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ABSTRACT  

Tabu Search Heuristics for the 
 Dynamic Facility Layout Problem 

 
Wen-Hsing Liu 

 
 

The facility layout dramatically influences the efficiency of material handling within 
a manufacturing system. In order to ensure optimal performance within a manufacturing 
system, the facility layout should reflect changes throughout time. However, the static 
facility layout problem with constant material flows between departments may not be a 
realistic scenario because a manufacturing facility is a dynamic system that constantly 
evolves. In other words, product demand constantly changes over time. As a result, the 
dynamic facility layout problem (DFLP) considers these changes and is defined as the 
problem of assigning departments to locations during a multi-period planning horizon 
such that the sum of the material handling and rearrangement costs is minimized. In this 
research, tabu search heuristics and a probabilistic tabu search heuristic are developed to 
solve the DFLP. The proposed tabu search heuristics are a simple tabu search heuristic, a 
tabu search heuristic with diversification and intensification strategies, and a probabilistic 
tabu search heuristic. Two data sets taken from the literature are used to test the 
performances of the proposed heuristics. Computational experiments show that the 
proposed heuristics out-performed the heuristics presented in the literature with respect to 
solution quality and computational time. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 The Importance of the Facility Layout Problem 

Facility layout dramatically influences the efficiency of material handling within a 

manufacturing system. Therefore, the facility layout is of great concern for manufacturers. 

An efficient facility layout will improve profit and productivity. Moreover, it has been 

estimated that materials handling cost is between 20 to 50% of the total operating cost, 

and effective facility layout planning can reduce the material handling costs by 10 to 30% 

(Tompkins et al., 2003, p. 10). 

Since customer demand is constantly changing, the material handling paths and 

layout of machines (or departments) are varied constantly. In other words, in order to 

ensure optimal performance of a facility, the layout should reflect changes to the system 

that may occur over time. Therefore, the facility layout problem exists when either new 

plants are built or old plants are modified. Francis et al. (1992, p. 32-33) proposed some 

reasons that may cause the modification of the layout of a facility: 

a. Change of the product design. 

b. The addition or deletion of a product from the product line. 

c. Significant increase or decrease in the demand for a product. 

d. Changes on the design of the process. 

e. The replacement of equipment. 

f. The adoption of new safety standards. 

g. Bottlenecks in production. 

h. Unexplainable delays and idle time. 
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i. Excessive temporary storage space.  

Therefore, the facility layout problem often occurs and exists for many different reasons. 

As a result, the facility layout may need to be modified constantly. The decision of the 

facility layout is made at the strategic level and has a long-lasting effect on the 

manufacturing system. Once the decision is made, changing the layout of the facility can 

be very costly. Some of the costs associated with the re-layout of a facility are cost of 

rearranging the machines, cost of purchasing or leasing equipment for rearranging the 

machines/department, and the cost associated with the loss of production. Therefore, the 

importance of the facility layout problem is obvious. 

 

1.2 The Facility Layout Problem 

The facility layout problem is to find the most efficient arrangement of departments 

within a facility. The most commonly used criterion to determine the efficiency of facility 

layouts is material handling cost minimization. Besides this, a number of objectives are 

considered important in evaluating a facility layout, and they are as follows, as defined in 

Francis et al. (1992, p. 33-34). 

a. Minimize investment in equipment. 

b. Minimize overall production time. 

c. Utilize the existing space effectively. 

d. Facilitate the manufacturing process and organizational structure. 

e. Maintain flexibility of arrangement and operation. 

f. Minimize variation in types of material handling equipment. 

g. Provide for employee convenience, safety, and comfortable working environment. 
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The objective of the facility layout problem in this research is to minimize the 

material handling cost which is based on the material flows between departments and the 

distances between their locations. However, the objective can be either a distance-based 

objective (Bozer et al., 1994) or an adjacency-based objective (Heragu and Kusiak, 1991). 

Objectives (a)-(d) given above are distance-based objectives and objectives (e)-(g) are 

adjacency-based objectives (McKendall et al., 1999). A distance-based objective is based 

on the material flows between departments and the distances between their locations, and 

an adjacency-based objective is based on the ratings of the closeness of the departments. 

The closeness rating is a value which indicates the preference between adjacent 

departments. The objective is achieved by maximizing the adjacency score between 

preferred departments. In retrospect, the objective of the facility layout problem in this 

research is to minimize the material handling costs which is a distance-based objective.  

Facility layout problems can be further classified according to the type of material 

flows. The materials that flow between departments can be either deterministic or 

stochastic. Deterministic flow data are fixed and known with certainty. In contrast, when 

the material flows are not known with certainty, the flow is a random variable and may 

be represented as a probability distribution. This type of material flow data is defined to 

be stochastic. Kouvelis et al. (1992) presented the facility layout problem with stochastic 

flow data. However, the flow data for the facility layout problem presented in this 

research are deterministic.  

Furthermore, the most commonly used distance measures for the facility layout 

problem are rectilinear and Euclidean. The rectilinear distance between two points (x1, y1) 

and (x2, y2) is defined as 2121 yyxx −+− , and the Euclidean distance between the two 
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points is defined as 2
21

2
21 )()( yyxx −+− . Other distance measures can also be used to 

determine the distances between two departments. Nevertheless, in this research the 

rectilinear distance measure is used to determine the distance between two departments.  

The output of the facility layout problem can be represented using a block layout. A 

block layout specifies the relative location and size of each department within a facility 

and can be represented in either a discrete or continuous fashion. A discrete block layout 

representation uses a collection of grids to represent the locations of departments, and a 

continuous representation uses the centroids, areas, and the widths (or lengths) of the 

departments to specify the exact locations of the departments. The layout representation 

in this research uses the discrete block layout. 

The facility layout problem can be either static or dynamic. The static facility layout 

problem (SFLP) considers the layout for a single period. In other words, the material flow 

data are fixed. However, the dynamic facility layout problem (DFLP) considers the 

dynamic nature of the facility layout problem (i.e., the material flow data change over 

time). More specifically, the DFLP solves the facility layout problem for several periods 

in a planning horizon.  

 

1.3 The Static Facility Layout Problem 

The static facility layout problem (SFLP), considering the discrete representation of 

the layout, is to assign a set of n departments to a set of n locations within a facility for a 

given time horizon with respect to minimizing material handling cost. This type of SFLP 

is formulated as a quadratic assignment problem (QAP). The following QAP formulation 

for the SFLP is adopted from Koopmans and Beckman (1957). 
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where 

ki,  = Departments in the layout. 

lj,  = Locations in the layout. 

N  = Number of departments and locations. 

jlD  = Distance between location j and l. 

ikF  = Flow cost between departments i and k. 

ijX  = 1, if department i is assigned to location j, and 

 0, otherwise. 

 

The objective function (1) minimizes the total material handling cost. Constraint set 

(2) ensures that every department is assigned to one location, and constraint set (3) 

ensures that every location is assigned to one department. Last, constraint set (4) gives 

the restrictions on the decision variables. 

When the facility layout problem has only a single period or is under the static 

environment, the flow of materials between departments is constant. However, this may 

not be a realistic scenario due to the fact that the flows of materials between departments 

are constantly changing due to the changes described before (e.g., change in the product 
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design, the addition or deletion of a product from the product line, etc.). Therefore, the 

purpose of this research is to examine the dynamic facility layout problem. 

 

1.4 The Dynamic Facility Layout Problem 

Because of the dynamic environment of the manufacturing system, some factors 

such as customer demand or change in production equipment, etc., can cause fluctuation 

in the material flow between departments. The changes in material flow between 

departments may result in the increase of the material handling cost in the existing layout. 

Thus, in order to maintain the efficiency of material flow, it may be necessary to modify 

the facility layout in different periods which results in the DFLP. The dynamic facility 

layout problem (DFLP) is the problem of assigning departments to locations during a 

multi-period planning horizon such that the sum of material handling and rearrangement 

cost is minimized. The costs considered in the DFLP are the material handing and the 

rearrangement costs. The material handling cost is the sum of the product of flow costs 

between pairs of departments and the distances between their locations. The 

rearrangement cost is the relocation cost of the departments (e.g. the fixed cost for 

installing a department, the transportation cost for the facilities, etc.), and it occurs when 

the locations of the departments are changed in consecutive periods. 

The rearrangement cost is the cost of rearranging departments. If rearrangement 

costs are much less then the material handling cost, solving the dynamic facility layout 

problem is not necessary. In other words, when rearrangement costs are negligible, the 

DFLP could be solved by solving the SFLP for each period. If rearrangement costs are 

relatively large, the problem is also solved as a series of SFLP, and the layout which 

gives the minimum cost is used for each period. Often times, differences between the 
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material handling and rearrangement costs are small enough such that the DFLP cannot 

be solved as a series of SFLPs. Therefore, there is a trade-off between minimizing the 

material handling and rearrangement costs. 

An example of a series of layouts for a DFLP with 4 departments and 3 periods is 

given in Figure 1.1. In period 1 (t = 1), departments 1, 2, 3, and 4 are assigned to 

locations 3, 1, 2, and 4, respectively. Based on the arrangement of departments (distances 

between pairs of departments) and the material flows between pairs of department, the 

material handling cost may be obtained for the first period. Similarly, the material 

handling costs may be obtained for periods 2 and 3. Since departments 2 and 4 relocate in 

period 2, there is rearrangement cost associated with this relocation. In contrast, there is 

no rearrangement cost in period 3, since there is no rearrangement of departments.  

 

2 3 1 4 

t = 1 
 

4 3 1 2 

t = 2 
 

4 3 1 2 

t = 3 

Figure 1.1 Layout plan for a DFLP with 4 departments and 3 periods. 

 

In a DFLP, it is extremely hard to obtain the optimal solution as the number of 

departments and periods increase. For example, consider a DFLP with four departments 

and three periods (N = 4, T = 3). There are 4! = 24 possible layouts for each period. Thus, 

the total number of possible layouts (solutions) is (4!)3 = 13,824. Also, consider the 
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example of a DFLP with six departments and four time periods (N = 6, T = 4). There are 

6! = 720 possible layouts for each period. Hence, the total number of possible layouts is 

(6!)4 = 26.87*1010. As a result, these two examples show that the number of layouts 

increases dramatically with a slight increase in the number of departments and periods. 

Therefore, it is very hard to obtain optimal solutions for even small sized DFLP instances 

in reasonable time using exact methods. That is why heuristics are often used to obtain 

“good” solutions to the DFLP in a reasonable time. 

 

1.5 Objectives of the Thesis 

The objectives of this research are given as follows: 

1. To develop a simple tabu search heuristic for the DFLP. 

2. To develop a tabu search heuristic with diversification and intensification strategies 

for the DFLP. 

3. To develop a probabilistic tabu search heuristic for the DFLP. 

4. To test the performance of the tabu search heuristics by solving test problems from 

two data sets taken from the literature. 

 

1.6 Organization of the Thesis 

In Chapter 2, a literature review for the SFLP and DFLP is given. In Chapter 3, the 

problem definition, assumptions and mathematical formulation for DFLP are presented. 

In Chapter 4, a simple tabu search heuristic, a tabu search heuristic with diversification 

and intensification strategies, and a probabilistic tabu search heuristic are described for 

solving the DFLP. In Chapter 5, the computational experiments are conducted to test the 

performances of the heuristics, and the parameter settings and results generated from the 
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proposed tabu search heuristics are presented. Finally, the conclusions and 

recommendations for future research are given in Chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

A number of papers have been published on solving the static and dynamic facility 

layout problems. Most of the research is devoted to the SFLP or the QAP. Since it is very 

difficult to find optimal solutions in reasonable time for large size problems, most of the 

research focuses on heuristic approaches. This chapter reviews exact methods and 

meta-heuristics, including tabu search heuristics, for the SFLP. Also, exact methods and 

heuristic methods are reviewed for the DFLP. 

 

2.2 The Static Facility Layout Problem 

2.2.1 Introduction 

Koopmans and Beckmann (1957) first presented the quadratic assignment problem 

(QAP). The authors first introduced the quadratic assignment problem which is to assign 

plants to locations to maximize total net revenue. Armour and Buffa (1963) presented a 

new algorithm, which determined how an initial solution to the QAP can be improved 

using a pairwise exchange heuristic. Buffa et al. (1964) improved this heuristic and called 

the improved heuristic CRAFT (Computerized Relative Allocation of Facilities 

Technique). The method starts with an initial layout and evaluates all pairs of 

departments in the neighborhood of the initial solution. The corresponding layout for the 

pair of departments with the best objective function value (i.e., most reduction in cost) is 

selected for exchange. Then the layout is updated according to the best exchange, and this 
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layout becomes the starting layout at the next iteration. These steps are repeated until no 

better solution is found. 

 

2.2.2 Exact Methods 

Some exact methods used for solving the SFLP are branch and bound algorithms 

presented by Gilmore (1962), Lawler (1963) and Kaku and Thompson (1986). Also, 

Bazaraa and Sherali (1980) and Burkard and Bonninger (1983) developed cutting plane 

algorithms for solving the SFLP. 

 

2.2.3 Meta-Heuristics 

Meta-heuristics such as simulated annealing (SA), tabu search (TS), genetic 

algorithms (GA), and ant systems are used for solving the SFLP. Burkard and Rendl 

(1984) were the first to apply the simulated annealing (SA) algorithm to the SFLP, and 

Wilhelm and Ward (1987) presented a SA algorithm for the SFLP. Also, Heragu and Alfa 

(1992) used a hybrid SA algorithm to solve SFLP, and the results show that the hybrid 

SA algorithm outperformed Wilhelm and Ward (1987) SA algorithm. In addition, 

Fleurent and Ferland (1994), Tate and Smith (1995), Suresh et al. (1995), and Ahuja et al. 

(2000) used genetic algorithms (GA) for solving the SFLP. Gambardella et al. (1999) 

presented hybrid ant systems (HAS) to solve the QAP. Since the proposed heuristics are 

tabu search heuristics, the papers that have applied tabu search heuristics to solve SFLP 

are reviewed in the following section.  
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2.2.4 Tabu Search Heuristics for the SFLP 

Skorin-Kapov (1990) was the first to apply the tabu search heuristic to solve the 

SFLP. The author described the problem as a quadratic assignment problem (QAP) and 

proposed the tabu-navigation algorithm to solve the QAP. Aspiration criterion and tabu 

list are used in the proposed heuristic. The parameters used are the length of the tabu list 

denoted as tabu_size and the maximum number of iterations denoted as max_iter. After 

performing max_iter iterations, one of the following steps is selected: (i) Restart from the 

solution given by the construction algorithm with new values for tabu_size and max_iter; 

(ii) Restart from the best solution obtained so far with new values for tabu_size and/or 

max_iter; (iii) Invoke long term memory: Restart the procedure from the beginning of the 

construction phase, penalizing the moves performed so for; (iv) Stop the procedure. The 

long term memory is used to record moves that occurred in the past in order to penalize 

them in the construction phase. Computational experiments with different parameter 

values and different strategies have been performed for test problems taken from the 

literature and some randomly generated test problems with the number of departments (n) 

varied between 42 and 90. The computational results show that tabu search heuristic 

outperformed simulated annealing algorithm with respect to solution quality. 

Skorin-Kapov (1994) modified the tabu search heuristic from Skorin-Kapov (1990) 

to solve the QAP. The differences between the modified tabu search and the tabu search 

in Skorin-Kapov (1990) are to redefine the evaluation function and its domain, new 

intensification and diversification strategies, and to change the composition of the tabu 

list. The computational experiment is conducted by the test problems with the number of 

departments (n) varied between 42 and 90 taken from Skorin-Kapov (1990). This tabu 

search obtained better results for all the test problems.   
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Chiang and Kouvelis (1996) presented a new implementation of tabu search 

heuristic to solve the QAP. The tabu search heuristic includes a recency-based and 

frequency-based memory structure, as well as diversification and intensification 

strategies. A two dimensional array called tabu list is used to keep track of tabu status and 

frequency of moves. Therefore, the tabu list employs the recency-based and 

frequency-based memory structure. The diversification strategy includes dynamic tabu 

list size and a penalty function for nonimproving moves. The dynamic tabu list size 

strategy used dynamic tabu length to diversify the search. The dynamic tabu length varies 

according to the percentage improvement from the total cost of the last move and the 

current move. The diversification strategies also use a penalty function to penalize 

nonimproving moves that have been visited. The intensification strategy used the method 

of fixing departments and freeing departments to intensify the search region. The pairs of 

departments are fixed if it reduces more than a certain percentage from the total cost of 

the best found solution so far (i.e., the location of the pair of departments are not allowed 

to change until they are free). The pairs of departments are freed when an exchange of the 

fixed department and other free department yields a percentage improvement better than 

the fixed pairs of departments. The proposed tabu search heuristic is tested using the test 

problems taken from the literature and compared with the tabu-navigation in 

Skorin-Kapov (1990), extension of tabu-navigation in Skorin-Kapov (1994), and Taillard 

(1991). Computational results show that the proposed tabu search heuristic outperformed 

the other algorithms. 

