linux virtual server [16] with a single virtual server

view). The advantage of the application level is that it is not required to develop all the

components of this level to be SSI aware, only the required components may be developed

2http://linuxpmi.org/trac/

http://linuxpmi.org/trac/
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to be SSI aware and the users can benefit from it.

2.1.4 Middleware Management Systems

Middleware is a software layer that provides services for applications in a heterogeneous

environment. Middleware includes resource management and workload management software

to administer the available cluster resources to the jobs in the system. Job scheduling

software schedules jobs and administers the job scheduling policies using process and job

prioritization. Below, are some of the cluster middleware management systems software.

Maui Cluster Scheduler 3 is an open source job scheduler maintained and supported by

Cluster Resources, Inc. for cluster and supercomputers. This is a job scheduler that supports

multiple scheduling policies and fair share capabilities.

TORQUE 4 is an open source resource manager, which controls batch jobs and distributed

compute nodes. TORQUE can be integrated with moab workload manager to improve the

performance and usage on a cluster. The key features of TORQUE include tolerance to failure

conditions in a cluster, scalability, usability and an user-interface for easy management of

the jobs on the cluster.

Oracle Grid Engine (previously known as sun grid engine (SGE)) [17] is a distributed

resource management (DRM) system. SGE is mainly used in a high-performance computing

(HPC) cluster and is responsible for scheduling and managing the execution of different types

of user jobs. Some of the key features include topology-aware scheduling and thread binding,

multi-clustering, job check pointing, resource reservation and fault tolerance. The scheduling

policies of SGE include first-come first-served (FCFS) and an optional administrator set

function of equal share scheduler, a fair-share scheduler that distributes resources equally

among all users and groups.

Moab Cluster Suite5 is a cluster workload management that simplifies and unifies the

cluster management across multiple environments. Its development was based on the Open

Source Maui job scheduling package. Its key capabilities include performance utilization,

3http://www.clusterresources.com/products/maui-cluster-scheduler.php
4http://www.clusterresources.com/products/torque-resource-manager.php
5http://www.clusterresources.com/products/moab-cluster-suite.php

http://www.clusterresources.com/products/maui-cluster-scheduler.php
http://www.clusterresources.com/products/torque-resource-manager.php
http://www.clusterresources.com/products/moab-cluster-suite.php
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gain of control over automated tasks, policies and reporting, fair share of resources, increase

in user productivity by allowing users to submit jobs from anywhere using an interface, and

easy management across clusters.

The Portable Batch System (PBS) is a workload management system for Linux clusters

that performs job scheduling. The three major components of PBS include a job server,

also called pbs server, which provides the batch services such as receiving and creating a

batch job, modifying the job, protecting the job against system crashes and running the

job. Job executor is a daemon, pbs mom that actually places the job into execution when

a job is received from the job server. The daemon creates a new session and returns the

job’s output to the user. Job Scheduler is a daemon that controls the running jobs based on

job scheduling policies. PBS is available as OpenPBS, an unsupported open source version

for small clusters and PBS Professional (PBS Pro), a commercial version. PBS Pro6 allows

preemption between different priority jobs. The default scheduler in both the versions of

PBS is shortest job first (SJF) and includes starvation prevention mechanism and backfilling

of jobs.

2.2 Grid Computing

Grid computing [18] is a form of distributed computing composed of a loosely coupled

computers that are geographically distributed to solve large compute or data intensive prob-

lems. The resources in grid computing belong to and are shared within an organization(s)

or virtual organization(s).

2.2.1 Characteristics of Grid computing

Distinctive characteristics of grid computing [19] are collaboration, heterogeneity, aggre-

gation, scalability, and decentralized control. The resources in a grid are a collaboration

of resources within an organization or by more than a single organization forming virtual

organizations. As the resources come from multiple geographical locations they are hetero-

geneous i.e., have different configuration with varied hardware and software components and

6http://www.pbsworks.com/Product.aspx?id=1

http://www.pbsworks.com/Product.aspx?id=1
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are connected with low-bandwidth connections. The collaborated resources are aggregated

and shared among the organizations increasing the utilization, providing high performance,

better quality of service, and easier access to resources and data. Resources in the grid

have high scalability as the resources can be added or removed without affecting the services

provided by the grid because of the large number of resources. Grid is a decentralized sys-

tem. The resources have different ownership control mechanisms as they come from various

administrative domains or organizations and do not have a single system view. Each node

in a grid is autonomous and behaves as an independent entity.

2.2.2 Grid Architecture

Typical grid architecture [18, 20] consists of four layers: fabric layer, core middleware

layer, user-level middleware, and applications and portal layer. Each layer is built upon ser-

vices offered by the lower layers. Grid fabric layer consists of computational resources (such

as PCs, clusters, and supercomputers), networks, storage devices, and scientific instruments

(such as telescopes, sensor networks). Core middleware layer abstracts the complexity and

heterogeneity of the fabric layer using the services of remote process management, quality

of service, storage access, allocation of resources, information registration, discovery, and

security. User-level middleware provides abstractions and services for the application devel-

opment environments, programming tools, resource brokers, and application task scheduling.

In applications and portal layer grid applications and portals are developed using the user-

level middleware.

2.2.3 Grid Middleware

Grid Middleware provides software libraries for the management of the grid and for

accessing the resources on the grid. Two main grid middleware systems are the globus

toolkit and the gridbus middleware. Globus toolkit provides core-grid services, and Gridbus

middleware provides more of the user-level services to the grid. We shall see some of the

details of the systems in the sections below.
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Globus Toolkit

Globus toolkit7 [21, 22] includes software services and libraries required to build dis-

tributed system services and applications. It includes tools for building new web services,

security infrastructure, service implementations, and client APIs and command line pro-

grams that provide access to various services. Service implementations include resource

management, data movement, monitoring and discovery service, and other services. The

grid security infrastructure (GSI) provides the authentication and authorization of grid users

using proxies, certificates, and secure communication using a single sign on. The globus re-

source management package globus resource allocation manager (GRAM) provides remote

job execution, monitoring, and reporting of status using the job managers. Job managers

are created depending on the local scheduler (e.g., PBS). The data management is handled

by the GirdFTP an extension to FTP protocol. GridFTP uses various services such as

replica location service (RLS), for the creation and deletion of replicas of a file identified

by the logical file name (LFN). The monitoring and discovery service (MDS) component of

the toolkit facilitates collecting and querying of the resource information. The three levels

of MDS consists of the information providers (IPs) in the bottom level, which gather and

format resource data; grid resource information service (GRIS) in the second level, which

query the IPs and update the cache with the resource data; and grid information index

service (GIIS) in the top level, which indexes the resource information provided by other

registered GRISs and GIISs.

Gridbus Middleware

Grid middleware such as Globus toolkit provides secure access and execution of the jobs in

the grid. The technologies required to realize utility computing, such as the resource broker-

ing technologies, scheduling data-driven applications, data management strategies, account-

ing of resource consumption, are provided in the Gridbus project. Gridbus hides the details

of resources and the low level middleware technologies from the application developers, thus

providing the user-level grid services. Gridbus provides various software technologies such as

7http://www.globus.org/toolkit/

http://www.globus.org/toolkit/
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alchemi, for the enterprise grid middleware; gridbus broker, for grid resource brokering and

scheduling; gridbus workflow engine, for grid workflow management; and visual parametric

modeller, for the grid application programming interface.

2.2.4 Issues and Challenges

Issues of concern in grid computing include security, availability, and reliability. Re-

sources of a grid can come from various organizations and the security policies may differ,

so the integrity and confidentiality of the data processed on the grid is a security concern.

Authentication, authorization, encryption, and confidentiality communication mechanisms,

and redundant computing can be used to handle the security concerns in the grid. Availabil-

ity of the grid resources can be increased by maintaining redundant resources in the grid.

Reliability on a grid can be improved by autonomic computing, a self-management software

that helps in improving the reliability by re-submitting the jobs to other machines in the

grid in case of inconsistencies.

2.2.5 Cluster Computing vs Grid Computing

A cluster and a grid are formed by combining together multiple computers but they differ

in many ways. Nodes on a cluster are tightly-coupled, homogeneous, and dedicated. The

nodes on a grid can be loosely-coupled, heterogeneous, and they can be either dedicated

or non-dedicated. Nodes on a grid can make use of spare computing power of a desktop

computer. Resources of a grid are geographically distributed, whereas the nodes in a cluster

in a close proximity generally at a single physical location. A grid is more scalable com-

pared to a cluster as the nodes in the grid are heterogeneous and any machine (with any

configuration and platform) can be added. Fine-grained parallel problems can be efficiently

run on a cluster in contrast to the coarse-grained parallel problems and problems composed

of independent tasks run on a grid. A cluster has a single system view and resources are

managed by a centralized resource manager, whereas each node in a grid is an autonomous

independent entity.
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2.3 Volunteer Computing

Volunteer computing [23] is a form of distributed computing where the computing re-

sources are volunteered by anonymous people from different geographical locations. The

computing power gathered using the volunteer computing is huge and it is also cost-effective

as the resources (computing power) are voluntarily donated by anonymous donors from

around the globe. Example volunteer computing projects are Search for Extraterrestrial

Intelligence (SETI) and Folding@home. SETI@home8 project analyzes the data gathered

by radio telescopes in search of evidence for extraterrestrial communications, and Fold-

ing@home9 project studies the way proteins take certain shapes (called folds) and how the

folds relate to the work of the proteins.

