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ABSTRACT 
 
 

Honeycomb Fiber- Reinforced Polymer Sandwich Composites for 
Development of Aquaculture Raceway Systems 

 
 

Avinash Vantaram 
 

Advisor: Dr. Julio F. Davalos 
 
 
 

It is argued that the utilization of impaired mine waters abundant in WV and other 
mid-Appalachian states for fish culture can substantially increase aquaculture economic 
development. The primary limitation to the effective utilization of discharged waters is 
the lack of suitable fish culture tanks that can be easily installed in rugged terrains 
surrounding mine water treatment plants, where cast-in-place concrete tanks cannot be 
constructed. Therefore, Fiber-Reinforced Polymer (FRP) sandwich materials offer an 
economical option for production of light, transportable and durable fish culture raceway 
systems.  This study is concerned with the development and evaluation of prototype fish 
culture tanks using a Honeycomb FRP, termed HFRP, sandwich panel with sinusoidal core 
geometry, which is produced by Kansas Structural Composites Inc., (KSCI) by a contact-
molding process.   

 
Based on defined functional requirements, a raceway system consisting of 

staggered tanks is designed, and each tank has a longitudinal partition wall to carry out 
parallel aquaculture studies.  Representative panel samples of the side and bottom walls 
are tested within the linear range and eventually to failure. Also two different designs for 
the side-to-bottom panel connections are tested in the linear range for rotational stiffness. 
Elastic equivalent properties for the face and core laminates are calculated. The linear 
response of the samples is analyzed by the finite element method, first using actual core 
geometry and then using the equivalent properties, and the predictions are compared with 
the experimental results. Based on these results, modifications to the existing design are 
suggested. Failure loads and modes are analyzed and used to determine possible failures 
of raceway units in use.  A finite element (FE) model of the entire tank is developed and 
several expected loading combinations during use of the system are considered. Factors of 
safety during various installation conditions are estimated based on the results of the 
system FE model. Finally, an overview of three current field projects using HFRP 
raceways is presented. 
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Chapter 1 

Introduction 

 

1.1   Significance 

 

It is estimated that 232 million gallons of water per day are discharged in West 

Virginia from both active and abandoned mines. If only 30% of these water resources 

were used for aquaculture, the expansion of this industry in WV is expected to increase 

by more than $12 million. However, the primary limitation for the effective utilization of 

discharged waters is the lack of suitable fish culture tanks that can be easily installed in 

rugged terrains surrounding mine water treatment plants. Such topographical constraints 

do not easily permit the construction of cast-in-place concrete tanks, and therefore, 

advanced composite materials offer an alternative for production of modular, 

transportable, lightweight, and durable fish culture raceway systems. This thesis 

discusses the development of a fish raceway system manufactured from Honeycomb 

Fiber-Reinforced Polymer (HFRP) sandwich panels, using E-glass fibers and a polyester 

resin. HFRP is being extensively used for highway bridge decks because of its high 

strength to weight ratio and versatility of manufacturing. Since sandwich panels can be 

manufactured of any thickness and any material architecture, it was envisioned that HFRP 

can be efficiently used to construct mobile fish raceway systems. Thus, a raceway system 

was proposed to mainly facilitate aquaculture research in and around West Virginia. Upon 

successful implementation of these tanks, modifications to the design will be suggested to 

accommodate fish mass production at other locations. 
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1.2   Background – Review of Existing Raceway Systems  

 

1.2.1   Introduction 

 

 According to the FishBase Glossary of terms, a fish raceway is defined as “A long 

narrow channel with a continuous flow of water for growing fish” [1]. The three general 

classifications of the existing fish culture systems are rectangular tanks, circular tanks 

and oval tanks. For this discussion, a review of functionality and construction methods of 

rectangular raceways is given. 

 

Rectangular tanks are divided into open-ended raceways and closed tanks. A 

raceway is an open-ended tank where water enters continuously at one end and leaves at 

the other. This is a proven design for trout culture. The raceways are usually placed in 

series to obtain maximum utilization of water before discharge. They usually have a plug 

flow with velocity of about 0.05 ft/ sec. Waste is swept by the action of fish and water 

flow to a quiescent zone where it settles out allowing for removal. Thus raceways are 

labor efficient compared to other tanks. They also have a small footprint and occupy less 

space than closed tanks. One of the main advantages with raceways is that gravity flow 

can be exploited and no pumping is needed saving investment and expenditure. Due to 

various aquaculture considerations, a modular, rectangular raceway system is used in this 

project as a design of choice. This section briefly describes the various materials being 

used for the construction of rectangular raceways. 
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1.2.2   Materials for Raceway Construction 

 

Various construction materials are used to produce raceways. Generally  raceways 

are made of the following: earth (earthen raceways), concrete, cement block, wood lined 

with plastic, metal, fiberglass and sandwich materials. The advantages and disadvantages 

of the different systems are discussed in the following sections. 

 

Earthen Raceways: 

 Earthen raceways were the first type to be built, because of low cost and ease of 

construction. They usually have water control devices made of concrete. Though they are 

generally suited to grow healthy fish, they have certain disadvantages. The irregular 

geometries of side walls and bottom present challenges during crowding and grading of 

fish and difficulty in the removal of waste products. Plant growth also creates undesirable 

Figure 1.1 Open Ended Earthen Raceways with Concrete Water Control Structure 
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effects, and certain diseases, like the whirling disease, are more prevalent in earthen 

raceways, raising concerns about fish health.��

 

Concrete Raceways: 

The most commonly used material for raceway construction is concrete. While 

the manufacturing costs of these units are lower compared to most other materials, the 

construction of concrete raceways is not suitable for rugged terrains because of 

difficulties in transporting materials and casting concrete at the site. With sufficient care, 

plant growth can be eliminated in concrete raceways, and because of the regular 

geometry with well-defined corners, crowding and grading of fish is easily accomplished. 

Concrete is best suited for large raceways. But concrete shows marked wear and tear over 

a period of time, particularly due to freezing-and-thawing within the pore structure of the 

material, leading to cracking and deterioration. The main disadvantage of these tanks is 

that they are permanent structures and cannot be transported to other places.� 

 

Figure 1.2 Open Ended Concrete Raceways     
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Metal Raceways: 

 Metal raceways, such as those made of aluminum, are lightweight and can be 

easily  manufactured.  However  they are  not  stiff  enough to stand alone and hence need  

Figure 1.3  Wear and Tear of Concrete Raceways 

Figure 1.4 Closed Ended Rectangular Tank with Liner and Supporting Braces 
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supporting braces. They have a tendency to occupy more space, thus creating concerns 

regarding safety and convenience. Material etching could also be a problem resulting in a 

decrease in the effective life of the tank.��

 

Fiberglass Raceways: 

Fiberglass raceways are lightweight, durable and transportable. They can be used 

as temporary structures and can be installed in rugged terrains. They need supporting 

braces, which result in the same concerns with safety as in a metal raceway. They are 

usually smaller than concrete raceways. They are generally manufactured as closed ended 

tanks and may require an expensive mold. Manufacturing parallel flow systems is also 

difficult because of stiffness limitations. These systems are not as durable as concrete. 

Sandwich Material: 

         Sandwich materials have high strength to weight ratio, which makes them highly 

suitable for transportable raceways. Their high stiffness enables the construction of stand-

Figure 1.5 Closed Ended Fiberglass Tank with Supporting Braces 
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alone raceways needing no external braces and hence can easily be constructed in 

parallel. They are easily installed and relocated because of their lightweight. The main 

disadvantage with this material is that it is relatively expensive compared to concrete. 

 

1.2.3   Description of Sandwich Materials 

 

 As the name indicates, sandwich materials have two face sheets separated by a 

core. Sandwich configurations differ in the material and shape of the core, which can be 

either solid, like wood or foam, or honeycomb geometry. The thickness of the core 

determines the distance of separation of the two face sheets; the increase in core- height 

increases the bending stiffness of the sandwich. A sandwich panel under transverse loads 

acts in a similar way as an I-beam, with the stiff facesheets (representing the flanges of 

the I- beam) resisting bending and the core (representing the web) resisting mainly shear. 

Figure 1.6  Closed Ended Sandwich Tanks Without Braces 
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A brief discussion on some of the sandwich materials being used in the construction of 

aquaculture tanks is given below. 

 

Fiberglass with wooden core has a solid balsa wood or plywood core, sandwiched 

between two layers of fiberglass plies (Figure 1.7). This sandwich construction is being 

used in the manufacturing of stand-alone raceways by companies such as Gemini 

Fiberglass Inc., and also by several companies in the manufacturing of lightweight race 

boats. 

  

 

Honeycomb Fiber Reinforced Polymer (HFRP) sandwich panels have a cellular 

core geometry sandwiched between two face sheets (Figure 1.8). As the core is not solid 

material, the unit weight of an HFRP sandwich panel is much less than of a comparable 

solid core sandwich panel. The typical weight of HFRP panels for fish tanks is 

approximately 4 to 6 lb/ft2, which is about 12 times less than the weight of a comparable 

Figure 1.7 Balsa Wood Core Sandwich Material  Figure 1.8 HFRP Sandwich Material 
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concrete material. HFRP sandwiches also differ in the shape of the honeycomb core, which 

can be circular, sinusoidal, triangular, and others. In this project, the core consists of 

sinusoidal corrugations and straight components sandwiched between the face sheets 

(Figure 1.9); this product is manufactured by Kansas Structural Composites Inc., Russell, 

KS. 

 

1.2.4 Cost Comparison of Raceways from Various Manufacturers 

 

Several companies manufacture fiberglass raceways in the country, with various 

stiffness and core configurations. To compare the cost of manufacture of the HFRP 

raceways with other products available in the market, seven of the major manufacturers 

of fiberglass raceways were contacted and unofficial quotations for production of 

raceways of required dimensions were requested. While some of the manufacturers do 

not manufacture tanks big enough for the comparison, quotations for custom built tanks 

Figure 1.9  Core Geometry of HFRP Panel 
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were requested. The cost of the raceways varied among manufacturers depending on the 

material used and labor intensity of the raceways. While comparing the costs of the 

raceways, it should also be considered that the quotations were not official bids and the 

dimensions were approximations to the actual design requested, and hence there could be 

significant differences in the actual costs of the raceways produced by these 

manufacturers. 

 

From the information provided in the quotations, it was observed that the cost of 

raceways produced by manufacturers using other sandwich cores varied from 1.16 to 2.0 

times the price of HFRP raceways produced by KSCI. Fiberglass raceways which require 

external braces were also considered for the comparisons, and the costs were found out to 

vary from 0.5 to 0.7 times that of the HFRP raceways. These tanks have lower stiffness 

and strength values compared to the sandwich raceways. Also, the central dividing panel 

in most of the cases was not water-tight. One of the manufacturers also produces free 

standing raceways, which include all the necessary piping and aerators, priced about 2.3 

times that of the HFRP raceways.  

 

From the above data, it can be observed that the cost of the raceways provided by 

KSCI is comparable to that of other manufacturers for the required configuration, in 

which the central divider is water-tight and the raceway requires no external bracing. It 

should be noted, however, that only the KSCI tank developed through this study was 

capable of satisfying structural and functional requirements of this project. Modifications 
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to the current design will be suggested at the end of the study, which is expected to 

further decrease unit cost of the raceways. 

 

1.3   Objective and Scope 

 

This study is concerned with the design, manufacturing, experimental and 

numerical evaluations of HFRP sandwich panels and panel-to-panel connections used in 

the development of fish culture tanks, to be installed in West Virginia. The component 

panels are tested as beams and their measured displacements and strains are correlated 

with finite element analyses using ABAQUS (1998) [2].  Similarly, two designs of side-

to-bottom panel connections are evaluated experimentally and modeled to study their 

relative rotational stiffness of the connection joints.  The beam samples are subsequently 

tested to failure and the failure loads and modes are evaluated. The complete raceway is 

modeled using finite elements and tested numerically under various conditions to predict 

the behavior of the tank in the field. Factors of safety for various loading and boundary 

conditions are calculated. General details of the design of the fish tank are presented, and 

an overview of three field projects is given. 