Chiang and Chiang (1998) presented a tabu search heuristic, a probabilistic tabu 

search heuristic, a simulated annealing heuristic, and a hybrid tabu search heuristic to 

solve the QAP. The proposed tabu search heuristic started with a randomly generated 
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initial solution. Tabu list and aspiration criteria were used in the tabu search heuristic to 

escape from a local optimal solution. The tabu search heuristic includes a 

frequency-based memory structure, avoidance list, dynamic tabu size, and a penalty 

function. The frequency-based memory structure was used to record the number of times 

a move was selected for exchange, and the avoidance list recorded the worst candidate 

move. This move was not allowed in the candidate move list for a certain number of 

iterations. Also, a dynamic tabu size was implemented with dynamic tabu length varied 

from a lower bound to an upper bound. In addition, a penalty function used the 

information from the frequency-based memory structure to diversify the search process. 

The probabilistic tabu search (PTS) heuristic is a modification of the tabu search heuristic. 

The difference between the tabu search and PTS heuristic is how the move is selected. 

The PTS heuristic randomly selected a move from the candidate list of moves for 

exchange. The simulated annealing heuristic is a memoryless procedure in which the 

search history is not recorded. The hybrid tabu search approach combines the tabu search 

and simulated annealing. The proposed heuristics are tested using the test problems taken 

from Nugent et al. (1968), Golany and Rosenblatt (1989), and Skorin-Kapov (1990). 

Computational results show that the hybrid tabu search approach which combines the 

advantages of the tabu search and simulated annealing heuristics outperformed the other 

heuristics.  

Lim et al. (2004) used a probabilistic tabu search approach to solve the crane 

scheduling problem. The initial solution is generated from either a greedy method or a 

random crane-job assignment. The similar ideas of short-term and long-term memory 

strategies of Chiang and Chiang (1998) are implemented. The strategy for a probabilistic 

move selection is also used in the tabu search approach. 
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Some survey papers are presented for SFLP. Kusiak and Heragu (1987) presented a 

survey paper for the facility layout problem. Twelve heuristic algorithms are compared 

on the basis of their performance. The author attempted to include almost all optimal and 

suboptimal algorithms which solve the facility layout problem. The optimal algorithms 

are branch and bound algorithms and cutting plane algorithms. The suboptimal 

algorithms include construction algorithms, improvement algorithms, hybrid algorithms, 

and graph-theoretic algorithms. In addition, Meller and Gau (1996) provided a review of 

the facility layout problem. This review discussed the extensions of the facility layout 

problem including dynamic layout, stochastic layout, and multiple objective criteria. 

 

2.3 Dynamic Facility Layout Problem 

2.3.1 Introduction 

Rosenblatt (1986) first presented the dynamic nature of the plant layout problem and 

defined the DFLP. Afterwards, Conway and Venkataramanan (1994) presented a genetic 

algorithm to solve the DFLP. The only tabu search heuristic presented for the DFLP was 

presented by Kaku and Mazzola (1997), and Baykasoglu and Gindy (2001) first applied 

the simulated annealing algorithm to the DFLP. In addition, Lacksonen and Enscore 

(1993), and Balakrishnan and Cheng (2000) presented heuristics for the DFLP and also 

proposed test problems for the DFLP. Both data sets are used to test the performances of 

the proposed heuristics in this research. In the following section, a literature review for 

the DFLP is given.  
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2.3.2 Exact Methods 

Rosenblatt (1986) first presented the dynamic nature of the plant layout problem and 

solved the DFLP by using a dynamic programming approach. A dynamic programming 

formulation is presented and solved by both exact and heuristic methods. A dynamic 

programming approach is applied by using the period as stages and the specific layout as 

states. A good upper bound on the objective function value and the best solution for the 

SFLP in each period are obtained to reduce the number of possible layouts to be 

evaluated and the possible solutions still provided the optimal solution. A recursive 

formulation is developed to consider the total cost of the possible layouts in each period. 

The global optimal solution is the combination of layouts with the minimum total cost. 

Since the computational time increases dramatically with the number of states in a 

dynamic programming problem, a heuristic procedure is practical for large size problems. 

Rosenblatt (1986) also presented two approaches in the paper. The first approach is to 

solve the SFLP optimally for all periods. The set of layouts considered in each period is 

just the optimal solution for each SFLP. Thus, the maximum number of layouts (states) in 

each period (stage) is the number of periods (n). The heuristic procedure is similar to the 

heuristic presented by Ballou (1968) for the warehouse location problem. The second 

approach is to generate the set of layouts (solutions) for each period by using 

computerized approaches, such as CRAFT (Buffa et al., 1964), COFAD (Tompkins and 

Reed, 1976), or randomly generating algorithms. An example of a DFLP with six 

departments and five periods is considered and a set of 30 test problems are solved by 

Ballou’s method and the randomly generated layout approach. The results were compared 

with the optimal solution and the average errors for both methods are small. 
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Lacksonen and Enscore (1993) modified five algorithms for the SFLP to solve the 

DFLP. Two of them are exact methods, which are the dynamic programming approach 

and branch and bound. A 0/1 formulation extended from the QAP model is presented. 

The dynamic programming formulation is based on Rosenblatt’s (1986) method. The 

pairwise exchange algorithm is applied to the flow data for each period to generate 

possible layouts (states) for each period. Furthermore, hybrid states are obtained by 

exchanging the locations of departments between the best layouts of consecutive periods. 

The branch and bound algorithm taken from Pardalos and Crouse (1989) used a cutting 

plane algorithm to obtain an upper bound on the total cost of the solution for the QAP. 

Two modifications for the branch and bound are made to solve the DFLP. In the first one, 

the departments are only permitted to be assigned to the proper period. In the second one, 

the lower bound calculation is revised by adding the estimated cost of all periods which 

do not have any assignments yet made. A series of test problems with 6, 12, 20, and 30 

departments each with 3 and 5 periods was developed to determine the effectiveness of 

the five algorithms. 

 

2.3.3 Heuristic Methods 

Lacksonen and Enscore (1993) modified algorithms of for the SFLP to solve the 

DFLP. Three of them are heuristics, which are CRAFT, cutting planes, and cut trees. 

CRAFT starts with an initial solution and exchanges pairs of departments to minimize the 

total cost. The modification of CRAFT is to consider pairs for exchange for all periods. 

The cutting planes taken from Burkard and Bonniger (1983) for QAP are cutting planes 

with an exchange routine. The routine starts with a random solution and an assignment 

routine finds the estimated best solution such that all departments moving to new 
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locations at each iteration. Since the optimal solution may be eliminated by this “cut”, 

each iteration ends with an exchange routine. To solve the DFLP, the cutting plane 

portion assumes the location for each department for each period is the same. Then, only 

the exchange routine is used to consider rearrangements. The cut trees (Gomory and Hu, 

1961) are the graphical layout techniques with spanning trees. To apply on the DFLP, 

each department of each period is represented by a node. The arcs are added with the 

rearrangement cost between the nodes representing the same department in consecutive 

periods. A series of test problems with 6, 12, 20, and 30 departments each with 3 and 5 

periods was developed to determine the effectiveness of the five algorithms. 

Computational results show that the cutting plane algorithm performs better for this set of 

test problems. 

Urban (1993) presented a steepest-descent pairwise-interchange procedure for the 

DFLP. The steepest-descent pairwise interchange procedure solves the DFLP using the 

material handling cost with forecast windows and rearrangement cost. Only the initial 

layout of the first period is given in the heuristic. When the length of the forecast window 

is equal to 1, the layout for period 1 is developed by using the material flow data for 

period 1. The layout for period 2 is developed by using the flow data for period 2, and so 

on. The layout obtained from period 1 is used as the initial layout for period 2, etc. When 

the length of the forecast window is equal to 2, the material flow data for periods 1 and 2 

are used to determine the layout for period 1. The material flow data for periods 2 and 3 

are used to determine the layout for period 2, and so on. Fifty-two test problems are 

generated to evaluate the accuracy of the heuristics by comparing with the results of 

Ballou’s (1968) heuristic. Further analysis was conducted to test the accuracy of the 

heuristic of large size problems by using data from Nugent et al. (1968). The test 
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problems are problems with 6, 8, 12, 15, 20 and 30 departments each with 4, 8, 12, 16, 

and 20 periods. The results show that the heuristic proposed performed as well as 

Ballou’s (1968) heuristic. 

Conway and Venkataramanan (1994) presented a genetic algorithm to solve a DFLP. 

This problem is called the constrained DFLP which decides the facility layout restricted 

by a budget for total rearrangement costs over entire finite horizon such that the total 

costs of layout rearrangements and material flow between departments during the 

planning horizon is minimized. This is a combinatorial problem and it is solved by a 

genetic search algorithm. Computational results are presented for two sample problems 

from the literature. 

Kaku and Mazzola (1997) presented a tabu search heuristic for the DFLP. First, a 

basic tabu search procedure for DFLP is presented. The basic tabu search procedure for 

the DFLP includes four steps: Step 1: Initialize: Obtain the initial solution and initialize 

the parameters and iteration counter. Set the initial solution as the current solution. Step 2: 

Neighborhood search: Evaluate each neighbor (or move) of the current solution. The 

move which is non-tabu or overrides the tabu restriction with the best objective function 

value is selected as the best admissible move. The corresponding solution of this move 

becomes the current solution. Step 3: Update the tabu list, current solution, and best 

found solution so far (if necessary). Step 4: Stopping rules: Increase iteration counter by 

1. If the stopping criteria are met, terminate the procedure. Otherwise, go to Step 2. Two 

stopping criteria are used in the DFLP tabu search heuristic. The first criterion is the 

maximum number of iterations (ITERmax), and the second criterion is the maximum 

number of consecutive iterations without improvement (NOLMPmax). Also, 

diversification and intensification strategies are used in the DFLP tabu search heuristic. 
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The diversification strategy starts the DFLP tabu search heuristic with a specified number 

of initial solutions using a construction algorithm for QAP obtained from Kaku et al. 

(1991). The intensification strategy is to adjust the tabu length (LTABU) during the search 

process to allow a more intensive search. The tabu length is modified when both of the 

following conditions are satisfied: the current iteration number is more than 2/3*ITERmax 

and the number of nonimproving iterations is more than NOLMPmax. Then, the tabu 

length is defined as LTABU/2. Therefore, the tabu length in the tabu search heuristic is a 

dynamic tabu length.  

The DFLP tabu search heuristic is a two-stage procedure. In stage one, the basic 

tabu search heuristic with a diversification strategy is applied. And in stage two, the 

intensification strategy is started and the tabu length (LTABU) is modified. The DFLP tabu 

search procedure is the same as the basic tabu search procedure in Step 1 and Step 2. Step 

3 and Step 4 are modified as follows. Step 3: Update the tabu list, current solution, and 

best found solution so far (if necessary); and adjust for intensification search. If the 

current iteration number > 2/3*ITERmax and the number of nonimproving iterations > 

NOLMPmax, the tabu length is modified to LTABU/2, and set the nonimproving iteration 

counter to zero. Step 4: Stopping rules: If the current iteration number is more than 

ITERmax or if tabu length = LTABU/2 and the number of nonimproving iterations is more 

than NOLMPmax, terminate the procedure. Otherwise, go back to Step 2. The DFLP tabu 

search heuristic was tested for the 32 test problems taken from Lacksonen and Enscore 

(1993) and compared with the cutting planes in Lacksonen and Enscore (1993) and the 

heuristic presented in Urban (1993). Computational results show that the DFLP tabu 

search heuristic generated improved solutions for over one-third of the 32 test problems 

and matched solution quality on an additional 50 percent of the 32 test problems. 
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Balakrishnan and Cheng (2000) presented a paper dealing with the dynamic facility 

layout problem by using an improved genetic algorithm. The nested loop genetic 

algorithm differs from the existing implementations in three ways: a different crossover 

operator, using mutation, and using a new generational replacement strategy to help 

increase population diversity. Computational results are presented for a number of test 

problems which are randomly generated by a specific setting. The total is 48 test 

problems with 6, 15 and 30 departments with each 5 and 10 periods. The results show 

that the improved GA is effective. 

Balakrishnan et al. (2000) presented an improved dynamic pairwise exchange 

heuristic for the DFLP. The authors presented an improved dynamic pairwise exchange 

heuristic which is based on Urban’s (1993) heuristic by using the time windows concept. 

There are two improvements proposed for Urban’s (1993) heuristic. The first one is a 

backward-pass method. Initially Urban’s heuristic is used to solve the DFLP. Then a 

backward pass pairwise exchange is performed on each solution from Urban’s (1993) 

forward pass heuristic. The best solution is selected. The second one is to combine 

Urban’s (1993) heuristic with dynamic programming. Using Urban’s heuristic, first solve 

the DFLP. The result generated is the initial solution for a dynamic programming 

approach. The layouts obtained from Urban’s (1993) heuristic are used as the states in 

Rosenblatt’s dynamic programming procedure. Computational results are presented for 

test problems with 6, 15, and 30 departments with each 5 and 10 periods. The data set is 

generated based on the method used in Balakrishnan et al. (1992). The proposed 

heuristics for Urban’s procedure and Rosenblatt’s method are compared. The 

computational results show that the proposed method is effective and efficient.  
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Baykasoglu and Gindy (2001) presented a simulated annealing (SA) algorithm to 

solve the DFLP. The simulated annealing algorithm is a stochastic search method. It has 

the capability to get the global optimal by accepting the worse solution with the 

probability. The acceptance probability is determined by a temperature parameter which 

decreased during the SA procedure. The cooling schedule is also defined in the paper. 

Computational experiments are tested by the test problems taken from Balakrishnan and 

Cheng (2000). The results show that the SA algorithm performs better than the GA. 

Balakrishnan et al. (2003) presented a hybrid genetic algorithm (GA) to solve the 

DFLP. The proposed genetic algorithm modified the weakness of the existing GAs in 

DFLP. Dynamic programming is then used in the crossover operator to create offspring 

and the CRAFT is used in mutation. Computational experiment is conducted to compare 

the proposed algorithm with the genetic algorithms in Balakrishnan and Cheng (2000) 

and the simulated annealing algorithm in Baykasoglu and Gindy (2001). The result shows 

that the proposed hybrid genetic algorithm provides better quality solutions. 

Erel et al. (2003) presented a new heuristic to solve the dynamic layout problem. 

The authors proposed a new heuristic scheme which includes three phases. The first 

phase is to identify a viable set of layouts and the second phase uses dynamic 

programming to solve the shortest path problem over the viable set. The third phase is to 

seek local improvement of the solution obtained in the second phase. Computational 

results are presented for 48 test problems taken from Balakrishnan and Chang (2000). 

The proposed heuristic can solve the DFLP reasonably fast and generate the same quality 

solutions with the other methods. 

McKendall and Shang (2005) developed three hybrid ant systems (HASs) to solve 

the dynamic facility layout problem. The HASs are the modification of the HAS for the 
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QAP (Gambardella et al., 1999) to solve the DFLP. The first HAS heuristic (HAS I) is a 

direct application of the HAS-QAP heuristic for the DFLP. The second HAS heuristic 

(HAS II) is like HAS I, except that a SA heuristic is used as the local search heuristic 

instead of the random descent pairwise exchange heuristic. The third HAS heuristic 

(HAS III) is like HAS I, except that the random descent pairwise exchange heuristic has a 

look-ahead/look-back strategy. The HASs are tested using two data sets taken from 

Lacksonen and Enscore (1993) and Balakrishnan and Cheng (2000). The results show 

that the HASs are efficient techniques for solving the DFLP. 

McKendall et al. (2005) presented two simulated annealing (SA) heuristics to solve 

the dynamic facility layout problem. The first SA heuristic (i.e. the SA I heuristic) is a 

straightforward implementation of the SA heuristic. The second SA heuristic (i.e. the SA 

II heuristic) combines the SA I heuristic with a look-ahead and look-back strategy. The 

SA heuristics performed well for the data set taken from Balakrishnan and Cheng (2000). 