2.3.1 Middleware Management Systems

A Middleware system provides services to schedule jobs, resource management, and work-

load management. The two major players in providing the middleware software solution to

volunteer and grid computing are BOINC and Frontier. BOINC and Frontier have paved a

path to volunteer computing by enabling any regular user to donate their idle CPU cycles

in executing large data and compute intensive tasks.

BOINC

BOINC (Berkeley Open Infrastructure for Network Computing)[24] is an open-source

software developed at University of California, Berkeley. BOINC is used for compute inten-

sive projects in scientific research.

BOINC software consists of server software and client software. Server software is used to

create projects. It includes a relational database to store the details of the applications such

as the application descriptions, platforms, versions, work units, results, accounts, teams etc.

Client software is a simple downloadable software to run BOINC on the volunteers computers

on all the major platforms. Installing the BOINC client software makes a computer eligible

8http://setiathome.berkeley.edu/
9http://folding.stanford.edu/

http://setiathome.berkeley.edu/
http://folding.stanford.edu/
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to volunteer its CPU cycles for an available project. The software can operate either as a

screen saver application or a service on the volunteer computer. BOINC provides tools to

manage projects. The web services and daemon processes handle the server functions, and

the scheduling servers issues work and handles results from the clients. The data servers

handles the valid file uploads.

Redundant computing is used in BOINC to validate the results computed by the vol-

unteer computers. Failure and backoff is used to manage the connection overload by the

participants. Volunteers have the option to choose on how and when their resources can be

used by participant preferences. Resources donated and the credit earned by the volunteers

is tracked using the accounting system. A local scheduling policy is used to decide on which

client to volunteer and execute the tasks for a project.

Frontier

Frontier10 is a software solution for grid-computing by Parabon Computaion, Inc. Using

Frontier, virtual-private grids and public grids can be built using the dedicated and idle

resources. Data and compute intensive jobs can be executed on the Frontier grid. Frontier

allows organizations to build their own private grids by utilizing the computing resources

available in the organization. The resource management can be handled either by the orga-

nization itself or the Parabon Computation, Inc.

An organization can build their own grid using the Frontier Enterprise grid software.

Frontier Grid Server is the heart of the grid, which manages the scheduling of the jobs

and the management of the resources. It can be installed on a single or multiple servers.

Frontier Compute Engine a downloadable software, can be installed on the provider machines

to execute the tasks of jobs. Frontier Dashboard a web-interface, allows to launch jobs, view

results, and monitor usage of resources. Frontier allows any computer user to donate their

CPU cycles to execute the tasks of jobs. This can be simply done by downloading the

Frontier Compute Engine software and installing on the computer. Frontier also provides

tools to create Frontier-enabled applications that can be run on Frontier.

Though the scheduling algorithm or the policies utilized in executing the tasks of jobs

10http://www.parabon.com/

http://www.parabon.com/
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or how the resources are managed in a grid is unknown because of the limited available

information, Frontier makes sure it ensures the security and the confidentiality of the user

jobs and the resources. It uses various security mechanisms like encryption of the user

jobs (tasks), authentication of resources, and following a double blind procedure. In double

blind procedure, the provider of the resources is unaware of the source of the tasks that are

running on the resource, and the users of the jobs are unaware of the nodes on which their

task is executed. Massive parallelism and redundancy are used to ensure availability of the

resources (nodes) to the user jobs. Result tampering is avoided by the redundancy checks

of the results obtained by running a task of a job on multiple nodes.

2.3.2 Issues and Challenges

Volunteer computing is a very flexible and cost-effective form of computing among the

various distributed computing. With the advantage of using the computing power donated

by individuals, comes some of the vulnerabilities. Challenges of volunteer computing include

the heterogeneity, reliability of the results, scalability, and security. As the resources are

donated by anonymous volunteers they are heterogeneous with respect to hardware, software,

and network speed. This is an issue because the resources are not dedicated for the purpose

and it is difficult to estimate the number of resources required for a job and the time for the

completion of a job. This issue can be overcome by the use of virtual machines. The results

given by the volunteer computers may not be trustworthy because of the anonymity of the

resources. This can be reduced by task replication i.e., executing job on multiple computers

and comparing the results to validate and provide reliable results. Volunteer computing is

highly scalable as resources are volunteered by anonymous people from around the world.

Scalability can be handled using a server architecture distributed across multiple machines.

Privacy and security is a major concern as the project tasks run on machines of anonymous

donors who are not accountable to the data-integrity. Account sandboxing can be used to

handle the issue, where the volunteers will not have access to the data files of the tasks that

are run on their donated resources.
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2.3.3 Grid Computing vs Volunteer Computing

The resources on a grid belong to an organization(s) or a virtual organization(s) which

regulate the resources according to the organizational policies. Therefore, the resources are

accountable for the results returned by them. In volunteer computing, the resources are not

accountable for the results returned for the tasks run on them, as anonymous volunteers

donate participate by donating their resources for compute intensive projects. Resources in

grid computing are monitored, maintained, and updated by the participating organizations,

whereas the resources in volunteer computing are maintained and updated by the volunteers

eliminating the maintenance cost.

2.4 Cloud Computing

Cloud computing [25, 26, 27, 28] is a form of distributed computing where the resources

required by applications i.e., platform to develop the application, software, and infrastructure

can be accessed as an on-demand service. A cloud usually uses a grid. In cloud computing,

the functioning, handling of the devices and the resources of the cloud are abstracted from

the end users. End users can request and avail of the services depending on the demand of

the application using a user-interface (e.g., a web browser).

2.4.1 Characteristics of Cloud Computing

The characteristics of cloud computing include [29] high availability, scalability, on-

demand metered service, ubiquitous network access, resource pooling, and elasticity. In

cloud computing the consumers can avail of the required computing resources on-demand

as a metered service based on the service agreement and the payment policies. It is an

advantage to the client companies as they can pay only for the amount of resources the

company uses. With cloud computing, the power of computing can be realized by all the

internet-enabled devices (e.g., mobile phones, laptops, and PDAs), on-the-go i.e., ubiquitous

computing. The resources in a cloud are pooled to serve multiple users’ computing demands.

The resources can be dynamically varied (assigned or released) based on the user-demand
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using various models such as the multi-tenancy or the virtualization model. Thus, a cloud

is resource elastic in nature.

2.4.2 Hierarchical Architecture

The bottom-up hierarchical architecture of cloud computing comprises of data centers,

infrastructure, platform, application, and cloud clients. Data centers consist of the computer

hardware and software designed for the delivery of cloud services. Infrastructure as a service

(IaaS) offers a usage-based pricing model of the computer infrastructure i.e., hardware,

software and equipments required to deliver software application environments. Platform as a

service (PaaS) provides high-level integrated environments to design, build, test, deploy, and

update online applications without the need to purchase or manage the hardware/software

required for the applications. Using software as a service (SaaS), software is rendered as a

service over the internet . SaaS eliminates the capital costs required to purchase, install,

and maintain the software. Cloud clients consist of the end user computer hardware and

software, that is specifically designed for the receipt of the cloud services for the application

delivery.

2.4.3 Issues and Challenges

Security, interoperability costs, privacy, and reliability are some of the issues and chal-

lenges in cloud computing [30, 31].

The idea of putting one’s data and deploying applications on a third-party resource

provider is intimidating. The security concerns include the organization’s loss of data, phish-

ing, and botnet (network of computers using distributed computer software) [32].

The cloud computing reduces the capital and maintenance costs for a client as the clients

need not purchase, install, and update the required infrastructure. But, in order to integrate

cloud computing services the client company may need additional infrastructure which may

increase the client company’s costs, and such interoperability costs should be minimized.

In cloud computing there is a risk of privacy of data as the data resides on the service

provider resources, which may be geographically distributed with varied privacy laws and
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standards. In a cloud, depending on the user-demand the resources are allocated to different

users. There is a risk of data-theft as the data of a user can be recovered at a later time

when the resources are accessed for another job of another user. Tasks of jobs are run on the

service provider’s resources where the client’s data resides. Service providers have access to

the data of jobs on the resources, which they can monitor and control impacting the privacy

and security.

The resources in a cloud are heterogeneous and come from various sources (organizations

or anonymous volunteers). The resources (nodes) are located at different geographical loca-

tions and are connected over a network, thus network latency is an issue. It is possible that

the job might take more than an estimated time to complete because of network latency

and unavailability of the resources. Thus, the reliability of the access of the service can be

improved by maintaining redundant resources and redundant computing.

2.4.4 Grid Computing vs Cloud Computing

Grid computing links autonomous heterogeneous computers to form one large infras-

tructure to solve computationally intensive problems. Cloud computing evolves from Grid

computing and provides on-demand provisioning of the resources (software, platform, and

infrastructure) on the cloud [33, 34].

2.4.5 Google App Engine

Google App Engine (GAE)11 is a cloud computing technology developed by Google. It

provides the PaaS for developing and deploying the web applications on Google’s infrastruc-

ture. GAE includes the Java runtime environment and the Python runtime environment. It

supports applications written in standard Java technologies and Python environment. GAE

includes APIs for user authentication, sending email using Google accounts, data store (a

distributed data storage service with a query engine and transactions consisting of data ob-

jects or entities with properties.), task queues for performing work outside the scope of a

web request, and scheduling tasks for triggering events.