 

1.4   Design of HFRP Raceway System 

 

The design of the HFRP raceway system is based on requirements established by 

the users of the system, who defined the height, length and width of the tanks.  The 
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strength and stiffness of the HFRP structural components was then determined jointly by 

the WVU research team and the manufacturer, Kansas Structural Composites Inc.   

 

The requirements of the raceways were based on current concrete raceway 

systems and also on specific needs of the future users.  A schematic view of the raceway 

is shown in Figure 1.10.  It has two parallel channels of constant cross-section, allowing 

for simultaneous comparative aquaculture studies.  The channels are 3 feet wide by 3 ½ 

feet high, which allows for a depth of water of 3 feet. The raceway is divided into two 

separate components, the main raceway unit and a quiescent zone. The main raceway unit 

is 24 feet long and is used for raising fish. Separation screens are placed along the 

channels to accommodate the possibility of raising different species or sizes of fish.  The 

second part of the tank is a quiescent zone.  The fish are restricted from this area, which 

is used for collecting and disposing of fish waste and debris, using a drain located on the 

Figure 1.10 3-D View of the Fish Tank 
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bottom panel of the quiescent zone.  Dam boards are placed at the end to control the 

elevation of the water in the tank.  The two sections of the tank are connected using a 

structural fastening system, which may be modified in future designs based on results of 

the present research. 

 

In order to establish appropriate stiffness and strength properties for the 

component panels, several functionality requirements had to be considered.  The tanks 

should not have any obstructions on the outside that would impede easy access.  Also, the 

interior cross-section of the channels must have normal corners.  Thus, the connection of 

the bottom-to-side panels must be stiff enough to meet deflection and strength criteria, 

while also satisfying the prescribed functionality requirements.  There are two connection 

designs, which are discussed in a following section. 

 

After the initial design of the raceway, the required structural capacity of the 

panels was established.  Based on past experience, the research team and the 

manufacturer determined an appropriate size and lay-up.  The loads were based on 3 feet 

of water pressure and other forces possibly from people leaning against the side panels.  

The deflection limit is based on the separation screen openings, which was determined to 

be 3/8 of an inch.  

 

 A 3-D view of the sandwich panel geometry is given in Figure 1.9, showing the 

top and bottom face sheets and the core consisting of sinusoidal and straight components.  

The constituent materials are chopped E-glass fibers and polyester resin.  The side panels 
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have a total thickness of 2 inches with the top and bottom face sheets consisting of three 

layers of chopped strand mat (ChSM), each being 0.03 inches thick.  The corrugated and 

straight core components are produced from two layers of ChSM.  The facesheets and 

core components of the bottom panels are manufactured using the same materials and 

thicknesses as for the side panels, but the panel total thickness is 4 inches. 

 

1.5   Thesis Overview 

 

 The purpose of this study is to design, develop and implement Honeycomb Fiber- 

Reinforced Polymer Sandwich raceways for aquaculture applications in West Virginia. In 

this study, we first discuss in Chapter 2 the significance of HFRP and its micro- and 

macro-mechanics, followed by formulation of equivalent properties.  

 

Characterization of stiffness and strength properties for individual raceway 

components is critical. Experimental testing and finite element analysis is used to 

examine panel beam samples as well as panel to panel connections. A description of the 

test samples and finite element modeling methods is presented in Chapter 3, followed by 

Chapter 4, which describes the experimental testing of beam samples in the linear range. 

The purpose of this testing is to evaluate the stiffness of the HFRP sandwich. The results 

are used to verify finite element models which are formulated using both actual core 

geometry and equivalent properties calculated in Chapter 2. 
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The connection of the side to bottom panel is critical in the performance of the 

raceways. Adequate stiffness and strength of the connection is vital for the successful 

implementation of the raceway. Experimental testing and finite element modeling of the 

connection is discussed in Chapter 5, including a comparison of results. At this stage, 

modifications to the design are suggested. 

 

A study of the failure loads and modes provides us information on strength 

capacity and type of failure of the HFRP sandwich that can be expected in the field. By 

using the ultimate strength of the beam samples, we can estimate the factors of safety 

under working conditions for field applications. Chapter 6 discusses the experimental 

study of failure of the representative beam samples.  

 

Based on the results from Chapters 4, 5 and 6, the entire raceway is modeled in 

Chapter 7 using equivalent core properties. Because of the large number of elements and 

computational limitations, selection of mesh size is of vital importance. Justification of 

the mesh size selected is given. Calculation of expected loads including miscellaneous 

loads is discussed.  Several levels of integral connectivity for the main raceway to the 

quiescent zone are considered and modeled. The entire model is tested under various 

boundary conditions and loads and the results are discussed. The results are used to 

approximately assess the behavior of the tank in the field. Using the failure values for 

component panels in Chapter 6, factors of safety for different boundary conditions and 

loading conditions are estimated for the entire tank. 
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Current field projects are briefly discussed in Chapter 8, with more descriptive 

information on the installation of tanks at Dogwood Lakes, a mine water treatment 

facility near Morgantown, WV. 

 

Finally, in Chapter 9, an overview of the thesis is presented, with emphasis on 

recommendations based on the laboratory testing, finite element modeling results, and 

experiences gained from the field implementation of the HFRP raceways. 
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Chapter 2 

Honeycomb Fiber- Reinforced Polymer Sandwich Material 

 

In the finite element modeling of the HFRP test samples and complete raceway 

discussed in later chapters, both actual geometry and equivalent core geometry are used. 

This chapter discusses the geometry of the honeycomb core, presents actual material 

properties, and reviews the formulation of equivalent core properties.  

 

2.1 Geometry of the Honeycomb Core 

  

 The core provides primarily shear stiffness and supports the face sheet panels. It 

consists of closed honeycomb-type cells. The sinusoidal wave component of the core is 

manufactured by forming the FRP sheet into a corrugated mold. The shape of the 

corrugated component, shown in Figure 2.1, can be defined using the following equation: 
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where, h and b are the geometric dimensions shown in Fig. 2.1. 
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2.2   Properties of Constituent Materials 

 

The Honeycomb FRP panels in this study are manufactured from layers of 3 oz 

chopped strand mat (ChSM). The panel is symmetric about the mid-height, and the face 

sheet has 3 layers, while each core laminate has 2 layers of ChSM. The constituents of 

the ChSM are E-glass fibers and isophthalic polyester resin, with properties as given in 

Table 2.1.  

 

Table 2.1 Properties of E-glass Fiber and Polyester Resin 

 E, x106 psi G, x106 psi � �, lb/ in3 
E- glass Fiber 10.5 4.183 0.255 0.092 

Polyester Resin Matrix 0.734 0.237 0.3 0.041 
 

  

C 

2h 

2h 

2b 

x 

y 

O B 

A t1/2 

t1 

t1/2 

t2 

t2 

D 

Figure 2.1 A Unit Cell (RVE) of Sinusoidal Core – Plan View 
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The stiffness properties of the laminate are directly related to the fiber-volume 

fraction, which can be expressed using the following equation: 

 

Vf = W/ (� x t)              (2.2) 

Where, W = nominal weight of the fabric, 

  � = density of the fibers, and t = thickness of the layer  

          

            Using the above equation, the fiber-volume fraction of the chopped strand mat is 

found out to be 0.472, which is used to calculate the elastic properties of the material. 

Using a micromechanics model for composites with periodic microstructure [3], the 

elastic properties of a fictitious unidirectional composite with the above volume fraction 

are first calculated (Appendix A).  

 

The isotropic properties of the random composite can be obtained from the known 

properties of a unidirectional material with the same fiber volume fraction using the 

equations proposed by Barbero [3]. Using these formulations, the values of the layer 

stiffnesses are obtained in Appendix B and summarized in Table 2.2. It is assumed that 

the material is isotropic in the ply plane. 

 

 

Table 2.2 Properties of Chopped Strand Mat in Bending 

E1, x106 
psi 

E2, x106 
psi 

G12, x106 
psi 

G23, x106 
psi �12 �23 

3.03043 3.03043 1.14842 605614 0.3194 0.5072 
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2.3   Formulation of Equivalent Properties 

 

 To decrease computational effort for the finite element models, a set of equivalent 

laminate moduli are defined which represent the stiffness of a fictitious, equivalent, 

orthotropic plate that behaves like the actual laminate under various loads. The 

formulations to evaluate the equivalent properties of the face laminates and the 

honeycomb core with a sinusoidal configuration are presented by Davalos et al. (2001) 

[4]. Further modifications to the in-plane formulations were suggested by Qiao and Wang 

(2005) [5]. Formulations to calculate the in-plane properties of the equivalent laminate 

are obtained from [5] and the out-of-plane laminate properties are calculated using 

formulations proposed in [4]. A brief overview on the calculation of equivalent laminate 

moduli is presented in this section. 

  

The equivalent properties of the face laminate are obtained using a micro/macro- 

mechanics approach [3] (see Appendix D). The elastic equivalence analysis of the 

sinusoidal honeycomb core structure is based on a homogenization concept by a 

combined energy method and mechanics of materials approach. The homogenization 

process of periodic structures requires defining a Representative Volume Element (RVE) 

(Figure 2.1), for which the global properties can be obtained by periodic geometric 

conditions and kinematical assumptions which are as follows: (1) the material behaves 

linear-elastically; (2) perfect bond exists at face-to-core and core wall-to-wall contacts; 

and    (3) the ratio of the thickness of core wall to the radius of core wall is small and 

therefore, classical beam theory can be applied. Skin effects between the face sheet and 
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the core wall are also not considered while calculating the equivalent properties. Chen 

(2004) [6] studied this effect for sinusoidal honeycomb core configurations and 

concluded that it becomes prominent as the thickness of the sandwich core decreases.  

 

Based on the formulations proposed in [4] and [5], the equivalent properties of 

FRP honeycomb core are computed in Appendix C (in-plane properties for equivalent 

core) and Appendix D (out-of-plane properties for equivalent core and elastic equivalent 

properties for the face sheet) and given in Table 2.1. These properties represent an 

equivalent core plate, the thickness of which depends on the thickness of the honeycomb 

core. These properties are used in the equivalent-property finite element modeling, which 

is discussed later in this thesis. 

 

Table 2.3 Equivalent Properties of the Honeycomb Core Geometry 

Ex, x106 
psi 

Ey, x106 
psi 

Ez, x106 
psi 

Gxy, x106 
psi 

Gyz, x106 
psi 

Gxz, x106 
psi 

�xy �yz �xz 

90721.1 6522.347 211174.9 3430.142 54710.2 22208.33 0.7907 0.01566 0.21777 
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Chapter 3 

Background for Component Evaluations 

 

In this chapter we discuss the details of experimental testing and finite element 

modeling of the raceway samples, including descriptions of geometry and dimensions of 

samples. 

 

The structural components of the HFRP raceway unit evaluated in this thesis 

consist of representative beam-type samples of the side and bottom panels, as well as 

proposed panel-to-panel connections. Beam samples representative of actual raceway 

panels are experimentally tested within the elastic limit to evaluate stiffness properties 

and to correlate results with finite element analyses. Subsequently, the same samples are 

tested to failure in bending. Also, two proposed side-to-bottom panel connections are 

evaluated for rotational stiffness of the joint using experimental and finite element 

methods. 

 

3.1   Test Samples 

 

The test samples consist of beams with longitudinal and transverse core 

orientations (see Figure 1.9). In the following chapters, a beam is referred to as having 

longitudinal core orientation, if the orientation of the sinusoidal wave is along the length 
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of the beam and as having transverse core orientation if the sine wave is directed across 

the width. 

 

The beam samples used in the experimental testing consist of five bottom panel 

samples and five side panel samples.  For both types of panels, there are two longitudinal 

samples and two transverse samples, each 8-inch wide by five-foot long.  In addition, 

there are two 12-inch wide samples, one with transverse core orientation for the side 

panel, which is 6-foot long, and one with longitudinal core orientation for the bottom 

panel, which is 7-foot long. 