The results obtained show that the SA heuristics are effective for the DFLP. 

Balakrishnan and Cheng (1998) presented a comprehensive review of the dynamic 

facility layout problem. They categorize the DFLP into equal size and unequal 

departments. The type of problems with equal size departments are classified as 

deterministic material flow and stochastic material flow problems. The algorithms with 

deterministic flow are dynamic programming approaches, pairwise-interchange heuristics, 

genetic algorithms, tabu-search, CRAFT, cutting planes, branch and bound, and cut trees. 

The algorithms with stochastic material flow are branch and bound, Markov process and 

simulation. The category of problems with unequal size departments used linear 

programming and mixed integer programming. 
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CHAPTER 3 

PROBLEM DEFINITION 

 

3.1 Problem Definition 

The DFLP is the problem of assigning departments to locations during a 

multi-period planning horizon such that the sum of material handling and rearrangement 

costs is minimized. The material handling cost is derived from the sum of the product of 

material flows between departments and the distances between their locations. The 

rearrangement cost is the relocation cost of a department, and it is incurred when the 

location of a department in a period is different from the location of the department in the 

preceding and/or succeeding periods. The solution to the DFLP is represented as a layout 

plan which is a series of layouts for each period in the planning horizon. 

 

3.2 Problem Assumptions 

The assumptions for the DFLP are as follows: 

1. The layout configuration is given. See Figure 3.1 for an example of a 2×3 layout 

configuration with 6 locations. 

 

Location 1 Location 2 Location 3

Location 4 Location 5 Location 6

Figure 3.1 Layout configuration. 

 

2. All departments and locations are of equal size.  
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3. The flow between departments is deterministic and dynamic.  

4. The distances between locations are given. For example, in Figure 3.1 the distance 

between locations 1 and 3 is 2 distance units and between locations 1 and 6 is 3 

distance units. 

5. The layout representation is discrete. 

 

3.3 Mathematical Formulation 

The mathematical model given below for the DFLP is adopted from Balakrishnan et 

al. (1992). 
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where 

ki,  = Departments in the layout. 

lj,  = Locations in the layout. 

t    = Time periods.  

T  = Number of periods in the planning horizon. 

N  = Number of departments and locations. 

tijlA  = Cost of rearranging department i  from location j  to l  in period t . 
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jlD  = Distance between locations j and l. 

tikF  = Flow from department i to department k in period t. 

tijklC  = Cost of material flow from department i  at location j  to department k  at 

location l  in period t. 

= tikF * jlD . 

tijX  = 1, if department i  is assigned to location j  in period t. 

0, otherwise. 

 

The objective function (1) minimizes the sum of the rearrangement and material 

handling cost during the planning horizon. Constraint set (2) ensures every department is 

assigned to one location in each period, and constraint set (3) ensures every location is 

assigned to one department in each period. Last, constraint set (4) gives the restrictions 

on the decision variables. 

In order to linearize the nonlinear binary integer programming model, the nonlinear 

term in the objective function is linearized by introducing two new binary variables. The 

linearized objective function (1’) is substituted for the objective function (1) and 

constraint sets (5), (6), (7), (8), and (9) are added to the model. 
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Since the DFLP is a minimal problem and the objective function coefficients are not 

negative, constraints (6) and (8) are not necessary in this formulation. Therefore, only 

constraints (5), (7) and (9) are added to the formulation for DFLP. The full linearized 

DFLP model is given as follows: 
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CHAPTER 4 

METHODOLOGY 

 

4.1 Introduction  

Tabu search (TS) was introduced by Glover (1986). Some applications of the TS 

heuristic were successfully used for solving the SFLP and DFLP. Skorin-Kapov (1990) 

was the first to apply the TS heuristic to the QAP (SFLP). Chiang and Kouvelis (1996) 

presented a new implementation including dynamic tabu list size, a penalty function, and 

intensification strategies for the QAP. Chiang and Chiang (1998) presented a tabu search 

heuristic, a probabilistic TS heuristic, and a hybrid TS heuristic to solve the SFLP. One of 

the TS heuristics for the DFLP presented in this research is a modification of the TS 

heuristic presented in Chiang and Kouvelis (1996) for the QAP. The other one is a 

modification of the probabilistic TS heuristic presented by Chiang and Chiang (1998). 

Kaku & Mazzola (1997) were the only ones to present a TS heuristic for the DFLP. 

Therefore, the proposed tabu search heuristics presented in this research are: a simple 

tabu search heuristic, tabu search heuristic with frequency-based memory as well as 

diversification and intensification strategies, and a probabilistic tabu search heuristic. 

 

4.2 Basic Tabu Search Heuristic for the DFLP 

4.2.1 Basic Tabu Search Heuristic 

The basic idea of the tabu search heuristic is to restrict some (most recent) moves to 

prevent cycling and to accept non-improving moves to escape from a local optimum in 

search of the global optimum. The tabu search heuristic starts with an initial solution and 

performs a neighborhood search of the current solution. The local neighborhood search 
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technique most commonly used in the tabu search heuristic is the steepest descent 

pairwise exchange heuristic. Some candidate solutions will be generated from the 

neighborhood search technique by exchanging pairs of the departments. All possible 

exchanges are considered and defined as the neighborhood of the current solution. Then 

evaluate each neighbor (or move), and choose the best admissible move. The best 

admissible move will be defined later. This move is defined as tabu (tabu restricted) for 

the next TL-iterations where TL is the tabu length, and it is recorded in the tabu list, to 

avoid cycling back to a local optimum. The admissible move is either a move that is 

non-tabu or is tabu and has an objective function value better than the best solution found 

so far. The solution obtained from the best admissible move becomes the current solution 

and is the starting solution at the next iteration. This procedure is repeated until a 

stopping criterion is met. 

 

4.2.2 Solution Representation for the DFLP 

The solution representation for the DFLP is defined as follows: 

),...,,( 21 Tππππ =  

where  

π  = solution for the DFLP 

tπ  = layout in period t. 

tπ  = ))(),...,2(),1(( Nttt πππ  

)(itπ  = location of department i in period t. 

T   = number of periods 

N   = number of departments 
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For example, the solution of the DFLP with four departments and two periods (N= 4 and 

T = 2) given in Figure 4.1 has the following solution representation π = ((3, 1, 2, 4), (3, 4, 

2, 1)). 

 

2 3 1 4 

t = 1 
 

4 3 1 2 

t = 2 

Figure 4.1 Solution for a DFLP with four departments and two periods. 

 

4.2.3 Determining the total Cost of the DFLP Solution 

    The total cost for the DFLP solution is the sum of material handling and 

rearrangement costs. The total material handling cost (MH(π)) is calculated as follows: 
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where  

tikF  = flow from department i to k in period t, 

tikW  = weight between department i and k in period t 

tkitik FF += , 

),( ljd  = distance between location j and l. 

The rearrangement cost occurs when a department is moved (i.e. layout between 

consecutive periods changes). In other words, the rearrangement cost is generated when 

the location of a department in the current period is different from that in the preceding or 

succeeding period. Thus, the rearrangement cost (RA(π)) is calculated as follows: 
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where  

tI  = all the departments in period t with different locations in period t-1 and 

tiA = rearrangement cost of department i in period t. 

The total cost for the DFLP solution is calculated as follows: 
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Now a solution for a DFLP with 4 departments and 2 periods (N = 4 and T = 2) is 

used to illustrate the calculation of the total cost. The problem instance is adopted from 

Lacksonen and Enscore (1993). Figure 4.2 shows the layout configuration. The distances 

between locations and the flows between departments for each period are given in Tables 

4.1 and 4.2, respectively. The rearrangement cost is 10 for each department. 

 

Location 1 Location 2 Location 3 Location 4 

Figure 4.2 Layout configuration of four departments. 

 

 To 
 1 2 3 4 

1 0 1 2 3 
2 1 0 1 2 
3 2 1 0 1 

From 

4 3 2 1 0 

Table 4.1 Distances between locations. 
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 To 
 1 2 3 4 

1 0 0 0 0 
2 10 0 4 0 
3 4 4 0 0 

From 

4 0 2 6 0 
 t = 1 

 

 To 
 1 2 3 4 

1 0 0 0 0 
2 6 0 0 0 
3 2 6 0 0 

From 

4 11 6 5 0 
 t = 2 

Table 4.2 Flows between departments. 

 

Given the solution π = ((3, 1, 2, 4), (3, 4, 2, 1)) where π1 = (3, 1, 2, 4) and π1(1) = 3 

which indicates that department 1 is assigned to location 3, π1(2) = 1, π1(3) = 2, and π1(4) 

= 4. Also, π2 = (3, 4, 2, 1 ) and π2(1) = 3, π2(2) = 4, π2(3) = 2, and π2(4) = 1. The weight 

matrix for each period is obtained as follows. 
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Hence, the sum of the material handling costs is calculated as follows. 

)()()( 21 πππ MHMHMH +=  

))4(),1((*))3(),1((*))2(),1((* 11
114

11
113

11
112 ππππππ dWdWdW ++=  

))4(),3((*))4(),2((*))3(),2((* 11
134

11
124

11
123 ππππππ dWdWdW +++  
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))4(),3((*...))2(),1((* 22
234

22
212 ππππ dWdW +++  

= 10*d(3, 1) + 4* d(3, 2) + 0* d(3, 4) + 8* d(1, 2) + 2* d(1, 4) + 6* d(2, 4)  

+ 6*d(3, 4) + … + 5* d(2, 1) 

= 115 

Also, rearrangement cost needs to be calculated since the locations of departments 2 

and 4 are rearranged in period 2. Therefore, I2 = {2, 4} and 

RA(π) = A22 + A24 = 10 + 10 = 20.  

Hence, the total cost of the solution is 

)()()( πππ RAMHTC += = 115 + 20 =135. 

 

4.2.4 Neighborhood structure  

The local search technique embedded within the tabu search heuristic is the steepest 

descent pairwise exchange heuristic. The basic idea of the heuristic is to find the best 

solution (or move) in the pairwise exchanges neighborhood of the current solution. 

Therefore, all possible pairwise exchanges in each period are considered. Each exchange 

is defined as a move. The input data to the heuristic are an initial layout plan, the flows 

between departments for each period, the distances between locations, and the 

rearrangement costs for each department. 

The steepest descent pairwise exchange heuristic searches all the candidate moves 

in the neighborhood of the current solution, and selects the best move for exchange. The 

candidate moves for the DFLP are the pairwise exchanges of departments. If there are N 

departments and T periods in the layout, the number of moves in a period is 

2/)1(2 −= NNC N . The total number of moves is 2/)1(2 TNNTC N −= . Next, compute 



 34

the total cost for each move, and the best admissible move is selected. A best admissible 

move is a move which is either non-tabu or tabu restricted such that the total cost of the 

neighboring solution obtained by performing the move is better than the best solution 

found so far (aspiration criterion). The best admissible move is the most profitable (or 

least cost) admissible move. The best admissible move is selected and its corresponding 

solution becomes the current solution, which is used as the starting solution at the next 

iteration. The details for the tabu restriction and aspiration criterion will be explained in 

Section 4.2.6. 

 

Moves 
(t, u, v) 

Tabu or 
non-tabu 

)(π ′TC  Change in 
)(πTC  

(1, 1, 2) non-tabu 141 -6 
(1, 1, 3) non-tabu 147 -12 
(1, 1, 4) non-tabu 151 -16 
(1, 2, 3) non-tabu 143 -8 

(1, 2, 4)* non-tabu 107 28 
(1, 3, 4) non-tabu 157 -22 
(2, 1, 2) non-tabu 146 -11 
(2, 1, 3) non-tabu 149 -14 
(2, 1, 4) non-tabu 145 -10 
(2, 2, 3) non-tabu 143 -8 
(2, 2, 4) non-tabu 109 26 
(2, 3, 4) non-tabu 136 -1 

      *Best admissible move 

Table 4.3 The list of candidate moves. 

 

An example of the list of candidate moves for the DFLP instance given in Section 

4.2.3 is given in Table 4.3. Recall, the current solution is π = ((3, 1, 2, 4), (3, 4, 2, 1)). 
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Since there are 4 departments and 2 periods (N = 4 and T = 2), the total number of moves 

in the layout is 122/)2)(3(42*4
2 ==C . The first move in the list considers exchanging 

the locations of departments u = 1 and v = 2 in period 1 (t = 1). This move corresponds to 

the solution π ′= ((1, 3, 2, 4), (3, 4, 2, 1)). The total cost of this solution is 141 and can 

be obtained using the technique given in Section 4.2.3. A more efficient technique is 

given in the next section. Therefore, the change in total cost is -6, which is the total cost 

of the current solution π minus the solution obtained after performing the move π ′  

( )()()( 1
12 πππ ′−=∆ TCTCTC = -6, i.e., change in total cost after exchanging the 

locations of departments 1 and 2 in period 1). The change in total cost is obtained for all 

solutions in the neighborhood of the current solution, and the best admissible move is 

selected, which is (1, 2, 4). In other words, the best move is selected which is not tabu, 

since this is the first iteration (i.e., no moves are tabu, since no moves have been 

previously performed). Tabu moves will be considered in the next section. 

 

4.2.5 Calculating the Change in Total Cost 

Once the objective function value (OFV) is obtained for the initial solution, the OFV 

of the neighboring solutions can be obtained efficiently by calculating the change in total 

cost. The change in total cost is the sum of the change in material handling and 

rearrangement costs. Assume the locations of departments u and v are selected to 

exchange in period t. Since only the layout in period t is changed and the others are the 

same, only the change in period t is considered. The change in material handling cost is 

calculated as follows: 

))](),(())(),(([*)()(
,
1  

viduidWWMH tttt
N

vui
i

tivtiu
t

uv πππππ −−=∆ ∑
≠
=
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The change in rearrangement cost is only related to the departments selected for 

exchange (departments u and v) in periods 1−t , t, and 1+t . For example, if the location 

of department u in period 1−t  is different from that in period t, then the rearrangement 

cost tuA  occurs. If the location of department u is changed in period t, then the 

rearrangement cost utA )1( +  in period 1+t  also needs to be considered. When 

computing the partial rearrangement cost before and after exchanging the departments, 

the difference between them is defined as the change in rearrangement cost. Therefore, 

the change in rearrangement cost )( t
uvRA π∆  is the change of the rearrangement cost of 

departments u and v before and after the exchange. 

)()()(
11

)1()1( ∑∑∑∑
++ ∈

+
∈∈

+
∈

+−+=∆
a
t

a
t

b
t

b
t Ii

it
Ii

ti
Ii

it
Ii

ti
t

uv AAAARA π  

where 

b
t

I  = all departments (u and/or v) in period t (for t ≥ 2) with different locations in period 

1−t  before the exchange. 

a
t

I  = all departments (u and/or v) in period t (for t ≥ 2) with different locations in period 

1−t  after the exchange. 

The change in total cost for the DFLP solution is calculated as follows: 

)()()( t
uv

t
uv

t
uv RAMHTC πππ ∆+∆=∆  

An example is used to illustrate the calculations of the change in total cost. The first 

move in the list given in Table 4.3 considers exchanging the locations of departments 1 

and 2 in period 1 where the current solution π = ((3, 1, 2, 4), (3, 4, 2, 1)). Let u = 1, v = 2 

and t = 1. Therefore, the change in material handling cost is calculated as follows. 



 37

=∆ )( 1
12 πMH  (W131-W132)*[d(π1(3), π1(1)) - d(π1(3), π1(2))]  

+ (W141-W142)*[d(π1(4), π1(1)) - d(π1(4), π1(2))] 

= ( 4-8 )*[d(2, 3)- d(2, 1)] +( 0-2 )*[d(4, 3)- d(4, 1)]  

= 4 

The change in rearrangement cost is obtained as follows. Since b
tI  and a

tI  are 

defined for t ≥ 2, φ== ab II 11 . However, }2{2 =
bI , since the location of department 2 is 

different before the exchange. In addition, }2,1{2 =aI , since both the locations of 

departments 1 and 2 are different after the exchange. See Figure 4.3 for the solution 

before and after the exchange. Hence, 

)(()(
22

22
1

12 ∑∑
∈∈

−=∆
ab Ii

i
Ii

i AARA π  

)( 222122 AAA +−=   

= 10 - (10 + 10) = -10. 