11http://code.google.com/appengine/

http://code.google.com/appengine/
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Application Instances

Applications run on Google servers. Servers load balance the traffic and the data storage.

The requests to the application are served by the instances dynamically. The number of

instances running can vary dynamically depending on the traffic to the application. Instances

include a security layer to separate from one another and each instance includes the language

runtime, the App Engine APIs, application’s code, and memory. A minimum of three

instances can be allowed to run always for an application as always on irrespective of the

traffic demands.

Application Management

Users can launch their applications using their Google account and manage it on the

GAE. Admin console can be used to create and manage the applications. Data store and

application’s traffic can be monitored, and new versions of the application can be tested and

added.

Quotas and Billing

GAE billing is controlled by quotas. GAE is free for limited storage providing enough

CPU and bandwidth to efficiently run an application. Billing for an application can be

enabled to set a maximum daily budget depending on the application needs and charging of

resources is done per the billing policies when extra resources are required.

2.5 Utility Computing

Utility computing [35] is a form of distributed computing where the computing resources

like hardware, computer processing power, and data storage are provided as an utility sim-

ilar to the other regular utilities such as electricity. Utility computing is an advantage to

companies which prefer to rent the computing resources on-demand and pay only based on

their usage. Utility computing provides computing resources to the client companies and

grid computing is required to gather the computing resources to provide as an utility.
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2.5.1 Characteristics of Utility Computing

The main characteristics of utility computing from the client prospective include the

convenience, cost, and reliability. Utility computing is not yet a well-established service and

so each of the characteristics have its advantages and concerns. Using utility computing

a client has the advantage of convenience to not worry about purchasing and maintaining

the computing resources that are required by the client company. All the background work

required for using the computing resources is handled by the utility computing company.

Though it might seem advantageous for a company to use utility computing, it might not be

a right choice in all cases. The infrastructure to take advantage of utility computing might

surpass the capital and maintenance costs of the resources the client company intends to get

service from the utility company. Thus, cost can be either an advantage or disadvantage

depending on the client company requirements, policies, and the quality of service of the

utility computing company. Reliability depends on how effectively the utility computing

company can provide service without major interruptions to the service. An interruption

may lead to loss to time, resources, and data.

2.5.2 Issues and Challenges

Major issues and challenges of utility computing include billing, quality management and

technology capabilities, interoperability costs, operational costs, and deployment time. To

stabilize the utility computing, companies need to come up with policies and standards for

billing the computing resources. The utility computing companies also need to establish

certain quality of service standards in the business and reevaluate the standards with time

and follow cutting-edge technology standards. An advantage of the utility computing is, the

client companies pay only for the amount of resources utilized. However, for the efficient use

of the resources the client company might need to procure additional infrastructure (hard-

ware/software) and these costs need to be minimized. Also, the operating costs need to be

minimized as the businesses of the client companies may grow and the amount of computing

resources utilized by the client companies may grow with time. Using utility computing the

cost, deployment time, and the use of additional infrastructure must be minimized compared
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to the costs when the client companies internal resources are utilized.

2.5.3 Cloud Computing vs Utility Computing

Utility computing is a business model to provide computing resources on pay-by-use

basis. Cloud computing is a wider concept which provide services (hardware or software)

required for the development cycle of software applications and the resources can be changed

depending on the requirement and the availability.

2.6 Conclusion

There are many choices available for distributed computing. Many of these choices are

well suited for parallel Monte Carlo simulation. For the academic computing environment

envisioned by this research, a combination of cluster and volunteer computing is a reasonable

choice. A cluster computer of modest size can be used to provide the computing power

required for most applications, while volunteer computing can be used to freely assemble a

grid of additional resources when they are needed.
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Chapter 3

Scheduling for a Multi User

Environment

3.1 Theoretical Background

Let X be a random variable, N be the total number of trials, and S be the number

of successes in N , trials. The goal of the simulator is to estimate the mean of X. In a

simulation, a trial is a Bernoulli trial with outcomes 0 and 1. Success outcome is 1 with

probability, p, and failure outcome is 0 with probability, 1 − p. The mean of X can be

calculated as below:

M̂X =
1

N

N∑
i=1

xi =
S

N
(3.1)

Parallel Monte Carlo Simulation

Using distributed computing, a simulation can be quickly performed by dividing a job

into multiple tasks and executing them in parallel. A task is a set of trials that may be run

in parallel with other tasks. Of the large number of trials required to complete a simulation,

a set of trials are run independently on each of the available machines. Let xn,j be the nth

realization of the jth task associated with X, Nj be the number of trials in the jth task,

and k is the total number of tasks required to complete a job(k, is unknown until the job is

completed). Using the parallel Monte Carlo simulation method, the expected value of mean
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can be calculated as

M̂X =
1∑k

j=1Nj

(
N1∑
n=1

xn,1 +

N2∑
n=1

xn,2 + · · ·+
Nk∑
n=1

xn,k

)

MX =
1∑k

j=1Nj

 k∑
j=1

Nj∑
n=1

xn,j

 (3.2)

3.2 System Operation

Jobs in a distributed computing system can be scheduled using many existing schedul-

ing algorithms such as stride scheduling [36], lottery scheduling [37], charge-based propor-

tional scheduling [38], fair share scheduler [39], and other proportional share algorithms [40]

that consider the processing time utilized by the users and proportionally allocate resources

relative to their share. The execute a Monte Carlo simulation in parallel making use of

distributed computing a scheduling algorithm is developed to schedule and execute jobs ef-

ficiently. An analytical model is created to test the system behavior when the parameters of

the algorithm are varied. In this section we discuss the system operation of the analytical

model and then present the algorithm in the following section.

A set of users in the system is represented as, U = {U1, U2, . . . , Ud}. Users submit jobs

to the system, and the jobs are enqueued in the jobs queue. A single user can have multiple

jobs. Job manager is a process, which checks for the newly arrived jobs in the queue, checks

for the resources in a time slot, assigns priorities to jobs, combines tasks results of a job,

and updates the jobs. Each time period, t1, job manager checks for new jobs in the queue.

Let t2 be the time period of one time slot. As each worker executes a task in a time slot,

the time period of execution of a task is t2. However, a task is an integer number of trials,

so at the end of time period, t2, if the task is midway of a trial then the task ends after

the completion of that particular trial. Thus, the actual time period, t2, is random for each

task. Let n be the number of jobs in queue in time slot, `. A set of jobs in the queue is

represented by, J = {Ji,1,`, Ji+1,2,`, . . . , Jp,n,`} (p ≤ d), where Ji,j,` is the jth job in the queue

of time slot, `, and it belongs to user, i.

At the beginning of each time slot, job manager assigns a priority, a value in the interval

[0, 1] to each job in the queue. The priority is assigned using the scheduling algorithm defined
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in the following sections. The total number of computing resources (workers) available to

service jobs in a time slot be, C. A worker is a computing resource that services/executes a

task. A worker can service a single task in a time slot.

A worker picks a job for execution as follows; for each job using its priority, a priority

interval (a lower and an upper bound of the priority in the range [0, 1]) is constructed. Each

worker generates a uniform random number between [0, 1], if the random number is in the

priority interval of a job then that particular job is picked to be serviced by the worker. As

workers independently choose a job to service by generating a random number, the number

of workers servicing a job (i.e., the number of tasks executed for a job) is random in a time

slot. At the end of execution of a task each worker saves the results.

Job manager keeps track of the execution results of all the tasks of a job and saves the

consolidated data at the end of each time slot. For each user, job manager keeps track of

the number of tasks executed. This data is necessary in calculating the priorities of jobs in

the queue, discussed as part of the scheduling algorithm. The total processor time required

to complete a job is, Γp = kt2, where k is the number of tasks required to complete a job

(k is unknown until job completion) and the duration of a job is, Γc = δt2, where δ is the

number of time slots required to complete the execution of a job (from the time slot the job

is submitted to the system to the time slot the job completes execution).

In the analytical model, the number of successes, S, is required to complete a job (S, is an

input parameter). Number of trials generated in ith task of a job, Ni, is fixed. The number

of successes observed in a task is pNi where, p, is the success probability of a Bernoulli trial.

Thus, the number of expected tasks required to observe S, successes for a job is, k̂ = S
pNi

.

Assuming that the job can be completed in k̂, tasks simplifies the calculation of all the

intermediate values in the algorithm (e.g., remaining percent of the job can now be obtained

using the number of remaining tasks, unlike calculating it using total number of required

successes, S; number of remaining successes; and the number of trials required to observe

the completed successes, if the above approximation of using k̂, is not done). The actual

number of tasks, k, required to complete a job can differ from k̂, as the number of tasks

serviced for a job in a time slot is random.
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3.3 Proportionally Fair Scheduling Algorithm Design

In the scheduling algorithm discussed in the following sections, the exponentially-weighted

window is used to calculate the cumulative processing power utilized by a user. An exponentially-

weighted window is an efficient method to keep track of processing power utilized by the users

as it do not have to keep track of the data in each time slot. It is sufficient to keep track of the

data in the previous time slot i.e., the number of computing resources and the exponential

cumulative processing power value of a user in the previous time slot.

Parameter α, the forgetting factor is used in evaluating the exponential cumulative pro-

cessing power utilized by the users. α = 0 implies only the number of computing resources

utilized in the previous time slot are considered to calculate the exponential cumulative pro-

cessing share of a user (i.e., the exponential processing power utilized through the previous

time slots is not considered). For α = 1, exponential cumulative processing power utilized

is the sum of the resources used by a user until the current time slot. The preferable range

of values of α is 0 < α < 1.