 

The experimental testing program also includes the evaluation of two proposed 

panel-to-panel connection designs.  The unstiffened connection, shown in Figure 3.1, is 

designed for the side panel to be embedded the distance of one-inch into the bottom 

panel.  The panels are then joined with a polyester resin.  The bottom panel extends four 

inches beyond the outside face of the side panel to allow for a better distribution of 

stresses at the corner.  The stiffened connection, shown in Figure 3.2, is similar to the 

previous connection, with the exception of a triangular stiffener placed on the outside 

edge of the embedded panels.  The diagonal stiffener, which extends four inches up the 

side wall and four inches out to the edge of the bottom panel, is produced by a core 

section of triangular cross-section covered by a face sheet.  The stiffener is co-cured to 

the side and bottom panels.  In both cases, the inside corner remains normal as required 

by the design.  Each of the two connection samples is 12 inches wide.  The bottom panel 

extends 18 inches from the interior edge of the side panel, with the longitudinal core 
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orientation along its length.  The side panel extends 42 inches from the top of the bottom 

panel, with the longitudinal core orientation along its length. 

 

Figure 3.1 Unstiffened Connection Design  

Figure 3.2 Stiffened Connection Design 
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3.2   Finite Element Modeling 

 

 The experimental results are used to verify finite element evaluations through 

comparison of results. Two different models are evaluated based on two methods to 

represent the core: (1) actual core-geometry model, in which the sinusoidal and straight 

core components of the actual geometry are modeled, and the actual properties of the 

material are used; and (2) equivalent core-geometry model, in which properties for an 

equivalent plate which would replace the actual geometry are calculated and used in the 

analysis. The calculations of actual and equivalent core properties were discussed in 

Chapter 2. FEMAP (1999) [7] is used as a pre- and post-processor for the finite element 

analysis program ABAQUS (1998). A brief description of the two models follows. 

 

3.2.1 Actual Core-Geometry 

 

The actual core-geometry model is intended to simulate the actual configuration 

of the sandwich beam samples. Each face sheet is composed of three layers of quasi-

isotropic chopped strand mat, while the core wall is composed of two layers of ChSM. A 

2”x2” quarter cell is first created as discussed below, which is used to create a 4”x4” unit 

cell, which is copied and pasted to create the beam and connection samples in the later 

sections.  

 

The sinusoidal shape of the core is first generated using spline functions, and the 

vertical projection of the in-plane shape is defined by the height of the core, which is 
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1.91” for the side panel and 3.91” for the bottom panel. The core geometry is meshed 

using 4-node shell elements as shown in Figure 3.3. Though the core consists of 2 plies of 

ChSM 0.06” thick, the straight core is modeled using only single layered shell elements 

with 0.03” thickness. This is to accommodate copying and mirroring of elements about 

the outer vertical faces to create the 4”x4” unit cell and the beam samples with symmetric 

straight laminae (0.06” thick) equivalent to two-layered laminae. 

 

 An automatic mesh is generated for the top face sheet of the quarter unit cell as 

shown in Figure 3.4 using 3-node shell elements. From Figure 3.4 (b), it can be seen that 

there is no continuity of strains and displacements between the face sheet and the core 

laminae. Hence, elements on top of the sinusoidal core are deleted as shown in Figure 3.5 

and 3-node shell elements are manually created as shown in Figure 3.6 and Figure 3.7, 

connecting nodes on the face sheet to those on the vertical core. Once the top face sheet is 

modeled, elements are copied to create the bottom face sheet (Figure 3.8). All the 

coincident nodes on the core and the face sheet are merged leading to continuity in 

deflections and strains. After the 2”x2” quarter cell is modeled, elements are mirrored 

about planes efgh and aehd (shown in Figure 3.8) to create the 4”x4” unit cell shown in 

Figure 3.9. This 4”x4” cell can be copied across the length and width to obtain the 

desired dimensions and core orientation for the beam samples.  
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Figure 3.3  2”x2” Quarter Cell Core Configuration 

a b

Figure 3.4  Quarter Cell with Top Face Sheet Containing Automatic Mesh Elements 

a b

Figure 3.5 Face Sheet Elements on the Core Deleted 

a b



 28 

 

Figure 3.6  Manual Meshing of Top Face Sheet 

a b

Figure 3.7  Quarter Cell with Top Face Sheet 

a b

Figure 3.8  2”x2” Quarter Cell        Figure 3.9  4”x4” Unit Cell 
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3.2.2 Equivalent Plate Modeling 

 

The elastic equivalent properties for the HFRP panels are obtained using a 

micro/macro-mechanics approach for the face laminates and a homogenization concept 

with a combined energy method and mechanics of materials approach for the honeycomb 

core, as discussed previously in Chapter 2. 

 

Based on the formulations given by Davalos et al. [4], the equivalent properties of 

the FRP honeycomb core and the face sheet are computed. Finite element models based 

on equivalent properties for longitudinal and transverse core orientations are created 

using a three layered laminated plate with the top and bottom layers representing the face 

sheets and the middle layer representing the core (Figure 3.10). The thickness of the 

middle layer (core) is 1.91” for the side panel and 3.91” for the bottom panel, all other 

properties remaining the same.  The mesh consists of 3-node layered shell elements, and 

the analysis is conducted with ABAQUS (1998). 

a b 

Figure 3.10  Equivalent Core FE Model (4”x4” Section) 
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Chapter 4 

Stiffness Evaluations of Beam Samples in Bending 

 

Linear elastic bending evaluations of longitudinal and transverse beam samples 

are performed based on experimental testing and finite element analysis. In this chapter, 

we discuss the experimental testing and the finite element modeling of representative 

beam samples, and the results for displacements and strains are used to validate the two 

types of finite element models developed in the study.  

 

4.1   Experimental Testing of Beam Samples 

 

The beam samples described in Chapter 3 are tested in 3-point bending using 

several span lengths. The tests are conducted well within the linear elastic region of the 

material. In this section, we discuss the instrumentation of the samples, testing protocol 

and the reported results. 

 

Each beam sample is instrumented with four strain gages and three LVDT’s, 

while the load is recorded using a two-kip load cell. The strain gages used are 350-Ohm 

linear quarter bridge gauges. Three of the gages are bonded to the top face sheet and one 

to the bottom face sheet. The gages on the top face sheet are separated by a distance of 

one fourth the width of the beam, and are placed at a longitudinal distance of 6” away 

from the center line of the beam, because the load is applied at mid-span. The gage 
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bonded to the bottom face sheet is located at the center of the bottom face with respect to 

the length and width of the sample. All the gages are oriented along the length of the 

beam to record the longitudinal tensile and compressive strains. 

 

Deflections are measured using Linear Voltage Differential Transducers 

(LVDT’s) which have a range of two inches. Three LVDT’s are used along the length, L, 

of the beam at distances of L/3, L/2 and 2L/3 from one end. The LVDT’s were calibrated 

before starting the tests to ensure accuracy of results. 

 

The load is applied using a displacement-controlled hydraulic jack and is recorded 

using a two-kip load cell. A rectangular plate resting atop an elastomeric pad is used to 

allow for uniform distribution of the load at midspan. A sample test setup is shown in 

Figure 4.1 below.  

Figure 4.1 Typical Test Setup for a Beam Sample in Bending 
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 4.1.1   Testing Procedure 

 

A steel cylinder placed over a rigid concrete block is used for each support of the 

beam sample. Depending on the overall length of the sample, the placement of the 

supports was adjusted to achieve the required span-length. The 5’ long samples are tested 

at a span-length of 4’; then, the 6’ long sample is tested with a span of 5.5’, and finally 

the 7’ long sample is tested at a 6’ span-length. The Load is applied at and approximate 

L/3 

L/2 

Deflection 

Load 

Figure 4.2  Load Versus Deflection Data for a 4’ Transverse Sample of a Side-Panel 
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rate of 10 pounds per second, to a maximum of 500 pounds, which is well within the 

elastic limit of the material. Strain and deflection data is recorded using a computerized 

data acquisition system, System 5000 from Vishay. The data collected is processed by the 

program “Strain Smart” and is then reduced using Microsoft Excel. Each test is repeated 

a number of times to ensure repeatability and consistency of results. Using MS Excel, the 

load versus deflection and load versus strain graphs are plotted. The results presented in 

the following tables are obtained from linear regressions of data recorded for each sensor 

at a load of 100 pounds. A typical graph produced from data reorded for a 4’ transverse 

sample of a side panel is shown in Figure 4.2.  

 

4.1.2   Results of Experimental Testing 

 

Deflection results obtained at span lengths of L/3 and 2L/3 are averaged, and 

together with deflections at L/2 are reported in Table 4.1. Similarly, strains recorded 

across the width, w, at w/3 and 2w/3 are averaged and given in Table 4.2, which also 

provides the strains at w/2 for the top and bottom facesheets. The experimental values are 

compared to the results obtained from finite element analyses (Section 4.3) of actual and 

equivalent core- geometry models, which are described in the next section. 

 

4.2   Finite Element Modeling of Beam Samples 

  

 Two types of finite element models, actual core-geometry model and equivalent 

core-geometry model, are used to verify their accuracy based on the experimental results. 
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The details of these models are discussed in Chapter 2. In this section, the modeling of 

the beam samples is discussed based on the unit-cell of Figure 3.3 for actual geometry 

and shell elements for equivalent geometry. A discussion of the reported results is also 

included. 

 

4.2.1   Actual Core Geometry  

 

Finite element models of beam samples in bending are generated using the 4” x 4” 

“unit cell” of Figure 3.3 in Chapter 3. Using the element copy-and-paste method in 

FEMAP (1999), beam models can be defined for any length and core orientation. Thus 

this method is used to create all the beam models described in this thesis. To decrease 

computational effort, symmetry is exploited by defining a shear release boundary 

condition at mid-span. A line load is applied at the mid-span to simulate the 

experimentally applied load. Only one half of the applied experimental load is prescribed 

Figure 4.3 Deflection Shape for Actual Geometry Transverse Sample of a Side Panel 
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because of the symmetry boundary condition. A simply-supported boundary condition is 

assumed at the support edge.  Figure 4.3 shows the deflection diagram of the actual 

geometry model for a transverse sample. 

 

4.2.2 Equivalent Core Plate 

 

For the equivalent core-geometry finite element model, the whole beam geometry 

is simply modeled using shell elements, because of the simple 3-layer plate configuration. 

Symmetry is specified by prescribing a shear release boundary condition at mid-span and 

the same type of loads and boundary constraints as in the actual- core geometry model 

are used. Figure 4.4 shows the deflection diagram of the equivalent model for a 

transverse sample. A brief summary of the finite element analysis results is given in the 

next section. 

Figure 4.4 Deflection Shape for the Equivalent Side Panel Transverse Sample 
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4.2.3   Finite Element Analysis Results 

 

The displacements are readily obtained from nodal data corresponding precisely 

to the experimental locations. However, the strain data is obtained by examining the 

nodal values across the entire width at the desired location with respect to the midspan. 

Due to mesh irregularities with the actual geometry model, strain data varies across the 

width, and therefore, the average values are reported. The strain results are given in 

microstrain, while deflections are given in inches. At the midspan, the displacements and 

strains are obtained at a small distance away from the symmetry boundary condition to 

avoid anomalous values. The results are shown in Table 4.1 for displacements and Table 

4.2 for strains. 