 

πb = ( (3, 1, 2, 4), πa = ( (1, 3, 2, 4), 

(3, 4, 2, 1) ) (3, 4, 2, 1) ) 

Figure 4.3 the solution before and after the exchange. 

 

Therefore, the change in total cost is  

)()()( 1
12

1
12

1
12 πππ RAMHTC ∆+∆=∆ = 4 + (-10) = -6. 

In other words, the change in total cost after exchanging the locations of departments 1 

and 2 in period 1 is -6. Hence, the total cost of the corresponding solution is  

)()()( 1
12 πππ TCTCTC ∆−=′ = 135 – (-6) = 141. 
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More specifically, the total cost of the solution after the exchange πa = ((1, 3, 2, 4), (3, 4, 

2, 1)) is 141. 

 

4.2.6 Components of the Basic Tabu Search Heuristic for the DFLP 

4.2.6.1 Tabu list 

After performing one iteration of the local search (steepest descent) technique, the 

best admissible move is defined as tabu (tabu restricted) for a certain number of iterations 

(tabu length or duration).The tabu list is used to keep track of the tabu moves. More 

specifically, the tabu list is a set of two-dimensional arrays denoted as tabu for each 

period, which is used to keep track of the status of the tabu restriction. If the exchange of 

the locations of departments i and k in period t is the current move, then this move is 

defined as tabu, and set tabu[t][i][k] = cur_iter + TL, where cur_iter is the current 

iteration number and TL represents the tabu list size (tabu length) which is usually fixed. 

The value of tabu[t][i][k] where i < k is recorded in the ith row and kth column of the 

upper-triangle of the tth tabu array (i.e., the two-dimensional array for period t). The 

lower-triangle of the tabu array is used to keep track of the frequency of the moves and 

will be explained in Section 4.3.1.1. In additional, if tabu[t][i][k] < cur_iter for i < k, 

then the move to exchange locations of departments i and k in period t is not tabu 

restricted. Otherwise, the move is tabu restricted. 

For example, assume TL is 3 and the locations of departments 2 and 4 in period 1 are 

exchanged in iteration 1, the value of tabu[1][2][4] = cur_iter + TL = 1 + 3 = 4 after 

updating the tabu list. This indicates that the move exchanging the locations of 

departments 2 and 4 in period 1 is tabu (not allowed to exchange) in iterations 2, 3 and 4. 

The updated tabu list is shown in Figure 4.4. Thus, the tabu list keeps track of the most 
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recent moves (i.e., has a short-term memory structure), and its purpose is to prevent 

cycling. 

 

 1 2 3 4
1     
2    4
3     
4     
 t = 1 

Figure 4.4 The updated tabu list for period 1 (tabu[1][i][k]) at the end of iteration 1. 

 

4.2.6.2 Aspiration criterion 

The aspiration criterion is a short term memory strategy used in the tabu search 

heuristic to override the tabu restriction. If a move is tabu in the tabu list and produces the 

solution with better objective function value compared to that of the best found solution 

so far, the move is admissible. In other words, the tabu restriction is overridden even 

through the move is tabu. 

 

4.2.6.3 Stopping criterion 

    The stopping criterion for the proposed tabu search heuristic is computational time 

(i.e., total run time of the heuristic). This stopping criterion is used to compare the 

performances of the proposed tabu search heuristics with the same computational time. 

The detailed settings of the heuristic parameters are explained in Section 5.2. Other 

commonly used stopping criteria are maximum number of iterations performed and 

maximum number of consecutive iterations without an improvement. 
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4.2.7 Pseudo-code for the Basic TS Heuristic for the DFLP 

The pseudo-code for the basic TS heuristic for the DFLP is as follows.  

Step 0: Input data and initialize heuristic parameters and counters.  

Input the following data: the distances between locations (Djl), flows between 

departments in each period (Ftik), and the rearrangement costs for each department 

(Ati). Next, initialize the tabu list tabu[t][i][k] and the current time cur_time. Also, 

set tabu length TL, computation time CPU_time, and iteration counter c (c = 1). 

Step 1: Obtain an initial solution π and calculate its total cost )(πTC . 

The initial layout for period 1 is obtained by assigning department 1 to location 1, 

department 2 to location 2, and so on. This layout is also used for the other 

periods. Hence, an initial solution π is constructed. Also, determine the total cost 

of the solution )(πTC . Next, set the best found solution so far ππ =best  and 

)()( ππ TCTC best = . 

Step 2: Evaluate the neighborhood of the current solution π and select the best admissible 

move (p, u, v).   

Generate all possible moves (t, i, k), where i < k, in the neighborhood of π by 

considering all possible pairwise exchanges between department locations in each 

period. Evaluate all moves by obtaining the change in total cost of each move 

)()()( t
ik

t
ik

t
ik RAMHTC πππ ∆+∆=∆ , and the total cost of the solution (π ′ ) 

obtained by performing the move (t, i, k) is )()()( t
ikTCTCTC πππ ∆−=′ . If the 

move is either non-tabu or is tabu and )()( bestTCTC ππ <′ , then the move is an 

admissible move. Select the best admissible move (p, u, v) with respect to total 
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cost. This move gives the best admissible solution in the neighborhood of π 

denoted as bestπ ′ . 

Step 3: Update the tabu list and current solution. 

Set tabu[p][u][v] = c + TL, π = bestπ ′ , and )(πTC  = )( bestTC π ′ . 

Step 4: Update the best found solution so far. 

      If )()( bestTCTC ππ < , set ππ =best  and )()( ππ TCTC best = . 

Step 5: Update heuristic counter and check stopping criterion. 

Set iteration counter c = c + 1 and check the current time cur_time. If the cur_time 

≥ CPU_time , then, terminate the heuristic. Otherwise, go to Step 2. 

 

4.3 TS Heuristic for the DFLP with Diversification/Intensification Strategies 

4.3.1 Diversification Strategies 

The diversification strategies used in one of the proposed heuristics include the 

frequency-based memory structure with a penalty function for non-improving moves and 

the dynamic tabu list size as a recency-based memory strategy. Each of the strategies is 

discussed in details below. 

 

4.3.1.1 Frequency-based Memory 

The frequency-based memory structure is employed to keep track of the frequency 

of the moves. The information is recorded in the lower-triangle of the tabu arrays 

(tabu[t][i][k] where i > k). That is, the value tabu[t][i][k] where i > k is the number of 

times that the locations of departments i and k in period t have been selected as the best 

admissible move. Recall, in Figure 4.4, the tabu list after performing the move of 

exchanging the locations of departments 2 and 4 in period 1 is given. More specifically, 
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the move is tabu for iteration 2, 3, and 4, since the current iteration is 1 and TL = 3. For 

this example, the tabu list tabu[1][i][k] which uses recency and frequency-based memory 

is given in Figure 4.5. In Figure 4.5, tabu[1][4][2] is 1, which indicates departments 2 and 

4 in period 1 have been exchanged once. 

 

 1 2 3 4

1     
2    4
3     
4  1   
 t = 1 

Figure 4.5 The tabu list for period 1 (tabu[1][i][k]) with recency and frequency-based 

memory structure at the end of iteration 1. 

 

In addition, a penalty function is used to penalize the non-improving moves. More 

specifically, the penalty function uses the frequency of a move recorded in the 

lower-triangle of the tabu arrays to penalize a non-improving move. If the non-improving 

move has been performed frequently in the search process, the penalty function can force 

the search into other regions by assigning a large penalty to the move using a penalty 

function. A penalty function is added to the total cost of non-improving moves. If the 

move is an improvement (i.e., )( t
ikTC π∆ > 0) it will not be penalized. Hence, the penalty 

function for the move of exchanging the locations of the departments i and k in period t is 

defined as follows.  
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0 )( t
ikTC π∆ > 0 (i.e., )(π ′TC < )(πTC ), 

P (t, i, k) = 
⎪
⎩

⎪
⎨

⎧

 
a * tabu[t][i][k] Otherwise. 

where 

a = penalty value which is a parameter. 

Recall, tabu[t][i][k],where i > k, is the number of times that departments i and k in period 

t has been exchanged. If the best admissible move is an improving move, the penalty 

function is not considered. Otherwise, the penalty function is considered. More 

specifically, if the best admissible move is a non-improving move, then the total cost of 

each move is recalculated denoted as )(π ′TCp , and is the sum of total cost and penalty 

function (i.e., )(π ′TCp  = )(π ′TC + P(t, i, k)). Considering the previous example, at the 

beginning of iteration 2, the tabu list and the list of candidate moves given in Figure 4.6 

and Table 4.4 are used to illustrate how the best admissible move is selected using 

frequency-based memory. Let a = 5. At the start of iteration 2, the current solution is π = 

((3, 4, 2, 1), (3, 4, 2, 1)) where the total cost is 107, which was obtained from Table 4.3 

and Section 4.2.4. Also, the total cost of the best found solution is 107. For move (1, 2, 4), 

the penalty is 5 (i.e., P(t, i, k) = 5*tabu[1][4][2] = 5) since it is a non-improving move 

and tabu[1][4][2] = 1. The move (2, 3, 4) is selected as the best admissible move which 

is not tabu restricted and is a non-improving solution where tabu[2][4][3] = 0. Since this 

non-improving move had not been performed (i.e., tabu[2][4][3] = 0), there is no penalty. 

Hence, when updating the tabu list, tabu[2][3][4]= cur_iter + TL = 2 + 3 = 5 and 

tabu[2][4][3] = 1. The tabu list after updating the move is given in Figure 4.7. 
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 1 2 3 4

1     
2    4
3     
4  1   
 t = 1 

 

 1 2 3 4

1     
2     
3     
4     
 t = 2 

Figure 4.6 The tabu list at the beginning of iteration 2. 

 

Moves 
(t, i, k) 

Tabu or 
non-tabu 

)( t
ikTC π∆ )(π ′TC  P(t, i, k) )(π ′TCp  

(1, 1, 2) non-tabu -14 121 0 121 
(1, 1, 3) non-tabu -28 135 0 135 
(1, 1, 4) non-tabu -36 143 0 143 
(1, 2, 3) non-tabu -28 135 0 135 
(1, 2, 4) tabu -28 135 5 140 
(1, 3, 4) non-tabu -30 137 0 137 
(2, 1, 2) non-tabu -21 128 0 128 
(2, 1, 3) non-tabu -14 121 0 121 
(2, 1, 4) non-tabu -20 127 0 127 
(2, 2, 3) non-tabu -18 125 0 125 
(2, 2, 4) non-tabu -14 121 0 121 
(2, 3, 4)* non-tabu -11 118 0 118 

*Best admissible move 

Table 4.4 The list of candidate moves in iteration 2. 
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 1 2 3 4

1     
2    4
3     
4  1   
 t = 1 

 

 1 2 3 4

1     
2     
3    5
4   1  
 t = 2 

Figure 4.7 The updated tabu list at the end of iteration 2. 

 

4.3.1.2 Dynamic Tabu List Size 

The dynamic tabu list size (or tabu length) is a recency-based memory strategy used 

to diversify the search. The dynamic tabu length, which is denoted as TLd, varies between 

a lower bound (LB) and an upper bound (UB). It varies from one iteration to another 

depending on the percentage reduction of the total cost of the best admissible solution 

( )( bestTC π ′ ) from the current solution ( )(πTC ). The percentage reduction ( )(πPR ) is 

calculated as follow: 

)(πPR  = [ )(πTC – )( bestTC π ′ ]*100%/ )(πTC .  

If )(πPR ≥ α%, then the total cost of the best admissible solution )( bestTC π ′ is a 

significant improvement over the total cost of the current solution )(πTC . If the best 

admissible solution results in a significant improvement, TLd is set to the upper bound 

(UB). However, if, the best admissible solution results in a relatively large improvement 
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(i.e., )(πPR ≥ β% > α%), TLd is set to a relatively large value (TLβ = 2NT). If )(πPR = 

0%, then TLd is set to the lower bound (LB). When the best admissible solution results in 

an improvement between 0 and α% (i.e., 0% < )(πPR < α%), TLd is set somewhere 

between LB and UB, and its distance from LB is in proportion to the improvement of this 

solution. If bestπ ′  is not an improving solution (i.e., )(πPR < 0%), TLd is not changed, 

which implies TLd is the same as the TLd in the pervious iteration. A summary of how TLd 

is set is given in Table 4.5.  

 

% Reduction of the total cost ( )(πPR ) Dynamic tabu list size (TLd) 

≥  β% TLβ = 2NT 

α% ≤  )(πPR  < β% UB 

0% ≤  )(πPR  < α% LB + (UB-LB)* )(πPR /α% 

)(πPR  < 0% TLd in the pervious iteration 

Table 4.5 Dynamic tabu list size. 

 

The previous example is used to illustrate the determination of the dynamic tabu list 

size (TLd). Let UB = 6, LB = 2, and α% = 25%. Recall, the total cost of the initial solution 

is 135 (in Section 4.2.3), and the total cost of the best admissible move in iteration 1 and 

2 is 107 (in Section 4.2.4) and 118 (in Section 4.3.1.1), respectively. In iteration 1,  

)(πPR = [ )(πTC – )( bestTC π ′ ]*100%/ )(πTC  = (135 – 107)*100%/135 = 20.7%.  

Since 0% ≤  )(πPR = 20.7% < α% = 25%,  

TLd = LB + (UB – LB)* )(πPR /α% = 2 + (6 – 2)* 20.7%/25% = 5.3 ≅ 5. 

In iteration 2, 

)(πPR = [ )(πTC – )( bestTC π ′ ]*100%/ )(πTC  = (107 –118)*100%/107 = -10.3%.  
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Since )(πPR  = -10.3% < 0%, TLd = TLd in the pervious iteration (iteration 1) which is 5 

(i.e., TLd = 5). The updated dynamic tabu list at the end of iteration 2 is given in Figure 

4.8. 

 1 2 3 4

1     
2    6
3     
4  1   
 t = 1 

 

 1 2 3 4

1     
2     
3    7
4   1  
 t = 2 

Figure 4.8 The dynamic tabu list in at the end of iteration 2. 

 

4.3.2 Intensification Strategy 

The basic idea of the intensification strategy is to search the neighborhoods of good 

solutions more in depth. The way to intensify the search is to fix pairs of departments 

which result in large percentage reductions (at least γ%) from the total cost of the best 

solution found so far, after exchanging their locations in specific periods. In other words, 

if the percentage reduction of the total cost of the best admissible solution ( )( bestTC π ′ ) is 

equal to or more than γ% from the total cost of the best found solution so far ( )( bestTC π ), 

the pair of departments (u, v) of the best admissible move is fixed in period p. To fix the 

pair of departments (u, v), the locations of the departments in period p is not allowed to 
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change until they are freed. The percentage reduction of the total cost of the best 

admissible solution from the total cost of the best found so far ( )( bestPR π ) is calculated as 

follows: 

)( bestPR π  = [ )( bestTC π – )( bestTC π ′ ]*100%/ )( bestTC π . 

If )( bestPR π  ≥ γ%, then the total cost of the best admissible solution )( bestTC π ′ is a large 

reduction over the total cost of the best solution found so far )( bestTC π , and the pair of 

departments of the best admissible move (p, u, v) is fixed (i.e., departments u and v are 

not allowed to change in period p) until freed. 

The intensification strategy starts after a certain number of iterations (η) have been 

performed, since large percentage reduction moves are generated in the first η iterations. 

Hence, intensification is invoked after obtaining “good” solutions. As stated previously, 

the fixed departments (u, v) in period p are allowed to change their locations if the 

departments are freed. The fixed departments can be freed only when the exchange of the 

locations of the fixed departments with other departments produces an improvement in 

the total cost of the best found solution so far. This is different from the way Chiang and 

Kouvelis (1996) freed the fixed departments. In contrast, they freed the fixed departments 

only when the exchange of the locations of the fixed departments with other free 

departments produces a percentage reduction better than that at which the departments 

were fixed.  

The previous example is used to illustrate the intensification strategy. Let η = 4 and 

γ% = 2%. Therefore, the TS heuristic performs four iterations until intensification is 

invoked at iteration 5. At iteration 5, the total cost of the best solution found so far is 107 

(i.e., )( bestTC π  = 107), and the total cost of the best admissible solution is 103 (i.e., 

)( bestTC π ′  = 103). The best admissible solution is obtained from the best admissible 
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move (2, 1, 2), which is to exchange the locations of departments 1 and 2 in period 2. 