The second parameter, β, moderates the processing power utilized by a user. The prefer-

able range of values for β is [−1, 0]. For β = −1, the weight assigned to a job of a user is

inversely proportional to the processing power utilized by a user, i.e., if a user has utilized

more processing power then a job of that particular user gets less weight. Thus, the job gets

a low priority. For β = 1, the weight assigned to a job of a user is directly proportional to

the processing power utilized by the user and so the job is assigned a high priority. The

priority assigned to a job reverses from β = −1 to β = 1. If β = 0, then processing power

utilized by a user is not considered in evaluating the weight of a job. All the jobs in the

queue are assigned an equal priority and this is equal job share. The exponential cumulative

processing power utilized by each user is moderated with value β, to assign a weight to each

job in the queue. A normalized weight assigned to each job gives the priority of the job, a

value in the interval [0, 1]. The number of workers servicing a job depends on the priority of

the job, more workers service a job with high priority.

A job can be over done, if more than the required number of workers service a job. This

is often observed in the following two cases. Case 1 is observed when a job gets high priority
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towards the end of its completion, and case 2, when a job is small and it gets an initial high

priority. The second case arises because the system is ignorant of the number of workers

required to complete a job unless a part of the job is serviced. The first case is handled by

determining if a job is towards the end of its completion. Let c1, be the the remaining percent

of a job at which it can be labeled as case 1. k̂j, be the expected number of tasks required

to complete a job j in the queue, and Ci,j,`, be the number of completed tasks of a job, j, in

time slot, `, of a user, i, then the remaining number of tasks of the job is, Ri,j,` = k̂j −Ci,j,`.

The remaining percent of job is given by, ri,j,` =
Ri,j,`100

k̂j
. The algorithm avoids assigning

a high priority to a job by comparing the assigned priority of a job (calculated using the

weight of a job in the time slot) to the expected priority (calculated using ri,j,`) to avoid over

work. The expected priority is given by, ˆPi,j,` =
Ri,j,`
C

, normalized with the total number of

available computing resources, C, in a time slot. If the assigned priority, Pi,j,`, of a job is

greater than the expected priority, ˆPi,j,`, then adjust the priority of the job to the expected

priority. In case 2, i.e., when the number of completed tasks of a job is zero, a predetermined

percentage of workers, c2, (c2 value converted into [0, 1] range) is assigned as the priority of

the job.

3.3.1 Scheduling Algorithm

The following steps explain the process of assigning priorities to the jobs in the queue.

1. An exponentially-weighted window is used to calculate the processing power utilized

by the users. Through time slot, `, the computing resources utilized by an user, i, is

given by

Ei,` = αEi,`−1 + τi,`−1, (3.3)

where, Ei,`, is the exponentially-weighted cumulative processing power utilized by user,

i, through time slot, `; τi,`, is the number of tasks executed for user, i, in time slot, `;

and α, is the forgetting factor.

For ` = 1, Ei,1 = α1 + 0, i.e., Ei,0 = 1 and τi,0 = 0.

2. The weightage of the available resources that can be assigned to a job, Ji,j,` i.e., jth
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job in queue of user, i, in time slot, `, is

Wi,j,` = Eβ
i,` (3.4)

In equation (3.4), for β = 0 all the jobs in the queue get equal weight, equal job share.

3. The priority of a job, j, of user, i, in time slot, `, is

Pi,j,` =
Wi,j,`

W1,1,` +W2,2,` + · · ·+Wd,n,`

, 0 ≤ Pi,j,` ≤ 1 (3.5)

If Ci,j,` > 0, ri,j,` ≤ c1, and Pi,j,` > ˆPi,j,` then assign Pi,j,` =
Ri,j,`
C

. If Ci,j,` = 0, then

assign Pi,j,` = c2, (c2 value converted into [0, 1] range).

The above statement is executed if the number of jobs in queue is greater than the

sum of the new jobs and the jobs that are about to complete (otherwise, the above

statement is not executed because in a time slot we do not anticipate to have workers

that does not execute any task, as we want to maximize the cluster utilization; and

also processing more than the required number of tasks for a job gives more precise

results). As over work is handled, the sum of the priorities of the jobs can be less

than 1, however, as cluster utilization should be maximized, the priorities of jobs with

Ci,j,k > 0, and ri,j,k ≥ c1, are recalculated and assigned.

4. In each time slot, for each job a priority interval (a lower and an upper bound of the

priority in the range [0, 1]) is constructed. Each worker independently generates a

uniform random number in the interval [0, 1]. Worker checks the priority interval of

each job and picks a job to service for which the generated random number is in the

range of the priority interval.

5. The number of tasks serviced (including the time required to complete each task) and

the number of successes observed for each job in a time slot are tracked.

6. (a) At the end of each time slot i.e., at the end of time period, t2 a check is performed

to make sure if the number of tasks serviced for each job were sufficient to complete

the execution of the job.
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(b) If the number of completed tasks are sufficient, corresponding jobs’ status are

marked as Done.

(c) Jobs with status Done are not included in the list of jobs that need to be scheduled

in subsequent time slots.

(d) A check is performed to determine the arrival of new jobs into the jobs queue. All

the new jobs are taken into consideration to be scheduled in the next time slot.

(e) For all the jobs in the queue, priorities are recalculated, scheduled, and executed

using steps 1 through 4.

This algorithm assigns weight to a job of a user depending on the β value. If β > 0,

then a job of a user who utilized more cumulative processing power is assigned a greater

weight compared to a job of a user with less cumulative processing share. If β < 0, then a

job of a user with less cumulative processing share is assigned a greater weight compared to

a job of a user with more cumulative processing share. Thus, the priority assigned to a job

in a time slot depends on the exponential cumulative processing share (moderated using the

parameter, α) and the value of the parameter, β.

3.3.2 Effect of α and β Parameters on the System

An analytical model is created to observe the effect of the parameters, α, and β, on the

system. Number of users in the system are, d = 10, and the number of available computing

resources in a time slot, C = 100. Among 10 users, user, U1, submits only one big job, J1,1,1,

which is 20 timer bigger than a regular job. The job submission probability of a user (other

than user, U1) is , ρ = 0.008. The total expected duration to analyze the system behavior

is 10000 time slots, where the actual duration may take a little longer, as the analysis is

complete for a set of parameters when all the jobs in the system complete execution. The

actual duration, T > 10000, for the above parameters. Using, ρ, and 10000 time slots, a

matrix of users and time slots is created. This matrix provides information on which user

submits a new job to the system in which time slot. From the matrix, the total number of

jobs submitted to the system are 539 (538 regular jobs and 1 big job of user, U1).
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Figure 3.1: Number of workers executing each of the jobs over the time slots, alpha = 0.25
and β = −1

The input parameters for each job include the success probability of a trial, p = 0.01, the

number of trials per task (task i) of a job, Ni = 1000, and the number of successes required

for the completion of the job, S = 20000. Therefore, k̂ = S
pNi

, for a regular job, k̂ = 2000;

and k̂, of J1,1,1 (of user U1) with S = 400000, is, k̂ = 40000. Let t2 = 1 (a unit time period).

In order to understand how the jobs are executed by the workers in the system, we shall

examine Figure 3.1. The duration (number of time slots) required to complete a job depends

on the priority assigned to a job in each of the time slots. In each time slot, the tasks of a job

may be serviced by different workers. The number of workers executing a job in a time slot

is proportional to the priority assigned to the job. In Figure 3.1, we examine the execution

of each of the jobs, Job 1 - 5 from time slots 20 - 140 with parameters α = 0.25 and β = −1.
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Figure 3.1, shows the tasks of each job sorted together in a time slot. x-axis represents time

slots, y-axis is workers, and each of the jobs (tasks of the jobs) serviced by the workers in

the time slots is represented with a different color. In Figure 3.1, color black represents Job

1, pink for Job 2, green for Job 3, red for Job 4, and brass for Job 5. Job 1 execution starts

in time slot 1, and as it is the only job in the system all the workers service it until Job 2

is added in time slot 25. As more jobs are added by the users into the system, the number

of workers servicing a job varies over the time slots depending on the job priority. Jobs 2 -

5 start in between time slot 25 and end in time slot 134. In time slot 135 and in the later

time slots, all the workers service Job 1 as it is the only job in the system, until more jobs

are added to the system.

Effect of α on the System

First, let’s take the parameter, α, and observe the system behavior when α, value varies.

In the algorithm, we have two parameters, α, and β. To observe the effect of α, we set

β, to −1, i.e., the priority assigned to a job is proportional to the exponential cumulative

processing share of the user. We chose β = −1, as proportional share is preferred in most of

the scheduling mechanisms.

α, is used in calculating the exponential cumulative processing share of a user. For user,

i, in time slot, `, a small value of, α, assigns less weight to Ei,`−1, decreasing the value of

exponential cumulative processing share, Ei,`, of a user in current time slot. A small value

of Ei,`, gives a high priority to a job (with β = −1), that means the job should complete in

a small number of time slots. Similarly, a high value of α, gives more weight to Ei,`, and so

a low priority is assigned to the job, which means job requires longer duration to complete.