 

 

Table 4.1.  Deflection Results for Beam Samples 
 

Deflections, inch 
@ L/2 @ L/3 Span Width Orientation 

Experimental Actual FE Equivalent FE Experimental Actual FE Equivalent FE 

Bottom Panel (height = 4”) 

4’ 8” Longitudinal 0.0138 0.0138 0.0110 0.0119 0.0115 0.0093 

4’ 8” Transverse 0.0164 0.0170 0.0137 0.0144 0.0142 0.0115 

6’ 12” Longitudinal 0.0246 0.0288 0.0240 0.0214 0.0246 0.0205 

Side Panel (height = 2”) 

4’ 8” Longitudinal 0.0591 0.0593 0.0450 0.0513 0.0515 0.0390 

4’ 8” Transverse 0.0645 0.0605 0.0503 0.0533 0.0522 0.0426 

5.5’ 12” Transverse 0.0866 0.0927 0.0848 0.0709 0.0787 0.0723 
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Table 4.2.  Strain Results for Beam Samples 
 

Strains ( X106) 
Top Face Sheet Bottom Face Sheet 

Experimental Experimental Span Width Orientation 

@ w/3 @ w/2 Average 
Actual 

FE 
Equivalent 

FE @ w/2 
Actual 

FE 
Equivalent 

FE 

Bottom Panel (height = 4”) 

4’ 8” Longitudinal 93 99 96 84.975 84.46 117 115.83 108.81 

4’ 8” Transverse 109 118 114 87.78 100.32 125 107.5 130 

6’ 12” Longitudinal 91 98 94 81.9 93.6 106 108.12 110.24 

Side Panel (height = 2”) 

4’ 8” Longitudinal 220 244 232 191.97 182.49 255 216.75 239.7 

4’ 8” Transverse 230 238 234 231.57 204.18 268 222.44 262.64 

5.5’ 12” Transverse 230 270 250 232.5 202.5 311 289.23 239.47 

 

4.3   Comparison of Results 

 

A comparison of experimental results and FE predictions shows a good 

correlation for strain and displacement values. Predictions with the actual-geometry 

models show better correlations with the experimental results than those obtained with 

equivalent property models, which under-predict the displacements and most of the 

strains as well, although the actual-geometry models also under-predict the strains in 

most cases. The discrepancies observed with the equivalent geometry model are probably 

due to the approximations and assumptions in developing the equivalent property 

formulae, such as plane-strain assumption. In general, however, the results indicate that 

both deflections and strains can be predicted by both of the finite element models with 

reasonable confidence, although the discrepancies with the experimental results are 

significant in some cases. It must be noted, however, that there were manufacturing 

imperfections in the samples, leading to non-uniform dimensions and resin content of 



 38 

face- sheet and core components. Based on the relatively favorable results obtained for 

the elastic behavior of the panels, the side-to-bottom panel connection is evaluated, both 

experimentally and numerically, in the next chapter. 



 39 

Chapter 5 

Testing and Analysis of Connections 

 

 Two different designs for the connection of the side-panel to the bottom-panel 

were proposed, and samples for each connection type were produced and tested.  The 

goal of the experimental testing is to evaluate the two connections and suggest the best 

design for production of the tank. A description of the two connection designs is given in 

Chapter 3. In this chapter, we discuss the experimental testing and finite element 

modeling and results obtained for both types of connection samples, and 

recommendations are made for their application in the assembly of the fish tank panels. 

 

5.1   Experimental Testing of Connection Samples 

 

Experimental testing of the connection is performed by fixing the bottom panel of 

the sample to a rigid steel vertical column, as shown in Figure 5.1.  A tip load is applied 

to the side panel at a distance of 36-inches from the interior face of the bottom panel. 

Vertical deflections are recorded at distances of 24- and 36-inches.  Strains are measured 

at 11 locations on each of the samples (see Figure 5.2), with 5 gages bonded to the 

bottom panel (#1, #2,  #3, #6 and #7), which is fixed to the steel column, and 6 gages 

bonded to the cantilever side-panel (#4, #5, #8, #9, #10 and #11) as shown in Figure 5.2.  

The gages on the side-panel are located for the purpose of obtaining the distribution of 

strains from the intersection of the panels to the free end, while the gages bonded to the 
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bottom-panel are located to determine how rigidly the panel is fixed to the steel column. 

The gages are bonded at similar locations in each of the two samples to allow for easy 

comparisons, the exception being gages #6 and #7 for the stiffened sample, which are 

bonded on the stiffener.  The data is reduced using the same method as for the beam 

samples, and the strains and deflections for 100 pounds of loading are shown in Table 5.1 

 

 

 

 
 
 
 
 
 
 
 

Figure 5.1 Experimental Setup for the Connection 
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Figure 5.2 Location of Strain Gages 
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5.2   Finite Element Modeling of Connection Samples 
 

5.2.1   Actual Core Geometry 

 

4”x4” unit cells (Figure 3.9) of the side panel and the bottom panel are used to 

generate the actual core geometry models of the connected panels. Only half the width of 

the sample is modeled and symmetric boundary conditions are applied to minimize 

computational effort. Using the element copy-and-paste feature in FEMAP (1999) for the 

corresponding unit cells, the side-panel and bottom-panel are modeled, with dimensions 

as shown in Figures 5.1 and 5.2. A void, 2 inch wide and 2 inch deep, is created along the 

width of the bottom-panel by deleting elements at the location of the connection joint. 

The side panel is then inserted into the void and, the common nodes are merged at the 

joint. This creates a model of the unstiffened connection as shown in Figure 5.3.  A line 

load equivalent to 100 lb is applied at the edge of the side panel, 36” away from the inner 

Figure 5.3  Actual Geometry Model of the Unstiffened Connection 
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face of the intersection. The bottom nodes of the bottom panel are restrained from 

moving in the vertical direction, to simulate the support of the bottom panel over a rigid 

surface in the experiment. Also specific nodes on the bottom panel above the connection 

are constrained in all directions to simulate the boundary conditions in the experimental 

setup, where the bottom panel is fixed to the rigid column using clamps as shown in 

Figure 5.1. 

 

For the stiffened connection design, a stiffener is added to the unstiffened model 

as follows. Elements of the unit cell of the bottom panel are copied to create a 6” wide 

beam. The beam is sliced through the cross-section at a 45  angle, and a face sheet is 

added to the cut-surface; this triangular wedge (Figure 5.4) is then joined to the bottom-

panel and side-panel at the connection, thus creating the stiffener. Nodes on adjacent 

faces of the wedge and the raceway panels are merged for strain and deflection 

continuity. This creates the stiffened connection as shown in Figure 5.4. Similar loads 

Figure 5.4  Actual Geometry Model of the Stiffened Connection 

Wedge 
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and constrains are applied to this model as in the unstiffened model. The response of the 

connections is analyzed using ABAQUS (1998), and nodal deflections and strains are 

obtained and compared to experimental results.  

 

5.2.2 Equivalent Core Plate 

 

For the equivalent core-geometry model, the side and bottom panels are generated 

using 4-node shell elements, and the two panels are joined along coincident nodes, at the 

intersection located at 4” from the lower-end of the bottom-panel. This forms the 

unstiffened connection design as shown in Figure 5.5. For the stiffened connection 

design, approximations are made regarding the stiffener, by placing vertical triangular 

shell elements representative of the core elements, placed equidistantly at 4-inch apart 

Figure 5.5  Equivalent Core Geometry Model of the Unstiffened Connection 
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across the panel-width. A facesheet of shell elements is attached over the inclined edges 

of the discrete stiffners. The stiffened equivalent core model is shown in Figure 5.6. As in 

the case of the actual-core geometry model, a line-load equivalent to 100 lb is applied at a 

distance of 36” from the inside of the panel intersection, as in the experiment. The model 

is analyzed using ABAQUS (1998), and the results are compared with the experimental 

values. 

 

 

5.2.3 Cantilever Beam FE Modeling 

 

A 36” long side panel beam is generated using both actual core-geometry and 

equivalent core properties. One end of the beam is constrained by specifying fixed-end 

boundary conditions, and a tip line-load is applied on the other end to simulate a 

Figure 5.6  Equivalent Core Geometry Model of the Stiffened Connection 
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cantilever beam in bending. The cantilever beam is assumed to be the ideal connection as 

it does not allow for any rotations at the joint. Strains and deflections for this model are 

obtained at the same locations as for the stiffened and unstiffened connection models. 

The results are used to compare the responses of the other two connection models to an 

idealized fixed-end connection. 

 

 

5.3   Comparison of Experimental and FE results 

 

 Table 5.1 shows the experimental and finite element modeling results. It can be 

seen that there is a significant difference in the strain results of the FE models and the 

experimental samples for the bottom panel. One reason for this is the proximity of the 

boundary condition to the position of the strain gages, which may lead to error in the 

Figure 5.7  Cantilever Beam FE Model 
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collection of data, both in the experimental setup and finite element analysis. It was also 

learnt in the failure testing of the beam samples, which is discussed in the next section, 

that the bottom panels have a very high factor of safety. Thus it is concluded that the 

strains of the bottom panel are not as critical as the strains of the side panel and hence 

they will not be discussed further in this section. 

 

For the side panel, the actual geometry FE models are more flexible compared to 

the experimental results, while the equivalent models are stiffer. Further, the actual 

geometry FE results are much closer to the experimental results than the equivalent 

model results. This is partly because of the assumptions in calculating the equivalent 

properties of the sinusoidal core. There were also considerable manufacturing defects in 

the experimental samples, leading to the discrepancies in the results. The equivalent 

models predict the actual behavior of the samples to within 20% for the stiffened models 

and 30% for the unstiffened models for deflections; similarly for strains, the 

discrepancies are within 20% for the stiffened models and 10% for the unstiffened 

models. Although these differences are significant, it was decided that for ease of 

computation and economy, the complete raceway can still be modeled using equivalent 

properties. 

 

From Table 5.1, it can be seen that the stiffened connection yields the least 

deflection of all the models tested and approaches the cantilever beam condition, which 

assumes perfect fixity at the connection. The unstiffened connection is more flexible, 

showing a relative rotation at the joint. Examining the maximum displacement values in 
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Table 5.1, we can see significant differences between the two designs.  The deflections of 

the unstiffened sample are about 42% greater than those of the stiffened sample.  Since 

the strains of the side panel (the panel on which the load is applied) for both connection 

types are approximately the same, we can infer that the joint rotation of the unstiffened 

sample is significantly greater than that of the stiffened sample.   

 

Table 5.1 Comparison of Results for the Stiffened and Unstiffened Connection Samples 

Unstiffened Stiffened 
FE Model FE Model 

Cantilever Beam 
FE Model 

Location 
Experimental Actual 

Core 
Equivalent 

Core 
Experimental Actual 

Core 
Equivalent 

Core 
Actual 
Core 

Equivalent 
Core 

Deflection (inch)�
24” 0.177 0.179 0.108 0.122 0.125 0.096 0.134 0.101 
36” 0.303 0.326 0.205 0.213 0.246 0.188 0.257 0.195 

Strain (X 10-6)�

#1 82 5 10 40 10 48 No Data No Data 
#2/ #3 174 59 39 89 60 83 No Data No Data 

#4/ #5 402 390 435 431 298 211 516 435 

#6/ #7 2 -75 -54 -186 -105 -153 No Data No Data 
#8/ #9 -412 -368 -431 -379 -362 -309 -475 -435 

#10 No Data -223 -248 -222 -238 -248 -241 -248 

#11 -51 -71 -84 -61 -80 -84 -122 -84 

 

While larger displacements are observed for the unstiffened connection design, 

both connection types are adequate for use in the production of the tank.  The stiffened 

connection was used for the exterior panels, and the unstiffened connection was used for 

the interior partition panel as shown in Figure 5.8. To further increase the rotational 

stiffness of the connections, a 6” unidirectional fabric was placed at the connection as 

shown in Figure 5.9. 
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Figure 5.8  Connector Selection for the Raceway 

Unstiffened Connection 

Stiffened Connection 

Figure 5.9  Placement of a Unidirectional Fabric at the Connection 

Unidirectional Fabric 
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Chapter 6 

 Failure Testing of Beam Samples  

 

 The beam samples which were tested in the linear range in Chapter 4 were again 

tested in bending, this time to failure. This was done to determine the ultimate loads and 

corresponding failure modes of the material, which can provide failure limit loads for the 

raceway. This study is also directed to observe the behavior of the panels at various levels 

of loading. 

 

6.1   Experimental Setup 

 

Figure 6.1 Testing to Failure Load 
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The experimental setup for the failure tests was the same as for the linear tests. 

The beams were tested in three point bending as shown in Figure 6.1. The load was 

gradually applied first in the linear range to verify the values with the previous tests in the 

linear range. On obtaining satisfactory results, the load was gradually increased to failure, 

and the mode of failure was noted and the failure load was recorded.  