Then the percentage reduction is calculated as follows:  

)( bestPR π  = [ )( bestTC π – )( bestTC π ′ ]*100%/ )( bestTC π  = (107-103)*100%/107 = 3.7%. 

Since )( bestPR π  = 3.7% ≥ γ% = 2%, departments 1 and 2 in period 2 are fixed until the 

exchange of the locations of departments 1 and 2 with other free departments yield a 

solution better than the best found solution so far. 

 

4.3.3 Pseudo-code for TS Heuristic with Diversification/Intensification Strategies  

The pseudo-code for the TS heuristic with the diversification and intensification 

strategies mentioned above for the DFLP is given below. 

Step 0: Input data and initialize heuristic parameters and counters.  

Input the following data: the distances between locations (Djl), flows between 

departments in each period (Ftik), and the rearrangement costs for each department 

(Ati). Next, initialize the tabu list tabu[t][i][k] and the current time cur_time. Also, 

set penalty value a, upper bound UB, lower bound LB, initial tabu length TLd = LB, 

significant improvement from the total cost of current solution α%, relatively 

large improvement from the total cost of current solution β%, dynamic tabu 

length of β% reduction TLβ = 2NT, the number of iterations after intensification is 

invoked η, large percentage reduction from the total cost of the best found 

solution so far γ%, computation time CPU_time, and iteration counter c (c = 1). 

Step 1: Obtain an initial solution π and calculate its total cost )(πTC . 

The intial solution π and the total cost )(πTC  are obtained as discussed in Step 1 

of the basic TS heuristic. Next, set the best found solution ππ =best  and 

)()( ππ TCTC best = . 
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Step 2: Evaluate the neighborhood of the current solution π and select the best admissible 

move (p, u, v).   

Generate all possible moves (t, i, k), where i < k, in the neighborhood of π by 

considering all possible pairwise exchanges between department locations in each 

period. Evaluate all moves by obtaining the change in total cost of each move 

)()()( t
ik

t
ik

t
ik RAMHTC πππ ∆+∆=∆ , and the total cost of the solution (π ′ ) 

obtained by performing the move (t, i, k) is )()()( t
ikTCTCTC πππ ∆−=′ . Also, 

the sum of total cost and penalty function )(π ′TCp  = )(π ′TC + P(t, i, k) is 

obtained. If )( t
ikTC π∆  > 0, the penalty function P(t, i, k) = 0. Otherwise, the 

penalty function P(t, i, k) = a*tabu[t][k][i]. If the move (t, i, k) satisfies one of the 

following restrictions, the move is defined as an admissible move. 

a. If the move (t, i, k) is non-tabu and departments i or k are not fixed in period t, 

then the move is an admissible move. 

b. If the move (t, i, k) is tabu and )()( bestTCTCp ππ <′ , then the move is an 

admissible move. 

Select the best admissible move (p, u, v) with respect to )(π ′TCp . This move 

gives the best admissible solution in the neighborhood of π denoted as bestπ ′ . 

Step 3: Update the dynamic tabu list size TLd. 

The dynamic tabu length TLd is obtained by calculating the percentage reduction 

of the total cost of the best admissible solution from the current solution using 

)(πPR  = [ )(πTC – )( bestTC π ′ ]*100%/ )(πTC . Set the dynamic tabu list size (TLd) 

as follows. 

a. If )(πPR  ≥  β%, set TLd = TLβ. 
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b. If α% ≤  )(πPR  < β%, set TLd = UB. 

c. If 0% ≤  )(πPR  < α%, set TLd = LB + (UB-LB)* )(πPR /α%. 

d. If )(πPR  < 0%, set TLd = TLd in the pervious iteration. 

Step 4: Invoke the intensification strategy. 

If c > η, invoke intensification strategy. Otherwise, go to Step 5. 

Step 4.1: If the total cost of best admissible solution )()( bestbest TCTC ππ <′ , free 

the departments u and v in period p if necessary.  

Step 4.2: Calculate the percentage reduction of the total cost of the best 

admissible solution from the total cost of the best found so far which is 

)( bestPR π  = [ )( bestTC π – )( bestTC π ′ ]*100%/ )( bestTC π . 

Step 4.3: If the reduction )( bestPR π  ≥  γ%, fix departments u and v in period p.  

Step 5: Update the tabu list and current solution. 

Set tabu[p][u][v] = c + TLd, tabu[p][v][u] = tabu[p][v][u] + 1, π = bestπ ′ , and 

)(πTC = )( bestTC π ′ . 

Step 6: Update the best found solution so far. 

      If )()( bestTCTC ππ < , set ππ =best  and )()( ππ TCTC best = . 

Step 7: Update heuristic counter and check stopping criterion. 

Set iteration counter c = c + 1 and check the current time cur_time. If the cur_time 

> CPU_time, then, terminate the heuristic. Otherwise, go to Step 2. 

 

4.4 The Probabilistic Tabu Search Heuristic for the DFLP 

The probabilistic tabu search (PTS) heuristic is a modification of the basic tabu 

search heuristic (TS) presented in Section 4.2.7, which randomly selects an admissible 

move for exchange. Chiang and Chiang (1998) presented a PTS heuristic to solve the 
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SFLP. Also, Lim et al. (2003) presented a PTS heuristic to solve the crane scheduling 

problem. The proposed PTS heuristic for the DFLP is a modification of the PTS 

heuristics presented by Chiang and Chiang (1998) and Lim et al. (2003) for the DFLP.  

The only difference between the basic TS and PTS heuristics is how the admissible 

move is selected. As before, all possible moves in the neighborhood of the current 

solution are evaluated. However, the PTS heuristic selects the top M admissible moves as 

candidate moves and puts them in order from best to worst in the candidate list. If the 

best admissible move in the candidate list yields a solution with a total cost less than that 

of the best found solution so far, the best found solution is updated. Then the following 

procedure is used to select a move from the candidate list. 

Step 1: Consider the first move in the candidate list as the current move. 

Step 2: Accept the current move with probability p. If the move is accepted, then this 

move is selected as the admissible move for exchange, and exit the procedure, 

since an admissible move was selected. Otherwise, go to step 3. 

Step 3: Go to the next move in the candidate list and set as the current move. If there is 

no more candidate moves in the list, select the best move from the list of 

candidate moves as the admissible move for exchange and exit the procedure. 

Otherwise go to step 2.   

The probability to accept a move in the above procedure is p. Therefore, the 

probability of selecting the first move in the candidate list as the admissible move is p. If 

the first move is rejected, the probability of selecting the second move as the admissible 

move is p(1-p). If the (i-1)th move is rejected, the probability of selecting the i th move as 

the admissible move is p(1-p)i-1. The accumulated probability (AP(i)) for each move in 

the candidate list is calculated by using the following formulas: 
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0, for i > M or i < 1, 

p(1 - p)M-1, for i = M, 

AP(i + 1) + p(1 - p)i-1, for 2 ≤ i < M, 
AP(i)=

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

 

1, i = 1. 

A more efficient way of selecting the admissible move is to use the accumulated 

probability (AP(i)) formulas. More specifically, a random number x between 0 and 1 is 

generated to select the admissible move for exchange. If AP(i + 1) < x < AP(i) then the 

ith move in the candidate list is selected as the admissible move with probability p(1 - 

p)i-1. For example, given M = 10 and p = 0.33, the accumulated probability (AP(i)) for 

each move is listed in Table 4.6. If x = 0.45, then 0.430672 < x = 0.45 ≤ 0.651772. 

Therefore, i = 2, which means that the second move is selected as the admissible move. 

 

The ith Move  AP(i) 
1 1 
2 0.651772 
3 0.430672 
4 0.282535 
5 0.183283 
6 0.116784 
7 0.072232 
8 0.042379 
9 0.022378 

10 0.008978 

Table 4.6 The accumulated probability table. 
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CHAPTER 5 

COMPUTATIONAL RESULTS 

 

5.1 Introduction 

The proposed tabu search heuristics were tested on two data sets given by 

Lacksonen and Enscore (1993) and Balakrishnan and Cheng (2000). The first data set 

which is taken from the Lacksonen and Enscore (1993) contains test problems with 6, 12, 

20, and 30 departments (i.e., N = 6, 12, 20, and 30) each with 3 and 5 periods (i.e., T = 3 

and 5). Each problem instance includes four test problems. Therefore, there are 32 test 

problems in this data set. More specifically, the data set was developed based on six 

factors: number of departments, number of time periods, ratio of rearrangement costs and 

flow costs, percentage of new departments in a period, percentage of department pairs 

with positive flows, and maximum flow change of a department pair in consecutive 

period. For some problem instances, new departments are introduced to replace the 

existing departments, and the cost to replace a department is equal to the rearrangement 

cost of that department, regardless of whether the location is the same as the previous 

department. Also, rearrangement costs are the same for each department in each period 

within a test problem.   

The second data set which is taken from Balakrishnan and Cheng (2000) includes 

test problems with 6, 15, and 30 departments (i.e., N = 6, 15, and 30) each with 5 and 10 

periods (i.e., T = 5 and 10). Each problem instance contains eight test problems. 

Therefore, there are 48 test problems in this data set. More specifically, the sum of flows 

within a period is constant during the layout planning horizon for each test problem. 

However, the rearrangement costs are different according to the functions of the 
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departments, and the average rearrangement cost for a department was set to be 15% of 

the average material handling cost for the department. In addition, the five period 

problems use the data of the first five periods from the corresponding ten period 

problems.  

 

5.2 Setting Parameters 

The settings for each parameter in the proposed tabu search heuristics are given 

below: 

1. Tabu length (TL) 

For data set 1, Kaku and Mazzola (1997) defined the tabu length to be NT/2 for their TS 

heuristic where N is the number of departments and T is the number of periods. After 

performing experiments, the tabu length is defined as NT/2 and NT/4 for data sets 1 and 2, 

respectively, for the proposed basic TS and PTS heuristics. Also, the tabu length defined 

here is used as the midpoint between the LB and UB in the TS heuristic with 

(intensification/diversification) strategies.    

2. Penalty value (a) 

Chiang and Kouvelis (1996) used a penalty function for their TS heuristic and their 

penalty value was 7. After performing experiments, the penalty value of 3 and 15 were 

obtained for data sets 1 and 2, respectively, for the proposed TS heuristic with strategies. 

Note: a larger penalty is used for data set 2, since the objective function values (OFVs) 

are relatively larger. 

3. Upper bound (UB) and lower bound (LB) for the dynamic tabu list size 

Chiang and Kouvelis (1996) used a dynamic tabu list size strategy for their TS heuristic, 

and their settings of lower and upper bounds where (LB, UB) is defined as (N/3, 3N/4) 



 56

where N is the number of departments. After performing experiments, the upper bound 

(UB) and lower bound (LB) for the dynamic tabu list size for the proposed TS heuristic 

with strategies are set by using the tabu length (TL) as the mid-point or median value of 

the range from the LB to the UB (as mentioned in (1) above). Recall, the tabu length (TL) 

is defined as NT/2 and NT/4 for data sets 1 and 2, respectively. Therefore, the setting for 

(LB, UB) is )
4
3,

4
1( NTNT  and )

16
5,

16
3( NTNT  for data sets 1 and 2, respectively.  

4. Significant improvement from the total cost of the current solution (α%) and the 

significant percentage reduction from the total cost of the best found solution so far 

(γ%) 

Chiang and Kouvelis (1996) used diversification and intensification strategies for their 

TS heuristic and the setting for α% is 0.05%, which is the same setting in both the 

diversification and intensification strategies (i.e., the authors used α% for both percentage 

reductions which mean γ% = α%). The parameters of significant improvements from the 

total cost of current solution (α%) and significant percentage reduction from the total cost 

of the best found solution so far (γ%) for the proposed TS heuristic with strategies are set 

as parameters in the diversification and intensification strategies, respectively. The 

parameters of α% and γ% are set based on gathering statistics from performing initial 

runs of the steepest descent pairwise exchange heuristic. The procedure for setting the 

parameters α% and γ% is explained below. 

Step 1: Use the steepest descent pairwise exchange heuristic to generate statistics for 

setting the parameters α% and γ%.  

Step 1.0: Input the following data: the distances between locations (Djl), flows 

between departments in each period (Ftik), and the rearrangement costs 
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for each department (Ati). Also, set the total number of initial solutions 

generated for each test problem initial_n and initialize the initial solution 

counter ic (i.e., set ic = 1). The total number of initial solutions (initial_n) 

generated for each test problem is given in Tables 5.1 and 5.2 for data 

sets 1 and 2, respectively. 

 

Problem size 
N T 

initial_n 

3 50 
6 

5 50 
3 100 

12 
5 100 
3 200 

20 
5 400 
3 600 

30 
5 800 

Table 5.1 The total number of initial solutions for data set 1. 

 

Problem size 
N T 

initial_n 

5 100 
6 

10 100 
5 200 

15 
10 400 
5 800 

30 
10 1600 

Table 5.2 The total number of initial solutions for data set 2. 
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Step 1.1: Obtain an initial solution by randomly assigning the departments to 

locations for period 1 and use the same layout for each period. Hence, an 

initial solution initialπ  is obtained. Also, determine the total cost of the 

initial solution which is denoted as )( initialTC π . Next, set the current 

solution initialππ =  and )()( initialTCTC ππ = . 

Step 1.2: Run the steepest descent pairwise exchange heuristic by evaluating all 

the candidate moves in the neighborhood of the current solution π. The 

best move is selected, and its corresponding solution is the best solution 

found so far which is denoted as bestπ ′ . Also, obtain the total cost of the 

best solution so far )( bestTC π ′ .  

Step 1.3: Calculate the percentage reduction (is(π)) of the total cost of the best 

solution so far )( bestTC π ′  from the current solution )(πTC . The 

percentage reduction (is(π)) is calculated as follow:  

is(π) = [ )(πTC – )( bestTC π ′ ]*100%/ )(πTC  

If is(π) > 0, then record the percentage reduction is(π) in a list, set the 

best solution as the current solution (i.e., π = bestπ ′ ), and go to Step 1.2. 

Else, record the percentage reduction )( initialds π  from the initial 

solution to the current solution by using the formula 

)( initialds π = [ )( initialTC π – )(πTC ]*100%/ )( initialTC π , 

and if ic < initial_n, then set ic = ic + 1 and go to Step 1.1.   

Step 2: Repeat the above steps for each test problem in the data set. 