The system behavior is observed for 0.25 ≤ α ≤ 1. The duration of big job, J1,1,1, and the

mean duration of the regular jobs are provided in Table 3.1. For a small value of α, J1,1,1,

is executed in a short duration and the duration is observed to increase with an increase in

the value of α.

The mean duration of the regular jobs is observed to be reverse of the duration of the big

job, J1,1,1, shown in Fig. 3.2. With an increase in α, J1,1,1, is assigned a low priority over the

time, and more workers service the regular jobs decreasing the mean duration of the regular
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Table 3.1: Duration of big job and the mean duration of regular jobs with β = −1, and
different values of α

α β T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.25 -1 11164 40000 3385 2000.7 1923.8
0.5 -1 11165 40000 3538 2000.9 1923.1
0.75 -1 11164 40000 3590 2000.7 1920.4
0.85 -1 11164 40001 3665 2000.7 1919.8
0.95 -1 11164 40000 3793 2000.7 1920.2
0.98 -1 11164 40001 4098 2000.7 1916.6
0.99 -1 11165 40000 4474 2000.9 1914.2

0.9999 -1 11165 40001 9821 2000.9 1809.2
1 -1 11165 40001 10564 2000.9 1791.4

jobs.

Effect of β on the System

To observe the effect of β, we fix the value of α, and vary the values of β. The preferred

range of values of β is, [−1, 0]. Weight of a job is proportional to the β power of the

exponential cumulative processing share of a user, equation (3.7). We did not consider

positive values of β, because, in most scheduling scenarios users’ with high processing power

are not preferred over users’ with low processing power.

For a fixed set of α and β values, the exponential cumulative processing share value, Ei,`,

is high for a user, i, in time slot, `, with a large number of executed tasks. If an user’s jobs

are not serviced by the workers over certain number of time slots, then Ei,`, value decreases.

The weight of a job is not dependent on the value of β, alone, but is also affected by the

value of α. The priority of the job in a time slot is dependent on the weight of the other jobs,

equation (3.5). The value of the parameter, α, and the weight of the other jobs influence the

system behavior, and the number of tasks serviced for the big job alternates over the time

slots, i.e., the number of tasks serviced increase with an increase in β for few time slots, and

then the number of tasks serviced decreases. However, for each of the β values, about 43%

of the job is observed to complete in the first 330− 350 time slots (initial 4% of time slots)

and then the behavior stops fluctuating as described above, shown in Fig. 3.3 for α = 0.95,

and in Fig. 3.4 for α = 1. From the data we can conclude that with an increase in the

value of β more number of time slots are required to complete the remaining job (J1,1,1) i.e.,
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Table 3.2: Duration of big job and the mean duration of regular jobs with α = 0.5, and
different values of β

α β T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.5 -1 11165 40000 3538 2000.9 1923.1
0.5 -0.75 11164 40000 4239 2000.5 1921.5
0.5 -0.5 11164 40000 5567 2000.7 1904.5
0.5 0 11168 40063 11168 2001.4 1786.6

Table 3.3: Duration of big job and the mean duration of regular jobs with α = 0.95, and
different values of β

α β T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.95 -1 11164 40000 3793 2000.7 1920.2
0.95 -0.75 11164 40000 4528 2000.7 1912.3
0.95 -0.5 11165 40000 5936 2000.9 1902.1
0.95 0 11168 40026 11168 2001.4 1791.2

Table 3.4: Duration of big job and the mean duration of regular jobs with α = 1, and
different values of β

α β T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
1 -1 11165 40001 10564 2000.9 1791.4
1 -0.75 11165 40002 11012 2000.9 1786.2
1 -0.5 11164 40050 11164 2000.7 1780.9
1 0 11167 40062 11167 2001.2 1787.5

remaining 57% of the big job take a large number of time slots (about 96% of time slots ).

We also observed the system behavior by varying α value for a set of β values (in the

range [-1, 0]). Increasing the value of α, for a fixed value of β, we observed that big job

takes long duration to complete. This is expected and follows the reasoning given in section

3.3.2. Data for this system behavior is shown in Tables 3.2 - 3.4. For α very close to 1

i.e., α = 0.9999, 1, the duration of big job, J1,1,1, is observed to increase by a large fold,

data provided in Table 3.4. The reason for this behavior is, now the exponential cumulative

processing share of a user is the sum of the tasks serviced for an user (exponential cumulative

processing share value, Ei,`, never decreases in this case unlike when α < 1).

For regular jobs, the mean duration of the jobs is observed to decrease with an increase

in the value of β. As the duration of big job, J1,1,1, increases with an increase in the β, more

workers service the regular jobs decreasing the mean duration of the regular jobs, shown in

Fig. 3.5.
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3.4 Refined Algorithm with Job Factor

A variant of the algorithm described in section 3.3.1 adds another parameter, the job

factor. Job factor is the expected number of remaining tasks required to complete a job. Job

factor of job, j, in time slot, `, of user, i, is represented by Fi,j,`. If the number of completed

tasks of the job is Ci,j,`, and Ri,j,`, the remaining number of tasks required to complete, then

the job factor is given by

Fi,j,` = Ri,j,` (3.6)

when Ci,j,` = 0, a pre-determined percentage of workers, c2, is used to assign the priority of

the job.

Here, job factor is Ri,j,`, because of our assumption that in each task a certain number

of successes are observed. But if we don’t make this assumption, we need the knowledge of

the number of tasks completed, number of completed trials, remaining successes to observe

(we need to keep track of this data), and the total number of required successes to observe

for a job.

Weight contributed to a job by job factor is moderated by a third parameter of the

algorithm, γ. Job factor raised to the power of γ (along with α and β parameters) is used

in assigning a weight to the job. Using γ, jobs of users with high cumulative exponential

processing share, Ei,` are not ignored. For γ > 0, the weight contributed by the job factor

is high, if there are a large number of remaining tasks. For γ < 0, the weight contributed

by the job factor is less, if there are a large number of remaining tasks. γ = 0, implies job

factor is not considered in calculating priority of the job. For γ = 0, and β = 0, all jobs in

the queue get equal priorities, equal job share scenario.

3.4.1 Refined Scheduling Algorithm

The algorithm with the addition of third parameter is as follows:

1. Step 1 of the algorithm is same as step 1 in the 3.3.1 algorithm.

2. The weightage of the available resources that can be assigned to a job, Ji,j,`, j
th job in
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queue of user, i, in time slot, `, is given by

Wi,j,` = F γ
i,j,`E

β
i,` (3.7)

In equation 3.7 for β = 0, and γ = 0, gives equal job share.

3. Steps 3-6 are same as steps 3-6 in 3.3.1 algorithm.

3.4.2 Effect of α, β, and γ Parameters on the System

To observe the effect of the parameters, α, β, and γ, in the algorithm, described in section

3.4.1 we used the analytical model described in section 3.3.2. In this section, the system

behavior is observed by varying α, and β, values when the third parameter, γ, (fixed value)

is considered in calculating the priority of a job. We also observe the effect of γ, by fixing

the values of α, and β. Also, the combined effect of the parameters α, and β; and α, and γ,

on the system is also observed.

Effect of α on the System

The system behavior is analyzed to observe the effect of α, in the presence of the third

parameter, γ (used with job factor). A high value of γ, implies more weight is assigned to

the job if it requires a large number of expected tasks to complete (a big job). To observe

the effect of α, we set β = −1, i.e., the priority assigned to a job is proportional to the

exponential cumulative processing share of a user, and γ = 1. With γ = 1, a big job gets

more weight compared to other jobs. Thus, big job, J1,1,1, completes in a short duration

compared to the duration when job factor is not considered in assigning priority of a job.

Comparing the duration of the big job for different values of α, we conclude that the

duration to complete a big job increases with increase in the value of α. This behavior is

expected, for a fixed β, and γ, values a small value of α, implies less exponential cumulative

processing share value, thus a high priority is assigned to a job in a time slot. Similarly, a

high value of α, gives a high cumulative processing share value, thus a low priority is assigned

to a job. Table 3.5 provides data for, 0.25 ≤ α ≤ 1, the duration of big job, J1,1,1, and the

mean duration of the regular jobs.
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Table 3.5: Duration of big job and the mean duration of regular jobs with β = −1, and
γ = 1, and different values of α

α β γ T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.25 -1 1 11162 40001 1227 2000.4 3539.4
0.5 -1 1 11161 40000 1257 2000.2 3580.7
0.75 -1 1 11161 40000 1354 2000.2 3590.2
0.85 -1 1 11161 40000 1348 2000.2 3624.2
0.95 -1 1 11161 40000 1439 2000.2 3590.3
0.98 -1 1 11161 40000 1488 2000.2 3648.3
0.99 -1 1 11161 40000 1728 2000.2 3677.7

0.9999 -1 1 11161 40000 4685 2000.2 4040.5
1 -1 1 11161 40000 5409 2000.2 4008.8

Similar to when the job factor is not considered in assigning weight to jobs, with increase

in α, J1,1,1, gets low priority over time and more workers service the regular jobs decreasing

the mean duration of the regular jobs, shown in Fig. 3.6.