 

6.2   Failure Testing of Beam Samples  

 

The beams previously tested in the linear range were subsequently tested to 

failure to determine the behavior of the panels at various levels of loading. The results 

provide valuable information about failure modes and ultimate loads (Table 6.1). The 

load-deflection and load-strain data are plotted as shown in Figures 6.2 and 6.3, 

respectively, and the linear limits for all the samples are estimated graphically. Maximum 

in-service deflection and strain values for the side and bottom panel are predicted by the 

finite element modeling of the entire raceway, as discussed in the next chapter, and are 

summarized in Table 6.2. These values are used to calculate the factors of safety for 

deflection and strain (Table 6.3), from the linear and failure limits obtained 

experimentally. 
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Table 6.1  Failure Information for Beam Samples 

Span Orientation Mode of failure Load (lb) 
Bottom Panel 

4’ Longitudinal Delamination of top face sheet 7500 
4’ Transverse Shear of the core 1575 
6’ Longitudinal Material failure in compression 9000 

Side Panel 
4’ Longitudinal Delamination and material failure of bottom face sheet 3800 
4’ Transverse Shear of the core 1682 

5.5’ Transverse Material failure in compression 1630 

 

Table 6.2  In-Service Maximum Deflection and Strain from the FE Model of Tank 

Variable Bottom Panel Side Panel 
Maximum Deflection (in) 0.0041 0.281 
Maximum Strain (x10-6) 77 615 

 

 

Table 6.3  Factors of Safety for Experimental Samples 
 

Maximum Load 
(lb) 

Maximum 
Deflection (in) 

Maximum Strain 
(106 in/in) 

Deflection 
Ratio Strain Ratio 

Sample 
Linear Ultimate Linear Ultimate Linear Ultimate � linear   

� design 
� ultimate  
� design 

� linear   
� design 

� ultimate  
� design 

4’ Bottom Panel 
Longitudinal 2152 7525 0.312 1.627 2858 10940 76.1 153.0 37.1 142.3 

4’ Bottom Panel 
Transverse 963 1620 0.176 0.341 1452 2507 42.9 83.2 18.9 32.6 

6’ Bottom Panel 
Longitudinal 2270 9003 0.552 2.56 2640 13580 134.6 624.4 34.3 176.6 

4’ Side Panel 
Longitudinal 723 3828 0.466 2.76 2439 14930 1.7 9.8 4.0 24.3 

4’ Side Panel 
Transverse 896 1713 0.608 1.59 3089 6528 2.2 5.7 5.0 10.2 

5.5’ Side Panel 
Transverse 853 1630 0.753 1.55 2458 5107 2.7 5.5 4.0 8.3 

 

Note: Design values are obtained from finite element analysis of the tank 
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6.3   Failure Modes 

 

As reported in Table 6.1, the typical failure mode for the longitudinal samples was 

delamination of the face sheet from the core (see Figure 6.4). The transverse samples 

failed by shearing of the core, as shown in Figure 6.5.  However, for the samples tested at 

a longer span, a compression failure occurred in the top face sheet (see Figure 6.6), which 

can be attributed to dominant bending stresses for longer spans. These results indicate 

that  the  raceway  could  fail  in  either  one  of  these  modes  depending  on  the  loading 

and boundary conditions. Testing to failure of plate-type samples of the same material 

under static and dynamic loads would further provide better knowledge about different 

failure modes that can be expected in service. 

Figure 6.4 Delamination of Face Sheet from Core 
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Figure 6.5 Shear Failure of Core 

Figure 6.6 Material Failure 
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6.4   Conclusions 

 

From Table 6.3, it can be seen that the factors of safety for the bottom panel are 

very high for deflections, because the raceway rests over closely spaced transverse 

supports placed on the ground, thus limiting bottom panel deflections. For the side panel, 

the factors of safety in the linear region due to deflection range from 1.7 to 2.7 and due to 

strain range from 4.0 to 5.0, while the factors of safety for failure due to deflection range 

from 5.5 to 9.8 and due to strain range from 8.3 to 24.3. These results indicate that the 

panels and connections can withstand failure with reasonable factors of safety. 
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Chapter 7 

Modeling of Complete Raceway 

 

7.1 Introduction 

 

 It is not feasible to experimentally test the raceway unit behavior in laboratory 

conditions due to cost and complexity of the work. For this reason, a finite element model 

of the complete raceway unit was developed, which can be subjected to any loading and 

boundary conditions suggested by the user. From the results of the experimental testing 

and comparisons with the finite element models discussed in the preceding chapters, it 

was decided that the complete raceway can be confidently modeled using equivalent 

properties. Also various degrees of rigidity for the connection of the main tank to the 

Figure 7.1  Complete Raceway Unit 

Longitudinal Transverse 

Vertical 
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quiescent zone were analyzed to evaluate its performance. This chapter deals with the 

finite element modeling details of the raceway unit, various analyses performed on the 

model and their results, and possible applications of the model. 3D- view of a complete 

raceway is shown in Figure 7.1. The figure also shows the terminology for directions of 

the tank, according to which, the longitudinal direction is along the length of the tank, 

transverse direction along the width of the tank and the vertical direction is along the 

height of the raceway. 

7.2   Finite Element Modeling of the Raceway 

7.2.1   Model Dimensions 

 
 

The complete raceway is modeled using the dimensions of the actual raceway 

shown in Figure 1.10, but with the addition of stiffeners for the outer side-to-bottom 

Main Tank 

Quiescent Zone 

Main Tank-to-Quiescent Zone Connection 

Figure 7.2 Finite Element Model of the Raceway 
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panel connection. It is developed as two sections, the 24-foot long main tank and the 6-

foot long quiescent zone. Each section is divided longitudinally into two 3-foot wide 

parallel channels separated by an interior panel. The stiffened side-to-bottom panel 

connection detail was used for the exterior side panels, while the interior panel was 

formulated using the unstiffened connection type.  The side panel rises 42” from the 

interior of the bottom panel. An FE model of the complete raceway model is shown in 

Figure 7.2. 

 

7.2.2   Connection Design  

 
 

Four types of connections of the main tank to the quiescent zone are considered. 

The first model simulates the actual raceway installed at Dogwood Lakes, where the two 

sections are joined using three bolts on each outer panel. The second connection design 

assumes the failure of the top bolt joining the outer panels. The third model assumes 

complete connectivity of the joint, while the fourth design assumes the connectivity of 

the joint till mid height of the side panels. These conditions are analyzed to evaluate the 

connection design and to verify the strength of the connection in practice. 

 

7.2.3 Mesh Selection 

 

 To simplify the model, equivalent core properties are used to simulate the 

complete raceway. The mesh size used in the beam and connection models in the 

previous chapters was 0.2”x0.2”. The complete fish tank could not be modeled using 
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such a fine mesh because of computational difficulties resulting from the large number of 

elements and nodes. Hence a coarser mesh had to be utilized, consisting of 4”x4”mesh 

size to model selected experimental beam and connection samples, and the convergence 

of results is studied and the deflection results are provided in Table 7.1. The study shows 

that the results did not vary much with the increase in mesh size. Also, the differences in 

results for a three-node and four-node elements was also studied, which indicated that the 

shape of the elements did not influence the results to any considerable extent. This study 

indicated that the whole tank could be modeled using the coarser mesh size and 

quadrilateral elements instead of triangular elements, which would decrease 

computational effort. 

 

Table7.1 Comparison of Results for a Side Panel Transverse Section for Central 

Deflections  

 Triangular Element 
(inch) 

Quadrilateral Element 
(inch) 

Fine Mesh 0.0505 0.0505 

Coarse Mesh 0.05046 0.05 
 

7.2.4   Loads 

 
 

For the analysis, hydraulic loads along with other miscellaneous loads, like people 

leaning on the raceway walls, are considered. Water is assumed to be static in the tanks 

for the calculation of the loads. This is justified because of the low flow rate of water. 

The Hydraulic pressure is given by 
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Pressure = � x hc              (7.1) 

Where � = specific weight for water  (62.4 lb/ft3);  hc = Depth of water at centroid 

The Hydraulic force is given by 

Force = Hydraulic pressure x Area           (7.2) 

 

If the depth is divided into n sections, pressure at a section i (i< n) is given by 

Pi = Pi-1 + (� x hc)              (7.3) 

 

Using the above concepts, the hydraulic pressure acting on various nodes of the 

side panel vary from 0 lb/ in2 at the free water surface ( 36” from the base) to 6.67 lb/in2 

at the bottom of the tank. The effective area of application of this pressure is found and 

the effective nodal loads are calculated and applied on the panels. The pressure on the 

bottom panel due to water standing to a height of 36” is calculated and applied. Also, 

forces assumed to be from people of average weight of 180 lb standing inside the tank 

and leaning on the walls is applied. 

 

7.2.5   Boundary Conditions 

 

Two types of boundary conditions are considered. The first assumes that the tank 

completely rests on the ground. The second assumes that the bottom of the tank rests 

intermittently on the ground, with supports placed at a distance of 6 feet from each other 

and the quiescent zone completely overhanging. These two conditions represent the 

optimal and the most extreme conditions in which the tank can be installed.  
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7.2.6   Reported Results 

 

� For all types of main tank to connection joints studied, the results for maximum 

deflection and strains are reported. Maximum strains are reported for the vertical 

direction at the side-to-bottom panel connection and for the longitudinal direction at the 

main-tank-to-quiescent zone joint. The vertical strain indicates the bending strains on the 

side panel due to the loads, while the longitudinal strain indicates the deformations 

induced due to the effect of the connectors (bolts) at the joint. Also, maximum transverse 

deflections are reported for the side panel for all models and maximum vertical deflection 

for the bottom panel is reported for intermittently supported models. Maximum opening 

of the two sections of the tank at the joint for all the joint designs is evaluated. The 

behavior for combinations of various boundary and loading conditions is also predicted 

and reported.  

 

7.3   Dogwood Lakes Simulation 

 

7.3.1 Modeling 

 

The following provides a model for the existing case at Dogwood Lakes. The 

main raceway is connected to the quiescent zone using three bolts on the outer surfaces of 

the exterior panels (Figure 7.3). The tank rests completely on the ground. A person of 

average height of 5’10” and weighing 180lb is considered to be standing at the center of 

the quiescent zone and leaning against the center panel. The tank holds water up to a 

height of 3’. 
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The results reported in Table 7.2 are the maximum overall openings at the main 

tank-to-quiescent zone connection for the outer panels and for the inner panel, maximum 

transverse deflection at the main tank-to-quiescent zone connection, maximum transverse 

deflection of the outer panel at the end of the raceway and maximum longitudinal and 

vertical strains in the tank.  

 

 

Table 7.2. Results of FE Model Simulation of Dogwood Lakes Raceway Units 
 

Maximum Opening at Connection, in 
Maximum Transverse 

Deflection at 
Connection, in 

Maximum Strain, 
microstrain 

Outer Panel Inner Panel Bottom Panel Outer Panel Inner Panel 

Maximum 
Transverse
Deflection 
at End of 
Raceway, 

in. 
Vertical At Bolted Joint 

(Longitudinal) 

0.005 0.02 0 0.26 0.028 0.281 615 446 

 

 

Main Tank Quiescent Zone 

Silicone Rubber 
Nut 

Bolt 

Figure 7.3  Main Tank-to-Quiescent Zone Connection at Dogwood Lakes 
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7.3.2   Discussion of Results 

 

The maximum opening at the main tank to quiescent zone joint is found to be 

0.005” for the outer panel and 0.02” for the inner panel. The maximum opening for the 

outer panel is observed between the two bolts at the top. It can be inferred from these 

results that the opening is not big enough for water to leak out of the raceway, since a 

half inch thick elastomeric pad is used at the joint as shown in Figure 7.3. The maximum 

opening for the center panel, against which a person is assumed to be leaning, was 

estimated as 0.02”. For all the boundary conditions and connections tested, the maximum 

opening for the center panel was found out to be 0.05”, which is insignificant. 

 

The strains for the tank were also evaluated, and the maximum value is the 

vertical strain of the side panel near the panel-to-panel joint, which is 615 micro strains. 

This is well within the elastic limit of the material and hence would not cause any failure. 