Step 3: Obtain the minimum (min), average (avg), and maximum (max) values for is(π), 

and )( initialds π  from the lists. The values are given in Tables 5.3 and 5.4.  
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problem size Diversification Intensification 

N T 
Problem No. 

min(ds(πinitial)) avg(ds(πinitial)) max(ds(πinitial)) min(is(π)) avg(is(π)) max(is(π))

P01 0.0100  0.0500  0.1000  0.0010  0.0050  0.0100  

P02 0.0100  0.0500  0.1000  0.0010  0.0050  0.0100  

P03 0.0100  0.0500  0.1000  0.0010  0.0050  0.0100  
3 

P04 0.0100  0.0500  0.1000  0.0010  0.0050  0.0100  

P05 0.0100  0.0100  0.1693  0.0010  0.0028  0.0301  

P06 0.0100  0.0085  0.0509  0.0010  0.0027  0.0104  

P07 0.0100  0.0500  0.1000  0.0010  0.0050  0.0100  

6 

5 

P08 0.0100  0.0500  0.1000  0.0010  0.0050  0.0100  

P09 0.0325  0.1773  0.2663  0.0075  0.0163  0.0290  

P10 0.0235  0.0998  0.1669  0.0052  0.0118  0.0191  

P11 0.0100  0.1066  0.2105  0.0010  0.0151  0.0330  
3 

P12 0.0100  0.0427  0.1180  0.0010  0.0075  0.0161  

P13 0.0166  0.0385  0.0523  0.0032  0.0071  0.0113  

P14 0.0313  0.0772  0.1224  0.0022  0.0045  0.0071  

P15 0.0100  0.0528  0.1819  0.0010  0.0075  0.0210  

12 

5 

P16 0.0100  0.0119  0.1074  0.0010  0.0020  0.0121  

P17 0.0568  0.1904  0.2998  0.0101  0.0173  0.0305  

P18 0.0380  0.1381  0.2166  0.0065  0.0115  0.0169  

P19 0.0048  0.1653  0.4027  0.0008  0.0103  0.0231  
3 

P20 0.0103  0.0675  0.1426  0.0010  0.0067  0.0146  

P21 0.0979  0.2733  0.4361  0.0041  0.0069  0.0123  

P22 0.0884  0.1779  0.2746  0.0021  0.0037  0.0060  

P23 0.0182  0.1150  0.4222  0.0010  0.0092  0.0243  

20 

5 

P24 0.0177  0.1065  0.3070  0.0010  0.0071  0.0148  

P25 0.0340  0.0655  0.0926  0.0043  0.0085  0.0136  

P26 0.0200  0.0392  0.0577  0.0029  0.0052  0.0090  

P27 0.0032  0.0193  0.0335  0.0035  0.0068  0.0147  
3 

P28 0.0376  0.1547  0.2671  0.0020  0.0042  0.0079  

P29 0.1265  0.2387  0.3223  0.0020  0.0031  0.0048  

P30 0.0075  0.0134  0.0175  0.0011  0.0018  0.0027  

P31 0.0097  0.1306  0.2612  0.0010  0.0073  0.0125  

30 

5 

P32 0.0262  0.1363  0.2501  0.0023  0.0046  0.0075  

Table 5.3 Minimum, average, and maximum values for data set 1. 
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Problem size Diversification Intensification 

N T 
Problem No. 

min(ds(πinitial)) avg(ds(πinitial)) max(ds(πinitial)) min(is(π)) avg(is(π)) max(is(π)) 

P01 0.0003  0.0200  0.0398  0.0003  0.0042  0.0081  
P02 0.0085  0.0526  0.0968  0.0085  0.0098  0.0112  
P03 0.0090  0.0199  0.0314  0.0090  0.0120  0.0140  
P04 0.0084  0.0546  0.1319  0.0006  0.0093  0.0156  
P05 0.0087  0.0235  0.0268  0.0085  0.0135  0.0146  
P06 0.0417  0.0774  0.0836  0.0042  0.0089  0.0100  
P07 0.0281  0.0435  0.0821  0.0091  0.0146  0.0234  

5 

P08 0.0410  0.0582  0.0795  0.0095  0.0133  0.0161  
P09 0.0087  0.0431  0.0734  0.0029  0.0049  0.0070  
P10 0.0455  0.0943  0.0960  0.0036  0.0062  0.0073  
P11 0.0613  0.0768  0.0853  0.0054  0.0078  0.0088  
P12 0.0108  0.0535  0.1211  0.0027  0.0051  0.0083  
P13 0.0686  0.0934  0.1059  0.0084  0.0109  0.0148  
P14 0.0248  0.0545  0.0792  0.0033  0.0046  0.0065  
P15 0.0127  0.0480  0.0796  0.0051  0.0093  0.0114  

6 

10 

P16 0.0693  0.0735  0.0851  0.0038  0.0056  0.0073  
P17 0.0582  0.1176  0.1620  0.0023  0.0040  0.0065  
P18 0.0357  0.0788  0.1431  0.0017  0.0035  0.0067  
P19 0.0526  0.0936  0.1303  0.0021  0.0041  0.0068  
P20 0.0546  0.0923  0.1280  0.0022  0.0040  0.0081  
P21 0.0419  0.0976  0.1489  0.0021  0.0040  0.0067  
P22 0.0531  0.1057  0.1611  0.0028  0.0054  0.0112  
P23 0.0703  0.1241  0.1556  0.0027  0.0042  0.0069  

5 

P24 0.0620  0.1060  0.1534  0.0021  0.0041  0.0070  
P25 0.0702  0.0975  0.1241  0.0011  0.0019  0.0030  
P26 0.0464  0.0977  0.1550  0.0011  0.0020  0.0030  
P27 0.0662  0.0917  0.1139  0.0012  0.0020  0.0032  
P28 0.0756  0.1043  0.1364  0.0015  0.0023  0.0034  
P29 0.0684  0.1007  0.1304  0.0013  0.0022  0.0041  
P30 0.0696  0.1052  0.1340  0.0026  0.0042  0.0061  
P31 0.0550  0.0947  0.1390  0.0010  0.0019  0.0033  

15 

10 

P32 0.0600  0.0980  0.1369  0.0011  0.0020  0.0035  
P33 0.0218  0.0544  0.0901  0.0008  0.0017  0.0033  
P34 0.0215  0.0610  0.1132  0.0017  0.0033  0.0054  
P35 0.0345  0.0602  0.1008  0.0010  0.0017  0.0033  
P36 0.0393  0.0730  0.1089  0.0012  0.0022  0.0037  
P37 0.0430  0.0842  0.1232  0.0016  0.0029  0.0052  
P38 0.0313  0.0715  0.1073  0.0014  0.0027  0.0053  
P39 0.0122  0.0643  0.1122  0.0011  0.0022  0.0037  

5 

P40 0.0321  0.0575  0.0801  0.0022  0.0038  0.0067  
P41 0.0192  0.0489  0.0794  0.0005  0.0009  0.0013  
P42 0.0196  0.0480  0.0755  0.0009  0.0016  0.0026  
P43 0.0196  0.0401  0.0603  0.0011  0.0018  0.0028  
P44 0.0375  0.0652  0.0922  0.0007  0.0011  0.0017  
P45 0.0491  0.0786  0.1039  0.0008  0.0014  0.0022  
P46 0.0412  0.0665  0.0940  0.0008  0.0013  0.0021  
P47 0.0372  0.0587  0.0777  0.0013  0.0022  0.0036  

30 

10 

P48 0.0321  0.0490  0.0670  0.0007  0.0010  0.0016  

Table 5.4 Minimum, average, and maximum values for data set 2. 
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Step 4: Generate parameters α% and γ% by using formulas related to the statistics.  

Step 4.1: After experimenting with the values min( )( initialds π ), avg( )( initialds π ), and 

max( )( initialds π ), the following formulas were obtained for setting the 

heuristic parameter α%: 

 α% = 0.4 min( )( initialds π ) for data set 1 and 

 α% = 0.6 min( )( initialds π ) for data set 2. 

Step 4.2: After experimenting with the values min(is(π)), avg(is(π)), and max(is(π)), 

the following formulas were obtained for setting the heuristic parameter γ%: 

 γ% = avg(is(π)) for data set 1 and 

 γ% = max(is(π)) for data set 2. 

5. Relatively large improvement from the total cost of current solution (β%) and dynamic 

tabu length of β% reduction (TLβ) 

Chiang and Kouvelis (1996) used a dynamic tabu list size strategy for their TS heuristic and 

their settings of β% is much larger than α% (the authors did not mention the specific value or 

formula for β% ) and TLβ is set as 2N where N is the number of departments. Since a 

relatively large improvement from the total cost of the current solution (β%) should be much 

larger than α%, the value of β% is set as 2α%, which is β% = 0.8*min( )( initialds π ) and 

1.2*min( )( initialds π ) for data sets 1 and 2, respectively. Dynamic tabu length (TLβ) of β% 

reduction is set to a large value which is TLβ = 2NT for both data sets. 

6. The iteration number after which the intensification strategy is invoked (η) 

Chiang and Kouvelis (1996) used an intensification strategy in their TS heuristic, and the 

authors mentioned that the iteration number (η) cannot be too small, since intensification 

would be performed with “poor” solutions; thus, increasing computational time. After 

performing experiments, the iteration number after which the intensification strategy is 
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invoked (η) is set using a formula based on the number of departments (N) and number of 

periods (T). The formulas for η are NT and 20NT for data sets 1 and 2, respectively. 

7. The total number of moves in the candidate list (M) and the probability (p) to accept a 

move  

Chiang and Chiang (1998) used a PTS heuristic, and their settings for M and p are 10 and 

0.33, respectively. After performing experiments, the proposed PTS heuristic performs better 

when M is set as 15 and 5 for data sets 1 and 2, respectively. Also, the probability p is set as 

0.33 for both data sets. 

8. Computational time (CPU_time) 

Computational time for each problem instance is defined according to the problem size. 

Furthermore, the TS heuristic with strategies were used to determine the setting of the 

stopping criterion, since this heuristic requires more computation time. More specifically, 

first the number of consecutive iterations without improvement was used as the stopping 

criterion which was defined as 2NT for the TS heuristic with strategies. Using this stopping 

criterion, the run times were obtained for each test problem in each data set. The maximum 

time for each set of test problems with the same number of departments (N) was determined 

and was rounded to the nearest preferred integer. These times were used as the computational 

times for all three of the proposed heuristics so that the performances of these heuristics can 

be compared. This process was performed for each data set. However, since it was more 

difficult to solve the test problems in data set 1 with 30 departments, the computational times 

for these problems were increased. The computational time for each problem instance in data 

sets 1 and 2 is given in Tables 5.5 and 5.6, respectively.  
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Problem size 

N T 

Computational time 
(min) 

3 0.33333 
6 

5 0.5 

3 1.5 
12 

5 4 

3 8 
20 

5 12 

3 15 
30 

5 18 

Table 5.5 The computational time for data set 1. 

 

Problem size 

N T 

Computational time 
(min) 

5 0.01667 
6 

10 0.01667 

5 0.16667 
15 

10 0.58333 

5 3 
30 

10 12 

Table 5.6 The computational time for data set 2. 

 

The detailed settings for each parameter of the proposed TS heuristics are given in 

Tables 5.7 and 5.8, respectively.  
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Heuristic/Strategy Parameter Setting 

Basic TS TL NT/2 

Frequency-based Memory a 3 

LB 1/4*NT 

UB 3/4*NT 

α% 0.4 min( )( initialds π ) 

β% 0.8 min( )( initialds π ) 

Dynamic tabu size list 

TLβ 2NT 

η NT 

TS with 

Strategies 

 

Intensification 
γ% avg(is(π)) 

M 15 
PTS 

p 0.33 

Table 5.7 Parameter settings for data set 1. 

 

Heuristic/strategy Parameter Setting 

Basic TS TL NT/4 

Frequency-based Memory a 15 

LB 3/16*NT 

UB 5/16*NT 

α% 0.6 min( )( initialds π ) 

β% 1.2 min( )( initialds π ) 

Dynamic tabu size list 

TLβ 2NT 

η 20NT 

TS with 

Strategies 

 

Intensification 
γ% max (is(π)) 

M 5 
PTS 

p 0.33 

Table 5.8 Parameter settings for data set 2. 
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5.3 Results 

The proposed TS heuristics were programmed using the C++ programming language, 

and the test problems from Lacksonen and Enscore (1993) as well as Balakrishnan and 

Cheng (2000) data sets were used to test the performances of the proposed heuristics. The 

test problems were solved on an AMD Athlon 2600+ 1.92 GHz PC with 1 G of memory. As 

mentioned in the previous section, the stopping criterion was computation time. In other 

words, the computation time for each test problem for each of the proposed heuristics was the 

same. For the computation times and the heuristic parameter settings, see Tables 5.5 - 5.8. 

Since the PTS heuristic is a stochastic heuristic, while the other two heuristics are 

deterministic, each test problem was solved three times using the PTS heuristic. The results 

for both data sets are given below. 

 

5.3.1 Data Set from Lacksonen and Enscore (1993) 

First, the test problems were solved using the basic TS heuristic, and then each strategy 

and combination of strategies were added to this heuristic to measure their impact. Table 5.9 

summarizes the results obtained by the basic TS heuristic (TSbasic) as well as the basic TS 

heuristic with frequency based memory (TSfre), dynamic tabu list size (TSdiver), 

intensification strategy (TSinten), frequency based memory and dynamic tabu list size 

(TSfrediver), frequency based memory and intensification (TSfreinten), dynamic tabu list 

size and intensification (TSdiverinten), and all strategies combined (TSall). In the last 

column, the best solution obtained is given, and the bold numbers indicate the best objective 

function value (OFV) obtained from the heuristic for each test problem in this data set. In the 

last row, the number of the best solutions obtained from the TS heuristic with each 
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combination of strategies is given. The TSbasic, TSfre, TSdiver, TSinten, TSfrediver, 

TSfreinten, TSdiverinten, and TSall heuristics obtained the best solution for 21, 17, 22, 17, 

24, 16, 18 and 26 of the 32 test problems, respectively. Therefore, the proposed TS heuristic 

with all strategies is the preferred TS heuristic for the data set taken from Lacksonen and 

Enscore (1993). 

Table 5.10 summarizes the results obtained by the PTS heuristic. The result for each run 

and the average of the three runs for each of the test problems are given. In the last column, 

the best solution obtained from the PTS heuristic for the data set taken from Lacksonen and 

Enscore (1993) is given. The bold numbers indicate the best objective function value (OFV) 

obtained from the PTS heuristic for each test problem.  

Tables 5.11 - 5.14 summarize the results obtained by the proposed heuristics (basic TS 

(TSbasic), the TS heuristic with all strategies (TSall), and the PTS heuristic (PTS)) as well as 

the heuristics presented by Lacksonen and Enscore (1993) using a cutting plane algorithm 

(CP), Kaku and Mazzola (1997) using a tabu search heuristic (TS-KM), McKendall and 

Shang (2005) using hybrid ant systems (HAS), and McKendall et al. (2005) using SA 

heuristics (SA). The proposed TS heuristics are compared to the cutting plane algorithm CP 

since this is the best exact method available in the literature. Also, the proposed TS heuristics 

are compared to the tabu search heuristic TS-KM, since this is the only paper which presents 

a TS heuristic for DFLP. Furthermore, the results presented using HAS and SA heuristics are 

also used in the analysis since these techniques perform well on this data set.  
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Pro. size 

N T 
Problem No. TSbasic TSfre TSdiver TSinten TSfrediver TSfreinten TSdiverinten TSall 

Best 

solution

P01 267 267 267 267 267 267 267 267 267 

P02 260 260 260 260 260 260 260 260 260 

P03 363 363 363 368 363 363 363 363 363 
3 

P04 299 299 299 299 299 299 299 299 299 

P05 442 442 442 442 442 442 442 442 442 

P06 586 586 586 586 586 586 586 586 586 

P07 424 424 424 424 424 424 424 424 424 

6 

5 

P08 428 428 428 428 428 428 428 428 428 

P09 1624 1624 1624 1624 1624 1624 1624 1624 1624 

P10 1973 1973 1973 1973 1973 1973 1973 1973 1973 

P11 1661 1665 1661 1665 1661 1665 1661 1661 1661 
3 

P12 2102 2097 2097 2102 2097 2097 2097 2097 2097 

P13 2930 2930 2943 2930 2930 2930 2943 2930 2930 

P14 3701 3703 3701 3701 3709 3703 3701 3701 3701 

P15 2779 2756 2756 2765 2756 2756 2756 2756 2756 

12 

5 

P16 3364 3364 3364 3366 3364 3382 3387 3364 3364 

P17 2758 2758 2822 2758 2758 2758 2822 2758 2758 

P18 5318 5318 5318 5318 5318 5318 5318 5318 5318 

P19 3034 3054 3034 3034 3085 3102 3038 3034 3034 
3 

P20 5873 5873 5873 5873 5869 5904 5873 5869 5869 

P21 4554 4588 4554 4554 4573 4588 4554 4573 4554 

P22 9734 9754 9745 9734 9724 9754 9745 9724 9724 

P23 4654 4677 4740 4654 4675 4667 4740 4675 4654 

20 

5 

P24 8979 8989 8979 8979 8979 8997 8989 8979 8979 

P25 7131 7142 7131 7131 7130 7142 7131 7130 7130 

P26 14528 14478 14563 14528 14487 14478 14563 14487 14478

P27 8098 8136 8047 8059 8074 8120 8054 8049 8047 
3 

P28 14933 14973 14901 14933 14945 14906 14901 14908 14901

P29 13396 13378 13463 13396 13374 13489 13463 13374 13374

P30 25515 25536 25448 25515 25410 25536 25448 25428 25410

P31 12163 12203 12163 12229 12204 12279 12163 12163 12163

30 

5 

P32 24307 24369 24389 24334 24283 24391 24389 24283 24283

  Best solution 21 17 22 17 24 16 18 26 32 

Table 5.9 Solution results for TS heuristics for data set 1. 
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problem size

N T 
Problem No. 1 2 3 Average Best solution 

P01 267 267 267 267 267 

P02 260 260 260 260 260 

P03 363 363 385 370 363 
3 

P04 299 299 309 302 299 

P05 442 442 442 442 442 

P06 586 586 586 586 586 

P07 424 424 424 424 424 

6 

5 

P08 428 428 428 428 428 

P09 1624 1624 1624 1624 1624 

P10 1973 1973 1973 1973 1973 

P11 1661 1661 1661 1661 1661 
3 

P12 2097 2097 2097 2097 2097 

P13 2930 2930 2930 2930 2930 

P14 3701 3701 3701 3701 3701 

P15 2756 2756 2756 2756 2756 

12 

5 

P16 3364 3364 3364 3364 3364 

P17 2758 2758 2758 2758 2758 

P18 5318 5318 5318 5318 5318 

P19 3038 3034 3034 3035 3034 
3 

P20 5878 5869 5873 5873 5869 

P21 4586 4581 4554 4574 4554 

P22 9746 9736 9743 9742 9736 

P23 4654 4654 4654 4654 4654 

20 

5 

P24 8979 8979 8979 8979 8979 

P25 7130 7131 7131 7131 7130 

P26 14528 14478 14478 14495 14478 

P27 8075 8087 8076 8079 8075 
3 

P28 14939 14936 14913 14929 14913 

P29 13514 13383 13379 13425 13379 

P30 25523 25509 25484 25505 25484 

P31 12148 12148 12151 12149 12148 

30 

5 

P32 24200 24200 24232 24211 24200 

Table 5.10 Solution results for the PTS heuristic for data set 1. 