Effect of β on the System

The system behavior is analyzed when the value of β, varies in the presence of the third

parameter, γ. For a job, the expected number of remaining tasks decrease over the time

slots, consequently the weight contributed by the job factor in assigning the priority of a

job decreases. The exponential cumulative processing share, Ei,`, of user, i, in time slot, `,

increases if more number of tasks are serviced and decreases if a less number of tasks are

serviced. We know (from equation 3.7) that the weight of a job contributed by β depends

on Ei,`, (α moderates Ei,`) and the value of β. For the reasons explained above, for a job,

more number of tasks are serviced in the initial few time slots and less number of remaining

tasks are serviced when a small percent of the job is remaining. Small number of remaining

tasks take a longer time because, weight contributed by job factor decreases over time and

also it is observed that Ei,k, decreases predominantly i.e., Ei,k < 1, leading to a very small

weight being assigned to the job. Thus, job completion is delayed towards the very end of

completion of the job (increasing the duration of the job), shown in Fig. 3.7 and Fig. 3.8.

Fixing the values of α, γ, and varying values of β, we expect (from the algorithm equa-

tions) that an increase in the β, value should decrease the duration of completion of a job, but

we observe otherwise from the data in table 3.6 i.e., the duration increases with an increase
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Figure 3.6: Duration of big job and the mean duration of regular jobs with β = −1, and
γ = 1, and different values of α
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Table 3.6: Duration of big job and the mean duration of regular jobs with α = 0.5, γ = 1,
and different values of β

α β γ T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.5 -1 1 11161 40000 1257 2000.2 3580.7
0.5 -0.75 1 11161 40000 1281 2000.2 3707.3
0.5 -0.5 1 11161 40000 1348 2000.2 3747.2
0.5 0 1 11162 40000 2282 2000.4 4033.8

in the β value. The reason is explained as follows, analyzing the data for different values

of β, we observed that more percent of job is completed in an initial small number of time

slots as the weight contributed by the job factor (using γ) and Ei,`, is high. Towards the end

of the job, a small percent of job takes long duration because the job gets less weight from

job factor (because of the less number of remaining tasks) and it is observed that Ei,` < 1,

so the weight contributed by β raised to the power of Ei,`, decreases with an increase in the

value of β. The priority of the job is remarkably decreased because of the reasons explained

above when a small amount of the job is remaining, thus increasing the duration of the job.

The system behavior is also observed by increasing the value of α, for γ = 1, and

β = −1,−0.75,−0.5, 0 values. The values of α used to observe the system behavior are

α = 0.5, 0.85, 0.95, 0.99. For a fixed value of β, with an increase in α, job takes longer

duration to complete, refer Tables 3.6 and 3.7. For α, very close to 1 i.e., α = 0.9999, 1,

the exponential cumulative processing share of a user, is never less than 1, Ei,` 6< 1. Thus,

the duration to complete the job is observed to decrease with an increase in the value of β,

unlike for other values of α, (0 < α < 1), the data can be referred in Table 3.8.

For the set of parameters considered to observe the system behavior, regular jobs are

assigned a low priority as big job receives high priority because of the parameter, γ (initially,

job factor is high for big job and then starts decreasing). The mean duration of regular

jobs is observed to increase when compared to the mean duration if the parameter, γ, is not

considered in assigning priorities to jobs. The mean duration increases with an increase in

the value of β, but the increase is more predominant for the values of α, close to 1, shown

in Fig. 3.9.
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Figure 3.7: Cumulative tasks of big job for α = 0.95, γ = 1, and different values of β

Table 3.7: Duration of big job and the mean duration of regular jobs with α = 0.95, γ = 1,
and different values of β

α β γ T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.95 -1 1 11161 40000 1439 2000.2 3590.3
0.95 -0.75 1 11161 40000 1451 2000.2 3722.1
0.95 -0.5 1 11161 40000 1412 2000.2 3764.3
0.95 0 1 11162 40000 2613 2000.4 4033.5

Table 3.8: Duration of big job and the mean duration of regular jobs with α = 1, γ = 1, and
different values of β

α β γ T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
1 -1 1 11161 40000 5409 2000.2 4008.8
1 -0.75 1 11161 40000 4135 2000.2 3971.6
1 -0.5 1 11161 40000 4567 2000.2 3983.7
1 0 1 11161 40000 2502 2000.2 4078.1
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Figure 3.8: Cumulative tasks of big job for α = 1, γ = 1, and different values of β
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Table 3.9: Duration of big job and the mean duration of regular jobs with α = 0.5, β = −1,
and different values ofγ

α β γ T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.5 -1 -1 11173 40053 11173 2002.3 1350.4
0.5 -1 -0.5 11170 40001 7012 2001.9 1596.7
0.5 -1 0 11165 40000 3538 2000.9 1924.1
0.5 -1 0.5 11161 40000 2311 2000.2 2628.8
0.5 -1 1 11161 40000 1257 2000.2 3580.7

Effect of γ on the System

The value of the parameter, γ moderates the weight of a job through job factor. If γ < 0,

a job with more number of remaining expected tasks is assigned a less weight and more

weight is assigned for a job with a small number of expected tasks to complete (opposite to

the behavior when γ > 0). To observe the effect of γ, the values of α, and β, are fixed and

the value of γ is varied in the range [−1, 1]. γ = 1, results in providing preference to jobs

with more number of remaining expected tasks, and γ = −1, gives least preference to jobs

with more number of remaining tasks to complete. Observing the data provided in table

3.9, we can conclude that the duration to complete the big job decreases with increase in

the value of γ.

The system behavior is also observed by increasing the value of α, with β = −1, and a

set of values of γ (in the range [−1, 1]). For a fixed set of values of β, and γ, an increase in

α, is observed to have an increase in the duration of the big job (e.g., the duration taken for

J1, 1, 1, when α = 0.95, is greater than the duration when α = 0.5), the data is provided

in Tables 3.9 - 3.13, and the behavior can be observed in Fig. 3.10. Values considered to

analyze the system behavior are, α = 0.5, 0.85, 0.99, 0.9999, 1. If the value of α, is really

close to 1, i.e., for α = 0.9999, 1; and γ ≤ 0; we observe that the big job, J1,1,1, takes long

duration to complete refer data in Tables 3.12 and 3.13, the behavior can be observed in Fig.

3.11. The duration to complete a big job does not vary to a great extent when the value of

α, is not close to 1, α ≤ 0.99.
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Table 3.10: Duration of big job and the mean duration of regular jobs with α = 0.85, β = −1,
and different values of γ

α β γ T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.85 -1 -1 11173 40091 11173 2002.2 1339.1
0.85 -1 -0.5 11169 40001 7243 2001.7 1590.3
0.85 -1 0 11164 40000 3673 2000.7 1919
0.85 -1 0.5 11161 40000 2353 2000.2 2633.7
0.85 -1 1 11161 40000 1348 2000.2 3624.2
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Figure 3.10: Duration of big job and the mean duration of the regular jobs with α = 0.85, 0.5,
β = −1, and different values of γ.

Table 3.11: Duration of big job and the mean duration of regular jobs with α = 0.99, β = −1,
and different values of γ

α β γ T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.99 -1 -1 11170 40006 11170 2001.8 1307.4
0.99 -1 -0.5 11169 40000 8986 2001.7 1554.4
0.99 -1 0 11164 40000 4457 2000.7 1909.6
0.99 -1 0.5 11161 40000 2667 2000.2 2648.8
0.99 -1 1 11161 40000 1728 2000.2 3677.7
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Table 3.12: Duration of big job and the mean duration of regular jobs with α = 0.9999,
β = −1, and different values of γ

α β γ T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.9999 -1 -1 11171 40075 11171 2001.9 1203.9
0.9999 -1 -0.5 11168 40004 11168 2001.5 1392.9
0.9999 -1 0 11165 40002 9815 2000.9 1812
0.9999 -1 0.5 11161 40000 6293 2000.2 2695.8
0.9999 -1 1 11161 40000 4685 2000.2 4040.5

Table 3.13: Duration of big job and the mean duration of regular jobs with α = 1, β = −1,
and different values of γ

α β γ T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
1 -1 -1 11171 40077 11171 2001.9 1198.4
1 -1 -0.5 11168 40079 11168 2001.3 1380.4
1 -1 0 11165 40002 10534 2000.9 1794.3
1 -1 0.5 11161 40000 7001 2000.2 2687.1
1 -1 1 11161 40000 5409 2000.2 4008.8
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Figure 3.11: Duration of big job and the mean duration of regular jobs with α =
0.99, 0.9999, 1; β = −1; and different values of γ.
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Table 3.14: Duration of big job and the mean duration of regular jobs with β = 0, γ = 0,
and α = 0.5, 0.85, 0.95, 0.99, 1

α β γ T k of J1,1,1 Γc of J1,1,1 Mean # tasks Mean duration
0.5 0 0 11167 40008 11167 2001.3 1788.2
0.85 0 0 11167 40043 11167 2001.2 1788.9
0.95 0 0 11168 40073 11168 2001.4 1788.1
0.99 0 0 11167 40040 11167 2001.2 1789

1 0 0 11167 40022 11167 2001.3 1791.8

3.5 Algorithm Special Cases

Using algorithms in section 3.3.1 and 3.4.1, by altering the parameters values we can

schedule jobs in a number of possible ways. Two common and known algorithms are equal

job share and first-in first-out FIFO. The parameter values to schedule jobs as equal job

share and FIFO, duration of the big job, and the mean duration of the regular jobs for these

values of the parameters are discussed in the following sub-sections.

3.5.1 Equal Job Share

Using the algorithm in section 3.3.1, we can schedule jobs as equal job share with β = 0.