Assuming an error of 20% in the results for deflections and strains for the equivalent 

property models, as reported in Chapter 5, the maximum strain would be about 770 micro 

strains, which is still below the elastic limit of the material.  

 

7.4   Comprehensive Raceway Simulations 

 

From the above discussion, we can see that for the actual case in Dogwood Lakes, 

the model indicates no concern with failure of the tank or water leaking out of the 

connection joint. The maximum deflection is also within the elastic limit.  A summary of 
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results for other conditions is reported in Table 7.3, which includes both fully supported 

boundary condition and intermittent boundary condition, for which the raceway rests over 

narrow strips at discrete locations along the bottom of the tank. 

 

Table 7.3 Behavior of the Tank Under Various Loading and Boundary Conditions 

Maximum deflection at 
connection 

Maximum Transverse 
Deflection Maximum Strain 

outer panel inner panel IS Vertical At Bolted Joint 

Main tank to 
Quiescent 

Zone 
Connection FS IS FS IS 

FS 
side bottom FS IS FS IS 

Water in both channels 

3 Bolts 0.26 0.34 0.028 0.076 0.281 0.383 0.135 615 1150 446 1277 

2 Bolts 0.22 0.29 0.03 0.03 0.29 0.44 0.28 874 1140 170 2028* 

Completely 
fixed 0.26 0.345 0.016 0.27 0.28 0.44 0.078 578 978 - - 

Fixed till 
mid height 0.23 0.29 0.023 0.024 0.29 0.46 0.17 540 615 - - 

Water in one channel 

3 Bolts 0.23 0.312 0.33 0.36 0.436 0.47 0.094 890 1260 293 852 

2 Bolts 0.31 0.35 0.21 0.38 0.27 0.38 0.22 917 1500 153 1208 

Completely 
fixed 0.215 0.28 0.293 0.32 0.375 0.45 0.073 951 912 - - 

Fixed till 
mid height 0.185 0.26 0.328 0.348 0.43 0.46 0.146 884 948 100 871 

 
Note: FS is Fully Supported boundary condition 
          IS is Intermittently Supported boundary condition 
          * Maximum Strain Observed 
 
 

It can be seen that if the main tank is connected to the quiescent zone using only 

two bolts on either side and if the tank rests intermittently on the ground, the maximum 

strain at the joint is more than 2000 micro strains (Figure 7.4), which is the highest in all 

the cases studied. Assuming a 20% error in reporting the results due to the use of 

equivalent properties (as mentioned in Chapter 5), the maximum strain at the joint is 

about 2550 micro strains. This value exceeds the linear limit of strain for the material. 
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This condition simulates the possibility of either improper connection or failure of the top 

bolt. Thus it can be observed that the three bolt system is better suited for the joint and if 

the top bolt fails, the connection itself can exhibit localized failure.  

 

Figure 7.5 shows maximum opening at water level and maximum deflection of 

side panel. Also, when water flows through a single channel, Figure 7.6, it is observed 

that the maximum strain developed on the interior panel-to-panel connection is 1500 

micro-strains, which is well within the elastic limit of the material.  

 

 

 

 

Figure 7.4 Transverse Stress at the Top Bolt when Only Two Bolts are Used at the Connection 

Maximum strain when top bolt fails 2028 microstrains 



 67 

 

 

Maximum opening = 0.027” 

Figure 7.5 Maximum Deflection at the Joint 

Figure 7.6 Strains and Deflections when Water Flows Through a Single Channel 

Maximum Strain = 1500 
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7.5   Conclusions 

 
From the finite element modeling of the complete raceway, it can be seen that the 

design is satisfactory to withstand all the expected loads during and after installation of 

the raceways. It is also observed that the three bolt connection is sufficiently strong for 

the studied boundary conditions, but if the top bolt fails, there is a possibility that the 

whole joint may fail, when the tank is intermittently supported with the quiescent zone 

completely overhanging.  The best way to avoid such a situation is to place the raceway 

in such a way that the whole bottom panel rests completely on the ground. Studies of 

water flowing through only one channel show that the strains are well within the elastic 

limit of the material under all expected loading conditions. 
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Figure 8.1 Transportation of Fish Raceways 

Chapter 8 

Field Implementation of HFRP Raceway Systems 

 

 After the testing of the beam and connection samples, design modifications to the 

raceways were suggested. Three sets of raceways were installed in West Virginia and 

Pennsylvania. This chapter provides a brief overview on the three field projects currently 

underway. It should be noted that this chapter deals with the applications of HFRP 

raceway systems and the raceways were set up with the help of various contractors.  

 

8.1 Transportability 
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 One of the prime purposes of using HFRP raceways is that they are light weight 

and can be easily transported from one location to another. Figure 8.1 shows that the 

tanks can be stacked on top of each other while they are transported from the 

manufacturing plant in Russell, KS to other locations. In Figure 8.2, we can see that the 

tanks are lightweight and rugged and can be easily moved using light equipment during 

installation. 

 

8.2   Accomplished Projects  

 

 Modular Honeycomb FRP raceways have been installed at three locations in and 

around West Virginia and Pennsylvania. The first site to implement HFRP raceway units 

is located at the Dogwood Lakes water treatment facility near Morgantown, West 

Figure 8.2 Unloading of Tanks from the Trailers 
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Virginia, which is owned by Consolidated Coal Company.  The second site is Reymann 

Memorial Farm in Wardensville, West Virginia, a research facility managed by WVU.  

While the terrains and water sources at these two sites are different, they both share the 

need for a modular and transportable raceway system. A third set of tanks are installed as 

floating raceways at Warwick mine water treatment facility in Greene County, 

Pennsylvania. The floating raceways can float inside a pond and have a different design 

compared to the above designs installed over ground. 

 

8.2.1   Dogwood Lakes 

 

 Dogwood Lakes is an acid mine water treatment facility near Morgantown, WV. 

Acid mine water treated with various chemicals is collected in afinishing pond where the 

solids precipitate. The purified water is then discharged into a stream. The terrain at 

Dogwood Lakes is very rugged, making it nearly impossible to use conventional concrete 

tanks.  Moreover, the coal company will not allow permanent structures to be built at this 

site, thus the decision to use transportable HFRP raceways. Following is a brief 

description of the facility, raceway installation details, problems encountered and 

prescribed solutions to the problems. 

 

 The site chosen for the raceway placement was a small plot of wooded hillside, 

loaned to West Virginia University by Consolidated Coal Company. Figure 8.3 shows the 

terrain at the designated location after initial clearing, but before any ground work was 

started. It can be clearly seen that the terrain is steep and rugged, making it necessary to 



 72 

install HFRP tanks. The Dogwood Lakes location was selected because of the results 

from previous studies performed at the site, which indicated acceptable water quality for 

healthy fish growth and a high water flow rate. It was decided that a set of four staggered 

tanks would be placed in series, the end of one tank resting on the top of the next tank. 

Water is first allowed to collect in a distribution box, which diverts it into the two parallel 

channels of the first raceway. After water flows through the first raceway, it falls into the 

next set of tanks thus making it a continuous cascading flow system.  

 

  

 

Figure 8.3 Terrain at Dogwood Lakes 
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Figure 8.4 Tanks after Installation 

Figure 8.5 Completed Project 
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The terrain had to be cut into four flat step-wise sections, one for each raceway. A 

slight drop to allow the flow of water was maintained throughout. Each tank rested 

perfectly on the ground over a gravel bed, minimizing excessive stresses and deflections. 

Figure 8.4 shows the final installation of the tanks, without the water flowing. After all 

the necessary piping was installed, the water was allowed to flow through the tanks, 

which were inspected for defects. Minor problems like leakage of water into the 

honeycomb core and at the joints were taken care using a polymer adhesive. After all the 

field problems were addressed, the fish were transferred into the tanks, enabling 

aquaculture studies. Figure 8.5 shows the functional tanks at Dogwood Lakes. 

 

8.2.2   Reymann Memorial Farm 

 

The location of the second HFRP raceway system is at Reymann Memorial Farms 

in Wardensville, WV.  This is an agricultural research facility maintained and operated 

by WVU.  This raceway system is being used as a research and demonstration facility, in 

which fish growers have the opportunity to examine and consider using the HFRP 

raceway units and system. There are several fresh-water springs on the farm, one of 

which provides the source of water for the system.   

 

There are marked differences between the Dogwood Lakes and Reymann 

Memorial Farms sites.  At Dogwood Lakes, there is a significant elevation drop and 

abundant water resource.  The Wardensville site has very little elevation drop, and a 

water flow rate of about 1/3 of the Dogwood Lakes site. Thus, the construction of the 
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raceway system at Reymann Memorial Farms posed several new and interesting 

challenges.  

 

Because of the gentle slope of the terrain, the drop between two adjacent tanks is 

much less compared to the tanks at Dogwood Lakes as shown in Figure 8.6. Part of the 

spring water is diverted into a collection box from where it is allowed to evenly flow 

through the 4-tank raceway system. After the water flows through all the four raceways, 

it is emptied into a pond. The raceway design is similar to that at Dogwood Lakes., but 

the quality and workmanship of this system is much better. Also, the coonection of the 

quiescent zone was simplified using external steel angles. A close-up view during 

unloading of the tanks is shown in Figure 8.7. 

 
Figure 8.6 Installation of Raceways at Wardensville 
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8.2.3 Floating Raceways 

 

Water discharged from coal mines is an underutilized resource for production of 

trout in Appalachia.  At numerous sites throughout West Virginia, Pennsylvania and 

Maryland, mine drainage (whether acidic or alkaline) is collected and routed through 

treatment plants where the acidity or alkalinity are neutralized and metals are removed 

 

The suitability of a given pond for trout production is a function of flow rate, 

water quality and temperature (among other factors).  In many mine water treatment 

systems, polishing ponds are too large to maintain water temperatures within acceptable 

Figure 8.7 Unloading of Raceways at the Facility 
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ranges and sufficient flow rate to keep trout supplied with oxygenated water.  Through 

the use of HFRP floating raceways, it should be possible to effectively use ponds while 

concentrating the water flow through raceway systems, which would deliver colder, 

oxygenated water directly to the trout, regardless of the size of the pond.  It would also 

allow the trout producer to collect the solid wastes at the end of each raceway before it is 

dispersed throughout the pond.  These advantages should help to promote trout 

production at these water treatment facilities. 

 

As part of this effort, a floating raceway unit was installed at the Warwick Mine 

Water Treatment Plant in Greene County, Pennsylvania (Figure 8.8). Before the 

installation of the floating raceways, the treatment plant used net-pens as shown in Figure 

8.8. But waste removal from these pens is not possible and many fish fatalities were 

reported because of the waste settling in the bottom of the pool and polluting the water. 

Figure 8.8  Net-Pens Used at Warwick Mine Water Treatment Plant 
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Hence it was decided that HFRP sandwich composites can be used with a modified 

quiescent zone, which will allow the wastes to be directed out of the raceway, thus 

reducing the level of fish wastes in the pond. 

 

The WVU researcher team came up with a modification to the existing system 

and developed the floating HFRP raceways (Figure 8.9).  The tanks are submerged in a 

pond and are fitted with all adjustable ballast to permit the tank to float above the water 

level, which is needed to safely keep the fish inside the tank and to dispose of the fish 

waste without contaminating the pond. Modifications to the quiescent zone were also 

made and tests on the new design will be carried out. Figure 8.10 shows the floating 

raceways in service at the Warwick treatment facility.  

 

 
 
 

Figure 8.9 Installation of Floating Raceways at the Warwick Mine Water Treatment Plant 
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Figure 8.10 Floating Raceways 
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Chapter 9 

Recommendations 

 

9.1   Overview of the Project 

 

 In this study, an overview of design of fish raceway systems using Honeycomb 

Fiber-Reinforced Polymer sandwich composites was presented. Experimental testing of 

beam and connection samples was performed both in the linear range and to failure. 

Finite element modeling of the samples was done and the results were correlated with the 

experimental results. Equivalent properties of HFRP were determined and equivalent 

core geometry FE models were created. Modifications to the initial design were 

suggested based on the experimental testing and finite element modeling results. The 

complete tank was modeled using the equivalent properties and the behavior of the tank 

under various loading and boundary conditions was analyzed. Factors of safety of the 

tank during field implementation under various loading and boundary conditions are 

predicted. Current applications of HFRP raceways in West Virginia and Pennsylvania 

were discussed. 