 

In Tables 5.11 - 5.14, the cutting plane algorithm solutions presented in Lacksonen and 

Enscore (1993) and the best tabu search heuristic solutions presented in Kaku and Mazzola 

(1997) are given under the “CP” and “TS-KM” columns, respectively. Also, the best HAS 

solutions presented in McKendall and Shang (2005) are given under the “HAS” column, and 
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the best SA heuristic solutions presented in McKendall et al. (2005) are given under the 

“SA” column. The best solutions obtained from either CP, TS-KM, HAS, or SA heuristic are 

given under the “Best found solution” column. In the last column, the percent deviation that 

the best solution obtained from the proposed heuristics is below the best found solution 

obtained from the heuristics presented in the literature is given under “% Dev” for each 

problem. In the last row, the number of the best solutions obtained from each heuristic is 

given. The bold numbers indicate the best objective function value (OFV) obtained for each 

test problem. 

In Table 5.11, the results are shown for the test problems where N = 6. For test problems 

with T = 3 and T = 5 (P01-08), the TSbasic, TSall, and PTS heuristics obtained the best 

solution for all 8 test problems. Therefore, all the proposed heuristics performed equally well. 

Since the proposed TS heuristics, TS-KM, HAS, and SA heuristics obtained the best 

solutions for all 8 test problems, these heuristics are the preferred choice for this set of 8 test 

problems. 

 

problem size 

N T 
Problem No. TSbasic TSall PTS CP TS-KM HAS SA 

Best found 

solution 
% Dev

P01 267 267 267 267 267 267 267 267 0 

P02 260 260 260 260 260 260 260 260 0 

P03 363 363 363 363 363 363 363 363 0 
3 

P04 299 299 299 299 299 299 299 299 0 

P05 442 442 442 442 442 442 442 442 0 

P06 586 586 586 589 586 586 586 586 0 

P07 424 424 424 424 424 424 424 424 0 

6 

5 

P08 428 428 428 428 428 428 428 428 0 

 Best solution 8 8 8 7 8 8 8 8  

Table 5.11 Solution results for problems with N = 6 in data set 1. 
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In Table 5.12, the results are shown for the test problems where N = 12. For test 

problems with T = 3 and 5 (P09-16), both the TSall and PTS heuristics obtained the best 

solution for all 8 test problems. Therefore, both TSall and PTS performed equally well. Since 

TSall, PTS, TS-KM, HAS, and SA heuristics obtained the best solutions for all 8 test 

problems, these heuristics are the preferred choice for this set of 8 problems.  

 

Pro. size 

N T 
Problem No. TSbasic TSall PTS CP TS-KM HAS SA 

Best found 

solution 
% Dev

P09 1624 1624 1624 1624 1624 1624 1624 1624 0 

P10 1973 1973 1973 1973 1973 1973 1973 1973 0 

P11 1661 1661 1661 1661 1661 1661 1661 1661 0 
3 

P12 2102 2097 2097 2097 2097 2097 2097 2097 0 

P13 2930 2930 2930 2930 2930 2930 2930 2930 0 

P14 3701 3701 3701 3726 3701 3701 3701 3701 0 

P15 2779 2756 2756 2756 2756 2756 2756 2756 0 

12 

5 

P16 3364 3364 3364 3364 3364 3364 3364 3364 0 

 Best solution 6 8 8 7 8 8 8 8  

Table 5.12 Solution results for problems with N = 12 in data set 1. 

 

In Table 5.13, the results are shown for the test problems where N = 20. For test 

problems with T = 3 and 5 (P17-24), TSbasic, TSall and PTS heuristics obtained the best 

solution for 6, 6 and 7 of the 8 test problems, respectively. Therefore, the PTS heuristic 

outperformed the other proposed heuristics (TSbasic and TSall). However, CP, TS-KM, HAS, 

and SA heuristics obtained the best solutions for 2, 4, 6, and 6 problems, respectively. Thus, 

the PTS heuristic outperformed all other heuristics.  
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problem size 

N T 
Problem No. TSbasic TSall PTS CP TS-KM HAS SA 

Best found 

solution 
% Dev

P17 2758 2758 2758 2763 2758 2758 2758 2758 0 

P18 5318 5318 5318 5318 5318 5318 5318 5318 0 

P19 3034 3034 3034 3048 3056 3034 3034 3034 0 
3 

P20 5873 5869 5869 5873 5903 5881 5873 5873 -0.068

P21 4554 4573 4554 4581 4605 4575 4554 4554 0 

P22 9734 9724 9736 9825 9746 9724 9724 9724 0 

P23 4654 4675 4654 4654 4654 4654 4660 4654 0 

20 

5 

P24 8979 8979 8979 8985 8979 8979 8979 8979 0 

 Best solution 6 6 7 2 4 6 6 7  

Table 5.13 Solution results for problems with N = 20 in data set 1. 

 

In Table 5.14, the results are shown for the test problems where N = 30. For test 

problems with T = 3 and 5 (P25-32), both the TSall and PTS heuristics obtained the best 

solution for 4 of the 8 test problems. Thus, both proposed heuristics performed equally well. 

Also, HAS and SA obtained the best solutions for 4 of the 8 test problems. Therefore, TSall, 

PTS, HAS, and SA heuristics are the preferred heuristics for these test problems.  

 

problem size 

N T 
Problem No. TSbasic TSall PTS CP TS-KM HAS SA 

Best found 

solution 
% Dev

P25 7131 7130 7130 7163 7130 7130 7130 7130 0 

P26 14528 14487 14478 14583 14478 14478 14478 14478 0 

P27 8098 8049 8075 8066 8115 8066 8070 8066 -0.211
3 

P28 14933 14908 14913 14940 14925 14925 14901 14901 0.047

P29 13396 13374 13379 13719 13606 13374 13374 13374 0 

P30 25515 25428 25484 26027 25583 25521 25472 25472 -0.173

P31 12163 12163 12148 12351 12163 12163 12170 12163 -0.123

30 

5 

P32 24307 24283 24200 24409 24200 24200 24300 24200 0 

 Best solution 0 4 4 0 3 4 4 5  

Table 5.14 Solution results for problems with N = 30 in data set 1. 
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In summary, the TSall, PTS, HAS, and SA heuristics obtained the best solutions for 26 

and 27, 26, and 26 of the 32 problems, respectively. Therefore, the PTS heuristic slightly 

out-performed the TSall, HAS, and SA heuristics with respect to solution quality. However, 

the PTS heuristic required multiple runs (3 runs) for each test problem, and the TSall 

heuristic performed only one run, since it is a deterministic heuristic. Therefore, the total run 

time for the PTS heuristic is 3 times the total run time of the TSall heuristic. Also, the results 

given under the HAS heuristic are the results obtained from running 3 different HASs with 3 

runs each, and the results given under the SA heuristic are the results obtained from running 

2 different SA heuristics with 5 runs each. Kaku and Mazzola (1997) gave the average 

computation times for their TS heuristic. The average computation time for the TS heuristic 

for the larger size problems (problems 29 – 32) was approximately 2 hours and 47 minutes 

on a Pentium 200 MHz PC.  For the HAS heuristics, the average computation time was 20 

minutes for each run (3 runs) on a Pentium IV 2.4 GHz PC. For the SA heuristics, the 

average computation time was 8.5 minutes for each run (5 runs) on a Pentium IV 2.4 GHz PC. 

However, the computation time for the TSall heuristic was 18 minutes on an AMD Athlon 

2600+ 1.92 GHz PC, and the average computation time for the PTS heuristic was 18 minutes 

for each run (3 runs). Hence, the TSall heuristic may be the preferred heuristic with respect to 

solution quality and computational time.  

 

5.3.2 Data Set from Balakrishnan and Cheng (2000) 

First, the test problems were solved using the basic TS heuristic (TSbasic), and then 

each strategy and combination of strategies were added to this heuristic to measure their 
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impact as discussed in Section 5.3.1. Table 5.15 summarizes the results obtained by TSbasic, 

TSfre, TSdiver, TSinten, TSfrediver, TSfreinten, TSdiverinten, TSall. In the last column, the 

best solution obtained is given, and the bold numbers indicate the best objective function 

value (OFV) obtained from the heuristic for each test problem in this data set. In the last row, 

the number of the best solutions obtained from the TS heuristic with each combination of 

strategies is given. The TSbasic, TSfre, TSdiver, TSinten, TSfrediver, TSfreinten, 

TSdiverinten, and TSall heuristics obtained the best solution for 17, 22, 21, 22, 27, 26, 30 

and 33 of the 48 test problems, respectively. Therefore, the proposed TS heuristic with all 

strategies is the preferred TS heuristic for the data set taken from Balakrishnan and Cheng 

(2000). 

Table 5.16 summarizes the results obtained by the PTS heuristic. The result for each run 

and the average of the three runs for each of the test problems are given. In the last column, 

the best solution obtained from the PTS heuristic for the data set taken from Balakrishnan 

and Cheng (2000) is given. The bold numbers indicate the best objective function value 

(OFV) obtained from the PTS heuristic for each test problem. 
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Problem size 
N T 

Problem 
No. 

TSbasic TSfre TSdiver TSinten TSfrediver TSfreinten TSdiverinten TS all 
Best 

solution
P01 106,419 106,419 106,419 106,419 106,419 106,419 106,419 106,419 106,419
P02 104,834 104,834 104,834 104,834 104,834 104,834 104,834 104,834 104,834
P03 104,520 104,320 104,320 104,320 104,320 104,320 104,320 104,320 104,320
P04 106,399 106,399 106,399 106,399 106,399 106,399 106,399 106,399 106,399
P05 105,737 105,628 105,628 105,628 105,628 105,628 105,628 105,628 105,628
P06 103,985 103,985 103,985 103,985 103,985 103,985 103,985 103,985 103,985
P07 106,447 106,439 106,439 106,439 106,439 106,439 106,439 106,439 106,439

5 

P08 106,152 103,771 103,771 103,771 103,771 103,771 103,771 103,771 103,771
P09 214,313 214,313 214,313 214,313 214,313 214,313 214,313 214,313 214,313
P10 212,134 212,134 212,134 212,134 212,134 212,134 212,134 212,134 212,134
P11 207,987 208,060 208,673 207,987 208,060 207,987 207,987 207,987 207,987
P12 212,530 212,530 212,530 212,530 212,530 212,530 212,530 212,530 212,530
P13 210,906 210,906 210,906 210,906 210,906 210,906 210,906 210,906 210,906
P14 209,932 209,932 210,176 209,932 209,932 209,932 209,932 209,932 209,932
P15 214,252 214,252 214,252 214,252 214,252 214,252 214,252 214,252 214,252

6 

10 

P16 212,588 212,588 212,588 212,588 212,588 212,588 212,588 212,588 212,588
P17 480,453 480,453 480,453 480,453 480,453 480,453 480,453 480,453 480,453
P18 484,761 484,761 484,761 484,761 484,761 484,761 484,761 484,761 484,761
P19 489,335 489,058 489,058 489,335 490,174 489,058 489,126 489,058 489,058
P20 484,621 484,876 484,446 484,621 484,446 484,621 484,446 484,446 484,446
P21 487,822 487,989 488,687 487,822 487,753 487,822 487,753 487,822 487,753
P22 486,493 486,689 487,275 486,493 486,493 486,493 486,493 486,493 486,493
P23 486,268 486,268 487,385 486,268 486,268 486,268 486,819 486,268 486,268

5 

P24 490,551 491,016 491,035 490,551 490,551 490,551 490,812 490,551 490,551
P25 983,061 982,344 981,335 983,061 981,335 982,344 980,546 980,399 980,399
P26 978,874 979,081 977,399 978,874 977,338 978,874 977,338 977,399 977,338
P27 982,944 983,273 983,354 983,658 982,889 983,273 981,280 981,172 981,172
P28 972,325 972,963 972,019 972,325 972,019 972,325 971,720 972,019 971,720
P29 978,033 978,563 978,439 978,033 978,439 978,033 976,784 977,657 976,784
P30 969,124 970,085 970,208 969,124 970,456 969,124 967,617 970,085 967,617
P31 979,881 979,991 978,681 979,881 978,681 979,881 978,851 978,681 978,681

15 

10 

P32 985,105 985,370 984,177 985,105 983,882 985,105 983,076 984,177 983,076
P33 576,269 575,429 574,876 576,269 576,057 575,429 573,941 574,876 573,941
P34 569,119 567,969 571,215 567,995 572,234 567,969 569,592 567,969 567,969
P35 573,930 571,639 572,895 572,556 573,647 571,639 572,292 571,639 571,639
P36 565,637 565,831 567,246 565,637 567,412 565,637 565,859 564,725 564,725
P37 556,946 556,243 556,230 556,946 556,719 556,243 555,807 556,230 555,807
P38 565,559 567,009 565,731 565,559 564,867 565,559 565,300 565,559 564,867
P39 574,278 568,115 576,468 574,278 574,747 568,115 570,813 568,376 568,115

5 

P40 573,873 574,046 574,387 573,873 572,658 573,194 573,474 573,194 572,658
P41 1,160,941 1,161,455 1,158,836 1,159,896 1,158,777 1,160,941 1,162,490 1,158,836 1,158,777
P42 1,160,273 1,161,056 1,159,281 1,158,432 1,159,680 1,158,432 1,160,644 1,159,281 1,158,432
P43 1,158,212 1,155,632 1,156,360 1,158,212 1,154,210 1,154,490 1,156,744 1,152,362 1,152,362
P44 1,149,047 1,144,948 1,143,078 1,145,943 1,145,468 1,149,047 1,146,639 1,143,078 1,143,078
P45 1,127,721 1,127,606 1,124,831 1,126,362 1,125,238 1,126,362 1,122,947 1,124,091 1,122,947
P46 1,143,559 1,143,181 1,140,450 1,143,211 1,142,611 1,143,559 1,143,688 1,140,450 1,140,450
P47 1,150,130 1,148,017 1,146,150 1,148,732 1,146,921 1,148,732 1,144,980 1,146,150 1,144,980

30 

10 

P48 1,166,646 1,165,096 1,165,803 1,166,327 1,164,303 1,165,413 1,161,914 1,161,426 1,161,426
Best solution  17 22 21 22 27 26 30 33 48 

Table 5.15 Solution results for TS heuristics for data set 2. 
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Problem size 
N T 

Problem No. 1 2 3 Average Best solution 

P01 106,419 106,419 106,419 106,419 106,419 
P02 104,834 104,834 104,834 104,834 104,834 
P03 104,320 104,520 104,320 104,387 104,320 
P04 106,399 106,399 106,399 106,399 106,399 
P05 105,628 105,737 105,737 105,701 105,628 
P06 103,985 103,985 103,985 103,985 103,985 
P07 106,447 106,447 106,447 106,447 106,447 

5 

P08 106,152 106,152 106,152 106,152 106,152 
P09 214,313 218,656 214,313 215,761 214,313 
P10 212,134 213,828 212,134 212,699 212,134 
P11 207,987 209,031 207,987 208,335 207,987 
P12 212,530 213,974 212,530 213,011 212,530 
P13 210,906 213,216 210,906 211,676 210,906 
P14 209,932 210,417 209,932 210,094 209,932 
P15 214,252 215,054 214,252 214,519 214,252 