Using the algorithm in section 3.4.1, we can schedule jobs as equal job share with the

parameter values β = 0, and γ = 0. In equal job share, each job in the queue gets an

equal priority, i.e., in a time slot the probability that a worker chooses a particular job for

execution is equal for all the jobs. The system is analyzed by fixing the values of β, and

γ, and varying the value of α. The data in Table 3.14 shows that, for any α ≤ 1, big job,

J1,1,1, executes for the entire duration, T , used to analyze the system behavior for a single

set of parameter values. The duration of J1,1,1, is in the range [11167, 11168] time slots,

and the mean duration of the regular jobs is in the range [1788, 1792], shown in Fig. 3.12.

Observing the data we can conclude that equal job share is not preferred for a system where

a combination of a small number of big jobs and a large number of small jobs are anticipated.
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Figure 3.12: Duration of big job and the mean duration of regular jobs with β = 0, γ = 0,
and α = 0.5, 0.85, 0.95, 0.99, 1.
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Table 3.15: FIFO with α = 0, β = 0, and γ = 0

Case α β γ T Mean # tasks Mean duration
Case 1 0 0 0 11000 2013.9 963.692
Case 2 0 0 0 10927 2000 771.2226

3.5.2 First-In First-Out (FIFO)

Varying the parameter values, jobs in the queue can be executed in FIFO order. A variant

of FIFO and FIFO can be implemented using the algorithm discussed in section 3.4.1. In

case 1, all the jobs of a user with one or more incomplete jobs get equal priority with other

users’ jobs priority set to zero. Case 2 is absolute FIFO. The values of the parameters to

realize FIFO (case 1 and case 2) are, α = 0, β = 0, and γ = 0. In general the preferred

values of α, are 0 < α < 1, however here we have α = 0, this implies that, in case 1, we

assign a priority to a job when the exponential cumulative processing power share of a user,

i, in time slot, `, Ei,` 6= 0. For the reason mentioned above, a user with an incomplete job

gets equal priority among all of its jobs (refer step 1 of algorithm 3.3.1). Case 2 can be

obtained by setting Ei,` = 0, for all the users in a time slot. The disadvantage in using FIFO

is, a job has to wait until all the jobs submitted prior to it are completed (e.g., if a big job

is submitted prior to small jobs they will be delayed until the big job is completed). System

behavior with the parameter values for FIFO is observed with equal sized jobs for all the

users. The mean duration of the jobs as observed in Table 3.15, is 963.692 time slots for the

case 1, and 771.2226 time slots for case 2.

3.6 Conclusion

Using the parameters α, β, and γ the scheduling system behavior can be altered in

accordance with the required scheduling policies. In a system with different types of users,

e.g., type1 and type2, if users of type1 should be given preference over type2 users, then

choosing a small value of α, and a big value of β for type1 users compared to type2 users

gives preference to jobs of type1 users.

Using algorithm 3.3.1, with 0 < α < 1, and β = 0, jobs will be scheduled as equal

job share and if β = −1, jobs are scheduled proportional to the exponential cumulative
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processing share of a user. β < −1, can be used if very less preference is required to be given

to users who utilized more cumulative processing power. If it is required, per the scheduling

policies that users who utilized more processing power be given preference over other users (a

less common scenario in real time), then the following values can be set for the parameters

in the algorithm, 0.5 ≤ α < 1, and β > 0. Using γ, along with α, and β, parameters,

jobs can be scheduled as equal job share with 0 < α < 1, and β = γ = 0. Jobs can be

serviced in FIFO by not considering the exponential cumulative processing share of a user,

with α = β = γ = 0. Also, preference may be given to big jobs by setting γ > 0, though

γ = 1, is preferred. When both big and small jobs exists in the jobs queue, preference can

be given to small jobs by setting γ < 0.

Observing the data obtained from the various combinations of the parameters, we can

say that using algorithm 3.3.1, the preferable values of the parameters are 0 < α ≤ 0.5, and

β = −1, as both the big job and the regular jobs do not take very long time to complete,

i.e., neither of the jobs are starved or delayed indefinitely. Using the algorithm 3.4.1, the

preferable values of the parameters are 0 < α ≤ 0.5, β = −1, and 0 < γ ≤ 0.5.



59

Chapter 4

Case Study

4.1 Introduction

In an effort to make use of the scheduling algorithm described in chapter 3, we designed a

system to run Monte Carlo simulations in parallel on the cluster using the insights obtained

by examining the analytical model. A web application is developed to provide easy access

of the cluster, using which any registered user can log in, upload, submit a job, and get back

the results. Jobs are run on the cluster, so the users get back their results in a very short

time compared to when the jobs are run on a PC. The technology discussed in this chapter

has been used at WVU in several courses. In particular, a student project in the course EE

561 (Communication Theory) required students to design an optimal communication signal

constellation, and a 200-core computing cluster was used to execute parallel simulations

of the student’s designs. A web interface was provided to give easy access to the cluster.

A similar web interface was used in CPE 462 (Wireless Networking) to allow students to

analyze cellular network designs.

4.2 Software Environment

Using the web application, a user can upload an input file (Matlab, .mat file), submit

the job, monitor the status (Queued, Running or Done), progress (% of the job done), and

download the output result files of the simulation. The complete system is deployed and
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runs on Linux environment. Web application is developed using Google Web Toolkit 2.2.0

in Java environment and is deployed in Apache Tomcat 5.5 server. All the work required

for the implementation of the scheduling algorithm, processing of the job simulation and

handling of the workers is written in Matlab. Unix shell scripts are used to start and stop

the workers on the cluster and are handled from within the Matlab program. Data of all

the registered users, details of the jobs (job name, upload time, status, progress, number of

input and output files (input and output file names) are stored in the data base. MySQL

5.1.49−3 Debian server is used as the data base server in the development of the application.

The handling of the input and the output data of the jobs (files uploaded by the user and

the result files) is done using the file system.

4.3 Analytical Model vs System Implementation

The actual system implementation differs in a few aspects from the analytical model. In

the analytical model, workers have complete access to the global data structure. Workers

check the random number they generated with the priority interval of each job, pick a job

for execution, and update results when they complete execution of a task. In the actual

system implementation, workers do not have access to the global table, Jobs.mat file. It

is practically not a good choice to provide access to Jobs.mat to all the workers as it may

lead to race conditions, where multiple workers manipulate data in Jobs.mat resulting in

an inconsistent and invalid data. To handle this, task manager accesses the Jobs.mat

and creates a number of tasks proportional to the job priority. In creating tasks, the buffer

level of the Tasks/input directory is taken into consideration (i.e., maximum number

of tasks that can be in the Tasks/input directory). Workers only have access to the

Tasks/input directory, from where they can randomly pick a task and execute it.

The analytical model is synchronous, i.e., at the beginning of each time slot priorities

of the jobs are calculated and tasks are serviced before the start of a new time slot. In

the actual system implementation, job manager assigns priorities but tasks are created by

the task manager when the number of tasks in the Tasks/input directory are below the

buffer level i.e., actual system implementation is asynchronous. In the analytical model, we
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simplified simulation of a job by actually not generating trials with the assumption that ith

task of the job performs Ni trials and number of successes observed in each task is pNi. In the

actual system implementation, we do not make any assumptions of the successes observed

in a task, we actually generate trials, observe and keep track of the successes.

4.4 System Operation

Using the web application, when a user submits a job, the uploaded input file is saved

on the cluster file system by the Java program in Jobs directory (within the web interface

directory) accessible to both Java and the Matlab programs. The directory structure of

the file system is shown in Fig. 4.1. For each user, Java program creates a directory with

<username>. Each time the user submits a job, a new directory using the <jobid>

(unique key for each job) is created on the file system. Within this directory, an input

directory (path: Jobs/<username>/<jobid>/input) is created and the input file is

saved in this directory. For each new job submitted using the web application, Java program

creates an empty file with filename of the format <<jobid><username>> and places it

in the directory Jobs/inputQueue. Each file in Jobs/inputQueue directory indicates

a new job is added to the system.

Every time period t1, Job manager checks for new jobs in Jobs/inputQueue directory.

For each file in the Jobs/inputQueue directory, job manager selects and parses the file

(to get the JobId and the username, this is useful to get the information on the location of

the input file), reads the input file, and then copies the input file(s) to matlab Jobs/input

directory. All the new jobs are now in the Jobs/input directory. Initially, the status

of jobs in the Jobs/input directory is Queued. All the jobs in the Jobs/input and

Jobs/running directories (i.e., jobs with status queued and running respectively) are

scheduled by the Job manager using the scheduling algorithm described in the section 3.4.1.

The details of jobs i.e., the jobid, priority, status, expected number of tasks to complete,

number of completed tasks, number of tasks in Tasks directory (i.e., in Tasks/input and

Tasks/running directories, this is useful in calculating priorities of the jobs), and progress

are saved into a Matlab file, Jobs.mat.
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Figure 4.1: Directory structure and data flow in the file system
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Each job with priority > 0 is moved into the Jobs/running directory and the status

of the job is updated to Running in Jobs.mat. Using the priorities of the jobs in the

Jobs/running directory (by reading file Jobs.mat), and the buffer level of the cluster

task input directory Tasks/input the Task manager creates tasks proportional to the

priority of job and places them in the Tasks/input directory. Each worker now checks

the number of tasks available in the Tasks/input directory, generates a uniform random

number between 1 and the maximum number of tasks. Using the number generated, worker

chooses a task, moves the task from Tasks/input directory to Tasks/running directory,

and services the task. A task is moved from Tasks/input directory to Tasks/running

directory to avoid the conflict of executing a single task by multiple workers. Each worker

executes a task for a period of t2 = 5 minutes (taking care such that integer number of trials

are performed i.e., a task is not stopped if it is in between a trial at the end of the time

period, t2). After a task is serviced, the task file in Tasks/running directory is deleted.