 

9.2 Recommendations 

 

 Experimental testing and finite element modeling of the beam and connection 

samples provided useful insight into the behavior of HFRP material and the raceways. 
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Based on these test and modeling results, design modifications were suggested. Field 

implementation of the raceways provided valuable experience based on which functional 

modifications to the raceway were suggested. This section deals with some of the design 

and functionality modifications proposed and implemented. 

 

9.2.1 Based on Experimental Testing 

 

 Upon evaluating the two connection designs, it was recommended that the 

stiffened connection should be used for the outer panels and the unstiffened connection 

should be used for the inner panels as shown in Figure 5.8. It was also decided that a 

Chopped Strand Mat fabric should be placed at the connection to increase its rotational 

stiffness (Figure 5.9). 

 

9.2.2 Based on Experience from Field Implementation 

Main Tank-to-Quiescent Zone Joint: 

In the first set of raceways installed at Dogwood Lakes, the main tank and 

quiescent zone were connected using 3 sets of bolts on the side panels (Figure 9.1 (a)). 

The uneven nature of surface posed difficulties during assembly of the raceways at the 

site. Hence, in the second set of raceways at Wardensville, the main tank-to-quiescent 

zone joint was modified to include steel angles at the end, as shown in Figure 9.1 (b). 

This design greatly increased assembly efficiency.  
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Mechanical Connector Joining the Central Panels of Main Tank and Quiescent Zone: 

In the current sets of tanks, the central dividing panels of the main tank and the 

quiescent zone are not joined using any mechanical connectors. In the second set of tanks 

installed at Wardensville, a new connector was designed to join the two central panels as 

shown in Figure 9.2, which increased the joint strength.  

(a) Dogwood Lakes                                              (b) Reymann Memorial Farms 

Figure 9.1 Main Tank-to-Quiescent Zone Joint 

Figure 9.2 Mechanical Connector Joining the Two Central Panels 
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9.2.3 To Decrease Manufacturing and Assembly Costs 

 

As the tanks are not cast as a single unit, one of the major costs associated with 

the manufacture of the current HFRP raceways is the machining required to join the side 

panel to the bottom panel. In the present set of tanks, the two panels are manufactured 

separately. Grooves are cut in the bottom panel. The side panel is then inserted into the 

grooves and is bonded to the bottom panel using resin. To decrease machining of the 

panels, and thus the overall cost of the raceway, a new connection design is being 

proposed, which allows the user to assemble a fully functional raceway unit from flat 

panels. A brief description of the proposed design is provided in the next section. 

 

9.3 Future Work 

 

To decrease the cost of manufacture, assembly and transportation of the HFRP 

raceways, modifications to the current side-to-bottom panel connection design were 

proposed, which allows the user to completely assemble a raceway using flat HFRP 

panels at the desired location using easy-to-use connectors. Work is being done in this 

regard at WVU and an initial design was suggested (shown in Figure 9.3). Based on 

formulations proposed by Davalos and Chen (2004) [13], the coefficient of elastic 

restraint was calculated and finite element models were created. FE models created using 

the elastic coefficient of restraint and the equivalent properties discussed in Chapter 2 

showed favorable results. On assembly of the first set of samples, certain flaws in the 

design were identified and design modifications were suggested. Experimental testing for 
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1/4” bolt 

¾” Bolt 

Angle Plate 
Side Panel 

Bottom Panel 

(a) Solid Model of the Proposed Connection            (b) Wire Frame Model of the Proposed Connection 

(c) Assembled Connection Sample       (d) Test Sample 

Figure 9.3 Initial Design of the New Connector Joining the Side and Bottom Panels 

stiffness and strength of the connection will be carried out shortly. It is also proposed that 

a complete tank should be manufactured with the new connection design and 

implemented in the field. 
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9.4 Conclusions 

 

Design modifications based on the experimental testing and finite element modeling 

of the HFRP beam samples and connection samples increased the stiffness of the 

raceways. Failure testing of the samples gave us an indication of the various types of 

failure possible during field implementation. Factors of safety predicted from the 

complete raceway model gave useful insight on the performance of the raceways in the 

field. It also indicated that the raceway functions without any expected failure under all 

boundary conditions, even when it is intermittently supported. It was also concluded that 

the material may reach its linear limit when the top bolt of the main tank to quiescent 

zone fails.  

 

Experience gained from the field installation of the raceways provided valuable 

knowledge based on which certain functional changes have been proposed and 

implemented in the design of the tank, as discussed in section 9.2. Though it may be too 

early to predict the future of HFRP raceways, current field studies show promise and 

indicate a wide rage of applications in the aquaculture industry. 

 

9.5 Author’s Contribution 

 

The project has been completed in several stages with the involvement of many 

people and organizations. Hence it is important to specifically note the contribution of the 

author to this study. He is responsible for the evaluation of actual material properties, 



 86 

calculation of equivalent core properties based on existing formulations, experimental 

evaluation of HFRP beam samples in bending, evaluation of connection samples for 

rotational stiffness, finite element modeling of beam and connection samples, failure 

analysis of beam samples, finite element modeling of complete raceway and predicting 

the behavior of the raceway under various installation conditions, assisting in field 

installation of HFRP raceways at Dogwood Lakes, aiding in proposing design 

modifications based on experimental testing and field implementation of raceways, and 

finite element modeling and experimental evaluation of the new connection design 

proposed to decrease manufacturing and assembly costs of the raceway. 
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APPENDIX A 

 

Output from CADEC to calculate the elastic properties of the unidirectional 

composite consisting of E- glass fiber and polyester resin 
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APPENDIX B 

 

Maple program to calculate the elastic properties of chopped strand mat from 

unidirectional composite properties obtained from CADEC 

 

#***********************************************************************

#*  Chopped Strand Mat  elastic properties                                                                         * 

#*********************************************************************** 

> E1:= 5.34131e6; 

E1:= 5.34131e6 

> E2:=2.11231e6 ; 

E2:=2.11231e6  

> G12:=6.7812e5 ; 

G12:=6.7812e5  

> G23:=6.05614e5 ;  

G23:=6.05614e5  

> v12:=.27877 ; 

 v12:=.27877  

> v23:= 0.50718 ;  

v23:= 0.50718  

> v21:= v12*E2/E1 ;  

v21:= .1102442395 

> d:=1-v12*v21 ;  
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d:= .9692672134  

> Echsm:= (E1^2+4*E1*G12*d+2*E1*E2+8*v12*E2*G12*d-

4*v12^2*E2^2+4*E2*G12*d+E2^2)/d/(3*E1+2*v12*E2+3*E2+4*G12*d); 

Echsm:= .3030430469 107 

> Gchsm:= (E1-2*v12*E2+E2+4*G12*d)/8/d;  

Gchsm:= .1148424358 107 

> vchsm:=(E1+6*v12*E2+E2-4*G12*d)/(3*E1+2*v12*E2+3*E2+4*G12*d);  

vchsm:= .3193861869 

> dchsm:= 1- vchsm^2 ; 

dchsm:=  .8979924636 

> Q11:=Echsm/dchsm ; 

Q11:=.3374672497 107 

> Q12:=vchsm*Echsm/dchsm; 

Q12:= .1077823781 107 

> Q21:=Q12 ; 

Q21:= .1077823781 107 

> Q22:= Echsm/dchsm ; 

Q22:= .337467297 107 

> Q66:= Gchsm; 

Q66:= .1148424358 107 

> A11:= Q11*0.09; 

A11:= 303720.5247 

> A22:=Q22*0.09; 
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A22:= 303720.5247 

> A12:= Q12*0.09; 

A12:= 97004.14029 

> A66:= Gchsm*0.09; 

A66:= 103358.1922 

> t:=0.09; 

t:=0.09 

> Ex:=(A11*A22-A12^2)/t/A22; 

Ex:= .3030430469 107 

> Ey:=(A11*A22-A12^2)/t/A11; 

Ey:= .3030430469 107 

> Gxy:=A66/t;  

Gxy:= .1148424358 107 

> Gxz:= G23; 

Gxz:= 605614. 

> Gyz:=Gxz; 

Gyz:= 605614. 

> vxy:= A12/A22; 

vxy:= .3193861870 

> vyz:=v23; 

vyz:= .50718 

> vxz:=vyz; 

vxz:= .50718 
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APPENDIX C

Mathematica program to calculate the In-plane equivalent properties of the

sinusoidal core plate.

Note: All values are in SI units and are converted into FPS units before using the

properties in finite element modeling

************************************************************************

IN-plane properties of Sinusoidal core plate

************************************************************************

h � 0.0254
b � 0.0508
t1 � 0.001524
t2 � t1
E1 � 20.894 � 10^9
E2 � E1
G12 � 7.91 � 10^9
am � 12 � � E1 � t2^3�
am1 � 12 � 	 E1 
 t1^3�
an � 1 � 	 E1 
 t2�
av � 1 � 	 5 � 6 
 G12 
 t2�
av1 � 1 � 	 5 � 6 
 G12 
 t1�
0.0254

0.0508

0.001524
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0.001524

2.0894 � 1010
2.0894 � 1010
7.91 � 109
0.162257

0.162257

3.14046 � 10� 8
9.95451  10� 8
9.95451  10� 8
c � 1� �

1 � � h � � � b� ^2 � � Sin � � � x � b� � ^2
s �  h ! " # b� !  Sin $ " ! x # b� � % & 1 '  h ! " # b� ^2 !  Sin $ " ! x # b� � ^2
j � & 1 '  h ! " # b� ^2 !  Sin $ " ! x # b� � ^2

1(
1 ) 2.4674Sin * 61.8424x + 2
1.5708Sin , 61.8424x +-
1 . 2.4674Sin , 61.8424x + 2/
1 0 2.4674Sin 1 61.8424x 2 2

M 3 4 P 5 x 6 F 5 h 5 7 1 4 Cos 8 9 5 x : b; < 6 M0
Na = F 5 c 6 P 5 s
V = P 5 c 4 F 5 s
M0 > Px ? 0.0254F @ 1 A Cos B 61.8424x C D

FE
1 F 2.4674Sin G 61.8424x H 2 F 1.5708PSin G 61.8424x HE

1 F 2.4674Sin G 61.8424x H 2
PE

1 F 2.4674Sin G 61.8424x H 2 I 1.5708FSin G 61.8424x HE
1 F 2.4674Sin G 61.8424x H 2
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uvJ P̂2K NIntegrateL ĉ2K j, M x,0,bN O P 2Q F̂ 2R NIntegrateS ŝ 2R j, T x,0,bN O P 2U FR PR NIntegrateScR sR j, T x,0,bN O
unV P̂2R NIntegrateS ŝ2R j, T x,0,bN O P 2Q F̂ 2R NIntegrateS ĉ 2R j, T x,0,bN O P 2Q FR PR NIntegrateScR sR j, T x,0,bN O
umV P̂2R NIntegrateS x̂2R j, T x,0,bN O P 2Q F̂ 2R ĥ 2R NIntegrateS W1U CosS X R xP bO Y 2̂R j, T x,0,bN O P 2U
FR PR hR NIntegrateSxR W1U CosS X R xP bO Y R j, T x,0,bN O Q M0R FR hR NIntegrateS W1U CosS X R xP bO Y R j, T x,0,bN O U
M0R PR NIntegrateSxR j, T x,0,bN O Q M0̂ 2R NIntegrateSj, T x,0,bN O P 2

0.0190041F2 Z 0.0324659FP [ 0.0181738P2
0.0181738F2 [ 0.0324659FP [ 0.0190041P2
0.0000342329F2 [ 0.00188864FM0 [ 0.0371779M02 Z 0.0000642351FP Z 0.00188864M0P [ 0.0000305376P2
U V uv R av Q un R an Q um R am Q an R F^2 R b
1.59535\ 10] 9F2 ^ 0.162257 _0.0000342329F2 ` 0.00188864FM0̀ 0.0371779M02a 0.0000642351FPa 0.00188864M0Pb 0.0000305376P2c d
9.95451e 10f 8 g0.0190041F2 h 0.0324659FPd 0.0181738P2c d 3.14046e 10f 8 g0.0181738F2d 0.0324659FPd 0.0190041P2c