6 

10 

P16 212,588 214,120 212,588 213,099 212,588 
P17 480,453 480,497 480,453 480,468 480,453 
P18 484,799 484,761 484,799 484,786 484,761 
P19 489,265 489,335 489,335 489,312 489,265 
P20 484,621 485,436 484,621 484,893 484,621 
P21 488,128 487,822 487,753 487,901 487,753 
P22 487,426 487,619 486,493 487,179 486,493 
P23 486,268 487,578 487,414 487,087 486,268 

5 

P24 492,151 490,551 492,015 491,572 490,551 
P25 981,077 980,906 982,140 981,374 980,906 
P26 979,102 980,276 978,815 979,398 978,815 
P27 983,898 983,988 985,007 984,298 983,898 
P28 973,970 972,755 972,019 972,915 972,019 
P29 978,479 978,297 977,534 978,103 977,534 
P30 968,077 970,472 967,617 968,722 967,617 
P31 979,928 980,613 979,513 980,018 979,513 

15 

10 

P32 985,649 985,947 985,105 985,567 985,105 
P33 576,145 574,577 576,323 575,682 574,577 
P34 571,051 567,691 569,918 569,553 567,691 
P35 573,732 573,307 574,075 573,705 573,307 
P36 565,849 567,592 566,991 566,811 565,849 
P37 557,098 557,256 557,788 557,381 557,098 
P38 566,335 565,670 566,594 566,200 565,670 
P39 573,918 572,701 571,085 572,568 571,085 

5 

P40 574,854 575,176 575,274 575,101 574,854 

P41 1,161,089 1,160,196 1,163,852 1,161,712 1,160,196 
P42 1,159,088 1,160,113 1,165,069 1,161,423 1,159,088 
P43 1,159,029 1,157,350 1,155,280 1,157,220 1,155,280 
P44 1,148,298 1,147,598 1,146,881 1,147,592 1,146,881 
P45 1,125,845 1,128,677 1,125,429 1,126,650 1,125,429 
P46 1,145,100 1,145,245 1,144,625 1,144,990 1,144,625 
P47 1,148,081 1,146,200 1,147,234 1,147,172 1,146,200 

30 

10 

P48 1,165,610 1,163,528 1,167,172 1,165,437 1,163,528 

Table 5.16 Solution results for the PTS heuristic for data set 2. 
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Tables 5.17 - 5.19 summarize the results obtained by the proposed heuristics (basic TS 

(TSbasic), the TS heuristic with all strategies (TSall), and the PTS heuristic (PTS)) as well as 

the heuristics presented by Baykasoglu and Gindy (2001) using a SA heuristic, Balakrishnan 

et al. (2003) using GA algorithm (GA), Erel et al. (2003) using dynamic programming 

approaches (DP), McKendall and Shang (2005) using hybrid ant systems (HAS), and 

McKendall et al. (2005) using SA heuristics (SA). The proposed TS heuristics are compared 

to the SA heuristic presented by Baykasoglu and Gindy (2001) since the results (SA_EG) 

presented in Erel et al. (2003) by using Baykasoglu and Gindy (2001) SA heuristic are 

competitive in test problems with N = 15. However, the solutions have been corrected and 

are available at their website (Erel, 2005). Also, the proposed TS heuristics are compared to 

the GA heuristic presented in Balakrishnan et al. (2003), since this heuristic gives the best 

GA results for this set of test problems. Furthermore, the proposed heuristics are also 

compared to DP approaches, HAS and SA heuristics, since these techniques perform well on 

this data set.  

In Tables 5.17 - 5.19, the best DP solutions and the best SA heuristic solutions presented 

in Erel et al. (2003) are given under the “DP” and “SA_EG” columns, respectively. It is 

important to note that the corrections obtained for SA_EG from Erel (2005) are given in the 

parentheses. Also, the best GA heuristic solutions presented in Balakrishnan et al. (2003), the 

best HAS solutions presented in McKendall and Shang (2005), and the best SA heuristic 

solutions presented in McKendall et al. (2005) are given under “GA”, “HAS” and “SA” 

columns, respectively. The best solutions obtained from either DP, SA_EG, GA, HAS, or SA 

heuristic are given under the “Best found solution” column. In the last column, the percent 

deviation that the best solution obtained from the proposed heuristics is below the best found 

solution obtained from the heuristics presented in the literature is given under “% Dev” for 
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each problem. In the last row, the number of the best solutions obtained from each heuristic 

is given. The bold numbers indicate the best objective function value (OFV) obtained for 

each test problem.  

In Table 5.17, the results are shown for the test problems where N = 6. For test problems 

with T = 5 and 10 (P01-16), TSbasic, TSall, and PTS heuristics obtained the best solution for 

12, 16, and 14 of the 16 test problems, respectively. Therefore, the TSall heuristic 

outperformed the other proposed heuristics (TSbasic and PTS). Since TSall, HAS, and SA 

heuristics obtained the best solutions for all 16 test problems, these heuristics are the 

preferred choice for this set of 16 problems. 

 

Pro. size 

N T 

Problem 

No. 
TSbasic TS all PTS DP SA_EG GA HAS SA 

Best found 

solution 
%Dev

P01 106,419 106,419 106,419 106,419 106,419 106,419 106,419 106,419 106,419 0 

P02 104,834 104,834 104,834 104,834 104,834 104,834 104,834 104,834 104,834 0 

P03 104,520 104,320 104,320 104,320 104,320 104,320 104,320 104,320 104,320 0 

P04 106,399 106,399 106,399 106,399 106,399 106,515 106,399 106,399 106,399 0 

P05 105,737 105,628 105,628 105,628 105,628 105,628 105,628 105,628 105,628 0 

P06 103,985 103,985 103,985 103,985 103,985 104,053 103,985 103,985 103,985 0 

P07 106,447 106,439 106,447 106,447 106,439 106,439 106,439 106,439 106,439 0 

5 

P08 106,152 103,771 106,152 103,771 103,771 103,771 103,771 103,771 103,771 0 

P09 214,313 214,313 214,313 214,313 214,313 214,313 214,313 214,313 214,313 0 

P10 212,134 212,134 212,134 212,134 212,134 212,134 212,134 212,134 212,134 0 

P11 207,987 207,987 207,987 207,987 207,987 207,987 207,987 207,987 207,987 0 

P12 212,530 212,530 212,530 212,741 212,747 212,741 212,530 212,530 212,530 0 

P13 210,906 210,906 210,906 211,022 211,072 210,944 210,906 210,906 210,906 0 

P14 209,932 209,932 209,932 209,932 209,932 210,000 209,932 209,932 209,932 0 

P15 214,252 214,252 214,252 214,252 214,438 215,452 214,252 214,252 214,252 0 

6 

10 

P16 212,588 212,588 212,588 212,588 212,588 212,588 212,588 212,588 212,588 0 

 Best solution 12 16 14 13 13 10 16 16 16  

Table 5.17 Solution results for problems with N = 6 in data set 2. 
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 In Table 5.18, the results are shown for the test problems where N = 15. For test 

problems with T = 5 and 10 (P17-32), TSbasic, TSall and PTS heuristics obtained the best 

solutions for 5, 8, and 7 of the 16 test problems, respectively. Therefore, the TSall heuristic 

performed better than the other proposed heuristics (TSbasic and PTS). Also, HAS and SA 

heuristics obtained the best solutions for 5 and 8 of the 16 test problems, respectively. 

Therefore, TSall and SA heuristics are the preferred choice for this set of 16 problems.  

 
Pro. size 

N T 
Pro. No. TSbasic TS all PTS DP SA_EG GA HAS SA 

Best found 
solution 

%Dev

P17 480,453  480,453  480,453 482,123 
481,378 

(481,738)
484,090 480,453 480,453  480,453 0 

P18 484,761  484,761  484,761 485,702 
478,816 

(485,167)
485,352 484,761 484,761  484,761 0 

P19 489,335  489,058  489,265 491,310 
487886  

(*) 
489,898 488,748 488,748  488,748 0.063 

P20 484,621  484,446  484,621 486,851 
481,628 

(485,862)
484,625 484,446 484,405  484,405 0.008 

P21 487,822  487,822  487,753 491,178 
484,177 

(489,304)
489,885 487,722 487,882  487,722 0.006 

P22 486,493  486,493  486,493 489,847 
482321 

(488,452)
488,640 486,685 487,147  486,685 -0.039 

P23 486,268  486,268  486,268 489,155 
485,384 

(487,576)
489,378 486,853 486,779  486,779 -0.105 

5 

P24 490,551  490,551  490,551 497,577 
489,072 

(493,030)
500,779 491,016 490,812  490,812 -0.053 

P25 983,061  980,399  980,906 983,070 
982298  

(*) 
987,887 980,351 979,468  979,468 0.095 

P26 978,874  977,399  978,815 983,826 
973,179 

(982,714)
980,638 978,271 978,065  978,065 -0.068 

P27 982,944  981,172  983,898 988,635 
985,364 

(988,465)
985,886 978,027 982,396  978,027 0.322 

P28 972,325  972,019  972,019 976,456 
974,994 

(976,456)
976,025 974,694 972,797  972,797 -0.080 

P29 978,033  977,657  977,534 982,893 
975,498 

(982,191)
982,778 979,196 977,188  977,188 0.035 

P30 969,124  970,085  967,617 974,436 
968,323 

(973,199)
973,912 971,548 967,617  967,617 0 

P31 979,881  978,681  979,513 982,790 
977,410  

(*) 
982,872 980,752 979,114  979,114 -0.044 

15 

10 

P32 985,105  984,177  985,105 988,584 
985,041 

(988,304)
987,789 985,707 983,672  983,672 0.051 

 Best solution 5 8 7 0 0 0 5 8 10  

(*) The corrected solution for SA_EG was worse than the solution obtained using DP.  

Table 5.18 Solution results for problems with N = 15 in data set 2. 
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In Table 5.19, the results are shown for the test problems where N = 30. For test 

problems with T = 5 and 10 (P33-48), TSbasic, TSall and PTS heuristics obtained the best 

solutions for 1, and 11 and 3 of the 16 test problems, respectively. Therefore, the TSall 

heuristic outperformed the other proposed heuristics (TSbasic and PTS). Also, HAS and SA 

heuristic obtained the best solution for 1 and 2 of the 16 test problems, respectively, and DP, 

SA_EG and GA obtained the best solution for 0 of the 16 test problems. Clearly, TSall 

heuristic outperformed all of the other heuristics for this set of 16 problems. 

 

Pro. size 

N T 

Problem 

No. 
TSbasic TS all PTS DP SA_EG GA HAS SA 

Best found 

solution 
%Dev

P33 576,269 574,876 574,577 579,741 583,081 578,689 576,886 576,039 576,039 -0.254

P34 569,119 567,969 567,691 570,906 573,965 572,232 570,349 568,095 568,095 -0.071

P35 573,930 571,639 573,307 577,402 577,787 578,527 576,053 573,739 573,739 -0.366

P36 565,637 564,725 565,849 569,596 572,139 572,057 566,777 566,248 566,248 -0.269

P37 556,946 556,230 557,098 561,078 563,503 559,777 558,353 558,460 558,353 -0.380

P38 565,559 565,559 565,670 567,154 570,905 566,792 566,792 566,077 566,077 -0.092

P39 574,278 568,376 571,085 568,196 571,499 567,873 567,131 567,131 567,131 0.220

5 

P40 573,873 573,194 574,854 575,273 581,614 575,720 575,280 573,755 573,755 -0.098

P41 1,160,941 1,158,836 1,160,196 1,171,178 1,174,815 1,169,474 1,166,164 1,163,222 1,163,222 -0.377

P42 1,160,273 1,159,281 1,159,088 1,169,138 1,173,015 1,168,878 1,168,878 1,161,521 1,161,521 -0.209

P43 1,158,212 1,152,362 1,155,280 1,165,525 1,166,295 1,166,366 1,166,366 1,156,918 1,156,918 -0.394

P44 1,149,047 1,143,078 1,146,881 1,152,684 1,154,196 1,154,192 1,148,202 1,145,918 1,145,918 -0.248

P45 1,127,721 1,124,091 1,125,429 1,128,136 1,140,116 1,133,561 1,128,855 1,126,432 1,126,432 -0.208

P46 1,143,559 1,140,450 1,144,625 1,143,824 1,158,227 1,145,000 1,141,344 1,145,146 1,141,344 -0.078

P47 1,150,130 1,146,150 1,146,200 1,142,494 1,157,505 1,145,927 1,140,773 1,140,744 1,140,744 0.474

30 

10 

P48 1,166,646 1,161,426 1,163,528 1,167,163 1,177,565 1,168,657 1,166,157 1,161,437 1,161,437 -0.001

 Best solution 1 11 3 0 0 0 1 2 2  

Table 5.19 Solution results for problems with N = 30 in data set 2. 
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In summary, the TSbasic, TSall, PTS, DP, SA_EG, GA, HAS, and SA heuristics 

obtained the best solutions for 18, 35, 24, 13, 13, 10, 22 and 26 of the 48 problems, 

respectively. Therefore, the TSall heuristic clearly outperformed all the other heuristics for 

this data set with respect to solution quality. In addition, the PTS heuristic required multiple 

runs (3 runs) for each test problem, the results given under the DP heuristic are the best 

results obtained from running 8 heuristics, the results given under the SA_EG heuristic are 

the best results obtained from running 2 different SA settings with 5 runs each, the results 

given under the GA heuristic are the best results obtained from 2 different initial solutions, 

the results given under the HAS heuristic are the best results obtained from running 3 

different HASs with 3 runs each, and the results given under the SA heuristic are the best 

results obtained from running 2 different SA heuristics with 5 runs each. Furthermore, the 30 

department, 10 period problems were solved in 12 minutes for TSall and in an average of 12 

minutes for PTS on an AMD Athlon 2600+ 1.92 GHz PC. For the DP approaches, the 

average computational time for the best solutions was between 30 minutes and 2 hours on an 

Ultra Enterprise sever operating under Solaris 7 at 250 MHz. For the SA_EG heuristic, the 

average computational time was 18.5 hours on an Ultra Enterprise sever operating under 

Solaris 7 at 250 MHz, and the average computational time was 16.7 minutes on DEC Alpha 

machines for the GA heuristic. For the HAS heuristic, the average computational time was 45 

minutes for each run on a Pentium IV 2.4 GHz PC. Last, for the SA heuristic, the average 

computational time was 7.8 minutes for each run on a Pentium IV 2.4 GHz PC. Hence, the 

TSall heuristic is the preferred heuristic with respect to solution quality and computational 

time.  
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CHAPTER 6 

CONCLUSION 

 

6.1 Summary of Research 

In this research, the dynamic facility layout problem is considered and tabu search 

heuristics are presented to solve the DFLP. The proposed tabu search heuristics are: a simple 

tabu search heuristic which is a straightforward implementation of the tabu search heuristic 

(TSbasic), a tabu search heuristic with frequency-based memory as well as diversification 

and intensification strategies (TSall), and a probabilistic tabu search heuristic (PTS).  

The proposed tabu search heuristics were tested using two data sets. The first data set 

was taken from Lacksonen and Enscore (1993) with 32 test problems, and the second data set 

was taken from Balakrishnan and Cheng (2000) with 48 test problems. The probabilistic tabu 

search (PTS) heuristic obtained the best solutions for 27 of the 32 test problems presented by 

Lacksonen and Enscore (1993) and performed slightly better than the tabu search heuristic 

with strategies (TSall). Also, PTS slightly performed better than two of the best heuristics 

presented in the literature for this data set. The tabu search heuristic with strategies (TSall) 

obtained the best solutions for 35 of the 48 test problems and out-performed all the other 

heuristics for the data set presented by Balakrishnan and Cheng (2000). Therefore, the 

proposed TS heuristics (more specifically TSall and PTS) performed better than all of the 

other heuristics with respect to solution quality for the two data sets presented in the 

literature. 
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6.2 Recommendations for Future Research 

The following recommendations are given for future research: 

1. Consider rearrangement costs with respect to periods and distances between the locations 

of exchanged departments. 

2. Use other criteria to free the departments in the intensification strategy to search the 

neighborhoods of good solutions more in depth. 

3. Consider solving the DFLP by using a hybrid technique that combines deterministic and 

stochastic heuristics (e.g. TS and GA or TS and SA) to obtain better results. 

4. Consider developing construction algorithms to construct good initial solutions. 
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