The number of trials run and number of observed successes is written to an output file and

is placed in the Tasks/output directory.

Every few minutes, job manager checks the Tasks/output directory, consolidates the

results of each job and updates the results to Jobs/output directory. Each time the

results are updated, job manager updates the Jobs.mat, and checks if any of the jobs are

completed. For each job that is completed, its status is marked to Done in Jobs.mat file

and the input file entry is deleted from the Jobs/running directory. We mark the status

of the job to Done but do not delete job’s entry as there might be some tasks running for

the job. Entry in Jobs.mat with status Done acts as an indicator that the job’s output file

can be removed from Jobs/output directory when all the tasks (in Tasks/running) of

the job are completed.

After updating Jobs.mat file, job manager triggers the task manager to check and

delete tasks files of jobs with status Done from Tasks/input directory and return the

job ids which have entries in Tasks/running directory (since we do not kill a task that

is being executed by a worker). If the tasks in Tasks/input are deleted and if there

are no tasks for the job in Tasks/running then job manger deletes that particular job

entry from Jobs.mat, updates consolidated results to job output file in Jobs/output
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directory, (and subsequently to the web interface) and then deletes the output file from the

Jobs/output directory (since further update of results to the output file is not required).

If there are any tasks in Tasks/running directory, then job manager does not delete the

entry in Jobs.mat (note that the job status is Done in Jobs.mat) and the output file

in Jobs/output is not deleted. In further updates, when all the running tasks of the job

(with status marked as Done) are executed, then the job’s entry is removed from Jobs.mat

and the output file is deleted from Jobs/output directory.

As it is not easy to read a Matlab (.mat) file using Java, the status and progress of a job is

updated to the web application using a text file, status.txt. status.txt file contains

the status, progress, and percent of the job completed. Job manager takes the result job

files from the Jobs/output directory and update to the output directory of each job in the

web application i.e., Jobs/<username>/<jobid>/output Task manager makes sure

that a sufficient number of tasks are in the Tasks/input directory. Task manager checks

the number of task files in the Tasks/input directory and then using the priorities of the

jobs (from file Jobs.mat) creates new task files in Tasks/input directory if the number

of task files is below the buffer level.

4.5 Web Application

A user friendly web application is developed for easy access of users to the cluster in

order to submit and monitor jobs. A registered user can sign in to their account from

virtually anywhere to manage their jobs. There are two types of users, regular users and

administrators. A registered user can login to their account, add a new job using the Add

Job tab Fig. 4.2, monitor jobs status in the list of jobs using Jobs tab Fig. 4.3. All the

details of a job, such as the job upload time, input files, and output files can be viewed by

clicking on a specific job Fig. 4.4 in the user account interface. Users can download input

and output files of a job. Administrator user has more privileges than a regular user. An

administrator can submit jobs as a regular user using Add Job tab, can create other users

using Add Users tab, can reset and email passwords of the users, can assume identity of

other users (by selecting a user from the list of users) using Users tab Fig.4.6. List of jobs
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Figure 4.2: Add a new job

Figure 4.3: List of jobs of a user

specific to an administrator can be monitored using the My Jobs tabs (this is similar to Jobs

tab of regular users). Administrator has the privilege to monitor and edit all the jobs of

the users, this is done using the Jobs tab Fig. 4.5 in the administrator interface. Assuming

other users identity, an administrator can handle all the functions that a regular user can do

such as submit, monitor jobs, and change settings.

4.6 Conclusion

This chapter focused on the system implementation, to execute jobs in a distributed

computing using the scheduling algorithm proposed in chapter 3. In this chapter, we dis-

cussed on how the analytical model differs from the actual system implementation. Later,
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Figure 4.4: Details of a job

Figure 4.5: Administrative interface to list jobs of all users
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Figure 4.6: Administrative interface to list all users

we presented the system implementation discussing the details on how the jobs submitted

by the users are taken care by the job manager and the task manager, how the results of jobs

can be viewed by the users, the directory structure, and the movement of the input and the

output files of the jobs by the job manager and the task manager to handle the jobs. Finally,

we discussed the features of the web interface, which is developed for easy use of the cluster.

Submitting jobs to the system using the web application, users need not worry on the aspects

to start the execution of a job and monitor its progress on the cluster. The chapter also

includes few screen shots of the web interface to present the current implementation of the

web interface.
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Chapter 5

Conclusion

5.1 Conclusions and Summary

The work in this thesis combines the concepts of Monte Carlo simulation and distributed

computing to efficiently execute compute-intensive problems. A scheduling algorithm is pre-

sented in order to execute Monte Carlo simulations in parallel in a distributed computing

environment, more specifically the cluster computing. An analytical model is created under

the assumption that the system behavior can be controlled by varying the values of the three

parameters (α, β, and γ) of the algorithm. The proposed unified framework accommodates

scheduling algorithms such as equal job share, FIFO, and proportionally fair scheduling.

Variants of proportionally fair scheduling can be realized by varying the algorithm parame-

ters.

The scheduling algorithm uses an exponentially-weighted window along with the forget-

ting factor, α, to keep track of resources used by the users. An exponential-weighted window

has an advantage over the weighted window concept, as it only need to keep track of the

exponential cumulative use of resources value in the past time slot (or time period) instead of

the use of the computing resources by the users in each time slot over a number of time slots

(defined by the window size) or time periods. From the data obtained by investigating the

system behavior we can suggest that a good choice of parameter values to quickly execute

jobs using algorithm 3.3.1 are 0 < α ≤ 0.5 and β = −1, and 0 < α ≤ 0.5, β = −1, and

0 < γ ≤ 0.5 using 3.4.1.
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The analytical model is synchronous in nature, but in real time jobs are submitted

and need to be scheduled asynchronously. As a case study, a sub-optimal actual system

implementation is designed and presented to schedule and execute jobs on the cluster. A

web application is provided to provide users with a medium to submit and monitor jobs on a

cluster without worrying about the actual technology behind the handling of resources and

scheduling of the jobs.

5.2 Future work

We now suggest possible improvements to the current system. In the current system,

simulation performed for each input job is independent i.e., if two users submit jobs with

same input parameters the system cannot identify that the two jobs are alike and performs

the simulation twice, once for each of the jobs. To minimize such unnecessary use of the

computing resources and to make the system smart, data mining and pattern recognition

techniques can be used to identify and categorize jobs. Using these techniques, we can

add capabilities to the system such that it checks if the input parameters of a new job

exactly match with the input parameters of an existing job (which is already executed or is

in the process of execution), and then provide the results without actually performing the

simulation for the new job. The other case is when the input parameters of new job partially

match the parameters of the existing jobs. In this case, the system can take the available

SNR points data and simulate for the SNR points for which data is not readily available in

the system. Only when the above two cases fail, simulation for the job can be performed,

thus saving the computing resources.

Above we proposed an improvement to the system such that it utilize the existing data

by matching the input parameters of new job, however, there is a possibility that the source

code utilized to perform the simulation is updated, thus invalidating some of the factual

data in the system. This can be handled by labeling jobs with the version of the source code

used to simulate the jobs. This does not completely solve the problem since the sub-version

repository is used to store the source code and each time any file is updated leads to a new

version of the code. This is a hard problem and to an extent can be handled using the project
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and the version of the project source code, as the source code of all the projects might not

be updated each time.

To handle high computational demand, jobs can be executed on the grid. However, it is

a good process to start a simulation on the cluster and then transfer it to the grid depending

on the necessity (if the resources required by the job is huge). Starting a simulation on a

cluster gives an idea of the size of the job i.e., the approximate number of resources required

and the amount of time it needs to complete. Directly submitting a job to the grid causes a

delay in receiving the initial response of the job. The delay may be because of the network

latency, since the server that manages the resources and scheduling of jobs, and the resources

which actually execute tasks of the jobs are geographically distributed. Also, if we directly

submit a job to grid it is possible that more than the required number of tasks might be

created for the job (over work), and it is often difficult to kill the tasks once they are created.

Starting a job on the cluster allows to maintain a consistent processing power credit system,

since we have complete access and information of the cluster (configuration etc.,) unlike the

resources on a grid. A form of consistent credit system is illustrated as follows; for instance

we may define a credit to be 1000 trials/minute on the cluster. If a resource on the grid

runs 500 trials/minute, then it implies only 0.5 credit of work is performed (because of its

hardware configuration) as only 500 trials are run, and it doesn’t mean one credit of work is

performed as it ran for one minute.

The following improvements can be added to the web interface. The existing interface

can handle only a single project. It would be better to have a single web interface that has

the ability to handle multiple projects. Users can be provided with an option to subscribe

to projects. This function can be added in the settings page, a new section, program settings

can be added allowing users to list their preferred projects so that a newly submitted job is

automatically run using the highest preferred project. Users may be provided the ability to

categorize jobs into folders based on the project used to run the job. A further improvement

to this idea can be, to add a function such that the system becomes smart enough to

categorize jobs when the job is submitted. Also, users may be informed of their credit usage

and they can be provided with the ability to request for more credits.
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