************************************************************************

E22 and V21

************************************************************************i
y j 0.0001
0.0001

P j .
Eq1 j k M0 U lml 0
Eq2 l k P U lnl o y
Eq3 l k F U p 2 q F q b r E1 r t1 lml 0o x l 2 q F q b r E1 r t1
0.162257 s 0.00188864F t 0.0743557M0 u 0.00188864P v wnw 0
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0.162257 x y 0.0000642351F y 0.00188864M0 z 0.0000610753P{ |
9.95451} 10~ 8 � � 0.0324659F � 0.0363475P� � 3.14046� 10~ 8 � 0.0324659F � 0.0380082P� ��� 0.0001

0.F� 9.95451� 10~ 8 �0.0380082F � 0.0324659P� �
0.162257 �0.0000684657F� 0.00188864M0 � 0.0000642351P� � 3.14046 � 10~ 8 �0.0363475F � 0.0324659P� ��� 0

General::spell1: Possible spelling error: new symbol name "� x" is similar to existing symbol "� y".
3.19071 � 10� 9F
Solve � � Eq1, Eq2, Eq3� , � M0,P, F� �� � M0 � 14.4202,P � 2743.43,F � 2175.71 � �
Sub � � � M0 � 23.7085583328231042̀ ,P � 4497.08793815037655̀ ,F � 3563.68012984153859̀ � �� �
M0 � 23.7086,P � 4497.09,F � 3563.68 � �� x � .Sub� 0.0000113707 �

E22 � P � 2 � h �   b ¡ ¢ y£ ¤ .Sub¥ 21 ¦ § x ¨ 2 ¨ h © ª 2 ¨ b ¨ § y« © .Sub¬
4.49709  107 ®¯ 0.0568533 ®
E22 ° E1¯
0.00215233 ®
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************************************************************************

E11 and V12

************************************************************************

± x ² 0.001± y ² .
0.001

Eq4 ² ³ M0 U ´n´ 0
Eq5 ´ ³ P U ´µ´ ¶ y
Eq6 ´ ³ F U ´µ´ ¶ x

0.162257 · 0.00188864F ¸ 0.0743557M0 ¹ 0.00188864P º »n» 0
0.162257 ¼ ½ 0.0000642351F ½ 0.00188864M0 ¾ 0.0000610753P¿ À
9.95451 Á 10Â 8 Ã Ä 0.0324659F Å 0.0363475PÆ Å 3.14046 Ç 10Â 8 Ã 0.0324659F Å 0.0380082PÆ ÈÉÈ Ê y

3.19071Ë 10Ì 9F Í 9.95451Ë 10Ì 8 Î0.0380082FÏ 0.0324659PÐ Í
0.162257 Î0.0000684657FÍ 0.00188864M0 Ï 0.0000642351PÐ Í 3.14046Ë 10Ì 8 Î0.0363475F Í 0.0324659PÐ Ñ�Ñ 0.001

Solve Ò Ó Eq4, Eq5, Eq6Ô , Õ M0, F, Ö yÔ ×Ø Ø M0Ù 631562. Ú0.0120648 Ú Û 0.001 Û 0.0000104248PÜ Ý 9.39087Þ 10ß 8PÜ Ý 0.0254P,
FÙ Û 2.48647Þ 107 Ú0.0120648 Ú Û 0.001Û 0.0000104248PÜ Ý 9.39087Þ 10ß 8PÜ ,à yÙ 2.06093Þ 109 Ú3.18646Þ 10ß 8 Ú0.0120648 Ú Û 0.001 Û 0.0000104248PÜ Ý 9.39087Þ 10ß 8PÜ Ý 1.03401Þ 10ß 15PÜ á á

P â 0
0ã yâ
1.38584734480234029̀*̂10ä8.936061291251427̀*̂-9 ä0.00638524170680244118̀ ä å 0.001̀ å 5.51898930941860044̀*̂-6Pæ ç 2.63040194266450244̀*̂-8Pè ç
8.16286388577535326̀*̂-17Pè
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é 0.000790749ê 12 ë ì í y î b ï ð ñ x ò 2 ò hó
General::spell1: Possible spelling error: new symbol name "ô 12" is similar to existing symbol "ô 21".
0.790749

E11 õ E22 ö ÷ 12 ø ÷ 21ù 6.25481 ú 108 û
E11 ø E1ù 0.0299359 û
************************************************************************

G12

************************************************************************ü
x õ .001ü

y õ 0
P õ .

0.001

0

U1 õ uv ö av ý un ö an ý um ö am ý 2 ö an ö F^2 ö b
3.19071þ 10ÿ 9F2 � 0.162257 �0.0000342329F2� 0.00188864FM0� 0.0371779M02� 0.0000642351FP� 0.00188864M0P� 0.0000305376P2� �
9.95451� 10� 8 	0.0190041F2 
 0.0324659FP� 0.0181738P2� � 3.14046� 10� 8 	0.0181738F2� 0.0324659FP� 0.0190041P2�

Eq7 � � M0 U1 �� 0
Eq8 � � P U1 �� 0
Eq9 � � F U1 �� � x
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0.162257 � 0.00188864F � 0.0743557M0 � 0.00188864P � ��� 0

0.162257 � � 0.0000642351F � 0.00188864M0 � 0.0000610753P� �
9.95451 � 10� 8 � � 0.0324659F � 0.0363475P� � 3.14046 � 10� 8 � 0.0324659F � 0.0380082P� ��� 0

6.38142� 10� 9F � 9.95451� 10� 8  0.0380082F! 0.0324659P" �
0.162257  0.0000684657F� 0.00188864M0 ! 0.0000642351P" � 3.14046� 10� 8  0.0363475F � 0.0324659P" �#� 0.001

Solve $ % Eq7, Eq8, Eq9& , % M0,P, F& '

( (
M0 ) 95.9815,P ) 19565.3,F ) 15786.5 * *

Sub1 + , , M0 - 142.470736828005843̀ ,P - 29264.4069210505097̀ ,F - 23655.3227944257216̀ . .
/ /
M0 0 142.471,P 0 29264.4,F 0 23655.3 1 1

G121 2 F 3 4 x 3 .Sub1
G121 3 E1

/ 2.36553 5 107 1
/ 0.00113216 1
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APPENDIX D 

 

Maple program to calculate the material properties of the face sheet and out-of-

plane equivalent properties of the sinusoidal core plate 

 

 

> #*********************************************************************  

> #*     Equivalent Material Propertise for  Sinusoidal Sandwich Core                              * 

> #********************************************************************* 

> restart; 

> #********************************************************************* 

> #*   MATERIAL PROPERTIES AND SIZES FOR THE FACESHEET                       * 

> #********************************************************************* 

> Ex:=3.03043e6; 

 :=Ex 0.303043 10 7  

> Ey:=3.03043e6; 

 :=Ey 0.303043 10 7  

> Gxy:=1.1484e6; 

 := Gxy 0.11484 107  

> vxy:=0.31938; 

 := vxy 0.31938  

> Gxy_f:=Gxy; 

 := Gxy_f 0.11484 107  
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> Gxz_f:=605614; 

 := Gxz_f 605614  

 

> Gyz_f:=605614; 

 := Gyz_f 605614  

> #********************************************************************* 

> #*    MATERIAL PROPERTIES FOR CORE WALL AND SIZES                               * 

> #********************************************************************* 

> #Note:2h-sinusoidal core height;  l-core length for RVE 

> #     t2-corruted wall thickness;t1-flat wall thickness 

> #     hc-height of core;   Ht-Total height of the panel 

> #     L-the width of the panel;H-the height of core RVE 

> #     k-transverse shear factor (5/6) 

> E1:=3.0304e6; 

 := E1 0.30304 107  

> E2:=E1; 

 := E2 0.30304 107  

> G12:=1.1484e6; 

 := G12 0.11484 107  

> G23:=0.605614e6; 

 := G23 605614.  

> G13:=G23; 

 := G13 605614.  



 104

> v12:=0.3194; 

 := v12 0.3194  

 

> v23:=0.50718; 

 := v23 0.50718  

> v13:=v23; 

 := v13 0.50718  

> h:=1; 

 := h 1  

> l:=4; 

 := l 4  

> t1:=0.06; 

 := t1 0.06  

> t2:=0.06; 

 := t2 0.06  

> k:=5/6; 

 := k
5
6  

> H:=4*h+2*t1+2*t2; 

 := H 4.24  

> S:=2.927; 

 := S 2.927  

> pai:=3.1415926; 

 := pai 3.1415926  
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> #********************************************************************* 

> #* CALCULATION OF EQUIVALENT CORE MATERIAL PROPERTIES              * 

> #********************************************************************* 

> Gxy_c:=16*t2^3/(l*h^2*12*(6+5*pai^2*(h/l)^2))*E1; 

 := Gxy_c 24.01835809  

> Gxz_c:=(2*t1+t2*l/(S))/H*G12; 

 := Gxz_c 54710.21397  

> Gyz_c:=16*t2*h^2/H/l/S*G12; 

 := Gyz_c 22208.32715  

> Ey_c1:=2337.82*H*t2^3*((29.6088*h^4+6*h^2*l^2)*t1-2*l^2*t2^3)^2; 

 := Ey_c1 121.3881616  

> Ey_c2:=h^4*(6892.6*h^6+9616.51*h^4*l^2+2416.66*h^2*l^4+152.181*l^6)*t1^2; 

 := Ey_c2 5049.918346  

> Ey_c3:=h^2*l^2*(65566.8*h^2+29209*h^2*l^2+3354.55*l^4)*t1*t2^3; 

 := Ey_c3 288.5778524  

> Ey_c4:=l^4*(4523.22*h^2+1168.91*l^2)*t2^6; 

 := Ey_c4 0.2774072299  

> Ey_c:=Ey_c1*E1/(l^2*(Ey_c2+Ey_c3+Ey_c4)); 

 := Ey_c 4306.404338  

> Ex_c:=2*t1/H*E1; 

 := Ex_c 85766.03776  

> Ez_c:=(2*t1*l+4*t2*S)/(l*H)*E1; 

 := Ez_c 211284.6340  
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> Vyx_c1:=315.827*h*H*(39.4784*h^2+9*l^2)*t2^3*(3*(9.8696*h^4+2*h^2*l^2)*t1-

2*l^2*t2^3); 

 := Vyx_c1 399.6010637  

> Vyx_c2:=h^4*(6892.6*h^6+9616.5*h^4*l^2+2416.66*h^2*l^4+152.181*l^6)*t1^2; 

 := Vyx_c2 5049.917770  

> Vyx_c3:=4*h^2*l^2*(16391.7*h^4+7302.24*h^2*l^2+838.636*l^4)*t1*t2^3; 

 := Vyx_c3 288.5774012  

> Vyx_c4:=1168.91*l^4*(3.8696*h^2+l^2)*t2^6; 

 := Vyx_c4 0.2774071598  

> Vyx_c:=Vyx_c1/(Vyx_c2+Vyx_c3+Vyx_c4); 

 := Vyx_c 0.07484886420  

> Vxy_c:=Vyx_c*Ex_c/Ey_c; 

 := Vxy_c 1.490684573  

> #********************************************************************* 

> #* OVERWRITING THE VALUES OF Ex_c and Ey_c FROM APPENDIX C           * 

> #********************************************************************* 

> Ex_c:=90721.1;  

 :=Ex_c 90721.1  

> Ey_c:=22208.33;  

 :=Ey_c 6522.347  

> Vxz_c:=Ex_c/Ez_c*v13; 

 :=Vxz_c 0.217772  
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> Vyz_c:=Ey_c/Ez_c*v23; 

 :=Vyz_c 0.0156566  

> Vzx_c:=v13; 

 := Vzx_c 0.50718  

> Vzy_c:=v23; 

 := Vzy_c 0.50718  
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